src/share/vm/c1/c1_LIRGenerator.cpp

Fri, 04 Jun 2010 11:18:04 -0700

author
iveresov
date
Fri, 04 Jun 2010 11:18:04 -0700
changeset 1939
b812ff5abc73
parent 1934
e9ff18c4ace7
child 2036
126ea7725993
permissions
-rw-r--r--

6958292: C1: Enable parallel compilation
Summary: Enable parallel compilation in C1
Reviewed-by: never, kvn

     1 /*
     2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRGenerator.cpp.incl"
    28 #ifdef ASSERT
    29 #define __ gen()->lir(__FILE__, __LINE__)->
    30 #else
    31 #define __ gen()->lir()->
    32 #endif
    35 void PhiResolverState::reset(int max_vregs) {
    36   // Initialize array sizes
    37   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    38   _virtual_operands.trunc_to(0);
    39   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    40   _other_operands.trunc_to(0);
    41   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
    42   _vreg_table.trunc_to(0);
    43 }
    47 //--------------------------------------------------------------
    48 // PhiResolver
    50 // Resolves cycles:
    51 //
    52 //  r1 := r2  becomes  temp := r1
    53 //  r2 := r1           r1 := r2
    54 //                     r2 := temp
    55 // and orders moves:
    56 //
    57 //  r2 := r3  becomes  r1 := r2
    58 //  r1 := r2           r2 := r3
    60 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
    61  : _gen(gen)
    62  , _state(gen->resolver_state())
    63  , _temp(LIR_OprFact::illegalOpr)
    64 {
    65   // reinitialize the shared state arrays
    66   _state.reset(max_vregs);
    67 }
    70 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
    71   assert(src->is_valid(), "");
    72   assert(dest->is_valid(), "");
    73   __ move(src, dest);
    74 }
    77 void PhiResolver::move_temp_to(LIR_Opr dest) {
    78   assert(_temp->is_valid(), "");
    79   emit_move(_temp, dest);
    80   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
    81 }
    84 void PhiResolver::move_to_temp(LIR_Opr src) {
    85   assert(_temp->is_illegal(), "");
    86   _temp = _gen->new_register(src->type());
    87   emit_move(src, _temp);
    88 }
    91 // Traverse assignment graph in depth first order and generate moves in post order
    92 // ie. two assignments: b := c, a := b start with node c:
    93 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
    94 // Generates moves in this order: move b to a and move c to b
    95 // ie. cycle a := b, b := a start with node a
    96 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
    97 // Generates moves in this order: move b to temp, move a to b, move temp to a
    98 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
    99   if (!dest->visited()) {
   100     dest->set_visited();
   101     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
   102       move(dest, dest->destination_at(i));
   103     }
   104   } else if (!dest->start_node()) {
   105     // cylce in graph detected
   106     assert(_loop == NULL, "only one loop valid!");
   107     _loop = dest;
   108     move_to_temp(src->operand());
   109     return;
   110   } // else dest is a start node
   112   if (!dest->assigned()) {
   113     if (_loop == dest) {
   114       move_temp_to(dest->operand());
   115       dest->set_assigned();
   116     } else if (src != NULL) {
   117       emit_move(src->operand(), dest->operand());
   118       dest->set_assigned();
   119     }
   120   }
   121 }
   124 PhiResolver::~PhiResolver() {
   125   int i;
   126   // resolve any cycles in moves from and to virtual registers
   127   for (i = virtual_operands().length() - 1; i >= 0; i --) {
   128     ResolveNode* node = virtual_operands()[i];
   129     if (!node->visited()) {
   130       _loop = NULL;
   131       move(NULL, node);
   132       node->set_start_node();
   133       assert(_temp->is_illegal(), "move_temp_to() call missing");
   134     }
   135   }
   137   // generate move for move from non virtual register to abitrary destination
   138   for (i = other_operands().length() - 1; i >= 0; i --) {
   139     ResolveNode* node = other_operands()[i];
   140     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
   141       emit_move(node->operand(), node->destination_at(j)->operand());
   142     }
   143   }
   144 }
   147 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
   148   ResolveNode* node;
   149   if (opr->is_virtual()) {
   150     int vreg_num = opr->vreg_number();
   151     node = vreg_table().at_grow(vreg_num, NULL);
   152     assert(node == NULL || node->operand() == opr, "");
   153     if (node == NULL) {
   154       node = new ResolveNode(opr);
   155       vreg_table()[vreg_num] = node;
   156     }
   157     // Make sure that all virtual operands show up in the list when
   158     // they are used as the source of a move.
   159     if (source && !virtual_operands().contains(node)) {
   160       virtual_operands().append(node);
   161     }
   162   } else {
   163     assert(source, "");
   164     node = new ResolveNode(opr);
   165     other_operands().append(node);
   166   }
   167   return node;
   168 }
   171 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
   172   assert(dest->is_virtual(), "");
   173   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
   174   assert(src->is_valid(), "");
   175   assert(dest->is_valid(), "");
   176   ResolveNode* source = source_node(src);
   177   source->append(destination_node(dest));
   178 }
   181 //--------------------------------------------------------------
   182 // LIRItem
   184 void LIRItem::set_result(LIR_Opr opr) {
   185   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
   186   value()->set_operand(opr);
   188   if (opr->is_virtual()) {
   189     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
   190   }
   192   _result = opr;
   193 }
   195 void LIRItem::load_item() {
   196   if (result()->is_illegal()) {
   197     // update the items result
   198     _result = value()->operand();
   199   }
   200   if (!result()->is_register()) {
   201     LIR_Opr reg = _gen->new_register(value()->type());
   202     __ move(result(), reg);
   203     if (result()->is_constant()) {
   204       _result = reg;
   205     } else {
   206       set_result(reg);
   207     }
   208   }
   209 }
   212 void LIRItem::load_for_store(BasicType type) {
   213   if (_gen->can_store_as_constant(value(), type)) {
   214     _result = value()->operand();
   215     if (!_result->is_constant()) {
   216       _result = LIR_OprFact::value_type(value()->type());
   217     }
   218   } else if (type == T_BYTE || type == T_BOOLEAN) {
   219     load_byte_item();
   220   } else {
   221     load_item();
   222   }
   223 }
   225 void LIRItem::load_item_force(LIR_Opr reg) {
   226   LIR_Opr r = result();
   227   if (r != reg) {
   228     if (r->type() != reg->type()) {
   229       // moves between different types need an intervening spill slot
   230       LIR_Opr tmp = _gen->force_to_spill(r, reg->type());
   231       __ move(tmp, reg);
   232     } else {
   233       __ move(r, reg);
   234     }
   235     _result = reg;
   236   }
   237 }
   239 ciObject* LIRItem::get_jobject_constant() const {
   240   ObjectType* oc = type()->as_ObjectType();
   241   if (oc) {
   242     return oc->constant_value();
   243   }
   244   return NULL;
   245 }
   248 jint LIRItem::get_jint_constant() const {
   249   assert(is_constant() && value() != NULL, "");
   250   assert(type()->as_IntConstant() != NULL, "type check");
   251   return type()->as_IntConstant()->value();
   252 }
   255 jint LIRItem::get_address_constant() const {
   256   assert(is_constant() && value() != NULL, "");
   257   assert(type()->as_AddressConstant() != NULL, "type check");
   258   return type()->as_AddressConstant()->value();
   259 }
   262 jfloat LIRItem::get_jfloat_constant() const {
   263   assert(is_constant() && value() != NULL, "");
   264   assert(type()->as_FloatConstant() != NULL, "type check");
   265   return type()->as_FloatConstant()->value();
   266 }
   269 jdouble LIRItem::get_jdouble_constant() const {
   270   assert(is_constant() && value() != NULL, "");
   271   assert(type()->as_DoubleConstant() != NULL, "type check");
   272   return type()->as_DoubleConstant()->value();
   273 }
   276 jlong LIRItem::get_jlong_constant() const {
   277   assert(is_constant() && value() != NULL, "");
   278   assert(type()->as_LongConstant() != NULL, "type check");
   279   return type()->as_LongConstant()->value();
   280 }
   284 //--------------------------------------------------------------
   287 void LIRGenerator::init() {
   288   _bs = Universe::heap()->barrier_set();
   289 }
   292 void LIRGenerator::block_do_prolog(BlockBegin* block) {
   293 #ifndef PRODUCT
   294   if (PrintIRWithLIR) {
   295     block->print();
   296   }
   297 #endif
   299   // set up the list of LIR instructions
   300   assert(block->lir() == NULL, "LIR list already computed for this block");
   301   _lir = new LIR_List(compilation(), block);
   302   block->set_lir(_lir);
   304   __ branch_destination(block->label());
   306   if (LIRTraceExecution &&
   307       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
   308       !block->is_set(BlockBegin::exception_entry_flag)) {
   309     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
   310     trace_block_entry(block);
   311   }
   312 }
   315 void LIRGenerator::block_do_epilog(BlockBegin* block) {
   316 #ifndef PRODUCT
   317   if (PrintIRWithLIR) {
   318     tty->cr();
   319   }
   320 #endif
   322   // LIR_Opr for unpinned constants shouldn't be referenced by other
   323   // blocks so clear them out after processing the block.
   324   for (int i = 0; i < _unpinned_constants.length(); i++) {
   325     _unpinned_constants.at(i)->clear_operand();
   326   }
   327   _unpinned_constants.trunc_to(0);
   329   // clear our any registers for other local constants
   330   _constants.trunc_to(0);
   331   _reg_for_constants.trunc_to(0);
   332 }
   335 void LIRGenerator::block_do(BlockBegin* block) {
   336   CHECK_BAILOUT();
   338   block_do_prolog(block);
   339   set_block(block);
   341   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
   342     if (instr->is_pinned()) do_root(instr);
   343   }
   345   set_block(NULL);
   346   block_do_epilog(block);
   347 }
   350 //-------------------------LIRGenerator-----------------------------
   352 // This is where the tree-walk starts; instr must be root;
   353 void LIRGenerator::do_root(Value instr) {
   354   CHECK_BAILOUT();
   356   InstructionMark im(compilation(), instr);
   358   assert(instr->is_pinned(), "use only with roots");
   359   assert(instr->subst() == instr, "shouldn't have missed substitution");
   361   instr->visit(this);
   363   assert(!instr->has_uses() || instr->operand()->is_valid() ||
   364          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
   365 }
   368 // This is called for each node in tree; the walk stops if a root is reached
   369 void LIRGenerator::walk(Value instr) {
   370   InstructionMark im(compilation(), instr);
   371   //stop walk when encounter a root
   372   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
   373     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
   374   } else {
   375     assert(instr->subst() == instr, "shouldn't have missed substitution");
   376     instr->visit(this);
   377     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
   378   }
   379 }
   382 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
   383   int index;
   384   Value value;
   385   for_each_stack_value(state, index, value) {
   386     assert(value->subst() == value, "missed substition");
   387     if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   388       walk(value);
   389       assert(value->operand()->is_valid(), "must be evaluated now");
   390     }
   391   }
   392   ValueStack* s = state;
   393   int bci = x->bci();
   394   for_each_state(s) {
   395     IRScope* scope = s->scope();
   396     ciMethod* method = scope->method();
   398     MethodLivenessResult liveness = method->liveness_at_bci(bci);
   399     if (bci == SynchronizationEntryBCI) {
   400       if (x->as_ExceptionObject() || x->as_Throw()) {
   401         // all locals are dead on exit from the synthetic unlocker
   402         liveness.clear();
   403       } else {
   404         assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
   405       }
   406     }
   407     if (!liveness.is_valid()) {
   408       // Degenerate or breakpointed method.
   409       bailout("Degenerate or breakpointed method");
   410     } else {
   411       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
   412       for_each_local_value(s, index, value) {
   413         assert(value->subst() == value, "missed substition");
   414         if (liveness.at(index) && !value->type()->is_illegal()) {
   415           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   416             walk(value);
   417             assert(value->operand()->is_valid(), "must be evaluated now");
   418           }
   419         } else {
   420           // NULL out this local so that linear scan can assume that all non-NULL values are live.
   421           s->invalidate_local(index);
   422         }
   423       }
   424     }
   425     bci = scope->caller_bci();
   426   }
   428   return new CodeEmitInfo(x->bci(), state, ignore_xhandler ? NULL : x->exception_handlers());
   429 }
   432 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
   433   return state_for(x, x->lock_stack());
   434 }
   437 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
   438   if (!obj->is_loaded() || PatchALot) {
   439     assert(info != NULL, "info must be set if class is not loaded");
   440     __ oop2reg_patch(NULL, r, info);
   441   } else {
   442     // no patching needed
   443     __ oop2reg(obj->constant_encoding(), r);
   444   }
   445 }
   448 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
   449                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
   450   CodeStub* stub = new RangeCheckStub(range_check_info, index);
   451   if (index->is_constant()) {
   452     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
   453                 index->as_jint(), null_check_info);
   454     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   455   } else {
   456     cmp_reg_mem(lir_cond_aboveEqual, index, array,
   457                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
   458     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   459   }
   460 }
   463 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
   464   CodeStub* stub = new RangeCheckStub(info, index, true);
   465   if (index->is_constant()) {
   466     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
   467     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   468   } else {
   469     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
   470                 java_nio_Buffer::limit_offset(), T_INT, info);
   471     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   472   }
   473   __ move(index, result);
   474 }
   477 // increment a counter returning the incremented value
   478 LIR_Opr LIRGenerator::increment_and_return_counter(LIR_Opr base, int offset, int increment) {
   479   LIR_Address* counter = new LIR_Address(base, offset, T_INT);
   480   LIR_Opr result = new_register(T_INT);
   481   __ load(counter, result);
   482   __ add(result, LIR_OprFact::intConst(increment), result);
   483   __ store(result, counter);
   484   return result;
   485 }
   488 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
   489   LIR_Opr result_op = result;
   490   LIR_Opr left_op   = left;
   491   LIR_Opr right_op  = right;
   493   if (TwoOperandLIRForm && left_op != result_op) {
   494     assert(right_op != result_op, "malformed");
   495     __ move(left_op, result_op);
   496     left_op = result_op;
   497   }
   499   switch(code) {
   500     case Bytecodes::_dadd:
   501     case Bytecodes::_fadd:
   502     case Bytecodes::_ladd:
   503     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
   504     case Bytecodes::_fmul:
   505     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
   507     case Bytecodes::_dmul:
   508       {
   509         if (is_strictfp) {
   510           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
   511         } else {
   512           __ mul(left_op, right_op, result_op); break;
   513         }
   514       }
   515       break;
   517     case Bytecodes::_imul:
   518       {
   519         bool    did_strength_reduce = false;
   521         if (right->is_constant()) {
   522           int c = right->as_jint();
   523           if (is_power_of_2(c)) {
   524             // do not need tmp here
   525             __ shift_left(left_op, exact_log2(c), result_op);
   526             did_strength_reduce = true;
   527           } else {
   528             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
   529           }
   530         }
   531         // we couldn't strength reduce so just emit the multiply
   532         if (!did_strength_reduce) {
   533           __ mul(left_op, right_op, result_op);
   534         }
   535       }
   536       break;
   538     case Bytecodes::_dsub:
   539     case Bytecodes::_fsub:
   540     case Bytecodes::_lsub:
   541     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
   543     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
   544     // ldiv and lrem are implemented with a direct runtime call
   546     case Bytecodes::_ddiv:
   547       {
   548         if (is_strictfp) {
   549           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
   550         } else {
   551           __ div (left_op, right_op, result_op); break;
   552         }
   553       }
   554       break;
   556     case Bytecodes::_drem:
   557     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
   559     default: ShouldNotReachHere();
   560   }
   561 }
   564 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
   565   arithmetic_op(code, result, left, right, false, tmp);
   566 }
   569 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
   570   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
   571 }
   574 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
   575   arithmetic_op(code, result, left, right, is_strictfp, tmp);
   576 }
   579 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
   580   if (TwoOperandLIRForm && value != result_op) {
   581     assert(count != result_op, "malformed");
   582     __ move(value, result_op);
   583     value = result_op;
   584   }
   586   assert(count->is_constant() || count->is_register(), "must be");
   587   switch(code) {
   588   case Bytecodes::_ishl:
   589   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
   590   case Bytecodes::_ishr:
   591   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
   592   case Bytecodes::_iushr:
   593   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
   594   default: ShouldNotReachHere();
   595   }
   596 }
   599 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
   600   if (TwoOperandLIRForm && left_op != result_op) {
   601     assert(right_op != result_op, "malformed");
   602     __ move(left_op, result_op);
   603     left_op = result_op;
   604   }
   606   switch(code) {
   607     case Bytecodes::_iand:
   608     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
   610     case Bytecodes::_ior:
   611     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
   613     case Bytecodes::_ixor:
   614     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
   616     default: ShouldNotReachHere();
   617   }
   618 }
   621 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
   622   if (!GenerateSynchronizationCode) return;
   623   // for slow path, use debug info for state after successful locking
   624   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
   625   __ load_stack_address_monitor(monitor_no, lock);
   626   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
   627   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
   628 }
   631 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, int monitor_no) {
   632   if (!GenerateSynchronizationCode) return;
   633   // setup registers
   634   LIR_Opr hdr = lock;
   635   lock = new_hdr;
   636   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
   637   __ load_stack_address_monitor(monitor_no, lock);
   638   __ unlock_object(hdr, object, lock, slow_path);
   639 }
   642 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
   643   jobject2reg_with_patching(klass_reg, klass, info);
   644   // If klass is not loaded we do not know if the klass has finalizers:
   645   if (UseFastNewInstance && klass->is_loaded()
   646       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
   648     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
   650     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
   652     assert(klass->is_loaded(), "must be loaded");
   653     // allocate space for instance
   654     assert(klass->size_helper() >= 0, "illegal instance size");
   655     const int instance_size = align_object_size(klass->size_helper());
   656     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
   657                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
   658   } else {
   659     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
   660     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
   661     __ branch_destination(slow_path->continuation());
   662   }
   663 }
   666 static bool is_constant_zero(Instruction* inst) {
   667   IntConstant* c = inst->type()->as_IntConstant();
   668   if (c) {
   669     return (c->value() == 0);
   670   }
   671   return false;
   672 }
   675 static bool positive_constant(Instruction* inst) {
   676   IntConstant* c = inst->type()->as_IntConstant();
   677   if (c) {
   678     return (c->value() >= 0);
   679   }
   680   return false;
   681 }
   684 static ciArrayKlass* as_array_klass(ciType* type) {
   685   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
   686     return (ciArrayKlass*)type;
   687   } else {
   688     return NULL;
   689   }
   690 }
   692 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
   693   Instruction* src     = x->argument_at(0);
   694   Instruction* src_pos = x->argument_at(1);
   695   Instruction* dst     = x->argument_at(2);
   696   Instruction* dst_pos = x->argument_at(3);
   697   Instruction* length  = x->argument_at(4);
   699   // first try to identify the likely type of the arrays involved
   700   ciArrayKlass* expected_type = NULL;
   701   bool is_exact = false;
   702   {
   703     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
   704     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
   705     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
   706     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
   707     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
   708       // the types exactly match so the type is fully known
   709       is_exact = true;
   710       expected_type = src_exact_type;
   711     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
   712       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
   713       ciArrayKlass* src_type = NULL;
   714       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
   715         src_type = (ciArrayKlass*) src_exact_type;
   716       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
   717         src_type = (ciArrayKlass*) src_declared_type;
   718       }
   719       if (src_type != NULL) {
   720         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
   721           is_exact = true;
   722           expected_type = dst_type;
   723         }
   724       }
   725     }
   726     // at least pass along a good guess
   727     if (expected_type == NULL) expected_type = dst_exact_type;
   728     if (expected_type == NULL) expected_type = src_declared_type;
   729     if (expected_type == NULL) expected_type = dst_declared_type;
   730   }
   732   // if a probable array type has been identified, figure out if any
   733   // of the required checks for a fast case can be elided.
   734   int flags = LIR_OpArrayCopy::all_flags;
   735   if (expected_type != NULL) {
   736     // try to skip null checks
   737     if (src->as_NewArray() != NULL)
   738       flags &= ~LIR_OpArrayCopy::src_null_check;
   739     if (dst->as_NewArray() != NULL)
   740       flags &= ~LIR_OpArrayCopy::dst_null_check;
   742     // check from incoming constant values
   743     if (positive_constant(src_pos))
   744       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
   745     if (positive_constant(dst_pos))
   746       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
   747     if (positive_constant(length))
   748       flags &= ~LIR_OpArrayCopy::length_positive_check;
   750     // see if the range check can be elided, which might also imply
   751     // that src or dst is non-null.
   752     ArrayLength* al = length->as_ArrayLength();
   753     if (al != NULL) {
   754       if (al->array() == src) {
   755         // it's the length of the source array
   756         flags &= ~LIR_OpArrayCopy::length_positive_check;
   757         flags &= ~LIR_OpArrayCopy::src_null_check;
   758         if (is_constant_zero(src_pos))
   759           flags &= ~LIR_OpArrayCopy::src_range_check;
   760       }
   761       if (al->array() == dst) {
   762         // it's the length of the destination array
   763         flags &= ~LIR_OpArrayCopy::length_positive_check;
   764         flags &= ~LIR_OpArrayCopy::dst_null_check;
   765         if (is_constant_zero(dst_pos))
   766           flags &= ~LIR_OpArrayCopy::dst_range_check;
   767       }
   768     }
   769     if (is_exact) {
   770       flags &= ~LIR_OpArrayCopy::type_check;
   771     }
   772   }
   774   if (src == dst) {
   775     // moving within a single array so no type checks are needed
   776     if (flags & LIR_OpArrayCopy::type_check) {
   777       flags &= ~LIR_OpArrayCopy::type_check;
   778     }
   779   }
   780   *flagsp = flags;
   781   *expected_typep = (ciArrayKlass*)expected_type;
   782 }
   785 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
   786   assert(opr->is_register(), "why spill if item is not register?");
   788   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
   789     LIR_Opr result = new_register(T_FLOAT);
   790     set_vreg_flag(result, must_start_in_memory);
   791     assert(opr->is_register(), "only a register can be spilled");
   792     assert(opr->value_type()->is_float(), "rounding only for floats available");
   793     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
   794     return result;
   795   }
   796   return opr;
   797 }
   800 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
   801   assert(type2size[t] == type2size[value->type()], "size mismatch");
   802   if (!value->is_register()) {
   803     // force into a register
   804     LIR_Opr r = new_register(value->type());
   805     __ move(value, r);
   806     value = r;
   807   }
   809   // create a spill location
   810   LIR_Opr tmp = new_register(t);
   811   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
   813   // move from register to spill
   814   __ move(value, tmp);
   815   return tmp;
   816 }
   819 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
   820   if (if_instr->should_profile()) {
   821     ciMethod* method = if_instr->profiled_method();
   822     assert(method != NULL, "method should be set if branch is profiled");
   823     ciMethodData* md = method->method_data();
   824     if (md == NULL) {
   825       bailout("out of memory building methodDataOop");
   826       return;
   827     }
   828     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
   829     assert(data != NULL, "must have profiling data");
   830     assert(data->is_BranchData(), "need BranchData for two-way branches");
   831     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
   832     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
   833     LIR_Opr md_reg = new_register(T_OBJECT);
   834     __ move(LIR_OprFact::oopConst(md->constant_encoding()), md_reg);
   835     LIR_Opr data_offset_reg = new_register(T_INT);
   836     __ cmove(lir_cond(cond),
   837              LIR_OprFact::intConst(taken_count_offset),
   838              LIR_OprFact::intConst(not_taken_count_offset),
   839              data_offset_reg);
   840     LIR_Opr data_reg = new_register(T_INT);
   841     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, T_INT);
   842     __ move(LIR_OprFact::address(data_addr), data_reg);
   843     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
   844     // Use leal instead of add to avoid destroying condition codes on x86
   845     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
   846     __ move(data_reg, LIR_OprFact::address(data_addr));
   847   }
   848 }
   851 // Phi technique:
   852 // This is about passing live values from one basic block to the other.
   853 // In code generated with Java it is rather rare that more than one
   854 // value is on the stack from one basic block to the other.
   855 // We optimize our technique for efficient passing of one value
   856 // (of type long, int, double..) but it can be extended.
   857 // When entering or leaving a basic block, all registers and all spill
   858 // slots are release and empty. We use the released registers
   859 // and spill slots to pass the live values from one block
   860 // to the other. The topmost value, i.e., the value on TOS of expression
   861 // stack is passed in registers. All other values are stored in spilling
   862 // area. Every Phi has an index which designates its spill slot
   863 // At exit of a basic block, we fill the register(s) and spill slots.
   864 // At entry of a basic block, the block_prolog sets up the content of phi nodes
   865 // and locks necessary registers and spilling slots.
   868 // move current value to referenced phi function
   869 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
   870   Phi* phi = sux_val->as_Phi();
   871   // cur_val can be null without phi being null in conjunction with inlining
   872   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
   873     LIR_Opr operand = cur_val->operand();
   874     if (cur_val->operand()->is_illegal()) {
   875       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
   876              "these can be produced lazily");
   877       operand = operand_for_instruction(cur_val);
   878     }
   879     resolver->move(operand, operand_for_instruction(phi));
   880   }
   881 }
   884 // Moves all stack values into their PHI position
   885 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
   886   BlockBegin* bb = block();
   887   if (bb->number_of_sux() == 1) {
   888     BlockBegin* sux = bb->sux_at(0);
   889     assert(sux->number_of_preds() > 0, "invalid CFG");
   891     // a block with only one predecessor never has phi functions
   892     if (sux->number_of_preds() > 1) {
   893       int max_phis = cur_state->stack_size() + cur_state->locals_size();
   894       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
   896       ValueStack* sux_state = sux->state();
   897       Value sux_value;
   898       int index;
   900       for_each_stack_value(sux_state, index, sux_value) {
   901         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
   902       }
   904       // Inlining may cause the local state not to match up, so walk up
   905       // the caller state until we get to the same scope as the
   906       // successor and then start processing from there.
   907       while (cur_state->scope() != sux_state->scope()) {
   908         cur_state = cur_state->caller_state();
   909         assert(cur_state != NULL, "scopes don't match up");
   910       }
   912       for_each_local_value(sux_state, index, sux_value) {
   913         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
   914       }
   916       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
   917     }
   918   }
   919 }
   922 LIR_Opr LIRGenerator::new_register(BasicType type) {
   923   int vreg = _virtual_register_number;
   924   // add a little fudge factor for the bailout, since the bailout is
   925   // only checked periodically.  This gives a few extra registers to
   926   // hand out before we really run out, which helps us keep from
   927   // tripping over assertions.
   928   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
   929     bailout("out of virtual registers");
   930     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
   931       // wrap it around
   932       _virtual_register_number = LIR_OprDesc::vreg_base;
   933     }
   934   }
   935   _virtual_register_number += 1;
   936   if (type == T_ADDRESS) type = T_INT;
   937   return LIR_OprFact::virtual_register(vreg, type);
   938 }
   941 // Try to lock using register in hint
   942 LIR_Opr LIRGenerator::rlock(Value instr) {
   943   return new_register(instr->type());
   944 }
   947 // does an rlock and sets result
   948 LIR_Opr LIRGenerator::rlock_result(Value x) {
   949   LIR_Opr reg = rlock(x);
   950   set_result(x, reg);
   951   return reg;
   952 }
   955 // does an rlock and sets result
   956 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
   957   LIR_Opr reg;
   958   switch (type) {
   959   case T_BYTE:
   960   case T_BOOLEAN:
   961     reg = rlock_byte(type);
   962     break;
   963   default:
   964     reg = rlock(x);
   965     break;
   966   }
   968   set_result(x, reg);
   969   return reg;
   970 }
   973 //---------------------------------------------------------------------
   974 ciObject* LIRGenerator::get_jobject_constant(Value value) {
   975   ObjectType* oc = value->type()->as_ObjectType();
   976   if (oc) {
   977     return oc->constant_value();
   978   }
   979   return NULL;
   980 }
   983 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
   984   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
   985   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
   987   // no moves are created for phi functions at the begin of exception
   988   // handlers, so assign operands manually here
   989   for_each_phi_fun(block(), phi,
   990                    operand_for_instruction(phi));
   992   LIR_Opr thread_reg = getThreadPointer();
   993   __ move(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
   994           exceptionOopOpr());
   995   __ move(LIR_OprFact::oopConst(NULL),
   996           new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
   997   __ move(LIR_OprFact::oopConst(NULL),
   998           new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
  1000   LIR_Opr result = new_register(T_OBJECT);
  1001   __ move(exceptionOopOpr(), result);
  1002   set_result(x, result);
  1006 //----------------------------------------------------------------------
  1007 //----------------------------------------------------------------------
  1008 //----------------------------------------------------------------------
  1009 //----------------------------------------------------------------------
  1010 //                        visitor functions
  1011 //----------------------------------------------------------------------
  1012 //----------------------------------------------------------------------
  1013 //----------------------------------------------------------------------
  1014 //----------------------------------------------------------------------
  1016 void LIRGenerator::do_Phi(Phi* x) {
  1017   // phi functions are never visited directly
  1018   ShouldNotReachHere();
  1022 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
  1023 void LIRGenerator::do_Constant(Constant* x) {
  1024   if (x->state() != NULL) {
  1025     // Any constant with a ValueStack requires patching so emit the patch here
  1026     LIR_Opr reg = rlock_result(x);
  1027     CodeEmitInfo* info = state_for(x, x->state());
  1028     __ oop2reg_patch(NULL, reg, info);
  1029   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
  1030     if (!x->is_pinned()) {
  1031       // unpinned constants are handled specially so that they can be
  1032       // put into registers when they are used multiple times within a
  1033       // block.  After the block completes their operand will be
  1034       // cleared so that other blocks can't refer to that register.
  1035       set_result(x, load_constant(x));
  1036     } else {
  1037       LIR_Opr res = x->operand();
  1038       if (!res->is_valid()) {
  1039         res = LIR_OprFact::value_type(x->type());
  1041       if (res->is_constant()) {
  1042         LIR_Opr reg = rlock_result(x);
  1043         __ move(res, reg);
  1044       } else {
  1045         set_result(x, res);
  1048   } else {
  1049     set_result(x, LIR_OprFact::value_type(x->type()));
  1054 void LIRGenerator::do_Local(Local* x) {
  1055   // operand_for_instruction has the side effect of setting the result
  1056   // so there's no need to do it here.
  1057   operand_for_instruction(x);
  1061 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
  1062   Unimplemented();
  1066 void LIRGenerator::do_Return(Return* x) {
  1067   if (compilation()->env()->dtrace_method_probes()) {
  1068     BasicTypeList signature;
  1069     signature.append(T_INT);    // thread
  1070     signature.append(T_OBJECT); // methodOop
  1071     LIR_OprList* args = new LIR_OprList();
  1072     args->append(getThreadPointer());
  1073     LIR_Opr meth = new_register(T_OBJECT);
  1074     __ oop2reg(method()->constant_encoding(), meth);
  1075     args->append(meth);
  1076     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
  1079   if (x->type()->is_void()) {
  1080     __ return_op(LIR_OprFact::illegalOpr);
  1081   } else {
  1082     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
  1083     LIRItem result(x->result(), this);
  1085     result.load_item_force(reg);
  1086     __ return_op(result.result());
  1088   set_no_result(x);
  1092 // Example: object.getClass ()
  1093 void LIRGenerator::do_getClass(Intrinsic* x) {
  1094   assert(x->number_of_arguments() == 1, "wrong type");
  1096   LIRItem rcvr(x->argument_at(0), this);
  1097   rcvr.load_item();
  1098   LIR_Opr result = rlock_result(x);
  1100   // need to perform the null check on the rcvr
  1101   CodeEmitInfo* info = NULL;
  1102   if (x->needs_null_check()) {
  1103     info = state_for(x, x->state()->copy_locks());
  1105   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
  1106   __ move(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
  1107                           klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
  1111 // Example: Thread.currentThread()
  1112 void LIRGenerator::do_currentThread(Intrinsic* x) {
  1113   assert(x->number_of_arguments() == 0, "wrong type");
  1114   LIR_Opr reg = rlock_result(x);
  1115   __ load(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
  1119 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
  1120   assert(x->number_of_arguments() == 1, "wrong type");
  1121   LIRItem receiver(x->argument_at(0), this);
  1123   receiver.load_item();
  1124   BasicTypeList signature;
  1125   signature.append(T_OBJECT); // receiver
  1126   LIR_OprList* args = new LIR_OprList();
  1127   args->append(receiver.result());
  1128   CodeEmitInfo* info = state_for(x, x->state());
  1129   call_runtime(&signature, args,
  1130                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
  1131                voidType, info);
  1133   set_no_result(x);
  1137 //------------------------local access--------------------------------------
  1139 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
  1140   if (x->operand()->is_illegal()) {
  1141     Constant* c = x->as_Constant();
  1142     if (c != NULL) {
  1143       x->set_operand(LIR_OprFact::value_type(c->type()));
  1144     } else {
  1145       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
  1146       // allocate a virtual register for this local or phi
  1147       x->set_operand(rlock(x));
  1148       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
  1151   return x->operand();
  1155 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
  1156   if (opr->is_virtual()) {
  1157     return instruction_for_vreg(opr->vreg_number());
  1159   return NULL;
  1163 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
  1164   if (reg_num < _instruction_for_operand.length()) {
  1165     return _instruction_for_operand.at(reg_num);
  1167   return NULL;
  1171 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
  1172   if (_vreg_flags.size_in_bits() == 0) {
  1173     BitMap2D temp(100, num_vreg_flags);
  1174     temp.clear();
  1175     _vreg_flags = temp;
  1177   _vreg_flags.at_put_grow(vreg_num, f, true);
  1180 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
  1181   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
  1182     return false;
  1184   return _vreg_flags.at(vreg_num, f);
  1188 // Block local constant handling.  This code is useful for keeping
  1189 // unpinned constants and constants which aren't exposed in the IR in
  1190 // registers.  Unpinned Constant instructions have their operands
  1191 // cleared when the block is finished so that other blocks can't end
  1192 // up referring to their registers.
  1194 LIR_Opr LIRGenerator::load_constant(Constant* x) {
  1195   assert(!x->is_pinned(), "only for unpinned constants");
  1196   _unpinned_constants.append(x);
  1197   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
  1201 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
  1202   BasicType t = c->type();
  1203   for (int i = 0; i < _constants.length(); i++) {
  1204     LIR_Const* other = _constants.at(i);
  1205     if (t == other->type()) {
  1206       switch (t) {
  1207       case T_INT:
  1208       case T_FLOAT:
  1209         if (c->as_jint_bits() != other->as_jint_bits()) continue;
  1210         break;
  1211       case T_LONG:
  1212       case T_DOUBLE:
  1213         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
  1214         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
  1215         break;
  1216       case T_OBJECT:
  1217         if (c->as_jobject() != other->as_jobject()) continue;
  1218         break;
  1220       return _reg_for_constants.at(i);
  1224   LIR_Opr result = new_register(t);
  1225   __ move((LIR_Opr)c, result);
  1226   _constants.append(c);
  1227   _reg_for_constants.append(result);
  1228   return result;
  1231 // Various barriers
  1233 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
  1234   // Do the pre-write barrier, if any.
  1235   switch (_bs->kind()) {
  1236 #ifndef SERIALGC
  1237     case BarrierSet::G1SATBCT:
  1238     case BarrierSet::G1SATBCTLogging:
  1239       G1SATBCardTableModRef_pre_barrier(addr_opr, patch, info);
  1240       break;
  1241 #endif // SERIALGC
  1242     case BarrierSet::CardTableModRef:
  1243     case BarrierSet::CardTableExtension:
  1244       // No pre barriers
  1245       break;
  1246     case BarrierSet::ModRef:
  1247     case BarrierSet::Other:
  1248       // No pre barriers
  1249       break;
  1250     default      :
  1251       ShouldNotReachHere();
  1256 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1257   switch (_bs->kind()) {
  1258 #ifndef SERIALGC
  1259     case BarrierSet::G1SATBCT:
  1260     case BarrierSet::G1SATBCTLogging:
  1261       G1SATBCardTableModRef_post_barrier(addr,  new_val);
  1262       break;
  1263 #endif // SERIALGC
  1264     case BarrierSet::CardTableModRef:
  1265     case BarrierSet::CardTableExtension:
  1266       CardTableModRef_post_barrier(addr,  new_val);
  1267       break;
  1268     case BarrierSet::ModRef:
  1269     case BarrierSet::Other:
  1270       // No post barriers
  1271       break;
  1272     default      :
  1273       ShouldNotReachHere();
  1277 ////////////////////////////////////////////////////////////////////////
  1278 #ifndef SERIALGC
  1280 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
  1281   if (G1DisablePreBarrier) return;
  1283   // First we test whether marking is in progress.
  1284   BasicType flag_type;
  1285   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  1286     flag_type = T_INT;
  1287   } else {
  1288     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  1289               "Assumption");
  1290     flag_type = T_BYTE;
  1292   LIR_Opr thrd = getThreadPointer();
  1293   LIR_Address* mark_active_flag_addr =
  1294     new LIR_Address(thrd,
  1295                     in_bytes(JavaThread::satb_mark_queue_offset() +
  1296                              PtrQueue::byte_offset_of_active()),
  1297                     flag_type);
  1298   // Read the marking-in-progress flag.
  1299   LIR_Opr flag_val = new_register(T_INT);
  1300   __ load(mark_active_flag_addr, flag_val);
  1302   LabelObj* start_store = new LabelObj();
  1304   LIR_PatchCode pre_val_patch_code =
  1305     patch ? lir_patch_normal : lir_patch_none;
  1307   LIR_Opr pre_val = new_register(T_OBJECT);
  1309   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
  1310   if (!addr_opr->is_address()) {
  1311     assert(addr_opr->is_register(), "must be");
  1312     addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
  1314   CodeStub* slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code,
  1315                                         info);
  1316   __ branch(lir_cond_notEqual, T_INT, slow);
  1317   __ branch_destination(slow->continuation());
  1320 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1321   if (G1DisablePostBarrier) return;
  1323   // If the "new_val" is a constant NULL, no barrier is necessary.
  1324   if (new_val->is_constant() &&
  1325       new_val->as_constant_ptr()->as_jobject() == NULL) return;
  1327   if (!new_val->is_register()) {
  1328     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1329     if (new_val->is_constant()) {
  1330       __ move(new_val, new_val_reg);
  1331     } else {
  1332       __ leal(new_val, new_val_reg);
  1334     new_val = new_val_reg;
  1336   assert(new_val->is_register(), "must be a register at this point");
  1338   if (addr->is_address()) {
  1339     LIR_Address* address = addr->as_address_ptr();
  1340     LIR_Opr ptr = new_register(T_OBJECT);
  1341     if (!address->index()->is_valid() && address->disp() == 0) {
  1342       __ move(address->base(), ptr);
  1343     } else {
  1344       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1345       __ leal(addr, ptr);
  1347     addr = ptr;
  1349   assert(addr->is_register(), "must be a register at this point");
  1351   LIR_Opr xor_res = new_pointer_register();
  1352   LIR_Opr xor_shift_res = new_pointer_register();
  1353   if (TwoOperandLIRForm ) {
  1354     __ move(addr, xor_res);
  1355     __ logical_xor(xor_res, new_val, xor_res);
  1356     __ move(xor_res, xor_shift_res);
  1357     __ unsigned_shift_right(xor_shift_res,
  1358                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1359                             xor_shift_res,
  1360                             LIR_OprDesc::illegalOpr());
  1361   } else {
  1362     __ logical_xor(addr, new_val, xor_res);
  1363     __ unsigned_shift_right(xor_res,
  1364                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1365                             xor_shift_res,
  1366                             LIR_OprDesc::illegalOpr());
  1369   if (!new_val->is_register()) {
  1370     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1371     __ leal(new_val, new_val_reg);
  1372     new_val = new_val_reg;
  1374   assert(new_val->is_register(), "must be a register at this point");
  1376   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
  1378   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
  1379   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
  1380   __ branch_destination(slow->continuation());
  1383 #endif // SERIALGC
  1384 ////////////////////////////////////////////////////////////////////////
  1386 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1388   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
  1389   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
  1390   if (addr->is_address()) {
  1391     LIR_Address* address = addr->as_address_ptr();
  1392     LIR_Opr ptr = new_register(T_OBJECT);
  1393     if (!address->index()->is_valid() && address->disp() == 0) {
  1394       __ move(address->base(), ptr);
  1395     } else {
  1396       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1397       __ leal(addr, ptr);
  1399     addr = ptr;
  1401   assert(addr->is_register(), "must be a register at this point");
  1403   LIR_Opr tmp = new_pointer_register();
  1404   if (TwoOperandLIRForm) {
  1405     __ move(addr, tmp);
  1406     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
  1407   } else {
  1408     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
  1410   if (can_inline_as_constant(card_table_base)) {
  1411     __ move(LIR_OprFact::intConst(0),
  1412               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
  1413   } else {
  1414     __ move(LIR_OprFact::intConst(0),
  1415               new LIR_Address(tmp, load_constant(card_table_base),
  1416                               T_BYTE));
  1421 //------------------------field access--------------------------------------
  1423 // Comment copied form templateTable_i486.cpp
  1424 // ----------------------------------------------------------------------------
  1425 // Volatile variables demand their effects be made known to all CPU's in
  1426 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1427 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1428 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1429 // reorder volatile references, the hardware also must not reorder them).
  1430 //
  1431 // According to the new Java Memory Model (JMM):
  1432 // (1) All volatiles are serialized wrt to each other.
  1433 // ALSO reads & writes act as aquire & release, so:
  1434 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1435 // the read float up to before the read.  It's OK for non-volatile memory refs
  1436 // that happen before the volatile read to float down below it.
  1437 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1438 // that happen BEFORE the write float down to after the write.  It's OK for
  1439 // non-volatile memory refs that happen after the volatile write to float up
  1440 // before it.
  1441 //
  1442 // We only put in barriers around volatile refs (they are expensive), not
  1443 // _between_ memory refs (that would require us to track the flavor of the
  1444 // previous memory refs).  Requirements (2) and (3) require some barriers
  1445 // before volatile stores and after volatile loads.  These nearly cover
  1446 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  1447 // case is placed after volatile-stores although it could just as well go
  1448 // before volatile-loads.
  1451 void LIRGenerator::do_StoreField(StoreField* x) {
  1452   bool needs_patching = x->needs_patching();
  1453   bool is_volatile = x->field()->is_volatile();
  1454   BasicType field_type = x->field_type();
  1455   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
  1457   CodeEmitInfo* info = NULL;
  1458   if (needs_patching) {
  1459     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1460     info = state_for(x, x->state_before());
  1461   } else if (x->needs_null_check()) {
  1462     NullCheck* nc = x->explicit_null_check();
  1463     if (nc == NULL) {
  1464       info = state_for(x, x->lock_stack());
  1465     } else {
  1466       info = state_for(nc);
  1471   LIRItem object(x->obj(), this);
  1472   LIRItem value(x->value(),  this);
  1474   object.load_item();
  1476   if (is_volatile || needs_patching) {
  1477     // load item if field is volatile (fewer special cases for volatiles)
  1478     // load item if field not initialized
  1479     // load item if field not constant
  1480     // because of code patching we cannot inline constants
  1481     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
  1482       value.load_byte_item();
  1483     } else  {
  1484       value.load_item();
  1486   } else {
  1487     value.load_for_store(field_type);
  1490   set_no_result(x);
  1492   if (PrintNotLoaded && needs_patching) {
  1493     tty->print_cr("   ###class not loaded at store_%s bci %d",
  1494                   x->is_static() ?  "static" : "field", x->bci());
  1497   if (x->needs_null_check() &&
  1498       (needs_patching ||
  1499        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1500     // emit an explicit null check because the offset is too large
  1501     __ null_check(object.result(), new CodeEmitInfo(info));
  1504   LIR_Address* address;
  1505   if (needs_patching) {
  1506     // we need to patch the offset in the instruction so don't allow
  1507     // generate_address to try to be smart about emitting the -1.
  1508     // Otherwise the patching code won't know how to find the
  1509     // instruction to patch.
  1510     address = new LIR_Address(object.result(), max_jint, field_type);
  1511   } else {
  1512     address = generate_address(object.result(), x->offset(), field_type);
  1515   if (is_volatile && os::is_MP()) {
  1516     __ membar_release();
  1519   if (is_oop) {
  1520     // Do the pre-write barrier, if any.
  1521     pre_barrier(LIR_OprFact::address(address),
  1522                 needs_patching,
  1523                 (info ? new CodeEmitInfo(info) : NULL));
  1526   if (is_volatile) {
  1527     assert(!needs_patching && x->is_loaded(),
  1528            "how do we know it's volatile if it's not loaded");
  1529     volatile_field_store(value.result(), address, info);
  1530   } else {
  1531     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1532     __ store(value.result(), address, info, patch_code);
  1535   if (is_oop) {
  1536     // Store to object so mark the card of the header
  1537     post_barrier(object.result(), value.result());
  1540   if (is_volatile && os::is_MP()) {
  1541     __ membar();
  1546 void LIRGenerator::do_LoadField(LoadField* x) {
  1547   bool needs_patching = x->needs_patching();
  1548   bool is_volatile = x->field()->is_volatile();
  1549   BasicType field_type = x->field_type();
  1551   CodeEmitInfo* info = NULL;
  1552   if (needs_patching) {
  1553     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1554     info = state_for(x, x->state_before());
  1555   } else if (x->needs_null_check()) {
  1556     NullCheck* nc = x->explicit_null_check();
  1557     if (nc == NULL) {
  1558       info = state_for(x, x->lock_stack());
  1559     } else {
  1560       info = state_for(nc);
  1564   LIRItem object(x->obj(), this);
  1566   object.load_item();
  1568   if (PrintNotLoaded && needs_patching) {
  1569     tty->print_cr("   ###class not loaded at load_%s bci %d",
  1570                   x->is_static() ?  "static" : "field", x->bci());
  1573   if (x->needs_null_check() &&
  1574       (needs_patching ||
  1575        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1576     // emit an explicit null check because the offset is too large
  1577     __ null_check(object.result(), new CodeEmitInfo(info));
  1580   LIR_Opr reg = rlock_result(x, field_type);
  1581   LIR_Address* address;
  1582   if (needs_patching) {
  1583     // we need to patch the offset in the instruction so don't allow
  1584     // generate_address to try to be smart about emitting the -1.
  1585     // Otherwise the patching code won't know how to find the
  1586     // instruction to patch.
  1587     address = new LIR_Address(object.result(), max_jint, field_type);
  1588   } else {
  1589     address = generate_address(object.result(), x->offset(), field_type);
  1592   if (is_volatile) {
  1593     assert(!needs_patching && x->is_loaded(),
  1594            "how do we know it's volatile if it's not loaded");
  1595     volatile_field_load(address, reg, info);
  1596   } else {
  1597     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1598     __ load(address, reg, info, patch_code);
  1601   if (is_volatile && os::is_MP()) {
  1602     __ membar_acquire();
  1607 //------------------------java.nio.Buffer.checkIndex------------------------
  1609 // int java.nio.Buffer.checkIndex(int)
  1610 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
  1611   // NOTE: by the time we are in checkIndex() we are guaranteed that
  1612   // the buffer is non-null (because checkIndex is package-private and
  1613   // only called from within other methods in the buffer).
  1614   assert(x->number_of_arguments() == 2, "wrong type");
  1615   LIRItem buf  (x->argument_at(0), this);
  1616   LIRItem index(x->argument_at(1), this);
  1617   buf.load_item();
  1618   index.load_item();
  1620   LIR_Opr result = rlock_result(x);
  1621   if (GenerateRangeChecks) {
  1622     CodeEmitInfo* info = state_for(x);
  1623     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
  1624     if (index.result()->is_constant()) {
  1625       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
  1626       __ branch(lir_cond_belowEqual, T_INT, stub);
  1627     } else {
  1628       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
  1629                   java_nio_Buffer::limit_offset(), T_INT, info);
  1630       __ branch(lir_cond_aboveEqual, T_INT, stub);
  1632     __ move(index.result(), result);
  1633   } else {
  1634     // Just load the index into the result register
  1635     __ move(index.result(), result);
  1640 //------------------------array access--------------------------------------
  1643 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
  1644   LIRItem array(x->array(), this);
  1645   array.load_item();
  1646   LIR_Opr reg = rlock_result(x);
  1648   CodeEmitInfo* info = NULL;
  1649   if (x->needs_null_check()) {
  1650     NullCheck* nc = x->explicit_null_check();
  1651     if (nc == NULL) {
  1652       info = state_for(x);
  1653     } else {
  1654       info = state_for(nc);
  1657   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
  1661 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
  1662   bool use_length = x->length() != NULL;
  1663   LIRItem array(x->array(), this);
  1664   LIRItem index(x->index(), this);
  1665   LIRItem length(this);
  1666   bool needs_range_check = true;
  1668   if (use_length) {
  1669     needs_range_check = x->compute_needs_range_check();
  1670     if (needs_range_check) {
  1671       length.set_instruction(x->length());
  1672       length.load_item();
  1676   array.load_item();
  1677   if (index.is_constant() && can_inline_as_constant(x->index())) {
  1678     // let it be a constant
  1679     index.dont_load_item();
  1680   } else {
  1681     index.load_item();
  1684   CodeEmitInfo* range_check_info = state_for(x);
  1685   CodeEmitInfo* null_check_info = NULL;
  1686   if (x->needs_null_check()) {
  1687     NullCheck* nc = x->explicit_null_check();
  1688     if (nc != NULL) {
  1689       null_check_info = state_for(nc);
  1690     } else {
  1691       null_check_info = range_check_info;
  1695   // emit array address setup early so it schedules better
  1696   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
  1698   if (GenerateRangeChecks && needs_range_check) {
  1699     if (use_length) {
  1700       // TODO: use a (modified) version of array_range_check that does not require a
  1701       //       constant length to be loaded to a register
  1702       __ cmp(lir_cond_belowEqual, length.result(), index.result());
  1703       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
  1704     } else {
  1705       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
  1706       // The range check performs the null check, so clear it out for the load
  1707       null_check_info = NULL;
  1711   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
  1715 void LIRGenerator::do_NullCheck(NullCheck* x) {
  1716   if (x->can_trap()) {
  1717     LIRItem value(x->obj(), this);
  1718     value.load_item();
  1719     CodeEmitInfo* info = state_for(x);
  1720     __ null_check(value.result(), info);
  1725 void LIRGenerator::do_Throw(Throw* x) {
  1726   LIRItem exception(x->exception(), this);
  1727   exception.load_item();
  1728   set_no_result(x);
  1729   LIR_Opr exception_opr = exception.result();
  1730   CodeEmitInfo* info = state_for(x, x->state());
  1732 #ifndef PRODUCT
  1733   if (PrintC1Statistics) {
  1734     increment_counter(Runtime1::throw_count_address());
  1736 #endif
  1738   // check if the instruction has an xhandler in any of the nested scopes
  1739   bool unwind = false;
  1740   if (info->exception_handlers()->length() == 0) {
  1741     // this throw is not inside an xhandler
  1742     unwind = true;
  1743   } else {
  1744     // get some idea of the throw type
  1745     bool type_is_exact = true;
  1746     ciType* throw_type = x->exception()->exact_type();
  1747     if (throw_type == NULL) {
  1748       type_is_exact = false;
  1749       throw_type = x->exception()->declared_type();
  1751     if (throw_type != NULL && throw_type->is_instance_klass()) {
  1752       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
  1753       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
  1757   // do null check before moving exception oop into fixed register
  1758   // to avoid a fixed interval with an oop during the null check.
  1759   // Use a copy of the CodeEmitInfo because debug information is
  1760   // different for null_check and throw.
  1761   if (GenerateCompilerNullChecks &&
  1762       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
  1763     // if the exception object wasn't created using new then it might be null.
  1764     __ null_check(exception_opr, new CodeEmitInfo(info, true));
  1767   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
  1768     // we need to go through the exception lookup path to get JVMTI
  1769     // notification done
  1770     unwind = false;
  1773   // move exception oop into fixed register
  1774   __ move(exception_opr, exceptionOopOpr());
  1776   if (unwind) {
  1777     __ unwind_exception(exceptionOopOpr());
  1778   } else {
  1779     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
  1784 void LIRGenerator::do_RoundFP(RoundFP* x) {
  1785   LIRItem input(x->input(), this);
  1786   input.load_item();
  1787   LIR_Opr input_opr = input.result();
  1788   assert(input_opr->is_register(), "why round if value is not in a register?");
  1789   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
  1790   if (input_opr->is_single_fpu()) {
  1791     set_result(x, round_item(input_opr)); // This code path not currently taken
  1792   } else {
  1793     LIR_Opr result = new_register(T_DOUBLE);
  1794     set_vreg_flag(result, must_start_in_memory);
  1795     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
  1796     set_result(x, result);
  1800 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
  1801   LIRItem base(x->base(), this);
  1802   LIRItem idx(this);
  1804   base.load_item();
  1805   if (x->has_index()) {
  1806     idx.set_instruction(x->index());
  1807     idx.load_nonconstant();
  1810   LIR_Opr reg = rlock_result(x, x->basic_type());
  1812   int   log2_scale = 0;
  1813   if (x->has_index()) {
  1814     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  1815     log2_scale = x->log2_scale();
  1818   assert(!x->has_index() || idx.value() == x->index(), "should match");
  1820   LIR_Opr base_op = base.result();
  1821 #ifndef _LP64
  1822   if (x->base()->type()->tag() == longTag) {
  1823     base_op = new_register(T_INT);
  1824     __ convert(Bytecodes::_l2i, base.result(), base_op);
  1825   } else {
  1826     assert(x->base()->type()->tag() == intTag, "must be");
  1828 #endif
  1830   BasicType dst_type = x->basic_type();
  1831   LIR_Opr index_op = idx.result();
  1833   LIR_Address* addr;
  1834   if (index_op->is_constant()) {
  1835     assert(log2_scale == 0, "must not have a scale");
  1836     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
  1837   } else {
  1838 #ifdef X86
  1839 #ifdef _LP64
  1840     if (!index_op->is_illegal() && index_op->type() == T_INT) {
  1841       LIR_Opr tmp = new_pointer_register();
  1842       __ convert(Bytecodes::_i2l, index_op, tmp);
  1843       index_op = tmp;
  1845 #endif
  1846     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
  1847 #else
  1848     if (index_op->is_illegal() || log2_scale == 0) {
  1849 #ifdef _LP64
  1850       if (!index_op->is_illegal() && index_op->type() == T_INT) {
  1851         LIR_Opr tmp = new_pointer_register();
  1852         __ convert(Bytecodes::_i2l, index_op, tmp);
  1853         index_op = tmp;
  1855 #endif
  1856       addr = new LIR_Address(base_op, index_op, dst_type);
  1857     } else {
  1858       LIR_Opr tmp = new_pointer_register();
  1859       __ shift_left(index_op, log2_scale, tmp);
  1860       addr = new LIR_Address(base_op, tmp, dst_type);
  1862 #endif
  1865   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
  1866     __ unaligned_move(addr, reg);
  1867   } else {
  1868     __ move(addr, reg);
  1873 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
  1874   int  log2_scale = 0;
  1875   BasicType type = x->basic_type();
  1877   if (x->has_index()) {
  1878     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  1879     log2_scale = x->log2_scale();
  1882   LIRItem base(x->base(), this);
  1883   LIRItem value(x->value(), this);
  1884   LIRItem idx(this);
  1886   base.load_item();
  1887   if (x->has_index()) {
  1888     idx.set_instruction(x->index());
  1889     idx.load_item();
  1892   if (type == T_BYTE || type == T_BOOLEAN) {
  1893     value.load_byte_item();
  1894   } else {
  1895     value.load_item();
  1898   set_no_result(x);
  1900   LIR_Opr base_op = base.result();
  1901 #ifndef _LP64
  1902   if (x->base()->type()->tag() == longTag) {
  1903     base_op = new_register(T_INT);
  1904     __ convert(Bytecodes::_l2i, base.result(), base_op);
  1905   } else {
  1906     assert(x->base()->type()->tag() == intTag, "must be");
  1908 #endif
  1910   LIR_Opr index_op = idx.result();
  1911   if (log2_scale != 0) {
  1912     // temporary fix (platform dependent code without shift on Intel would be better)
  1913     index_op = new_pointer_register();
  1914 #ifdef _LP64
  1915     if(idx.result()->type() == T_INT) {
  1916       __ convert(Bytecodes::_i2l, idx.result(), index_op);
  1917     } else {
  1918 #endif
  1919       __ move(idx.result(), index_op);
  1920 #ifdef _LP64
  1922 #endif
  1923     __ shift_left(index_op, log2_scale, index_op);
  1925 #ifdef _LP64
  1926   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
  1927     LIR_Opr tmp = new_pointer_register();
  1928     __ convert(Bytecodes::_i2l, index_op, tmp);
  1929     index_op = tmp;
  1931 #endif
  1933   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
  1934   __ move(value.result(), addr);
  1938 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
  1939   BasicType type = x->basic_type();
  1940   LIRItem src(x->object(), this);
  1941   LIRItem off(x->offset(), this);
  1943   off.load_item();
  1944   src.load_item();
  1946   LIR_Opr reg = reg = rlock_result(x, x->basic_type());
  1948   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
  1949   get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
  1950   if (x->is_volatile() && os::is_MP()) __ membar();
  1954 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
  1955   BasicType type = x->basic_type();
  1956   LIRItem src(x->object(), this);
  1957   LIRItem off(x->offset(), this);
  1958   LIRItem data(x->value(), this);
  1960   src.load_item();
  1961   if (type == T_BOOLEAN || type == T_BYTE) {
  1962     data.load_byte_item();
  1963   } else {
  1964     data.load_item();
  1966   off.load_item();
  1968   set_no_result(x);
  1970   if (x->is_volatile() && os::is_MP()) __ membar_release();
  1971   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
  1975 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
  1976   LIRItem src(x->object(), this);
  1977   LIRItem off(x->offset(), this);
  1979   src.load_item();
  1980   if (off.is_constant() && can_inline_as_constant(x->offset())) {
  1981     // let it be a constant
  1982     off.dont_load_item();
  1983   } else {
  1984     off.load_item();
  1987   set_no_result(x);
  1989   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
  1990   __ prefetch(addr, is_store);
  1994 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
  1995   do_UnsafePrefetch(x, false);
  1999 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
  2000   do_UnsafePrefetch(x, true);
  2004 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
  2005   int lng = x->length();
  2007   for (int i = 0; i < lng; i++) {
  2008     SwitchRange* one_range = x->at(i);
  2009     int low_key = one_range->low_key();
  2010     int high_key = one_range->high_key();
  2011     BlockBegin* dest = one_range->sux();
  2012     if (low_key == high_key) {
  2013       __ cmp(lir_cond_equal, value, low_key);
  2014       __ branch(lir_cond_equal, T_INT, dest);
  2015     } else if (high_key - low_key == 1) {
  2016       __ cmp(lir_cond_equal, value, low_key);
  2017       __ branch(lir_cond_equal, T_INT, dest);
  2018       __ cmp(lir_cond_equal, value, high_key);
  2019       __ branch(lir_cond_equal, T_INT, dest);
  2020     } else {
  2021       LabelObj* L = new LabelObj();
  2022       __ cmp(lir_cond_less, value, low_key);
  2023       __ branch(lir_cond_less, L->label());
  2024       __ cmp(lir_cond_lessEqual, value, high_key);
  2025       __ branch(lir_cond_lessEqual, T_INT, dest);
  2026       __ branch_destination(L->label());
  2029   __ jump(default_sux);
  2033 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
  2034   SwitchRangeList* res = new SwitchRangeList();
  2035   int len = x->length();
  2036   if (len > 0) {
  2037     BlockBegin* sux = x->sux_at(0);
  2038     int key = x->lo_key();
  2039     BlockBegin* default_sux = x->default_sux();
  2040     SwitchRange* range = new SwitchRange(key, sux);
  2041     for (int i = 0; i < len; i++, key++) {
  2042       BlockBegin* new_sux = x->sux_at(i);
  2043       if (sux == new_sux) {
  2044         // still in same range
  2045         range->set_high_key(key);
  2046       } else {
  2047         // skip tests which explicitly dispatch to the default
  2048         if (sux != default_sux) {
  2049           res->append(range);
  2051         range = new SwitchRange(key, new_sux);
  2053       sux = new_sux;
  2055     if (res->length() == 0 || res->last() != range)  res->append(range);
  2057   return res;
  2061 // we expect the keys to be sorted by increasing value
  2062 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
  2063   SwitchRangeList* res = new SwitchRangeList();
  2064   int len = x->length();
  2065   if (len > 0) {
  2066     BlockBegin* default_sux = x->default_sux();
  2067     int key = x->key_at(0);
  2068     BlockBegin* sux = x->sux_at(0);
  2069     SwitchRange* range = new SwitchRange(key, sux);
  2070     for (int i = 1; i < len; i++) {
  2071       int new_key = x->key_at(i);
  2072       BlockBegin* new_sux = x->sux_at(i);
  2073       if (key+1 == new_key && sux == new_sux) {
  2074         // still in same range
  2075         range->set_high_key(new_key);
  2076       } else {
  2077         // skip tests which explicitly dispatch to the default
  2078         if (range->sux() != default_sux) {
  2079           res->append(range);
  2081         range = new SwitchRange(new_key, new_sux);
  2083       key = new_key;
  2084       sux = new_sux;
  2086     if (res->length() == 0 || res->last() != range)  res->append(range);
  2088   return res;
  2092 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
  2093   LIRItem tag(x->tag(), this);
  2094   tag.load_item();
  2095   set_no_result(x);
  2097   if (x->is_safepoint()) {
  2098     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2101   // move values into phi locations
  2102   move_to_phi(x->state());
  2104   int lo_key = x->lo_key();
  2105   int hi_key = x->hi_key();
  2106   int len = x->length();
  2107   CodeEmitInfo* info = state_for(x, x->state());
  2108   LIR_Opr value = tag.result();
  2109   if (UseTableRanges) {
  2110     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2111   } else {
  2112     for (int i = 0; i < len; i++) {
  2113       __ cmp(lir_cond_equal, value, i + lo_key);
  2114       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2116     __ jump(x->default_sux());
  2121 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
  2122   LIRItem tag(x->tag(), this);
  2123   tag.load_item();
  2124   set_no_result(x);
  2126   if (x->is_safepoint()) {
  2127     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2130   // move values into phi locations
  2131   move_to_phi(x->state());
  2133   LIR_Opr value = tag.result();
  2134   if (UseTableRanges) {
  2135     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2136   } else {
  2137     int len = x->length();
  2138     for (int i = 0; i < len; i++) {
  2139       __ cmp(lir_cond_equal, value, x->key_at(i));
  2140       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2142     __ jump(x->default_sux());
  2147 void LIRGenerator::do_Goto(Goto* x) {
  2148   set_no_result(x);
  2150   if (block()->next()->as_OsrEntry()) {
  2151     // need to free up storage used for OSR entry point
  2152     LIR_Opr osrBuffer = block()->next()->operand();
  2153     BasicTypeList signature;
  2154     signature.append(T_INT);
  2155     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
  2156     __ move(osrBuffer, cc->args()->at(0));
  2157     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
  2158                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
  2161   if (x->is_safepoint()) {
  2162     ValueStack* state = x->state_before() ? x->state_before() : x->state();
  2164     // increment backedge counter if needed
  2165     increment_backedge_counter(state_for(x, state));
  2167     CodeEmitInfo* safepoint_info = state_for(x, state);
  2168     __ safepoint(safepoint_poll_register(), safepoint_info);
  2171   // emit phi-instruction move after safepoint since this simplifies
  2172   // describing the state as the safepoint.
  2173   move_to_phi(x->state());
  2175   __ jump(x->default_sux());
  2179 void LIRGenerator::do_Base(Base* x) {
  2180   __ std_entry(LIR_OprFact::illegalOpr);
  2181   // Emit moves from physical registers / stack slots to virtual registers
  2182   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  2183   IRScope* irScope = compilation()->hir()->top_scope();
  2184   int java_index = 0;
  2185   for (int i = 0; i < args->length(); i++) {
  2186     LIR_Opr src = args->at(i);
  2187     assert(!src->is_illegal(), "check");
  2188     BasicType t = src->type();
  2190     // Types which are smaller than int are passed as int, so
  2191     // correct the type which passed.
  2192     switch (t) {
  2193     case T_BYTE:
  2194     case T_BOOLEAN:
  2195     case T_SHORT:
  2196     case T_CHAR:
  2197       t = T_INT;
  2198       break;
  2201     LIR_Opr dest = new_register(t);
  2202     __ move(src, dest);
  2204     // Assign new location to Local instruction for this local
  2205     Local* local = x->state()->local_at(java_index)->as_Local();
  2206     assert(local != NULL, "Locals for incoming arguments must have been created");
  2207     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
  2208     local->set_operand(dest);
  2209     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
  2210     java_index += type2size[t];
  2213   if (compilation()->env()->dtrace_method_probes()) {
  2214     BasicTypeList signature;
  2215     signature.append(T_INT);    // thread
  2216     signature.append(T_OBJECT); // methodOop
  2217     LIR_OprList* args = new LIR_OprList();
  2218     args->append(getThreadPointer());
  2219     LIR_Opr meth = new_register(T_OBJECT);
  2220     __ oop2reg(method()->constant_encoding(), meth);
  2221     args->append(meth);
  2222     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
  2225   if (method()->is_synchronized()) {
  2226     LIR_Opr obj;
  2227     if (method()->is_static()) {
  2228       obj = new_register(T_OBJECT);
  2229       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
  2230     } else {
  2231       Local* receiver = x->state()->local_at(0)->as_Local();
  2232       assert(receiver != NULL, "must already exist");
  2233       obj = receiver->operand();
  2235     assert(obj->is_valid(), "must be valid");
  2237     if (method()->is_synchronized() && GenerateSynchronizationCode) {
  2238       LIR_Opr lock = new_register(T_INT);
  2239       __ load_stack_address_monitor(0, lock);
  2241       CodeEmitInfo* info = new CodeEmitInfo(SynchronizationEntryBCI, scope()->start()->state(), NULL);
  2242       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
  2244       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
  2245       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
  2249   // increment invocation counters if needed
  2250   increment_invocation_counter(new CodeEmitInfo(0, scope()->start()->state(), NULL));
  2252   // all blocks with a successor must end with an unconditional jump
  2253   // to the successor even if they are consecutive
  2254   __ jump(x->default_sux());
  2258 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
  2259   // construct our frame and model the production of incoming pointer
  2260   // to the OSR buffer.
  2261   __ osr_entry(LIR_Assembler::osrBufferPointer());
  2262   LIR_Opr result = rlock_result(x);
  2263   __ move(LIR_Assembler::osrBufferPointer(), result);
  2267 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
  2268   int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
  2269   for (; i < args->length(); i++) {
  2270     LIRItem* param = args->at(i);
  2271     LIR_Opr loc = arg_list->at(i);
  2272     if (loc->is_register()) {
  2273       param->load_item_force(loc);
  2274     } else {
  2275       LIR_Address* addr = loc->as_address_ptr();
  2276       param->load_for_store(addr->type());
  2277       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2278         __ unaligned_move(param->result(), addr);
  2279       } else {
  2280         __ move(param->result(), addr);
  2285   if (x->has_receiver()) {
  2286     LIRItem* receiver = args->at(0);
  2287     LIR_Opr loc = arg_list->at(0);
  2288     if (loc->is_register()) {
  2289       receiver->load_item_force(loc);
  2290     } else {
  2291       assert(loc->is_address(), "just checking");
  2292       receiver->load_for_store(T_OBJECT);
  2293       __ move(receiver->result(), loc);
  2299 // Visits all arguments, returns appropriate items without loading them
  2300 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
  2301   LIRItemList* argument_items = new LIRItemList();
  2302   if (x->has_receiver()) {
  2303     LIRItem* receiver = new LIRItem(x->receiver(), this);
  2304     argument_items->append(receiver);
  2306   if (x->is_invokedynamic()) {
  2307     // Insert a dummy for the synthetic MethodHandle argument.
  2308     argument_items->append(NULL);
  2310   int idx = x->has_receiver() ? 1 : 0;
  2311   for (int i = 0; i < x->number_of_arguments(); i++) {
  2312     LIRItem* param = new LIRItem(x->argument_at(i), this);
  2313     argument_items->append(param);
  2314     idx += (param->type()->is_double_word() ? 2 : 1);
  2316   return argument_items;
  2320 // The invoke with receiver has following phases:
  2321 //   a) traverse and load/lock receiver;
  2322 //   b) traverse all arguments -> item-array (invoke_visit_argument)
  2323 //   c) push receiver on stack
  2324 //   d) load each of the items and push on stack
  2325 //   e) unlock receiver
  2326 //   f) move receiver into receiver-register %o0
  2327 //   g) lock result registers and emit call operation
  2328 //
  2329 // Before issuing a call, we must spill-save all values on stack
  2330 // that are in caller-save register. "spill-save" moves thos registers
  2331 // either in a free callee-save register or spills them if no free
  2332 // callee save register is available.
  2333 //
  2334 // The problem is where to invoke spill-save.
  2335 // - if invoked between e) and f), we may lock callee save
  2336 //   register in "spill-save" that destroys the receiver register
  2337 //   before f) is executed
  2338 // - if we rearange the f) to be earlier, by loading %o0, it
  2339 //   may destroy a value on the stack that is currently in %o0
  2340 //   and is waiting to be spilled
  2341 // - if we keep the receiver locked while doing spill-save,
  2342 //   we cannot spill it as it is spill-locked
  2343 //
  2344 void LIRGenerator::do_Invoke(Invoke* x) {
  2345   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
  2347   LIR_OprList* arg_list = cc->args();
  2348   LIRItemList* args = invoke_visit_arguments(x);
  2349   LIR_Opr receiver = LIR_OprFact::illegalOpr;
  2351   // setup result register
  2352   LIR_Opr result_register = LIR_OprFact::illegalOpr;
  2353   if (x->type() != voidType) {
  2354     result_register = result_register_for(x->type());
  2357   CodeEmitInfo* info = state_for(x, x->state());
  2359   // invokedynamics can deoptimize.
  2360   CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
  2362   invoke_load_arguments(x, args, arg_list);
  2364   if (x->has_receiver()) {
  2365     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
  2366     receiver = args->at(0)->result();
  2369   // emit invoke code
  2370   bool optimized = x->target_is_loaded() && x->target_is_final();
  2371   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
  2373   // JSR 292
  2374   // Preserve the SP over MethodHandle call sites.
  2375   ciMethod* target = x->target();
  2376   if (target->is_method_handle_invoke()) {
  2377     info->set_is_method_handle_invoke(true);
  2378     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
  2381   switch (x->code()) {
  2382     case Bytecodes::_invokestatic:
  2383       __ call_static(target, result_register,
  2384                      SharedRuntime::get_resolve_static_call_stub(),
  2385                      arg_list, info);
  2386       break;
  2387     case Bytecodes::_invokespecial:
  2388     case Bytecodes::_invokevirtual:
  2389     case Bytecodes::_invokeinterface:
  2390       // for final target we still produce an inline cache, in order
  2391       // to be able to call mixed mode
  2392       if (x->code() == Bytecodes::_invokespecial || optimized) {
  2393         __ call_opt_virtual(target, receiver, result_register,
  2394                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2395                             arg_list, info);
  2396       } else if (x->vtable_index() < 0) {
  2397         __ call_icvirtual(target, receiver, result_register,
  2398                           SharedRuntime::get_resolve_virtual_call_stub(),
  2399                           arg_list, info);
  2400       } else {
  2401         int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
  2402         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  2403         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
  2405       break;
  2406     case Bytecodes::_invokedynamic: {
  2407       ciBytecodeStream bcs(x->scope()->method());
  2408       bcs.force_bci(x->bci());
  2409       assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
  2410       ciCPCache* cpcache = bcs.get_cpcache();
  2412       // Get CallSite offset from constant pool cache pointer.
  2413       int index = bcs.get_method_index();
  2414       size_t call_site_offset = cpcache->get_f1_offset(index);
  2416       // If this invokedynamic call site hasn't been executed yet in
  2417       // the interpreter, the CallSite object in the constant pool
  2418       // cache is still null and we need to deoptimize.
  2419       if (cpcache->is_f1_null_at(index)) {
  2420         // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
  2421         // clone all handlers.  This is handled transparently in other
  2422         // places by the CodeEmitInfo cloning logic but is handled
  2423         // specially here because a stub isn't being used.
  2424         x->set_exception_handlers(new XHandlers(x->exception_handlers()));
  2426         DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
  2427         __ jump(deopt_stub);
  2430       // Use the receiver register for the synthetic MethodHandle
  2431       // argument.
  2432       receiver = LIR_Assembler::receiverOpr();
  2433       LIR_Opr tmp = new_register(objectType);
  2435       // Load CallSite object from constant pool cache.
  2436       __ oop2reg(cpcache->constant_encoding(), tmp);
  2437       __ load(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
  2439       // Load target MethodHandle from CallSite object.
  2440       __ load(new LIR_Address(tmp, java_dyn_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
  2442       __ call_dynamic(target, receiver, result_register,
  2443                       SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2444                       arg_list, info);
  2445       break;
  2447     default:
  2448       ShouldNotReachHere();
  2449       break;
  2452   // JSR 292
  2453   // Restore the SP after MethodHandle call sites.
  2454   if (target->is_method_handle_invoke()) {
  2455     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
  2458   if (x->type()->is_float() || x->type()->is_double()) {
  2459     // Force rounding of results from non-strictfp when in strictfp
  2460     // scope (or when we don't know the strictness of the callee, to
  2461     // be safe.)
  2462     if (method()->is_strict()) {
  2463       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
  2464         result_register = round_item(result_register);
  2469   if (result_register->is_valid()) {
  2470     LIR_Opr result = rlock_result(x);
  2471     __ move(result_register, result);
  2476 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
  2477   assert(x->number_of_arguments() == 1, "wrong type");
  2478   LIRItem value       (x->argument_at(0), this);
  2479   LIR_Opr reg = rlock_result(x);
  2480   value.load_item();
  2481   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
  2482   __ move(tmp, reg);
  2487 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
  2488 void LIRGenerator::do_IfOp(IfOp* x) {
  2489 #ifdef ASSERT
  2491     ValueTag xtag = x->x()->type()->tag();
  2492     ValueTag ttag = x->tval()->type()->tag();
  2493     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
  2494     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
  2495     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
  2497 #endif
  2499   LIRItem left(x->x(), this);
  2500   LIRItem right(x->y(), this);
  2501   left.load_item();
  2502   if (can_inline_as_constant(right.value())) {
  2503     right.dont_load_item();
  2504   } else {
  2505     right.load_item();
  2508   LIRItem t_val(x->tval(), this);
  2509   LIRItem f_val(x->fval(), this);
  2510   t_val.dont_load_item();
  2511   f_val.dont_load_item();
  2512   LIR_Opr reg = rlock_result(x);
  2514   __ cmp(lir_cond(x->cond()), left.result(), right.result());
  2515   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg);
  2519 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
  2520   switch (x->id()) {
  2521   case vmIntrinsics::_intBitsToFloat      :
  2522   case vmIntrinsics::_doubleToRawLongBits :
  2523   case vmIntrinsics::_longBitsToDouble    :
  2524   case vmIntrinsics::_floatToRawIntBits   : {
  2525     do_FPIntrinsics(x);
  2526     break;
  2529   case vmIntrinsics::_currentTimeMillis: {
  2530     assert(x->number_of_arguments() == 0, "wrong type");
  2531     LIR_Opr reg = result_register_for(x->type());
  2532     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
  2533                          reg, new LIR_OprList());
  2534     LIR_Opr result = rlock_result(x);
  2535     __ move(reg, result);
  2536     break;
  2539   case vmIntrinsics::_nanoTime: {
  2540     assert(x->number_of_arguments() == 0, "wrong type");
  2541     LIR_Opr reg = result_register_for(x->type());
  2542     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
  2543                          reg, new LIR_OprList());
  2544     LIR_Opr result = rlock_result(x);
  2545     __ move(reg, result);
  2546     break;
  2549   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
  2550   case vmIntrinsics::_getClass:       do_getClass(x);      break;
  2551   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
  2553   case vmIntrinsics::_dlog:           // fall through
  2554   case vmIntrinsics::_dlog10:         // fall through
  2555   case vmIntrinsics::_dabs:           // fall through
  2556   case vmIntrinsics::_dsqrt:          // fall through
  2557   case vmIntrinsics::_dtan:           // fall through
  2558   case vmIntrinsics::_dsin :          // fall through
  2559   case vmIntrinsics::_dcos :          do_MathIntrinsic(x); break;
  2560   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
  2562   // java.nio.Buffer.checkIndex
  2563   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
  2565   case vmIntrinsics::_compareAndSwapObject:
  2566     do_CompareAndSwap(x, objectType);
  2567     break;
  2568   case vmIntrinsics::_compareAndSwapInt:
  2569     do_CompareAndSwap(x, intType);
  2570     break;
  2571   case vmIntrinsics::_compareAndSwapLong:
  2572     do_CompareAndSwap(x, longType);
  2573     break;
  2575     // sun.misc.AtomicLongCSImpl.attemptUpdate
  2576   case vmIntrinsics::_attemptUpdate:
  2577     do_AttemptUpdate(x);
  2578     break;
  2580   default: ShouldNotReachHere(); break;
  2585 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
  2586   // Need recv in a temporary register so it interferes with the other temporaries
  2587   LIR_Opr recv = LIR_OprFact::illegalOpr;
  2588   LIR_Opr mdo = new_register(T_OBJECT);
  2589   LIR_Opr tmp = new_register(T_INT);
  2590   if (x->recv() != NULL) {
  2591     LIRItem value(x->recv(), this);
  2592     value.load_item();
  2593     recv = new_register(T_OBJECT);
  2594     __ move(value.result(), recv);
  2596   __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
  2600 void LIRGenerator::do_ProfileCounter(ProfileCounter* x) {
  2601   LIRItem mdo(x->mdo(), this);
  2602   mdo.load_item();
  2604   increment_counter(new LIR_Address(mdo.result(), x->offset(), T_INT), x->increment());
  2608 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
  2609   LIRItemList args(1);
  2610   LIRItem value(arg1, this);
  2611   args.append(&value);
  2612   BasicTypeList signature;
  2613   signature.append(as_BasicType(arg1->type()));
  2615   return call_runtime(&signature, &args, entry, result_type, info);
  2619 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
  2620   LIRItemList args(2);
  2621   LIRItem value1(arg1, this);
  2622   LIRItem value2(arg2, this);
  2623   args.append(&value1);
  2624   args.append(&value2);
  2625   BasicTypeList signature;
  2626   signature.append(as_BasicType(arg1->type()));
  2627   signature.append(as_BasicType(arg2->type()));
  2629   return call_runtime(&signature, &args, entry, result_type, info);
  2633 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
  2634                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  2635   // get a result register
  2636   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  2637   LIR_Opr result = LIR_OprFact::illegalOpr;
  2638   if (result_type->tag() != voidTag) {
  2639     result = new_register(result_type);
  2640     phys_reg = result_register_for(result_type);
  2643   // move the arguments into the correct location
  2644   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  2645   assert(cc->length() == args->length(), "argument mismatch");
  2646   for (int i = 0; i < args->length(); i++) {
  2647     LIR_Opr arg = args->at(i);
  2648     LIR_Opr loc = cc->at(i);
  2649     if (loc->is_register()) {
  2650       __ move(arg, loc);
  2651     } else {
  2652       LIR_Address* addr = loc->as_address_ptr();
  2653 //           if (!can_store_as_constant(arg)) {
  2654 //             LIR_Opr tmp = new_register(arg->type());
  2655 //             __ move(arg, tmp);
  2656 //             arg = tmp;
  2657 //           }
  2658       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2659         __ unaligned_move(arg, addr);
  2660       } else {
  2661         __ move(arg, addr);
  2666   if (info) {
  2667     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  2668   } else {
  2669     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  2671   if (result->is_valid()) {
  2672     __ move(phys_reg, result);
  2674   return result;
  2678 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
  2679                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  2680   // get a result register
  2681   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  2682   LIR_Opr result = LIR_OprFact::illegalOpr;
  2683   if (result_type->tag() != voidTag) {
  2684     result = new_register(result_type);
  2685     phys_reg = result_register_for(result_type);
  2688   // move the arguments into the correct location
  2689   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  2691   assert(cc->length() == args->length(), "argument mismatch");
  2692   for (int i = 0; i < args->length(); i++) {
  2693     LIRItem* arg = args->at(i);
  2694     LIR_Opr loc = cc->at(i);
  2695     if (loc->is_register()) {
  2696       arg->load_item_force(loc);
  2697     } else {
  2698       LIR_Address* addr = loc->as_address_ptr();
  2699       arg->load_for_store(addr->type());
  2700       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2701         __ unaligned_move(arg->result(), addr);
  2702       } else {
  2703         __ move(arg->result(), addr);
  2708   if (info) {
  2709     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  2710   } else {
  2711     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  2713   if (result->is_valid()) {
  2714     __ move(phys_reg, result);
  2716   return result;
  2721 void LIRGenerator::increment_invocation_counter(CodeEmitInfo* info, bool backedge) {
  2722 #ifdef TIERED
  2723   if (_compilation->env()->comp_level() == CompLevel_fast_compile &&
  2724       (method()->code_size() >= Tier1BytecodeLimit || backedge)) {
  2725     int limit = InvocationCounter::Tier1InvocationLimit;
  2726     int offset = in_bytes(methodOopDesc::invocation_counter_offset() +
  2727                           InvocationCounter::counter_offset());
  2728     if (backedge) {
  2729       limit = InvocationCounter::Tier1BackEdgeLimit;
  2730       offset = in_bytes(methodOopDesc::backedge_counter_offset() +
  2731                         InvocationCounter::counter_offset());
  2734     LIR_Opr meth = new_register(T_OBJECT);
  2735     __ oop2reg(method()->constant_encoding(), meth);
  2736     LIR_Opr result = increment_and_return_counter(meth, offset, InvocationCounter::count_increment);
  2737     __ cmp(lir_cond_aboveEqual, result, LIR_OprFact::intConst(limit));
  2738     CodeStub* overflow = new CounterOverflowStub(info, info->bci());
  2739     __ branch(lir_cond_aboveEqual, T_INT, overflow);
  2740     __ branch_destination(overflow->continuation());
  2742 #endif

mercurial