src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Thu, 13 Feb 2014 17:44:39 +0100

author
stefank
date
Thu, 13 Feb 2014 17:44:39 +0100
changeset 6971
7426d8d76305
parent 6937
b0c374311c4e
child 6992
2c6ef90f030a
permissions
-rw-r--r--

8034761: Remove the do_code_roots parameter from process_strong_roots
Reviewed-by: tschatzl, mgerdin, jmasa

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/evacuationInfo.hpp"
    30 #include "gc_implementation/g1/g1AllocRegion.hpp"
    31 #include "gc_implementation/g1/g1BiasedArray.hpp"
    32 #include "gc_implementation/g1/g1HRPrinter.hpp"
    33 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    34 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    35 #include "gc_implementation/g1/g1YCTypes.hpp"
    36 #include "gc_implementation/g1/heapRegionSeq.hpp"
    37 #include "gc_implementation/g1/heapRegionSet.hpp"
    38 #include "gc_implementation/shared/hSpaceCounters.hpp"
    39 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
    40 #include "memory/barrierSet.hpp"
    41 #include "memory/memRegion.hpp"
    42 #include "memory/sharedHeap.hpp"
    43 #include "utilities/stack.hpp"
    45 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    46 // It uses the "Garbage First" heap organization and algorithm, which
    47 // may combine concurrent marking with parallel, incremental compaction of
    48 // heap subsets that will yield large amounts of garbage.
    50 // Forward declarations
    51 class HeapRegion;
    52 class HRRSCleanupTask;
    53 class GenerationSpec;
    54 class OopsInHeapRegionClosure;
    55 class G1KlassScanClosure;
    56 class G1ScanHeapEvacClosure;
    57 class ObjectClosure;
    58 class SpaceClosure;
    59 class CompactibleSpaceClosure;
    60 class Space;
    61 class G1CollectorPolicy;
    62 class GenRemSet;
    63 class G1RemSet;
    64 class HeapRegionRemSetIterator;
    65 class ConcurrentMark;
    66 class ConcurrentMarkThread;
    67 class ConcurrentG1Refine;
    68 class ConcurrentGCTimer;
    69 class GenerationCounters;
    70 class STWGCTimer;
    71 class G1NewTracer;
    72 class G1OldTracer;
    73 class EvacuationFailedInfo;
    74 class nmethod;
    75 class Ticks;
    77 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
    78 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
    80 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    81 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    83 enum GCAllocPurpose {
    84   GCAllocForTenured,
    85   GCAllocForSurvived,
    86   GCAllocPurposeCount
    87 };
    89 class YoungList : public CHeapObj<mtGC> {
    90 private:
    91   G1CollectedHeap* _g1h;
    93   HeapRegion* _head;
    95   HeapRegion* _survivor_head;
    96   HeapRegion* _survivor_tail;
    98   HeapRegion* _curr;
   100   uint        _length;
   101   uint        _survivor_length;
   103   size_t      _last_sampled_rs_lengths;
   104   size_t      _sampled_rs_lengths;
   106   void         empty_list(HeapRegion* list);
   108 public:
   109   YoungList(G1CollectedHeap* g1h);
   111   void         push_region(HeapRegion* hr);
   112   void         add_survivor_region(HeapRegion* hr);
   114   void         empty_list();
   115   bool         is_empty() { return _length == 0; }
   116   uint         length() { return _length; }
   117   uint         survivor_length() { return _survivor_length; }
   119   // Currently we do not keep track of the used byte sum for the
   120   // young list and the survivors and it'd be quite a lot of work to
   121   // do so. When we'll eventually replace the young list with
   122   // instances of HeapRegionLinkedList we'll get that for free. So,
   123   // we'll report the more accurate information then.
   124   size_t       eden_used_bytes() {
   125     assert(length() >= survivor_length(), "invariant");
   126     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
   127   }
   128   size_t       survivor_used_bytes() {
   129     return (size_t) survivor_length() * HeapRegion::GrainBytes;
   130   }
   132   void rs_length_sampling_init();
   133   bool rs_length_sampling_more();
   134   void rs_length_sampling_next();
   136   void reset_sampled_info() {
   137     _last_sampled_rs_lengths =   0;
   138   }
   139   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   141   // for development purposes
   142   void reset_auxilary_lists();
   143   void clear() { _head = NULL; _length = 0; }
   145   void clear_survivors() {
   146     _survivor_head    = NULL;
   147     _survivor_tail    = NULL;
   148     _survivor_length  = 0;
   149   }
   151   HeapRegion* first_region() { return _head; }
   152   HeapRegion* first_survivor_region() { return _survivor_head; }
   153   HeapRegion* last_survivor_region() { return _survivor_tail; }
   155   // debugging
   156   bool          check_list_well_formed();
   157   bool          check_list_empty(bool check_sample = true);
   158   void          print();
   159 };
   161 class MutatorAllocRegion : public G1AllocRegion {
   162 protected:
   163   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   164   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   165 public:
   166   MutatorAllocRegion()
   167     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   168 };
   170 class SurvivorGCAllocRegion : public G1AllocRegion {
   171 protected:
   172   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   173   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   174 public:
   175   SurvivorGCAllocRegion()
   176   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
   177 };
   179 class OldGCAllocRegion : public G1AllocRegion {
   180 protected:
   181   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   182   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   183 public:
   184   OldGCAllocRegion()
   185   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
   186 };
   188 // The G1 STW is alive closure.
   189 // An instance is embedded into the G1CH and used as the
   190 // (optional) _is_alive_non_header closure in the STW
   191 // reference processor. It is also extensively used during
   192 // reference processing during STW evacuation pauses.
   193 class G1STWIsAliveClosure: public BoolObjectClosure {
   194   G1CollectedHeap* _g1;
   195 public:
   196   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
   197   bool do_object_b(oop p);
   198 };
   200 // Instances of this class are used for quick tests on whether a reference points
   201 // into the collection set. Each of the array's elements denotes whether the
   202 // corresponding region is in the collection set.
   203 class G1FastCSetBiasedMappedArray : public G1BiasedMappedArray<bool> {
   204  protected:
   205   bool default_value() const { return false; }
   206  public:
   207   void clear() { G1BiasedMappedArray<bool>::clear(); }
   208 };
   210 class RefineCardTableEntryClosure;
   212 class G1CollectedHeap : public SharedHeap {
   213   friend class VM_G1CollectForAllocation;
   214   friend class VM_G1CollectFull;
   215   friend class VM_G1IncCollectionPause;
   216   friend class VMStructs;
   217   friend class MutatorAllocRegion;
   218   friend class SurvivorGCAllocRegion;
   219   friend class OldGCAllocRegion;
   221   // Closures used in implementation.
   222   template <G1Barrier barrier, bool do_mark_object>
   223   friend class G1ParCopyClosure;
   224   friend class G1IsAliveClosure;
   225   friend class G1EvacuateFollowersClosure;
   226   friend class G1ParScanThreadState;
   227   friend class G1ParScanClosureSuper;
   228   friend class G1ParEvacuateFollowersClosure;
   229   friend class G1ParTask;
   230   friend class G1FreeGarbageRegionClosure;
   231   friend class RefineCardTableEntryClosure;
   232   friend class G1PrepareCompactClosure;
   233   friend class RegionSorter;
   234   friend class RegionResetter;
   235   friend class CountRCClosure;
   236   friend class EvacPopObjClosure;
   237   friend class G1ParCleanupCTTask;
   239   // Other related classes.
   240   friend class G1MarkSweep;
   242 private:
   243   // The one and only G1CollectedHeap, so static functions can find it.
   244   static G1CollectedHeap* _g1h;
   246   static size_t _humongous_object_threshold_in_words;
   248   // Storage for the G1 heap.
   249   VirtualSpace _g1_storage;
   250   MemRegion    _g1_reserved;
   252   // The part of _g1_storage that is currently committed.
   253   MemRegion _g1_committed;
   255   // The master free list. It will satisfy all new region allocations.
   256   FreeRegionList _free_list;
   258   // The secondary free list which contains regions that have been
   259   // freed up during the cleanup process. This will be appended to the
   260   // master free list when appropriate.
   261   FreeRegionList _secondary_free_list;
   263   // It keeps track of the old regions.
   264   HeapRegionSet _old_set;
   266   // It keeps track of the humongous regions.
   267   HeapRegionSet _humongous_set;
   269   // The number of regions we could create by expansion.
   270   uint _expansion_regions;
   272   // The block offset table for the G1 heap.
   273   G1BlockOffsetSharedArray* _bot_shared;
   275   // Tears down the region sets / lists so that they are empty and the
   276   // regions on the heap do not belong to a region set / list. The
   277   // only exception is the humongous set which we leave unaltered. If
   278   // free_list_only is true, it will only tear down the master free
   279   // list. It is called before a Full GC (free_list_only == false) or
   280   // before heap shrinking (free_list_only == true).
   281   void tear_down_region_sets(bool free_list_only);
   283   // Rebuilds the region sets / lists so that they are repopulated to
   284   // reflect the contents of the heap. The only exception is the
   285   // humongous set which was not torn down in the first place. If
   286   // free_list_only is true, it will only rebuild the master free
   287   // list. It is called after a Full GC (free_list_only == false) or
   288   // after heap shrinking (free_list_only == true).
   289   void rebuild_region_sets(bool free_list_only);
   291   // The sequence of all heap regions in the heap.
   292   HeapRegionSeq _hrs;
   294   // Alloc region used to satisfy mutator allocation requests.
   295   MutatorAllocRegion _mutator_alloc_region;
   297   // Alloc region used to satisfy allocation requests by the GC for
   298   // survivor objects.
   299   SurvivorGCAllocRegion _survivor_gc_alloc_region;
   301   // PLAB sizing policy for survivors.
   302   PLABStats _survivor_plab_stats;
   304   // Alloc region used to satisfy allocation requests by the GC for
   305   // old objects.
   306   OldGCAllocRegion _old_gc_alloc_region;
   308   // PLAB sizing policy for tenured objects.
   309   PLABStats _old_plab_stats;
   311   PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
   312     PLABStats* stats = NULL;
   314     switch (purpose) {
   315     case GCAllocForSurvived:
   316       stats = &_survivor_plab_stats;
   317       break;
   318     case GCAllocForTenured:
   319       stats = &_old_plab_stats;
   320       break;
   321     default:
   322       assert(false, "unrecognized GCAllocPurpose");
   323     }
   325     return stats;
   326   }
   328   // The last old region we allocated to during the last GC.
   329   // Typically, it is not full so we should re-use it during the next GC.
   330   HeapRegion* _retained_old_gc_alloc_region;
   332   // It specifies whether we should attempt to expand the heap after a
   333   // region allocation failure. If heap expansion fails we set this to
   334   // false so that we don't re-attempt the heap expansion (it's likely
   335   // that subsequent expansion attempts will also fail if one fails).
   336   // Currently, it is only consulted during GC and it's reset at the
   337   // start of each GC.
   338   bool _expand_heap_after_alloc_failure;
   340   // It resets the mutator alloc region before new allocations can take place.
   341   void init_mutator_alloc_region();
   343   // It releases the mutator alloc region.
   344   void release_mutator_alloc_region();
   346   // It initializes the GC alloc regions at the start of a GC.
   347   void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
   349   // It releases the GC alloc regions at the end of a GC.
   350   void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
   352   // It does any cleanup that needs to be done on the GC alloc regions
   353   // before a Full GC.
   354   void abandon_gc_alloc_regions();
   356   // Helper for monitoring and management support.
   357   G1MonitoringSupport* _g1mm;
   359   // Determines PLAB size for a particular allocation purpose.
   360   size_t desired_plab_sz(GCAllocPurpose purpose);
   362   // Outside of GC pauses, the number of bytes used in all regions other
   363   // than the current allocation region.
   364   size_t _summary_bytes_used;
   366   // This array is used for a quick test on whether a reference points into
   367   // the collection set or not. Each of the array's elements denotes whether the
   368   // corresponding region is in the collection set or not.
   369   G1FastCSetBiasedMappedArray _in_cset_fast_test;
   371   volatile unsigned _gc_time_stamp;
   373   size_t* _surviving_young_words;
   375   G1HRPrinter _hr_printer;
   377   void setup_surviving_young_words();
   378   void update_surviving_young_words(size_t* surv_young_words);
   379   void cleanup_surviving_young_words();
   381   // It decides whether an explicit GC should start a concurrent cycle
   382   // instead of doing a STW GC. Currently, a concurrent cycle is
   383   // explicitly started if:
   384   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   385   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   386   // (c) cause == _g1_humongous_allocation
   387   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   389   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   390   // concurrent cycles) we have started.
   391   volatile unsigned int _old_marking_cycles_started;
   393   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   394   // concurrent cycles) we have completed.
   395   volatile unsigned int _old_marking_cycles_completed;
   397   bool _concurrent_cycle_started;
   399   // This is a non-product method that is helpful for testing. It is
   400   // called at the end of a GC and artificially expands the heap by
   401   // allocating a number of dead regions. This way we can induce very
   402   // frequent marking cycles and stress the cleanup / concurrent
   403   // cleanup code more (as all the regions that will be allocated by
   404   // this method will be found dead by the marking cycle).
   405   void allocate_dummy_regions() PRODUCT_RETURN;
   407   // Clear RSets after a compaction. It also resets the GC time stamps.
   408   void clear_rsets_post_compaction();
   410   // If the HR printer is active, dump the state of the regions in the
   411   // heap after a compaction.
   412   void print_hrs_post_compaction();
   414   double verify(bool guard, const char* msg);
   415   void verify_before_gc();
   416   void verify_after_gc();
   418   void log_gc_header();
   419   void log_gc_footer(double pause_time_sec);
   421   // These are macros so that, if the assert fires, we get the correct
   422   // line number, file, etc.
   424 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   425   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   426           (_extra_message_),                                                  \
   427           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   428           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   429           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   431 #define assert_heap_locked()                                                  \
   432   do {                                                                        \
   433     assert(Heap_lock->owned_by_self(),                                        \
   434            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   435   } while (0)
   437 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   438   do {                                                                        \
   439     assert(Heap_lock->owned_by_self() ||                                      \
   440            (SafepointSynchronize::is_at_safepoint() &&                        \
   441              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   442            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   443                                         "should be at a safepoint"));         \
   444   } while (0)
   446 #define assert_heap_locked_and_not_at_safepoint()                             \
   447   do {                                                                        \
   448     assert(Heap_lock->owned_by_self() &&                                      \
   449                                     !SafepointSynchronize::is_at_safepoint(), \
   450           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   451                                        "should not be at a safepoint"));      \
   452   } while (0)
   454 #define assert_heap_not_locked()                                              \
   455   do {                                                                        \
   456     assert(!Heap_lock->owned_by_self(),                                       \
   457         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   458   } while (0)
   460 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   461   do {                                                                        \
   462     assert(!Heap_lock->owned_by_self() &&                                     \
   463                                     !SafepointSynchronize::is_at_safepoint(), \
   464       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   465                                    "should not be at a safepoint"));          \
   466   } while (0)
   468 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   469   do {                                                                        \
   470     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   471               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   472            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   473   } while (0)
   475 #define assert_not_at_safepoint()                                             \
   476   do {                                                                        \
   477     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   478            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   479   } while (0)
   481 protected:
   483   // The young region list.
   484   YoungList*  _young_list;
   486   // The current policy object for the collector.
   487   G1CollectorPolicy* _g1_policy;
   489   // This is the second level of trying to allocate a new region. If
   490   // new_region() didn't find a region on the free_list, this call will
   491   // check whether there's anything available on the
   492   // secondary_free_list and/or wait for more regions to appear on
   493   // that list, if _free_regions_coming is set.
   494   HeapRegion* new_region_try_secondary_free_list(bool is_old);
   496   // Try to allocate a single non-humongous HeapRegion sufficient for
   497   // an allocation of the given word_size. If do_expand is true,
   498   // attempt to expand the heap if necessary to satisfy the allocation
   499   // request. If the region is to be used as an old region or for a
   500   // humongous object, set is_old to true. If not, to false.
   501   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
   503   // Attempt to satisfy a humongous allocation request of the given
   504   // size by finding a contiguous set of free regions of num_regions
   505   // length and remove them from the master free list. Return the
   506   // index of the first region or G1_NULL_HRS_INDEX if the search
   507   // was unsuccessful.
   508   uint humongous_obj_allocate_find_first(uint num_regions,
   509                                          size_t word_size);
   511   // Initialize a contiguous set of free regions of length num_regions
   512   // and starting at index first so that they appear as a single
   513   // humongous region.
   514   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
   515                                                       uint num_regions,
   516                                                       size_t word_size);
   518   // Attempt to allocate a humongous object of the given size. Return
   519   // NULL if unsuccessful.
   520   HeapWord* humongous_obj_allocate(size_t word_size);
   522   // The following two methods, allocate_new_tlab() and
   523   // mem_allocate(), are the two main entry points from the runtime
   524   // into the G1's allocation routines. They have the following
   525   // assumptions:
   526   //
   527   // * They should both be called outside safepoints.
   528   //
   529   // * They should both be called without holding the Heap_lock.
   530   //
   531   // * All allocation requests for new TLABs should go to
   532   //   allocate_new_tlab().
   533   //
   534   // * All non-TLAB allocation requests should go to mem_allocate().
   535   //
   536   // * If either call cannot satisfy the allocation request using the
   537   //   current allocating region, they will try to get a new one. If
   538   //   this fails, they will attempt to do an evacuation pause and
   539   //   retry the allocation.
   540   //
   541   // * If all allocation attempts fail, even after trying to schedule
   542   //   an evacuation pause, allocate_new_tlab() will return NULL,
   543   //   whereas mem_allocate() will attempt a heap expansion and/or
   544   //   schedule a Full GC.
   545   //
   546   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   547   //   should never be called with word_size being humongous. All
   548   //   humongous allocation requests should go to mem_allocate() which
   549   //   will satisfy them with a special path.
   551   virtual HeapWord* allocate_new_tlab(size_t word_size);
   553   virtual HeapWord* mem_allocate(size_t word_size,
   554                                  bool*  gc_overhead_limit_was_exceeded);
   556   // The following three methods take a gc_count_before_ret
   557   // parameter which is used to return the GC count if the method
   558   // returns NULL. Given that we are required to read the GC count
   559   // while holding the Heap_lock, and these paths will take the
   560   // Heap_lock at some point, it's easier to get them to read the GC
   561   // count while holding the Heap_lock before they return NULL instead
   562   // of the caller (namely: mem_allocate()) having to also take the
   563   // Heap_lock just to read the GC count.
   565   // First-level mutator allocation attempt: try to allocate out of
   566   // the mutator alloc region without taking the Heap_lock. This
   567   // should only be used for non-humongous allocations.
   568   inline HeapWord* attempt_allocation(size_t word_size,
   569                                       unsigned int* gc_count_before_ret,
   570                                       int* gclocker_retry_count_ret);
   572   // Second-level mutator allocation attempt: take the Heap_lock and
   573   // retry the allocation attempt, potentially scheduling a GC
   574   // pause. This should only be used for non-humongous allocations.
   575   HeapWord* attempt_allocation_slow(size_t word_size,
   576                                     unsigned int* gc_count_before_ret,
   577                                     int* gclocker_retry_count_ret);
   579   // Takes the Heap_lock and attempts a humongous allocation. It can
   580   // potentially schedule a GC pause.
   581   HeapWord* attempt_allocation_humongous(size_t word_size,
   582                                          unsigned int* gc_count_before_ret,
   583                                          int* gclocker_retry_count_ret);
   585   // Allocation attempt that should be called during safepoints (e.g.,
   586   // at the end of a successful GC). expect_null_mutator_alloc_region
   587   // specifies whether the mutator alloc region is expected to be NULL
   588   // or not.
   589   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   590                                        bool expect_null_mutator_alloc_region);
   592   // It dirties the cards that cover the block so that so that the post
   593   // write barrier never queues anything when updating objects on this
   594   // block. It is assumed (and in fact we assert) that the block
   595   // belongs to a young region.
   596   inline void dirty_young_block(HeapWord* start, size_t word_size);
   598   // Allocate blocks during garbage collection. Will ensure an
   599   // allocation region, either by picking one or expanding the
   600   // heap, and then allocate a block of the given size. The block
   601   // may not be a humongous - it must fit into a single heap region.
   602   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   604   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   605                                     HeapRegion*    alloc_region,
   606                                     bool           par,
   607                                     size_t         word_size);
   609   // Ensure that no further allocations can happen in "r", bearing in mind
   610   // that parallel threads might be attempting allocations.
   611   void par_allocate_remaining_space(HeapRegion* r);
   613   // Allocation attempt during GC for a survivor object / PLAB.
   614   inline HeapWord* survivor_attempt_allocation(size_t word_size);
   616   // Allocation attempt during GC for an old object / PLAB.
   617   inline HeapWord* old_attempt_allocation(size_t word_size);
   619   // These methods are the "callbacks" from the G1AllocRegion class.
   621   // For mutator alloc regions.
   622   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   623   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   624                                    size_t allocated_bytes);
   626   // For GC alloc regions.
   627   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
   628                                   GCAllocPurpose ap);
   629   void retire_gc_alloc_region(HeapRegion* alloc_region,
   630                               size_t allocated_bytes, GCAllocPurpose ap);
   632   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   633   //   inspection request and should collect the entire heap
   634   // - if clear_all_soft_refs is true, all soft references should be
   635   //   cleared during the GC
   636   // - if explicit_gc is false, word_size describes the allocation that
   637   //   the GC should attempt (at least) to satisfy
   638   // - it returns false if it is unable to do the collection due to the
   639   //   GC locker being active, true otherwise
   640   bool do_collection(bool explicit_gc,
   641                      bool clear_all_soft_refs,
   642                      size_t word_size);
   644   // Callback from VM_G1CollectFull operation.
   645   // Perform a full collection.
   646   virtual void do_full_collection(bool clear_all_soft_refs);
   648   // Resize the heap if necessary after a full collection.  If this is
   649   // after a collect-for allocation, "word_size" is the allocation size,
   650   // and will be considered part of the used portion of the heap.
   651   void resize_if_necessary_after_full_collection(size_t word_size);
   653   // Callback from VM_G1CollectForAllocation operation.
   654   // This function does everything necessary/possible to satisfy a
   655   // failed allocation request (including collection, expansion, etc.)
   656   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   658   // Attempting to expand the heap sufficiently
   659   // to support an allocation of the given "word_size".  If
   660   // successful, perform the allocation and return the address of the
   661   // allocated block, or else "NULL".
   662   HeapWord* expand_and_allocate(size_t word_size);
   664   // Process any reference objects discovered during
   665   // an incremental evacuation pause.
   666   void process_discovered_references(uint no_of_gc_workers);
   668   // Enqueue any remaining discovered references
   669   // after processing.
   670   void enqueue_discovered_references(uint no_of_gc_workers);
   672 public:
   674   G1MonitoringSupport* g1mm() {
   675     assert(_g1mm != NULL, "should have been initialized");
   676     return _g1mm;
   677   }
   679   // Expand the garbage-first heap by at least the given size (in bytes!).
   680   // Returns true if the heap was expanded by the requested amount;
   681   // false otherwise.
   682   // (Rounds up to a HeapRegion boundary.)
   683   bool expand(size_t expand_bytes);
   685   // Do anything common to GC's.
   686   virtual void gc_prologue(bool full);
   687   virtual void gc_epilogue(bool full);
   689   // We register a region with the fast "in collection set" test. We
   690   // simply set to true the array slot corresponding to this region.
   691   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   692     _in_cset_fast_test.set_by_index(r->hrs_index(), true);
   693   }
   695   // This is a fast test on whether a reference points into the
   696   // collection set or not. Assume that the reference
   697   // points into the heap.
   698   inline bool in_cset_fast_test(oop obj);
   700   void clear_cset_fast_test() {
   701     _in_cset_fast_test.clear();
   702   }
   704   // This is called at the start of either a concurrent cycle or a Full
   705   // GC to update the number of old marking cycles started.
   706   void increment_old_marking_cycles_started();
   708   // This is called at the end of either a concurrent cycle or a Full
   709   // GC to update the number of old marking cycles completed. Those two
   710   // can happen in a nested fashion, i.e., we start a concurrent
   711   // cycle, a Full GC happens half-way through it which ends first,
   712   // and then the cycle notices that a Full GC happened and ends
   713   // too. The concurrent parameter is a boolean to help us do a bit
   714   // tighter consistency checking in the method. If concurrent is
   715   // false, the caller is the inner caller in the nesting (i.e., the
   716   // Full GC). If concurrent is true, the caller is the outer caller
   717   // in this nesting (i.e., the concurrent cycle). Further nesting is
   718   // not currently supported. The end of this call also notifies
   719   // the FullGCCount_lock in case a Java thread is waiting for a full
   720   // GC to happen (e.g., it called System.gc() with
   721   // +ExplicitGCInvokesConcurrent).
   722   void increment_old_marking_cycles_completed(bool concurrent);
   724   unsigned int old_marking_cycles_completed() {
   725     return _old_marking_cycles_completed;
   726   }
   728   void register_concurrent_cycle_start(const Ticks& start_time);
   729   void register_concurrent_cycle_end();
   730   void trace_heap_after_concurrent_cycle();
   732   G1YCType yc_type();
   734   G1HRPrinter* hr_printer() { return &_hr_printer; }
   736   // Frees a non-humongous region by initializing its contents and
   737   // adding it to the free list that's passed as a parameter (this is
   738   // usually a local list which will be appended to the master free
   739   // list later). The used bytes of freed regions are accumulated in
   740   // pre_used. If par is true, the region's RSet will not be freed
   741   // up. The assumption is that this will be done later.
   742   // The locked parameter indicates if the caller has already taken
   743   // care of proper synchronization. This may allow some optimizations.
   744   void free_region(HeapRegion* hr,
   745                    FreeRegionList* free_list,
   746                    bool par,
   747                    bool locked = false);
   749   // Frees a humongous region by collapsing it into individual regions
   750   // and calling free_region() for each of them. The freed regions
   751   // will be added to the free list that's passed as a parameter (this
   752   // is usually a local list which will be appended to the master free
   753   // list later). The used bytes of freed regions are accumulated in
   754   // pre_used. If par is true, the region's RSet will not be freed
   755   // up. The assumption is that this will be done later.
   756   void free_humongous_region(HeapRegion* hr,
   757                              FreeRegionList* free_list,
   758                              bool par);
   759 protected:
   761   // Shrink the garbage-first heap by at most the given size (in bytes!).
   762   // (Rounds down to a HeapRegion boundary.)
   763   virtual void shrink(size_t expand_bytes);
   764   void shrink_helper(size_t expand_bytes);
   766   #if TASKQUEUE_STATS
   767   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   768   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   769   void reset_taskqueue_stats();
   770   #endif // TASKQUEUE_STATS
   772   // Schedule the VM operation that will do an evacuation pause to
   773   // satisfy an allocation request of word_size. *succeeded will
   774   // return whether the VM operation was successful (it did do an
   775   // evacuation pause) or not (another thread beat us to it or the GC
   776   // locker was active). Given that we should not be holding the
   777   // Heap_lock when we enter this method, we will pass the
   778   // gc_count_before (i.e., total_collections()) as a parameter since
   779   // it has to be read while holding the Heap_lock. Currently, both
   780   // methods that call do_collection_pause() release the Heap_lock
   781   // before the call, so it's easy to read gc_count_before just before.
   782   HeapWord* do_collection_pause(size_t         word_size,
   783                                 unsigned int   gc_count_before,
   784                                 bool*          succeeded,
   785                                 GCCause::Cause gc_cause);
   787   // The guts of the incremental collection pause, executed by the vm
   788   // thread. It returns false if it is unable to do the collection due
   789   // to the GC locker being active, true otherwise
   790   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   792   // Actually do the work of evacuating the collection set.
   793   void evacuate_collection_set(EvacuationInfo& evacuation_info);
   795   // The g1 remembered set of the heap.
   796   G1RemSet* _g1_rem_set;
   798   // A set of cards that cover the objects for which the Rsets should be updated
   799   // concurrently after the collection.
   800   DirtyCardQueueSet _dirty_card_queue_set;
   802   // The closure used to refine a single card.
   803   RefineCardTableEntryClosure* _refine_cte_cl;
   805   // A function to check the consistency of dirty card logs.
   806   void check_ct_logs_at_safepoint();
   808   // A DirtyCardQueueSet that is used to hold cards that contain
   809   // references into the current collection set. This is used to
   810   // update the remembered sets of the regions in the collection
   811   // set in the event of an evacuation failure.
   812   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   814   // After a collection pause, make the regions in the CS into free
   815   // regions.
   816   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
   818   // Abandon the current collection set without recording policy
   819   // statistics or updating free lists.
   820   void abandon_collection_set(HeapRegion* cs_head);
   822   // Applies "scan_non_heap_roots" to roots outside the heap,
   823   // "scan_rs" to roots inside the heap (having done "set_region" to
   824   // indicate the region in which the root resides),
   825   // and does "scan_metadata" If "scan_rs" is
   826   // NULL, then this step is skipped.  The "worker_i"
   827   // param is for use with parallel roots processing, and should be
   828   // the "i" of the calling parallel worker thread's work(i) function.
   829   // In the sequential case this param will be ignored.
   830   void g1_process_strong_roots(bool is_scavenging,
   831                                ScanningOption so,
   832                                OopClosure* scan_non_heap_roots,
   833                                OopsInHeapRegionClosure* scan_rs,
   834                                G1KlassScanClosure* scan_klasses,
   835                                uint worker_i);
   837   // Notifies all the necessary spaces that the committed space has
   838   // been updated (either expanded or shrunk). It should be called
   839   // after _g1_storage is updated.
   840   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   842   // The concurrent marker (and the thread it runs in.)
   843   ConcurrentMark* _cm;
   844   ConcurrentMarkThread* _cmThread;
   845   bool _mark_in_progress;
   847   // The concurrent refiner.
   848   ConcurrentG1Refine* _cg1r;
   850   // The parallel task queues
   851   RefToScanQueueSet *_task_queues;
   853   // True iff a evacuation has failed in the current collection.
   854   bool _evacuation_failed;
   856   EvacuationFailedInfo* _evacuation_failed_info_array;
   858   // Failed evacuations cause some logical from-space objects to have
   859   // forwarding pointers to themselves.  Reset them.
   860   void remove_self_forwarding_pointers();
   862   // Together, these store an object with a preserved mark, and its mark value.
   863   Stack<oop, mtGC>     _objs_with_preserved_marks;
   864   Stack<markOop, mtGC> _preserved_marks_of_objs;
   866   // Preserve the mark of "obj", if necessary, in preparation for its mark
   867   // word being overwritten with a self-forwarding-pointer.
   868   void preserve_mark_if_necessary(oop obj, markOop m);
   870   // The stack of evac-failure objects left to be scanned.
   871   GrowableArray<oop>*    _evac_failure_scan_stack;
   872   // The closure to apply to evac-failure objects.
   874   OopsInHeapRegionClosure* _evac_failure_closure;
   875   // Set the field above.
   876   void
   877   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   878     _evac_failure_closure = evac_failure_closure;
   879   }
   881   // Push "obj" on the scan stack.
   882   void push_on_evac_failure_scan_stack(oop obj);
   883   // Process scan stack entries until the stack is empty.
   884   void drain_evac_failure_scan_stack();
   885   // True iff an invocation of "drain_scan_stack" is in progress; to
   886   // prevent unnecessary recursion.
   887   bool _drain_in_progress;
   889   // Do any necessary initialization for evacuation-failure handling.
   890   // "cl" is the closure that will be used to process evac-failure
   891   // objects.
   892   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   893   // Do any necessary cleanup for evacuation-failure handling data
   894   // structures.
   895   void finalize_for_evac_failure();
   897   // An attempt to evacuate "obj" has failed; take necessary steps.
   898   oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
   899   void handle_evacuation_failure_common(oop obj, markOop m);
   901 #ifndef PRODUCT
   902   // Support for forcing evacuation failures. Analogous to
   903   // PromotionFailureALot for the other collectors.
   905   // Records whether G1EvacuationFailureALot should be in effect
   906   // for the current GC
   907   bool _evacuation_failure_alot_for_current_gc;
   909   // Used to record the GC number for interval checking when
   910   // determining whether G1EvaucationFailureALot is in effect
   911   // for the current GC.
   912   size_t _evacuation_failure_alot_gc_number;
   914   // Count of the number of evacuations between failures.
   915   volatile size_t _evacuation_failure_alot_count;
   917   // Set whether G1EvacuationFailureALot should be in effect
   918   // for the current GC (based upon the type of GC and which
   919   // command line flags are set);
   920   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
   921                                                   bool during_initial_mark,
   922                                                   bool during_marking);
   924   inline void set_evacuation_failure_alot_for_current_gc();
   926   // Return true if it's time to cause an evacuation failure.
   927   inline bool evacuation_should_fail();
   929   // Reset the G1EvacuationFailureALot counters.  Should be called at
   930   // the end of an evacuation pause in which an evacuation failure occurred.
   931   inline void reset_evacuation_should_fail();
   932 #endif // !PRODUCT
   934   // ("Weak") Reference processing support.
   935   //
   936   // G1 has 2 instances of the reference processor class. One
   937   // (_ref_processor_cm) handles reference object discovery
   938   // and subsequent processing during concurrent marking cycles.
   939   //
   940   // The other (_ref_processor_stw) handles reference object
   941   // discovery and processing during full GCs and incremental
   942   // evacuation pauses.
   943   //
   944   // During an incremental pause, reference discovery will be
   945   // temporarily disabled for _ref_processor_cm and will be
   946   // enabled for _ref_processor_stw. At the end of the evacuation
   947   // pause references discovered by _ref_processor_stw will be
   948   // processed and discovery will be disabled. The previous
   949   // setting for reference object discovery for _ref_processor_cm
   950   // will be re-instated.
   951   //
   952   // At the start of marking:
   953   //  * Discovery by the CM ref processor is verified to be inactive
   954   //    and it's discovered lists are empty.
   955   //  * Discovery by the CM ref processor is then enabled.
   956   //
   957   // At the end of marking:
   958   //  * Any references on the CM ref processor's discovered
   959   //    lists are processed (possibly MT).
   960   //
   961   // At the start of full GC we:
   962   //  * Disable discovery by the CM ref processor and
   963   //    empty CM ref processor's discovered lists
   964   //    (without processing any entries).
   965   //  * Verify that the STW ref processor is inactive and it's
   966   //    discovered lists are empty.
   967   //  * Temporarily set STW ref processor discovery as single threaded.
   968   //  * Temporarily clear the STW ref processor's _is_alive_non_header
   969   //    field.
   970   //  * Finally enable discovery by the STW ref processor.
   971   //
   972   // The STW ref processor is used to record any discovered
   973   // references during the full GC.
   974   //
   975   // At the end of a full GC we:
   976   //  * Enqueue any reference objects discovered by the STW ref processor
   977   //    that have non-live referents. This has the side-effect of
   978   //    making the STW ref processor inactive by disabling discovery.
   979   //  * Verify that the CM ref processor is still inactive
   980   //    and no references have been placed on it's discovered
   981   //    lists (also checked as a precondition during initial marking).
   983   // The (stw) reference processor...
   984   ReferenceProcessor* _ref_processor_stw;
   986   STWGCTimer* _gc_timer_stw;
   987   ConcurrentGCTimer* _gc_timer_cm;
   989   G1OldTracer* _gc_tracer_cm;
   990   G1NewTracer* _gc_tracer_stw;
   992   // During reference object discovery, the _is_alive_non_header
   993   // closure (if non-null) is applied to the referent object to
   994   // determine whether the referent is live. If so then the
   995   // reference object does not need to be 'discovered' and can
   996   // be treated as a regular oop. This has the benefit of reducing
   997   // the number of 'discovered' reference objects that need to
   998   // be processed.
   999   //
  1000   // Instance of the is_alive closure for embedding into the
  1001   // STW reference processor as the _is_alive_non_header field.
  1002   // Supplying a value for the _is_alive_non_header field is
  1003   // optional but doing so prevents unnecessary additions to
  1004   // the discovered lists during reference discovery.
  1005   G1STWIsAliveClosure _is_alive_closure_stw;
  1007   // The (concurrent marking) reference processor...
  1008   ReferenceProcessor* _ref_processor_cm;
  1010   // Instance of the concurrent mark is_alive closure for embedding
  1011   // into the Concurrent Marking reference processor as the
  1012   // _is_alive_non_header field. Supplying a value for the
  1013   // _is_alive_non_header field is optional but doing so prevents
  1014   // unnecessary additions to the discovered lists during reference
  1015   // discovery.
  1016   G1CMIsAliveClosure _is_alive_closure_cm;
  1018   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
  1019   HeapRegion** _worker_cset_start_region;
  1021   // Time stamp to validate the regions recorded in the cache
  1022   // used by G1CollectedHeap::start_cset_region_for_worker().
  1023   // The heap region entry for a given worker is valid iff
  1024   // the associated time stamp value matches the current value
  1025   // of G1CollectedHeap::_gc_time_stamp.
  1026   unsigned int* _worker_cset_start_region_time_stamp;
  1028   enum G1H_process_strong_roots_tasks {
  1029     G1H_PS_filter_satb_buffers,
  1030     G1H_PS_refProcessor_oops_do,
  1031     // Leave this one last.
  1032     G1H_PS_NumElements
  1033   };
  1035   SubTasksDone* _process_strong_tasks;
  1037   volatile bool _free_regions_coming;
  1039 public:
  1041   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
  1043   void set_refine_cte_cl_concurrency(bool concurrent);
  1045   RefToScanQueue *task_queue(int i) const;
  1047   // A set of cards where updates happened during the GC
  1048   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
  1050   // A DirtyCardQueueSet that is used to hold cards that contain
  1051   // references into the current collection set. This is used to
  1052   // update the remembered sets of the regions in the collection
  1053   // set in the event of an evacuation failure.
  1054   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
  1055         { return _into_cset_dirty_card_queue_set; }
  1057   // Create a G1CollectedHeap with the specified policy.
  1058   // Must call the initialize method afterwards.
  1059   // May not return if something goes wrong.
  1060   G1CollectedHeap(G1CollectorPolicy* policy);
  1062   // Initialize the G1CollectedHeap to have the initial and
  1063   // maximum sizes and remembered and barrier sets
  1064   // specified by the policy object.
  1065   jint initialize();
  1067   virtual void stop();
  1069   // Return the (conservative) maximum heap alignment for any G1 heap
  1070   static size_t conservative_max_heap_alignment();
  1072   // Initialize weak reference processing.
  1073   virtual void ref_processing_init();
  1075   void set_par_threads(uint t) {
  1076     SharedHeap::set_par_threads(t);
  1077     // Done in SharedHeap but oddly there are
  1078     // two _process_strong_tasks's in a G1CollectedHeap
  1079     // so do it here too.
  1080     _process_strong_tasks->set_n_threads(t);
  1083   // Set _n_par_threads according to a policy TBD.
  1084   void set_par_threads();
  1086   void set_n_termination(int t) {
  1087     _process_strong_tasks->set_n_threads(t);
  1090   virtual CollectedHeap::Name kind() const {
  1091     return CollectedHeap::G1CollectedHeap;
  1094   // The current policy object for the collector.
  1095   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
  1097   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
  1099   // Adaptive size policy.  No such thing for g1.
  1100   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
  1102   // The rem set and barrier set.
  1103   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  1105   unsigned get_gc_time_stamp() {
  1106     return _gc_time_stamp;
  1109   inline void reset_gc_time_stamp();
  1111   void check_gc_time_stamps() PRODUCT_RETURN;
  1113   inline void increment_gc_time_stamp();
  1115   // Reset the given region's GC timestamp. If it's starts humongous,
  1116   // also reset the GC timestamp of its corresponding
  1117   // continues humongous regions too.
  1118   void reset_gc_time_stamps(HeapRegion* hr);
  1120   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
  1121                                   DirtyCardQueue* into_cset_dcq,
  1122                                   bool concurrent, uint worker_i);
  1124   // The shared block offset table array.
  1125   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
  1127   // Reference Processing accessors
  1129   // The STW reference processor....
  1130   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
  1132   // The Concurrent Marking reference processor...
  1133   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
  1135   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
  1136   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
  1138   virtual size_t capacity() const;
  1139   virtual size_t used() const;
  1140   // This should be called when we're not holding the heap lock. The
  1141   // result might be a bit inaccurate.
  1142   size_t used_unlocked() const;
  1143   size_t recalculate_used() const;
  1145   // These virtual functions do the actual allocation.
  1146   // Some heaps may offer a contiguous region for shared non-blocking
  1147   // allocation, via inlined code (by exporting the address of the top and
  1148   // end fields defining the extent of the contiguous allocation region.)
  1149   // But G1CollectedHeap doesn't yet support this.
  1151   // Return an estimate of the maximum allocation that could be performed
  1152   // without triggering any collection or expansion activity.  In a
  1153   // generational collector, for example, this is probably the largest
  1154   // allocation that could be supported (without expansion) in the youngest
  1155   // generation.  It is "unsafe" because no locks are taken; the result
  1156   // should be treated as an approximation, not a guarantee, for use in
  1157   // heuristic resizing decisions.
  1158   virtual size_t unsafe_max_alloc();
  1160   virtual bool is_maximal_no_gc() const {
  1161     return _g1_storage.uncommitted_size() == 0;
  1164   // The total number of regions in the heap.
  1165   uint n_regions() { return _hrs.length(); }
  1167   // The max number of regions in the heap.
  1168   uint max_regions() { return _hrs.max_length(); }
  1170   // The number of regions that are completely free.
  1171   uint free_regions() { return _free_list.length(); }
  1173   // The number of regions that are not completely free.
  1174   uint used_regions() { return n_regions() - free_regions(); }
  1176   // The number of regions available for "regular" expansion.
  1177   uint expansion_regions() { return _expansion_regions; }
  1179   // Factory method for HeapRegion instances. It will return NULL if
  1180   // the allocation fails.
  1181   HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
  1183   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1184   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1185   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  1186   void verify_dirty_young_regions() PRODUCT_RETURN;
  1188   // verify_region_sets() performs verification over the region
  1189   // lists. It will be compiled in the product code to be used when
  1190   // necessary (i.e., during heap verification).
  1191   void verify_region_sets();
  1193   // verify_region_sets_optional() is planted in the code for
  1194   // list verification in non-product builds (and it can be enabled in
  1195   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1196 #if HEAP_REGION_SET_FORCE_VERIFY
  1197   void verify_region_sets_optional() {
  1198     verify_region_sets();
  1200 #else // HEAP_REGION_SET_FORCE_VERIFY
  1201   void verify_region_sets_optional() { }
  1202 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1204 #ifdef ASSERT
  1205   bool is_on_master_free_list(HeapRegion* hr) {
  1206     return hr->containing_set() == &_free_list;
  1208 #endif // ASSERT
  1210   // Wrapper for the region list operations that can be called from
  1211   // methods outside this class.
  1213   void secondary_free_list_add(FreeRegionList* list) {
  1214     _secondary_free_list.add_ordered(list);
  1217   void append_secondary_free_list() {
  1218     _free_list.add_ordered(&_secondary_free_list);
  1221   void append_secondary_free_list_if_not_empty_with_lock() {
  1222     // If the secondary free list looks empty there's no reason to
  1223     // take the lock and then try to append it.
  1224     if (!_secondary_free_list.is_empty()) {
  1225       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1226       append_secondary_free_list();
  1230   inline void old_set_remove(HeapRegion* hr);
  1232   size_t non_young_capacity_bytes() {
  1233     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
  1236   void set_free_regions_coming();
  1237   void reset_free_regions_coming();
  1238   bool free_regions_coming() { return _free_regions_coming; }
  1239   void wait_while_free_regions_coming();
  1241   // Determine whether the given region is one that we are using as an
  1242   // old GC alloc region.
  1243   bool is_old_gc_alloc_region(HeapRegion* hr) {
  1244     return hr == _retained_old_gc_alloc_region;
  1247   // Perform a collection of the heap; intended for use in implementing
  1248   // "System.gc".  This probably implies as full a collection as the
  1249   // "CollectedHeap" supports.
  1250   virtual void collect(GCCause::Cause cause);
  1252   // The same as above but assume that the caller holds the Heap_lock.
  1253   void collect_locked(GCCause::Cause cause);
  1255   // True iff an evacuation has failed in the most-recent collection.
  1256   bool evacuation_failed() { return _evacuation_failed; }
  1258   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
  1259   void prepend_to_freelist(FreeRegionList* list);
  1260   void decrement_summary_bytes(size_t bytes);
  1262   // Returns "TRUE" iff "p" points into the committed areas of the heap.
  1263   virtual bool is_in(const void* p) const;
  1265   // Return "TRUE" iff the given object address is within the collection
  1266   // set.
  1267   inline bool obj_in_cs(oop obj);
  1269   // Return "TRUE" iff the given object address is in the reserved
  1270   // region of g1.
  1271   bool is_in_g1_reserved(const void* p) const {
  1272     return _g1_reserved.contains(p);
  1275   // Returns a MemRegion that corresponds to the space that has been
  1276   // reserved for the heap
  1277   MemRegion g1_reserved() {
  1278     return _g1_reserved;
  1281   // Returns a MemRegion that corresponds to the space that has been
  1282   // committed in the heap
  1283   MemRegion g1_committed() {
  1284     return _g1_committed;
  1287   virtual bool is_in_closed_subset(const void* p) const;
  1289   G1SATBCardTableModRefBS* g1_barrier_set() {
  1290     return (G1SATBCardTableModRefBS*) barrier_set();
  1293   // This resets the card table to all zeros.  It is used after
  1294   // a collection pause which used the card table to claim cards.
  1295   void cleanUpCardTable();
  1297   // Iteration functions.
  1299   // Iterate over all the ref-containing fields of all objects, calling
  1300   // "cl.do_oop" on each.
  1301   virtual void oop_iterate(ExtendedOopClosure* cl);
  1303   // Same as above, restricted to a memory region.
  1304   void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
  1306   // Iterate over all objects, calling "cl.do_object" on each.
  1307   virtual void object_iterate(ObjectClosure* cl);
  1309   virtual void safe_object_iterate(ObjectClosure* cl) {
  1310     object_iterate(cl);
  1313   // Iterate over all spaces in use in the heap, in ascending address order.
  1314   virtual void space_iterate(SpaceClosure* cl);
  1316   // Iterate over heap regions, in address order, terminating the
  1317   // iteration early if the "doHeapRegion" method returns "true".
  1318   void heap_region_iterate(HeapRegionClosure* blk) const;
  1320   // Return the region with the given index. It assumes the index is valid.
  1321   inline HeapRegion* region_at(uint index) const;
  1323   // Divide the heap region sequence into "chunks" of some size (the number
  1324   // of regions divided by the number of parallel threads times some
  1325   // overpartition factor, currently 4).  Assumes that this will be called
  1326   // in parallel by ParallelGCThreads worker threads with discinct worker
  1327   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1328   // calls will use the same "claim_value", and that that claim value is
  1329   // different from the claim_value of any heap region before the start of
  1330   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1331   // attempting to claim the first region in each chunk, and, if
  1332   // successful, applying the closure to each region in the chunk (and
  1333   // setting the claim value of the second and subsequent regions of the
  1334   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1335   // i.e., that a closure never attempt to abort a traversal.
  1336   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1337                                        uint worker,
  1338                                        uint no_of_par_workers,
  1339                                        jint claim_value);
  1341   // It resets all the region claim values to the default.
  1342   void reset_heap_region_claim_values();
  1344   // Resets the claim values of regions in the current
  1345   // collection set to the default.
  1346   void reset_cset_heap_region_claim_values();
  1348 #ifdef ASSERT
  1349   bool check_heap_region_claim_values(jint claim_value);
  1351   // Same as the routine above but only checks regions in the
  1352   // current collection set.
  1353   bool check_cset_heap_region_claim_values(jint claim_value);
  1354 #endif // ASSERT
  1356   // Clear the cached cset start regions and (more importantly)
  1357   // the time stamps. Called when we reset the GC time stamp.
  1358   void clear_cset_start_regions();
  1360   // Given the id of a worker, obtain or calculate a suitable
  1361   // starting region for iterating over the current collection set.
  1362   HeapRegion* start_cset_region_for_worker(uint worker_i);
  1364   // This is a convenience method that is used by the
  1365   // HeapRegionIterator classes to calculate the starting region for
  1366   // each worker so that they do not all start from the same region.
  1367   HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
  1369   // Iterate over the regions (if any) in the current collection set.
  1370   void collection_set_iterate(HeapRegionClosure* blk);
  1372   // As above but starting from region r
  1373   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1375   // Returns the first (lowest address) compactible space in the heap.
  1376   virtual CompactibleSpace* first_compactible_space();
  1378   // A CollectedHeap will contain some number of spaces.  This finds the
  1379   // space containing a given address, or else returns NULL.
  1380   virtual Space* space_containing(const void* addr) const;
  1382   // A G1CollectedHeap will contain some number of heap regions.  This
  1383   // finds the region containing a given address, or else returns NULL.
  1384   template <class T>
  1385   inline HeapRegion* heap_region_containing(const T addr) const;
  1387   // Like the above, but requires "addr" to be in the heap (to avoid a
  1388   // null-check), and unlike the above, may return an continuing humongous
  1389   // region.
  1390   template <class T>
  1391   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1393   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1394   // each address in the (reserved) heap is a member of exactly
  1395   // one block.  The defining characteristic of a block is that it is
  1396   // possible to find its size, and thus to progress forward to the next
  1397   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1398   // represent Java objects, or they might be free blocks in a
  1399   // free-list-based heap (or subheap), as long as the two kinds are
  1400   // distinguishable and the size of each is determinable.
  1402   // Returns the address of the start of the "block" that contains the
  1403   // address "addr".  We say "blocks" instead of "object" since some heaps
  1404   // may not pack objects densely; a chunk may either be an object or a
  1405   // non-object.
  1406   virtual HeapWord* block_start(const void* addr) const;
  1408   // Requires "addr" to be the start of a chunk, and returns its size.
  1409   // "addr + size" is required to be the start of a new chunk, or the end
  1410   // of the active area of the heap.
  1411   virtual size_t block_size(const HeapWord* addr) const;
  1413   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1414   // the block is an object.
  1415   virtual bool block_is_obj(const HeapWord* addr) const;
  1417   // Does this heap support heap inspection? (+PrintClassHistogram)
  1418   virtual bool supports_heap_inspection() const { return true; }
  1420   // Section on thread-local allocation buffers (TLABs)
  1421   // See CollectedHeap for semantics.
  1423   bool supports_tlab_allocation() const;
  1424   size_t tlab_capacity(Thread* ignored) const;
  1425   size_t tlab_used(Thread* ignored) const;
  1426   size_t max_tlab_size() const;
  1427   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
  1429   // Can a compiler initialize a new object without store barriers?
  1430   // This permission only extends from the creation of a new object
  1431   // via a TLAB up to the first subsequent safepoint. If such permission
  1432   // is granted for this heap type, the compiler promises to call
  1433   // defer_store_barrier() below on any slow path allocation of
  1434   // a new object for which such initializing store barriers will
  1435   // have been elided. G1, like CMS, allows this, but should be
  1436   // ready to provide a compensating write barrier as necessary
  1437   // if that storage came out of a non-young region. The efficiency
  1438   // of this implementation depends crucially on being able to
  1439   // answer very efficiently in constant time whether a piece of
  1440   // storage in the heap comes from a young region or not.
  1441   // See ReduceInitialCardMarks.
  1442   virtual bool can_elide_tlab_store_barriers() const {
  1443     return true;
  1446   virtual bool card_mark_must_follow_store() const {
  1447     return true;
  1450   inline bool is_in_young(const oop obj);
  1452 #ifdef ASSERT
  1453   virtual bool is_in_partial_collection(const void* p);
  1454 #endif
  1456   virtual bool is_scavengable(const void* addr);
  1458   // We don't need barriers for initializing stores to objects
  1459   // in the young gen: for the SATB pre-barrier, there is no
  1460   // pre-value that needs to be remembered; for the remembered-set
  1461   // update logging post-barrier, we don't maintain remembered set
  1462   // information for young gen objects.
  1463   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
  1465   // Returns "true" iff the given word_size is "very large".
  1466   static bool isHumongous(size_t word_size) {
  1467     // Note this has to be strictly greater-than as the TLABs
  1468     // are capped at the humongous thresold and we want to
  1469     // ensure that we don't try to allocate a TLAB as
  1470     // humongous and that we don't allocate a humongous
  1471     // object in a TLAB.
  1472     return word_size > _humongous_object_threshold_in_words;
  1475   // Update mod union table with the set of dirty cards.
  1476   void updateModUnion();
  1478   // Set the mod union bits corresponding to the given memRegion.  Note
  1479   // that this is always a safe operation, since it doesn't clear any
  1480   // bits.
  1481   void markModUnionRange(MemRegion mr);
  1483   // Records the fact that a marking phase is no longer in progress.
  1484   void set_marking_complete() {
  1485     _mark_in_progress = false;
  1487   void set_marking_started() {
  1488     _mark_in_progress = true;
  1490   bool mark_in_progress() {
  1491     return _mark_in_progress;
  1494   // Print the maximum heap capacity.
  1495   virtual size_t max_capacity() const;
  1497   virtual jlong millis_since_last_gc();
  1500   // Convenience function to be used in situations where the heap type can be
  1501   // asserted to be this type.
  1502   static G1CollectedHeap* heap();
  1504   void set_region_short_lived_locked(HeapRegion* hr);
  1505   // add appropriate methods for any other surv rate groups
  1507   YoungList* young_list() const { return _young_list; }
  1509   // debugging
  1510   bool check_young_list_well_formed() {
  1511     return _young_list->check_list_well_formed();
  1514   bool check_young_list_empty(bool check_heap,
  1515                               bool check_sample = true);
  1517   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1518   // many of these need to be public.
  1520   // The functions below are helper functions that a subclass of
  1521   // "CollectedHeap" can use in the implementation of its virtual
  1522   // functions.
  1523   // This performs a concurrent marking of the live objects in a
  1524   // bitmap off to the side.
  1525   void doConcurrentMark();
  1527   bool isMarkedPrev(oop obj) const;
  1528   bool isMarkedNext(oop obj) const;
  1530   // Determine if an object is dead, given the object and also
  1531   // the region to which the object belongs. An object is dead
  1532   // iff a) it was not allocated since the last mark and b) it
  1533   // is not marked.
  1535   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1536     return
  1537       !hr->obj_allocated_since_prev_marking(obj) &&
  1538       !isMarkedPrev(obj);
  1541   // This function returns true when an object has been
  1542   // around since the previous marking and hasn't yet
  1543   // been marked during this marking.
  1545   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1546     return
  1547       !hr->obj_allocated_since_next_marking(obj) &&
  1548       !isMarkedNext(obj);
  1551   // Determine if an object is dead, given only the object itself.
  1552   // This will find the region to which the object belongs and
  1553   // then call the region version of the same function.
  1555   // Added if it is NULL it isn't dead.
  1557   inline bool is_obj_dead(const oop obj) const;
  1559   inline bool is_obj_ill(const oop obj) const;
  1561   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
  1562   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
  1563   bool is_marked(oop obj, VerifyOption vo);
  1564   const char* top_at_mark_start_str(VerifyOption vo);
  1566   ConcurrentMark* concurrent_mark() const { return _cm; }
  1568   // Refinement
  1570   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1572   // The dirty cards region list is used to record a subset of regions
  1573   // whose cards need clearing. The list if populated during the
  1574   // remembered set scanning and drained during the card table
  1575   // cleanup. Although the methods are reentrant, population/draining
  1576   // phases must not overlap. For synchronization purposes the last
  1577   // element on the list points to itself.
  1578   HeapRegion* _dirty_cards_region_list;
  1579   void push_dirty_cards_region(HeapRegion* hr);
  1580   HeapRegion* pop_dirty_cards_region();
  1582   // Optimized nmethod scanning support routines
  1584   // Register the given nmethod with the G1 heap
  1585   virtual void register_nmethod(nmethod* nm);
  1587   // Unregister the given nmethod from the G1 heap
  1588   virtual void unregister_nmethod(nmethod* nm);
  1590   // Migrate the nmethods in the code root lists of the regions
  1591   // in the collection set to regions in to-space. In the event
  1592   // of an evacuation failure, nmethods that reference objects
  1593   // that were not successfullly evacuated are not migrated.
  1594   void migrate_strong_code_roots();
  1596   // Free up superfluous code root memory.
  1597   void purge_code_root_memory();
  1599   // During an initial mark pause, mark all the code roots that
  1600   // point into regions *not* in the collection set.
  1601   void mark_strong_code_roots(uint worker_id);
  1603   // Rebuild the stong code root lists for each region
  1604   // after a full GC
  1605   void rebuild_strong_code_roots();
  1607   // Delete entries for dead interned string and clean up unreferenced symbols
  1608   // in symbol table, possibly in parallel.
  1609   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
  1611   // Redirty logged cards in the refinement queue.
  1612   void redirty_logged_cards();
  1613   // Verification
  1615   // The following is just to alert the verification code
  1616   // that a full collection has occurred and that the
  1617   // remembered sets are no longer up to date.
  1618   bool _full_collection;
  1619   void set_full_collection() { _full_collection = true;}
  1620   void clear_full_collection() {_full_collection = false;}
  1621   bool full_collection() {return _full_collection;}
  1623   // Perform any cleanup actions necessary before allowing a verification.
  1624   virtual void prepare_for_verify();
  1626   // Perform verification.
  1628   // vo == UsePrevMarking  -> use "prev" marking information,
  1629   // vo == UseNextMarking -> use "next" marking information
  1630   // vo == UseMarkWord    -> use the mark word in the object header
  1631   //
  1632   // NOTE: Only the "prev" marking information is guaranteed to be
  1633   // consistent most of the time, so most calls to this should use
  1634   // vo == UsePrevMarking.
  1635   // Currently, there is only one case where this is called with
  1636   // vo == UseNextMarking, which is to verify the "next" marking
  1637   // information at the end of remark.
  1638   // Currently there is only one place where this is called with
  1639   // vo == UseMarkWord, which is to verify the marking during a
  1640   // full GC.
  1641   void verify(bool silent, VerifyOption vo);
  1643   // Override; it uses the "prev" marking information
  1644   virtual void verify(bool silent);
  1646   // The methods below are here for convenience and dispatch the
  1647   // appropriate method depending on value of the given VerifyOption
  1648   // parameter. The values for that parameter, and their meanings,
  1649   // are the same as those above.
  1651   bool is_obj_dead_cond(const oop obj,
  1652                         const HeapRegion* hr,
  1653                         const VerifyOption vo) const;
  1655   bool is_obj_dead_cond(const oop obj,
  1656                         const VerifyOption vo) const;
  1658   // Printing
  1660   virtual void print_on(outputStream* st) const;
  1661   virtual void print_extended_on(outputStream* st) const;
  1662   virtual void print_on_error(outputStream* st) const;
  1664   virtual void print_gc_threads_on(outputStream* st) const;
  1665   virtual void gc_threads_do(ThreadClosure* tc) const;
  1667   // Override
  1668   void print_tracing_info() const;
  1670   // The following two methods are helpful for debugging RSet issues.
  1671   void print_cset_rsets() PRODUCT_RETURN;
  1672   void print_all_rsets() PRODUCT_RETURN;
  1674 public:
  1675   size_t pending_card_num();
  1676   size_t cards_scanned();
  1678 protected:
  1679   size_t _max_heap_capacity;
  1680 };
  1682 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1683 private:
  1684   bool        _retired;
  1686 public:
  1687   G1ParGCAllocBuffer(size_t gclab_word_size);
  1688   virtual ~G1ParGCAllocBuffer() {
  1689     guarantee(_retired, "Allocation buffer has not been retired");
  1692   virtual void set_buf(HeapWord* buf) {
  1693     ParGCAllocBuffer::set_buf(buf);
  1694     _retired = false;
  1697   virtual void retire(bool end_of_gc, bool retain) {
  1698     if (_retired) {
  1699       return;
  1701     ParGCAllocBuffer::retire(end_of_gc, retain);
  1702     _retired = true;
  1704 };
  1706 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial