src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Sun, 23 Oct 2011 23:06:06 -0700

author
johnc
date
Sun, 23 Oct 2011 23:06:06 -0700
changeset 3219
c6a6e936dc68
parent 3209
074f0252cc13
child 3289
a88de71c4e3a
permissions
-rw-r--r--

7096030: G1: PrintGCDetails enhancements
7102445: G1: Unnecessary Resource allocations during RSet scanning
Summary: Add a new per-worker thread line in the PrintGCDetails output. GC Worker Other is the difference between the elapsed time for the parallel phase of the evacuation pause and the sum of the times of the sub-phases (external root scanning, mark stack scanning, RSet updating, RSet scanning, object copying, and termination) for that worker. During RSet scanning, stack allocate DirtyCardToOopClosure objects; allocating these in a resource area was causing abnormally high GC Worker Other times while the worker thread freed ResourceArea chunks.
Reviewed-by: tonyp, jwilhelm, brutisso

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    28 #include "gc_implementation/g1/collectionSetChooser.hpp"
    29 #include "gc_implementation/g1/g1MMUTracker.hpp"
    30 #include "memory/collectorPolicy.hpp"
    32 // A G1CollectorPolicy makes policy decisions that determine the
    33 // characteristics of the collector.  Examples include:
    34 //   * choice of collection set.
    35 //   * when to collect.
    37 class HeapRegion;
    38 class CollectionSetChooser;
    40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    41 // over and over again and introducing subtle problems through small typos and
    42 // cutting and pasting mistakes. The macros below introduces a number
    43 // sequnce into the following two classes and the methods that access it.
    45 #define define_num_seq(name)                                                  \
    46 private:                                                                      \
    47   NumberSeq _all_##name##_times_ms;                                           \
    48 public:                                                                       \
    49   void record_##name##_time_ms(double ms) {                                   \
    50     _all_##name##_times_ms.add(ms);                                           \
    51   }                                                                           \
    52   NumberSeq* get_##name##_seq() {                                             \
    53     return &_all_##name##_times_ms;                                           \
    54   }
    56 class MainBodySummary;
    58 class PauseSummary: public CHeapObj {
    59   define_num_seq(total)
    60     define_num_seq(other)
    62 public:
    63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    64 };
    66 class MainBodySummary: public CHeapObj {
    67   define_num_seq(satb_drain) // optional
    68   define_num_seq(parallel) // parallel only
    69     define_num_seq(ext_root_scan)
    70     define_num_seq(mark_stack_scan)
    71     define_num_seq(update_rs)
    72     define_num_seq(scan_rs)
    73     define_num_seq(obj_copy)
    74     define_num_seq(termination) // parallel only
    75     define_num_seq(parallel_other) // parallel only
    76   define_num_seq(mark_closure)
    77   define_num_seq(clear_ct)
    78 };
    80 class Summary: public PauseSummary,
    81                public MainBodySummary {
    82 public:
    83   virtual MainBodySummary*    main_body_summary()    { return this; }
    84 };
    86 class G1CollectorPolicy: public CollectorPolicy {
    87 private:
    88   // The number of pauses during the execution.
    89   long _n_pauses;
    91   // either equal to the number of parallel threads, if ParallelGCThreads
    92   // has been set, or 1 otherwise
    93   int _parallel_gc_threads;
    95   enum SomePrivateConstants {
    96     NumPrevPausesForHeuristics = 10
    97   };
    99   G1MMUTracker* _mmu_tracker;
   101   void initialize_flags();
   103   void initialize_all() {
   104     initialize_flags();
   105     initialize_size_info();
   106     initialize_perm_generation(PermGen::MarkSweepCompact);
   107   }
   109   CollectionSetChooser* _collectionSetChooser;
   111   double _cur_collection_start_sec;
   112   size_t _cur_collection_pause_used_at_start_bytes;
   113   size_t _cur_collection_pause_used_regions_at_start;
   114   size_t _prev_collection_pause_used_at_end_bytes;
   115   double _cur_collection_par_time_ms;
   116   double _cur_satb_drain_time_ms;
   117   double _cur_clear_ct_time_ms;
   118   double _cur_ref_proc_time_ms;
   119   double _cur_ref_enq_time_ms;
   121 #ifndef PRODUCT
   122   // Card Table Count Cache stats
   123   double _min_clear_cc_time_ms;         // min
   124   double _max_clear_cc_time_ms;         // max
   125   double _cur_clear_cc_time_ms;         // clearing time during current pause
   126   double _cum_clear_cc_time_ms;         // cummulative clearing time
   127   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   128 #endif
   130   // Statistics for recent GC pauses.  See below for how indexed.
   131   TruncatedSeq* _recent_rs_scan_times_ms;
   133   // These exclude marking times.
   134   TruncatedSeq* _recent_pause_times_ms;
   135   TruncatedSeq* _recent_gc_times_ms;
   137   TruncatedSeq* _recent_CS_bytes_used_before;
   138   TruncatedSeq* _recent_CS_bytes_surviving;
   140   TruncatedSeq* _recent_rs_sizes;
   142   TruncatedSeq* _concurrent_mark_remark_times_ms;
   143   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   145   Summary*           _summary;
   147   NumberSeq* _all_pause_times_ms;
   148   NumberSeq* _all_full_gc_times_ms;
   149   double _stop_world_start;
   150   NumberSeq* _all_stop_world_times_ms;
   151   NumberSeq* _all_yield_times_ms;
   153   size_t     _region_num_young;
   154   size_t     _region_num_tenured;
   155   size_t     _prev_region_num_young;
   156   size_t     _prev_region_num_tenured;
   158   NumberSeq* _all_mod_union_times_ms;
   160   int        _aux_num;
   161   NumberSeq* _all_aux_times_ms;
   162   double*    _cur_aux_start_times_ms;
   163   double*    _cur_aux_times_ms;
   164   bool*      _cur_aux_times_set;
   166   double* _par_last_gc_worker_start_times_ms;
   167   double* _par_last_ext_root_scan_times_ms;
   168   double* _par_last_mark_stack_scan_times_ms;
   169   double* _par_last_update_rs_times_ms;
   170   double* _par_last_update_rs_processed_buffers;
   171   double* _par_last_scan_rs_times_ms;
   172   double* _par_last_obj_copy_times_ms;
   173   double* _par_last_termination_times_ms;
   174   double* _par_last_termination_attempts;
   175   double* _par_last_gc_worker_end_times_ms;
   176   double* _par_last_gc_worker_times_ms;
   178   // Each workers 'other' time i.e. the elapsed time of the parallel
   179   // phase of the pause minus the sum of the individual sub-phase
   180   // times for a given worker thread.
   181   double* _par_last_gc_worker_other_times_ms;
   183   // indicates whether we are in full young or partially young GC mode
   184   bool _full_young_gcs;
   186   // if true, then it tries to dynamically adjust the length of the
   187   // young list
   188   bool _adaptive_young_list_length;
   189   size_t _young_list_target_length;
   190   size_t _young_list_fixed_length;
   191   size_t _prev_eden_capacity; // used for logging
   193   // The max number of regions we can extend the eden by while the GC
   194   // locker is active. This should be >= _young_list_target_length;
   195   size_t _young_list_max_length;
   197   size_t _young_cset_length;
   198   bool   _last_young_gc_full;
   200   unsigned              _full_young_pause_num;
   201   unsigned              _partial_young_pause_num;
   203   bool                  _during_marking;
   204   bool                  _in_marking_window;
   205   bool                  _in_marking_window_im;
   207   SurvRateGroup*        _short_lived_surv_rate_group;
   208   SurvRateGroup*        _survivor_surv_rate_group;
   209   // add here any more surv rate groups
   211   double                _gc_overhead_perc;
   213   double _reserve_factor;
   214   size_t _reserve_regions;
   216   bool during_marking() {
   217     return _during_marking;
   218   }
   220   // <NEW PREDICTION>
   222 private:
   223   enum PredictionConstants {
   224     TruncatedSeqLength = 10
   225   };
   227   TruncatedSeq* _alloc_rate_ms_seq;
   228   double        _prev_collection_pause_end_ms;
   230   TruncatedSeq* _pending_card_diff_seq;
   231   TruncatedSeq* _rs_length_diff_seq;
   232   TruncatedSeq* _cost_per_card_ms_seq;
   233   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
   234   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
   235   TruncatedSeq* _cost_per_entry_ms_seq;
   236   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
   237   TruncatedSeq* _cost_per_byte_ms_seq;
   238   TruncatedSeq* _constant_other_time_ms_seq;
   239   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   240   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   242   TruncatedSeq* _pending_cards_seq;
   243   TruncatedSeq* _scanned_cards_seq;
   244   TruncatedSeq* _rs_lengths_seq;
   246   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   248   TruncatedSeq* _young_gc_eff_seq;
   250   TruncatedSeq* _max_conc_overhead_seq;
   252   bool   _using_new_ratio_calculations;
   253   size_t _min_desired_young_length; // as set on the command line or default calculations
   254   size_t _max_desired_young_length; // as set on the command line or default calculations
   256   size_t _recorded_young_regions;
   257   size_t _recorded_non_young_regions;
   258   size_t _recorded_region_num;
   260   size_t _free_regions_at_end_of_collection;
   262   size_t _recorded_rs_lengths;
   263   size_t _max_rs_lengths;
   265   size_t _recorded_marked_bytes;
   266   size_t _recorded_young_bytes;
   268   size_t _predicted_pending_cards;
   269   size_t _predicted_cards_scanned;
   270   size_t _predicted_rs_lengths;
   271   size_t _predicted_bytes_to_copy;
   273   double _predicted_survival_ratio;
   274   double _predicted_rs_update_time_ms;
   275   double _predicted_rs_scan_time_ms;
   276   double _predicted_object_copy_time_ms;
   277   double _predicted_constant_other_time_ms;
   278   double _predicted_young_other_time_ms;
   279   double _predicted_non_young_other_time_ms;
   280   double _predicted_pause_time_ms;
   282   double _vtime_diff_ms;
   284   double _recorded_young_free_cset_time_ms;
   285   double _recorded_non_young_free_cset_time_ms;
   287   double _sigma;
   288   double _expensive_region_limit_ms;
   290   size_t _rs_lengths_prediction;
   292   size_t _known_garbage_bytes;
   293   double _known_garbage_ratio;
   295   double sigma() {
   296     return _sigma;
   297   }
   299   // A function that prevents us putting too much stock in small sample
   300   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   301   // of samples.  5 or more samples yields one; fewer scales linearly from
   302   // 2.0 at 1 sample to 1.0 at 5.
   303   double confidence_factor(int samples) {
   304     if (samples > 4) return 1.0;
   305     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   306   }
   308   double get_new_neg_prediction(TruncatedSeq* seq) {
   309     return seq->davg() - sigma() * seq->dsd();
   310   }
   312 #ifndef PRODUCT
   313   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   314 #endif // PRODUCT
   316   void adjust_concurrent_refinement(double update_rs_time,
   317                                     double update_rs_processed_buffers,
   318                                     double goal_ms);
   320   double _pause_time_target_ms;
   321   double _recorded_young_cset_choice_time_ms;
   322   double _recorded_non_young_cset_choice_time_ms;
   323   bool   _within_target;
   324   size_t _pending_cards;
   325   size_t _max_pending_cards;
   327 public:
   329   void set_region_short_lived(HeapRegion* hr) {
   330     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   331   }
   333   void set_region_survivors(HeapRegion* hr) {
   334     hr->install_surv_rate_group(_survivor_surv_rate_group);
   335   }
   337 #ifndef PRODUCT
   338   bool verify_young_ages();
   339 #endif // PRODUCT
   341   double get_new_prediction(TruncatedSeq* seq) {
   342     return MAX2(seq->davg() + sigma() * seq->dsd(),
   343                 seq->davg() * confidence_factor(seq->num()));
   344   }
   346   size_t young_cset_length() {
   347     return _young_cset_length;
   348   }
   350   void record_max_rs_lengths(size_t rs_lengths) {
   351     _max_rs_lengths = rs_lengths;
   352   }
   354   size_t predict_pending_card_diff() {
   355     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   356     if (prediction < 0.00001)
   357       return 0;
   358     else
   359       return (size_t) prediction;
   360   }
   362   size_t predict_pending_cards() {
   363     size_t max_pending_card_num = _g1->max_pending_card_num();
   364     size_t diff = predict_pending_card_diff();
   365     size_t prediction;
   366     if (diff > max_pending_card_num)
   367       prediction = max_pending_card_num;
   368     else
   369       prediction = max_pending_card_num - diff;
   371     return prediction;
   372   }
   374   size_t predict_rs_length_diff() {
   375     return (size_t) get_new_prediction(_rs_length_diff_seq);
   376   }
   378   double predict_alloc_rate_ms() {
   379     return get_new_prediction(_alloc_rate_ms_seq);
   380   }
   382   double predict_cost_per_card_ms() {
   383     return get_new_prediction(_cost_per_card_ms_seq);
   384   }
   386   double predict_rs_update_time_ms(size_t pending_cards) {
   387     return (double) pending_cards * predict_cost_per_card_ms();
   388   }
   390   double predict_fully_young_cards_per_entry_ratio() {
   391     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
   392   }
   394   double predict_partially_young_cards_per_entry_ratio() {
   395     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
   396       return predict_fully_young_cards_per_entry_ratio();
   397     else
   398       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
   399   }
   401   size_t predict_young_card_num(size_t rs_length) {
   402     return (size_t) ((double) rs_length *
   403                      predict_fully_young_cards_per_entry_ratio());
   404   }
   406   size_t predict_non_young_card_num(size_t rs_length) {
   407     return (size_t) ((double) rs_length *
   408                      predict_partially_young_cards_per_entry_ratio());
   409   }
   411   double predict_rs_scan_time_ms(size_t card_num) {
   412     if (full_young_gcs())
   413       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   414     else
   415       return predict_partially_young_rs_scan_time_ms(card_num);
   416   }
   418   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
   419     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
   420       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   421     else
   422       return (double) card_num *
   423         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
   424   }
   426   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   427     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
   428       return 1.1 * (double) bytes_to_copy *
   429         get_new_prediction(_cost_per_byte_ms_seq);
   430     else
   431       return (double) bytes_to_copy *
   432         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   433   }
   435   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   436     if (_in_marking_window && !_in_marking_window_im)
   437       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   438     else
   439       return (double) bytes_to_copy *
   440         get_new_prediction(_cost_per_byte_ms_seq);
   441   }
   443   double predict_constant_other_time_ms() {
   444     return get_new_prediction(_constant_other_time_ms_seq);
   445   }
   447   double predict_young_other_time_ms(size_t young_num) {
   448     return
   449       (double) young_num *
   450       get_new_prediction(_young_other_cost_per_region_ms_seq);
   451   }
   453   double predict_non_young_other_time_ms(size_t non_young_num) {
   454     return
   455       (double) non_young_num *
   456       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   457   }
   459   void check_if_region_is_too_expensive(double predicted_time_ms);
   461   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   462   double predict_base_elapsed_time_ms(size_t pending_cards);
   463   double predict_base_elapsed_time_ms(size_t pending_cards,
   464                                       size_t scanned_cards);
   465   size_t predict_bytes_to_copy(HeapRegion* hr);
   466   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   468   void start_recording_regions();
   469   void record_cset_region_info(HeapRegion* hr, bool young);
   470   void record_non_young_cset_region(HeapRegion* hr);
   472   void set_recorded_young_regions(size_t n_regions);
   473   void set_recorded_young_bytes(size_t bytes);
   474   void set_recorded_rs_lengths(size_t rs_lengths);
   475   void set_predicted_bytes_to_copy(size_t bytes);
   477   void end_recording_regions();
   479   void record_vtime_diff_ms(double vtime_diff_ms) {
   480     _vtime_diff_ms = vtime_diff_ms;
   481   }
   483   void record_young_free_cset_time_ms(double time_ms) {
   484     _recorded_young_free_cset_time_ms = time_ms;
   485   }
   487   void record_non_young_free_cset_time_ms(double time_ms) {
   488     _recorded_non_young_free_cset_time_ms = time_ms;
   489   }
   491   double predict_young_gc_eff() {
   492     return get_new_neg_prediction(_young_gc_eff_seq);
   493   }
   495   double predict_survivor_regions_evac_time();
   497   // </NEW PREDICTION>
   499   void cset_regions_freed() {
   500     bool propagate = _last_young_gc_full && !_in_marking_window;
   501     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   502     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   503     // also call it on any more surv rate groups
   504   }
   506   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   507     _known_garbage_bytes = known_garbage_bytes;
   508     size_t heap_bytes = _g1->capacity();
   509     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   510   }
   512   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   513     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   515     _known_garbage_bytes -= known_garbage_bytes;
   516     size_t heap_bytes = _g1->capacity();
   517     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   518   }
   520   G1MMUTracker* mmu_tracker() {
   521     return _mmu_tracker;
   522   }
   524   double max_pause_time_ms() {
   525     return _mmu_tracker->max_gc_time() * 1000.0;
   526   }
   528   double predict_remark_time_ms() {
   529     return get_new_prediction(_concurrent_mark_remark_times_ms);
   530   }
   532   double predict_cleanup_time_ms() {
   533     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   534   }
   536   // Returns an estimate of the survival rate of the region at yg-age
   537   // "yg_age".
   538   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   539     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   540     if (seq->num() == 0)
   541       gclog_or_tty->print("BARF! age is %d", age);
   542     guarantee( seq->num() > 0, "invariant" );
   543     double pred = get_new_prediction(seq);
   544     if (pred > 1.0)
   545       pred = 1.0;
   546     return pred;
   547   }
   549   double predict_yg_surv_rate(int age) {
   550     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   551   }
   553   double accum_yg_surv_rate_pred(int age) {
   554     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   555   }
   557 private:
   558   void print_stats(int level, const char* str, double value);
   559   void print_stats(int level, const char* str, int value);
   561   void print_par_stats(int level, const char* str, double* data);
   562   void print_par_sizes(int level, const char* str, double* data);
   564   void check_other_times(int level,
   565                          NumberSeq* other_times_ms,
   566                          NumberSeq* calc_other_times_ms) const;
   568   void print_summary (PauseSummary* stats) const;
   570   void print_summary (int level, const char* str, NumberSeq* seq) const;
   571   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   573   double avg_value (double* data);
   574   double max_value (double* data);
   575   double sum_of_values (double* data);
   576   double max_sum (double* data1, double* data2);
   578   int _last_satb_drain_processed_buffers;
   579   int _last_update_rs_processed_buffers;
   580   double _last_pause_time_ms;
   582   size_t _bytes_in_collection_set_before_gc;
   583   size_t _bytes_copied_during_gc;
   585   // Used to count used bytes in CS.
   586   friend class CountCSClosure;
   588   // Statistics kept per GC stoppage, pause or full.
   589   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   591   // Add a new GC of the given duration and end time to the record.
   592   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   594   // The head of the list (via "next_in_collection_set()") representing the
   595   // current collection set. Set from the incrementally built collection
   596   // set at the start of the pause.
   597   HeapRegion* _collection_set;
   599   // The number of regions in the collection set. Set from the incrementally
   600   // built collection set at the start of an evacuation pause.
   601   size_t _collection_set_size;
   603   // The number of bytes in the collection set before the pause. Set from
   604   // the incrementally built collection set at the start of an evacuation
   605   // pause.
   606   size_t _collection_set_bytes_used_before;
   608   // The associated information that is maintained while the incremental
   609   // collection set is being built with young regions. Used to populate
   610   // the recorded info for the evacuation pause.
   612   enum CSetBuildType {
   613     Active,             // We are actively building the collection set
   614     Inactive            // We are not actively building the collection set
   615   };
   617   CSetBuildType _inc_cset_build_state;
   619   // The head of the incrementally built collection set.
   620   HeapRegion* _inc_cset_head;
   622   // The tail of the incrementally built collection set.
   623   HeapRegion* _inc_cset_tail;
   625   // The number of regions in the incrementally built collection set.
   626   // Used to set _collection_set_size at the start of an evacuation
   627   // pause.
   628   size_t _inc_cset_size;
   630   // Used as the index in the surving young words structure
   631   // which tracks the amount of space, for each young region,
   632   // that survives the pause.
   633   size_t _inc_cset_young_index;
   635   // The number of bytes in the incrementally built collection set.
   636   // Used to set _collection_set_bytes_used_before at the start of
   637   // an evacuation pause.
   638   size_t _inc_cset_bytes_used_before;
   640   // Used to record the highest end of heap region in collection set
   641   HeapWord* _inc_cset_max_finger;
   643   // The number of recorded used bytes in the young regions
   644   // of the collection set. This is the sum of the used() bytes
   645   // of retired young regions in the collection set.
   646   size_t _inc_cset_recorded_young_bytes;
   648   // The RSet lengths recorded for regions in the collection set
   649   // (updated by the periodic sampling of the regions in the
   650   // young list/collection set).
   651   size_t _inc_cset_recorded_rs_lengths;
   653   // The predicted elapsed time it will take to collect the regions
   654   // in the collection set (updated by the periodic sampling of the
   655   // regions in the young list/collection set).
   656   double _inc_cset_predicted_elapsed_time_ms;
   658   // The predicted bytes to copy for the regions in the collection
   659   // set (updated by the periodic sampling of the regions in the
   660   // young list/collection set).
   661   size_t _inc_cset_predicted_bytes_to_copy;
   663   // Stash a pointer to the g1 heap.
   664   G1CollectedHeap* _g1;
   666   // The average time in ms per collection pause, averaged over recent pauses.
   667   double recent_avg_time_for_pauses_ms();
   669   // The average time in ms for RS scanning, per pause, averaged
   670   // over recent pauses. (Note the RS scanning time for a pause
   671   // is itself an average of the RS scanning time for each worker
   672   // thread.)
   673   double recent_avg_time_for_rs_scan_ms();
   675   // The number of "recent" GCs recorded in the number sequences
   676   int number_of_recent_gcs();
   678   // The average survival ratio, computed by the total number of bytes
   679   // suriviving / total number of bytes before collection over the last
   680   // several recent pauses.
   681   double recent_avg_survival_fraction();
   682   // The survival fraction of the most recent pause; if there have been no
   683   // pauses, returns 1.0.
   684   double last_survival_fraction();
   686   // Returns a "conservative" estimate of the recent survival rate, i.e.,
   687   // one that may be higher than "recent_avg_survival_fraction".
   688   // This is conservative in several ways:
   689   //   If there have been few pauses, it will assume a potential high
   690   //     variance, and err on the side of caution.
   691   //   It puts a lower bound (currently 0.1) on the value it will return.
   692   //   To try to detect phase changes, if the most recent pause ("latest") has a
   693   //     higher-than average ("avg") survival rate, it returns that rate.
   694   // "work" version is a utility function; young is restricted to young regions.
   695   double conservative_avg_survival_fraction_work(double avg,
   696                                                  double latest);
   698   // The arguments are the two sequences that keep track of the number of bytes
   699   //   surviving and the total number of bytes before collection, resp.,
   700   //   over the last evereal recent pauses
   701   // Returns the survival rate for the category in the most recent pause.
   702   // If there have been no pauses, returns 1.0.
   703   double last_survival_fraction_work(TruncatedSeq* surviving,
   704                                      TruncatedSeq* before);
   706   // The arguments are the two sequences that keep track of the number of bytes
   707   //   surviving and the total number of bytes before collection, resp.,
   708   //   over the last several recent pauses
   709   // Returns the average survival ration over the last several recent pauses
   710   // If there have been no pauses, return 1.0
   711   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
   712                                            TruncatedSeq* before);
   714   double conservative_avg_survival_fraction() {
   715     double avg = recent_avg_survival_fraction();
   716     double latest = last_survival_fraction();
   717     return conservative_avg_survival_fraction_work(avg, latest);
   718   }
   720   // The ratio of gc time to elapsed time, computed over recent pauses.
   721   double _recent_avg_pause_time_ratio;
   723   double recent_avg_pause_time_ratio() {
   724     return _recent_avg_pause_time_ratio;
   725   }
   727   // Number of pauses between concurrent marking.
   728   size_t _pauses_btwn_concurrent_mark;
   730   // At the end of a pause we check the heap occupancy and we decide
   731   // whether we will start a marking cycle during the next pause. If
   732   // we decide that we want to do that, we will set this parameter to
   733   // true. So, this parameter will stay true between the end of a
   734   // pause and the beginning of a subsequent pause (not necessarily
   735   // the next one, see the comments on the next field) when we decide
   736   // that we will indeed start a marking cycle and do the initial-mark
   737   // work.
   738   volatile bool _initiate_conc_mark_if_possible;
   740   // If initiate_conc_mark_if_possible() is set at the beginning of a
   741   // pause, it is a suggestion that the pause should start a marking
   742   // cycle by doing the initial-mark work. However, it is possible
   743   // that the concurrent marking thread is still finishing up the
   744   // previous marking cycle (e.g., clearing the next marking
   745   // bitmap). If that is the case we cannot start a new cycle and
   746   // we'll have to wait for the concurrent marking thread to finish
   747   // what it is doing. In this case we will postpone the marking cycle
   748   // initiation decision for the next pause. When we eventually decide
   749   // to start a cycle, we will set _during_initial_mark_pause which
   750   // will stay true until the end of the initial-mark pause and it's
   751   // the condition that indicates that a pause is doing the
   752   // initial-mark work.
   753   volatile bool _during_initial_mark_pause;
   755   bool _should_revert_to_full_young_gcs;
   756   bool _last_full_young_gc;
   758   // This set of variables tracks the collector efficiency, in order to
   759   // determine whether we should initiate a new marking.
   760   double _cur_mark_stop_world_time_ms;
   761   double _mark_remark_start_sec;
   762   double _mark_cleanup_start_sec;
   763   double _mark_closure_time_ms;
   765   // Update the young list target length either by setting it to the
   766   // desired fixed value or by calculating it using G1's pause
   767   // prediction model. If no rs_lengths parameter is passed, predict
   768   // the RS lengths using the prediction model, otherwise use the
   769   // given rs_lengths as the prediction.
   770   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
   772   // Calculate and return the minimum desired young list target
   773   // length. This is the minimum desired young list length according
   774   // to the user's inputs.
   775   size_t calculate_young_list_desired_min_length(size_t base_min_length);
   777   // Calculate and return the maximum desired young list target
   778   // length. This is the maximum desired young list length according
   779   // to the user's inputs.
   780   size_t calculate_young_list_desired_max_length();
   782   // Calculate and return the maximum young list target length that
   783   // can fit into the pause time goal. The parameters are: rs_lengths
   784   // represent the prediction of how large the young RSet lengths will
   785   // be, base_min_length is the alreay existing number of regions in
   786   // the young list, min_length and max_length are the desired min and
   787   // max young list length according to the user's inputs.
   788   size_t calculate_young_list_target_length(size_t rs_lengths,
   789                                             size_t base_min_length,
   790                                             size_t desired_min_length,
   791                                             size_t desired_max_length);
   793   // Check whether a given young length (young_length) fits into the
   794   // given target pause time and whether the prediction for the amount
   795   // of objects to be copied for the given length will fit into the
   796   // given free space (expressed by base_free_regions).  It is used by
   797   // calculate_young_list_target_length().
   798   bool predict_will_fit(size_t young_length, double base_time_ms,
   799                         size_t base_free_regions, double target_pause_time_ms);
   801   // Count the number of bytes used in the CS.
   802   void count_CS_bytes_used();
   804   void update_young_list_size_using_newratio(size_t number_of_heap_regions);
   806 public:
   808   G1CollectorPolicy();
   810   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   812   virtual CollectorPolicy::Name kind() {
   813     return CollectorPolicy::G1CollectorPolicyKind;
   814   }
   816   // Check the current value of the young list RSet lengths and
   817   // compare it against the last prediction. If the current value is
   818   // higher, recalculate the young list target length prediction.
   819   void revise_young_list_target_length_if_necessary();
   821   size_t bytes_in_collection_set() {
   822     return _bytes_in_collection_set_before_gc;
   823   }
   825   unsigned calc_gc_alloc_time_stamp() {
   826     return _all_pause_times_ms->num() + 1;
   827   }
   829   // This should be called after the heap is resized.
   830   void record_new_heap_size(size_t new_number_of_regions);
   832 public:
   834   void init();
   836   // Create jstat counters for the policy.
   837   virtual void initialize_gc_policy_counters();
   839   virtual HeapWord* mem_allocate_work(size_t size,
   840                                       bool is_tlab,
   841                                       bool* gc_overhead_limit_was_exceeded);
   843   // This method controls how a collector handles one or more
   844   // of its generations being fully allocated.
   845   virtual HeapWord* satisfy_failed_allocation(size_t size,
   846                                               bool is_tlab);
   848   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   850   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   852   // The number of collection pauses so far.
   853   long n_pauses() const { return _n_pauses; }
   855   // Update the heuristic info to record a collection pause of the given
   856   // start time, where the given number of bytes were used at the start.
   857   // This may involve changing the desired size of a collection set.
   859   void record_stop_world_start();
   861   void record_collection_pause_start(double start_time_sec, size_t start_used);
   863   // Must currently be called while the world is stopped.
   864   void record_concurrent_mark_init_end(double
   865                                            mark_init_elapsed_time_ms);
   867   void record_mark_closure_time(double mark_closure_time_ms);
   869   void record_concurrent_mark_remark_start();
   870   void record_concurrent_mark_remark_end();
   872   void record_concurrent_mark_cleanup_start();
   873   void record_concurrent_mark_cleanup_end();
   874   void record_concurrent_mark_cleanup_completed();
   876   void record_concurrent_pause();
   877   void record_concurrent_pause_end();
   879   void record_collection_pause_end();
   880   void print_heap_transition();
   882   // Record the fact that a full collection occurred.
   883   void record_full_collection_start();
   884   void record_full_collection_end();
   886   void record_gc_worker_start_time(int worker_i, double ms) {
   887     _par_last_gc_worker_start_times_ms[worker_i] = ms;
   888   }
   890   void record_ext_root_scan_time(int worker_i, double ms) {
   891     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   892   }
   894   void record_mark_stack_scan_time(int worker_i, double ms) {
   895     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   896   }
   898   void record_satb_drain_time(double ms) {
   899     assert(_g1->mark_in_progress(), "shouldn't be here otherwise");
   900     _cur_satb_drain_time_ms = ms;
   901   }
   903   void record_satb_drain_processed_buffers(int processed_buffers) {
   904     assert(_g1->mark_in_progress(), "shouldn't be here otherwise");
   905     _last_satb_drain_processed_buffers = processed_buffers;
   906   }
   908   void record_mod_union_time(double ms) {
   909     _all_mod_union_times_ms->add(ms);
   910   }
   912   void record_update_rs_time(int thread, double ms) {
   913     _par_last_update_rs_times_ms[thread] = ms;
   914   }
   916   void record_update_rs_processed_buffers (int thread,
   917                                            double processed_buffers) {
   918     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   919   }
   921   void record_scan_rs_time(int thread, double ms) {
   922     _par_last_scan_rs_times_ms[thread] = ms;
   923   }
   925   void reset_obj_copy_time(int thread) {
   926     _par_last_obj_copy_times_ms[thread] = 0.0;
   927   }
   929   void reset_obj_copy_time() {
   930     reset_obj_copy_time(0);
   931   }
   933   void record_obj_copy_time(int thread, double ms) {
   934     _par_last_obj_copy_times_ms[thread] += ms;
   935   }
   937   void record_termination(int thread, double ms, size_t attempts) {
   938     _par_last_termination_times_ms[thread] = ms;
   939     _par_last_termination_attempts[thread] = (double) attempts;
   940   }
   942   void record_gc_worker_end_time(int worker_i, double ms) {
   943     _par_last_gc_worker_end_times_ms[worker_i] = ms;
   944   }
   946   void record_pause_time_ms(double ms) {
   947     _last_pause_time_ms = ms;
   948   }
   950   void record_clear_ct_time(double ms) {
   951     _cur_clear_ct_time_ms = ms;
   952   }
   954   void record_par_time(double ms) {
   955     _cur_collection_par_time_ms = ms;
   956   }
   958   void record_aux_start_time(int i) {
   959     guarantee(i < _aux_num, "should be within range");
   960     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   961   }
   963   void record_aux_end_time(int i) {
   964     guarantee(i < _aux_num, "should be within range");
   965     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   966     _cur_aux_times_set[i] = true;
   967     _cur_aux_times_ms[i] += ms;
   968   }
   970   void record_ref_proc_time(double ms) {
   971     _cur_ref_proc_time_ms = ms;
   972   }
   974   void record_ref_enq_time(double ms) {
   975     _cur_ref_enq_time_ms = ms;
   976   }
   978 #ifndef PRODUCT
   979   void record_cc_clear_time(double ms) {
   980     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
   981       _min_clear_cc_time_ms = ms;
   982     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
   983       _max_clear_cc_time_ms = ms;
   984     _cur_clear_cc_time_ms = ms;
   985     _cum_clear_cc_time_ms += ms;
   986     _num_cc_clears++;
   987   }
   988 #endif
   990   // Record how much space we copied during a GC. This is typically
   991   // called when a GC alloc region is being retired.
   992   void record_bytes_copied_during_gc(size_t bytes) {
   993     _bytes_copied_during_gc += bytes;
   994   }
   996   // The amount of space we copied during a GC.
   997   size_t bytes_copied_during_gc() {
   998     return _bytes_copied_during_gc;
   999   }
  1001   // Choose a new collection set.  Marks the chosen regions as being
  1002   // "in_collection_set", and links them together.  The head and number of
  1003   // the collection set are available via access methods.
  1004   void choose_collection_set(double target_pause_time_ms);
  1006   // The head of the list (via "next_in_collection_set()") representing the
  1007   // current collection set.
  1008   HeapRegion* collection_set() { return _collection_set; }
  1010   void clear_collection_set() { _collection_set = NULL; }
  1012   // The number of elements in the current collection set.
  1013   size_t collection_set_size() { return _collection_set_size; }
  1015   // Add "hr" to the CS.
  1016   void add_to_collection_set(HeapRegion* hr);
  1018   // Incremental CSet Support
  1020   // The head of the incrementally built collection set.
  1021   HeapRegion* inc_cset_head() { return _inc_cset_head; }
  1023   // The tail of the incrementally built collection set.
  1024   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
  1026   // The number of elements in the incrementally built collection set.
  1027   size_t inc_cset_size() { return _inc_cset_size; }
  1029   // Initialize incremental collection set info.
  1030   void start_incremental_cset_building();
  1032   void clear_incremental_cset() {
  1033     _inc_cset_head = NULL;
  1034     _inc_cset_tail = NULL;
  1037   // Stop adding regions to the incremental collection set
  1038   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
  1040   // Add/remove information about hr to the aggregated information
  1041   // for the incrementally built collection set.
  1042   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
  1043   void remove_from_incremental_cset_info(HeapRegion* hr);
  1045   // Update information about hr in the aggregated information for
  1046   // the incrementally built collection set.
  1047   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
  1049 private:
  1050   // Update the incremental cset information when adding a region
  1051   // (should not be called directly).
  1052   void add_region_to_incremental_cset_common(HeapRegion* hr);
  1054 public:
  1055   // Add hr to the LHS of the incremental collection set.
  1056   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
  1058   // Add hr to the RHS of the incremental collection set.
  1059   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
  1061 #ifndef PRODUCT
  1062   void print_collection_set(HeapRegion* list_head, outputStream* st);
  1063 #endif // !PRODUCT
  1065   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  1066   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  1067   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
  1069   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  1070   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  1071   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
  1073   // This sets the initiate_conc_mark_if_possible() flag to start a
  1074   // new cycle, as long as we are not already in one. It's best if it
  1075   // is called during a safepoint when the test whether a cycle is in
  1076   // progress or not is stable.
  1077   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
  1079   // This is called at the very beginning of an evacuation pause (it
  1080   // has to be the first thing that the pause does). If
  1081   // initiate_conc_mark_if_possible() is true, and the concurrent
  1082   // marking thread has completed its work during the previous cycle,
  1083   // it will set during_initial_mark_pause() to so that the pause does
  1084   // the initial-mark work and start a marking cycle.
  1085   void decide_on_conc_mark_initiation();
  1087   // If an expansion would be appropriate, because recent GC overhead had
  1088   // exceeded the desired limit, return an amount to expand by.
  1089   size_t expansion_amount();
  1091 #ifndef PRODUCT
  1092   // Check any appropriate marked bytes info, asserting false if
  1093   // something's wrong, else returning "true".
  1094   bool assertMarkedBytesDataOK();
  1095 #endif
  1097   // Print tracing information.
  1098   void print_tracing_info() const;
  1100   // Print stats on young survival ratio
  1101   void print_yg_surv_rate_info() const;
  1103   void finished_recalculating_age_indexes(bool is_survivors) {
  1104     if (is_survivors) {
  1105       _survivor_surv_rate_group->finished_recalculating_age_indexes();
  1106     } else {
  1107       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
  1109     // do that for any other surv rate groups
  1112   bool is_young_list_full() {
  1113     size_t young_list_length = _g1->young_list()->length();
  1114     size_t young_list_target_length = _young_list_target_length;
  1115     return young_list_length >= young_list_target_length;
  1118   bool can_expand_young_list() {
  1119     size_t young_list_length = _g1->young_list()->length();
  1120     size_t young_list_max_length = _young_list_max_length;
  1121     return young_list_length < young_list_max_length;
  1124   size_t young_list_max_length() {
  1125     return _young_list_max_length;
  1128   void update_region_num(bool young);
  1130   bool full_young_gcs() {
  1131     return _full_young_gcs;
  1133   void set_full_young_gcs(bool full_young_gcs) {
  1134     _full_young_gcs = full_young_gcs;
  1137   bool adaptive_young_list_length() {
  1138     return _adaptive_young_list_length;
  1140   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1141     _adaptive_young_list_length = adaptive_young_list_length;
  1144   inline double get_gc_eff_factor() {
  1145     double ratio = _known_garbage_ratio;
  1147     double square = ratio * ratio;
  1148     // square = square * square;
  1149     double ret = square * 9.0 + 1.0;
  1150 #if 0
  1151     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1152 #endif // 0
  1153     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1154     return ret;
  1157 private:
  1158   //
  1159   // Survivor regions policy.
  1160   //
  1162   // Current tenuring threshold, set to 0 if the collector reaches the
  1163   // maximum amount of suvivors regions.
  1164   int _tenuring_threshold;
  1166   // The limit on the number of regions allocated for survivors.
  1167   size_t _max_survivor_regions;
  1169   // For reporting purposes.
  1170   size_t _eden_bytes_before_gc;
  1171   size_t _survivor_bytes_before_gc;
  1172   size_t _capacity_before_gc;
  1174   // The amount of survor regions after a collection.
  1175   size_t _recorded_survivor_regions;
  1176   // List of survivor regions.
  1177   HeapRegion* _recorded_survivor_head;
  1178   HeapRegion* _recorded_survivor_tail;
  1180   ageTable _survivors_age_table;
  1182 public:
  1184   inline GCAllocPurpose
  1185     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1186       if (age < _tenuring_threshold && src_region->is_young()) {
  1187         return GCAllocForSurvived;
  1188       } else {
  1189         return GCAllocForTenured;
  1193   inline bool track_object_age(GCAllocPurpose purpose) {
  1194     return purpose == GCAllocForSurvived;
  1197   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1199   size_t max_regions(int purpose);
  1201   // The limit on regions for a particular purpose is reached.
  1202   void note_alloc_region_limit_reached(int purpose) {
  1203     if (purpose == GCAllocForSurvived) {
  1204       _tenuring_threshold = 0;
  1208   void note_start_adding_survivor_regions() {
  1209     _survivor_surv_rate_group->start_adding_regions();
  1212   void note_stop_adding_survivor_regions() {
  1213     _survivor_surv_rate_group->stop_adding_regions();
  1216   void record_survivor_regions(size_t      regions,
  1217                                HeapRegion* head,
  1218                                HeapRegion* tail) {
  1219     _recorded_survivor_regions = regions;
  1220     _recorded_survivor_head    = head;
  1221     _recorded_survivor_tail    = tail;
  1224   size_t recorded_survivor_regions() {
  1225     return _recorded_survivor_regions;
  1228   void record_thread_age_table(ageTable* age_table)
  1230     _survivors_age_table.merge_par(age_table);
  1233   void update_max_gc_locker_expansion();
  1235   // Calculates survivor space parameters.
  1236   void update_survivors_policy();
  1238 };
  1240 // This should move to some place more general...
  1242 // If we have "n" measurements, and we've kept track of their "sum" and the
  1243 // "sum_of_squares" of the measurements, this returns the variance of the
  1244 // sequence.
  1245 inline double variance(int n, double sum_of_squares, double sum) {
  1246   double n_d = (double)n;
  1247   double avg = sum/n_d;
  1248   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1251 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial