src/cpu/x86/vm/assembler_x86.cpp

Mon, 16 Jul 2012 17:10:22 -0700

author
kvn
date
Mon, 16 Jul 2012 17:10:22 -0700
changeset 3929
2c368ea3e844
parent 3882
8c92982cbbc4
child 3969
1d7922586cf6
permissions
-rw-r--r--

7181494: cleanup avx and vectors code
Summary: renamed mach nodes which use scalar AVX instructions, added integer vectors shuffling instructions
Reviewed-by: twisti

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "gc_interface/collectedHeap.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "memory/cardTableModRefBS.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "prims/methodHandles.hpp"
    32 #include "runtime/biasedLocking.hpp"
    33 #include "runtime/interfaceSupport.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/os.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    41 #include "gc_implementation/g1/heapRegion.hpp"
    42 #endif
    44 // Implementation of AddressLiteral
    46 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    47   _is_lval = false;
    48   _target = target;
    49   switch (rtype) {
    50   case relocInfo::oop_type:
    51     // Oops are a special case. Normally they would be their own section
    52     // but in cases like icBuffer they are literals in the code stream that
    53     // we don't have a section for. We use none so that we get a literal address
    54     // which is always patchable.
    55     break;
    56   case relocInfo::external_word_type:
    57     _rspec = external_word_Relocation::spec(target);
    58     break;
    59   case relocInfo::internal_word_type:
    60     _rspec = internal_word_Relocation::spec(target);
    61     break;
    62   case relocInfo::opt_virtual_call_type:
    63     _rspec = opt_virtual_call_Relocation::spec();
    64     break;
    65   case relocInfo::static_call_type:
    66     _rspec = static_call_Relocation::spec();
    67     break;
    68   case relocInfo::runtime_call_type:
    69     _rspec = runtime_call_Relocation::spec();
    70     break;
    71   case relocInfo::poll_type:
    72   case relocInfo::poll_return_type:
    73     _rspec = Relocation::spec_simple(rtype);
    74     break;
    75   case relocInfo::none:
    76     break;
    77   default:
    78     ShouldNotReachHere();
    79     break;
    80   }
    81 }
    83 // Implementation of Address
    85 #ifdef _LP64
    87 Address Address::make_array(ArrayAddress adr) {
    88   // Not implementable on 64bit machines
    89   // Should have been handled higher up the call chain.
    90   ShouldNotReachHere();
    91   return Address();
    92 }
    94 // exceedingly dangerous constructor
    95 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
    96   _base  = noreg;
    97   _index = noreg;
    98   _scale = no_scale;
    99   _disp  = disp;
   100   switch (rtype) {
   101     case relocInfo::external_word_type:
   102       _rspec = external_word_Relocation::spec(loc);
   103       break;
   104     case relocInfo::internal_word_type:
   105       _rspec = internal_word_Relocation::spec(loc);
   106       break;
   107     case relocInfo::runtime_call_type:
   108       // HMM
   109       _rspec = runtime_call_Relocation::spec();
   110       break;
   111     case relocInfo::poll_type:
   112     case relocInfo::poll_return_type:
   113       _rspec = Relocation::spec_simple(rtype);
   114       break;
   115     case relocInfo::none:
   116       break;
   117     default:
   118       ShouldNotReachHere();
   119   }
   120 }
   121 #else // LP64
   123 Address Address::make_array(ArrayAddress adr) {
   124   AddressLiteral base = adr.base();
   125   Address index = adr.index();
   126   assert(index._disp == 0, "must not have disp"); // maybe it can?
   127   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   128   array._rspec = base._rspec;
   129   return array;
   130 }
   132 // exceedingly dangerous constructor
   133 Address::Address(address loc, RelocationHolder spec) {
   134   _base  = noreg;
   135   _index = noreg;
   136   _scale = no_scale;
   137   _disp  = (intptr_t) loc;
   138   _rspec = spec;
   139 }
   141 #endif // _LP64
   145 // Convert the raw encoding form into the form expected by the constructor for
   146 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   147 // that to noreg for the Address constructor.
   148 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
   149   RelocationHolder rspec;
   150   if (disp_is_oop) {
   151     rspec = Relocation::spec_simple(relocInfo::oop_type);
   152   }
   153   bool valid_index = index != rsp->encoding();
   154   if (valid_index) {
   155     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   156     madr._rspec = rspec;
   157     return madr;
   158   } else {
   159     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   160     madr._rspec = rspec;
   161     return madr;
   162   }
   163 }
   165 // Implementation of Assembler
   167 int AbstractAssembler::code_fill_byte() {
   168   return (u_char)'\xF4'; // hlt
   169 }
   171 // make this go away someday
   172 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   173   if (rtype == relocInfo::none)
   174         emit_long(data);
   175   else  emit_data(data, Relocation::spec_simple(rtype), format);
   176 }
   178 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   179   assert(imm_operand == 0, "default format must be immediate in this file");
   180   assert(inst_mark() != NULL, "must be inside InstructionMark");
   181   if (rspec.type() !=  relocInfo::none) {
   182     #ifdef ASSERT
   183       check_relocation(rspec, format);
   184     #endif
   185     // Do not use AbstractAssembler::relocate, which is not intended for
   186     // embedded words.  Instead, relocate to the enclosing instruction.
   188     // hack. call32 is too wide for mask so use disp32
   189     if (format == call32_operand)
   190       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   191     else
   192       code_section()->relocate(inst_mark(), rspec, format);
   193   }
   194   emit_long(data);
   195 }
   197 static int encode(Register r) {
   198   int enc = r->encoding();
   199   if (enc >= 8) {
   200     enc -= 8;
   201   }
   202   return enc;
   203 }
   205 static int encode(XMMRegister r) {
   206   int enc = r->encoding();
   207   if (enc >= 8) {
   208     enc -= 8;
   209   }
   210   return enc;
   211 }
   213 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   214   assert(dst->has_byte_register(), "must have byte register");
   215   assert(isByte(op1) && isByte(op2), "wrong opcode");
   216   assert(isByte(imm8), "not a byte");
   217   assert((op1 & 0x01) == 0, "should be 8bit operation");
   218   emit_byte(op1);
   219   emit_byte(op2 | encode(dst));
   220   emit_byte(imm8);
   221 }
   224 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   225   assert(isByte(op1) && isByte(op2), "wrong opcode");
   226   assert((op1 & 0x01) == 1, "should be 32bit operation");
   227   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   228   if (is8bit(imm32)) {
   229     emit_byte(op1 | 0x02); // set sign bit
   230     emit_byte(op2 | encode(dst));
   231     emit_byte(imm32 & 0xFF);
   232   } else {
   233     emit_byte(op1);
   234     emit_byte(op2 | encode(dst));
   235     emit_long(imm32);
   236   }
   237 }
   239 // Force generation of a 4 byte immediate value even if it fits into 8bit
   240 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
   241   assert(isByte(op1) && isByte(op2), "wrong opcode");
   242   assert((op1 & 0x01) == 1, "should be 32bit operation");
   243   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   244   emit_byte(op1);
   245   emit_byte(op2 | encode(dst));
   246   emit_long(imm32);
   247 }
   249 // immediate-to-memory forms
   250 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   251   assert((op1 & 0x01) == 1, "should be 32bit operation");
   252   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   253   if (is8bit(imm32)) {
   254     emit_byte(op1 | 0x02); // set sign bit
   255     emit_operand(rm, adr, 1);
   256     emit_byte(imm32 & 0xFF);
   257   } else {
   258     emit_byte(op1);
   259     emit_operand(rm, adr, 4);
   260     emit_long(imm32);
   261   }
   262 }
   264 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
   265   LP64_ONLY(ShouldNotReachHere());
   266   assert(isByte(op1) && isByte(op2), "wrong opcode");
   267   assert((op1 & 0x01) == 1, "should be 32bit operation");
   268   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   269   InstructionMark im(this);
   270   emit_byte(op1);
   271   emit_byte(op2 | encode(dst));
   272   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
   273 }
   276 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   277   assert(isByte(op1) && isByte(op2), "wrong opcode");
   278   emit_byte(op1);
   279   emit_byte(op2 | encode(dst) << 3 | encode(src));
   280 }
   283 void Assembler::emit_operand(Register reg, Register base, Register index,
   284                              Address::ScaleFactor scale, int disp,
   285                              RelocationHolder const& rspec,
   286                              int rip_relative_correction) {
   287   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   289   // Encode the registers as needed in the fields they are used in
   291   int regenc = encode(reg) << 3;
   292   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   293   int baseenc = base->is_valid() ? encode(base) : 0;
   295   if (base->is_valid()) {
   296     if (index->is_valid()) {
   297       assert(scale != Address::no_scale, "inconsistent address");
   298       // [base + index*scale + disp]
   299       if (disp == 0 && rtype == relocInfo::none  &&
   300           base != rbp LP64_ONLY(&& base != r13)) {
   301         // [base + index*scale]
   302         // [00 reg 100][ss index base]
   303         assert(index != rsp, "illegal addressing mode");
   304         emit_byte(0x04 | regenc);
   305         emit_byte(scale << 6 | indexenc | baseenc);
   306       } else if (is8bit(disp) && rtype == relocInfo::none) {
   307         // [base + index*scale + imm8]
   308         // [01 reg 100][ss index base] imm8
   309         assert(index != rsp, "illegal addressing mode");
   310         emit_byte(0x44 | regenc);
   311         emit_byte(scale << 6 | indexenc | baseenc);
   312         emit_byte(disp & 0xFF);
   313       } else {
   314         // [base + index*scale + disp32]
   315         // [10 reg 100][ss index base] disp32
   316         assert(index != rsp, "illegal addressing mode");
   317         emit_byte(0x84 | regenc);
   318         emit_byte(scale << 6 | indexenc | baseenc);
   319         emit_data(disp, rspec, disp32_operand);
   320       }
   321     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   322       // [rsp + disp]
   323       if (disp == 0 && rtype == relocInfo::none) {
   324         // [rsp]
   325         // [00 reg 100][00 100 100]
   326         emit_byte(0x04 | regenc);
   327         emit_byte(0x24);
   328       } else if (is8bit(disp) && rtype == relocInfo::none) {
   329         // [rsp + imm8]
   330         // [01 reg 100][00 100 100] disp8
   331         emit_byte(0x44 | regenc);
   332         emit_byte(0x24);
   333         emit_byte(disp & 0xFF);
   334       } else {
   335         // [rsp + imm32]
   336         // [10 reg 100][00 100 100] disp32
   337         emit_byte(0x84 | regenc);
   338         emit_byte(0x24);
   339         emit_data(disp, rspec, disp32_operand);
   340       }
   341     } else {
   342       // [base + disp]
   343       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   344       if (disp == 0 && rtype == relocInfo::none &&
   345           base != rbp LP64_ONLY(&& base != r13)) {
   346         // [base]
   347         // [00 reg base]
   348         emit_byte(0x00 | regenc | baseenc);
   349       } else if (is8bit(disp) && rtype == relocInfo::none) {
   350         // [base + disp8]
   351         // [01 reg base] disp8
   352         emit_byte(0x40 | regenc | baseenc);
   353         emit_byte(disp & 0xFF);
   354       } else {
   355         // [base + disp32]
   356         // [10 reg base] disp32
   357         emit_byte(0x80 | regenc | baseenc);
   358         emit_data(disp, rspec, disp32_operand);
   359       }
   360     }
   361   } else {
   362     if (index->is_valid()) {
   363       assert(scale != Address::no_scale, "inconsistent address");
   364       // [index*scale + disp]
   365       // [00 reg 100][ss index 101] disp32
   366       assert(index != rsp, "illegal addressing mode");
   367       emit_byte(0x04 | regenc);
   368       emit_byte(scale << 6 | indexenc | 0x05);
   369       emit_data(disp, rspec, disp32_operand);
   370     } else if (rtype != relocInfo::none ) {
   371       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   372       // [00 000 101] disp32
   374       emit_byte(0x05 | regenc);
   375       // Note that the RIP-rel. correction applies to the generated
   376       // disp field, but _not_ to the target address in the rspec.
   378       // disp was created by converting the target address minus the pc
   379       // at the start of the instruction. That needs more correction here.
   380       // intptr_t disp = target - next_ip;
   381       assert(inst_mark() != NULL, "must be inside InstructionMark");
   382       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   383       int64_t adjusted = disp;
   384       // Do rip-rel adjustment for 64bit
   385       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   386       assert(is_simm32(adjusted),
   387              "must be 32bit offset (RIP relative address)");
   388       emit_data((int32_t) adjusted, rspec, disp32_operand);
   390     } else {
   391       // 32bit never did this, did everything as the rip-rel/disp code above
   392       // [disp] ABSOLUTE
   393       // [00 reg 100][00 100 101] disp32
   394       emit_byte(0x04 | regenc);
   395       emit_byte(0x25);
   396       emit_data(disp, rspec, disp32_operand);
   397     }
   398   }
   399 }
   401 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   402                              Address::ScaleFactor scale, int disp,
   403                              RelocationHolder const& rspec) {
   404   emit_operand((Register)reg, base, index, scale, disp, rspec);
   405 }
   407 // Secret local extension to Assembler::WhichOperand:
   408 #define end_pc_operand (_WhichOperand_limit)
   410 address Assembler::locate_operand(address inst, WhichOperand which) {
   411   // Decode the given instruction, and return the address of
   412   // an embedded 32-bit operand word.
   414   // If "which" is disp32_operand, selects the displacement portion
   415   // of an effective address specifier.
   416   // If "which" is imm64_operand, selects the trailing immediate constant.
   417   // If "which" is call32_operand, selects the displacement of a call or jump.
   418   // Caller is responsible for ensuring that there is such an operand,
   419   // and that it is 32/64 bits wide.
   421   // If "which" is end_pc_operand, find the end of the instruction.
   423   address ip = inst;
   424   bool is_64bit = false;
   426   debug_only(bool has_disp32 = false);
   427   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   429   again_after_prefix:
   430   switch (0xFF & *ip++) {
   432   // These convenience macros generate groups of "case" labels for the switch.
   433 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   434 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   435              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   436 #define REP16(x) REP8((x)+0): \
   437               case REP8((x)+8)
   439   case CS_segment:
   440   case SS_segment:
   441   case DS_segment:
   442   case ES_segment:
   443   case FS_segment:
   444   case GS_segment:
   445     // Seems dubious
   446     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   447     assert(ip == inst+1, "only one prefix allowed");
   448     goto again_after_prefix;
   450   case 0x67:
   451   case REX:
   452   case REX_B:
   453   case REX_X:
   454   case REX_XB:
   455   case REX_R:
   456   case REX_RB:
   457   case REX_RX:
   458   case REX_RXB:
   459     NOT_LP64(assert(false, "64bit prefixes"));
   460     goto again_after_prefix;
   462   case REX_W:
   463   case REX_WB:
   464   case REX_WX:
   465   case REX_WXB:
   466   case REX_WR:
   467   case REX_WRB:
   468   case REX_WRX:
   469   case REX_WRXB:
   470     NOT_LP64(assert(false, "64bit prefixes"));
   471     is_64bit = true;
   472     goto again_after_prefix;
   474   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   475   case 0x88: // movb a, r
   476   case 0x89: // movl a, r
   477   case 0x8A: // movb r, a
   478   case 0x8B: // movl r, a
   479   case 0x8F: // popl a
   480     debug_only(has_disp32 = true);
   481     break;
   483   case 0x68: // pushq #32
   484     if (which == end_pc_operand) {
   485       return ip + 4;
   486     }
   487     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   488     return ip;                  // not produced by emit_operand
   490   case 0x66: // movw ... (size prefix)
   491     again_after_size_prefix2:
   492     switch (0xFF & *ip++) {
   493     case REX:
   494     case REX_B:
   495     case REX_X:
   496     case REX_XB:
   497     case REX_R:
   498     case REX_RB:
   499     case REX_RX:
   500     case REX_RXB:
   501     case REX_W:
   502     case REX_WB:
   503     case REX_WX:
   504     case REX_WXB:
   505     case REX_WR:
   506     case REX_WRB:
   507     case REX_WRX:
   508     case REX_WRXB:
   509       NOT_LP64(assert(false, "64bit prefix found"));
   510       goto again_after_size_prefix2;
   511     case 0x8B: // movw r, a
   512     case 0x89: // movw a, r
   513       debug_only(has_disp32 = true);
   514       break;
   515     case 0xC7: // movw a, #16
   516       debug_only(has_disp32 = true);
   517       tail_size = 2;  // the imm16
   518       break;
   519     case 0x0F: // several SSE/SSE2 variants
   520       ip--;    // reparse the 0x0F
   521       goto again_after_prefix;
   522     default:
   523       ShouldNotReachHere();
   524     }
   525     break;
   527   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   528     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   529     // these asserts are somewhat nonsensical
   530 #ifndef _LP64
   531     assert(which == imm_operand || which == disp32_operand,
   532            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   533 #else
   534     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   535            which == narrow_oop_operand && !is_64bit,
   536            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   537 #endif // _LP64
   538     return ip;
   540   case 0x69: // imul r, a, #32
   541   case 0xC7: // movl a, #32(oop?)
   542     tail_size = 4;
   543     debug_only(has_disp32 = true); // has both kinds of operands!
   544     break;
   546   case 0x0F: // movx..., etc.
   547     switch (0xFF & *ip++) {
   548     case 0x3A: // pcmpestri
   549       tail_size = 1;
   550     case 0x38: // ptest, pmovzxbw
   551       ip++; // skip opcode
   552       debug_only(has_disp32 = true); // has both kinds of operands!
   553       break;
   555     case 0x70: // pshufd r, r/a, #8
   556       debug_only(has_disp32 = true); // has both kinds of operands!
   557     case 0x73: // psrldq r, #8
   558       tail_size = 1;
   559       break;
   561     case 0x12: // movlps
   562     case 0x28: // movaps
   563     case 0x2E: // ucomiss
   564     case 0x2F: // comiss
   565     case 0x54: // andps
   566     case 0x55: // andnps
   567     case 0x56: // orps
   568     case 0x57: // xorps
   569     case 0x6E: // movd
   570     case 0x7E: // movd
   571     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
   572       debug_only(has_disp32 = true);
   573       break;
   575     case 0xAD: // shrd r, a, %cl
   576     case 0xAF: // imul r, a
   577     case 0xBE: // movsbl r, a (movsxb)
   578     case 0xBF: // movswl r, a (movsxw)
   579     case 0xB6: // movzbl r, a (movzxb)
   580     case 0xB7: // movzwl r, a (movzxw)
   581     case REP16(0x40): // cmovl cc, r, a
   582     case 0xB0: // cmpxchgb
   583     case 0xB1: // cmpxchg
   584     case 0xC1: // xaddl
   585     case 0xC7: // cmpxchg8
   586     case REP16(0x90): // setcc a
   587       debug_only(has_disp32 = true);
   588       // fall out of the switch to decode the address
   589       break;
   591     case 0xC4: // pinsrw r, a, #8
   592       debug_only(has_disp32 = true);
   593     case 0xC5: // pextrw r, r, #8
   594       tail_size = 1;  // the imm8
   595       break;
   597     case 0xAC: // shrd r, a, #8
   598       debug_only(has_disp32 = true);
   599       tail_size = 1;  // the imm8
   600       break;
   602     case REP16(0x80): // jcc rdisp32
   603       if (which == end_pc_operand)  return ip + 4;
   604       assert(which == call32_operand, "jcc has no disp32 or imm");
   605       return ip;
   606     default:
   607       ShouldNotReachHere();
   608     }
   609     break;
   611   case 0x81: // addl a, #32; addl r, #32
   612     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   613     // on 32bit in the case of cmpl, the imm might be an oop
   614     tail_size = 4;
   615     debug_only(has_disp32 = true); // has both kinds of operands!
   616     break;
   618   case 0x83: // addl a, #8; addl r, #8
   619     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   620     debug_only(has_disp32 = true); // has both kinds of operands!
   621     tail_size = 1;
   622     break;
   624   case 0x9B:
   625     switch (0xFF & *ip++) {
   626     case 0xD9: // fnstcw a
   627       debug_only(has_disp32 = true);
   628       break;
   629     default:
   630       ShouldNotReachHere();
   631     }
   632     break;
   634   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   635   case REP4(0x10): // adc...
   636   case REP4(0x20): // and...
   637   case REP4(0x30): // xor...
   638   case REP4(0x08): // or...
   639   case REP4(0x18): // sbb...
   640   case REP4(0x28): // sub...
   641   case 0xF7: // mull a
   642   case 0x8D: // lea r, a
   643   case 0x87: // xchg r, a
   644   case REP4(0x38): // cmp...
   645   case 0x85: // test r, a
   646     debug_only(has_disp32 = true); // has both kinds of operands!
   647     break;
   649   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   650   case 0xC6: // movb a, #8
   651   case 0x80: // cmpb a, #8
   652   case 0x6B: // imul r, a, #8
   653     debug_only(has_disp32 = true); // has both kinds of operands!
   654     tail_size = 1; // the imm8
   655     break;
   657   case 0xC4: // VEX_3bytes
   658   case 0xC5: // VEX_2bytes
   659     assert((UseAVX > 0), "shouldn't have VEX prefix");
   660     assert(ip == inst+1, "no prefixes allowed");
   661     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
   662     // but they have prefix 0x0F and processed when 0x0F processed above.
   663     //
   664     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
   665     // instructions (these instructions are not supported in 64-bit mode).
   666     // To distinguish them bits [7:6] are set in the VEX second byte since
   667     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
   668     // those VEX bits REX and vvvv bits are inverted.
   669     //
   670     // Fortunately C2 doesn't generate these instructions so we don't need
   671     // to check for them in product version.
   673     // Check second byte
   674     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
   676     // First byte
   677     if ((0xFF & *inst) == VEX_3bytes) {
   678       ip++; // third byte
   679       is_64bit = ((VEX_W & *ip) == VEX_W);
   680     }
   681     ip++; // opcode
   682     // To find the end of instruction (which == end_pc_operand).
   683     switch (0xFF & *ip) {
   684     case 0x61: // pcmpestri r, r/a, #8
   685     case 0x70: // pshufd r, r/a, #8
   686     case 0x73: // psrldq r, #8
   687       tail_size = 1;  // the imm8
   688       break;
   689     default:
   690       break;
   691     }
   692     ip++; // skip opcode
   693     debug_only(has_disp32 = true); // has both kinds of operands!
   694     break;
   696   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   697   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   698   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   699   case 0xDD: // fld_d a; fst_d a; fstp_d a
   700   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   701   case 0xDF: // fild_d a; fistp_d a
   702   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   703   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   704   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   705     debug_only(has_disp32 = true);
   706     break;
   708   case 0xE8: // call rdisp32
   709   case 0xE9: // jmp  rdisp32
   710     if (which == end_pc_operand)  return ip + 4;
   711     assert(which == call32_operand, "call has no disp32 or imm");
   712     return ip;
   714   case 0xF0:                    // Lock
   715     assert(os::is_MP(), "only on MP");
   716     goto again_after_prefix;
   718   case 0xF3:                    // For SSE
   719   case 0xF2:                    // For SSE2
   720     switch (0xFF & *ip++) {
   721     case REX:
   722     case REX_B:
   723     case REX_X:
   724     case REX_XB:
   725     case REX_R:
   726     case REX_RB:
   727     case REX_RX:
   728     case REX_RXB:
   729     case REX_W:
   730     case REX_WB:
   731     case REX_WX:
   732     case REX_WXB:
   733     case REX_WR:
   734     case REX_WRB:
   735     case REX_WRX:
   736     case REX_WRXB:
   737       NOT_LP64(assert(false, "found 64bit prefix"));
   738       ip++;
   739     default:
   740       ip++;
   741     }
   742     debug_only(has_disp32 = true); // has both kinds of operands!
   743     break;
   745   default:
   746     ShouldNotReachHere();
   748 #undef REP8
   749 #undef REP16
   750   }
   752   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   753 #ifdef _LP64
   754   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   755 #else
   756   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   757   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   758 #endif // LP64
   759   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   761   // parse the output of emit_operand
   762   int op2 = 0xFF & *ip++;
   763   int base = op2 & 0x07;
   764   int op3 = -1;
   765   const int b100 = 4;
   766   const int b101 = 5;
   767   if (base == b100 && (op2 >> 6) != 3) {
   768     op3 = 0xFF & *ip++;
   769     base = op3 & 0x07;   // refetch the base
   770   }
   771   // now ip points at the disp (if any)
   773   switch (op2 >> 6) {
   774   case 0:
   775     // [00 reg  100][ss index base]
   776     // [00 reg  100][00   100  esp]
   777     // [00 reg base]
   778     // [00 reg  100][ss index  101][disp32]
   779     // [00 reg  101]               [disp32]
   781     if (base == b101) {
   782       if (which == disp32_operand)
   783         return ip;              // caller wants the disp32
   784       ip += 4;                  // skip the disp32
   785     }
   786     break;
   788   case 1:
   789     // [01 reg  100][ss index base][disp8]
   790     // [01 reg  100][00   100  esp][disp8]
   791     // [01 reg base]               [disp8]
   792     ip += 1;                    // skip the disp8
   793     break;
   795   case 2:
   796     // [10 reg  100][ss index base][disp32]
   797     // [10 reg  100][00   100  esp][disp32]
   798     // [10 reg base]               [disp32]
   799     if (which == disp32_operand)
   800       return ip;                // caller wants the disp32
   801     ip += 4;                    // skip the disp32
   802     break;
   804   case 3:
   805     // [11 reg base]  (not a memory addressing mode)
   806     break;
   807   }
   809   if (which == end_pc_operand) {
   810     return ip + tail_size;
   811   }
   813 #ifdef _LP64
   814   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   815 #else
   816   assert(which == imm_operand, "instruction has only an imm field");
   817 #endif // LP64
   818   return ip;
   819 }
   821 address Assembler::locate_next_instruction(address inst) {
   822   // Secretly share code with locate_operand:
   823   return locate_operand(inst, end_pc_operand);
   824 }
   827 #ifdef ASSERT
   828 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   829   address inst = inst_mark();
   830   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   831   address opnd;
   833   Relocation* r = rspec.reloc();
   834   if (r->type() == relocInfo::none) {
   835     return;
   836   } else if (r->is_call() || format == call32_operand) {
   837     // assert(format == imm32_operand, "cannot specify a nonzero format");
   838     opnd = locate_operand(inst, call32_operand);
   839   } else if (r->is_data()) {
   840     assert(format == imm_operand || format == disp32_operand
   841            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   842     opnd = locate_operand(inst, (WhichOperand)format);
   843   } else {
   844     assert(format == imm_operand, "cannot specify a format");
   845     return;
   846   }
   847   assert(opnd == pc(), "must put operand where relocs can find it");
   848 }
   849 #endif // ASSERT
   851 void Assembler::emit_operand32(Register reg, Address adr) {
   852   assert(reg->encoding() < 8, "no extended registers");
   853   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   854   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   855                adr._rspec);
   856 }
   858 void Assembler::emit_operand(Register reg, Address adr,
   859                              int rip_relative_correction) {
   860   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   861                adr._rspec,
   862                rip_relative_correction);
   863 }
   865 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   866   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   867                adr._rspec);
   868 }
   870 // MMX operations
   871 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   872   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   873   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   874 }
   876 // work around gcc (3.2.1-7a) bug
   877 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   878   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   879   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   880 }
   883 void Assembler::emit_farith(int b1, int b2, int i) {
   884   assert(isByte(b1) && isByte(b2), "wrong opcode");
   885   assert(0 <= i &&  i < 8, "illegal stack offset");
   886   emit_byte(b1);
   887   emit_byte(b2 + i);
   888 }
   891 // Now the Assembler instructions (identical for 32/64 bits)
   893 void Assembler::adcl(Address dst, int32_t imm32) {
   894   InstructionMark im(this);
   895   prefix(dst);
   896   emit_arith_operand(0x81, rdx, dst, imm32);
   897 }
   899 void Assembler::adcl(Address dst, Register src) {
   900   InstructionMark im(this);
   901   prefix(dst, src);
   902   emit_byte(0x11);
   903   emit_operand(src, dst);
   904 }
   906 void Assembler::adcl(Register dst, int32_t imm32) {
   907   prefix(dst);
   908   emit_arith(0x81, 0xD0, dst, imm32);
   909 }
   911 void Assembler::adcl(Register dst, Address src) {
   912   InstructionMark im(this);
   913   prefix(src, dst);
   914   emit_byte(0x13);
   915   emit_operand(dst, src);
   916 }
   918 void Assembler::adcl(Register dst, Register src) {
   919   (void) prefix_and_encode(dst->encoding(), src->encoding());
   920   emit_arith(0x13, 0xC0, dst, src);
   921 }
   923 void Assembler::addl(Address dst, int32_t imm32) {
   924   InstructionMark im(this);
   925   prefix(dst);
   926   emit_arith_operand(0x81, rax, dst, imm32);
   927 }
   929 void Assembler::addl(Address dst, Register src) {
   930   InstructionMark im(this);
   931   prefix(dst, src);
   932   emit_byte(0x01);
   933   emit_operand(src, dst);
   934 }
   936 void Assembler::addl(Register dst, int32_t imm32) {
   937   prefix(dst);
   938   emit_arith(0x81, 0xC0, dst, imm32);
   939 }
   941 void Assembler::addl(Register dst, Address src) {
   942   InstructionMark im(this);
   943   prefix(src, dst);
   944   emit_byte(0x03);
   945   emit_operand(dst, src);
   946 }
   948 void Assembler::addl(Register dst, Register src) {
   949   (void) prefix_and_encode(dst->encoding(), src->encoding());
   950   emit_arith(0x03, 0xC0, dst, src);
   951 }
   953 void Assembler::addr_nop_4() {
   954   assert(UseAddressNop, "no CPU support");
   955   // 4 bytes: NOP DWORD PTR [EAX+0]
   956   emit_byte(0x0F);
   957   emit_byte(0x1F);
   958   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   959   emit_byte(0);    // 8-bits offset (1 byte)
   960 }
   962 void Assembler::addr_nop_5() {
   963   assert(UseAddressNop, "no CPU support");
   964   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   965   emit_byte(0x0F);
   966   emit_byte(0x1F);
   967   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   968   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   969   emit_byte(0);    // 8-bits offset (1 byte)
   970 }
   972 void Assembler::addr_nop_7() {
   973   assert(UseAddressNop, "no CPU support");
   974   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   975   emit_byte(0x0F);
   976   emit_byte(0x1F);
   977   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   978   emit_long(0);    // 32-bits offset (4 bytes)
   979 }
   981 void Assembler::addr_nop_8() {
   982   assert(UseAddressNop, "no CPU support");
   983   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   984   emit_byte(0x0F);
   985   emit_byte(0x1F);
   986   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   987   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   988   emit_long(0);    // 32-bits offset (4 bytes)
   989 }
   991 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   992   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   993   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
   994   emit_byte(0x58);
   995   emit_byte(0xC0 | encode);
   996 }
   998 void Assembler::addsd(XMMRegister dst, Address src) {
   999   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1000   InstructionMark im(this);
  1001   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1002   emit_byte(0x58);
  1003   emit_operand(dst, src);
  1006 void Assembler::addss(XMMRegister dst, XMMRegister src) {
  1007   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1008   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1009   emit_byte(0x58);
  1010   emit_byte(0xC0 | encode);
  1013 void Assembler::addss(XMMRegister dst, Address src) {
  1014   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1015   InstructionMark im(this);
  1016   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1017   emit_byte(0x58);
  1018   emit_operand(dst, src);
  1021 void Assembler::andl(Address dst, int32_t imm32) {
  1022   InstructionMark im(this);
  1023   prefix(dst);
  1024   emit_byte(0x81);
  1025   emit_operand(rsp, dst, 4);
  1026   emit_long(imm32);
  1029 void Assembler::andl(Register dst, int32_t imm32) {
  1030   prefix(dst);
  1031   emit_arith(0x81, 0xE0, dst, imm32);
  1034 void Assembler::andl(Register dst, Address src) {
  1035   InstructionMark im(this);
  1036   prefix(src, dst);
  1037   emit_byte(0x23);
  1038   emit_operand(dst, src);
  1041 void Assembler::andl(Register dst, Register src) {
  1042   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1043   emit_arith(0x23, 0xC0, dst, src);
  1046 void Assembler::andpd(XMMRegister dst, Address src) {
  1047   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1048   InstructionMark im(this);
  1049   simd_prefix(dst, dst, src, VEX_SIMD_66);
  1050   emit_byte(0x54);
  1051   emit_operand(dst, src);
  1054 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  1055   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1056   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  1057   emit_byte(0x54);
  1058   emit_byte(0xC0 | encode);
  1061 void Assembler::andps(XMMRegister dst, Address src) {
  1062   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1063   InstructionMark im(this);
  1064   simd_prefix(dst, dst, src, VEX_SIMD_NONE);
  1065   emit_byte(0x54);
  1066   emit_operand(dst, src);
  1069 void Assembler::andps(XMMRegister dst, XMMRegister src) {
  1070   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1071   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE);
  1072   emit_byte(0x54);
  1073   emit_byte(0xC0 | encode);
  1076 void Assembler::bsfl(Register dst, Register src) {
  1077   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1078   emit_byte(0x0F);
  1079   emit_byte(0xBC);
  1080   emit_byte(0xC0 | encode);
  1083 void Assembler::bsrl(Register dst, Register src) {
  1084   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  1085   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1086   emit_byte(0x0F);
  1087   emit_byte(0xBD);
  1088   emit_byte(0xC0 | encode);
  1091 void Assembler::bswapl(Register reg) { // bswap
  1092   int encode = prefix_and_encode(reg->encoding());
  1093   emit_byte(0x0F);
  1094   emit_byte(0xC8 | encode);
  1097 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1098   // suspect disp32 is always good
  1099   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1101   if (L.is_bound()) {
  1102     const int long_size = 5;
  1103     int offs = (int)( target(L) - pc() );
  1104     assert(offs <= 0, "assembler error");
  1105     InstructionMark im(this);
  1106     // 1110 1000 #32-bit disp
  1107     emit_byte(0xE8);
  1108     emit_data(offs - long_size, rtype, operand);
  1109   } else {
  1110     InstructionMark im(this);
  1111     // 1110 1000 #32-bit disp
  1112     L.add_patch_at(code(), locator());
  1114     emit_byte(0xE8);
  1115     emit_data(int(0), rtype, operand);
  1119 void Assembler::call(Register dst) {
  1120   int encode = prefix_and_encode(dst->encoding());
  1121   emit_byte(0xFF);
  1122   emit_byte(0xD0 | encode);
  1126 void Assembler::call(Address adr) {
  1127   InstructionMark im(this);
  1128   prefix(adr);
  1129   emit_byte(0xFF);
  1130   emit_operand(rdx, adr);
  1133 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1134   assert(entry != NULL, "call most probably wrong");
  1135   InstructionMark im(this);
  1136   emit_byte(0xE8);
  1137   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  1138   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1139   // Technically, should use call32_operand, but this format is
  1140   // implied by the fact that we're emitting a call instruction.
  1142   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1143   emit_data((int) disp, rspec, operand);
  1146 void Assembler::cdql() {
  1147   emit_byte(0x99);
  1150 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1151   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1152   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1153   emit_byte(0x0F);
  1154   emit_byte(0x40 | cc);
  1155   emit_byte(0xC0 | encode);
  1159 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1160   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1161   prefix(src, dst);
  1162   emit_byte(0x0F);
  1163   emit_byte(0x40 | cc);
  1164   emit_operand(dst, src);
  1167 void Assembler::cmpb(Address dst, int imm8) {
  1168   InstructionMark im(this);
  1169   prefix(dst);
  1170   emit_byte(0x80);
  1171   emit_operand(rdi, dst, 1);
  1172   emit_byte(imm8);
  1175 void Assembler::cmpl(Address dst, int32_t imm32) {
  1176   InstructionMark im(this);
  1177   prefix(dst);
  1178   emit_byte(0x81);
  1179   emit_operand(rdi, dst, 4);
  1180   emit_long(imm32);
  1183 void Assembler::cmpl(Register dst, int32_t imm32) {
  1184   prefix(dst);
  1185   emit_arith(0x81, 0xF8, dst, imm32);
  1188 void Assembler::cmpl(Register dst, Register src) {
  1189   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1190   emit_arith(0x3B, 0xC0, dst, src);
  1194 void Assembler::cmpl(Register dst, Address  src) {
  1195   InstructionMark im(this);
  1196   prefix(src, dst);
  1197   emit_byte(0x3B);
  1198   emit_operand(dst, src);
  1201 void Assembler::cmpw(Address dst, int imm16) {
  1202   InstructionMark im(this);
  1203   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1204   emit_byte(0x66);
  1205   emit_byte(0x81);
  1206   emit_operand(rdi, dst, 2);
  1207   emit_word(imm16);
  1210 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1211 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1212 // The ZF is set if the compared values were equal, and cleared otherwise.
  1213 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1214   if (Atomics & 2) {
  1215      // caveat: no instructionmark, so this isn't relocatable.
  1216      // Emit a synthetic, non-atomic, CAS equivalent.
  1217      // Beware.  The synthetic form sets all ICCs, not just ZF.
  1218      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
  1219      cmpl(rax, adr);
  1220      movl(rax, adr);
  1221      if (reg != rax) {
  1222         Label L ;
  1223         jcc(Assembler::notEqual, L);
  1224         movl(adr, reg);
  1225         bind(L);
  1227   } else {
  1228      InstructionMark im(this);
  1229      prefix(adr, reg);
  1230      emit_byte(0x0F);
  1231      emit_byte(0xB1);
  1232      emit_operand(reg, adr);
  1236 void Assembler::comisd(XMMRegister dst, Address src) {
  1237   // NOTE: dbx seems to decode this as comiss even though the
  1238   // 0x66 is there. Strangly ucomisd comes out correct
  1239   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1240   InstructionMark im(this);
  1241   simd_prefix(dst, src, VEX_SIMD_66);
  1242   emit_byte(0x2F);
  1243   emit_operand(dst, src);
  1246 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  1247   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1248   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1249   emit_byte(0x2F);
  1250   emit_byte(0xC0 | encode);
  1253 void Assembler::comiss(XMMRegister dst, Address src) {
  1254   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1255   InstructionMark im(this);
  1256   simd_prefix(dst, src, VEX_SIMD_NONE);
  1257   emit_byte(0x2F);
  1258   emit_operand(dst, src);
  1261 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  1262   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1263   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  1264   emit_byte(0x2F);
  1265   emit_byte(0xC0 | encode);
  1268 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1269   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1270   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1271   emit_byte(0xE6);
  1272   emit_byte(0xC0 | encode);
  1275 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1277   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  1278   emit_byte(0x5B);
  1279   emit_byte(0xC0 | encode);
  1282 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1283   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1284   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1285   emit_byte(0x5A);
  1286   emit_byte(0xC0 | encode);
  1289 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  1290   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1291   InstructionMark im(this);
  1292   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1293   emit_byte(0x5A);
  1294   emit_operand(dst, src);
  1297 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1298   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1299   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1300   emit_byte(0x2A);
  1301   emit_byte(0xC0 | encode);
  1304 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  1305   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1306   InstructionMark im(this);
  1307   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1308   emit_byte(0x2A);
  1309   emit_operand(dst, src);
  1312 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1313   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1314   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1315   emit_byte(0x2A);
  1316   emit_byte(0xC0 | encode);
  1319 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  1320   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1321   InstructionMark im(this);
  1322   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1323   emit_byte(0x2A);
  1324   emit_operand(dst, src);
  1327 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1328   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1329   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1330   emit_byte(0x5A);
  1331   emit_byte(0xC0 | encode);
  1334 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  1335   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1336   InstructionMark im(this);
  1337   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1338   emit_byte(0x5A);
  1339   emit_operand(dst, src);
  1343 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1344   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1345   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  1346   emit_byte(0x2C);
  1347   emit_byte(0xC0 | encode);
  1350 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1351   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1352   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1353   emit_byte(0x2C);
  1354   emit_byte(0xC0 | encode);
  1357 void Assembler::decl(Address dst) {
  1358   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1359   InstructionMark im(this);
  1360   prefix(dst);
  1361   emit_byte(0xFF);
  1362   emit_operand(rcx, dst);
  1365 void Assembler::divsd(XMMRegister dst, Address src) {
  1366   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1367   InstructionMark im(this);
  1368   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1369   emit_byte(0x5E);
  1370   emit_operand(dst, src);
  1373 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1374   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1375   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1376   emit_byte(0x5E);
  1377   emit_byte(0xC0 | encode);
  1380 void Assembler::divss(XMMRegister dst, Address src) {
  1381   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1382   InstructionMark im(this);
  1383   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1384   emit_byte(0x5E);
  1385   emit_operand(dst, src);
  1388 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1389   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1390   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1391   emit_byte(0x5E);
  1392   emit_byte(0xC0 | encode);
  1395 void Assembler::emms() {
  1396   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1397   emit_byte(0x0F);
  1398   emit_byte(0x77);
  1401 void Assembler::hlt() {
  1402   emit_byte(0xF4);
  1405 void Assembler::idivl(Register src) {
  1406   int encode = prefix_and_encode(src->encoding());
  1407   emit_byte(0xF7);
  1408   emit_byte(0xF8 | encode);
  1411 void Assembler::divl(Register src) { // Unsigned
  1412   int encode = prefix_and_encode(src->encoding());
  1413   emit_byte(0xF7);
  1414   emit_byte(0xF0 | encode);
  1417 void Assembler::imull(Register dst, Register src) {
  1418   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1419   emit_byte(0x0F);
  1420   emit_byte(0xAF);
  1421   emit_byte(0xC0 | encode);
  1425 void Assembler::imull(Register dst, Register src, int value) {
  1426   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1427   if (is8bit(value)) {
  1428     emit_byte(0x6B);
  1429     emit_byte(0xC0 | encode);
  1430     emit_byte(value & 0xFF);
  1431   } else {
  1432     emit_byte(0x69);
  1433     emit_byte(0xC0 | encode);
  1434     emit_long(value);
  1438 void Assembler::incl(Address dst) {
  1439   // Don't use it directly. Use MacroAssembler::increment() instead.
  1440   InstructionMark im(this);
  1441   prefix(dst);
  1442   emit_byte(0xFF);
  1443   emit_operand(rax, dst);
  1446 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
  1447   InstructionMark im(this);
  1448   assert((0 <= cc) && (cc < 16), "illegal cc");
  1449   if (L.is_bound()) {
  1450     address dst = target(L);
  1451     assert(dst != NULL, "jcc most probably wrong");
  1453     const int short_size = 2;
  1454     const int long_size = 6;
  1455     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  1456     if (maybe_short && is8bit(offs - short_size)) {
  1457       // 0111 tttn #8-bit disp
  1458       emit_byte(0x70 | cc);
  1459       emit_byte((offs - short_size) & 0xFF);
  1460     } else {
  1461       // 0000 1111 1000 tttn #32-bit disp
  1462       assert(is_simm32(offs - long_size),
  1463              "must be 32bit offset (call4)");
  1464       emit_byte(0x0F);
  1465       emit_byte(0x80 | cc);
  1466       emit_long(offs - long_size);
  1468   } else {
  1469     // Note: could eliminate cond. jumps to this jump if condition
  1470     //       is the same however, seems to be rather unlikely case.
  1471     // Note: use jccb() if label to be bound is very close to get
  1472     //       an 8-bit displacement
  1473     L.add_patch_at(code(), locator());
  1474     emit_byte(0x0F);
  1475     emit_byte(0x80 | cc);
  1476     emit_long(0);
  1480 void Assembler::jccb(Condition cc, Label& L) {
  1481   if (L.is_bound()) {
  1482     const int short_size = 2;
  1483     address entry = target(L);
  1484 #ifdef ASSERT
  1485     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1486     intptr_t delta = short_branch_delta();
  1487     if (delta != 0) {
  1488       dist += (dist < 0 ? (-delta) :delta);
  1490     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1491 #endif
  1492     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  1493     // 0111 tttn #8-bit disp
  1494     emit_byte(0x70 | cc);
  1495     emit_byte((offs - short_size) & 0xFF);
  1496   } else {
  1497     InstructionMark im(this);
  1498     L.add_patch_at(code(), locator());
  1499     emit_byte(0x70 | cc);
  1500     emit_byte(0);
  1504 void Assembler::jmp(Address adr) {
  1505   InstructionMark im(this);
  1506   prefix(adr);
  1507   emit_byte(0xFF);
  1508   emit_operand(rsp, adr);
  1511 void Assembler::jmp(Label& L, bool maybe_short) {
  1512   if (L.is_bound()) {
  1513     address entry = target(L);
  1514     assert(entry != NULL, "jmp most probably wrong");
  1515     InstructionMark im(this);
  1516     const int short_size = 2;
  1517     const int long_size = 5;
  1518     intptr_t offs = entry - _code_pos;
  1519     if (maybe_short && is8bit(offs - short_size)) {
  1520       emit_byte(0xEB);
  1521       emit_byte((offs - short_size) & 0xFF);
  1522     } else {
  1523       emit_byte(0xE9);
  1524       emit_long(offs - long_size);
  1526   } else {
  1527     // By default, forward jumps are always 32-bit displacements, since
  1528     // we can't yet know where the label will be bound.  If you're sure that
  1529     // the forward jump will not run beyond 256 bytes, use jmpb to
  1530     // force an 8-bit displacement.
  1531     InstructionMark im(this);
  1532     L.add_patch_at(code(), locator());
  1533     emit_byte(0xE9);
  1534     emit_long(0);
  1538 void Assembler::jmp(Register entry) {
  1539   int encode = prefix_and_encode(entry->encoding());
  1540   emit_byte(0xFF);
  1541   emit_byte(0xE0 | encode);
  1544 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1545   InstructionMark im(this);
  1546   emit_byte(0xE9);
  1547   assert(dest != NULL, "must have a target");
  1548   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  1549   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1550   emit_data(disp, rspec.reloc(), call32_operand);
  1553 void Assembler::jmpb(Label& L) {
  1554   if (L.is_bound()) {
  1555     const int short_size = 2;
  1556     address entry = target(L);
  1557     assert(entry != NULL, "jmp most probably wrong");
  1558 #ifdef ASSERT
  1559     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1560     intptr_t delta = short_branch_delta();
  1561     if (delta != 0) {
  1562       dist += (dist < 0 ? (-delta) :delta);
  1564     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1565 #endif
  1566     intptr_t offs = entry - _code_pos;
  1567     emit_byte(0xEB);
  1568     emit_byte((offs - short_size) & 0xFF);
  1569   } else {
  1570     InstructionMark im(this);
  1571     L.add_patch_at(code(), locator());
  1572     emit_byte(0xEB);
  1573     emit_byte(0);
  1577 void Assembler::ldmxcsr( Address src) {
  1578   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1579   InstructionMark im(this);
  1580   prefix(src);
  1581   emit_byte(0x0F);
  1582   emit_byte(0xAE);
  1583   emit_operand(as_Register(2), src);
  1586 void Assembler::leal(Register dst, Address src) {
  1587   InstructionMark im(this);
  1588 #ifdef _LP64
  1589   emit_byte(0x67); // addr32
  1590   prefix(src, dst);
  1591 #endif // LP64
  1592   emit_byte(0x8D);
  1593   emit_operand(dst, src);
  1596 void Assembler::lock() {
  1597   if (Atomics & 1) {
  1598      // Emit either nothing, a NOP, or a NOP: prefix
  1599      emit_byte(0x90) ;
  1600   } else {
  1601      emit_byte(0xF0);
  1605 void Assembler::lzcntl(Register dst, Register src) {
  1606   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1607   emit_byte(0xF3);
  1608   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1609   emit_byte(0x0F);
  1610   emit_byte(0xBD);
  1611   emit_byte(0xC0 | encode);
  1614 // Emit mfence instruction
  1615 void Assembler::mfence() {
  1616   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1617   emit_byte( 0x0F );
  1618   emit_byte( 0xAE );
  1619   emit_byte( 0xF0 );
  1622 void Assembler::mov(Register dst, Register src) {
  1623   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1626 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1627   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1628   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1629   emit_byte(0x28);
  1630   emit_byte(0xC0 | encode);
  1633 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1634   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1635   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  1636   emit_byte(0x28);
  1637   emit_byte(0xC0 | encode);
  1640 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
  1641   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1642   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
  1643   emit_byte(0x16);
  1644   emit_byte(0xC0 | encode);
  1647 void Assembler::movb(Register dst, Address src) {
  1648   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1649   InstructionMark im(this);
  1650   prefix(src, dst, true);
  1651   emit_byte(0x8A);
  1652   emit_operand(dst, src);
  1656 void Assembler::movb(Address dst, int imm8) {
  1657   InstructionMark im(this);
  1658    prefix(dst);
  1659   emit_byte(0xC6);
  1660   emit_operand(rax, dst, 1);
  1661   emit_byte(imm8);
  1665 void Assembler::movb(Address dst, Register src) {
  1666   assert(src->has_byte_register(), "must have byte register");
  1667   InstructionMark im(this);
  1668   prefix(dst, src, true);
  1669   emit_byte(0x88);
  1670   emit_operand(src, dst);
  1673 void Assembler::movdl(XMMRegister dst, Register src) {
  1674   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1675   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1676   emit_byte(0x6E);
  1677   emit_byte(0xC0 | encode);
  1680 void Assembler::movdl(Register dst, XMMRegister src) {
  1681   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1682   // swap src/dst to get correct prefix
  1683   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
  1684   emit_byte(0x7E);
  1685   emit_byte(0xC0 | encode);
  1688 void Assembler::movdl(XMMRegister dst, Address src) {
  1689   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1690   InstructionMark im(this);
  1691   simd_prefix(dst, src, VEX_SIMD_66);
  1692   emit_byte(0x6E);
  1693   emit_operand(dst, src);
  1696 void Assembler::movdl(Address dst, XMMRegister src) {
  1697   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1698   InstructionMark im(this);
  1699   simd_prefix(dst, src, VEX_SIMD_66);
  1700   emit_byte(0x7E);
  1701   emit_operand(src, dst);
  1704 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1705   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1706   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1707   emit_byte(0x6F);
  1708   emit_byte(0xC0 | encode);
  1711 void Assembler::movdqu(XMMRegister dst, Address src) {
  1712   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1713   InstructionMark im(this);
  1714   simd_prefix(dst, src, VEX_SIMD_F3);
  1715   emit_byte(0x6F);
  1716   emit_operand(dst, src);
  1719 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1720   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1721   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1722   emit_byte(0x6F);
  1723   emit_byte(0xC0 | encode);
  1726 void Assembler::movdqu(Address dst, XMMRegister src) {
  1727   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1728   InstructionMark im(this);
  1729   simd_prefix(dst, src, VEX_SIMD_F3);
  1730   emit_byte(0x7F);
  1731   emit_operand(src, dst);
  1734 // Move Unaligned 256bit Vector
  1735 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
  1736   assert(UseAVX, "");
  1737   bool vector256 = true;
  1738   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1739   emit_byte(0x6F);
  1740   emit_byte(0xC0 | encode);
  1743 void Assembler::vmovdqu(XMMRegister dst, Address src) {
  1744   assert(UseAVX, "");
  1745   InstructionMark im(this);
  1746   bool vector256 = true;
  1747   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1748   emit_byte(0x6F);
  1749   emit_operand(dst, src);
  1752 void Assembler::vmovdqu(Address dst, XMMRegister src) {
  1753   assert(UseAVX, "");
  1754   InstructionMark im(this);
  1755   bool vector256 = true;
  1756   // swap src<->dst for encoding
  1757   assert(src != xnoreg, "sanity");
  1758   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
  1759   emit_byte(0x7F);
  1760   emit_operand(src, dst);
  1763 // Uses zero extension on 64bit
  1765 void Assembler::movl(Register dst, int32_t imm32) {
  1766   int encode = prefix_and_encode(dst->encoding());
  1767   emit_byte(0xB8 | encode);
  1768   emit_long(imm32);
  1771 void Assembler::movl(Register dst, Register src) {
  1772   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1773   emit_byte(0x8B);
  1774   emit_byte(0xC0 | encode);
  1777 void Assembler::movl(Register dst, Address src) {
  1778   InstructionMark im(this);
  1779   prefix(src, dst);
  1780   emit_byte(0x8B);
  1781   emit_operand(dst, src);
  1784 void Assembler::movl(Address dst, int32_t imm32) {
  1785   InstructionMark im(this);
  1786   prefix(dst);
  1787   emit_byte(0xC7);
  1788   emit_operand(rax, dst, 4);
  1789   emit_long(imm32);
  1792 void Assembler::movl(Address dst, Register src) {
  1793   InstructionMark im(this);
  1794   prefix(dst, src);
  1795   emit_byte(0x89);
  1796   emit_operand(src, dst);
  1799 // New cpus require to use movsd and movss to avoid partial register stall
  1800 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1801 // The selection is done in MacroAssembler::movdbl() and movflt().
  1802 void Assembler::movlpd(XMMRegister dst, Address src) {
  1803   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1804   InstructionMark im(this);
  1805   simd_prefix(dst, dst, src, VEX_SIMD_66);
  1806   emit_byte(0x12);
  1807   emit_operand(dst, src);
  1810 void Assembler::movq( MMXRegister dst, Address src ) {
  1811   assert( VM_Version::supports_mmx(), "" );
  1812   emit_byte(0x0F);
  1813   emit_byte(0x6F);
  1814   emit_operand(dst, src);
  1817 void Assembler::movq( Address dst, MMXRegister src ) {
  1818   assert( VM_Version::supports_mmx(), "" );
  1819   emit_byte(0x0F);
  1820   emit_byte(0x7F);
  1821   // workaround gcc (3.2.1-7a) bug
  1822   // In that version of gcc with only an emit_operand(MMX, Address)
  1823   // gcc will tail jump and try and reverse the parameters completely
  1824   // obliterating dst in the process. By having a version available
  1825   // that doesn't need to swap the args at the tail jump the bug is
  1826   // avoided.
  1827   emit_operand(dst, src);
  1830 void Assembler::movq(XMMRegister dst, Address src) {
  1831   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1832   InstructionMark im(this);
  1833   simd_prefix(dst, src, VEX_SIMD_F3);
  1834   emit_byte(0x7E);
  1835   emit_operand(dst, src);
  1838 void Assembler::movq(Address dst, XMMRegister src) {
  1839   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1840   InstructionMark im(this);
  1841   simd_prefix(dst, src, VEX_SIMD_66);
  1842   emit_byte(0xD6);
  1843   emit_operand(src, dst);
  1846 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1847   InstructionMark im(this);
  1848   prefix(src, dst);
  1849   emit_byte(0x0F);
  1850   emit_byte(0xBE);
  1851   emit_operand(dst, src);
  1854 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1855   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1856   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1857   emit_byte(0x0F);
  1858   emit_byte(0xBE);
  1859   emit_byte(0xC0 | encode);
  1862 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1863   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1864   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1865   emit_byte(0x10);
  1866   emit_byte(0xC0 | encode);
  1869 void Assembler::movsd(XMMRegister dst, Address src) {
  1870   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1871   InstructionMark im(this);
  1872   simd_prefix(dst, src, VEX_SIMD_F2);
  1873   emit_byte(0x10);
  1874   emit_operand(dst, src);
  1877 void Assembler::movsd(Address dst, XMMRegister src) {
  1878   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1879   InstructionMark im(this);
  1880   simd_prefix(dst, src, VEX_SIMD_F2);
  1881   emit_byte(0x11);
  1882   emit_operand(src, dst);
  1885 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1886   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1887   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1888   emit_byte(0x10);
  1889   emit_byte(0xC0 | encode);
  1892 void Assembler::movss(XMMRegister dst, Address src) {
  1893   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1894   InstructionMark im(this);
  1895   simd_prefix(dst, src, VEX_SIMD_F3);
  1896   emit_byte(0x10);
  1897   emit_operand(dst, src);
  1900 void Assembler::movss(Address dst, XMMRegister src) {
  1901   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1902   InstructionMark im(this);
  1903   simd_prefix(dst, src, VEX_SIMD_F3);
  1904   emit_byte(0x11);
  1905   emit_operand(src, dst);
  1908 void Assembler::movswl(Register dst, Address src) { // movsxw
  1909   InstructionMark im(this);
  1910   prefix(src, dst);
  1911   emit_byte(0x0F);
  1912   emit_byte(0xBF);
  1913   emit_operand(dst, src);
  1916 void Assembler::movswl(Register dst, Register src) { // movsxw
  1917   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1918   emit_byte(0x0F);
  1919   emit_byte(0xBF);
  1920   emit_byte(0xC0 | encode);
  1923 void Assembler::movw(Address dst, int imm16) {
  1924   InstructionMark im(this);
  1926   emit_byte(0x66); // switch to 16-bit mode
  1927   prefix(dst);
  1928   emit_byte(0xC7);
  1929   emit_operand(rax, dst, 2);
  1930   emit_word(imm16);
  1933 void Assembler::movw(Register dst, Address src) {
  1934   InstructionMark im(this);
  1935   emit_byte(0x66);
  1936   prefix(src, dst);
  1937   emit_byte(0x8B);
  1938   emit_operand(dst, src);
  1941 void Assembler::movw(Address dst, Register src) {
  1942   InstructionMark im(this);
  1943   emit_byte(0x66);
  1944   prefix(dst, src);
  1945   emit_byte(0x89);
  1946   emit_operand(src, dst);
  1949 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1950   InstructionMark im(this);
  1951   prefix(src, dst);
  1952   emit_byte(0x0F);
  1953   emit_byte(0xB6);
  1954   emit_operand(dst, src);
  1957 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1958   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1959   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1960   emit_byte(0x0F);
  1961   emit_byte(0xB6);
  1962   emit_byte(0xC0 | encode);
  1965 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1966   InstructionMark im(this);
  1967   prefix(src, dst);
  1968   emit_byte(0x0F);
  1969   emit_byte(0xB7);
  1970   emit_operand(dst, src);
  1973 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1974   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1975   emit_byte(0x0F);
  1976   emit_byte(0xB7);
  1977   emit_byte(0xC0 | encode);
  1980 void Assembler::mull(Address src) {
  1981   InstructionMark im(this);
  1982   prefix(src);
  1983   emit_byte(0xF7);
  1984   emit_operand(rsp, src);
  1987 void Assembler::mull(Register src) {
  1988   int encode = prefix_and_encode(src->encoding());
  1989   emit_byte(0xF7);
  1990   emit_byte(0xE0 | encode);
  1993 void Assembler::mulsd(XMMRegister dst, Address src) {
  1994   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1995   InstructionMark im(this);
  1996   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1997   emit_byte(0x59);
  1998   emit_operand(dst, src);
  2001 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  2002   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2003   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  2004   emit_byte(0x59);
  2005   emit_byte(0xC0 | encode);
  2008 void Assembler::mulss(XMMRegister dst, Address src) {
  2009   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2010   InstructionMark im(this);
  2011   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  2012   emit_byte(0x59);
  2013   emit_operand(dst, src);
  2016 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  2017   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2018   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  2019   emit_byte(0x59);
  2020   emit_byte(0xC0 | encode);
  2023 void Assembler::negl(Register dst) {
  2024   int encode = prefix_and_encode(dst->encoding());
  2025   emit_byte(0xF7);
  2026   emit_byte(0xD8 | encode);
  2029 void Assembler::nop(int i) {
  2030 #ifdef ASSERT
  2031   assert(i > 0, " ");
  2032   // The fancy nops aren't currently recognized by debuggers making it a
  2033   // pain to disassemble code while debugging. If asserts are on clearly
  2034   // speed is not an issue so simply use the single byte traditional nop
  2035   // to do alignment.
  2037   for (; i > 0 ; i--) emit_byte(0x90);
  2038   return;
  2040 #endif // ASSERT
  2042   if (UseAddressNop && VM_Version::is_intel()) {
  2043     //
  2044     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  2045     //  1: 0x90
  2046     //  2: 0x66 0x90
  2047     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2048     //  4: 0x0F 0x1F 0x40 0x00
  2049     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2050     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2051     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2052     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2053     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2054     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2055     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2057     // The rest coding is Intel specific - don't use consecutive address nops
  2059     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2060     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2061     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2062     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2064     while(i >= 15) {
  2065       // For Intel don't generate consecutive addess nops (mix with regular nops)
  2066       i -= 15;
  2067       emit_byte(0x66);   // size prefix
  2068       emit_byte(0x66);   // size prefix
  2069       emit_byte(0x66);   // size prefix
  2070       addr_nop_8();
  2071       emit_byte(0x66);   // size prefix
  2072       emit_byte(0x66);   // size prefix
  2073       emit_byte(0x66);   // size prefix
  2074       emit_byte(0x90);   // nop
  2076     switch (i) {
  2077       case 14:
  2078         emit_byte(0x66); // size prefix
  2079       case 13:
  2080         emit_byte(0x66); // size prefix
  2081       case 12:
  2082         addr_nop_8();
  2083         emit_byte(0x66); // size prefix
  2084         emit_byte(0x66); // size prefix
  2085         emit_byte(0x66); // size prefix
  2086         emit_byte(0x90); // nop
  2087         break;
  2088       case 11:
  2089         emit_byte(0x66); // size prefix
  2090       case 10:
  2091         emit_byte(0x66); // size prefix
  2092       case 9:
  2093         emit_byte(0x66); // size prefix
  2094       case 8:
  2095         addr_nop_8();
  2096         break;
  2097       case 7:
  2098         addr_nop_7();
  2099         break;
  2100       case 6:
  2101         emit_byte(0x66); // size prefix
  2102       case 5:
  2103         addr_nop_5();
  2104         break;
  2105       case 4:
  2106         addr_nop_4();
  2107         break;
  2108       case 3:
  2109         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2110         emit_byte(0x66); // size prefix
  2111       case 2:
  2112         emit_byte(0x66); // size prefix
  2113       case 1:
  2114         emit_byte(0x90); // nop
  2115         break;
  2116       default:
  2117         assert(i == 0, " ");
  2119     return;
  2121   if (UseAddressNop && VM_Version::is_amd()) {
  2122     //
  2123     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2124     //  1: 0x90
  2125     //  2: 0x66 0x90
  2126     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2127     //  4: 0x0F 0x1F 0x40 0x00
  2128     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2129     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2130     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2131     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2132     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2133     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2134     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2136     // The rest coding is AMD specific - use consecutive address nops
  2138     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2139     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2140     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2141     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2142     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2143     //     Size prefixes (0x66) are added for larger sizes
  2145     while(i >= 22) {
  2146       i -= 11;
  2147       emit_byte(0x66); // size prefix
  2148       emit_byte(0x66); // size prefix
  2149       emit_byte(0x66); // size prefix
  2150       addr_nop_8();
  2152     // Generate first nop for size between 21-12
  2153     switch (i) {
  2154       case 21:
  2155         i -= 1;
  2156         emit_byte(0x66); // size prefix
  2157       case 20:
  2158       case 19:
  2159         i -= 1;
  2160         emit_byte(0x66); // size prefix
  2161       case 18:
  2162       case 17:
  2163         i -= 1;
  2164         emit_byte(0x66); // size prefix
  2165       case 16:
  2166       case 15:
  2167         i -= 8;
  2168         addr_nop_8();
  2169         break;
  2170       case 14:
  2171       case 13:
  2172         i -= 7;
  2173         addr_nop_7();
  2174         break;
  2175       case 12:
  2176         i -= 6;
  2177         emit_byte(0x66); // size prefix
  2178         addr_nop_5();
  2179         break;
  2180       default:
  2181         assert(i < 12, " ");
  2184     // Generate second nop for size between 11-1
  2185     switch (i) {
  2186       case 11:
  2187         emit_byte(0x66); // size prefix
  2188       case 10:
  2189         emit_byte(0x66); // size prefix
  2190       case 9:
  2191         emit_byte(0x66); // size prefix
  2192       case 8:
  2193         addr_nop_8();
  2194         break;
  2195       case 7:
  2196         addr_nop_7();
  2197         break;
  2198       case 6:
  2199         emit_byte(0x66); // size prefix
  2200       case 5:
  2201         addr_nop_5();
  2202         break;
  2203       case 4:
  2204         addr_nop_4();
  2205         break;
  2206       case 3:
  2207         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2208         emit_byte(0x66); // size prefix
  2209       case 2:
  2210         emit_byte(0x66); // size prefix
  2211       case 1:
  2212         emit_byte(0x90); // nop
  2213         break;
  2214       default:
  2215         assert(i == 0, " ");
  2217     return;
  2220   // Using nops with size prefixes "0x66 0x90".
  2221   // From AMD Optimization Guide:
  2222   //  1: 0x90
  2223   //  2: 0x66 0x90
  2224   //  3: 0x66 0x66 0x90
  2225   //  4: 0x66 0x66 0x66 0x90
  2226   //  5: 0x66 0x66 0x90 0x66 0x90
  2227   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2228   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2229   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2230   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2231   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2232   //
  2233   while(i > 12) {
  2234     i -= 4;
  2235     emit_byte(0x66); // size prefix
  2236     emit_byte(0x66);
  2237     emit_byte(0x66);
  2238     emit_byte(0x90); // nop
  2240   // 1 - 12 nops
  2241   if(i > 8) {
  2242     if(i > 9) {
  2243       i -= 1;
  2244       emit_byte(0x66);
  2246     i -= 3;
  2247     emit_byte(0x66);
  2248     emit_byte(0x66);
  2249     emit_byte(0x90);
  2251   // 1 - 8 nops
  2252   if(i > 4) {
  2253     if(i > 6) {
  2254       i -= 1;
  2255       emit_byte(0x66);
  2257     i -= 3;
  2258     emit_byte(0x66);
  2259     emit_byte(0x66);
  2260     emit_byte(0x90);
  2262   switch (i) {
  2263     case 4:
  2264       emit_byte(0x66);
  2265     case 3:
  2266       emit_byte(0x66);
  2267     case 2:
  2268       emit_byte(0x66);
  2269     case 1:
  2270       emit_byte(0x90);
  2271       break;
  2272     default:
  2273       assert(i == 0, " ");
  2277 void Assembler::notl(Register dst) {
  2278   int encode = prefix_and_encode(dst->encoding());
  2279   emit_byte(0xF7);
  2280   emit_byte(0xD0 | encode );
  2283 void Assembler::orl(Address dst, int32_t imm32) {
  2284   InstructionMark im(this);
  2285   prefix(dst);
  2286   emit_arith_operand(0x81, rcx, dst, imm32);
  2289 void Assembler::orl(Register dst, int32_t imm32) {
  2290   prefix(dst);
  2291   emit_arith(0x81, 0xC8, dst, imm32);
  2294 void Assembler::orl(Register dst, Address src) {
  2295   InstructionMark im(this);
  2296   prefix(src, dst);
  2297   emit_byte(0x0B);
  2298   emit_operand(dst, src);
  2301 void Assembler::orl(Register dst, Register src) {
  2302   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2303   emit_arith(0x0B, 0xC0, dst, src);
  2306 void Assembler::packuswb(XMMRegister dst, Address src) {
  2307   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2308   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2309   InstructionMark im(this);
  2310   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2311   emit_byte(0x67);
  2312   emit_operand(dst, src);
  2315 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  2316   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2317   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2318   emit_byte(0x67);
  2319   emit_byte(0xC0 | encode);
  2322 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2323   assert(VM_Version::supports_sse4_2(), "");
  2324   InstructionMark im(this);
  2325   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2326   emit_byte(0x61);
  2327   emit_operand(dst, src);
  2328   emit_byte(imm8);
  2331 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2332   assert(VM_Version::supports_sse4_2(), "");
  2333   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2334   emit_byte(0x61);
  2335   emit_byte(0xC0 | encode);
  2336   emit_byte(imm8);
  2339 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  2340   assert(VM_Version::supports_sse4_1(), "");
  2341   InstructionMark im(this);
  2342   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2343   emit_byte(0x30);
  2344   emit_operand(dst, src);
  2347 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  2348   assert(VM_Version::supports_sse4_1(), "");
  2349   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2350   emit_byte(0x30);
  2351   emit_byte(0xC0 | encode);
  2354 // generic
  2355 void Assembler::pop(Register dst) {
  2356   int encode = prefix_and_encode(dst->encoding());
  2357   emit_byte(0x58 | encode);
  2360 void Assembler::popcntl(Register dst, Address src) {
  2361   assert(VM_Version::supports_popcnt(), "must support");
  2362   InstructionMark im(this);
  2363   emit_byte(0xF3);
  2364   prefix(src, dst);
  2365   emit_byte(0x0F);
  2366   emit_byte(0xB8);
  2367   emit_operand(dst, src);
  2370 void Assembler::popcntl(Register dst, Register src) {
  2371   assert(VM_Version::supports_popcnt(), "must support");
  2372   emit_byte(0xF3);
  2373   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2374   emit_byte(0x0F);
  2375   emit_byte(0xB8);
  2376   emit_byte(0xC0 | encode);
  2379 void Assembler::popf() {
  2380   emit_byte(0x9D);
  2383 #ifndef _LP64 // no 32bit push/pop on amd64
  2384 void Assembler::popl(Address dst) {
  2385   // NOTE: this will adjust stack by 8byte on 64bits
  2386   InstructionMark im(this);
  2387   prefix(dst);
  2388   emit_byte(0x8F);
  2389   emit_operand(rax, dst);
  2391 #endif
  2393 void Assembler::prefetch_prefix(Address src) {
  2394   prefix(src);
  2395   emit_byte(0x0F);
  2398 void Assembler::prefetchnta(Address src) {
  2399   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2400   InstructionMark im(this);
  2401   prefetch_prefix(src);
  2402   emit_byte(0x18);
  2403   emit_operand(rax, src); // 0, src
  2406 void Assembler::prefetchr(Address src) {
  2407   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2408   InstructionMark im(this);
  2409   prefetch_prefix(src);
  2410   emit_byte(0x0D);
  2411   emit_operand(rax, src); // 0, src
  2414 void Assembler::prefetcht0(Address src) {
  2415   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2416   InstructionMark im(this);
  2417   prefetch_prefix(src);
  2418   emit_byte(0x18);
  2419   emit_operand(rcx, src); // 1, src
  2422 void Assembler::prefetcht1(Address src) {
  2423   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2424   InstructionMark im(this);
  2425   prefetch_prefix(src);
  2426   emit_byte(0x18);
  2427   emit_operand(rdx, src); // 2, src
  2430 void Assembler::prefetcht2(Address src) {
  2431   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2432   InstructionMark im(this);
  2433   prefetch_prefix(src);
  2434   emit_byte(0x18);
  2435   emit_operand(rbx, src); // 3, src
  2438 void Assembler::prefetchw(Address src) {
  2439   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2440   InstructionMark im(this);
  2441   prefetch_prefix(src);
  2442   emit_byte(0x0D);
  2443   emit_operand(rcx, src); // 1, src
  2446 void Assembler::prefix(Prefix p) {
  2447   a_byte(p);
  2450 void Assembler::por(XMMRegister dst, XMMRegister src) {
  2451   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2452   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2453   emit_byte(0xEB);
  2454   emit_byte(0xC0 | encode);
  2457 void Assembler::por(XMMRegister dst, Address src) {
  2458   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2459   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2460   InstructionMark im(this);
  2461   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2462   emit_byte(0xEB);
  2463   emit_operand(dst, src);
  2466 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2467   assert(isByte(mode), "invalid value");
  2468   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2469   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  2470   emit_byte(0x70);
  2471   emit_byte(0xC0 | encode);
  2472   emit_byte(mode & 0xFF);
  2476 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2477   assert(isByte(mode), "invalid value");
  2478   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2479   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2480   InstructionMark im(this);
  2481   simd_prefix(dst, src, VEX_SIMD_66);
  2482   emit_byte(0x70);
  2483   emit_operand(dst, src);
  2484   emit_byte(mode & 0xFF);
  2487 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2488   assert(isByte(mode), "invalid value");
  2489   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2490   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  2491   emit_byte(0x70);
  2492   emit_byte(0xC0 | encode);
  2493   emit_byte(mode & 0xFF);
  2496 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2497   assert(isByte(mode), "invalid value");
  2498   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2499   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2500   InstructionMark im(this);
  2501   simd_prefix(dst, src, VEX_SIMD_F2);
  2502   emit_byte(0x70);
  2503   emit_operand(dst, src);
  2504   emit_byte(mode & 0xFF);
  2507 void Assembler::psrlq(XMMRegister dst, int shift) {
  2508   // Shift 64 bit value logically right by specified number of bits.
  2509   // HMM Table D-1 says sse2 or mmx.
  2510   // Do not confuse it with psrldq SSE2 instruction which
  2511   // shifts 128 bit value in xmm register by number of bytes.
  2512   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2513   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  2514   emit_byte(0x73);
  2515   emit_byte(0xC0 | encode);
  2516   emit_byte(shift);
  2519 void Assembler::psrldq(XMMRegister dst, int shift) {
  2520   // Shift 128 bit value in xmm register by number of bytes.
  2521   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2522   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
  2523   emit_byte(0x73);
  2524   emit_byte(0xC0 | encode);
  2525   emit_byte(shift);
  2528 void Assembler::ptest(XMMRegister dst, Address src) {
  2529   assert(VM_Version::supports_sse4_1(), "");
  2530   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2531   InstructionMark im(this);
  2532   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2533   emit_byte(0x17);
  2534   emit_operand(dst, src);
  2537 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2538   assert(VM_Version::supports_sse4_1(), "");
  2539   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2540   emit_byte(0x17);
  2541   emit_byte(0xC0 | encode);
  2544 void Assembler::punpcklbw(XMMRegister dst, Address src) {
  2545   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2546   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2547   InstructionMark im(this);
  2548   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2549   emit_byte(0x60);
  2550   emit_operand(dst, src);
  2553 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2554   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2555   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2556   emit_byte(0x60);
  2557   emit_byte(0xC0 | encode);
  2560 void Assembler::punpckldq(XMMRegister dst, Address src) {
  2561   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2562   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2563   InstructionMark im(this);
  2564   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2565   emit_byte(0x62);
  2566   emit_operand(dst, src);
  2569 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  2570   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2571   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2572   emit_byte(0x62);
  2573   emit_byte(0xC0 | encode);
  2576 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
  2577   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2578   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2579   emit_byte(0x6C);
  2580   emit_byte(0xC0 | encode);
  2583 void Assembler::push(int32_t imm32) {
  2584   // in 64bits we push 64bits onto the stack but only
  2585   // take a 32bit immediate
  2586   emit_byte(0x68);
  2587   emit_long(imm32);
  2590 void Assembler::push(Register src) {
  2591   int encode = prefix_and_encode(src->encoding());
  2593   emit_byte(0x50 | encode);
  2596 void Assembler::pushf() {
  2597   emit_byte(0x9C);
  2600 #ifndef _LP64 // no 32bit push/pop on amd64
  2601 void Assembler::pushl(Address src) {
  2602   // Note this will push 64bit on 64bit
  2603   InstructionMark im(this);
  2604   prefix(src);
  2605   emit_byte(0xFF);
  2606   emit_operand(rsi, src);
  2608 #endif
  2610 void Assembler::pxor(XMMRegister dst, Address src) {
  2611   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2612   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2613   InstructionMark im(this);
  2614   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2615   emit_byte(0xEF);
  2616   emit_operand(dst, src);
  2619 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  2620   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2621   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2622   emit_byte(0xEF);
  2623   emit_byte(0xC0 | encode);
  2626 void Assembler::rcll(Register dst, int imm8) {
  2627   assert(isShiftCount(imm8), "illegal shift count");
  2628   int encode = prefix_and_encode(dst->encoding());
  2629   if (imm8 == 1) {
  2630     emit_byte(0xD1);
  2631     emit_byte(0xD0 | encode);
  2632   } else {
  2633     emit_byte(0xC1);
  2634     emit_byte(0xD0 | encode);
  2635     emit_byte(imm8);
  2639 // copies data from [esi] to [edi] using rcx pointer sized words
  2640 // generic
  2641 void Assembler::rep_mov() {
  2642   emit_byte(0xF3);
  2643   // MOVSQ
  2644   LP64_ONLY(prefix(REX_W));
  2645   emit_byte(0xA5);
  2648 // sets rcx pointer sized words with rax, value at [edi]
  2649 // generic
  2650 void Assembler::rep_set() { // rep_set
  2651   emit_byte(0xF3);
  2652   // STOSQ
  2653   LP64_ONLY(prefix(REX_W));
  2654   emit_byte(0xAB);
  2657 // scans rcx pointer sized words at [edi] for occurance of rax,
  2658 // generic
  2659 void Assembler::repne_scan() { // repne_scan
  2660   emit_byte(0xF2);
  2661   // SCASQ
  2662   LP64_ONLY(prefix(REX_W));
  2663   emit_byte(0xAF);
  2666 #ifdef _LP64
  2667 // scans rcx 4 byte words at [edi] for occurance of rax,
  2668 // generic
  2669 void Assembler::repne_scanl() { // repne_scan
  2670   emit_byte(0xF2);
  2671   // SCASL
  2672   emit_byte(0xAF);
  2674 #endif
  2676 void Assembler::ret(int imm16) {
  2677   if (imm16 == 0) {
  2678     emit_byte(0xC3);
  2679   } else {
  2680     emit_byte(0xC2);
  2681     emit_word(imm16);
  2685 void Assembler::sahf() {
  2686 #ifdef _LP64
  2687   // Not supported in 64bit mode
  2688   ShouldNotReachHere();
  2689 #endif
  2690   emit_byte(0x9E);
  2693 void Assembler::sarl(Register dst, int imm8) {
  2694   int encode = prefix_and_encode(dst->encoding());
  2695   assert(isShiftCount(imm8), "illegal shift count");
  2696   if (imm8 == 1) {
  2697     emit_byte(0xD1);
  2698     emit_byte(0xF8 | encode);
  2699   } else {
  2700     emit_byte(0xC1);
  2701     emit_byte(0xF8 | encode);
  2702     emit_byte(imm8);
  2706 void Assembler::sarl(Register dst) {
  2707   int encode = prefix_and_encode(dst->encoding());
  2708   emit_byte(0xD3);
  2709   emit_byte(0xF8 | encode);
  2712 void Assembler::sbbl(Address dst, int32_t imm32) {
  2713   InstructionMark im(this);
  2714   prefix(dst);
  2715   emit_arith_operand(0x81, rbx, dst, imm32);
  2718 void Assembler::sbbl(Register dst, int32_t imm32) {
  2719   prefix(dst);
  2720   emit_arith(0x81, 0xD8, dst, imm32);
  2724 void Assembler::sbbl(Register dst, Address src) {
  2725   InstructionMark im(this);
  2726   prefix(src, dst);
  2727   emit_byte(0x1B);
  2728   emit_operand(dst, src);
  2731 void Assembler::sbbl(Register dst, Register src) {
  2732   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2733   emit_arith(0x1B, 0xC0, dst, src);
  2736 void Assembler::setb(Condition cc, Register dst) {
  2737   assert(0 <= cc && cc < 16, "illegal cc");
  2738   int encode = prefix_and_encode(dst->encoding(), true);
  2739   emit_byte(0x0F);
  2740   emit_byte(0x90 | cc);
  2741   emit_byte(0xC0 | encode);
  2744 void Assembler::shll(Register dst, int imm8) {
  2745   assert(isShiftCount(imm8), "illegal shift count");
  2746   int encode = prefix_and_encode(dst->encoding());
  2747   if (imm8 == 1 ) {
  2748     emit_byte(0xD1);
  2749     emit_byte(0xE0 | encode);
  2750   } else {
  2751     emit_byte(0xC1);
  2752     emit_byte(0xE0 | encode);
  2753     emit_byte(imm8);
  2757 void Assembler::shll(Register dst) {
  2758   int encode = prefix_and_encode(dst->encoding());
  2759   emit_byte(0xD3);
  2760   emit_byte(0xE0 | encode);
  2763 void Assembler::shrl(Register dst, int imm8) {
  2764   assert(isShiftCount(imm8), "illegal shift count");
  2765   int encode = prefix_and_encode(dst->encoding());
  2766   emit_byte(0xC1);
  2767   emit_byte(0xE8 | encode);
  2768   emit_byte(imm8);
  2771 void Assembler::shrl(Register dst) {
  2772   int encode = prefix_and_encode(dst->encoding());
  2773   emit_byte(0xD3);
  2774   emit_byte(0xE8 | encode);
  2777 // copies a single word from [esi] to [edi]
  2778 void Assembler::smovl() {
  2779   emit_byte(0xA5);
  2782 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2783   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2784   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  2785   emit_byte(0x51);
  2786   emit_byte(0xC0 | encode);
  2789 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2790   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2791   InstructionMark im(this);
  2792   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  2793   emit_byte(0x51);
  2794   emit_operand(dst, src);
  2797 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2798   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2799   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  2800   emit_byte(0x51);
  2801   emit_byte(0xC0 | encode);
  2804 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2805   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2806   InstructionMark im(this);
  2807   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  2808   emit_byte(0x51);
  2809   emit_operand(dst, src);
  2812 void Assembler::stmxcsr( Address dst) {
  2813   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2814   InstructionMark im(this);
  2815   prefix(dst);
  2816   emit_byte(0x0F);
  2817   emit_byte(0xAE);
  2818   emit_operand(as_Register(3), dst);
  2821 void Assembler::subl(Address dst, int32_t imm32) {
  2822   InstructionMark im(this);
  2823   prefix(dst);
  2824   emit_arith_operand(0x81, rbp, dst, imm32);
  2827 void Assembler::subl(Address dst, Register src) {
  2828   InstructionMark im(this);
  2829   prefix(dst, src);
  2830   emit_byte(0x29);
  2831   emit_operand(src, dst);
  2834 void Assembler::subl(Register dst, int32_t imm32) {
  2835   prefix(dst);
  2836   emit_arith(0x81, 0xE8, dst, imm32);
  2839 // Force generation of a 4 byte immediate value even if it fits into 8bit
  2840 void Assembler::subl_imm32(Register dst, int32_t imm32) {
  2841   prefix(dst);
  2842   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  2845 void Assembler::subl(Register dst, Address src) {
  2846   InstructionMark im(this);
  2847   prefix(src, dst);
  2848   emit_byte(0x2B);
  2849   emit_operand(dst, src);
  2852 void Assembler::subl(Register dst, Register src) {
  2853   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2854   emit_arith(0x2B, 0xC0, dst, src);
  2857 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2858   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2859   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  2860   emit_byte(0x5C);
  2861   emit_byte(0xC0 | encode);
  2864 void Assembler::subsd(XMMRegister dst, Address src) {
  2865   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2866   InstructionMark im(this);
  2867   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  2868   emit_byte(0x5C);
  2869   emit_operand(dst, src);
  2872 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2873   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2874   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  2875   emit_byte(0x5C);
  2876   emit_byte(0xC0 | encode);
  2879 void Assembler::subss(XMMRegister dst, Address src) {
  2880   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2881   InstructionMark im(this);
  2882   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  2883   emit_byte(0x5C);
  2884   emit_operand(dst, src);
  2887 void Assembler::testb(Register dst, int imm8) {
  2888   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2889   (void) prefix_and_encode(dst->encoding(), true);
  2890   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2893 void Assembler::testl(Register dst, int32_t imm32) {
  2894   // not using emit_arith because test
  2895   // doesn't support sign-extension of
  2896   // 8bit operands
  2897   int encode = dst->encoding();
  2898   if (encode == 0) {
  2899     emit_byte(0xA9);
  2900   } else {
  2901     encode = prefix_and_encode(encode);
  2902     emit_byte(0xF7);
  2903     emit_byte(0xC0 | encode);
  2905   emit_long(imm32);
  2908 void Assembler::testl(Register dst, Register src) {
  2909   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2910   emit_arith(0x85, 0xC0, dst, src);
  2913 void Assembler::testl(Register dst, Address  src) {
  2914   InstructionMark im(this);
  2915   prefix(src, dst);
  2916   emit_byte(0x85);
  2917   emit_operand(dst, src);
  2920 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2921   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2922   InstructionMark im(this);
  2923   simd_prefix(dst, src, VEX_SIMD_66);
  2924   emit_byte(0x2E);
  2925   emit_operand(dst, src);
  2928 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2929   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2930   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  2931   emit_byte(0x2E);
  2932   emit_byte(0xC0 | encode);
  2935 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2936   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2937   InstructionMark im(this);
  2938   simd_prefix(dst, src, VEX_SIMD_NONE);
  2939   emit_byte(0x2E);
  2940   emit_operand(dst, src);
  2943 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2944   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2945   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  2946   emit_byte(0x2E);
  2947   emit_byte(0xC0 | encode);
  2951 void Assembler::xaddl(Address dst, Register src) {
  2952   InstructionMark im(this);
  2953   prefix(dst, src);
  2954   emit_byte(0x0F);
  2955   emit_byte(0xC1);
  2956   emit_operand(src, dst);
  2959 void Assembler::xchgl(Register dst, Address src) { // xchg
  2960   InstructionMark im(this);
  2961   prefix(src, dst);
  2962   emit_byte(0x87);
  2963   emit_operand(dst, src);
  2966 void Assembler::xchgl(Register dst, Register src) {
  2967   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2968   emit_byte(0x87);
  2969   emit_byte(0xc0 | encode);
  2972 void Assembler::xorl(Register dst, int32_t imm32) {
  2973   prefix(dst);
  2974   emit_arith(0x81, 0xF0, dst, imm32);
  2977 void Assembler::xorl(Register dst, Address src) {
  2978   InstructionMark im(this);
  2979   prefix(src, dst);
  2980   emit_byte(0x33);
  2981   emit_operand(dst, src);
  2984 void Assembler::xorl(Register dst, Register src) {
  2985   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2986   emit_arith(0x33, 0xC0, dst, src);
  2989 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  2990   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2991   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2992   emit_byte(0x57);
  2993   emit_byte(0xC0 | encode);
  2996 void Assembler::xorpd(XMMRegister dst, Address src) {
  2997   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2998   InstructionMark im(this);
  2999   simd_prefix(dst, dst, src, VEX_SIMD_66);
  3000   emit_byte(0x57);
  3001   emit_operand(dst, src);
  3005 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  3006   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3007   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE);
  3008   emit_byte(0x57);
  3009   emit_byte(0xC0 | encode);
  3012 void Assembler::xorps(XMMRegister dst, Address src) {
  3013   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3014   InstructionMark im(this);
  3015   simd_prefix(dst, dst, src, VEX_SIMD_NONE);
  3016   emit_byte(0x57);
  3017   emit_operand(dst, src);
  3020 // AVX 3-operands non destructive source instructions (encoded with VEX prefix)
  3022 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  3023   assert(VM_Version::supports_avx(), "");
  3024   InstructionMark im(this);
  3025   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  3026   emit_byte(0x58);
  3027   emit_operand(dst, src);
  3030 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3031   assert(VM_Version::supports_avx(), "");
  3032   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  3033   emit_byte(0x58);
  3034   emit_byte(0xC0 | encode);
  3037 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  3038   assert(VM_Version::supports_avx(), "");
  3039   InstructionMark im(this);
  3040   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  3041   emit_byte(0x58);
  3042   emit_operand(dst, src);
  3045 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3046   assert(VM_Version::supports_avx(), "");
  3047   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  3048   emit_byte(0x58);
  3049   emit_byte(0xC0 | encode);
  3052 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src) {
  3053   assert(VM_Version::supports_avx(), "");
  3054   InstructionMark im(this);
  3055   vex_prefix(dst, nds, src, VEX_SIMD_66); // 128-bit vector
  3056   emit_byte(0x54);
  3057   emit_operand(dst, src);
  3060 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src) {
  3061   assert(VM_Version::supports_avx(), "");
  3062   InstructionMark im(this);
  3063   vex_prefix(dst, nds, src, VEX_SIMD_NONE); // 128-bit vector
  3064   emit_byte(0x54);
  3065   emit_operand(dst, src);
  3068 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  3069   assert(VM_Version::supports_avx(), "");
  3070   InstructionMark im(this);
  3071   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  3072   emit_byte(0x5E);
  3073   emit_operand(dst, src);
  3076 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3077   assert(VM_Version::supports_avx(), "");
  3078   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  3079   emit_byte(0x5E);
  3080   emit_byte(0xC0 | encode);
  3083 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  3084   assert(VM_Version::supports_avx(), "");
  3085   InstructionMark im(this);
  3086   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  3087   emit_byte(0x5E);
  3088   emit_operand(dst, src);
  3091 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3092   assert(VM_Version::supports_avx(), "");
  3093   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  3094   emit_byte(0x5E);
  3095   emit_byte(0xC0 | encode);
  3098 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  3099   assert(VM_Version::supports_avx(), "");
  3100   InstructionMark im(this);
  3101   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  3102   emit_byte(0x59);
  3103   emit_operand(dst, src);
  3106 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3107   assert(VM_Version::supports_avx(), "");
  3108   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  3109   emit_byte(0x59);
  3110   emit_byte(0xC0 | encode);
  3113 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
  3114   InstructionMark im(this);
  3115   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  3116   emit_byte(0x59);
  3117   emit_operand(dst, src);
  3120 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3121   assert(VM_Version::supports_avx(), "");
  3122   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  3123   emit_byte(0x59);
  3124   emit_byte(0xC0 | encode);
  3128 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  3129   assert(VM_Version::supports_avx(), "");
  3130   InstructionMark im(this);
  3131   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  3132   emit_byte(0x5C);
  3133   emit_operand(dst, src);
  3136 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3137   assert(VM_Version::supports_avx(), "");
  3138   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  3139   emit_byte(0x5C);
  3140   emit_byte(0xC0 | encode);
  3143 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  3144   assert(VM_Version::supports_avx(), "");
  3145   InstructionMark im(this);
  3146   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  3147   emit_byte(0x5C);
  3148   emit_operand(dst, src);
  3151 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3152   assert(VM_Version::supports_avx(), "");
  3153   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  3154   emit_byte(0x5C);
  3155   emit_byte(0xC0 | encode);
  3158 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src) {
  3159   assert(VM_Version::supports_avx(), "");
  3160   InstructionMark im(this);
  3161   vex_prefix(dst, nds, src, VEX_SIMD_66); // 128-bit vector
  3162   emit_byte(0x57);
  3163   emit_operand(dst, src);
  3166 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3167   assert(VM_Version::supports_avx(), "");
  3168   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256);
  3169   emit_byte(0x57);
  3170   emit_byte(0xC0 | encode);
  3173 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src) {
  3174   assert(VM_Version::supports_avx(), "");
  3175   InstructionMark im(this);
  3176   vex_prefix(dst, nds, src, VEX_SIMD_NONE); // 128-bit vector
  3177   emit_byte(0x57);
  3178   emit_operand(dst, src);
  3181 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3182   assert(VM_Version::supports_avx(), "");
  3183   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_NONE, vector256);
  3184   emit_byte(0x57);
  3185   emit_byte(0xC0 | encode);
  3188 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3189   assert(VM_Version::supports_avx2() || (!vector256) && VM_Version::supports_avx(), "");
  3190   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256);
  3191   emit_byte(0xEF);
  3192   emit_byte(0xC0 | encode);
  3195 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3196   assert(VM_Version::supports_avx(), "");
  3197   bool vector256 = true;
  3198   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3199   emit_byte(0x18);
  3200   emit_byte(0xC0 | encode);
  3201   // 0x00 - insert into lower 128 bits
  3202   // 0x01 - insert into upper 128 bits
  3203   emit_byte(0x01);
  3206 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3207   assert(VM_Version::supports_avx2(), "");
  3208   bool vector256 = true;
  3209   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3210   emit_byte(0x38);
  3211   emit_byte(0xC0 | encode);
  3212   // 0x00 - insert into lower 128 bits
  3213   // 0x01 - insert into upper 128 bits
  3214   emit_byte(0x01);
  3217 void Assembler::vzeroupper() {
  3218   assert(VM_Version::supports_avx(), "");
  3219   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
  3220   emit_byte(0x77);
  3224 #ifndef _LP64
  3225 // 32bit only pieces of the assembler
  3227 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3228   // NO PREFIX AS NEVER 64BIT
  3229   InstructionMark im(this);
  3230   emit_byte(0x81);
  3231   emit_byte(0xF8 | src1->encoding());
  3232   emit_data(imm32, rspec, 0);
  3235 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3236   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  3237   InstructionMark im(this);
  3238   emit_byte(0x81);
  3239   emit_operand(rdi, src1);
  3240   emit_data(imm32, rspec, 0);
  3243 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  3244 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  3245 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  3246 void Assembler::cmpxchg8(Address adr) {
  3247   InstructionMark im(this);
  3248   emit_byte(0x0F);
  3249   emit_byte(0xc7);
  3250   emit_operand(rcx, adr);
  3253 void Assembler::decl(Register dst) {
  3254   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3255  emit_byte(0x48 | dst->encoding());
  3258 #endif // _LP64
  3260 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  3262 void Assembler::fabs() {
  3263   emit_byte(0xD9);
  3264   emit_byte(0xE1);
  3267 void Assembler::fadd(int i) {
  3268   emit_farith(0xD8, 0xC0, i);
  3271 void Assembler::fadd_d(Address src) {
  3272   InstructionMark im(this);
  3273   emit_byte(0xDC);
  3274   emit_operand32(rax, src);
  3277 void Assembler::fadd_s(Address src) {
  3278   InstructionMark im(this);
  3279   emit_byte(0xD8);
  3280   emit_operand32(rax, src);
  3283 void Assembler::fadda(int i) {
  3284   emit_farith(0xDC, 0xC0, i);
  3287 void Assembler::faddp(int i) {
  3288   emit_farith(0xDE, 0xC0, i);
  3291 void Assembler::fchs() {
  3292   emit_byte(0xD9);
  3293   emit_byte(0xE0);
  3296 void Assembler::fcom(int i) {
  3297   emit_farith(0xD8, 0xD0, i);
  3300 void Assembler::fcomp(int i) {
  3301   emit_farith(0xD8, 0xD8, i);
  3304 void Assembler::fcomp_d(Address src) {
  3305   InstructionMark im(this);
  3306   emit_byte(0xDC);
  3307   emit_operand32(rbx, src);
  3310 void Assembler::fcomp_s(Address src) {
  3311   InstructionMark im(this);
  3312   emit_byte(0xD8);
  3313   emit_operand32(rbx, src);
  3316 void Assembler::fcompp() {
  3317   emit_byte(0xDE);
  3318   emit_byte(0xD9);
  3321 void Assembler::fcos() {
  3322   emit_byte(0xD9);
  3323   emit_byte(0xFF);
  3326 void Assembler::fdecstp() {
  3327   emit_byte(0xD9);
  3328   emit_byte(0xF6);
  3331 void Assembler::fdiv(int i) {
  3332   emit_farith(0xD8, 0xF0, i);
  3335 void Assembler::fdiv_d(Address src) {
  3336   InstructionMark im(this);
  3337   emit_byte(0xDC);
  3338   emit_operand32(rsi, src);
  3341 void Assembler::fdiv_s(Address src) {
  3342   InstructionMark im(this);
  3343   emit_byte(0xD8);
  3344   emit_operand32(rsi, src);
  3347 void Assembler::fdiva(int i) {
  3348   emit_farith(0xDC, 0xF8, i);
  3351 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3352 //       is erroneous for some of the floating-point instructions below.
  3354 void Assembler::fdivp(int i) {
  3355   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3358 void Assembler::fdivr(int i) {
  3359   emit_farith(0xD8, 0xF8, i);
  3362 void Assembler::fdivr_d(Address src) {
  3363   InstructionMark im(this);
  3364   emit_byte(0xDC);
  3365   emit_operand32(rdi, src);
  3368 void Assembler::fdivr_s(Address src) {
  3369   InstructionMark im(this);
  3370   emit_byte(0xD8);
  3371   emit_operand32(rdi, src);
  3374 void Assembler::fdivra(int i) {
  3375   emit_farith(0xDC, 0xF0, i);
  3378 void Assembler::fdivrp(int i) {
  3379   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3382 void Assembler::ffree(int i) {
  3383   emit_farith(0xDD, 0xC0, i);
  3386 void Assembler::fild_d(Address adr) {
  3387   InstructionMark im(this);
  3388   emit_byte(0xDF);
  3389   emit_operand32(rbp, adr);
  3392 void Assembler::fild_s(Address adr) {
  3393   InstructionMark im(this);
  3394   emit_byte(0xDB);
  3395   emit_operand32(rax, adr);
  3398 void Assembler::fincstp() {
  3399   emit_byte(0xD9);
  3400   emit_byte(0xF7);
  3403 void Assembler::finit() {
  3404   emit_byte(0x9B);
  3405   emit_byte(0xDB);
  3406   emit_byte(0xE3);
  3409 void Assembler::fist_s(Address adr) {
  3410   InstructionMark im(this);
  3411   emit_byte(0xDB);
  3412   emit_operand32(rdx, adr);
  3415 void Assembler::fistp_d(Address adr) {
  3416   InstructionMark im(this);
  3417   emit_byte(0xDF);
  3418   emit_operand32(rdi, adr);
  3421 void Assembler::fistp_s(Address adr) {
  3422   InstructionMark im(this);
  3423   emit_byte(0xDB);
  3424   emit_operand32(rbx, adr);
  3427 void Assembler::fld1() {
  3428   emit_byte(0xD9);
  3429   emit_byte(0xE8);
  3432 void Assembler::fld_d(Address adr) {
  3433   InstructionMark im(this);
  3434   emit_byte(0xDD);
  3435   emit_operand32(rax, adr);
  3438 void Assembler::fld_s(Address adr) {
  3439   InstructionMark im(this);
  3440   emit_byte(0xD9);
  3441   emit_operand32(rax, adr);
  3445 void Assembler::fld_s(int index) {
  3446   emit_farith(0xD9, 0xC0, index);
  3449 void Assembler::fld_x(Address adr) {
  3450   InstructionMark im(this);
  3451   emit_byte(0xDB);
  3452   emit_operand32(rbp, adr);
  3455 void Assembler::fldcw(Address src) {
  3456   InstructionMark im(this);
  3457   emit_byte(0xd9);
  3458   emit_operand32(rbp, src);
  3461 void Assembler::fldenv(Address src) {
  3462   InstructionMark im(this);
  3463   emit_byte(0xD9);
  3464   emit_operand32(rsp, src);
  3467 void Assembler::fldlg2() {
  3468   emit_byte(0xD9);
  3469   emit_byte(0xEC);
  3472 void Assembler::fldln2() {
  3473   emit_byte(0xD9);
  3474   emit_byte(0xED);
  3477 void Assembler::fldz() {
  3478   emit_byte(0xD9);
  3479   emit_byte(0xEE);
  3482 void Assembler::flog() {
  3483   fldln2();
  3484   fxch();
  3485   fyl2x();
  3488 void Assembler::flog10() {
  3489   fldlg2();
  3490   fxch();
  3491   fyl2x();
  3494 void Assembler::fmul(int i) {
  3495   emit_farith(0xD8, 0xC8, i);
  3498 void Assembler::fmul_d(Address src) {
  3499   InstructionMark im(this);
  3500   emit_byte(0xDC);
  3501   emit_operand32(rcx, src);
  3504 void Assembler::fmul_s(Address src) {
  3505   InstructionMark im(this);
  3506   emit_byte(0xD8);
  3507   emit_operand32(rcx, src);
  3510 void Assembler::fmula(int i) {
  3511   emit_farith(0xDC, 0xC8, i);
  3514 void Assembler::fmulp(int i) {
  3515   emit_farith(0xDE, 0xC8, i);
  3518 void Assembler::fnsave(Address dst) {
  3519   InstructionMark im(this);
  3520   emit_byte(0xDD);
  3521   emit_operand32(rsi, dst);
  3524 void Assembler::fnstcw(Address src) {
  3525   InstructionMark im(this);
  3526   emit_byte(0x9B);
  3527   emit_byte(0xD9);
  3528   emit_operand32(rdi, src);
  3531 void Assembler::fnstsw_ax() {
  3532   emit_byte(0xdF);
  3533   emit_byte(0xE0);
  3536 void Assembler::fprem() {
  3537   emit_byte(0xD9);
  3538   emit_byte(0xF8);
  3541 void Assembler::fprem1() {
  3542   emit_byte(0xD9);
  3543   emit_byte(0xF5);
  3546 void Assembler::frstor(Address src) {
  3547   InstructionMark im(this);
  3548   emit_byte(0xDD);
  3549   emit_operand32(rsp, src);
  3552 void Assembler::fsin() {
  3553   emit_byte(0xD9);
  3554   emit_byte(0xFE);
  3557 void Assembler::fsqrt() {
  3558   emit_byte(0xD9);
  3559   emit_byte(0xFA);
  3562 void Assembler::fst_d(Address adr) {
  3563   InstructionMark im(this);
  3564   emit_byte(0xDD);
  3565   emit_operand32(rdx, adr);
  3568 void Assembler::fst_s(Address adr) {
  3569   InstructionMark im(this);
  3570   emit_byte(0xD9);
  3571   emit_operand32(rdx, adr);
  3574 void Assembler::fstp_d(Address adr) {
  3575   InstructionMark im(this);
  3576   emit_byte(0xDD);
  3577   emit_operand32(rbx, adr);
  3580 void Assembler::fstp_d(int index) {
  3581   emit_farith(0xDD, 0xD8, index);
  3584 void Assembler::fstp_s(Address adr) {
  3585   InstructionMark im(this);
  3586   emit_byte(0xD9);
  3587   emit_operand32(rbx, adr);
  3590 void Assembler::fstp_x(Address adr) {
  3591   InstructionMark im(this);
  3592   emit_byte(0xDB);
  3593   emit_operand32(rdi, adr);
  3596 void Assembler::fsub(int i) {
  3597   emit_farith(0xD8, 0xE0, i);
  3600 void Assembler::fsub_d(Address src) {
  3601   InstructionMark im(this);
  3602   emit_byte(0xDC);
  3603   emit_operand32(rsp, src);
  3606 void Assembler::fsub_s(Address src) {
  3607   InstructionMark im(this);
  3608   emit_byte(0xD8);
  3609   emit_operand32(rsp, src);
  3612 void Assembler::fsuba(int i) {
  3613   emit_farith(0xDC, 0xE8, i);
  3616 void Assembler::fsubp(int i) {
  3617   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  3620 void Assembler::fsubr(int i) {
  3621   emit_farith(0xD8, 0xE8, i);
  3624 void Assembler::fsubr_d(Address src) {
  3625   InstructionMark im(this);
  3626   emit_byte(0xDC);
  3627   emit_operand32(rbp, src);
  3630 void Assembler::fsubr_s(Address src) {
  3631   InstructionMark im(this);
  3632   emit_byte(0xD8);
  3633   emit_operand32(rbp, src);
  3636 void Assembler::fsubra(int i) {
  3637   emit_farith(0xDC, 0xE0, i);
  3640 void Assembler::fsubrp(int i) {
  3641   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  3644 void Assembler::ftan() {
  3645   emit_byte(0xD9);
  3646   emit_byte(0xF2);
  3647   emit_byte(0xDD);
  3648   emit_byte(0xD8);
  3651 void Assembler::ftst() {
  3652   emit_byte(0xD9);
  3653   emit_byte(0xE4);
  3656 void Assembler::fucomi(int i) {
  3657   // make sure the instruction is supported (introduced for P6, together with cmov)
  3658   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3659   emit_farith(0xDB, 0xE8, i);
  3662 void Assembler::fucomip(int i) {
  3663   // make sure the instruction is supported (introduced for P6, together with cmov)
  3664   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3665   emit_farith(0xDF, 0xE8, i);
  3668 void Assembler::fwait() {
  3669   emit_byte(0x9B);
  3672 void Assembler::fxch(int i) {
  3673   emit_farith(0xD9, 0xC8, i);
  3676 void Assembler::fyl2x() {
  3677   emit_byte(0xD9);
  3678   emit_byte(0xF1);
  3681 void Assembler::frndint() {
  3682   emit_byte(0xD9);
  3683   emit_byte(0xFC);
  3686 void Assembler::f2xm1() {
  3687   emit_byte(0xD9);
  3688   emit_byte(0xF0);
  3691 void Assembler::fldl2e() {
  3692   emit_byte(0xD9);
  3693   emit_byte(0xEA);
  3696 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
  3697 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
  3698 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
  3699 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
  3701 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
  3702 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  3703   if (pre > 0) {
  3704     emit_byte(simd_pre[pre]);
  3706   if (rex_w) {
  3707     prefixq(adr, xreg);
  3708   } else {
  3709     prefix(adr, xreg);
  3711   if (opc > 0) {
  3712     emit_byte(0x0F);
  3713     int opc2 = simd_opc[opc];
  3714     if (opc2 > 0) {
  3715       emit_byte(opc2);
  3720 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  3721   if (pre > 0) {
  3722     emit_byte(simd_pre[pre]);
  3724   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
  3725                           prefix_and_encode(dst_enc, src_enc);
  3726   if (opc > 0) {
  3727     emit_byte(0x0F);
  3728     int opc2 = simd_opc[opc];
  3729     if (opc2 > 0) {
  3730       emit_byte(opc2);
  3733   return encode;
  3737 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  3738   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
  3739     prefix(VEX_3bytes);
  3741     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
  3742     byte1 = (~byte1) & 0xE0;
  3743     byte1 |= opc;
  3744     a_byte(byte1);
  3746     int byte2 = ((~nds_enc) & 0xf) << 3;
  3747     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
  3748     emit_byte(byte2);
  3749   } else {
  3750     prefix(VEX_2bytes);
  3752     int byte1 = vex_r ? VEX_R : 0;
  3753     byte1 = (~byte1) & 0x80;
  3754     byte1 |= ((~nds_enc) & 0xf) << 3;
  3755     byte1 |= (vector256 ? 4 : 0) | pre;
  3756     emit_byte(byte1);
  3760 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  3761   bool vex_r = (xreg_enc >= 8);
  3762   bool vex_b = adr.base_needs_rex();
  3763   bool vex_x = adr.index_needs_rex();
  3764   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  3767 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  3768   bool vex_r = (dst_enc >= 8);
  3769   bool vex_b = (src_enc >= 8);
  3770   bool vex_x = false;
  3771   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  3772   return (((dst_enc & 7) << 3) | (src_enc & 7));
  3776 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  3777   if (UseAVX > 0) {
  3778     int xreg_enc = xreg->encoding();
  3779     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3780     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  3781   } else {
  3782     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
  3783     rex_prefix(adr, xreg, pre, opc, rex_w);
  3787 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  3788   int dst_enc = dst->encoding();
  3789   int src_enc = src->encoding();
  3790   if (UseAVX > 0) {
  3791     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3792     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  3793   } else {
  3794     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
  3795     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  3799 #ifndef _LP64
  3801 void Assembler::incl(Register dst) {
  3802   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3803   emit_byte(0x40 | dst->encoding());
  3806 void Assembler::lea(Register dst, Address src) {
  3807   leal(dst, src);
  3810 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  3811   InstructionMark im(this);
  3812   emit_byte(0xC7);
  3813   emit_operand(rax, dst);
  3814   emit_data((int)imm32, rspec, 0);
  3817 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  3818   InstructionMark im(this);
  3819   int encode = prefix_and_encode(dst->encoding());
  3820   emit_byte(0xB8 | encode);
  3821   emit_data((int)imm32, rspec, 0);
  3824 void Assembler::popa() { // 32bit
  3825   emit_byte(0x61);
  3828 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  3829   InstructionMark im(this);
  3830   emit_byte(0x68);
  3831   emit_data(imm32, rspec, 0);
  3834 void Assembler::pusha() { // 32bit
  3835   emit_byte(0x60);
  3838 void Assembler::set_byte_if_not_zero(Register dst) {
  3839   emit_byte(0x0F);
  3840   emit_byte(0x95);
  3841   emit_byte(0xE0 | dst->encoding());
  3844 void Assembler::shldl(Register dst, Register src) {
  3845   emit_byte(0x0F);
  3846   emit_byte(0xA5);
  3847   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3850 void Assembler::shrdl(Register dst, Register src) {
  3851   emit_byte(0x0F);
  3852   emit_byte(0xAD);
  3853   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3856 #else // LP64
  3858 void Assembler::set_byte_if_not_zero(Register dst) {
  3859   int enc = prefix_and_encode(dst->encoding(), true);
  3860   emit_byte(0x0F);
  3861   emit_byte(0x95);
  3862   emit_byte(0xE0 | enc);
  3865 // 64bit only pieces of the assembler
  3866 // This should only be used by 64bit instructions that can use rip-relative
  3867 // it cannot be used by instructions that want an immediate value.
  3869 bool Assembler::reachable(AddressLiteral adr) {
  3870   int64_t disp;
  3871   // None will force a 64bit literal to the code stream. Likely a placeholder
  3872   // for something that will be patched later and we need to certain it will
  3873   // always be reachable.
  3874   if (adr.reloc() == relocInfo::none) {
  3875     return false;
  3877   if (adr.reloc() == relocInfo::internal_word_type) {
  3878     // This should be rip relative and easily reachable.
  3879     return true;
  3881   if (adr.reloc() == relocInfo::virtual_call_type ||
  3882       adr.reloc() == relocInfo::opt_virtual_call_type ||
  3883       adr.reloc() == relocInfo::static_call_type ||
  3884       adr.reloc() == relocInfo::static_stub_type ) {
  3885     // This should be rip relative within the code cache and easily
  3886     // reachable until we get huge code caches. (At which point
  3887     // ic code is going to have issues).
  3888     return true;
  3890   if (adr.reloc() != relocInfo::external_word_type &&
  3891       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  3892       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  3893       adr.reloc() != relocInfo::runtime_call_type ) {
  3894     return false;
  3897   // Stress the correction code
  3898   if (ForceUnreachable) {
  3899     // Must be runtimecall reloc, see if it is in the codecache
  3900     // Flipping stuff in the codecache to be unreachable causes issues
  3901     // with things like inline caches where the additional instructions
  3902     // are not handled.
  3903     if (CodeCache::find_blob(adr._target) == NULL) {
  3904       return false;
  3907   // For external_word_type/runtime_call_type if it is reachable from where we
  3908   // are now (possibly a temp buffer) and where we might end up
  3909   // anywhere in the codeCache then we are always reachable.
  3910   // This would have to change if we ever save/restore shared code
  3911   // to be more pessimistic.
  3912   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  3913   if (!is_simm32(disp)) return false;
  3914   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  3915   if (!is_simm32(disp)) return false;
  3917   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
  3919   // Because rip relative is a disp + address_of_next_instruction and we
  3920   // don't know the value of address_of_next_instruction we apply a fudge factor
  3921   // to make sure we will be ok no matter the size of the instruction we get placed into.
  3922   // We don't have to fudge the checks above here because they are already worst case.
  3924   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  3925   // + 4 because better safe than sorry.
  3926   const int fudge = 12 + 4;
  3927   if (disp < 0) {
  3928     disp -= fudge;
  3929   } else {
  3930     disp += fudge;
  3932   return is_simm32(disp);
  3935 // Check if the polling page is not reachable from the code cache using rip-relative
  3936 // addressing.
  3937 bool Assembler::is_polling_page_far() {
  3938   intptr_t addr = (intptr_t)os::get_polling_page();
  3939   return ForceUnreachable ||
  3940          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  3941          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  3944 void Assembler::emit_data64(jlong data,
  3945                             relocInfo::relocType rtype,
  3946                             int format) {
  3947   if (rtype == relocInfo::none) {
  3948     emit_long64(data);
  3949   } else {
  3950     emit_data64(data, Relocation::spec_simple(rtype), format);
  3954 void Assembler::emit_data64(jlong data,
  3955                             RelocationHolder const& rspec,
  3956                             int format) {
  3957   assert(imm_operand == 0, "default format must be immediate in this file");
  3958   assert(imm_operand == format, "must be immediate");
  3959   assert(inst_mark() != NULL, "must be inside InstructionMark");
  3960   // Do not use AbstractAssembler::relocate, which is not intended for
  3961   // embedded words.  Instead, relocate to the enclosing instruction.
  3962   code_section()->relocate(inst_mark(), rspec, format);
  3963 #ifdef ASSERT
  3964   check_relocation(rspec, format);
  3965 #endif
  3966   emit_long64(data);
  3969 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  3970   if (reg_enc >= 8) {
  3971     prefix(REX_B);
  3972     reg_enc -= 8;
  3973   } else if (byteinst && reg_enc >= 4) {
  3974     prefix(REX);
  3976   return reg_enc;
  3979 int Assembler::prefixq_and_encode(int reg_enc) {
  3980   if (reg_enc < 8) {
  3981     prefix(REX_W);
  3982   } else {
  3983     prefix(REX_WB);
  3984     reg_enc -= 8;
  3986   return reg_enc;
  3989 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  3990   if (dst_enc < 8) {
  3991     if (src_enc >= 8) {
  3992       prefix(REX_B);
  3993       src_enc -= 8;
  3994     } else if (byteinst && src_enc >= 4) {
  3995       prefix(REX);
  3997   } else {
  3998     if (src_enc < 8) {
  3999       prefix(REX_R);
  4000     } else {
  4001       prefix(REX_RB);
  4002       src_enc -= 8;
  4004     dst_enc -= 8;
  4006   return dst_enc << 3 | src_enc;
  4009 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  4010   if (dst_enc < 8) {
  4011     if (src_enc < 8) {
  4012       prefix(REX_W);
  4013     } else {
  4014       prefix(REX_WB);
  4015       src_enc -= 8;
  4017   } else {
  4018     if (src_enc < 8) {
  4019       prefix(REX_WR);
  4020     } else {
  4021       prefix(REX_WRB);
  4022       src_enc -= 8;
  4024     dst_enc -= 8;
  4026   return dst_enc << 3 | src_enc;
  4029 void Assembler::prefix(Register reg) {
  4030   if (reg->encoding() >= 8) {
  4031     prefix(REX_B);
  4035 void Assembler::prefix(Address adr) {
  4036   if (adr.base_needs_rex()) {
  4037     if (adr.index_needs_rex()) {
  4038       prefix(REX_XB);
  4039     } else {
  4040       prefix(REX_B);
  4042   } else {
  4043     if (adr.index_needs_rex()) {
  4044       prefix(REX_X);
  4049 void Assembler::prefixq(Address adr) {
  4050   if (adr.base_needs_rex()) {
  4051     if (adr.index_needs_rex()) {
  4052       prefix(REX_WXB);
  4053     } else {
  4054       prefix(REX_WB);
  4056   } else {
  4057     if (adr.index_needs_rex()) {
  4058       prefix(REX_WX);
  4059     } else {
  4060       prefix(REX_W);
  4066 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  4067   if (reg->encoding() < 8) {
  4068     if (adr.base_needs_rex()) {
  4069       if (adr.index_needs_rex()) {
  4070         prefix(REX_XB);
  4071       } else {
  4072         prefix(REX_B);
  4074     } else {
  4075       if (adr.index_needs_rex()) {
  4076         prefix(REX_X);
  4077       } else if (byteinst && reg->encoding() >= 4 ) {
  4078         prefix(REX);
  4081   } else {
  4082     if (adr.base_needs_rex()) {
  4083       if (adr.index_needs_rex()) {
  4084         prefix(REX_RXB);
  4085       } else {
  4086         prefix(REX_RB);
  4088     } else {
  4089       if (adr.index_needs_rex()) {
  4090         prefix(REX_RX);
  4091       } else {
  4092         prefix(REX_R);
  4098 void Assembler::prefixq(Address adr, Register src) {
  4099   if (src->encoding() < 8) {
  4100     if (adr.base_needs_rex()) {
  4101       if (adr.index_needs_rex()) {
  4102         prefix(REX_WXB);
  4103       } else {
  4104         prefix(REX_WB);
  4106     } else {
  4107       if (adr.index_needs_rex()) {
  4108         prefix(REX_WX);
  4109       } else {
  4110         prefix(REX_W);
  4113   } else {
  4114     if (adr.base_needs_rex()) {
  4115       if (adr.index_needs_rex()) {
  4116         prefix(REX_WRXB);
  4117       } else {
  4118         prefix(REX_WRB);
  4120     } else {
  4121       if (adr.index_needs_rex()) {
  4122         prefix(REX_WRX);
  4123       } else {
  4124         prefix(REX_WR);
  4130 void Assembler::prefix(Address adr, XMMRegister reg) {
  4131   if (reg->encoding() < 8) {
  4132     if (adr.base_needs_rex()) {
  4133       if (adr.index_needs_rex()) {
  4134         prefix(REX_XB);
  4135       } else {
  4136         prefix(REX_B);
  4138     } else {
  4139       if (adr.index_needs_rex()) {
  4140         prefix(REX_X);
  4143   } else {
  4144     if (adr.base_needs_rex()) {
  4145       if (adr.index_needs_rex()) {
  4146         prefix(REX_RXB);
  4147       } else {
  4148         prefix(REX_RB);
  4150     } else {
  4151       if (adr.index_needs_rex()) {
  4152         prefix(REX_RX);
  4153       } else {
  4154         prefix(REX_R);
  4160 void Assembler::prefixq(Address adr, XMMRegister src) {
  4161   if (src->encoding() < 8) {
  4162     if (adr.base_needs_rex()) {
  4163       if (adr.index_needs_rex()) {
  4164         prefix(REX_WXB);
  4165       } else {
  4166         prefix(REX_WB);
  4168     } else {
  4169       if (adr.index_needs_rex()) {
  4170         prefix(REX_WX);
  4171       } else {
  4172         prefix(REX_W);
  4175   } else {
  4176     if (adr.base_needs_rex()) {
  4177       if (adr.index_needs_rex()) {
  4178         prefix(REX_WRXB);
  4179       } else {
  4180         prefix(REX_WRB);
  4182     } else {
  4183       if (adr.index_needs_rex()) {
  4184         prefix(REX_WRX);
  4185       } else {
  4186         prefix(REX_WR);
  4192 void Assembler::adcq(Register dst, int32_t imm32) {
  4193   (void) prefixq_and_encode(dst->encoding());
  4194   emit_arith(0x81, 0xD0, dst, imm32);
  4197 void Assembler::adcq(Register dst, Address src) {
  4198   InstructionMark im(this);
  4199   prefixq(src, dst);
  4200   emit_byte(0x13);
  4201   emit_operand(dst, src);
  4204 void Assembler::adcq(Register dst, Register src) {
  4205   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4206   emit_arith(0x13, 0xC0, dst, src);
  4209 void Assembler::addq(Address dst, int32_t imm32) {
  4210   InstructionMark im(this);
  4211   prefixq(dst);
  4212   emit_arith_operand(0x81, rax, dst,imm32);
  4215 void Assembler::addq(Address dst, Register src) {
  4216   InstructionMark im(this);
  4217   prefixq(dst, src);
  4218   emit_byte(0x01);
  4219   emit_operand(src, dst);
  4222 void Assembler::addq(Register dst, int32_t imm32) {
  4223   (void) prefixq_and_encode(dst->encoding());
  4224   emit_arith(0x81, 0xC0, dst, imm32);
  4227 void Assembler::addq(Register dst, Address src) {
  4228   InstructionMark im(this);
  4229   prefixq(src, dst);
  4230   emit_byte(0x03);
  4231   emit_operand(dst, src);
  4234 void Assembler::addq(Register dst, Register src) {
  4235   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4236   emit_arith(0x03, 0xC0, dst, src);
  4239 void Assembler::andq(Address dst, int32_t imm32) {
  4240   InstructionMark im(this);
  4241   prefixq(dst);
  4242   emit_byte(0x81);
  4243   emit_operand(rsp, dst, 4);
  4244   emit_long(imm32);
  4247 void Assembler::andq(Register dst, int32_t imm32) {
  4248   (void) prefixq_and_encode(dst->encoding());
  4249   emit_arith(0x81, 0xE0, dst, imm32);
  4252 void Assembler::andq(Register dst, Address src) {
  4253   InstructionMark im(this);
  4254   prefixq(src, dst);
  4255   emit_byte(0x23);
  4256   emit_operand(dst, src);
  4259 void Assembler::andq(Register dst, Register src) {
  4260   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4261   emit_arith(0x23, 0xC0, dst, src);
  4264 void Assembler::bsfq(Register dst, Register src) {
  4265   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4266   emit_byte(0x0F);
  4267   emit_byte(0xBC);
  4268   emit_byte(0xC0 | encode);
  4271 void Assembler::bsrq(Register dst, Register src) {
  4272   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  4273   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4274   emit_byte(0x0F);
  4275   emit_byte(0xBD);
  4276   emit_byte(0xC0 | encode);
  4279 void Assembler::bswapq(Register reg) {
  4280   int encode = prefixq_and_encode(reg->encoding());
  4281   emit_byte(0x0F);
  4282   emit_byte(0xC8 | encode);
  4285 void Assembler::cdqq() {
  4286   prefix(REX_W);
  4287   emit_byte(0x99);
  4290 void Assembler::clflush(Address adr) {
  4291   prefix(adr);
  4292   emit_byte(0x0F);
  4293   emit_byte(0xAE);
  4294   emit_operand(rdi, adr);
  4297 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  4298   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4299   emit_byte(0x0F);
  4300   emit_byte(0x40 | cc);
  4301   emit_byte(0xC0 | encode);
  4304 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  4305   InstructionMark im(this);
  4306   prefixq(src, dst);
  4307   emit_byte(0x0F);
  4308   emit_byte(0x40 | cc);
  4309   emit_operand(dst, src);
  4312 void Assembler::cmpq(Address dst, int32_t imm32) {
  4313   InstructionMark im(this);
  4314   prefixq(dst);
  4315   emit_byte(0x81);
  4316   emit_operand(rdi, dst, 4);
  4317   emit_long(imm32);
  4320 void Assembler::cmpq(Register dst, int32_t imm32) {
  4321   (void) prefixq_and_encode(dst->encoding());
  4322   emit_arith(0x81, 0xF8, dst, imm32);
  4325 void Assembler::cmpq(Address dst, Register src) {
  4326   InstructionMark im(this);
  4327   prefixq(dst, src);
  4328   emit_byte(0x3B);
  4329   emit_operand(src, dst);
  4332 void Assembler::cmpq(Register dst, Register src) {
  4333   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4334   emit_arith(0x3B, 0xC0, dst, src);
  4337 void Assembler::cmpq(Register dst, Address  src) {
  4338   InstructionMark im(this);
  4339   prefixq(src, dst);
  4340   emit_byte(0x3B);
  4341   emit_operand(dst, src);
  4344 void Assembler::cmpxchgq(Register reg, Address adr) {
  4345   InstructionMark im(this);
  4346   prefixq(adr, reg);
  4347   emit_byte(0x0F);
  4348   emit_byte(0xB1);
  4349   emit_operand(reg, adr);
  4352 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  4353   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4354   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
  4355   emit_byte(0x2A);
  4356   emit_byte(0xC0 | encode);
  4359 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  4360   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4361   InstructionMark im(this);
  4362   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
  4363   emit_byte(0x2A);
  4364   emit_operand(dst, src);
  4367 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  4368   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4369   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
  4370   emit_byte(0x2A);
  4371   emit_byte(0xC0 | encode);
  4374 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  4375   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4376   InstructionMark im(this);
  4377   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
  4378   emit_byte(0x2A);
  4379   emit_operand(dst, src);
  4382 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  4383   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4384   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
  4385   emit_byte(0x2C);
  4386   emit_byte(0xC0 | encode);
  4389 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  4390   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4391   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
  4392   emit_byte(0x2C);
  4393   emit_byte(0xC0 | encode);
  4396 void Assembler::decl(Register dst) {
  4397   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  4398   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  4399   int encode = prefix_and_encode(dst->encoding());
  4400   emit_byte(0xFF);
  4401   emit_byte(0xC8 | encode);
  4404 void Assembler::decq(Register dst) {
  4405   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4406   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4407   int encode = prefixq_and_encode(dst->encoding());
  4408   emit_byte(0xFF);
  4409   emit_byte(0xC8 | encode);
  4412 void Assembler::decq(Address dst) {
  4413   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4414   InstructionMark im(this);
  4415   prefixq(dst);
  4416   emit_byte(0xFF);
  4417   emit_operand(rcx, dst);
  4420 void Assembler::fxrstor(Address src) {
  4421   prefixq(src);
  4422   emit_byte(0x0F);
  4423   emit_byte(0xAE);
  4424   emit_operand(as_Register(1), src);
  4427 void Assembler::fxsave(Address dst) {
  4428   prefixq(dst);
  4429   emit_byte(0x0F);
  4430   emit_byte(0xAE);
  4431   emit_operand(as_Register(0), dst);
  4434 void Assembler::idivq(Register src) {
  4435   int encode = prefixq_and_encode(src->encoding());
  4436   emit_byte(0xF7);
  4437   emit_byte(0xF8 | encode);
  4440 void Assembler::imulq(Register dst, Register src) {
  4441   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4442   emit_byte(0x0F);
  4443   emit_byte(0xAF);
  4444   emit_byte(0xC0 | encode);
  4447 void Assembler::imulq(Register dst, Register src, int value) {
  4448   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4449   if (is8bit(value)) {
  4450     emit_byte(0x6B);
  4451     emit_byte(0xC0 | encode);
  4452     emit_byte(value & 0xFF);
  4453   } else {
  4454     emit_byte(0x69);
  4455     emit_byte(0xC0 | encode);
  4456     emit_long(value);
  4460 void Assembler::incl(Register dst) {
  4461   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4462   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4463   int encode = prefix_and_encode(dst->encoding());
  4464   emit_byte(0xFF);
  4465   emit_byte(0xC0 | encode);
  4468 void Assembler::incq(Register dst) {
  4469   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4470   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4471   int encode = prefixq_and_encode(dst->encoding());
  4472   emit_byte(0xFF);
  4473   emit_byte(0xC0 | encode);
  4476 void Assembler::incq(Address dst) {
  4477   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4478   InstructionMark im(this);
  4479   prefixq(dst);
  4480   emit_byte(0xFF);
  4481   emit_operand(rax, dst);
  4484 void Assembler::lea(Register dst, Address src) {
  4485   leaq(dst, src);
  4488 void Assembler::leaq(Register dst, Address src) {
  4489   InstructionMark im(this);
  4490   prefixq(src, dst);
  4491   emit_byte(0x8D);
  4492   emit_operand(dst, src);
  4495 void Assembler::mov64(Register dst, int64_t imm64) {
  4496   InstructionMark im(this);
  4497   int encode = prefixq_and_encode(dst->encoding());
  4498   emit_byte(0xB8 | encode);
  4499   emit_long64(imm64);
  4502 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  4503   InstructionMark im(this);
  4504   int encode = prefixq_and_encode(dst->encoding());
  4505   emit_byte(0xB8 | encode);
  4506   emit_data64(imm64, rspec);
  4509 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4510   InstructionMark im(this);
  4511   int encode = prefix_and_encode(dst->encoding());
  4512   emit_byte(0xB8 | encode);
  4513   emit_data((int)imm32, rspec, narrow_oop_operand);
  4516 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4517   InstructionMark im(this);
  4518   prefix(dst);
  4519   emit_byte(0xC7);
  4520   emit_operand(rax, dst, 4);
  4521   emit_data((int)imm32, rspec, narrow_oop_operand);
  4524 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  4525   InstructionMark im(this);
  4526   int encode = prefix_and_encode(src1->encoding());
  4527   emit_byte(0x81);
  4528   emit_byte(0xF8 | encode);
  4529   emit_data((int)imm32, rspec, narrow_oop_operand);
  4532 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  4533   InstructionMark im(this);
  4534   prefix(src1);
  4535   emit_byte(0x81);
  4536   emit_operand(rax, src1, 4);
  4537   emit_data((int)imm32, rspec, narrow_oop_operand);
  4540 void Assembler::lzcntq(Register dst, Register src) {
  4541   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  4542   emit_byte(0xF3);
  4543   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4544   emit_byte(0x0F);
  4545   emit_byte(0xBD);
  4546   emit_byte(0xC0 | encode);
  4549 void Assembler::movdq(XMMRegister dst, Register src) {
  4550   // table D-1 says MMX/SSE2
  4551   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4552   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
  4553   emit_byte(0x6E);
  4554   emit_byte(0xC0 | encode);
  4557 void Assembler::movdq(Register dst, XMMRegister src) {
  4558   // table D-1 says MMX/SSE2
  4559   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4560   // swap src/dst to get correct prefix
  4561   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
  4562   emit_byte(0x7E);
  4563   emit_byte(0xC0 | encode);
  4566 void Assembler::movq(Register dst, Register src) {
  4567   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4568   emit_byte(0x8B);
  4569   emit_byte(0xC0 | encode);
  4572 void Assembler::movq(Register dst, Address src) {
  4573   InstructionMark im(this);
  4574   prefixq(src, dst);
  4575   emit_byte(0x8B);
  4576   emit_operand(dst, src);
  4579 void Assembler::movq(Address dst, Register src) {
  4580   InstructionMark im(this);
  4581   prefixq(dst, src);
  4582   emit_byte(0x89);
  4583   emit_operand(src, dst);
  4586 void Assembler::movsbq(Register dst, Address src) {
  4587   InstructionMark im(this);
  4588   prefixq(src, dst);
  4589   emit_byte(0x0F);
  4590   emit_byte(0xBE);
  4591   emit_operand(dst, src);
  4594 void Assembler::movsbq(Register dst, Register src) {
  4595   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4596   emit_byte(0x0F);
  4597   emit_byte(0xBE);
  4598   emit_byte(0xC0 | encode);
  4601 void Assembler::movslq(Register dst, int32_t imm32) {
  4602   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  4603   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  4604   // as a result we shouldn't use until tested at runtime...
  4605   ShouldNotReachHere();
  4606   InstructionMark im(this);
  4607   int encode = prefixq_and_encode(dst->encoding());
  4608   emit_byte(0xC7 | encode);
  4609   emit_long(imm32);
  4612 void Assembler::movslq(Address dst, int32_t imm32) {
  4613   assert(is_simm32(imm32), "lost bits");
  4614   InstructionMark im(this);
  4615   prefixq(dst);
  4616   emit_byte(0xC7);
  4617   emit_operand(rax, dst, 4);
  4618   emit_long(imm32);
  4621 void Assembler::movslq(Register dst, Address src) {
  4622   InstructionMark im(this);
  4623   prefixq(src, dst);
  4624   emit_byte(0x63);
  4625   emit_operand(dst, src);
  4628 void Assembler::movslq(Register dst, Register src) {
  4629   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4630   emit_byte(0x63);
  4631   emit_byte(0xC0 | encode);
  4634 void Assembler::movswq(Register dst, Address src) {
  4635   InstructionMark im(this);
  4636   prefixq(src, dst);
  4637   emit_byte(0x0F);
  4638   emit_byte(0xBF);
  4639   emit_operand(dst, src);
  4642 void Assembler::movswq(Register dst, Register src) {
  4643   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4644   emit_byte(0x0F);
  4645   emit_byte(0xBF);
  4646   emit_byte(0xC0 | encode);
  4649 void Assembler::movzbq(Register dst, Address src) {
  4650   InstructionMark im(this);
  4651   prefixq(src, dst);
  4652   emit_byte(0x0F);
  4653   emit_byte(0xB6);
  4654   emit_operand(dst, src);
  4657 void Assembler::movzbq(Register dst, Register src) {
  4658   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4659   emit_byte(0x0F);
  4660   emit_byte(0xB6);
  4661   emit_byte(0xC0 | encode);
  4664 void Assembler::movzwq(Register dst, Address src) {
  4665   InstructionMark im(this);
  4666   prefixq(src, dst);
  4667   emit_byte(0x0F);
  4668   emit_byte(0xB7);
  4669   emit_operand(dst, src);
  4672 void Assembler::movzwq(Register dst, Register src) {
  4673   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4674   emit_byte(0x0F);
  4675   emit_byte(0xB7);
  4676   emit_byte(0xC0 | encode);
  4679 void Assembler::negq(Register dst) {
  4680   int encode = prefixq_and_encode(dst->encoding());
  4681   emit_byte(0xF7);
  4682   emit_byte(0xD8 | encode);
  4685 void Assembler::notq(Register dst) {
  4686   int encode = prefixq_and_encode(dst->encoding());
  4687   emit_byte(0xF7);
  4688   emit_byte(0xD0 | encode);
  4691 void Assembler::orq(Address dst, int32_t imm32) {
  4692   InstructionMark im(this);
  4693   prefixq(dst);
  4694   emit_byte(0x81);
  4695   emit_operand(rcx, dst, 4);
  4696   emit_long(imm32);
  4699 void Assembler::orq(Register dst, int32_t imm32) {
  4700   (void) prefixq_and_encode(dst->encoding());
  4701   emit_arith(0x81, 0xC8, dst, imm32);
  4704 void Assembler::orq(Register dst, Address src) {
  4705   InstructionMark im(this);
  4706   prefixq(src, dst);
  4707   emit_byte(0x0B);
  4708   emit_operand(dst, src);
  4711 void Assembler::orq(Register dst, Register src) {
  4712   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4713   emit_arith(0x0B, 0xC0, dst, src);
  4716 void Assembler::popa() { // 64bit
  4717   movq(r15, Address(rsp, 0));
  4718   movq(r14, Address(rsp, wordSize));
  4719   movq(r13, Address(rsp, 2 * wordSize));
  4720   movq(r12, Address(rsp, 3 * wordSize));
  4721   movq(r11, Address(rsp, 4 * wordSize));
  4722   movq(r10, Address(rsp, 5 * wordSize));
  4723   movq(r9,  Address(rsp, 6 * wordSize));
  4724   movq(r8,  Address(rsp, 7 * wordSize));
  4725   movq(rdi, Address(rsp, 8 * wordSize));
  4726   movq(rsi, Address(rsp, 9 * wordSize));
  4727   movq(rbp, Address(rsp, 10 * wordSize));
  4728   // skip rsp
  4729   movq(rbx, Address(rsp, 12 * wordSize));
  4730   movq(rdx, Address(rsp, 13 * wordSize));
  4731   movq(rcx, Address(rsp, 14 * wordSize));
  4732   movq(rax, Address(rsp, 15 * wordSize));
  4734   addq(rsp, 16 * wordSize);
  4737 void Assembler::popcntq(Register dst, Address src) {
  4738   assert(VM_Version::supports_popcnt(), "must support");
  4739   InstructionMark im(this);
  4740   emit_byte(0xF3);
  4741   prefixq(src, dst);
  4742   emit_byte(0x0F);
  4743   emit_byte(0xB8);
  4744   emit_operand(dst, src);
  4747 void Assembler::popcntq(Register dst, Register src) {
  4748   assert(VM_Version::supports_popcnt(), "must support");
  4749   emit_byte(0xF3);
  4750   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4751   emit_byte(0x0F);
  4752   emit_byte(0xB8);
  4753   emit_byte(0xC0 | encode);
  4756 void Assembler::popq(Address dst) {
  4757   InstructionMark im(this);
  4758   prefixq(dst);
  4759   emit_byte(0x8F);
  4760   emit_operand(rax, dst);
  4763 void Assembler::pusha() { // 64bit
  4764   // we have to store original rsp.  ABI says that 128 bytes
  4765   // below rsp are local scratch.
  4766   movq(Address(rsp, -5 * wordSize), rsp);
  4768   subq(rsp, 16 * wordSize);
  4770   movq(Address(rsp, 15 * wordSize), rax);
  4771   movq(Address(rsp, 14 * wordSize), rcx);
  4772   movq(Address(rsp, 13 * wordSize), rdx);
  4773   movq(Address(rsp, 12 * wordSize), rbx);
  4774   // skip rsp
  4775   movq(Address(rsp, 10 * wordSize), rbp);
  4776   movq(Address(rsp, 9 * wordSize), rsi);
  4777   movq(Address(rsp, 8 * wordSize), rdi);
  4778   movq(Address(rsp, 7 * wordSize), r8);
  4779   movq(Address(rsp, 6 * wordSize), r9);
  4780   movq(Address(rsp, 5 * wordSize), r10);
  4781   movq(Address(rsp, 4 * wordSize), r11);
  4782   movq(Address(rsp, 3 * wordSize), r12);
  4783   movq(Address(rsp, 2 * wordSize), r13);
  4784   movq(Address(rsp, wordSize), r14);
  4785   movq(Address(rsp, 0), r15);
  4788 void Assembler::pushq(Address src) {
  4789   InstructionMark im(this);
  4790   prefixq(src);
  4791   emit_byte(0xFF);
  4792   emit_operand(rsi, src);
  4795 void Assembler::rclq(Register dst, int imm8) {
  4796   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4797   int encode = prefixq_and_encode(dst->encoding());
  4798   if (imm8 == 1) {
  4799     emit_byte(0xD1);
  4800     emit_byte(0xD0 | encode);
  4801   } else {
  4802     emit_byte(0xC1);
  4803     emit_byte(0xD0 | encode);
  4804     emit_byte(imm8);
  4807 void Assembler::sarq(Register dst, int imm8) {
  4808   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4809   int encode = prefixq_and_encode(dst->encoding());
  4810   if (imm8 == 1) {
  4811     emit_byte(0xD1);
  4812     emit_byte(0xF8 | encode);
  4813   } else {
  4814     emit_byte(0xC1);
  4815     emit_byte(0xF8 | encode);
  4816     emit_byte(imm8);
  4820 void Assembler::sarq(Register dst) {
  4821   int encode = prefixq_and_encode(dst->encoding());
  4822   emit_byte(0xD3);
  4823   emit_byte(0xF8 | encode);
  4826 void Assembler::sbbq(Address dst, int32_t imm32) {
  4827   InstructionMark im(this);
  4828   prefixq(dst);
  4829   emit_arith_operand(0x81, rbx, dst, imm32);
  4832 void Assembler::sbbq(Register dst, int32_t imm32) {
  4833   (void) prefixq_and_encode(dst->encoding());
  4834   emit_arith(0x81, 0xD8, dst, imm32);
  4837 void Assembler::sbbq(Register dst, Address src) {
  4838   InstructionMark im(this);
  4839   prefixq(src, dst);
  4840   emit_byte(0x1B);
  4841   emit_operand(dst, src);
  4844 void Assembler::sbbq(Register dst, Register src) {
  4845   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4846   emit_arith(0x1B, 0xC0, dst, src);
  4849 void Assembler::shlq(Register dst, int imm8) {
  4850   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4851   int encode = prefixq_and_encode(dst->encoding());
  4852   if (imm8 == 1) {
  4853     emit_byte(0xD1);
  4854     emit_byte(0xE0 | encode);
  4855   } else {
  4856     emit_byte(0xC1);
  4857     emit_byte(0xE0 | encode);
  4858     emit_byte(imm8);
  4862 void Assembler::shlq(Register dst) {
  4863   int encode = prefixq_and_encode(dst->encoding());
  4864   emit_byte(0xD3);
  4865   emit_byte(0xE0 | encode);
  4868 void Assembler::shrq(Register dst, int imm8) {
  4869   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4870   int encode = prefixq_and_encode(dst->encoding());
  4871   emit_byte(0xC1);
  4872   emit_byte(0xE8 | encode);
  4873   emit_byte(imm8);
  4876 void Assembler::shrq(Register dst) {
  4877   int encode = prefixq_and_encode(dst->encoding());
  4878   emit_byte(0xD3);
  4879   emit_byte(0xE8 | encode);
  4882 void Assembler::subq(Address dst, int32_t imm32) {
  4883   InstructionMark im(this);
  4884   prefixq(dst);
  4885   emit_arith_operand(0x81, rbp, dst, imm32);
  4888 void Assembler::subq(Address dst, Register src) {
  4889   InstructionMark im(this);
  4890   prefixq(dst, src);
  4891   emit_byte(0x29);
  4892   emit_operand(src, dst);
  4895 void Assembler::subq(Register dst, int32_t imm32) {
  4896   (void) prefixq_and_encode(dst->encoding());
  4897   emit_arith(0x81, 0xE8, dst, imm32);
  4900 // Force generation of a 4 byte immediate value even if it fits into 8bit
  4901 void Assembler::subq_imm32(Register dst, int32_t imm32) {
  4902   (void) prefixq_and_encode(dst->encoding());
  4903   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  4906 void Assembler::subq(Register dst, Address src) {
  4907   InstructionMark im(this);
  4908   prefixq(src, dst);
  4909   emit_byte(0x2B);
  4910   emit_operand(dst, src);
  4913 void Assembler::subq(Register dst, Register src) {
  4914   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4915   emit_arith(0x2B, 0xC0, dst, src);
  4918 void Assembler::testq(Register dst, int32_t imm32) {
  4919   // not using emit_arith because test
  4920   // doesn't support sign-extension of
  4921   // 8bit operands
  4922   int encode = dst->encoding();
  4923   if (encode == 0) {
  4924     prefix(REX_W);
  4925     emit_byte(0xA9);
  4926   } else {
  4927     encode = prefixq_and_encode(encode);
  4928     emit_byte(0xF7);
  4929     emit_byte(0xC0 | encode);
  4931   emit_long(imm32);
  4934 void Assembler::testq(Register dst, Register src) {
  4935   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4936   emit_arith(0x85, 0xC0, dst, src);
  4939 void Assembler::xaddq(Address dst, Register src) {
  4940   InstructionMark im(this);
  4941   prefixq(dst, src);
  4942   emit_byte(0x0F);
  4943   emit_byte(0xC1);
  4944   emit_operand(src, dst);
  4947 void Assembler::xchgq(Register dst, Address src) {
  4948   InstructionMark im(this);
  4949   prefixq(src, dst);
  4950   emit_byte(0x87);
  4951   emit_operand(dst, src);
  4954 void Assembler::xchgq(Register dst, Register src) {
  4955   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4956   emit_byte(0x87);
  4957   emit_byte(0xc0 | encode);
  4960 void Assembler::xorq(Register dst, Register src) {
  4961   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4962   emit_arith(0x33, 0xC0, dst, src);
  4965 void Assembler::xorq(Register dst, Address src) {
  4966   InstructionMark im(this);
  4967   prefixq(src, dst);
  4968   emit_byte(0x33);
  4969   emit_operand(dst, src);
  4972 #endif // !LP64
  4974 static Assembler::Condition reverse[] = {
  4975     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  4976     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  4977     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  4978     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  4979     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  4980     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  4981     Assembler::above          /* belowEqual    = 0x6 */ ,
  4982     Assembler::belowEqual     /* above         = 0x7 */ ,
  4983     Assembler::positive       /* negative      = 0x8 */ ,
  4984     Assembler::negative       /* positive      = 0x9 */ ,
  4985     Assembler::noParity       /* parity        = 0xa */ ,
  4986     Assembler::parity         /* noParity      = 0xb */ ,
  4987     Assembler::greaterEqual   /* less          = 0xc */ ,
  4988     Assembler::less           /* greaterEqual  = 0xd */ ,
  4989     Assembler::greater        /* lessEqual     = 0xe */ ,
  4990     Assembler::lessEqual      /* greater       = 0xf, */
  4992 };
  4995 // Implementation of MacroAssembler
  4997 // First all the versions that have distinct versions depending on 32/64 bit
  4998 // Unless the difference is trivial (1 line or so).
  5000 #ifndef _LP64
  5002 // 32bit versions
  5004 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5005   return Address(adr.target(), adr.rspec());
  5008 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5009   return Address::make_array(adr);
  5012 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5013                                          Register obj_reg,
  5014                                          Register swap_reg,
  5015                                          Register tmp_reg,
  5016                                          bool swap_reg_contains_mark,
  5017                                          Label& done,
  5018                                          Label* slow_case,
  5019                                          BiasedLockingCounters* counters) {
  5020   assert(UseBiasedLocking, "why call this otherwise?");
  5021   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  5022   assert_different_registers(lock_reg, obj_reg, swap_reg);
  5024   if (PrintBiasedLockingStatistics && counters == NULL)
  5025     counters = BiasedLocking::counters();
  5027   bool need_tmp_reg = false;
  5028   if (tmp_reg == noreg) {
  5029     need_tmp_reg = true;
  5030     tmp_reg = lock_reg;
  5031   } else {
  5032     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5034   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5035   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5036   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  5037   Address saved_mark_addr(lock_reg, 0);
  5039   // Biased locking
  5040   // See whether the lock is currently biased toward our thread and
  5041   // whether the epoch is still valid
  5042   // Note that the runtime guarantees sufficient alignment of JavaThread
  5043   // pointers to allow age to be placed into low bits
  5044   // First check to see whether biasing is even enabled for this object
  5045   Label cas_label;
  5046   int null_check_offset = -1;
  5047   if (!swap_reg_contains_mark) {
  5048     null_check_offset = offset();
  5049     movl(swap_reg, mark_addr);
  5051   if (need_tmp_reg) {
  5052     push(tmp_reg);
  5054   movl(tmp_reg, swap_reg);
  5055   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5056   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  5057   if (need_tmp_reg) {
  5058     pop(tmp_reg);
  5060   jcc(Assembler::notEqual, cas_label);
  5061   // The bias pattern is present in the object's header. Need to check
  5062   // whether the bias owner and the epoch are both still current.
  5063   // Note that because there is no current thread register on x86 we
  5064   // need to store off the mark word we read out of the object to
  5065   // avoid reloading it and needing to recheck invariants below. This
  5066   // store is unfortunate but it makes the overall code shorter and
  5067   // simpler.
  5068   movl(saved_mark_addr, swap_reg);
  5069   if (need_tmp_reg) {
  5070     push(tmp_reg);
  5072   get_thread(tmp_reg);
  5073   xorl(swap_reg, tmp_reg);
  5074   if (swap_reg_contains_mark) {
  5075     null_check_offset = offset();
  5077   movl(tmp_reg, klass_addr);
  5078   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  5079   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  5080   if (need_tmp_reg) {
  5081     pop(tmp_reg);
  5083   if (counters != NULL) {
  5084     cond_inc32(Assembler::zero,
  5085                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  5087   jcc(Assembler::equal, done);
  5089   Label try_revoke_bias;
  5090   Label try_rebias;
  5092   // At this point we know that the header has the bias pattern and
  5093   // that we are not the bias owner in the current epoch. We need to
  5094   // figure out more details about the state of the header in order to
  5095   // know what operations can be legally performed on the object's
  5096   // header.
  5098   // If the low three bits in the xor result aren't clear, that means
  5099   // the prototype header is no longer biased and we have to revoke
  5100   // the bias on this object.
  5101   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  5102   jcc(Assembler::notZero, try_revoke_bias);
  5104   // Biasing is still enabled for this data type. See whether the
  5105   // epoch of the current bias is still valid, meaning that the epoch
  5106   // bits of the mark word are equal to the epoch bits of the
  5107   // prototype header. (Note that the prototype header's epoch bits
  5108   // only change at a safepoint.) If not, attempt to rebias the object
  5109   // toward the current thread. Note that we must be absolutely sure
  5110   // that the current epoch is invalid in order to do this because
  5111   // otherwise the manipulations it performs on the mark word are
  5112   // illegal.
  5113   testl(swap_reg, markOopDesc::epoch_mask_in_place);
  5114   jcc(Assembler::notZero, try_rebias);
  5116   // The epoch of the current bias is still valid but we know nothing
  5117   // about the owner; it might be set or it might be clear. Try to
  5118   // acquire the bias of the object using an atomic operation. If this
  5119   // fails we will go in to the runtime to revoke the object's bias.
  5120   // Note that we first construct the presumed unbiased header so we
  5121   // don't accidentally blow away another thread's valid bias.
  5122   movl(swap_reg, saved_mark_addr);
  5123   andl(swap_reg,
  5124        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5125   if (need_tmp_reg) {
  5126     push(tmp_reg);
  5128   get_thread(tmp_reg);
  5129   orl(tmp_reg, swap_reg);
  5130   if (os::is_MP()) {
  5131     lock();
  5133   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5134   if (need_tmp_reg) {
  5135     pop(tmp_reg);
  5137   // If the biasing toward our thread failed, this means that
  5138   // another thread succeeded in biasing it toward itself and we
  5139   // need to revoke that bias. The revocation will occur in the
  5140   // interpreter runtime in the slow case.
  5141   if (counters != NULL) {
  5142     cond_inc32(Assembler::zero,
  5143                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  5145   if (slow_case != NULL) {
  5146     jcc(Assembler::notZero, *slow_case);
  5148   jmp(done);
  5150   bind(try_rebias);
  5151   // At this point we know the epoch has expired, meaning that the
  5152   // current "bias owner", if any, is actually invalid. Under these
  5153   // circumstances _only_, we are allowed to use the current header's
  5154   // value as the comparison value when doing the cas to acquire the
  5155   // bias in the current epoch. In other words, we allow transfer of
  5156   // the bias from one thread to another directly in this situation.
  5157   //
  5158   // FIXME: due to a lack of registers we currently blow away the age
  5159   // bits in this situation. Should attempt to preserve them.
  5160   if (need_tmp_reg) {
  5161     push(tmp_reg);
  5163   get_thread(tmp_reg);
  5164   movl(swap_reg, klass_addr);
  5165   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset()));
  5166   movl(swap_reg, saved_mark_addr);
  5167   if (os::is_MP()) {
  5168     lock();
  5170   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5171   if (need_tmp_reg) {
  5172     pop(tmp_reg);
  5174   // If the biasing toward our thread failed, then another thread
  5175   // succeeded in biasing it toward itself and we need to revoke that
  5176   // bias. The revocation will occur in the runtime in the slow case.
  5177   if (counters != NULL) {
  5178     cond_inc32(Assembler::zero,
  5179                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  5181   if (slow_case != NULL) {
  5182     jcc(Assembler::notZero, *slow_case);
  5184   jmp(done);
  5186   bind(try_revoke_bias);
  5187   // The prototype mark in the klass doesn't have the bias bit set any
  5188   // more, indicating that objects of this data type are not supposed
  5189   // to be biased any more. We are going to try to reset the mark of
  5190   // this object to the prototype value and fall through to the
  5191   // CAS-based locking scheme. Note that if our CAS fails, it means
  5192   // that another thread raced us for the privilege of revoking the
  5193   // bias of this particular object, so it's okay to continue in the
  5194   // normal locking code.
  5195   //
  5196   // FIXME: due to a lack of registers we currently blow away the age
  5197   // bits in this situation. Should attempt to preserve them.
  5198   movl(swap_reg, saved_mark_addr);
  5199   if (need_tmp_reg) {
  5200     push(tmp_reg);
  5202   movl(tmp_reg, klass_addr);
  5203   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  5204   if (os::is_MP()) {
  5205     lock();
  5207   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5208   if (need_tmp_reg) {
  5209     pop(tmp_reg);
  5211   // Fall through to the normal CAS-based lock, because no matter what
  5212   // the result of the above CAS, some thread must have succeeded in
  5213   // removing the bias bit from the object's header.
  5214   if (counters != NULL) {
  5215     cond_inc32(Assembler::zero,
  5216                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  5219   bind(cas_label);
  5221   return null_check_offset;
  5223 void MacroAssembler::call_VM_leaf_base(address entry_point,
  5224                                        int number_of_arguments) {
  5225   call(RuntimeAddress(entry_point));
  5226   increment(rsp, number_of_arguments * wordSize);
  5229 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  5230   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5233 void MacroAssembler::cmpoop(Register src1, jobject obj) {
  5234   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5237 void MacroAssembler::extend_sign(Register hi, Register lo) {
  5238   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  5239   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  5240     cdql();
  5241   } else {
  5242     movl(hi, lo);
  5243     sarl(hi, 31);
  5247 void MacroAssembler::jC2(Register tmp, Label& L) {
  5248   // set parity bit if FPU flag C2 is set (via rax)
  5249   save_rax(tmp);
  5250   fwait(); fnstsw_ax();
  5251   sahf();
  5252   restore_rax(tmp);
  5253   // branch
  5254   jcc(Assembler::parity, L);
  5257 void MacroAssembler::jnC2(Register tmp, Label& L) {
  5258   // set parity bit if FPU flag C2 is set (via rax)
  5259   save_rax(tmp);
  5260   fwait(); fnstsw_ax();
  5261   sahf();
  5262   restore_rax(tmp);
  5263   // branch
  5264   jcc(Assembler::noParity, L);
  5267 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5268 // to be installed in the Address class
  5269 void MacroAssembler::jump(ArrayAddress entry) {
  5270   jmp(as_Address(entry));
  5273 // Note: y_lo will be destroyed
  5274 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5275   // Long compare for Java (semantics as described in JVM spec.)
  5276   Label high, low, done;
  5278   cmpl(x_hi, y_hi);
  5279   jcc(Assembler::less, low);
  5280   jcc(Assembler::greater, high);
  5281   // x_hi is the return register
  5282   xorl(x_hi, x_hi);
  5283   cmpl(x_lo, y_lo);
  5284   jcc(Assembler::below, low);
  5285   jcc(Assembler::equal, done);
  5287   bind(high);
  5288   xorl(x_hi, x_hi);
  5289   increment(x_hi);
  5290   jmp(done);
  5292   bind(low);
  5293   xorl(x_hi, x_hi);
  5294   decrementl(x_hi);
  5296   bind(done);
  5299 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5300     mov_literal32(dst, (int32_t)src.target(), src.rspec());
  5303 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5304   // leal(dst, as_Address(adr));
  5305   // see note in movl as to why we must use a move
  5306   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
  5309 void MacroAssembler::leave() {
  5310   mov(rsp, rbp);
  5311   pop(rbp);
  5314 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  5315   // Multiplication of two Java long values stored on the stack
  5316   // as illustrated below. Result is in rdx:rax.
  5317   //
  5318   // rsp ---> [  ??  ] \               \
  5319   //            ....    | y_rsp_offset  |
  5320   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  5321   //          [ y_hi ]                  | (in bytes)
  5322   //            ....                    |
  5323   //          [ x_lo ]                 /
  5324   //          [ x_hi ]
  5325   //            ....
  5326   //
  5327   // Basic idea: lo(result) = lo(x_lo * y_lo)
  5328   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  5329   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  5330   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  5331   Label quick;
  5332   // load x_hi, y_hi and check if quick
  5333   // multiplication is possible
  5334   movl(rbx, x_hi);
  5335   movl(rcx, y_hi);
  5336   movl(rax, rbx);
  5337   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  5338   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  5339   // do full multiplication
  5340   // 1st step
  5341   mull(y_lo);                                    // x_hi * y_lo
  5342   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  5343   // 2nd step
  5344   movl(rax, x_lo);
  5345   mull(rcx);                                     // x_lo * y_hi
  5346   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  5347   // 3rd step
  5348   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  5349   movl(rax, x_lo);
  5350   mull(y_lo);                                    // x_lo * y_lo
  5351   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  5354 void MacroAssembler::lneg(Register hi, Register lo) {
  5355   negl(lo);
  5356   adcl(hi, 0);
  5357   negl(hi);
  5360 void MacroAssembler::lshl(Register hi, Register lo) {
  5361   // Java shift left long support (semantics as described in JVM spec., p.305)
  5362   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  5363   // shift value is in rcx !
  5364   assert(hi != rcx, "must not use rcx");
  5365   assert(lo != rcx, "must not use rcx");
  5366   const Register s = rcx;                        // shift count
  5367   const int      n = BitsPerWord;
  5368   Label L;
  5369   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5370   cmpl(s, n);                                    // if (s < n)
  5371   jcc(Assembler::less, L);                       // else (s >= n)
  5372   movl(hi, lo);                                  // x := x << n
  5373   xorl(lo, lo);
  5374   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5375   bind(L);                                       // s (mod n) < n
  5376   shldl(hi, lo);                                 // x := x << s
  5377   shll(lo);
  5381 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  5382   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  5383   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  5384   assert(hi != rcx, "must not use rcx");
  5385   assert(lo != rcx, "must not use rcx");
  5386   const Register s = rcx;                        // shift count
  5387   const int      n = BitsPerWord;
  5388   Label L;
  5389   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5390   cmpl(s, n);                                    // if (s < n)
  5391   jcc(Assembler::less, L);                       // else (s >= n)
  5392   movl(lo, hi);                                  // x := x >> n
  5393   if (sign_extension) sarl(hi, 31);
  5394   else                xorl(hi, hi);
  5395   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5396   bind(L);                                       // s (mod n) < n
  5397   shrdl(lo, hi);                                 // x := x >> s
  5398   if (sign_extension) sarl(hi);
  5399   else                shrl(hi);
  5402 void MacroAssembler::movoop(Register dst, jobject obj) {
  5403   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5406 void MacroAssembler::movoop(Address dst, jobject obj) {
  5407   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5410 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5411   if (src.is_lval()) {
  5412     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  5413   } else {
  5414     movl(dst, as_Address(src));
  5418 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5419   movl(as_Address(dst), src);
  5422 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5423   movl(dst, as_Address(src));
  5426 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5427 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5428   movl(dst, src);
  5432 void MacroAssembler::pop_callee_saved_registers() {
  5433   pop(rcx);
  5434   pop(rdx);
  5435   pop(rdi);
  5436   pop(rsi);
  5439 void MacroAssembler::pop_fTOS() {
  5440   fld_d(Address(rsp, 0));
  5441   addl(rsp, 2 * wordSize);
  5444 void MacroAssembler::push_callee_saved_registers() {
  5445   push(rsi);
  5446   push(rdi);
  5447   push(rdx);
  5448   push(rcx);
  5451 void MacroAssembler::push_fTOS() {
  5452   subl(rsp, 2 * wordSize);
  5453   fstp_d(Address(rsp, 0));
  5457 void MacroAssembler::pushoop(jobject obj) {
  5458   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  5462 void MacroAssembler::pushptr(AddressLiteral src) {
  5463   if (src.is_lval()) {
  5464     push_literal32((int32_t)src.target(), src.rspec());
  5465   } else {
  5466     pushl(as_Address(src));
  5470 void MacroAssembler::set_word_if_not_zero(Register dst) {
  5471   xorl(dst, dst);
  5472   set_byte_if_not_zero(dst);
  5475 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5476   masm->push(arg);
  5479 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5480   masm->push(arg);
  5483 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5484   masm->push(arg);
  5487 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5488   masm->push(arg);
  5491 #ifndef PRODUCT
  5492 extern "C" void findpc(intptr_t x);
  5493 #endif
  5495 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  5496   // In order to get locks to work, we need to fake a in_VM state
  5497   JavaThread* thread = JavaThread::current();
  5498   JavaThreadState saved_state = thread->thread_state();
  5499   thread->set_thread_state(_thread_in_vm);
  5500   if (ShowMessageBoxOnError) {
  5501     JavaThread* thread = JavaThread::current();
  5502     JavaThreadState saved_state = thread->thread_state();
  5503     thread->set_thread_state(_thread_in_vm);
  5504     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5505       ttyLocker ttyl;
  5506       BytecodeCounter::print();
  5508     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5509     // This is the value of eip which points to where verify_oop will return.
  5510     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5511       ttyLocker ttyl;
  5512       tty->print_cr("eip = 0x%08x", eip);
  5513 #ifndef PRODUCT
  5514       if ((WizardMode || Verbose) && PrintMiscellaneous) {
  5515         tty->cr();
  5516         findpc(eip);
  5517         tty->cr();
  5519 #endif
  5520       tty->print_cr("rax = 0x%08x", rax);
  5521       tty->print_cr("rbx = 0x%08x", rbx);
  5522       tty->print_cr("rcx = 0x%08x", rcx);
  5523       tty->print_cr("rdx = 0x%08x", rdx);
  5524       tty->print_cr("rdi = 0x%08x", rdi);
  5525       tty->print_cr("rsi = 0x%08x", rsi);
  5526       tty->print_cr("rbp = 0x%08x", rbp);
  5527       tty->print_cr("rsp = 0x%08x", rsp);
  5528       BREAKPOINT;
  5529       assert(false, "start up GDB");
  5531   } else {
  5532     ttyLocker ttyl;
  5533     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  5534     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  5536   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5539 void MacroAssembler::stop(const char* msg) {
  5540   ExternalAddress message((address)msg);
  5541   // push address of message
  5542   pushptr(message.addr());
  5543   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5544   pusha();                                           // push registers
  5545   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  5546   hlt();
  5549 void MacroAssembler::warn(const char* msg) {
  5550   push_CPU_state();
  5552   ExternalAddress message((address) msg);
  5553   // push address of message
  5554   pushptr(message.addr());
  5556   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  5557   addl(rsp, wordSize);       // discard argument
  5558   pop_CPU_state();
  5561 #else // _LP64
  5563 // 64 bit versions
  5565 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5566   // amd64 always does this as a pc-rel
  5567   // we can be absolute or disp based on the instruction type
  5568   // jmp/call are displacements others are absolute
  5569   assert(!adr.is_lval(), "must be rval");
  5570   assert(reachable(adr), "must be");
  5571   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  5575 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5576   AddressLiteral base = adr.base();
  5577   lea(rscratch1, base);
  5578   Address index = adr.index();
  5579   assert(index._disp == 0, "must not have disp"); // maybe it can?
  5580   Address array(rscratch1, index._index, index._scale, index._disp);
  5581   return array;
  5584 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5585                                          Register obj_reg,
  5586                                          Register swap_reg,
  5587                                          Register tmp_reg,
  5588                                          bool swap_reg_contains_mark,
  5589                                          Label& done,
  5590                                          Label* slow_case,
  5591                                          BiasedLockingCounters* counters) {
  5592   assert(UseBiasedLocking, "why call this otherwise?");
  5593   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  5594   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  5595   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5596   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5597   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5598   Address saved_mark_addr(lock_reg, 0);
  5600   if (PrintBiasedLockingStatistics && counters == NULL)
  5601     counters = BiasedLocking::counters();
  5603   // Biased locking
  5604   // See whether the lock is currently biased toward our thread and
  5605   // whether the epoch is still valid
  5606   // Note that the runtime guarantees sufficient alignment of JavaThread
  5607   // pointers to allow age to be placed into low bits
  5608   // First check to see whether biasing is even enabled for this object
  5609   Label cas_label;
  5610   int null_check_offset = -1;
  5611   if (!swap_reg_contains_mark) {
  5612     null_check_offset = offset();
  5613     movq(swap_reg, mark_addr);
  5615   movq(tmp_reg, swap_reg);
  5616   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5617   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  5618   jcc(Assembler::notEqual, cas_label);
  5619   // The bias pattern is present in the object's header. Need to check
  5620   // whether the bias owner and the epoch are both still current.
  5621   load_prototype_header(tmp_reg, obj_reg);
  5622   orq(tmp_reg, r15_thread);
  5623   xorq(tmp_reg, swap_reg);
  5624   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  5625   if (counters != NULL) {
  5626     cond_inc32(Assembler::zero,
  5627                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5629   jcc(Assembler::equal, done);
  5631   Label try_revoke_bias;
  5632   Label try_rebias;
  5634   // At this point we know that the header has the bias pattern and
  5635   // that we are not the bias owner in the current epoch. We need to
  5636   // figure out more details about the state of the header in order to
  5637   // know what operations can be legally performed on the object's
  5638   // header.
  5640   // If the low three bits in the xor result aren't clear, that means
  5641   // the prototype header is no longer biased and we have to revoke
  5642   // the bias on this object.
  5643   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5644   jcc(Assembler::notZero, try_revoke_bias);
  5646   // Biasing is still enabled for this data type. See whether the
  5647   // epoch of the current bias is still valid, meaning that the epoch
  5648   // bits of the mark word are equal to the epoch bits of the
  5649   // prototype header. (Note that the prototype header's epoch bits
  5650   // only change at a safepoint.) If not, attempt to rebias the object
  5651   // toward the current thread. Note that we must be absolutely sure
  5652   // that the current epoch is invalid in order to do this because
  5653   // otherwise the manipulations it performs on the mark word are
  5654   // illegal.
  5655   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  5656   jcc(Assembler::notZero, try_rebias);
  5658   // The epoch of the current bias is still valid but we know nothing
  5659   // about the owner; it might be set or it might be clear. Try to
  5660   // acquire the bias of the object using an atomic operation. If this
  5661   // fails we will go in to the runtime to revoke the object's bias.
  5662   // Note that we first construct the presumed unbiased header so we
  5663   // don't accidentally blow away another thread's valid bias.
  5664   andq(swap_reg,
  5665        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5666   movq(tmp_reg, swap_reg);
  5667   orq(tmp_reg, r15_thread);
  5668   if (os::is_MP()) {
  5669     lock();
  5671   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5672   // If the biasing toward our thread failed, this means that
  5673   // another thread succeeded in biasing it toward itself and we
  5674   // need to revoke that bias. The revocation will occur in the
  5675   // interpreter runtime in the slow case.
  5676   if (counters != NULL) {
  5677     cond_inc32(Assembler::zero,
  5678                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5680   if (slow_case != NULL) {
  5681     jcc(Assembler::notZero, *slow_case);
  5683   jmp(done);
  5685   bind(try_rebias);
  5686   // At this point we know the epoch has expired, meaning that the
  5687   // current "bias owner", if any, is actually invalid. Under these
  5688   // circumstances _only_, we are allowed to use the current header's
  5689   // value as the comparison value when doing the cas to acquire the
  5690   // bias in the current epoch. In other words, we allow transfer of
  5691   // the bias from one thread to another directly in this situation.
  5692   //
  5693   // FIXME: due to a lack of registers we currently blow away the age
  5694   // bits in this situation. Should attempt to preserve them.
  5695   load_prototype_header(tmp_reg, obj_reg);
  5696   orq(tmp_reg, r15_thread);
  5697   if (os::is_MP()) {
  5698     lock();
  5700   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5701   // If the biasing toward our thread failed, then another thread
  5702   // succeeded in biasing it toward itself and we need to revoke that
  5703   // bias. The revocation will occur in the runtime in the slow case.
  5704   if (counters != NULL) {
  5705     cond_inc32(Assembler::zero,
  5706                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  5708   if (slow_case != NULL) {
  5709     jcc(Assembler::notZero, *slow_case);
  5711   jmp(done);
  5713   bind(try_revoke_bias);
  5714   // The prototype mark in the klass doesn't have the bias bit set any
  5715   // more, indicating that objects of this data type are not supposed
  5716   // to be biased any more. We are going to try to reset the mark of
  5717   // this object to the prototype value and fall through to the
  5718   // CAS-based locking scheme. Note that if our CAS fails, it means
  5719   // that another thread raced us for the privilege of revoking the
  5720   // bias of this particular object, so it's okay to continue in the
  5721   // normal locking code.
  5722   //
  5723   // FIXME: due to a lack of registers we currently blow away the age
  5724   // bits in this situation. Should attempt to preserve them.
  5725   load_prototype_header(tmp_reg, obj_reg);
  5726   if (os::is_MP()) {
  5727     lock();
  5729   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5730   // Fall through to the normal CAS-based lock, because no matter what
  5731   // the result of the above CAS, some thread must have succeeded in
  5732   // removing the bias bit from the object's header.
  5733   if (counters != NULL) {
  5734     cond_inc32(Assembler::zero,
  5735                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  5738   bind(cas_label);
  5740   return null_check_offset;
  5743 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  5744   Label L, E;
  5746 #ifdef _WIN64
  5747   // Windows always allocates space for it's register args
  5748   assert(num_args <= 4, "only register arguments supported");
  5749   subq(rsp,  frame::arg_reg_save_area_bytes);
  5750 #endif
  5752   // Align stack if necessary
  5753   testl(rsp, 15);
  5754   jcc(Assembler::zero, L);
  5756   subq(rsp, 8);
  5758     call(RuntimeAddress(entry_point));
  5760   addq(rsp, 8);
  5761   jmp(E);
  5763   bind(L);
  5765     call(RuntimeAddress(entry_point));
  5768   bind(E);
  5770 #ifdef _WIN64
  5771   // restore stack pointer
  5772   addq(rsp, frame::arg_reg_save_area_bytes);
  5773 #endif
  5777 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  5778   assert(!src2.is_lval(), "should use cmpptr");
  5780   if (reachable(src2)) {
  5781     cmpq(src1, as_Address(src2));
  5782   } else {
  5783     lea(rscratch1, src2);
  5784     Assembler::cmpq(src1, Address(rscratch1, 0));
  5788 int MacroAssembler::corrected_idivq(Register reg) {
  5789   // Full implementation of Java ldiv and lrem; checks for special
  5790   // case as described in JVM spec., p.243 & p.271.  The function
  5791   // returns the (pc) offset of the idivl instruction - may be needed
  5792   // for implicit exceptions.
  5793   //
  5794   //         normal case                           special case
  5795   //
  5796   // input : rax: dividend                         min_long
  5797   //         reg: divisor   (may not be eax/edx)   -1
  5798   //
  5799   // output: rax: quotient  (= rax idiv reg)       min_long
  5800   //         rdx: remainder (= rax irem reg)       0
  5801   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  5802   static const int64_t min_long = 0x8000000000000000;
  5803   Label normal_case, special_case;
  5805   // check for special case
  5806   cmp64(rax, ExternalAddress((address) &min_long));
  5807   jcc(Assembler::notEqual, normal_case);
  5808   xorl(rdx, rdx); // prepare rdx for possible special case (where
  5809                   // remainder = 0)
  5810   cmpq(reg, -1);
  5811   jcc(Assembler::equal, special_case);
  5813   // handle normal case
  5814   bind(normal_case);
  5815   cdqq();
  5816   int idivq_offset = offset();
  5817   idivq(reg);
  5819   // normal and special case exit
  5820   bind(special_case);
  5822   return idivq_offset;
  5825 void MacroAssembler::decrementq(Register reg, int value) {
  5826   if (value == min_jint) { subq(reg, value); return; }
  5827   if (value <  0) { incrementq(reg, -value); return; }
  5828   if (value == 0) {                        ; return; }
  5829   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  5830   /* else */      { subq(reg, value)       ; return; }
  5833 void MacroAssembler::decrementq(Address dst, int value) {
  5834   if (value == min_jint) { subq(dst, value); return; }
  5835   if (value <  0) { incrementq(dst, -value); return; }
  5836   if (value == 0) {                        ; return; }
  5837   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  5838   /* else */      { subq(dst, value)       ; return; }
  5841 void MacroAssembler::incrementq(Register reg, int value) {
  5842   if (value == min_jint) { addq(reg, value); return; }
  5843   if (value <  0) { decrementq(reg, -value); return; }
  5844   if (value == 0) {                        ; return; }
  5845   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  5846   /* else */      { addq(reg, value)       ; return; }
  5849 void MacroAssembler::incrementq(Address dst, int value) {
  5850   if (value == min_jint) { addq(dst, value); return; }
  5851   if (value <  0) { decrementq(dst, -value); return; }
  5852   if (value == 0) {                        ; return; }
  5853   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  5854   /* else */      { addq(dst, value)       ; return; }
  5857 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5858 // to be installed in the Address class
  5859 void MacroAssembler::jump(ArrayAddress entry) {
  5860   lea(rscratch1, entry.base());
  5861   Address dispatch = entry.index();
  5862   assert(dispatch._base == noreg, "must be");
  5863   dispatch._base = rscratch1;
  5864   jmp(dispatch);
  5867 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5868   ShouldNotReachHere(); // 64bit doesn't use two regs
  5869   cmpq(x_lo, y_lo);
  5872 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5873     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5876 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5877   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  5878   movptr(dst, rscratch1);
  5881 void MacroAssembler::leave() {
  5882   // %%% is this really better? Why not on 32bit too?
  5883   emit_byte(0xC9); // LEAVE
  5886 void MacroAssembler::lneg(Register hi, Register lo) {
  5887   ShouldNotReachHere(); // 64bit doesn't use two regs
  5888   negq(lo);
  5891 void MacroAssembler::movoop(Register dst, jobject obj) {
  5892   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5895 void MacroAssembler::movoop(Address dst, jobject obj) {
  5896   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5897   movq(dst, rscratch1);
  5900 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5901   if (src.is_lval()) {
  5902     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5903   } else {
  5904     if (reachable(src)) {
  5905       movq(dst, as_Address(src));
  5906     } else {
  5907       lea(rscratch1, src);
  5908       movq(dst, Address(rscratch1,0));
  5913 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5914   movq(as_Address(dst), src);
  5917 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5918   movq(dst, as_Address(src));
  5921 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5922 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5923   mov64(rscratch1, src);
  5924   movq(dst, rscratch1);
  5927 // These are mostly for initializing NULL
  5928 void MacroAssembler::movptr(Address dst, int32_t src) {
  5929   movslq(dst, src);
  5932 void MacroAssembler::movptr(Register dst, int32_t src) {
  5933   mov64(dst, (intptr_t)src);
  5936 void MacroAssembler::pushoop(jobject obj) {
  5937   movoop(rscratch1, obj);
  5938   push(rscratch1);
  5941 void MacroAssembler::pushptr(AddressLiteral src) {
  5942   lea(rscratch1, src);
  5943   if (src.is_lval()) {
  5944     push(rscratch1);
  5945   } else {
  5946     pushq(Address(rscratch1, 0));
  5950 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  5951                                            bool clear_pc) {
  5952   // we must set sp to zero to clear frame
  5953   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  5954   // must clear fp, so that compiled frames are not confused; it is
  5955   // possible that we need it only for debugging
  5956   if (clear_fp) {
  5957     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  5960   if (clear_pc) {
  5961     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  5965 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  5966                                          Register last_java_fp,
  5967                                          address  last_java_pc) {
  5968   // determine last_java_sp register
  5969   if (!last_java_sp->is_valid()) {
  5970     last_java_sp = rsp;
  5973   // last_java_fp is optional
  5974   if (last_java_fp->is_valid()) {
  5975     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  5976            last_java_fp);
  5979   // last_java_pc is optional
  5980   if (last_java_pc != NULL) {
  5981     Address java_pc(r15_thread,
  5982                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  5983     lea(rscratch1, InternalAddress(last_java_pc));
  5984     movptr(java_pc, rscratch1);
  5987   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  5990 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5991   if (c_rarg0 != arg ) {
  5992     masm->mov(c_rarg0, arg);
  5996 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5997   if (c_rarg1 != arg ) {
  5998     masm->mov(c_rarg1, arg);
  6002 static void pass_arg2(MacroAssembler* masm, Register arg) {
  6003   if (c_rarg2 != arg ) {
  6004     masm->mov(c_rarg2, arg);
  6008 static void pass_arg3(MacroAssembler* masm, Register arg) {
  6009   if (c_rarg3 != arg ) {
  6010     masm->mov(c_rarg3, arg);
  6014 void MacroAssembler::stop(const char* msg) {
  6015   address rip = pc();
  6016   pusha(); // get regs on stack
  6017   lea(c_rarg0, ExternalAddress((address) msg));
  6018   lea(c_rarg1, InternalAddress(rip));
  6019   movq(c_rarg2, rsp); // pass pointer to regs array
  6020   andq(rsp, -16); // align stack as required by ABI
  6021   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  6022   hlt();
  6025 void MacroAssembler::warn(const char* msg) {
  6026   push(rsp);
  6027   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  6029   push_CPU_state();   // keeps alignment at 16 bytes
  6030   lea(c_rarg0, ExternalAddress((address) msg));
  6031   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  6032   pop_CPU_state();
  6033   pop(rsp);
  6036 #ifndef PRODUCT
  6037 extern "C" void findpc(intptr_t x);
  6038 #endif
  6040 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  6041   // In order to get locks to work, we need to fake a in_VM state
  6042   if (ShowMessageBoxOnError ) {
  6043     JavaThread* thread = JavaThread::current();
  6044     JavaThreadState saved_state = thread->thread_state();
  6045     thread->set_thread_state(_thread_in_vm);
  6046 #ifndef PRODUCT
  6047     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  6048       ttyLocker ttyl;
  6049       BytecodeCounter::print();
  6051 #endif
  6052     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  6053     // XXX correct this offset for amd64
  6054     // This is the value of eip which points to where verify_oop will return.
  6055     if (os::message_box(msg, "Execution stopped, print registers?")) {
  6056       ttyLocker ttyl;
  6057       tty->print_cr("rip = 0x%016lx", pc);
  6058 #ifndef PRODUCT
  6059       tty->cr();
  6060       findpc(pc);
  6061       tty->cr();
  6062 #endif
  6063       tty->print_cr("rax = 0x%016lx", regs[15]);
  6064       tty->print_cr("rbx = 0x%016lx", regs[12]);
  6065       tty->print_cr("rcx = 0x%016lx", regs[14]);
  6066       tty->print_cr("rdx = 0x%016lx", regs[13]);
  6067       tty->print_cr("rdi = 0x%016lx", regs[8]);
  6068       tty->print_cr("rsi = 0x%016lx", regs[9]);
  6069       tty->print_cr("rbp = 0x%016lx", regs[10]);
  6070       tty->print_cr("rsp = 0x%016lx", regs[11]);
  6071       tty->print_cr("r8  = 0x%016lx", regs[7]);
  6072       tty->print_cr("r9  = 0x%016lx", regs[6]);
  6073       tty->print_cr("r10 = 0x%016lx", regs[5]);
  6074       tty->print_cr("r11 = 0x%016lx", regs[4]);
  6075       tty->print_cr("r12 = 0x%016lx", regs[3]);
  6076       tty->print_cr("r13 = 0x%016lx", regs[2]);
  6077       tty->print_cr("r14 = 0x%016lx", regs[1]);
  6078       tty->print_cr("r15 = 0x%016lx", regs[0]);
  6079       BREAKPOINT;
  6081     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  6082   } else {
  6083     ttyLocker ttyl;
  6084     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  6085                     msg);
  6086     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  6090 #endif // _LP64
  6092 // Now versions that are common to 32/64 bit
  6094 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  6095   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  6098 void MacroAssembler::addptr(Register dst, Register src) {
  6099   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  6102 void MacroAssembler::addptr(Address dst, Register src) {
  6103   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  6106 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
  6107   if (reachable(src)) {
  6108     Assembler::addsd(dst, as_Address(src));
  6109   } else {
  6110     lea(rscratch1, src);
  6111     Assembler::addsd(dst, Address(rscratch1, 0));
  6115 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
  6116   if (reachable(src)) {
  6117     addss(dst, as_Address(src));
  6118   } else {
  6119     lea(rscratch1, src);
  6120     addss(dst, Address(rscratch1, 0));
  6124 void MacroAssembler::align(int modulus) {
  6125   if (offset() % modulus != 0) {
  6126     nop(modulus - (offset() % modulus));
  6130 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  6131   // Used in sign-masking with aligned address.
  6132   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6133   if (reachable(src)) {
  6134     Assembler::andpd(dst, as_Address(src));
  6135   } else {
  6136     lea(rscratch1, src);
  6137     Assembler::andpd(dst, Address(rscratch1, 0));
  6141 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
  6142   // Used in sign-masking with aligned address.
  6143   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6144   if (reachable(src)) {
  6145     Assembler::andps(dst, as_Address(src));
  6146   } else {
  6147     lea(rscratch1, src);
  6148     Assembler::andps(dst, Address(rscratch1, 0));
  6152 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  6153   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  6156 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  6157   pushf();
  6158   if (os::is_MP())
  6159     lock();
  6160   incrementl(counter_addr);
  6161   popf();
  6164 // Writes to stack successive pages until offset reached to check for
  6165 // stack overflow + shadow pages.  This clobbers tmp.
  6166 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  6167   movptr(tmp, rsp);
  6168   // Bang stack for total size given plus shadow page size.
  6169   // Bang one page at a time because large size can bang beyond yellow and
  6170   // red zones.
  6171   Label loop;
  6172   bind(loop);
  6173   movl(Address(tmp, (-os::vm_page_size())), size );
  6174   subptr(tmp, os::vm_page_size());
  6175   subl(size, os::vm_page_size());
  6176   jcc(Assembler::greater, loop);
  6178   // Bang down shadow pages too.
  6179   // The -1 because we already subtracted 1 page.
  6180   for (int i = 0; i< StackShadowPages-1; i++) {
  6181     // this could be any sized move but this is can be a debugging crumb
  6182     // so the bigger the better.
  6183     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  6187 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  6188   assert(UseBiasedLocking, "why call this otherwise?");
  6190   // Check for biased locking unlock case, which is a no-op
  6191   // Note: we do not have to check the thread ID for two reasons.
  6192   // First, the interpreter checks for IllegalMonitorStateException at
  6193   // a higher level. Second, if the bias was revoked while we held the
  6194   // lock, the object could not be rebiased toward another thread, so
  6195   // the bias bit would be clear.
  6196   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  6197   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  6198   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  6199   jcc(Assembler::equal, done);
  6202 void MacroAssembler::c2bool(Register x) {
  6203   // implements x == 0 ? 0 : 1
  6204   // note: must only look at least-significant byte of x
  6205   //       since C-style booleans are stored in one byte
  6206   //       only! (was bug)
  6207   andl(x, 0xFF);
  6208   setb(Assembler::notZero, x);
  6211 // Wouldn't need if AddressLiteral version had new name
  6212 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  6213   Assembler::call(L, rtype);
  6216 void MacroAssembler::call(Register entry) {
  6217   Assembler::call(entry);
  6220 void MacroAssembler::call(AddressLiteral entry) {
  6221   if (reachable(entry)) {
  6222     Assembler::call_literal(entry.target(), entry.rspec());
  6223   } else {
  6224     lea(rscratch1, entry);
  6225     Assembler::call(rscratch1);
  6229 // Implementation of call_VM versions
  6231 void MacroAssembler::call_VM(Register oop_result,
  6232                              address entry_point,
  6233                              bool check_exceptions) {
  6234   Label C, E;
  6235   call(C, relocInfo::none);
  6236   jmp(E);
  6238   bind(C);
  6239   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  6240   ret(0);
  6242   bind(E);
  6245 void MacroAssembler::call_VM(Register oop_result,
  6246                              address entry_point,
  6247                              Register arg_1,
  6248                              bool check_exceptions) {
  6249   Label C, E;
  6250   call(C, relocInfo::none);
  6251   jmp(E);
  6253   bind(C);
  6254   pass_arg1(this, arg_1);
  6255   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  6256   ret(0);
  6258   bind(E);
  6261 void MacroAssembler::call_VM(Register oop_result,
  6262                              address entry_point,
  6263                              Register arg_1,
  6264                              Register arg_2,
  6265                              bool check_exceptions) {
  6266   Label C, E;
  6267   call(C, relocInfo::none);
  6268   jmp(E);
  6270   bind(C);
  6272   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6274   pass_arg2(this, arg_2);
  6275   pass_arg1(this, arg_1);
  6276   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  6277   ret(0);
  6279   bind(E);
  6282 void MacroAssembler::call_VM(Register oop_result,
  6283                              address entry_point,
  6284                              Register arg_1,
  6285                              Register arg_2,
  6286                              Register arg_3,
  6287                              bool check_exceptions) {
  6288   Label C, E;
  6289   call(C, relocInfo::none);
  6290   jmp(E);
  6292   bind(C);
  6294   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6295   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6296   pass_arg3(this, arg_3);
  6298   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6299   pass_arg2(this, arg_2);
  6301   pass_arg1(this, arg_1);
  6302   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  6303   ret(0);
  6305   bind(E);
  6308 void MacroAssembler::call_VM(Register oop_result,
  6309                              Register last_java_sp,
  6310                              address entry_point,
  6311                              int number_of_arguments,
  6312                              bool check_exceptions) {
  6313   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6314   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6317 void MacroAssembler::call_VM(Register oop_result,
  6318                              Register last_java_sp,
  6319                              address entry_point,
  6320                              Register arg_1,
  6321                              bool check_exceptions) {
  6322   pass_arg1(this, arg_1);
  6323   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6326 void MacroAssembler::call_VM(Register oop_result,
  6327                              Register last_java_sp,
  6328                              address entry_point,
  6329                              Register arg_1,
  6330                              Register arg_2,
  6331                              bool check_exceptions) {
  6333   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6334   pass_arg2(this, arg_2);
  6335   pass_arg1(this, arg_1);
  6336   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6339 void MacroAssembler::call_VM(Register oop_result,
  6340                              Register last_java_sp,
  6341                              address entry_point,
  6342                              Register arg_1,
  6343                              Register arg_2,
  6344                              Register arg_3,
  6345                              bool check_exceptions) {
  6346   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6347   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6348   pass_arg3(this, arg_3);
  6349   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6350   pass_arg2(this, arg_2);
  6351   pass_arg1(this, arg_1);
  6352   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6355 void MacroAssembler::super_call_VM(Register oop_result,
  6356                                    Register last_java_sp,
  6357                                    address entry_point,
  6358                                    int number_of_arguments,
  6359                                    bool check_exceptions) {
  6360   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6361   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6364 void MacroAssembler::super_call_VM(Register oop_result,
  6365                                    Register last_java_sp,
  6366                                    address entry_point,
  6367                                    Register arg_1,
  6368                                    bool check_exceptions) {
  6369   pass_arg1(this, arg_1);
  6370   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6373 void MacroAssembler::super_call_VM(Register oop_result,
  6374                                    Register last_java_sp,
  6375                                    address entry_point,
  6376                                    Register arg_1,
  6377                                    Register arg_2,
  6378                                    bool check_exceptions) {
  6380   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6381   pass_arg2(this, arg_2);
  6382   pass_arg1(this, arg_1);
  6383   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6386 void MacroAssembler::super_call_VM(Register oop_result,
  6387                                    Register last_java_sp,
  6388                                    address entry_point,
  6389                                    Register arg_1,
  6390                                    Register arg_2,
  6391                                    Register arg_3,
  6392                                    bool check_exceptions) {
  6393   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6394   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6395   pass_arg3(this, arg_3);
  6396   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6397   pass_arg2(this, arg_2);
  6398   pass_arg1(this, arg_1);
  6399   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6402 void MacroAssembler::call_VM_base(Register oop_result,
  6403                                   Register java_thread,
  6404                                   Register last_java_sp,
  6405                                   address  entry_point,
  6406                                   int      number_of_arguments,
  6407                                   bool     check_exceptions) {
  6408   // determine java_thread register
  6409   if (!java_thread->is_valid()) {
  6410 #ifdef _LP64
  6411     java_thread = r15_thread;
  6412 #else
  6413     java_thread = rdi;
  6414     get_thread(java_thread);
  6415 #endif // LP64
  6417   // determine last_java_sp register
  6418   if (!last_java_sp->is_valid()) {
  6419     last_java_sp = rsp;
  6421   // debugging support
  6422   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  6423   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  6424 #ifdef ASSERT
  6425   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
  6426   // r12 is the heapbase.
  6427   LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base");)
  6428 #endif // ASSERT
  6430   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  6431   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  6433   // push java thread (becomes first argument of C function)
  6435   NOT_LP64(push(java_thread); number_of_arguments++);
  6436   LP64_ONLY(mov(c_rarg0, r15_thread));
  6438   // set last Java frame before call
  6439   assert(last_java_sp != rbp, "can't use ebp/rbp");
  6441   // Only interpreter should have to set fp
  6442   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  6444   // do the call, remove parameters
  6445   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  6447   // restore the thread (cannot use the pushed argument since arguments
  6448   // may be overwritten by C code generated by an optimizing compiler);
  6449   // however can use the register value directly if it is callee saved.
  6450   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  6451     // rdi & rsi (also r15) are callee saved -> nothing to do
  6452 #ifdef ASSERT
  6453     guarantee(java_thread != rax, "change this code");
  6454     push(rax);
  6455     { Label L;
  6456       get_thread(rax);
  6457       cmpptr(java_thread, rax);
  6458       jcc(Assembler::equal, L);
  6459       stop("MacroAssembler::call_VM_base: rdi not callee saved?");
  6460       bind(L);
  6462     pop(rax);
  6463 #endif
  6464   } else {
  6465     get_thread(java_thread);
  6467   // reset last Java frame
  6468   // Only interpreter should have to clear fp
  6469   reset_last_Java_frame(java_thread, true, false);
  6471 #ifndef CC_INTERP
  6472    // C++ interp handles this in the interpreter
  6473   check_and_handle_popframe(java_thread);
  6474   check_and_handle_earlyret(java_thread);
  6475 #endif /* CC_INTERP */
  6477   if (check_exceptions) {
  6478     // check for pending exceptions (java_thread is set upon return)
  6479     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  6480 #ifndef _LP64
  6481     jump_cc(Assembler::notEqual,
  6482             RuntimeAddress(StubRoutines::forward_exception_entry()));
  6483 #else
  6484     // This used to conditionally jump to forward_exception however it is
  6485     // possible if we relocate that the branch will not reach. So we must jump
  6486     // around so we can always reach
  6488     Label ok;
  6489     jcc(Assembler::equal, ok);
  6490     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  6491     bind(ok);
  6492 #endif // LP64
  6495   // get oop result if there is one and reset the value in the thread
  6496   if (oop_result->is_valid()) {
  6497     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  6498     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  6499     verify_oop(oop_result, "broken oop in call_VM_base");
  6503 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  6505   // Calculate the value for last_Java_sp
  6506   // somewhat subtle. call_VM does an intermediate call
  6507   // which places a return address on the stack just under the
  6508   // stack pointer as the user finsihed with it. This allows
  6509   // use to retrieve last_Java_pc from last_Java_sp[-1].
  6510   // On 32bit we then have to push additional args on the stack to accomplish
  6511   // the actual requested call. On 64bit call_VM only can use register args
  6512   // so the only extra space is the return address that call_VM created.
  6513   // This hopefully explains the calculations here.
  6515 #ifdef _LP64
  6516   // We've pushed one address, correct last_Java_sp
  6517   lea(rax, Address(rsp, wordSize));
  6518 #else
  6519   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  6520 #endif // LP64
  6522   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  6526 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  6527   call_VM_leaf_base(entry_point, number_of_arguments);
  6530 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  6531   pass_arg0(this, arg_0);
  6532   call_VM_leaf(entry_point, 1);
  6535 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  6537   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6538   pass_arg1(this, arg_1);
  6539   pass_arg0(this, arg_0);
  6540   call_VM_leaf(entry_point, 2);
  6543 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  6544   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6545   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6546   pass_arg2(this, arg_2);
  6547   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6548   pass_arg1(this, arg_1);
  6549   pass_arg0(this, arg_0);
  6550   call_VM_leaf(entry_point, 3);
  6553 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  6554   pass_arg0(this, arg_0);
  6555   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  6558 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  6560   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6561   pass_arg1(this, arg_1);
  6562   pass_arg0(this, arg_0);
  6563   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  6566 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  6567   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6568   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6569   pass_arg2(this, arg_2);
  6570   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6571   pass_arg1(this, arg_1);
  6572   pass_arg0(this, arg_0);
  6573   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  6576 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  6577   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  6578   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6579   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6580   pass_arg3(this, arg_3);
  6581   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6582   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6583   pass_arg2(this, arg_2);
  6584   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6585   pass_arg1(this, arg_1);
  6586   pass_arg0(this, arg_0);
  6587   MacroAssembler::call_VM_leaf_base(entry_point, 4);
  6590 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  6593 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  6596 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  6597   if (reachable(src1)) {
  6598     cmpl(as_Address(src1), imm);
  6599   } else {
  6600     lea(rscratch1, src1);
  6601     cmpl(Address(rscratch1, 0), imm);
  6605 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  6606   assert(!src2.is_lval(), "use cmpptr");
  6607   if (reachable(src2)) {
  6608     cmpl(src1, as_Address(src2));
  6609   } else {
  6610     lea(rscratch1, src2);
  6611     cmpl(src1, Address(rscratch1, 0));
  6615 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  6616   Assembler::cmpl(src1, imm);
  6619 void MacroAssembler::cmp32(Register src1, Address src2) {
  6620   Assembler::cmpl(src1, src2);
  6623 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6624   ucomisd(opr1, opr2);
  6626   Label L;
  6627   if (unordered_is_less) {
  6628     movl(dst, -1);
  6629     jcc(Assembler::parity, L);
  6630     jcc(Assembler::below , L);
  6631     movl(dst, 0);
  6632     jcc(Assembler::equal , L);
  6633     increment(dst);
  6634   } else { // unordered is greater
  6635     movl(dst, 1);
  6636     jcc(Assembler::parity, L);
  6637     jcc(Assembler::above , L);
  6638     movl(dst, 0);
  6639     jcc(Assembler::equal , L);
  6640     decrementl(dst);
  6642   bind(L);
  6645 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6646   ucomiss(opr1, opr2);
  6648   Label L;
  6649   if (unordered_is_less) {
  6650     movl(dst, -1);
  6651     jcc(Assembler::parity, L);
  6652     jcc(Assembler::below , L);
  6653     movl(dst, 0);
  6654     jcc(Assembler::equal , L);
  6655     increment(dst);
  6656   } else { // unordered is greater
  6657     movl(dst, 1);
  6658     jcc(Assembler::parity, L);
  6659     jcc(Assembler::above , L);
  6660     movl(dst, 0);
  6661     jcc(Assembler::equal , L);
  6662     decrementl(dst);
  6664   bind(L);
  6668 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  6669   if (reachable(src1)) {
  6670     cmpb(as_Address(src1), imm);
  6671   } else {
  6672     lea(rscratch1, src1);
  6673     cmpb(Address(rscratch1, 0), imm);
  6677 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  6678 #ifdef _LP64
  6679   if (src2.is_lval()) {
  6680     movptr(rscratch1, src2);
  6681     Assembler::cmpq(src1, rscratch1);
  6682   } else if (reachable(src2)) {
  6683     cmpq(src1, as_Address(src2));
  6684   } else {
  6685     lea(rscratch1, src2);
  6686     Assembler::cmpq(src1, Address(rscratch1, 0));
  6688 #else
  6689   if (src2.is_lval()) {
  6690     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6691   } else {
  6692     cmpl(src1, as_Address(src2));
  6694 #endif // _LP64
  6697 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  6698   assert(src2.is_lval(), "not a mem-mem compare");
  6699 #ifdef _LP64
  6700   // moves src2's literal address
  6701   movptr(rscratch1, src2);
  6702   Assembler::cmpq(src1, rscratch1);
  6703 #else
  6704   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6705 #endif // _LP64
  6708 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  6709   if (reachable(adr)) {
  6710     if (os::is_MP())
  6711       lock();
  6712     cmpxchgptr(reg, as_Address(adr));
  6713   } else {
  6714     lea(rscratch1, adr);
  6715     if (os::is_MP())
  6716       lock();
  6717     cmpxchgptr(reg, Address(rscratch1, 0));
  6721 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  6722   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  6725 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  6726   if (reachable(src)) {
  6727     Assembler::comisd(dst, as_Address(src));
  6728   } else {
  6729     lea(rscratch1, src);
  6730     Assembler::comisd(dst, Address(rscratch1, 0));
  6734 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  6735   if (reachable(src)) {
  6736     Assembler::comiss(dst, as_Address(src));
  6737   } else {
  6738     lea(rscratch1, src);
  6739     Assembler::comiss(dst, Address(rscratch1, 0));
  6744 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  6745   Condition negated_cond = negate_condition(cond);
  6746   Label L;
  6747   jcc(negated_cond, L);
  6748   atomic_incl(counter_addr);
  6749   bind(L);
  6752 int MacroAssembler::corrected_idivl(Register reg) {
  6753   // Full implementation of Java idiv and irem; checks for
  6754   // special case as described in JVM spec., p.243 & p.271.
  6755   // The function returns the (pc) offset of the idivl
  6756   // instruction - may be needed for implicit exceptions.
  6757   //
  6758   //         normal case                           special case
  6759   //
  6760   // input : rax,: dividend                         min_int
  6761   //         reg: divisor   (may not be rax,/rdx)   -1
  6762   //
  6763   // output: rax,: quotient  (= rax, idiv reg)       min_int
  6764   //         rdx: remainder (= rax, irem reg)       0
  6765   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  6766   const int min_int = 0x80000000;
  6767   Label normal_case, special_case;
  6769   // check for special case
  6770   cmpl(rax, min_int);
  6771   jcc(Assembler::notEqual, normal_case);
  6772   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  6773   cmpl(reg, -1);
  6774   jcc(Assembler::equal, special_case);
  6776   // handle normal case
  6777   bind(normal_case);
  6778   cdql();
  6779   int idivl_offset = offset();
  6780   idivl(reg);
  6782   // normal and special case exit
  6783   bind(special_case);
  6785   return idivl_offset;
  6790 void MacroAssembler::decrementl(Register reg, int value) {
  6791   if (value == min_jint) {subl(reg, value) ; return; }
  6792   if (value <  0) { incrementl(reg, -value); return; }
  6793   if (value == 0) {                        ; return; }
  6794   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  6795   /* else */      { subl(reg, value)       ; return; }
  6798 void MacroAssembler::decrementl(Address dst, int value) {
  6799   if (value == min_jint) {subl(dst, value) ; return; }
  6800   if (value <  0) { incrementl(dst, -value); return; }
  6801   if (value == 0) {                        ; return; }
  6802   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  6803   /* else */      { subl(dst, value)       ; return; }
  6806 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  6807   assert (shift_value > 0, "illegal shift value");
  6808   Label _is_positive;
  6809   testl (reg, reg);
  6810   jcc (Assembler::positive, _is_positive);
  6811   int offset = (1 << shift_value) - 1 ;
  6813   if (offset == 1) {
  6814     incrementl(reg);
  6815   } else {
  6816     addl(reg, offset);
  6819   bind (_is_positive);
  6820   sarl(reg, shift_value);
  6823 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
  6824   if (reachable(src)) {
  6825     Assembler::divsd(dst, as_Address(src));
  6826   } else {
  6827     lea(rscratch1, src);
  6828     Assembler::divsd(dst, Address(rscratch1, 0));
  6832 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
  6833   if (reachable(src)) {
  6834     Assembler::divss(dst, as_Address(src));
  6835   } else {
  6836     lea(rscratch1, src);
  6837     Assembler::divss(dst, Address(rscratch1, 0));
  6841 // !defined(COMPILER2) is because of stupid core builds
  6842 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  6843 void MacroAssembler::empty_FPU_stack() {
  6844   if (VM_Version::supports_mmx()) {
  6845     emms();
  6846   } else {
  6847     for (int i = 8; i-- > 0; ) ffree(i);
  6850 #endif // !LP64 || C1 || !C2
  6853 // Defines obj, preserves var_size_in_bytes
  6854 void MacroAssembler::eden_allocate(Register obj,
  6855                                    Register var_size_in_bytes,
  6856                                    int con_size_in_bytes,
  6857                                    Register t1,
  6858                                    Label& slow_case) {
  6859   assert(obj == rax, "obj must be in rax, for cmpxchg");
  6860   assert_different_registers(obj, var_size_in_bytes, t1);
  6861   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  6862     jmp(slow_case);
  6863   } else {
  6864     Register end = t1;
  6865     Label retry;
  6866     bind(retry);
  6867     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  6868     movptr(obj, heap_top);
  6869     if (var_size_in_bytes == noreg) {
  6870       lea(end, Address(obj, con_size_in_bytes));
  6871     } else {
  6872       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  6874     // if end < obj then we wrapped around => object too long => slow case
  6875     cmpptr(end, obj);
  6876     jcc(Assembler::below, slow_case);
  6877     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  6878     jcc(Assembler::above, slow_case);
  6879     // Compare obj with the top addr, and if still equal, store the new top addr in
  6880     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  6881     // it otherwise. Use lock prefix for atomicity on MPs.
  6882     locked_cmpxchgptr(end, heap_top);
  6883     jcc(Assembler::notEqual, retry);
  6887 void MacroAssembler::enter() {
  6888   push(rbp);
  6889   mov(rbp, rsp);
  6892 // A 5 byte nop that is safe for patching (see patch_verified_entry)
  6893 void MacroAssembler::fat_nop() {
  6894   if (UseAddressNop) {
  6895     addr_nop_5();
  6896   } else {
  6897     emit_byte(0x26); // es:
  6898     emit_byte(0x2e); // cs:
  6899     emit_byte(0x64); // fs:
  6900     emit_byte(0x65); // gs:
  6901     emit_byte(0x90);
  6905 void MacroAssembler::fcmp(Register tmp) {
  6906   fcmp(tmp, 1, true, true);
  6909 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  6910   assert(!pop_right || pop_left, "usage error");
  6911   if (VM_Version::supports_cmov()) {
  6912     assert(tmp == noreg, "unneeded temp");
  6913     if (pop_left) {
  6914       fucomip(index);
  6915     } else {
  6916       fucomi(index);
  6918     if (pop_right) {
  6919       fpop();
  6921   } else {
  6922     assert(tmp != noreg, "need temp");
  6923     if (pop_left) {
  6924       if (pop_right) {
  6925         fcompp();
  6926       } else {
  6927         fcomp(index);
  6929     } else {
  6930       fcom(index);
  6932     // convert FPU condition into eflags condition via rax,
  6933     save_rax(tmp);
  6934     fwait(); fnstsw_ax();
  6935     sahf();
  6936     restore_rax(tmp);
  6938   // condition codes set as follows:
  6939   //
  6940   // CF (corresponds to C0) if x < y
  6941   // PF (corresponds to C2) if unordered
  6942   // ZF (corresponds to C3) if x = y
  6945 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  6946   fcmp2int(dst, unordered_is_less, 1, true, true);
  6949 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  6950   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  6951   Label L;
  6952   if (unordered_is_less) {
  6953     movl(dst, -1);
  6954     jcc(Assembler::parity, L);
  6955     jcc(Assembler::below , L);
  6956     movl(dst, 0);
  6957     jcc(Assembler::equal , L);
  6958     increment(dst);
  6959   } else { // unordered is greater
  6960     movl(dst, 1);
  6961     jcc(Assembler::parity, L);
  6962     jcc(Assembler::above , L);
  6963     movl(dst, 0);
  6964     jcc(Assembler::equal , L);
  6965     decrementl(dst);
  6967   bind(L);
  6970 void MacroAssembler::fld_d(AddressLiteral src) {
  6971   fld_d(as_Address(src));
  6974 void MacroAssembler::fld_s(AddressLiteral src) {
  6975   fld_s(as_Address(src));
  6978 void MacroAssembler::fld_x(AddressLiteral src) {
  6979   Assembler::fld_x(as_Address(src));
  6982 void MacroAssembler::fldcw(AddressLiteral src) {
  6983   Assembler::fldcw(as_Address(src));
  6986 void MacroAssembler::pow_exp_core_encoding() {
  6987   // kills rax, rcx, rdx
  6988   subptr(rsp,sizeof(jdouble));
  6989   // computes 2^X. Stack: X ...
  6990   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
  6991   // keep it on the thread's stack to compute 2^int(X) later
  6992   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
  6993   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
  6994   fld_s(0);                 // Stack: X X ...
  6995   frndint();                // Stack: int(X) X ...
  6996   fsuba(1);                 // Stack: int(X) X-int(X) ...
  6997   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
  6998   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
  6999   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
  7000   faddp(1);                 // Stack: 2^(X-int(X))
  7001   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
  7002   // shift int(X)+1023 to exponent position.
  7003   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
  7004   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
  7005   // values so detect them and set result to NaN.
  7006   movl(rax,Address(rsp,0));
  7007   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
  7008   addl(rax, 1023);
  7009   movl(rdx,rax);
  7010   shll(rax,20);
  7011   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
  7012   addl(rdx,1);
  7013   // Check that 1 < int(X)+1023+1 < 2048
  7014   // in 3 steps:
  7015   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
  7016   // 2- (int(X)+1023+1)&-2048 != 0
  7017   // 3- (int(X)+1023+1)&-2048 != 1
  7018   // Do 2- first because addl just updated the flags.
  7019   cmov32(Assembler::equal,rax,rcx);
  7020   cmpl(rdx,1);
  7021   cmov32(Assembler::equal,rax,rcx);
  7022   testl(rdx,rcx);
  7023   cmov32(Assembler::notEqual,rax,rcx);
  7024   movl(Address(rsp,4),rax);
  7025   movl(Address(rsp,0),0);
  7026   fmul_d(Address(rsp,0));   // Stack: 2^X ...
  7027   addptr(rsp,sizeof(jdouble));
  7030 void MacroAssembler::increase_precision() {
  7031   subptr(rsp, BytesPerWord);
  7032   fnstcw(Address(rsp, 0));
  7033   movl(rax, Address(rsp, 0));
  7034   orl(rax, 0x300);
  7035   push(rax);
  7036   fldcw(Address(rsp, 0));
  7037   pop(rax);
  7040 void MacroAssembler::restore_precision() {
  7041   fldcw(Address(rsp, 0));
  7042   addptr(rsp, BytesPerWord);
  7045 void MacroAssembler::fast_pow() {
  7046   // computes X^Y = 2^(Y * log2(X))
  7047   // if fast computation is not possible, result is NaN. Requires
  7048   // fallback from user of this macro.
  7049   // increase precision for intermediate steps of the computation
  7050   increase_precision();
  7051   fyl2x();                 // Stack: (Y*log2(X)) ...
  7052   pow_exp_core_encoding(); // Stack: exp(X) ...
  7053   restore_precision();
  7056 void MacroAssembler::fast_exp() {
  7057   // computes exp(X) = 2^(X * log2(e))
  7058   // if fast computation is not possible, result is NaN. Requires
  7059   // fallback from user of this macro.
  7060   // increase precision for intermediate steps of the computation
  7061   increase_precision();
  7062   fldl2e();                // Stack: log2(e) X ...
  7063   fmulp(1);                // Stack: (X*log2(e)) ...
  7064   pow_exp_core_encoding(); // Stack: exp(X) ...
  7065   restore_precision();
  7068 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
  7069   // kills rax, rcx, rdx
  7070   // pow and exp needs 2 extra registers on the fpu stack.
  7071   Label slow_case, done;
  7072   Register tmp = noreg;
  7073   if (!VM_Version::supports_cmov()) {
  7074     // fcmp needs a temporary so preserve rdx,
  7075     tmp = rdx;
  7077   Register tmp2 = rax;
  7078   Register tmp3 = rcx;
  7080   if (is_exp) {
  7081     // Stack: X
  7082     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
  7083     fast_exp();                 // Stack: exp(X) X
  7084     fcmp(tmp, 0, false, false); // Stack: exp(X) X
  7085     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
  7086     jcc(Assembler::parity, slow_case);
  7087     // get rid of duplicate argument. Stack: exp(X)
  7088     if (num_fpu_regs_in_use > 0) {
  7089       fxch();
  7090       fpop();
  7091     } else {
  7092       ffree(1);
  7094     jmp(done);
  7095   } else {
  7096     // Stack: X Y
  7097     Label x_negative, y_odd;
  7099     fldz();                     // Stack: 0 X Y
  7100     fcmp(tmp, 1, true, false);  // Stack: X Y
  7101     jcc(Assembler::above, x_negative);
  7103     // X >= 0
  7105     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  7106     fld_s(1);                   // Stack: X Y X Y
  7107     fast_pow();                 // Stack: X^Y X Y
  7108     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
  7109     // X^Y not equal to itself: X^Y is NaN go to slow case.
  7110     jcc(Assembler::parity, slow_case);
  7111     // get rid of duplicate arguments. Stack: X^Y
  7112     if (num_fpu_regs_in_use > 0) {
  7113       fxch(); fpop();
  7114       fxch(); fpop();
  7115     } else {
  7116       ffree(2);
  7117       ffree(1);
  7119     jmp(done);
  7121     // X <= 0
  7122     bind(x_negative);
  7124     fld_s(1);                   // Stack: Y X Y
  7125     frndint();                  // Stack: int(Y) X Y
  7126     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
  7127     jcc(Assembler::notEqual, slow_case);
  7129     subptr(rsp, 8);
  7131     // For X^Y, when X < 0, Y has to be an integer and the final
  7132     // result depends on whether it's odd or even. We just checked
  7133     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
  7134     // integer to test its parity. If int(Y) is huge and doesn't fit
  7135     // in the 64 bit integer range, the integer indefinite value will
  7136     // end up in the gp registers. Huge numbers are all even, the
  7137     // integer indefinite number is even so it's fine.
  7139 #ifdef ASSERT
  7140     // Let's check we don't end up with an integer indefinite number
  7141     // when not expected. First test for huge numbers: check whether
  7142     // int(Y)+1 == int(Y) which is true for very large numbers and
  7143     // those are all even. A 64 bit integer is guaranteed to not
  7144     // overflow for numbers where y+1 != y (when precision is set to
  7145     // double precision).
  7146     Label y_not_huge;
  7148     fld1();                     // Stack: 1 int(Y) X Y
  7149     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
  7151 #ifdef _LP64
  7152     // trip to memory to force the precision down from double extended
  7153     // precision
  7154     fstp_d(Address(rsp, 0));
  7155     fld_d(Address(rsp, 0));
  7156 #endif
  7158     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
  7159 #endif
  7161     // move int(Y) as 64 bit integer to thread's stack
  7162     fistp_d(Address(rsp,0));    // Stack: X Y
  7164 #ifdef ASSERT
  7165     jcc(Assembler::notEqual, y_not_huge);
  7167     // Y is huge so we know it's even. It may not fit in a 64 bit
  7168     // integer and we don't want the debug code below to see the
  7169     // integer indefinite value so overwrite int(Y) on the thread's
  7170     // stack with 0.
  7171     movl(Address(rsp, 0), 0);
  7172     movl(Address(rsp, 4), 0);
  7174     bind(y_not_huge);
  7175 #endif
  7177     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  7178     fld_s(1);                   // Stack: X Y X Y
  7179     fabs();                     // Stack: abs(X) Y X Y
  7180     fast_pow();                 // Stack: abs(X)^Y X Y
  7181     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
  7182     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
  7184     pop(tmp2);
  7185     NOT_LP64(pop(tmp3));
  7186     jcc(Assembler::parity, slow_case);
  7188 #ifdef ASSERT
  7189     // Check that int(Y) is not integer indefinite value (int
  7190     // overflow). Shouldn't happen because for values that would
  7191     // overflow, 1+int(Y)==Y which was tested earlier.
  7192 #ifndef _LP64
  7194       Label integer;
  7195       testl(tmp2, tmp2);
  7196       jcc(Assembler::notZero, integer);
  7197       cmpl(tmp3, 0x80000000);
  7198       jcc(Assembler::notZero, integer);
  7199       stop("integer indefinite value shouldn't be seen here");
  7200       bind(integer);
  7202 #else
  7204       Label integer;
  7205       mov(tmp3, tmp2); // preserve tmp2 for parity check below
  7206       shlq(tmp3, 1);
  7207       jcc(Assembler::carryClear, integer);
  7208       jcc(Assembler::notZero, integer);
  7209       stop("integer indefinite value shouldn't be seen here");
  7210       bind(integer);
  7212 #endif
  7213 #endif
  7215     // get rid of duplicate arguments. Stack: X^Y
  7216     if (num_fpu_regs_in_use > 0) {
  7217       fxch(); fpop();
  7218       fxch(); fpop();
  7219     } else {
  7220       ffree(2);
  7221       ffree(1);
  7224     testl(tmp2, 1);
  7225     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
  7226     // X <= 0, Y even: X^Y = -abs(X)^Y
  7228     fchs();                     // Stack: -abs(X)^Y Y
  7229     jmp(done);
  7232   // slow case: runtime call
  7233   bind(slow_case);
  7235   fpop();                       // pop incorrect result or int(Y)
  7237   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
  7238                       is_exp ? 1 : 2, num_fpu_regs_in_use);
  7240   // Come here with result in F-TOS
  7241   bind(done);
  7244 void MacroAssembler::fpop() {
  7245   ffree();
  7246   fincstp();
  7249 void MacroAssembler::fremr(Register tmp) {
  7250   save_rax(tmp);
  7251   { Label L;
  7252     bind(L);
  7253     fprem();
  7254     fwait(); fnstsw_ax();
  7255 #ifdef _LP64
  7256     testl(rax, 0x400);
  7257     jcc(Assembler::notEqual, L);
  7258 #else
  7259     sahf();
  7260     jcc(Assembler::parity, L);
  7261 #endif // _LP64
  7263   restore_rax(tmp);
  7264   // Result is in ST0.
  7265   // Note: fxch & fpop to get rid of ST1
  7266   // (otherwise FPU stack could overflow eventually)
  7267   fxch(1);
  7268   fpop();
  7272 void MacroAssembler::incrementl(AddressLiteral dst) {
  7273   if (reachable(dst)) {
  7274     incrementl(as_Address(dst));
  7275   } else {
  7276     lea(rscratch1, dst);
  7277     incrementl(Address(rscratch1, 0));
  7281 void MacroAssembler::incrementl(ArrayAddress dst) {
  7282   incrementl(as_Address(dst));
  7285 void MacroAssembler::incrementl(Register reg, int value) {
  7286   if (value == min_jint) {addl(reg, value) ; return; }
  7287   if (value <  0) { decrementl(reg, -value); return; }
  7288   if (value == 0) {                        ; return; }
  7289   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  7290   /* else */      { addl(reg, value)       ; return; }
  7293 void MacroAssembler::incrementl(Address dst, int value) {
  7294   if (value == min_jint) {addl(dst, value) ; return; }
  7295   if (value <  0) { decrementl(dst, -value); return; }
  7296   if (value == 0) {                        ; return; }
  7297   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  7298   /* else */      { addl(dst, value)       ; return; }
  7301 void MacroAssembler::jump(AddressLiteral dst) {
  7302   if (reachable(dst)) {
  7303     jmp_literal(dst.target(), dst.rspec());
  7304   } else {
  7305     lea(rscratch1, dst);
  7306     jmp(rscratch1);
  7310 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  7311   if (reachable(dst)) {
  7312     InstructionMark im(this);
  7313     relocate(dst.reloc());
  7314     const int short_size = 2;
  7315     const int long_size = 6;
  7316     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  7317     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  7318       // 0111 tttn #8-bit disp
  7319       emit_byte(0x70 | cc);
  7320       emit_byte((offs - short_size) & 0xFF);
  7321     } else {
  7322       // 0000 1111 1000 tttn #32-bit disp
  7323       emit_byte(0x0F);
  7324       emit_byte(0x80 | cc);
  7325       emit_long(offs - long_size);
  7327   } else {
  7328 #ifdef ASSERT
  7329     warning("reversing conditional branch");
  7330 #endif /* ASSERT */
  7331     Label skip;
  7332     jccb(reverse[cc], skip);
  7333     lea(rscratch1, dst);
  7334     Assembler::jmp(rscratch1);
  7335     bind(skip);
  7339 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  7340   if (reachable(src)) {
  7341     Assembler::ldmxcsr(as_Address(src));
  7342   } else {
  7343     lea(rscratch1, src);
  7344     Assembler::ldmxcsr(Address(rscratch1, 0));
  7348 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  7349   int off;
  7350   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7351     off = offset();
  7352     movsbl(dst, src); // movsxb
  7353   } else {
  7354     off = load_unsigned_byte(dst, src);
  7355     shll(dst, 24);
  7356     sarl(dst, 24);
  7358   return off;
  7361 // Note: load_signed_short used to be called load_signed_word.
  7362 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  7363 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  7364 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  7365 int MacroAssembler::load_signed_short(Register dst, Address src) {
  7366   int off;
  7367   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7368     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  7369     // version but this is what 64bit has always done. This seems to imply
  7370     // that users are only using 32bits worth.
  7371     off = offset();
  7372     movswl(dst, src); // movsxw
  7373   } else {
  7374     off = load_unsigned_short(dst, src);
  7375     shll(dst, 16);
  7376     sarl(dst, 16);
  7378   return off;
  7381 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  7382   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  7383   // and "3.9 Partial Register Penalties", p. 22).
  7384   int off;
  7385   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  7386     off = offset();
  7387     movzbl(dst, src); // movzxb
  7388   } else {
  7389     xorl(dst, dst);
  7390     off = offset();
  7391     movb(dst, src);
  7393   return off;
  7396 // Note: load_unsigned_short used to be called load_unsigned_word.
  7397 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  7398   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  7399   // and "3.9 Partial Register Penalties", p. 22).
  7400   int off;
  7401   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  7402     off = offset();
  7403     movzwl(dst, src); // movzxw
  7404   } else {
  7405     xorl(dst, dst);
  7406     off = offset();
  7407     movw(dst, src);
  7409   return off;
  7412 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  7413   switch (size_in_bytes) {
  7414 #ifndef _LP64
  7415   case  8:
  7416     assert(dst2 != noreg, "second dest register required");
  7417     movl(dst,  src);
  7418     movl(dst2, src.plus_disp(BytesPerInt));
  7419     break;
  7420 #else
  7421   case  8:  movq(dst, src); break;
  7422 #endif
  7423   case  4:  movl(dst, src); break;
  7424   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  7425   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  7426   default:  ShouldNotReachHere();
  7430 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  7431   switch (size_in_bytes) {
  7432 #ifndef _LP64
  7433   case  8:
  7434     assert(src2 != noreg, "second source register required");
  7435     movl(dst,                        src);
  7436     movl(dst.plus_disp(BytesPerInt), src2);
  7437     break;
  7438 #else
  7439   case  8:  movq(dst, src); break;
  7440 #endif
  7441   case  4:  movl(dst, src); break;
  7442   case  2:  movw(dst, src); break;
  7443   case  1:  movb(dst, src); break;
  7444   default:  ShouldNotReachHere();
  7448 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  7449   if (reachable(dst)) {
  7450     movl(as_Address(dst), src);
  7451   } else {
  7452     lea(rscratch1, dst);
  7453     movl(Address(rscratch1, 0), src);
  7457 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  7458   if (reachable(src)) {
  7459     movl(dst, as_Address(src));
  7460   } else {
  7461     lea(rscratch1, src);
  7462     movl(dst, Address(rscratch1, 0));
  7466 // C++ bool manipulation
  7468 void MacroAssembler::movbool(Register dst, Address src) {
  7469   if(sizeof(bool) == 1)
  7470     movb(dst, src);
  7471   else if(sizeof(bool) == 2)
  7472     movw(dst, src);
  7473   else if(sizeof(bool) == 4)
  7474     movl(dst, src);
  7475   else
  7476     // unsupported
  7477     ShouldNotReachHere();
  7480 void MacroAssembler::movbool(Address dst, bool boolconst) {
  7481   if(sizeof(bool) == 1)
  7482     movb(dst, (int) boolconst);
  7483   else if(sizeof(bool) == 2)
  7484     movw(dst, (int) boolconst);
  7485   else if(sizeof(bool) == 4)
  7486     movl(dst, (int) boolconst);
  7487   else
  7488     // unsupported
  7489     ShouldNotReachHere();
  7492 void MacroAssembler::movbool(Address dst, Register src) {
  7493   if(sizeof(bool) == 1)
  7494     movb(dst, src);
  7495   else if(sizeof(bool) == 2)
  7496     movw(dst, src);
  7497   else if(sizeof(bool) == 4)
  7498     movl(dst, src);
  7499   else
  7500     // unsupported
  7501     ShouldNotReachHere();
  7504 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  7505   movb(as_Address(dst), src);
  7508 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
  7509   if (reachable(src)) {
  7510     movdl(dst, as_Address(src));
  7511   } else {
  7512     lea(rscratch1, src);
  7513     movdl(dst, Address(rscratch1, 0));
  7517 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
  7518   if (reachable(src)) {
  7519     movq(dst, as_Address(src));
  7520   } else {
  7521     lea(rscratch1, src);
  7522     movq(dst, Address(rscratch1, 0));
  7526 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  7527   if (reachable(src)) {
  7528     if (UseXmmLoadAndClearUpper) {
  7529       movsd (dst, as_Address(src));
  7530     } else {
  7531       movlpd(dst, as_Address(src));
  7533   } else {
  7534     lea(rscratch1, src);
  7535     if (UseXmmLoadAndClearUpper) {
  7536       movsd (dst, Address(rscratch1, 0));
  7537     } else {
  7538       movlpd(dst, Address(rscratch1, 0));
  7543 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  7544   if (reachable(src)) {
  7545     movss(dst, as_Address(src));
  7546   } else {
  7547     lea(rscratch1, src);
  7548     movss(dst, Address(rscratch1, 0));
  7552 void MacroAssembler::movptr(Register dst, Register src) {
  7553   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7556 void MacroAssembler::movptr(Register dst, Address src) {
  7557   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7560 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  7561 void MacroAssembler::movptr(Register dst, intptr_t src) {
  7562   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  7565 void MacroAssembler::movptr(Address dst, Register src) {
  7566   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7569 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  7570   if (reachable(src)) {
  7571     Assembler::movsd(dst, as_Address(src));
  7572   } else {
  7573     lea(rscratch1, src);
  7574     Assembler::movsd(dst, Address(rscratch1, 0));
  7578 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  7579   if (reachable(src)) {
  7580     Assembler::movss(dst, as_Address(src));
  7581   } else {
  7582     lea(rscratch1, src);
  7583     Assembler::movss(dst, Address(rscratch1, 0));
  7587 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
  7588   if (reachable(src)) {
  7589     Assembler::mulsd(dst, as_Address(src));
  7590   } else {
  7591     lea(rscratch1, src);
  7592     Assembler::mulsd(dst, Address(rscratch1, 0));
  7596 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
  7597   if (reachable(src)) {
  7598     Assembler::mulss(dst, as_Address(src));
  7599   } else {
  7600     lea(rscratch1, src);
  7601     Assembler::mulss(dst, Address(rscratch1, 0));
  7605 void MacroAssembler::null_check(Register reg, int offset) {
  7606   if (needs_explicit_null_check(offset)) {
  7607     // provoke OS NULL exception if reg = NULL by
  7608     // accessing M[reg] w/o changing any (non-CC) registers
  7609     // NOTE: cmpl is plenty here to provoke a segv
  7610     cmpptr(rax, Address(reg, 0));
  7611     // Note: should probably use testl(rax, Address(reg, 0));
  7612     //       may be shorter code (however, this version of
  7613     //       testl needs to be implemented first)
  7614   } else {
  7615     // nothing to do, (later) access of M[reg + offset]
  7616     // will provoke OS NULL exception if reg = NULL
  7620 void MacroAssembler::os_breakpoint() {
  7621   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  7622   // (e.g., MSVC can't call ps() otherwise)
  7623   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  7626 void MacroAssembler::pop_CPU_state() {
  7627   pop_FPU_state();
  7628   pop_IU_state();
  7631 void MacroAssembler::pop_FPU_state() {
  7632   NOT_LP64(frstor(Address(rsp, 0));)
  7633   LP64_ONLY(fxrstor(Address(rsp, 0));)
  7634   addptr(rsp, FPUStateSizeInWords * wordSize);
  7637 void MacroAssembler::pop_IU_state() {
  7638   popa();
  7639   LP64_ONLY(addq(rsp, 8));
  7640   popf();
  7643 // Save Integer and Float state
  7644 // Warning: Stack must be 16 byte aligned (64bit)
  7645 void MacroAssembler::push_CPU_state() {
  7646   push_IU_state();
  7647   push_FPU_state();
  7650 void MacroAssembler::push_FPU_state() {
  7651   subptr(rsp, FPUStateSizeInWords * wordSize);
  7652 #ifndef _LP64
  7653   fnsave(Address(rsp, 0));
  7654   fwait();
  7655 #else
  7656   fxsave(Address(rsp, 0));
  7657 #endif // LP64
  7660 void MacroAssembler::push_IU_state() {
  7661   // Push flags first because pusha kills them
  7662   pushf();
  7663   // Make sure rsp stays 16-byte aligned
  7664   LP64_ONLY(subq(rsp, 8));
  7665   pusha();
  7668 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  7669   // determine java_thread register
  7670   if (!java_thread->is_valid()) {
  7671     java_thread = rdi;
  7672     get_thread(java_thread);
  7674   // we must set sp to zero to clear frame
  7675   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  7676   if (clear_fp) {
  7677     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  7680   if (clear_pc)
  7681     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  7685 void MacroAssembler::restore_rax(Register tmp) {
  7686   if (tmp == noreg) pop(rax);
  7687   else if (tmp != rax) mov(rax, tmp);
  7690 void MacroAssembler::round_to(Register reg, int modulus) {
  7691   addptr(reg, modulus - 1);
  7692   andptr(reg, -modulus);
  7695 void MacroAssembler::save_rax(Register tmp) {
  7696   if (tmp == noreg) push(rax);
  7697   else if (tmp != rax) mov(tmp, rax);
  7700 // Write serialization page so VM thread can do a pseudo remote membar.
  7701 // We use the current thread pointer to calculate a thread specific
  7702 // offset to write to within the page. This minimizes bus traffic
  7703 // due to cache line collision.
  7704 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  7705   movl(tmp, thread);
  7706   shrl(tmp, os::get_serialize_page_shift_count());
  7707   andl(tmp, (os::vm_page_size() - sizeof(int)));
  7709   Address index(noreg, tmp, Address::times_1);
  7710   ExternalAddress page(os::get_memory_serialize_page());
  7712   // Size of store must match masking code above
  7713   movl(as_Address(ArrayAddress(page, index)), tmp);
  7716 // Calls to C land
  7717 //
  7718 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  7719 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  7720 // has to be reset to 0. This is required to allow proper stack traversal.
  7721 void MacroAssembler::set_last_Java_frame(Register java_thread,
  7722                                          Register last_java_sp,
  7723                                          Register last_java_fp,
  7724                                          address  last_java_pc) {
  7725   // determine java_thread register
  7726   if (!java_thread->is_valid()) {
  7727     java_thread = rdi;
  7728     get_thread(java_thread);
  7730   // determine last_java_sp register
  7731   if (!last_java_sp->is_valid()) {
  7732     last_java_sp = rsp;
  7735   // last_java_fp is optional
  7737   if (last_java_fp->is_valid()) {
  7738     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  7741   // last_java_pc is optional
  7743   if (last_java_pc != NULL) {
  7744     lea(Address(java_thread,
  7745                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  7746         InternalAddress(last_java_pc));
  7749   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  7752 void MacroAssembler::shlptr(Register dst, int imm8) {
  7753   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  7756 void MacroAssembler::shrptr(Register dst, int imm8) {
  7757   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  7760 void MacroAssembler::sign_extend_byte(Register reg) {
  7761   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  7762     movsbl(reg, reg); // movsxb
  7763   } else {
  7764     shll(reg, 24);
  7765     sarl(reg, 24);
  7769 void MacroAssembler::sign_extend_short(Register reg) {
  7770   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7771     movswl(reg, reg); // movsxw
  7772   } else {
  7773     shll(reg, 16);
  7774     sarl(reg, 16);
  7778 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  7779   assert(reachable(src), "Address should be reachable");
  7780   testl(dst, as_Address(src));
  7783 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
  7784   if (reachable(src)) {
  7785     Assembler::sqrtsd(dst, as_Address(src));
  7786   } else {
  7787     lea(rscratch1, src);
  7788     Assembler::sqrtsd(dst, Address(rscratch1, 0));
  7792 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
  7793   if (reachable(src)) {
  7794     Assembler::sqrtss(dst, as_Address(src));
  7795   } else {
  7796     lea(rscratch1, src);
  7797     Assembler::sqrtss(dst, Address(rscratch1, 0));
  7801 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
  7802   if (reachable(src)) {
  7803     Assembler::subsd(dst, as_Address(src));
  7804   } else {
  7805     lea(rscratch1, src);
  7806     Assembler::subsd(dst, Address(rscratch1, 0));
  7810 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
  7811   if (reachable(src)) {
  7812     Assembler::subss(dst, as_Address(src));
  7813   } else {
  7814     lea(rscratch1, src);
  7815     Assembler::subss(dst, Address(rscratch1, 0));
  7819 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  7820   if (reachable(src)) {
  7821     Assembler::ucomisd(dst, as_Address(src));
  7822   } else {
  7823     lea(rscratch1, src);
  7824     Assembler::ucomisd(dst, Address(rscratch1, 0));
  7828 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  7829   if (reachable(src)) {
  7830     Assembler::ucomiss(dst, as_Address(src));
  7831   } else {
  7832     lea(rscratch1, src);
  7833     Assembler::ucomiss(dst, Address(rscratch1, 0));
  7837 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  7838   // Used in sign-bit flipping with aligned address.
  7839   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  7840   if (reachable(src)) {
  7841     Assembler::xorpd(dst, as_Address(src));
  7842   } else {
  7843     lea(rscratch1, src);
  7844     Assembler::xorpd(dst, Address(rscratch1, 0));
  7848 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  7849   // Used in sign-bit flipping with aligned address.
  7850   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  7851   if (reachable(src)) {
  7852     Assembler::xorps(dst, as_Address(src));
  7853   } else {
  7854     lea(rscratch1, src);
  7855     Assembler::xorps(dst, Address(rscratch1, 0));
  7859 // AVX 3-operands instructions
  7861 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7862   if (reachable(src)) {
  7863     vaddsd(dst, nds, as_Address(src));
  7864   } else {
  7865     lea(rscratch1, src);
  7866     vaddsd(dst, nds, Address(rscratch1, 0));
  7870 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7871   if (reachable(src)) {
  7872     vaddss(dst, nds, as_Address(src));
  7873   } else {
  7874     lea(rscratch1, src);
  7875     vaddss(dst, nds, Address(rscratch1, 0));
  7879 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7880   if (reachable(src)) {
  7881     vandpd(dst, nds, as_Address(src));
  7882   } else {
  7883     lea(rscratch1, src);
  7884     vandpd(dst, nds, Address(rscratch1, 0));
  7888 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7889   if (reachable(src)) {
  7890     vandps(dst, nds, as_Address(src));
  7891   } else {
  7892     lea(rscratch1, src);
  7893     vandps(dst, nds, Address(rscratch1, 0));
  7897 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7898   if (reachable(src)) {
  7899     vdivsd(dst, nds, as_Address(src));
  7900   } else {
  7901     lea(rscratch1, src);
  7902     vdivsd(dst, nds, Address(rscratch1, 0));
  7906 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7907   if (reachable(src)) {
  7908     vdivss(dst, nds, as_Address(src));
  7909   } else {
  7910     lea(rscratch1, src);
  7911     vdivss(dst, nds, Address(rscratch1, 0));
  7915 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7916   if (reachable(src)) {
  7917     vmulsd(dst, nds, as_Address(src));
  7918   } else {
  7919     lea(rscratch1, src);
  7920     vmulsd(dst, nds, Address(rscratch1, 0));
  7924 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7925   if (reachable(src)) {
  7926     vmulss(dst, nds, as_Address(src));
  7927   } else {
  7928     lea(rscratch1, src);
  7929     vmulss(dst, nds, Address(rscratch1, 0));
  7933 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7934   if (reachable(src)) {
  7935     vsubsd(dst, nds, as_Address(src));
  7936   } else {
  7937     lea(rscratch1, src);
  7938     vsubsd(dst, nds, Address(rscratch1, 0));
  7942 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7943   if (reachable(src)) {
  7944     vsubss(dst, nds, as_Address(src));
  7945   } else {
  7946     lea(rscratch1, src);
  7947     vsubss(dst, nds, Address(rscratch1, 0));
  7951 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7952   if (reachable(src)) {
  7953     vxorpd(dst, nds, as_Address(src));
  7954   } else {
  7955     lea(rscratch1, src);
  7956     vxorpd(dst, nds, Address(rscratch1, 0));
  7960 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7961   if (reachable(src)) {
  7962     vxorps(dst, nds, as_Address(src));
  7963   } else {
  7964     lea(rscratch1, src);
  7965     vxorps(dst, nds, Address(rscratch1, 0));
  7970 //////////////////////////////////////////////////////////////////////////////////
  7971 #ifndef SERIALGC
  7973 void MacroAssembler::g1_write_barrier_pre(Register obj,
  7974                                           Register pre_val,
  7975                                           Register thread,
  7976                                           Register tmp,
  7977                                           bool tosca_live,
  7978                                           bool expand_call) {
  7980   // If expand_call is true then we expand the call_VM_leaf macro
  7981   // directly to skip generating the check by
  7982   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  7984 #ifdef _LP64
  7985   assert(thread == r15_thread, "must be");
  7986 #endif // _LP64
  7988   Label done;
  7989   Label runtime;
  7991   assert(pre_val != noreg, "check this code");
  7993   if (obj != noreg) {
  7994     assert_different_registers(obj, pre_val, tmp);
  7995     assert(pre_val != rax, "check this code");
  7998   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  7999                                        PtrQueue::byte_offset_of_active()));
  8000   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  8001                                        PtrQueue::byte_offset_of_index()));
  8002   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  8003                                        PtrQueue::byte_offset_of_buf()));
  8006   // Is marking active?
  8007   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  8008     cmpl(in_progress, 0);
  8009   } else {
  8010     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  8011     cmpb(in_progress, 0);
  8013   jcc(Assembler::equal, done);
  8015   // Do we need to load the previous value?
  8016   if (obj != noreg) {
  8017     load_heap_oop(pre_val, Address(obj, 0));
  8020   // Is the previous value null?
  8021   cmpptr(pre_val, (int32_t) NULL_WORD);
  8022   jcc(Assembler::equal, done);
  8024   // Can we store original value in the thread's buffer?
  8025   // Is index == 0?
  8026   // (The index field is typed as size_t.)
  8028   movptr(tmp, index);                   // tmp := *index_adr
  8029   cmpptr(tmp, 0);                       // tmp == 0?
  8030   jcc(Assembler::equal, runtime);       // If yes, goto runtime
  8032   subptr(tmp, wordSize);                // tmp := tmp - wordSize
  8033   movptr(index, tmp);                   // *index_adr := tmp
  8034   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  8036   // Record the previous value
  8037   movptr(Address(tmp, 0), pre_val);
  8038   jmp(done);
  8040   bind(runtime);
  8041   // save the live input values
  8042   if(tosca_live) push(rax);
  8044   if (obj != noreg && obj != rax)
  8045     push(obj);
  8047   if (pre_val != rax)
  8048     push(pre_val);
  8050   // Calling the runtime using the regular call_VM_leaf mechanism generates
  8051   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  8052   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  8053   //
  8054   // If we care generating the pre-barrier without a frame (e.g. in the
  8055   // intrinsified Reference.get() routine) then ebp might be pointing to
  8056   // the caller frame and so this check will most likely fail at runtime.
  8057   //
  8058   // Expanding the call directly bypasses the generation of the check.
  8059   // So when we do not have have a full interpreter frame on the stack
  8060   // expand_call should be passed true.
  8062   NOT_LP64( push(thread); )
  8064   if (expand_call) {
  8065     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  8066     pass_arg1(this, thread);
  8067     pass_arg0(this, pre_val);
  8068     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  8069   } else {
  8070     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  8073   NOT_LP64( pop(thread); )
  8075   // save the live input values
  8076   if (pre_val != rax)
  8077     pop(pre_val);
  8079   if (obj != noreg && obj != rax)
  8080     pop(obj);
  8082   if(tosca_live) pop(rax);
  8084   bind(done);
  8087 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  8088                                            Register new_val,
  8089                                            Register thread,
  8090                                            Register tmp,
  8091                                            Register tmp2) {
  8092 #ifdef _LP64
  8093   assert(thread == r15_thread, "must be");
  8094 #endif // _LP64
  8096   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  8097                                        PtrQueue::byte_offset_of_index()));
  8098   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  8099                                        PtrQueue::byte_offset_of_buf()));
  8101   BarrierSet* bs = Universe::heap()->barrier_set();
  8102   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  8103   Label done;
  8104   Label runtime;
  8106   // Does store cross heap regions?
  8108   movptr(tmp, store_addr);
  8109   xorptr(tmp, new_val);
  8110   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  8111   jcc(Assembler::equal, done);
  8113   // crosses regions, storing NULL?
  8115   cmpptr(new_val, (int32_t) NULL_WORD);
  8116   jcc(Assembler::equal, done);
  8118   // storing region crossing non-NULL, is card already dirty?
  8120   ExternalAddress cardtable((address) ct->byte_map_base);
  8121   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  8122 #ifdef _LP64
  8123   const Register card_addr = tmp;
  8125   movq(card_addr, store_addr);
  8126   shrq(card_addr, CardTableModRefBS::card_shift);
  8128   lea(tmp2, cardtable);
  8130   // get the address of the card
  8131   addq(card_addr, tmp2);
  8132 #else
  8133   const Register card_index = tmp;
  8135   movl(card_index, store_addr);
  8136   shrl(card_index, CardTableModRefBS::card_shift);
  8138   Address index(noreg, card_index, Address::times_1);
  8139   const Register card_addr = tmp;
  8140   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  8141 #endif
  8142   cmpb(Address(card_addr, 0), 0);
  8143   jcc(Assembler::equal, done);
  8145   // storing a region crossing, non-NULL oop, card is clean.
  8146   // dirty card and log.
  8148   movb(Address(card_addr, 0), 0);
  8150   cmpl(queue_index, 0);
  8151   jcc(Assembler::equal, runtime);
  8152   subl(queue_index, wordSize);
  8153   movptr(tmp2, buffer);
  8154 #ifdef _LP64
  8155   movslq(rscratch1, queue_index);
  8156   addq(tmp2, rscratch1);
  8157   movq(Address(tmp2, 0), card_addr);
  8158 #else
  8159   addl(tmp2, queue_index);
  8160   movl(Address(tmp2, 0), card_index);
  8161 #endif
  8162   jmp(done);
  8164   bind(runtime);
  8165   // save the live input values
  8166   push(store_addr);
  8167   push(new_val);
  8168 #ifdef _LP64
  8169   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  8170 #else
  8171   push(thread);
  8172   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  8173   pop(thread);
  8174 #endif
  8175   pop(new_val);
  8176   pop(store_addr);
  8178   bind(done);
  8181 #endif // SERIALGC
  8182 //////////////////////////////////////////////////////////////////////////////////
  8185 void MacroAssembler::store_check(Register obj) {
  8186   // Does a store check for the oop in register obj. The content of
  8187   // register obj is destroyed afterwards.
  8188   store_check_part_1(obj);
  8189   store_check_part_2(obj);
  8192 void MacroAssembler::store_check(Register obj, Address dst) {
  8193   store_check(obj);
  8197 // split the store check operation so that other instructions can be scheduled inbetween
  8198 void MacroAssembler::store_check_part_1(Register obj) {
  8199   BarrierSet* bs = Universe::heap()->barrier_set();
  8200   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  8201   shrptr(obj, CardTableModRefBS::card_shift);
  8204 void MacroAssembler::store_check_part_2(Register obj) {
  8205   BarrierSet* bs = Universe::heap()->barrier_set();
  8206   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  8207   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  8208   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  8210   // The calculation for byte_map_base is as follows:
  8211   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  8212   // So this essentially converts an address to a displacement and
  8213   // it will never need to be relocated. On 64bit however the value may be too
  8214   // large for a 32bit displacement
  8216   intptr_t disp = (intptr_t) ct->byte_map_base;
  8217   if (is_simm32(disp)) {
  8218     Address cardtable(noreg, obj, Address::times_1, disp);
  8219     movb(cardtable, 0);
  8220   } else {
  8221     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  8222     // displacement and done in a single instruction given favorable mapping and
  8223     // a smarter version of as_Address. Worst case it is two instructions which
  8224     // is no worse off then loading disp into a register and doing as a simple
  8225     // Address() as above.
  8226     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  8227     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  8228     // in some cases we'll get a single instruction version.
  8230     ExternalAddress cardtable((address)disp);
  8231     Address index(noreg, obj, Address::times_1);
  8232     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  8236 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  8237   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  8240 // Force generation of a 4 byte immediate value even if it fits into 8bit
  8241 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
  8242   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
  8245 void MacroAssembler::subptr(Register dst, Register src) {
  8246   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  8249 // C++ bool manipulation
  8250 void MacroAssembler::testbool(Register dst) {
  8251   if(sizeof(bool) == 1)
  8252     testb(dst, 0xff);
  8253   else if(sizeof(bool) == 2) {
  8254     // testw implementation needed for two byte bools
  8255     ShouldNotReachHere();
  8256   } else if(sizeof(bool) == 4)
  8257     testl(dst, dst);
  8258   else
  8259     // unsupported
  8260     ShouldNotReachHere();
  8263 void MacroAssembler::testptr(Register dst, Register src) {
  8264   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  8267 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  8268 void MacroAssembler::tlab_allocate(Register obj,
  8269                                    Register var_size_in_bytes,
  8270                                    int con_size_in_bytes,
  8271                                    Register t1,
  8272                                    Register t2,
  8273                                    Label& slow_case) {
  8274   assert_different_registers(obj, t1, t2);
  8275   assert_different_registers(obj, var_size_in_bytes, t1);
  8276   Register end = t2;
  8277   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  8279   verify_tlab();
  8281   NOT_LP64(get_thread(thread));
  8283   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  8284   if (var_size_in_bytes == noreg) {
  8285     lea(end, Address(obj, con_size_in_bytes));
  8286   } else {
  8287     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  8289   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  8290   jcc(Assembler::above, slow_case);
  8292   // update the tlab top pointer
  8293   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  8295   // recover var_size_in_bytes if necessary
  8296   if (var_size_in_bytes == end) {
  8297     subptr(var_size_in_bytes, obj);
  8299   verify_tlab();
  8302 // Preserves rbx, and rdx.
  8303 Register MacroAssembler::tlab_refill(Label& retry,
  8304                                      Label& try_eden,
  8305                                      Label& slow_case) {
  8306   Register top = rax;
  8307   Register t1  = rcx;
  8308   Register t2  = rsi;
  8309   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  8310   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  8311   Label do_refill, discard_tlab;
  8313   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  8314     // No allocation in the shared eden.
  8315     jmp(slow_case);
  8318   NOT_LP64(get_thread(thread_reg));
  8320   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  8321   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  8323   // calculate amount of free space
  8324   subptr(t1, top);
  8325   shrptr(t1, LogHeapWordSize);
  8327   // Retain tlab and allocate object in shared space if
  8328   // the amount free in the tlab is too large to discard.
  8329   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  8330   jcc(Assembler::lessEqual, discard_tlab);
  8332   // Retain
  8333   // %%% yuck as movptr...
  8334   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  8335   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  8336   if (TLABStats) {
  8337     // increment number of slow_allocations
  8338     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  8340   jmp(try_eden);
  8342   bind(discard_tlab);
  8343   if (TLABStats) {
  8344     // increment number of refills
  8345     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  8346     // accumulate wastage -- t1 is amount free in tlab
  8347     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  8350   // if tlab is currently allocated (top or end != null) then
  8351   // fill [top, end + alignment_reserve) with array object
  8352   testptr(top, top);
  8353   jcc(Assembler::zero, do_refill);
  8355   // set up the mark word
  8356   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  8357   // set the length to the remaining space
  8358   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  8359   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  8360   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  8361   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  8362   // set klass to intArrayKlass
  8363   // dubious reloc why not an oop reloc?
  8364   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  8365   // store klass last.  concurrent gcs assumes klass length is valid if
  8366   // klass field is not null.
  8367   store_klass(top, t1);
  8369   movptr(t1, top);
  8370   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  8371   incr_allocated_bytes(thread_reg, t1, 0);
  8373   // refill the tlab with an eden allocation
  8374   bind(do_refill);
  8375   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  8376   shlptr(t1, LogHeapWordSize);
  8377   // allocate new tlab, address returned in top
  8378   eden_allocate(top, t1, 0, t2, slow_case);
  8380   // Check that t1 was preserved in eden_allocate.
  8381 #ifdef ASSERT
  8382   if (UseTLAB) {
  8383     Label ok;
  8384     Register tsize = rsi;
  8385     assert_different_registers(tsize, thread_reg, t1);
  8386     push(tsize);
  8387     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  8388     shlptr(tsize, LogHeapWordSize);
  8389     cmpptr(t1, tsize);
  8390     jcc(Assembler::equal, ok);
  8391     stop("assert(t1 != tlab size)");
  8392     should_not_reach_here();
  8394     bind(ok);
  8395     pop(tsize);
  8397 #endif
  8398   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  8399   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  8400   addptr(top, t1);
  8401   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  8402   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  8403   verify_tlab();
  8404   jmp(retry);
  8406   return thread_reg; // for use by caller
  8409 void MacroAssembler::incr_allocated_bytes(Register thread,
  8410                                           Register var_size_in_bytes,
  8411                                           int con_size_in_bytes,
  8412                                           Register t1) {
  8413   if (!thread->is_valid()) {
  8414 #ifdef _LP64
  8415     thread = r15_thread;
  8416 #else
  8417     assert(t1->is_valid(), "need temp reg");
  8418     thread = t1;
  8419     get_thread(thread);
  8420 #endif
  8423 #ifdef _LP64
  8424   if (var_size_in_bytes->is_valid()) {
  8425     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  8426   } else {
  8427     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  8429 #else
  8430   if (var_size_in_bytes->is_valid()) {
  8431     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  8432   } else {
  8433     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  8435   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  8436 #endif
  8439 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
  8440   pusha();
  8442   // if we are coming from c1, xmm registers may be live
  8443   if (UseSSE >= 1) {
  8444     subptr(rsp, sizeof(jdouble)* LP64_ONLY(16) NOT_LP64(8));
  8446   int off = 0;
  8447   if (UseSSE == 1)  {
  8448     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
  8449     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
  8450     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
  8451     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
  8452     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
  8453     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
  8454     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
  8455     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
  8456   } else if (UseSSE >= 2)  {
  8457     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm0);
  8458     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm1);
  8459     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm2);
  8460     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm3);
  8461     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm4);
  8462     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm5);
  8463     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm6);
  8464     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm7);
  8465 #ifdef _LP64
  8466     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm8);
  8467     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm9);
  8468     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm10);
  8469     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm11);
  8470     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm12);
  8471     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm13);
  8472     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm14);
  8473     movdbl(Address(rsp,off++*sizeof(jdouble)),xmm15);
  8474 #endif
  8477   // Preserve registers across runtime call
  8478   int incoming_argument_and_return_value_offset = -1;
  8479   if (num_fpu_regs_in_use > 1) {
  8480     // Must preserve all other FPU regs (could alternatively convert
  8481     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
  8482     // FPU state, but can not trust C compiler)
  8483     NEEDS_CLEANUP;
  8484     // NOTE that in this case we also push the incoming argument(s) to
  8485     // the stack and restore it later; we also use this stack slot to
  8486     // hold the return value from dsin, dcos etc.
  8487     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  8488       subptr(rsp, sizeof(jdouble));
  8489       fstp_d(Address(rsp, 0));
  8491     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  8492     for (int i = nb_args-1; i >= 0; i--) {
  8493       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
  8497   subptr(rsp, nb_args*sizeof(jdouble));
  8498   for (int i = 0; i < nb_args; i++) {
  8499     fstp_d(Address(rsp, i*sizeof(jdouble)));
  8502 #ifdef _LP64
  8503   if (nb_args > 0) {
  8504     movdbl(xmm0, Address(rsp, 0));
  8506   if (nb_args > 1) {
  8507     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
  8509   assert(nb_args <= 2, "unsupported number of args");
  8510 #endif // _LP64
  8512   // NOTE: we must not use call_VM_leaf here because that requires a
  8513   // complete interpreter frame in debug mode -- same bug as 4387334
  8514   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  8515   // do proper 64bit abi
  8517   NEEDS_CLEANUP;
  8518   // Need to add stack banging before this runtime call if it needs to
  8519   // be taken; however, there is no generic stack banging routine at
  8520   // the MacroAssembler level
  8522   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
  8524 #ifdef _LP64
  8525   movsd(Address(rsp, 0), xmm0);
  8526   fld_d(Address(rsp, 0));
  8527 #endif // _LP64
  8528   addptr(rsp, sizeof(jdouble) * nb_args);
  8529   if (num_fpu_regs_in_use > 1) {
  8530     // Must save return value to stack and then restore entire FPU
  8531     // stack except incoming arguments
  8532     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  8533     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
  8534       fld_d(Address(rsp, 0));
  8535       addptr(rsp, sizeof(jdouble));
  8537     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
  8538     addptr(rsp, sizeof(jdouble) * nb_args);
  8541   off = 0;
  8542   if (UseSSE == 1)  {
  8543     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
  8544     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
  8545     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
  8546     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
  8547     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
  8548     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
  8549     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
  8550     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
  8551   } else if (UseSSE >= 2)  {
  8552     movdbl(xmm0, Address(rsp,off++*sizeof(jdouble)));
  8553     movdbl(xmm1, Address(rsp,off++*sizeof(jdouble)));
  8554     movdbl(xmm2, Address(rsp,off++*sizeof(jdouble)));
  8555     movdbl(xmm3, Address(rsp,off++*sizeof(jdouble)));
  8556     movdbl(xmm4, Address(rsp,off++*sizeof(jdouble)));
  8557     movdbl(xmm5, Address(rsp,off++*sizeof(jdouble)));
  8558     movdbl(xmm6, Address(rsp,off++*sizeof(jdouble)));
  8559     movdbl(xmm7, Address(rsp,off++*sizeof(jdouble)));
  8560 #ifdef _LP64
  8561     movdbl(xmm8, Address(rsp,off++*sizeof(jdouble)));
  8562     movdbl(xmm9, Address(rsp,off++*sizeof(jdouble)));
  8563     movdbl(xmm10, Address(rsp,off++*sizeof(jdouble)));
  8564     movdbl(xmm11, Address(rsp,off++*sizeof(jdouble)));
  8565     movdbl(xmm12, Address(rsp,off++*sizeof(jdouble)));
  8566     movdbl(xmm13, Address(rsp,off++*sizeof(jdouble)));
  8567     movdbl(xmm14, Address(rsp,off++*sizeof(jdouble)));
  8568     movdbl(xmm15, Address(rsp,off++*sizeof(jdouble)));
  8569 #endif
  8571   if (UseSSE >= 1) {
  8572     addptr(rsp, sizeof(jdouble)* LP64_ONLY(16) NOT_LP64(8));
  8574   popa();
  8577 static const double     pi_4 =  0.7853981633974483;
  8579 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  8580   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  8581   // was attempted in this code; unfortunately it appears that the
  8582   // switch to 80-bit precision and back causes this to be
  8583   // unprofitable compared with simply performing a runtime call if
  8584   // the argument is out of the (-pi/4, pi/4) range.
  8586   Register tmp = noreg;
  8587   if (!VM_Version::supports_cmov()) {
  8588     // fcmp needs a temporary so preserve rbx,
  8589     tmp = rbx;
  8590     push(tmp);
  8593   Label slow_case, done;
  8595   ExternalAddress pi4_adr = (address)&pi_4;
  8596   if (reachable(pi4_adr)) {
  8597     // x ?<= pi/4
  8598     fld_d(pi4_adr);
  8599     fld_s(1);                // Stack:  X  PI/4  X
  8600     fabs();                  // Stack: |X| PI/4  X
  8601     fcmp(tmp);
  8602     jcc(Assembler::above, slow_case);
  8604     // fastest case: -pi/4 <= x <= pi/4
  8605     switch(trig) {
  8606     case 's':
  8607       fsin();
  8608       break;
  8609     case 'c':
  8610       fcos();
  8611       break;
  8612     case 't':
  8613       ftan();
  8614       break;
  8615     default:
  8616       assert(false, "bad intrinsic");
  8617       break;
  8619     jmp(done);
  8622   // slow case: runtime call
  8623   bind(slow_case);
  8625   switch(trig) {
  8626   case 's':
  8628       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
  8630     break;
  8631   case 'c':
  8633       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
  8635     break;
  8636   case 't':
  8638       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
  8640     break;
  8641   default:
  8642     assert(false, "bad intrinsic");
  8643     break;
  8646   // Come here with result in F-TOS
  8647   bind(done);
  8649   if (tmp != noreg) {
  8650     pop(tmp);
  8655 // Look up the method for a megamorphic invokeinterface call.
  8656 // The target method is determined by <intf_klass, itable_index>.
  8657 // The receiver klass is in recv_klass.
  8658 // On success, the result will be in method_result, and execution falls through.
  8659 // On failure, execution transfers to the given label.
  8660 void MacroAssembler::lookup_interface_method(Register recv_klass,
  8661                                              Register intf_klass,
  8662                                              RegisterOrConstant itable_index,
  8663                                              Register method_result,
  8664                                              Register scan_temp,
  8665                                              Label& L_no_such_interface) {
  8666   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  8667   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  8668          "caller must use same register for non-constant itable index as for method");
  8670   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  8671   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  8672   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  8673   int scan_step   = itableOffsetEntry::size() * wordSize;
  8674   int vte_size    = vtableEntry::size() * wordSize;
  8675   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  8676   assert(vte_size == wordSize, "else adjust times_vte_scale");
  8678   movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
  8680   // %%% Could store the aligned, prescaled offset in the klassoop.
  8681   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  8682   if (HeapWordsPerLong > 1) {
  8683     // Round up to align_object_offset boundary
  8684     // see code for instanceKlass::start_of_itable!
  8685     round_to(scan_temp, BytesPerLong);
  8688   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  8689   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  8690   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  8692   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  8693   //   if (scan->interface() == intf) {
  8694   //     result = (klass + scan->offset() + itable_index);
  8695   //   }
  8696   // }
  8697   Label search, found_method;
  8699   for (int peel = 1; peel >= 0; peel--) {
  8700     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  8701     cmpptr(intf_klass, method_result);
  8703     if (peel) {
  8704       jccb(Assembler::equal, found_method);
  8705     } else {
  8706       jccb(Assembler::notEqual, search);
  8707       // (invert the test to fall through to found_method...)
  8710     if (!peel)  break;
  8712     bind(search);
  8714     // Check that the previous entry is non-null.  A null entry means that
  8715     // the receiver class doesn't implement the interface, and wasn't the
  8716     // same as when the caller was compiled.
  8717     testptr(method_result, method_result);
  8718     jcc(Assembler::zero, L_no_such_interface);
  8719     addptr(scan_temp, scan_step);
  8722   bind(found_method);
  8724   // Got a hit.
  8725   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  8726   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  8730 void MacroAssembler::check_klass_subtype(Register sub_klass,
  8731                            Register super_klass,
  8732                            Register temp_reg,
  8733                            Label& L_success) {
  8734   Label L_failure;
  8735   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  8736   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  8737   bind(L_failure);
  8741 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  8742                                                    Register super_klass,
  8743                                                    Register temp_reg,
  8744                                                    Label* L_success,
  8745                                                    Label* L_failure,
  8746                                                    Label* L_slow_path,
  8747                                         RegisterOrConstant super_check_offset) {
  8748   assert_different_registers(sub_klass, super_klass, temp_reg);
  8749   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  8750   if (super_check_offset.is_register()) {
  8751     assert_different_registers(sub_klass, super_klass,
  8752                                super_check_offset.as_register());
  8753   } else if (must_load_sco) {
  8754     assert(temp_reg != noreg, "supply either a temp or a register offset");
  8757   Label L_fallthrough;
  8758   int label_nulls = 0;
  8759   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  8760   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  8761   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  8762   assert(label_nulls <= 1, "at most one NULL in the batch");
  8764   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  8765   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  8766   Address super_check_offset_addr(super_klass, sco_offset);
  8768   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  8769   // range of a jccb.  If this routine grows larger, reconsider at
  8770   // least some of these.
  8771 #define local_jcc(assembler_cond, label)                                \
  8772   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  8773   else                             jcc( assembler_cond, label) /*omit semi*/
  8775   // Hacked jmp, which may only be used just before L_fallthrough.
  8776 #define final_jmp(label)                                                \
  8777   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  8778   else                            jmp(label)                /*omit semi*/
  8780   // If the pointers are equal, we are done (e.g., String[] elements).
  8781   // This self-check enables sharing of secondary supertype arrays among
  8782   // non-primary types such as array-of-interface.  Otherwise, each such
  8783   // type would need its own customized SSA.
  8784   // We move this check to the front of the fast path because many
  8785   // type checks are in fact trivially successful in this manner,
  8786   // so we get a nicely predicted branch right at the start of the check.
  8787   cmpptr(sub_klass, super_klass);
  8788   local_jcc(Assembler::equal, *L_success);
  8790   // Check the supertype display:
  8791   if (must_load_sco) {
  8792     // Positive movl does right thing on LP64.
  8793     movl(temp_reg, super_check_offset_addr);
  8794     super_check_offset = RegisterOrConstant(temp_reg);
  8796   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  8797   cmpptr(super_klass, super_check_addr); // load displayed supertype
  8799   // This check has worked decisively for primary supers.
  8800   // Secondary supers are sought in the super_cache ('super_cache_addr').
  8801   // (Secondary supers are interfaces and very deeply nested subtypes.)
  8802   // This works in the same check above because of a tricky aliasing
  8803   // between the super_cache and the primary super display elements.
  8804   // (The 'super_check_addr' can address either, as the case requires.)
  8805   // Note that the cache is updated below if it does not help us find
  8806   // what we need immediately.
  8807   // So if it was a primary super, we can just fail immediately.
  8808   // Otherwise, it's the slow path for us (no success at this point).
  8810   if (super_check_offset.is_register()) {
  8811     local_jcc(Assembler::equal, *L_success);
  8812     cmpl(super_check_offset.as_register(), sc_offset);
  8813     if (L_failure == &L_fallthrough) {
  8814       local_jcc(Assembler::equal, *L_slow_path);
  8815     } else {
  8816       local_jcc(Assembler::notEqual, *L_failure);
  8817       final_jmp(*L_slow_path);
  8819   } else if (super_check_offset.as_constant() == sc_offset) {
  8820     // Need a slow path; fast failure is impossible.
  8821     if (L_slow_path == &L_fallthrough) {
  8822       local_jcc(Assembler::equal, *L_success);
  8823     } else {
  8824       local_jcc(Assembler::notEqual, *L_slow_path);
  8825       final_jmp(*L_success);
  8827   } else {
  8828     // No slow path; it's a fast decision.
  8829     if (L_failure == &L_fallthrough) {
  8830       local_jcc(Assembler::equal, *L_success);
  8831     } else {
  8832       local_jcc(Assembler::notEqual, *L_failure);
  8833       final_jmp(*L_success);
  8837   bind(L_fallthrough);
  8839 #undef local_jcc
  8840 #undef final_jmp
  8844 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  8845                                                    Register super_klass,
  8846                                                    Register temp_reg,
  8847                                                    Register temp2_reg,
  8848                                                    Label* L_success,
  8849                                                    Label* L_failure,
  8850                                                    bool set_cond_codes) {
  8851   assert_different_registers(sub_klass, super_klass, temp_reg);
  8852   if (temp2_reg != noreg)
  8853     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  8854 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  8856   Label L_fallthrough;
  8857   int label_nulls = 0;
  8858   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  8859   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  8860   assert(label_nulls <= 1, "at most one NULL in the batch");
  8862   // a couple of useful fields in sub_klass:
  8863   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  8864   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  8865   Address secondary_supers_addr(sub_klass, ss_offset);
  8866   Address super_cache_addr(     sub_klass, sc_offset);
  8868   // Do a linear scan of the secondary super-klass chain.
  8869   // This code is rarely used, so simplicity is a virtue here.
  8870   // The repne_scan instruction uses fixed registers, which we must spill.
  8871   // Don't worry too much about pre-existing connections with the input regs.
  8873   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  8874   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  8876   // Get super_klass value into rax (even if it was in rdi or rcx).
  8877   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  8878   if (super_klass != rax || UseCompressedOops) {
  8879     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  8880     mov(rax, super_klass);
  8882   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  8883   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  8885 #ifndef PRODUCT
  8886   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  8887   ExternalAddress pst_counter_addr((address) pst_counter);
  8888   NOT_LP64(  incrementl(pst_counter_addr) );
  8889   LP64_ONLY( lea(rcx, pst_counter_addr) );
  8890   LP64_ONLY( incrementl(Address(rcx, 0)) );
  8891 #endif //PRODUCT
  8893   // We will consult the secondary-super array.
  8894   movptr(rdi, secondary_supers_addr);
  8895   // Load the array length.  (Positive movl does right thing on LP64.)
  8896   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  8897   // Skip to start of data.
  8898   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  8900   // Scan RCX words at [RDI] for an occurrence of RAX.
  8901   // Set NZ/Z based on last compare.
  8902   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  8903   // not change flags (only scas instruction which is repeated sets flags).
  8904   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  8905 #ifdef _LP64
  8906   // This part is tricky, as values in supers array could be 32 or 64 bit wide
  8907   // and we store values in objArrays always encoded, thus we need to encode
  8908   // the value of rax before repne.  Note that rax is dead after the repne.
  8909   if (UseCompressedOops) {
  8910     encode_heap_oop_not_null(rax); // Changes flags.
  8911     // The superclass is never null; it would be a basic system error if a null
  8912     // pointer were to sneak in here.  Note that we have already loaded the
  8913     // Klass::super_check_offset from the super_klass in the fast path,
  8914     // so if there is a null in that register, we are already in the afterlife.
  8915     testl(rax,rax); // Set Z = 0
  8916     repne_scanl();
  8917   } else
  8918 #endif // _LP64
  8920     testptr(rax,rax); // Set Z = 0
  8921     repne_scan();
  8923   // Unspill the temp. registers:
  8924   if (pushed_rdi)  pop(rdi);
  8925   if (pushed_rcx)  pop(rcx);
  8926   if (pushed_rax)  pop(rax);
  8928   if (set_cond_codes) {
  8929     // Special hack for the AD files:  rdi is guaranteed non-zero.
  8930     assert(!pushed_rdi, "rdi must be left non-NULL");
  8931     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  8934   if (L_failure == &L_fallthrough)
  8935         jccb(Assembler::notEqual, *L_failure);
  8936   else  jcc(Assembler::notEqual, *L_failure);
  8938   // Success.  Cache the super we found and proceed in triumph.
  8939   movptr(super_cache_addr, super_klass);
  8941   if (L_success != &L_fallthrough) {
  8942     jmp(*L_success);
  8945 #undef IS_A_TEMP
  8947   bind(L_fallthrough);
  8951 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  8952   if (VM_Version::supports_cmov()) {
  8953     cmovl(cc, dst, src);
  8954   } else {
  8955     Label L;
  8956     jccb(negate_condition(cc), L);
  8957     movl(dst, src);
  8958     bind(L);
  8962 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  8963   if (VM_Version::supports_cmov()) {
  8964     cmovl(cc, dst, src);
  8965   } else {
  8966     Label L;
  8967     jccb(negate_condition(cc), L);
  8968     movl(dst, src);
  8969     bind(L);
  8973 void MacroAssembler::verify_oop(Register reg, const char* s) {
  8974   if (!VerifyOops) return;
  8976   // Pass register number to verify_oop_subroutine
  8977   char* b = new char[strlen(s) + 50];
  8978   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  8979 #ifdef _LP64
  8980   push(rscratch1);                    // save r10, trashed by movptr()
  8981 #endif
  8982   push(rax);                          // save rax,
  8983   push(reg);                          // pass register argument
  8984   ExternalAddress buffer((address) b);
  8985   // avoid using pushptr, as it modifies scratch registers
  8986   // and our contract is not to modify anything
  8987   movptr(rax, buffer.addr());
  8988   push(rax);
  8989   // call indirectly to solve generation ordering problem
  8990   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  8991   call(rax);
  8992   // Caller pops the arguments (oop, message) and restores rax, r10
  8996 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  8997                                                       Register tmp,
  8998                                                       int offset) {
  8999   intptr_t value = *delayed_value_addr;
  9000   if (value != 0)
  9001     return RegisterOrConstant(value + offset);
  9003   // load indirectly to solve generation ordering problem
  9004   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  9006 #ifdef ASSERT
  9007   { Label L;
  9008     testptr(tmp, tmp);
  9009     if (WizardMode) {
  9010       jcc(Assembler::notZero, L);
  9011       char* buf = new char[40];
  9012       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  9013       stop(buf);
  9014     } else {
  9015       jccb(Assembler::notZero, L);
  9016       hlt();
  9018     bind(L);
  9020 #endif
  9022   if (offset != 0)
  9023     addptr(tmp, offset);
  9025   return RegisterOrConstant(tmp);
  9029 // registers on entry:
  9030 //  - rax ('check' register): required MethodType
  9031 //  - rcx: method handle
  9032 //  - rdx, rsi, or ?: killable temp
  9033 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
  9034                                               Register temp_reg,
  9035                                               Label& wrong_method_type) {
  9036   Address type_addr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg));
  9037   // compare method type against that of the receiver
  9038   if (UseCompressedOops) {
  9039     load_heap_oop(temp_reg, type_addr);
  9040     cmpptr(mtype_reg, temp_reg);
  9041   } else {
  9042     cmpptr(mtype_reg, type_addr);
  9044   jcc(Assembler::notEqual, wrong_method_type);
  9048 // A method handle has a "vmslots" field which gives the size of its
  9049 // argument list in JVM stack slots.  This field is either located directly
  9050 // in every method handle, or else is indirectly accessed through the
  9051 // method handle's MethodType.  This macro hides the distinction.
  9052 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  9053                                                 Register temp_reg) {
  9054   assert_different_registers(vmslots_reg, mh_reg, temp_reg);
  9055   // load mh.type.form.vmslots
  9056   Register temp2_reg = vmslots_reg;
  9057   load_heap_oop(temp2_reg, Address(mh_reg,    delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)));
  9058   load_heap_oop(temp2_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)));
  9059   movl(vmslots_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)));
  9063 // registers on entry:
  9064 //  - rcx: method handle
  9065 //  - rdx: killable temp (interpreted only)
  9066 //  - rax: killable temp (compiled only)
  9067 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
  9068   assert(mh_reg == rcx, "caller must put MH object in rcx");
  9069   assert_different_registers(mh_reg, temp_reg);
  9071   // pick out the interpreted side of the handler
  9072   // NOTE: vmentry is not an oop!
  9073   movptr(temp_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg)));
  9075   // off we go...
  9076   jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
  9078   // for the various stubs which take control at this point,
  9079   // see MethodHandles::generate_method_handle_stub
  9083 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  9084                                          int extra_slot_offset) {
  9085   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  9086   int stackElementSize = Interpreter::stackElementSize;
  9087   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  9088 #ifdef ASSERT
  9089   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  9090   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  9091 #endif
  9092   Register             scale_reg    = noreg;
  9093   Address::ScaleFactor scale_factor = Address::no_scale;
  9094   if (arg_slot.is_constant()) {
  9095     offset += arg_slot.as_constant() * stackElementSize;
  9096   } else {
  9097     scale_reg    = arg_slot.as_register();
  9098     scale_factor = Address::times(stackElementSize);
  9100   offset += wordSize;           // return PC is on stack
  9101   return Address(rsp, scale_reg, scale_factor, offset);
  9105 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  9106   if (!VerifyOops) return;
  9108   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  9109   // Pass register number to verify_oop_subroutine
  9110   char* b = new char[strlen(s) + 50];
  9111   sprintf(b, "verify_oop_addr: %s", s);
  9113 #ifdef _LP64
  9114   push(rscratch1);                    // save r10, trashed by movptr()
  9115 #endif
  9116   push(rax);                          // save rax,
  9117   // addr may contain rsp so we will have to adjust it based on the push
  9118   // we just did (and on 64 bit we do two pushes)
  9119   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  9120   // stores rax into addr which is backwards of what was intended.
  9121   if (addr.uses(rsp)) {
  9122     lea(rax, addr);
  9123     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  9124   } else {
  9125     pushptr(addr);
  9128   ExternalAddress buffer((address) b);
  9129   // pass msg argument
  9130   // avoid using pushptr, as it modifies scratch registers
  9131   // and our contract is not to modify anything
  9132   movptr(rax, buffer.addr());
  9133   push(rax);
  9135   // call indirectly to solve generation ordering problem
  9136   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  9137   call(rax);
  9138   // Caller pops the arguments (addr, message) and restores rax, r10.
  9141 void MacroAssembler::verify_tlab() {
  9142 #ifdef ASSERT
  9143   if (UseTLAB && VerifyOops) {
  9144     Label next, ok;
  9145     Register t1 = rsi;
  9146     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  9148     push(t1);
  9149     NOT_LP64(push(thread_reg));
  9150     NOT_LP64(get_thread(thread_reg));
  9152     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  9153     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  9154     jcc(Assembler::aboveEqual, next);
  9155     stop("assert(top >= start)");
  9156     should_not_reach_here();
  9158     bind(next);
  9159     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  9160     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  9161     jcc(Assembler::aboveEqual, ok);
  9162     stop("assert(top <= end)");
  9163     should_not_reach_here();
  9165     bind(ok);
  9166     NOT_LP64(pop(thread_reg));
  9167     pop(t1);
  9169 #endif
  9172 class ControlWord {
  9173  public:
  9174   int32_t _value;
  9176   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  9177   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  9178   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  9179   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  9180   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  9181   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  9182   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  9183   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  9185   void print() const {
  9186     // rounding control
  9187     const char* rc;
  9188     switch (rounding_control()) {
  9189       case 0: rc = "round near"; break;
  9190       case 1: rc = "round down"; break;
  9191       case 2: rc = "round up  "; break;
  9192       case 3: rc = "chop      "; break;
  9193     };
  9194     // precision control
  9195     const char* pc;
  9196     switch (precision_control()) {
  9197       case 0: pc = "24 bits "; break;
  9198       case 1: pc = "reserved"; break;
  9199       case 2: pc = "53 bits "; break;
  9200       case 3: pc = "64 bits "; break;
  9201     };
  9202     // flags
  9203     char f[9];
  9204     f[0] = ' ';
  9205     f[1] = ' ';
  9206     f[2] = (precision   ()) ? 'P' : 'p';
  9207     f[3] = (underflow   ()) ? 'U' : 'u';
  9208     f[4] = (overflow    ()) ? 'O' : 'o';
  9209     f[5] = (zero_divide ()) ? 'Z' : 'z';
  9210     f[6] = (denormalized()) ? 'D' : 'd';
  9211     f[7] = (invalid     ()) ? 'I' : 'i';
  9212     f[8] = '\x0';
  9213     // output
  9214     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  9217 };
  9219 class StatusWord {
  9220  public:
  9221   int32_t _value;
  9223   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  9224   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  9225   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  9226   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  9227   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  9228   int  top() const                     { return  (_value >> 11) & 7      ; }
  9229   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  9230   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  9231   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  9232   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  9233   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  9234   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  9235   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  9236   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  9238   void print() const {
  9239     // condition codes
  9240     char c[5];
  9241     c[0] = (C3()) ? '3' : '-';
  9242     c[1] = (C2()) ? '2' : '-';
  9243     c[2] = (C1()) ? '1' : '-';
  9244     c[3] = (C0()) ? '0' : '-';
  9245     c[4] = '\x0';
  9246     // flags
  9247     char f[9];
  9248     f[0] = (error_status()) ? 'E' : '-';
  9249     f[1] = (stack_fault ()) ? 'S' : '-';
  9250     f[2] = (precision   ()) ? 'P' : '-';
  9251     f[3] = (underflow   ()) ? 'U' : '-';
  9252     f[4] = (overflow    ()) ? 'O' : '-';
  9253     f[5] = (zero_divide ()) ? 'Z' : '-';
  9254     f[6] = (denormalized()) ? 'D' : '-';
  9255     f[7] = (invalid     ()) ? 'I' : '-';
  9256     f[8] = '\x0';
  9257     // output
  9258     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  9261 };
  9263 class TagWord {
  9264  public:
  9265   int32_t _value;
  9267   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  9269   void print() const {
  9270     printf("%04x", _value & 0xFFFF);
  9273 };
  9275 class FPU_Register {
  9276  public:
  9277   int32_t _m0;
  9278   int32_t _m1;
  9279   int16_t _ex;
  9281   bool is_indefinite() const           {
  9282     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  9285   void print() const {
  9286     char  sign = (_ex < 0) ? '-' : '+';
  9287     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  9288     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  9289   };
  9291 };
  9293 class FPU_State {
  9294  public:
  9295   enum {
  9296     register_size       = 10,
  9297     number_of_registers =  8,
  9298     register_mask       =  7
  9299   };
  9301   ControlWord  _control_word;
  9302   StatusWord   _status_word;
  9303   TagWord      _tag_word;
  9304   int32_t      _error_offset;
  9305   int32_t      _error_selector;
  9306   int32_t      _data_offset;
  9307   int32_t      _data_selector;
  9308   int8_t       _register[register_size * number_of_registers];
  9310   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  9311   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  9313   const char* tag_as_string(int tag) const {
  9314     switch (tag) {
  9315       case 0: return "valid";
  9316       case 1: return "zero";
  9317       case 2: return "special";
  9318       case 3: return "empty";
  9320     ShouldNotReachHere();
  9321     return NULL;
  9324   void print() const {
  9325     // print computation registers
  9326     { int t = _status_word.top();
  9327       for (int i = 0; i < number_of_registers; i++) {
  9328         int j = (i - t) & register_mask;
  9329         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  9330         st(j)->print();
  9331         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  9334     printf("\n");
  9335     // print control registers
  9336     printf("ctrl = "); _control_word.print(); printf("\n");
  9337     printf("stat = "); _status_word .print(); printf("\n");
  9338     printf("tags = "); _tag_word    .print(); printf("\n");
  9341 };
  9343 class Flag_Register {
  9344  public:
  9345   int32_t _value;
  9347   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  9348   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  9349   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  9350   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  9351   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  9352   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  9353   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  9355   void print() const {
  9356     // flags
  9357     char f[8];
  9358     f[0] = (overflow       ()) ? 'O' : '-';
  9359     f[1] = (direction      ()) ? 'D' : '-';
  9360     f[2] = (sign           ()) ? 'S' : '-';
  9361     f[3] = (zero           ()) ? 'Z' : '-';
  9362     f[4] = (auxiliary_carry()) ? 'A' : '-';
  9363     f[5] = (parity         ()) ? 'P' : '-';
  9364     f[6] = (carry          ()) ? 'C' : '-';
  9365     f[7] = '\x0';
  9366     // output
  9367     printf("%08x  flags = %s", _value, f);
  9370 };
  9372 class IU_Register {
  9373  public:
  9374   int32_t _value;
  9376   void print() const {
  9377     printf("%08x  %11d", _value, _value);
  9380 };
  9382 class IU_State {
  9383  public:
  9384   Flag_Register _eflags;
  9385   IU_Register   _rdi;
  9386   IU_Register   _rsi;
  9387   IU_Register   _rbp;
  9388   IU_Register   _rsp;
  9389   IU_Register   _rbx;
  9390   IU_Register   _rdx;
  9391   IU_Register   _rcx;
  9392   IU_Register   _rax;
  9394   void print() const {
  9395     // computation registers
  9396     printf("rax,  = "); _rax.print(); printf("\n");
  9397     printf("rbx,  = "); _rbx.print(); printf("\n");
  9398     printf("rcx  = "); _rcx.print(); printf("\n");
  9399     printf("rdx  = "); _rdx.print(); printf("\n");
  9400     printf("rdi  = "); _rdi.print(); printf("\n");
  9401     printf("rsi  = "); _rsi.print(); printf("\n");
  9402     printf("rbp,  = "); _rbp.print(); printf("\n");
  9403     printf("rsp  = "); _rsp.print(); printf("\n");
  9404     printf("\n");
  9405     // control registers
  9406     printf("flgs = "); _eflags.print(); printf("\n");
  9408 };
  9411 class CPU_State {
  9412  public:
  9413   FPU_State _fpu_state;
  9414   IU_State  _iu_state;
  9416   void print() const {
  9417     printf("--------------------------------------------------\n");
  9418     _iu_state .print();
  9419     printf("\n");
  9420     _fpu_state.print();
  9421     printf("--------------------------------------------------\n");
  9424 };
  9427 static void _print_CPU_state(CPU_State* state) {
  9428   state->print();
  9429 };
  9432 void MacroAssembler::print_CPU_state() {
  9433   push_CPU_state();
  9434   push(rsp);                // pass CPU state
  9435   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  9436   addptr(rsp, wordSize);       // discard argument
  9437   pop_CPU_state();
  9441 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  9442   static int counter = 0;
  9443   FPU_State* fs = &state->_fpu_state;
  9444   counter++;
  9445   // For leaf calls, only verify that the top few elements remain empty.
  9446   // We only need 1 empty at the top for C2 code.
  9447   if( stack_depth < 0 ) {
  9448     if( fs->tag_for_st(7) != 3 ) {
  9449       printf("FPR7 not empty\n");
  9450       state->print();
  9451       assert(false, "error");
  9452       return false;
  9454     return true;                // All other stack states do not matter
  9457   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  9458          "bad FPU control word");
  9460   // compute stack depth
  9461   int i = 0;
  9462   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  9463   int d = i;
  9464   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  9465   // verify findings
  9466   if (i != FPU_State::number_of_registers) {
  9467     // stack not contiguous
  9468     printf("%s: stack not contiguous at ST%d\n", s, i);
  9469     state->print();
  9470     assert(false, "error");
  9471     return false;
  9473   // check if computed stack depth corresponds to expected stack depth
  9474   if (stack_depth < 0) {
  9475     // expected stack depth is -stack_depth or less
  9476     if (d > -stack_depth) {
  9477       // too many elements on the stack
  9478       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  9479       state->print();
  9480       assert(false, "error");
  9481       return false;
  9483   } else {
  9484     // expected stack depth is stack_depth
  9485     if (d != stack_depth) {
  9486       // wrong stack depth
  9487       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  9488       state->print();
  9489       assert(false, "error");
  9490       return false;
  9493   // everything is cool
  9494   return true;
  9498 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  9499   if (!VerifyFPU) return;
  9500   push_CPU_state();
  9501   push(rsp);                // pass CPU state
  9502   ExternalAddress msg((address) s);
  9503   // pass message string s
  9504   pushptr(msg.addr());
  9505   push(stack_depth);        // pass stack depth
  9506   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  9507   addptr(rsp, 3 * wordSize);   // discard arguments
  9508   // check for error
  9509   { Label L;
  9510     testl(rax, rax);
  9511     jcc(Assembler::notZero, L);
  9512     int3();                  // break if error condition
  9513     bind(L);
  9515   pop_CPU_state();
  9518 void MacroAssembler::load_klass(Register dst, Register src) {
  9519 #ifdef _LP64
  9520   if (UseCompressedOops) {
  9521     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9522     decode_heap_oop_not_null(dst);
  9523   } else
  9524 #endif
  9525     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9528 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  9529 #ifdef _LP64
  9530   if (UseCompressedOops) {
  9531     assert (Universe::heap() != NULL, "java heap should be initialized");
  9532     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9533     if (Universe::narrow_oop_shift() != 0) {
  9534       assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9535       if (LogMinObjAlignmentInBytes == Address::times_8) {
  9536         movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset()));
  9537       } else {
  9538         // OK to use shift since we don't need to preserve flags.
  9539         shlq(dst, LogMinObjAlignmentInBytes);
  9540         movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset()));
  9542     } else {
  9543       movq(dst, Address(dst, Klass::prototype_header_offset()));
  9545   } else
  9546 #endif
  9548     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9549     movptr(dst, Address(dst, Klass::prototype_header_offset()));
  9553 void MacroAssembler::store_klass(Register dst, Register src) {
  9554 #ifdef _LP64
  9555   if (UseCompressedOops) {
  9556     encode_heap_oop_not_null(src);
  9557     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  9558   } else
  9559 #endif
  9560     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  9563 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  9564 #ifdef _LP64
  9565   if (UseCompressedOops) {
  9566     movl(dst, src);
  9567     decode_heap_oop(dst);
  9568   } else
  9569 #endif
  9570     movptr(dst, src);
  9573 // Doesn't do verfication, generates fixed size code
  9574 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
  9575 #ifdef _LP64
  9576   if (UseCompressedOops) {
  9577     movl(dst, src);
  9578     decode_heap_oop_not_null(dst);
  9579   } else
  9580 #endif
  9581     movptr(dst, src);
  9584 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  9585 #ifdef _LP64
  9586   if (UseCompressedOops) {
  9587     assert(!dst.uses(src), "not enough registers");
  9588     encode_heap_oop(src);
  9589     movl(dst, src);
  9590   } else
  9591 #endif
  9592     movptr(dst, src);
  9595 // Used for storing NULLs.
  9596 void MacroAssembler::store_heap_oop_null(Address dst) {
  9597 #ifdef _LP64
  9598   if (UseCompressedOops) {
  9599     movl(dst, (int32_t)NULL_WORD);
  9600   } else {
  9601     movslq(dst, (int32_t)NULL_WORD);
  9603 #else
  9604   movl(dst, (int32_t)NULL_WORD);
  9605 #endif
  9608 #ifdef _LP64
  9609 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  9610   if (UseCompressedOops) {
  9611     // Store to klass gap in destination
  9612     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  9616 #ifdef ASSERT
  9617 void MacroAssembler::verify_heapbase(const char* msg) {
  9618   assert (UseCompressedOops, "should be compressed");
  9619   assert (Universe::heap() != NULL, "java heap should be initialized");
  9620   if (CheckCompressedOops) {
  9621     Label ok;
  9622     push(rscratch1); // cmpptr trashes rscratch1
  9623     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  9624     jcc(Assembler::equal, ok);
  9625     stop(msg);
  9626     bind(ok);
  9627     pop(rscratch1);
  9630 #endif
  9632 // Algorithm must match oop.inline.hpp encode_heap_oop.
  9633 void MacroAssembler::encode_heap_oop(Register r) {
  9634 #ifdef ASSERT
  9635   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
  9636 #endif
  9637   verify_oop(r, "broken oop in encode_heap_oop");
  9638   if (Universe::narrow_oop_base() == NULL) {
  9639     if (Universe::narrow_oop_shift() != 0) {
  9640       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9641       shrq(r, LogMinObjAlignmentInBytes);
  9643     return;
  9645   testq(r, r);
  9646   cmovq(Assembler::equal, r, r12_heapbase);
  9647   subq(r, r12_heapbase);
  9648   shrq(r, LogMinObjAlignmentInBytes);
  9651 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  9652 #ifdef ASSERT
  9653   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  9654   if (CheckCompressedOops) {
  9655     Label ok;
  9656     testq(r, r);
  9657     jcc(Assembler::notEqual, ok);
  9658     stop("null oop passed to encode_heap_oop_not_null");
  9659     bind(ok);
  9661 #endif
  9662   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  9663   if (Universe::narrow_oop_base() != NULL) {
  9664     subq(r, r12_heapbase);
  9666   if (Universe::narrow_oop_shift() != 0) {
  9667     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9668     shrq(r, LogMinObjAlignmentInBytes);
  9672 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  9673 #ifdef ASSERT
  9674   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  9675   if (CheckCompressedOops) {
  9676     Label ok;
  9677     testq(src, src);
  9678     jcc(Assembler::notEqual, ok);
  9679     stop("null oop passed to encode_heap_oop_not_null2");
  9680     bind(ok);
  9682 #endif
  9683   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  9684   if (dst != src) {
  9685     movq(dst, src);
  9687   if (Universe::narrow_oop_base() != NULL) {
  9688     subq(dst, r12_heapbase);
  9690   if (Universe::narrow_oop_shift() != 0) {
  9691     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9692     shrq(dst, LogMinObjAlignmentInBytes);
  9696 void  MacroAssembler::decode_heap_oop(Register r) {
  9697 #ifdef ASSERT
  9698   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
  9699 #endif
  9700   if (Universe::narrow_oop_base() == NULL) {
  9701     if (Universe::narrow_oop_shift() != 0) {
  9702       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9703       shlq(r, LogMinObjAlignmentInBytes);
  9705   } else {
  9706     Label done;
  9707     shlq(r, LogMinObjAlignmentInBytes);
  9708     jccb(Assembler::equal, done);
  9709     addq(r, r12_heapbase);
  9710     bind(done);
  9712   verify_oop(r, "broken oop in decode_heap_oop");
  9715 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  9716   // Note: it will change flags
  9717   assert (UseCompressedOops, "should only be used for compressed headers");
  9718   assert (Universe::heap() != NULL, "java heap should be initialized");
  9719   // Cannot assert, unverified entry point counts instructions (see .ad file)
  9720   // vtableStubs also counts instructions in pd_code_size_limit.
  9721   // Also do not verify_oop as this is called by verify_oop.
  9722   if (Universe::narrow_oop_shift() != 0) {
  9723     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9724     shlq(r, LogMinObjAlignmentInBytes);
  9725     if (Universe::narrow_oop_base() != NULL) {
  9726       addq(r, r12_heapbase);
  9728   } else {
  9729     assert (Universe::narrow_oop_base() == NULL, "sanity");
  9733 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  9734   // Note: it will change flags
  9735   assert (UseCompressedOops, "should only be used for compressed headers");
  9736   assert (Universe::heap() != NULL, "java heap should be initialized");
  9737   // Cannot assert, unverified entry point counts instructions (see .ad file)
  9738   // vtableStubs also counts instructions in pd_code_size_limit.
  9739   // Also do not verify_oop as this is called by verify_oop.
  9740   if (Universe::narrow_oop_shift() != 0) {
  9741     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9742     if (LogMinObjAlignmentInBytes == Address::times_8) {
  9743       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  9744     } else {
  9745       if (dst != src) {
  9746         movq(dst, src);
  9748       shlq(dst, LogMinObjAlignmentInBytes);
  9749       if (Universe::narrow_oop_base() != NULL) {
  9750         addq(dst, r12_heapbase);
  9753   } else {
  9754     assert (Universe::narrow_oop_base() == NULL, "sanity");
  9755     if (dst != src) {
  9756       movq(dst, src);
  9761 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  9762   assert (UseCompressedOops, "should only be used for compressed headers");
  9763   assert (Universe::heap() != NULL, "java heap should be initialized");
  9764   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9765   int oop_index = oop_recorder()->find_index(obj);
  9766   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9767   mov_narrow_oop(dst, oop_index, rspec);
  9770 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  9771   assert (UseCompressedOops, "should only be used for compressed headers");
  9772   assert (Universe::heap() != NULL, "java heap should be initialized");
  9773   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9774   int oop_index = oop_recorder()->find_index(obj);
  9775   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9776   mov_narrow_oop(dst, oop_index, rspec);
  9779 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  9780   assert (UseCompressedOops, "should only be used for compressed headers");
  9781   assert (Universe::heap() != NULL, "java heap should be initialized");
  9782   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9783   int oop_index = oop_recorder()->find_index(obj);
  9784   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9785   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  9788 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  9789   assert (UseCompressedOops, "should only be used for compressed headers");
  9790   assert (Universe::heap() != NULL, "java heap should be initialized");
  9791   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9792   int oop_index = oop_recorder()->find_index(obj);
  9793   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9794   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  9797 void MacroAssembler::reinit_heapbase() {
  9798   if (UseCompressedOops) {
  9799     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  9802 #endif // _LP64
  9805 // C2 compiled method's prolog code.
  9806 void MacroAssembler::verified_entry(int framesize, bool stack_bang, bool fp_mode_24b) {
  9808   // WARNING: Initial instruction MUST be 5 bytes or longer so that
  9809   // NativeJump::patch_verified_entry will be able to patch out the entry
  9810   // code safely. The push to verify stack depth is ok at 5 bytes,
  9811   // the frame allocation can be either 3 or 6 bytes. So if we don't do
  9812   // stack bang then we must use the 6 byte frame allocation even if
  9813   // we have no frame. :-(
  9815   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  9816   // Remove word for return addr
  9817   framesize -= wordSize;
  9819   // Calls to C2R adapters often do not accept exceptional returns.
  9820   // We require that their callers must bang for them.  But be careful, because
  9821   // some VM calls (such as call site linkage) can use several kilobytes of
  9822   // stack.  But the stack safety zone should account for that.
  9823   // See bugs 4446381, 4468289, 4497237.
  9824   if (stack_bang) {
  9825     generate_stack_overflow_check(framesize);
  9827     // We always push rbp, so that on return to interpreter rbp, will be
  9828     // restored correctly and we can correct the stack.
  9829     push(rbp);
  9830     // Remove word for ebp
  9831     framesize -= wordSize;
  9833     // Create frame
  9834     if (framesize) {
  9835       subptr(rsp, framesize);
  9837   } else {
  9838     // Create frame (force generation of a 4 byte immediate value)
  9839     subptr_imm32(rsp, framesize);
  9841     // Save RBP register now.
  9842     framesize -= wordSize;
  9843     movptr(Address(rsp, framesize), rbp);
  9846   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
  9847     framesize -= wordSize;
  9848     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
  9851 #ifndef _LP64
  9852   // If method sets FPU control word do it now
  9853   if (fp_mode_24b) {
  9854     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  9856   if (UseSSE >= 2 && VerifyFPU) {
  9857     verify_FPU(0, "FPU stack must be clean on entry");
  9859 #endif
  9861 #ifdef ASSERT
  9862   if (VerifyStackAtCalls) {
  9863     Label L;
  9864     push(rax);
  9865     mov(rax, rsp);
  9866     andptr(rax, StackAlignmentInBytes-1);
  9867     cmpptr(rax, StackAlignmentInBytes-wordSize);
  9868     pop(rax);
  9869     jcc(Assembler::equal, L);
  9870     stop("Stack is not properly aligned!");
  9871     bind(L);
  9873 #endif
  9878 // IndexOf for constant substrings with size >= 8 chars
  9879 // which don't need to be loaded through stack.
  9880 void MacroAssembler::string_indexofC8(Register str1, Register str2,
  9881                                       Register cnt1, Register cnt2,
  9882                                       int int_cnt2,  Register result,
  9883                                       XMMRegister vec, Register tmp) {
  9884   ShortBranchVerifier sbv(this);
  9885   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  9887   // This method uses pcmpestri inxtruction with bound registers
  9888   //   inputs:
  9889   //     xmm - substring
  9890   //     rax - substring length (elements count)
  9891   //     mem - scanned string
  9892   //     rdx - string length (elements count)
  9893   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  9894   //   outputs:
  9895   //     rcx - matched index in string
  9896   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  9898   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
  9899         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
  9900         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
  9902   // Note, inline_string_indexOf() generates checks:
  9903   // if (substr.count > string.count) return -1;
  9904   // if (substr.count == 0) return 0;
  9905   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
  9907   // Load substring.
  9908   movdqu(vec, Address(str2, 0));
  9909   movl(cnt2, int_cnt2);
  9910   movptr(result, str1); // string addr
  9912   if (int_cnt2 > 8) {
  9913     jmpb(SCAN_TO_SUBSTR);
  9915     // Reload substr for rescan, this code
  9916     // is executed only for large substrings (> 8 chars)
  9917     bind(RELOAD_SUBSTR);
  9918     movdqu(vec, Address(str2, 0));
  9919     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
  9921     bind(RELOAD_STR);
  9922     // We came here after the beginning of the substring was
  9923     // matched but the rest of it was not so we need to search
  9924     // again. Start from the next element after the previous match.
  9926     // cnt2 is number of substring reminding elements and
  9927     // cnt1 is number of string reminding elements when cmp failed.
  9928     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
  9929     subl(cnt1, cnt2);
  9930     addl(cnt1, int_cnt2);
  9931     movl(cnt2, int_cnt2); // Now restore cnt2
  9933     decrementl(cnt1);     // Shift to next element
  9934     cmpl(cnt1, cnt2);
  9935     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  9937     addptr(result, 2);
  9939   } // (int_cnt2 > 8)
  9941   // Scan string for start of substr in 16-byte vectors
  9942   bind(SCAN_TO_SUBSTR);
  9943   pcmpestri(vec, Address(result, 0), 0x0d);
  9944   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  9945   subl(cnt1, 8);
  9946   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  9947   cmpl(cnt1, cnt2);
  9948   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  9949   addptr(result, 16);
  9950   jmpb(SCAN_TO_SUBSTR);
  9952   // Found a potential substr
  9953   bind(FOUND_CANDIDATE);
  9954   // Matched whole vector if first element matched (tmp(rcx) == 0).
  9955   if (int_cnt2 == 8) {
  9956     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
  9957   } else { // int_cnt2 > 8
  9958     jccb(Assembler::overflow, FOUND_SUBSTR);
  9960   // After pcmpestri tmp(rcx) contains matched element index
  9961   // Compute start addr of substr
  9962   lea(result, Address(result, tmp, Address::times_2));
  9964   // Make sure string is still long enough
  9965   subl(cnt1, tmp);
  9966   cmpl(cnt1, cnt2);
  9967   if (int_cnt2 == 8) {
  9968     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  9969   } else { // int_cnt2 > 8
  9970     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
  9972   // Left less then substring.
  9974   bind(RET_NOT_FOUND);
  9975   movl(result, -1);
  9976   jmpb(EXIT);
  9978   if (int_cnt2 > 8) {
  9979     // This code is optimized for the case when whole substring
  9980     // is matched if its head is matched.
  9981     bind(MATCH_SUBSTR_HEAD);
  9982     pcmpestri(vec, Address(result, 0), 0x0d);
  9983     // Reload only string if does not match
  9984     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
  9986     Label CONT_SCAN_SUBSTR;
  9987     // Compare the rest of substring (> 8 chars).
  9988     bind(FOUND_SUBSTR);
  9989     // First 8 chars are already matched.
  9990     negptr(cnt2);
  9991     addptr(cnt2, 8);
  9993     bind(SCAN_SUBSTR);
  9994     subl(cnt1, 8);
  9995     cmpl(cnt2, -8); // Do not read beyond substring
  9996     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
  9997     // Back-up strings to avoid reading beyond substring:
  9998     // cnt1 = cnt1 - cnt2 + 8
  9999     addl(cnt1, cnt2); // cnt2 is negative
 10000     addl(cnt1, 8);
 10001     movl(cnt2, 8); negptr(cnt2);
 10002     bind(CONT_SCAN_SUBSTR);
 10003     if (int_cnt2 < (int)G) {
 10004       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
 10005       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
 10006     } else {
 10007       // calculate index in register to avoid integer overflow (int_cnt2*2)
 10008       movl(tmp, int_cnt2);
 10009       addptr(tmp, cnt2);
 10010       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
 10011       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
 10013     // Need to reload strings pointers if not matched whole vector
 10014     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
 10015     addptr(cnt2, 8);
 10016     jcc(Assembler::negative, SCAN_SUBSTR);
 10017     // Fall through if found full substring
 10019   } // (int_cnt2 > 8)
 10021   bind(RET_FOUND);
 10022   // Found result if we matched full small substring.
 10023   // Compute substr offset
 10024   subptr(result, str1);
 10025   shrl(result, 1); // index
 10026   bind(EXIT);
 10028 } // string_indexofC8
 10030 // Small strings are loaded through stack if they cross page boundary.
 10031 void MacroAssembler::string_indexof(Register str1, Register str2,
 10032                                     Register cnt1, Register cnt2,
 10033                                     int int_cnt2,  Register result,
 10034                                     XMMRegister vec, Register tmp) {
 10035   ShortBranchVerifier sbv(this);
 10036   assert(UseSSE42Intrinsics, "SSE4.2 is required");
 10037   //
 10038   // int_cnt2 is length of small (< 8 chars) constant substring
 10039   // or (-1) for non constant substring in which case its length
 10040   // is in cnt2 register.
 10041   //
 10042   // Note, inline_string_indexOf() generates checks:
 10043   // if (substr.count > string.count) return -1;
 10044   // if (substr.count == 0) return 0;
 10045   //
 10046   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
 10048   // This method uses pcmpestri inxtruction with bound registers
 10049   //   inputs:
 10050   //     xmm - substring
 10051   //     rax - substring length (elements count)
 10052   //     mem - scanned string
 10053   //     rdx - string length (elements count)
 10054   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
 10055   //   outputs:
 10056   //     rcx - matched index in string
 10057   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
 10059   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
 10060         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
 10061         FOUND_CANDIDATE;
 10063   { //========================================================
 10064     // We don't know where these strings are located
 10065     // and we can't read beyond them. Load them through stack.
 10066     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
 10068     movptr(tmp, rsp); // save old SP
 10070     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
 10071       if (int_cnt2 == 1) {  // One char
 10072         load_unsigned_short(result, Address(str2, 0));
 10073         movdl(vec, result); // move 32 bits
 10074       } else if (int_cnt2 == 2) { // Two chars
 10075         movdl(vec, Address(str2, 0)); // move 32 bits
 10076       } else if (int_cnt2 == 4) { // Four chars
 10077         movq(vec, Address(str2, 0));  // move 64 bits
 10078       } else { // cnt2 = { 3, 5, 6, 7 }
 10079         // Array header size is 12 bytes in 32-bit VM
 10080         // + 6 bytes for 3 chars == 18 bytes,
 10081         // enough space to load vec and shift.
 10082         assert(HeapWordSize*typeArrayKlass::header_size() >= 12,"sanity");
 10083         movdqu(vec, Address(str2, (int_cnt2*2)-16));
 10084         psrldq(vec, 16-(int_cnt2*2));
 10086     } else { // not constant substring
 10087       cmpl(cnt2, 8);
 10088       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
 10090       // We can read beyond string if srt+16 does not cross page boundary
 10091       // since heaps are aligned and mapped by pages.
 10092       assert(os::vm_page_size() < (int)G, "default page should be small");
 10093       movl(result, str2); // We need only low 32 bits
 10094       andl(result, (os::vm_page_size()-1));
 10095       cmpl(result, (os::vm_page_size()-16));
 10096       jccb(Assembler::belowEqual, CHECK_STR);
 10098       // Move small strings to stack to allow load 16 bytes into vec.
 10099       subptr(rsp, 16);
 10100       int stk_offset = wordSize-2;
 10101       push(cnt2);
 10103       bind(COPY_SUBSTR);
 10104       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
 10105       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
 10106       decrement(cnt2);
 10107       jccb(Assembler::notZero, COPY_SUBSTR);
 10109       pop(cnt2);
 10110       movptr(str2, rsp);  // New substring address
 10111     } // non constant
 10113     bind(CHECK_STR);
 10114     cmpl(cnt1, 8);
 10115     jccb(Assembler::aboveEqual, BIG_STRINGS);
 10117     // Check cross page boundary.
 10118     movl(result, str1); // We need only low 32 bits
 10119     andl(result, (os::vm_page_size()-1));
 10120     cmpl(result, (os::vm_page_size()-16));
 10121     jccb(Assembler::belowEqual, BIG_STRINGS);
 10123     subptr(rsp, 16);
 10124     int stk_offset = -2;
 10125     if (int_cnt2 < 0) { // not constant
 10126       push(cnt2);
 10127       stk_offset += wordSize;
 10129     movl(cnt2, cnt1);
 10131     bind(COPY_STR);
 10132     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
 10133     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
 10134     decrement(cnt2);
 10135     jccb(Assembler::notZero, COPY_STR);
 10137     if (int_cnt2 < 0) { // not constant
 10138       pop(cnt2);
 10140     movptr(str1, rsp);  // New string address
 10142     bind(BIG_STRINGS);
 10143     // Load substring.
 10144     if (int_cnt2 < 0) { // -1
 10145       movdqu(vec, Address(str2, 0));
 10146       push(cnt2);       // substr count
 10147       push(str2);       // substr addr
 10148       push(str1);       // string addr
 10149     } else {
 10150       // Small (< 8 chars) constant substrings are loaded already.
 10151       movl(cnt2, int_cnt2);
 10153     push(tmp);  // original SP
 10155   } // Finished loading
 10157   //========================================================
 10158   // Start search
 10159   //
 10161   movptr(result, str1); // string addr
 10163   if (int_cnt2  < 0) {  // Only for non constant substring
 10164     jmpb(SCAN_TO_SUBSTR);
 10166     // SP saved at sp+0
 10167     // String saved at sp+1*wordSize
 10168     // Substr saved at sp+2*wordSize
 10169     // Substr count saved at sp+3*wordSize
 10171     // Reload substr for rescan, this code
 10172     // is executed only for large substrings (> 8 chars)
 10173     bind(RELOAD_SUBSTR);
 10174     movptr(str2, Address(rsp, 2*wordSize));
 10175     movl(cnt2, Address(rsp, 3*wordSize));
 10176     movdqu(vec, Address(str2, 0));
 10177     // We came here after the beginning of the substring was
 10178     // matched but the rest of it was not so we need to search
 10179     // again. Start from the next element after the previous match.
 10180     subptr(str1, result); // Restore counter
 10181     shrl(str1, 1);
 10182     addl(cnt1, str1);
 10183     decrementl(cnt1);   // Shift to next element
 10184     cmpl(cnt1, cnt2);
 10185     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10187     addptr(result, 2);
 10188   } // non constant
 10190   // Scan string for start of substr in 16-byte vectors
 10191   bind(SCAN_TO_SUBSTR);
 10192   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
 10193   pcmpestri(vec, Address(result, 0), 0x0d);
 10194   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
 10195   subl(cnt1, 8);
 10196   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
 10197   cmpl(cnt1, cnt2);
 10198   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10199   addptr(result, 16);
 10201   bind(ADJUST_STR);
 10202   cmpl(cnt1, 8); // Do not read beyond string
 10203   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
 10204   // Back-up string to avoid reading beyond string.
 10205   lea(result, Address(result, cnt1, Address::times_2, -16));
 10206   movl(cnt1, 8);
 10207   jmpb(SCAN_TO_SUBSTR);
 10209   // Found a potential substr
 10210   bind(FOUND_CANDIDATE);
 10211   // After pcmpestri tmp(rcx) contains matched element index
 10213   // Make sure string is still long enough
 10214   subl(cnt1, tmp);
 10215   cmpl(cnt1, cnt2);
 10216   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
 10217   // Left less then substring.
 10219   bind(RET_NOT_FOUND);
 10220   movl(result, -1);
 10221   jmpb(CLEANUP);
 10223   bind(FOUND_SUBSTR);
 10224   // Compute start addr of substr
 10225   lea(result, Address(result, tmp, Address::times_2));
 10227   if (int_cnt2 > 0) { // Constant substring
 10228     // Repeat search for small substring (< 8 chars)
 10229     // from new point without reloading substring.
 10230     // Have to check that we don't read beyond string.
 10231     cmpl(tmp, 8-int_cnt2);
 10232     jccb(Assembler::greater, ADJUST_STR);
 10233     // Fall through if matched whole substring.
 10234   } else { // non constant
 10235     assert(int_cnt2 == -1, "should be != 0");
 10237     addl(tmp, cnt2);
 10238     // Found result if we matched whole substring.
 10239     cmpl(tmp, 8);
 10240     jccb(Assembler::lessEqual, RET_FOUND);
 10242     // Repeat search for small substring (<= 8 chars)
 10243     // from new point 'str1' without reloading substring.
 10244     cmpl(cnt2, 8);
 10245     // Have to check that we don't read beyond string.
 10246     jccb(Assembler::lessEqual, ADJUST_STR);
 10248     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
 10249     // Compare the rest of substring (> 8 chars).
 10250     movptr(str1, result);
 10252     cmpl(tmp, cnt2);
 10253     // First 8 chars are already matched.
 10254     jccb(Assembler::equal, CHECK_NEXT);
 10256     bind(SCAN_SUBSTR);
 10257     pcmpestri(vec, Address(str1, 0), 0x0d);
 10258     // Need to reload strings pointers if not matched whole vector
 10259     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
 10261     bind(CHECK_NEXT);
 10262     subl(cnt2, 8);
 10263     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
 10264     addptr(str1, 16);
 10265     addptr(str2, 16);
 10266     subl(cnt1, 8);
 10267     cmpl(cnt2, 8); // Do not read beyond substring
 10268     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
 10269     // Back-up strings to avoid reading beyond substring.
 10270     lea(str2, Address(str2, cnt2, Address::times_2, -16));
 10271     lea(str1, Address(str1, cnt2, Address::times_2, -16));
 10272     subl(cnt1, cnt2);
 10273     movl(cnt2, 8);
 10274     addl(cnt1, 8);
 10275     bind(CONT_SCAN_SUBSTR);
 10276     movdqu(vec, Address(str2, 0));
 10277     jmpb(SCAN_SUBSTR);
 10279     bind(RET_FOUND_LONG);
 10280     movptr(str1, Address(rsp, wordSize));
 10281   } // non constant
 10283   bind(RET_FOUND);
 10284   // Compute substr offset
 10285   subptr(result, str1);
 10286   shrl(result, 1); // index
 10288   bind(CLEANUP);
 10289   pop(rsp); // restore SP
 10291 } // string_indexof
 10293 // Compare strings.
 10294 void MacroAssembler::string_compare(Register str1, Register str2,
 10295                                     Register cnt1, Register cnt2, Register result,
 10296                                     XMMRegister vec1) {
 10297   ShortBranchVerifier sbv(this);
 10298   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
 10300   // Compute the minimum of the string lengths and the
 10301   // difference of the string lengths (stack).
 10302   // Do the conditional move stuff
 10303   movl(result, cnt1);
 10304   subl(cnt1, cnt2);
 10305   push(cnt1);
 10306   cmov32(Assembler::lessEqual, cnt2, result);
 10308   // Is the minimum length zero?
 10309   testl(cnt2, cnt2);
 10310   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
 10312   // Load first characters
 10313   load_unsigned_short(result, Address(str1, 0));
 10314   load_unsigned_short(cnt1, Address(str2, 0));
 10316   // Compare first characters
 10317   subl(result, cnt1);
 10318   jcc(Assembler::notZero,  POP_LABEL);
 10319   decrementl(cnt2);
 10320   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
 10323     // Check after comparing first character to see if strings are equivalent
 10324     Label LSkip2;
 10325     // Check if the strings start at same location
 10326     cmpptr(str1, str2);
 10327     jccb(Assembler::notEqual, LSkip2);
 10329     // Check if the length difference is zero (from stack)
 10330     cmpl(Address(rsp, 0), 0x0);
 10331     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
 10333     // Strings might not be equivalent
 10334     bind(LSkip2);
 10337   Address::ScaleFactor scale = Address::times_2;
 10338   int stride = 8;
 10340   // Advance to next element
 10341   addptr(str1, 16/stride);
 10342   addptr(str2, 16/stride);
 10344   if (UseSSE42Intrinsics) {
 10345     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
 10346     int pcmpmask = 0x19;
 10347     // Setup to compare 16-byte vectors
 10348     movl(result, cnt2);
 10349     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
 10350     jccb(Assembler::zero, COMPARE_TAIL);
 10352     lea(str1, Address(str1, result, scale));
 10353     lea(str2, Address(str2, result, scale));
 10354     negptr(result);
 10356     // pcmpestri
 10357     //   inputs:
 10358     //     vec1- substring
 10359     //     rax - negative string length (elements count)
 10360     //     mem - scaned string
 10361     //     rdx - string length (elements count)
 10362     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
 10363     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
 10364     //   outputs:
 10365     //     rcx - first mismatched element index
 10366     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
 10368     bind(COMPARE_WIDE_VECTORS);
 10369     movdqu(vec1, Address(str1, result, scale));
 10370     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
 10371     // After pcmpestri cnt1(rcx) contains mismatched element index
 10373     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
 10374     addptr(result, stride);
 10375     subptr(cnt2, stride);
 10376     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
 10378     // compare wide vectors tail
 10379     testl(result, result);
 10380     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
 10382     movl(cnt2, stride);
 10383     movl(result, stride);
 10384     negptr(result);
 10385     movdqu(vec1, Address(str1, result, scale));
 10386     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
 10387     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
 10389     // Mismatched characters in the vectors
 10390     bind(VECTOR_NOT_EQUAL);
 10391     addptr(result, cnt1);
 10392     movptr(cnt2, result);
 10393     load_unsigned_short(result, Address(str1, cnt2, scale));
 10394     load_unsigned_short(cnt1, Address(str2, cnt2, scale));
 10395     subl(result, cnt1);
 10396     jmpb(POP_LABEL);
 10398     bind(COMPARE_TAIL); // limit is zero
 10399     movl(cnt2, result);
 10400     // Fallthru to tail compare
 10403   // Shift str2 and str1 to the end of the arrays, negate min
 10404   lea(str1, Address(str1, cnt2, scale, 0));
 10405   lea(str2, Address(str2, cnt2, scale, 0));
 10406   negptr(cnt2);
 10408   // Compare the rest of the elements
 10409   bind(WHILE_HEAD_LABEL);
 10410   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
 10411   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
 10412   subl(result, cnt1);
 10413   jccb(Assembler::notZero, POP_LABEL);
 10414   increment(cnt2);
 10415   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
 10417   // Strings are equal up to min length.  Return the length difference.
 10418   bind(LENGTH_DIFF_LABEL);
 10419   pop(result);
 10420   jmpb(DONE_LABEL);
 10422   // Discard the stored length difference
 10423   bind(POP_LABEL);
 10424   pop(cnt1);
 10426   // That's it
 10427   bind(DONE_LABEL);
 10430 // Compare char[] arrays aligned to 4 bytes or substrings.
 10431 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
 10432                                         Register limit, Register result, Register chr,
 10433                                         XMMRegister vec1, XMMRegister vec2) {
 10434   ShortBranchVerifier sbv(this);
 10435   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
 10437   int length_offset  = arrayOopDesc::length_offset_in_bytes();
 10438   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
 10440   // Check the input args
 10441   cmpptr(ary1, ary2);
 10442   jcc(Assembler::equal, TRUE_LABEL);
 10444   if (is_array_equ) {
 10445     // Need additional checks for arrays_equals.
 10446     testptr(ary1, ary1);
 10447     jcc(Assembler::zero, FALSE_LABEL);
 10448     testptr(ary2, ary2);
 10449     jcc(Assembler::zero, FALSE_LABEL);
 10451     // Check the lengths
 10452     movl(limit, Address(ary1, length_offset));
 10453     cmpl(limit, Address(ary2, length_offset));
 10454     jcc(Assembler::notEqual, FALSE_LABEL);
 10457   // count == 0
 10458   testl(limit, limit);
 10459   jcc(Assembler::zero, TRUE_LABEL);
 10461   if (is_array_equ) {
 10462     // Load array address
 10463     lea(ary1, Address(ary1, base_offset));
 10464     lea(ary2, Address(ary2, base_offset));
 10467   shll(limit, 1);      // byte count != 0
 10468   movl(result, limit); // copy
 10470   if (UseSSE42Intrinsics) {
 10471     // With SSE4.2, use double quad vector compare
 10472     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
 10474     // Compare 16-byte vectors
 10475     andl(result, 0x0000000e);  //   tail count (in bytes)
 10476     andl(limit, 0xfffffff0);   // vector count (in bytes)
 10477     jccb(Assembler::zero, COMPARE_TAIL);
 10479     lea(ary1, Address(ary1, limit, Address::times_1));
 10480     lea(ary2, Address(ary2, limit, Address::times_1));
 10481     negptr(limit);
 10483     bind(COMPARE_WIDE_VECTORS);
 10484     movdqu(vec1, Address(ary1, limit, Address::times_1));
 10485     movdqu(vec2, Address(ary2, limit, Address::times_1));
 10486     pxor(vec1, vec2);
 10488     ptest(vec1, vec1);
 10489     jccb(Assembler::notZero, FALSE_LABEL);
 10490     addptr(limit, 16);
 10491     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
 10493     testl(result, result);
 10494     jccb(Assembler::zero, TRUE_LABEL);
 10496     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
 10497     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
 10498     pxor(vec1, vec2);
 10500     ptest(vec1, vec1);
 10501     jccb(Assembler::notZero, FALSE_LABEL);
 10502     jmpb(TRUE_LABEL);
 10504     bind(COMPARE_TAIL); // limit is zero
 10505     movl(limit, result);
 10506     // Fallthru to tail compare
 10509   // Compare 4-byte vectors
 10510   andl(limit, 0xfffffffc); // vector count (in bytes)
 10511   jccb(Assembler::zero, COMPARE_CHAR);
 10513   lea(ary1, Address(ary1, limit, Address::times_1));
 10514   lea(ary2, Address(ary2, limit, Address::times_1));
 10515   negptr(limit);
 10517   bind(COMPARE_VECTORS);
 10518   movl(chr, Address(ary1, limit, Address::times_1));
 10519   cmpl(chr, Address(ary2, limit, Address::times_1));
 10520   jccb(Assembler::notEqual, FALSE_LABEL);
 10521   addptr(limit, 4);
 10522   jcc(Assembler::notZero, COMPARE_VECTORS);
 10524   // Compare trailing char (final 2 bytes), if any
 10525   bind(COMPARE_CHAR);
 10526   testl(result, 0x2);   // tail  char
 10527   jccb(Assembler::zero, TRUE_LABEL);
 10528   load_unsigned_short(chr, Address(ary1, 0));
 10529   load_unsigned_short(limit, Address(ary2, 0));
 10530   cmpl(chr, limit);
 10531   jccb(Assembler::notEqual, FALSE_LABEL);
 10533   bind(TRUE_LABEL);
 10534   movl(result, 1);   // return true
 10535   jmpb(DONE);
 10537   bind(FALSE_LABEL);
 10538   xorl(result, result); // return false
 10540   // That's it
 10541   bind(DONE);
 10544 #ifdef PRODUCT
 10545 #define BLOCK_COMMENT(str) /* nothing */
 10546 #else
 10547 #define BLOCK_COMMENT(str) block_comment(str)
 10548 #endif
 10550 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
 10551 void MacroAssembler::generate_fill(BasicType t, bool aligned,
 10552                                    Register to, Register value, Register count,
 10553                                    Register rtmp, XMMRegister xtmp) {
 10554   ShortBranchVerifier sbv(this);
 10555   assert_different_registers(to, value, count, rtmp);
 10556   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
 10557   Label L_fill_2_bytes, L_fill_4_bytes;
 10559   int shift = -1;
 10560   switch (t) {
 10561     case T_BYTE:
 10562       shift = 2;
 10563       break;
 10564     case T_SHORT:
 10565       shift = 1;
 10566       break;
 10567     case T_INT:
 10568       shift = 0;
 10569       break;
 10570     default: ShouldNotReachHere();
 10573   if (t == T_BYTE) {
 10574     andl(value, 0xff);
 10575     movl(rtmp, value);
 10576     shll(rtmp, 8);
 10577     orl(value, rtmp);
 10579   if (t == T_SHORT) {
 10580     andl(value, 0xffff);
 10582   if (t == T_BYTE || t == T_SHORT) {
 10583     movl(rtmp, value);
 10584     shll(rtmp, 16);
 10585     orl(value, rtmp);
 10588   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
 10589   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
 10590   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 10591     // align source address at 4 bytes address boundary
 10592     if (t == T_BYTE) {
 10593       // One byte misalignment happens only for byte arrays
 10594       testptr(to, 1);
 10595       jccb(Assembler::zero, L_skip_align1);
 10596       movb(Address(to, 0), value);
 10597       increment(to);
 10598       decrement(count);
 10599       BIND(L_skip_align1);
 10601     // Two bytes misalignment happens only for byte and short (char) arrays
 10602     testptr(to, 2);
 10603     jccb(Assembler::zero, L_skip_align2);
 10604     movw(Address(to, 0), value);
 10605     addptr(to, 2);
 10606     subl(count, 1<<(shift-1));
 10607     BIND(L_skip_align2);
 10609   if (UseSSE < 2) {
 10610     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 10611     // Fill 32-byte chunks
 10612     subl(count, 8 << shift);
 10613     jcc(Assembler::less, L_check_fill_8_bytes);
 10614     align(16);
 10616     BIND(L_fill_32_bytes_loop);
 10618     for (int i = 0; i < 32; i += 4) {
 10619       movl(Address(to, i), value);
 10622     addptr(to, 32);
 10623     subl(count, 8 << shift);
 10624     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 10625     BIND(L_check_fill_8_bytes);
 10626     addl(count, 8 << shift);
 10627     jccb(Assembler::zero, L_exit);
 10628     jmpb(L_fill_8_bytes);
 10630     //
 10631     // length is too short, just fill qwords
 10632     //
 10633     BIND(L_fill_8_bytes_loop);
 10634     movl(Address(to, 0), value);
 10635     movl(Address(to, 4), value);
 10636     addptr(to, 8);
 10637     BIND(L_fill_8_bytes);
 10638     subl(count, 1 << (shift + 1));
 10639     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 10640     // fall through to fill 4 bytes
 10641   } else {
 10642     Label L_fill_32_bytes;
 10643     if (!UseUnalignedLoadStores) {
 10644       // align to 8 bytes, we know we are 4 byte aligned to start
 10645       testptr(to, 4);
 10646       jccb(Assembler::zero, L_fill_32_bytes);
 10647       movl(Address(to, 0), value);
 10648       addptr(to, 4);
 10649       subl(count, 1<<shift);
 10651     BIND(L_fill_32_bytes);
 10653       assert( UseSSE >= 2, "supported cpu only" );
 10654       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 10655       // Fill 32-byte chunks
 10656       movdl(xtmp, value);
 10657       pshufd(xtmp, xtmp, 0);
 10659       subl(count, 8 << shift);
 10660       jcc(Assembler::less, L_check_fill_8_bytes);
 10661       align(16);
 10663       BIND(L_fill_32_bytes_loop);
 10665       if (UseUnalignedLoadStores) {
 10666         movdqu(Address(to, 0), xtmp);
 10667         movdqu(Address(to, 16), xtmp);
 10668       } else {
 10669         movq(Address(to, 0), xtmp);
 10670         movq(Address(to, 8), xtmp);
 10671         movq(Address(to, 16), xtmp);
 10672         movq(Address(to, 24), xtmp);
 10675       addptr(to, 32);
 10676       subl(count, 8 << shift);
 10677       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 10678       BIND(L_check_fill_8_bytes);
 10679       addl(count, 8 << shift);
 10680       jccb(Assembler::zero, L_exit);
 10681       jmpb(L_fill_8_bytes);
 10683       //
 10684       // length is too short, just fill qwords
 10685       //
 10686       BIND(L_fill_8_bytes_loop);
 10687       movq(Address(to, 0), xtmp);
 10688       addptr(to, 8);
 10689       BIND(L_fill_8_bytes);
 10690       subl(count, 1 << (shift + 1));
 10691       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 10694   // fill trailing 4 bytes
 10695   BIND(L_fill_4_bytes);
 10696   testl(count, 1<<shift);
 10697   jccb(Assembler::zero, L_fill_2_bytes);
 10698   movl(Address(to, 0), value);
 10699   if (t == T_BYTE || t == T_SHORT) {
 10700     addptr(to, 4);
 10701     BIND(L_fill_2_bytes);
 10702     // fill trailing 2 bytes
 10703     testl(count, 1<<(shift-1));
 10704     jccb(Assembler::zero, L_fill_byte);
 10705     movw(Address(to, 0), value);
 10706     if (t == T_BYTE) {
 10707       addptr(to, 2);
 10708       BIND(L_fill_byte);
 10709       // fill trailing byte
 10710       testl(count, 1);
 10711       jccb(Assembler::zero, L_exit);
 10712       movb(Address(to, 0), value);
 10713     } else {
 10714       BIND(L_fill_byte);
 10716   } else {
 10717     BIND(L_fill_2_bytes);
 10719   BIND(L_exit);
 10721 #undef BIND
 10722 #undef BLOCK_COMMENT
 10725 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
 10726   switch (cond) {
 10727     // Note some conditions are synonyms for others
 10728     case Assembler::zero:         return Assembler::notZero;
 10729     case Assembler::notZero:      return Assembler::zero;
 10730     case Assembler::less:         return Assembler::greaterEqual;
 10731     case Assembler::lessEqual:    return Assembler::greater;
 10732     case Assembler::greater:      return Assembler::lessEqual;
 10733     case Assembler::greaterEqual: return Assembler::less;
 10734     case Assembler::below:        return Assembler::aboveEqual;
 10735     case Assembler::belowEqual:   return Assembler::above;
 10736     case Assembler::above:        return Assembler::belowEqual;
 10737     case Assembler::aboveEqual:   return Assembler::below;
 10738     case Assembler::overflow:     return Assembler::noOverflow;
 10739     case Assembler::noOverflow:   return Assembler::overflow;
 10740     case Assembler::negative:     return Assembler::positive;
 10741     case Assembler::positive:     return Assembler::negative;
 10742     case Assembler::parity:       return Assembler::noParity;
 10743     case Assembler::noParity:     return Assembler::parity;
 10745   ShouldNotReachHere(); return Assembler::overflow;
 10748 SkipIfEqual::SkipIfEqual(
 10749     MacroAssembler* masm, const bool* flag_addr, bool value) {
 10750   _masm = masm;
 10751   _masm->cmp8(ExternalAddress((address)flag_addr), value);
 10752   _masm->jcc(Assembler::equal, _label);
 10755 SkipIfEqual::~SkipIfEqual() {
 10756   _masm->bind(_label);

mercurial