src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Tue, 07 Dec 2010 16:47:42 -0500

author
tonyp
date
Tue, 07 Dec 2010 16:47:42 -0500
changeset 2333
016a3628c885
parent 2315
631f79e71e90
child 2712
5c0b591e1074
permissions
-rw-r--r--

6994056: G1: when GC locker is active, extend the Eden instead of allocating into the old gen
Summary: Allow the eden to the expanded up to a point when the GC locker is active.
Reviewed-by: jwilhelm, johnc, ysr, jcoomes

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    28 #include "gc_implementation/g1/collectionSetChooser.hpp"
    29 #include "gc_implementation/g1/g1MMUTracker.hpp"
    30 #include "memory/collectorPolicy.hpp"
    32 // A G1CollectorPolicy makes policy decisions that determine the
    33 // characteristics of the collector.  Examples include:
    34 //   * choice of collection set.
    35 //   * when to collect.
    37 class HeapRegion;
    38 class CollectionSetChooser;
    40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    41 // over and over again and introducing subtle problems through small typos and
    42 // cutting and pasting mistakes. The macros below introduces a number
    43 // sequnce into the following two classes and the methods that access it.
    45 #define define_num_seq(name)                                                  \
    46 private:                                                                      \
    47   NumberSeq _all_##name##_times_ms;                                           \
    48 public:                                                                       \
    49   void record_##name##_time_ms(double ms) {                                   \
    50     _all_##name##_times_ms.add(ms);                                           \
    51   }                                                                           \
    52   NumberSeq* get_##name##_seq() {                                             \
    53     return &_all_##name##_times_ms;                                           \
    54   }
    56 class MainBodySummary;
    58 class PauseSummary: public CHeapObj {
    59   define_num_seq(total)
    60     define_num_seq(other)
    62 public:
    63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    64 };
    66 class MainBodySummary: public CHeapObj {
    67   define_num_seq(satb_drain) // optional
    68   define_num_seq(parallel) // parallel only
    69     define_num_seq(ext_root_scan)
    70     define_num_seq(mark_stack_scan)
    71     define_num_seq(update_rs)
    72     define_num_seq(scan_rs)
    73     define_num_seq(obj_copy)
    74     define_num_seq(termination) // parallel only
    75     define_num_seq(parallel_other) // parallel only
    76   define_num_seq(mark_closure)
    77   define_num_seq(clear_ct)  // parallel only
    78 };
    80 class Summary: public PauseSummary,
    81                public MainBodySummary {
    82 public:
    83   virtual MainBodySummary*    main_body_summary()    { return this; }
    84 };
    86 class G1CollectorPolicy: public CollectorPolicy {
    87 protected:
    88   // The number of pauses during the execution.
    89   long _n_pauses;
    91   // either equal to the number of parallel threads, if ParallelGCThreads
    92   // has been set, or 1 otherwise
    93   int _parallel_gc_threads;
    95   enum SomePrivateConstants {
    96     NumPrevPausesForHeuristics = 10
    97   };
    99   G1MMUTracker* _mmu_tracker;
   101   void initialize_flags();
   103   void initialize_all() {
   104     initialize_flags();
   105     initialize_size_info();
   106     initialize_perm_generation(PermGen::MarkSweepCompact);
   107   }
   109   virtual size_t default_init_heap_size() {
   110     // Pick some reasonable default.
   111     return 8*M;
   112   }
   114   double _cur_collection_start_sec;
   115   size_t _cur_collection_pause_used_at_start_bytes;
   116   size_t _cur_collection_pause_used_regions_at_start;
   117   size_t _prev_collection_pause_used_at_end_bytes;
   118   double _cur_collection_par_time_ms;
   119   double _cur_satb_drain_time_ms;
   120   double _cur_clear_ct_time_ms;
   121   bool   _satb_drain_time_set;
   123 #ifndef PRODUCT
   124   // Card Table Count Cache stats
   125   double _min_clear_cc_time_ms;         // min
   126   double _max_clear_cc_time_ms;         // max
   127   double _cur_clear_cc_time_ms;         // clearing time during current pause
   128   double _cum_clear_cc_time_ms;         // cummulative clearing time
   129   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   130 #endif
   132   double _cur_CH_strong_roots_end_sec;
   133   double _cur_CH_strong_roots_dur_ms;
   134   double _cur_G1_strong_roots_end_sec;
   135   double _cur_G1_strong_roots_dur_ms;
   137   // Statistics for recent GC pauses.  See below for how indexed.
   138   TruncatedSeq* _recent_CH_strong_roots_times_ms;
   139   TruncatedSeq* _recent_G1_strong_roots_times_ms;
   140   TruncatedSeq* _recent_evac_times_ms;
   141   // These exclude marking times.
   142   TruncatedSeq* _recent_pause_times_ms;
   143   TruncatedSeq* _recent_gc_times_ms;
   145   TruncatedSeq* _recent_CS_bytes_used_before;
   146   TruncatedSeq* _recent_CS_bytes_surviving;
   148   TruncatedSeq* _recent_rs_sizes;
   150   TruncatedSeq* _concurrent_mark_init_times_ms;
   151   TruncatedSeq* _concurrent_mark_remark_times_ms;
   152   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   154   Summary*           _summary;
   156   NumberSeq* _all_pause_times_ms;
   157   NumberSeq* _all_full_gc_times_ms;
   158   double _stop_world_start;
   159   NumberSeq* _all_stop_world_times_ms;
   160   NumberSeq* _all_yield_times_ms;
   162   size_t     _region_num_young;
   163   size_t     _region_num_tenured;
   164   size_t     _prev_region_num_young;
   165   size_t     _prev_region_num_tenured;
   167   NumberSeq* _all_mod_union_times_ms;
   169   int        _aux_num;
   170   NumberSeq* _all_aux_times_ms;
   171   double*    _cur_aux_start_times_ms;
   172   double*    _cur_aux_times_ms;
   173   bool*      _cur_aux_times_set;
   175   double* _par_last_gc_worker_start_times_ms;
   176   double* _par_last_ext_root_scan_times_ms;
   177   double* _par_last_mark_stack_scan_times_ms;
   178   double* _par_last_update_rs_times_ms;
   179   double* _par_last_update_rs_processed_buffers;
   180   double* _par_last_scan_rs_times_ms;
   181   double* _par_last_obj_copy_times_ms;
   182   double* _par_last_termination_times_ms;
   183   double* _par_last_termination_attempts;
   184   double* _par_last_gc_worker_end_times_ms;
   186   // indicates that we are in young GC mode
   187   bool _in_young_gc_mode;
   189   // indicates whether we are in full young or partially young GC mode
   190   bool _full_young_gcs;
   192   // if true, then it tries to dynamically adjust the length of the
   193   // young list
   194   bool _adaptive_young_list_length;
   195   size_t _young_list_min_length;
   196   size_t _young_list_target_length;
   197   size_t _young_list_fixed_length;
   199   // The max number of regions we can extend the eden by while the GC
   200   // locker is active. This should be >= _young_list_target_length;
   201   size_t _young_list_max_length;
   203   size_t _young_cset_length;
   204   bool   _last_young_gc_full;
   206   unsigned              _full_young_pause_num;
   207   unsigned              _partial_young_pause_num;
   209   bool                  _during_marking;
   210   bool                  _in_marking_window;
   211   bool                  _in_marking_window_im;
   213   SurvRateGroup*        _short_lived_surv_rate_group;
   214   SurvRateGroup*        _survivor_surv_rate_group;
   215   // add here any more surv rate groups
   217   double                _gc_overhead_perc;
   219   bool during_marking() {
   220     return _during_marking;
   221   }
   223   // <NEW PREDICTION>
   225 private:
   226   enum PredictionConstants {
   227     TruncatedSeqLength = 10
   228   };
   230   TruncatedSeq* _alloc_rate_ms_seq;
   231   double        _prev_collection_pause_end_ms;
   233   TruncatedSeq* _pending_card_diff_seq;
   234   TruncatedSeq* _rs_length_diff_seq;
   235   TruncatedSeq* _cost_per_card_ms_seq;
   236   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
   237   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
   238   TruncatedSeq* _cost_per_entry_ms_seq;
   239   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
   240   TruncatedSeq* _cost_per_byte_ms_seq;
   241   TruncatedSeq* _constant_other_time_ms_seq;
   242   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   243   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   245   TruncatedSeq* _pending_cards_seq;
   246   TruncatedSeq* _scanned_cards_seq;
   247   TruncatedSeq* _rs_lengths_seq;
   249   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   251   TruncatedSeq* _young_gc_eff_seq;
   253   TruncatedSeq* _max_conc_overhead_seq;
   255   size_t _recorded_young_regions;
   256   size_t _recorded_non_young_regions;
   257   size_t _recorded_region_num;
   259   size_t _free_regions_at_end_of_collection;
   261   size_t _recorded_rs_lengths;
   262   size_t _max_rs_lengths;
   264   size_t _recorded_marked_bytes;
   265   size_t _recorded_young_bytes;
   267   size_t _predicted_pending_cards;
   268   size_t _predicted_cards_scanned;
   269   size_t _predicted_rs_lengths;
   270   size_t _predicted_bytes_to_copy;
   272   double _predicted_survival_ratio;
   273   double _predicted_rs_update_time_ms;
   274   double _predicted_rs_scan_time_ms;
   275   double _predicted_object_copy_time_ms;
   276   double _predicted_constant_other_time_ms;
   277   double _predicted_young_other_time_ms;
   278   double _predicted_non_young_other_time_ms;
   279   double _predicted_pause_time_ms;
   281   double _vtime_diff_ms;
   283   double _recorded_young_free_cset_time_ms;
   284   double _recorded_non_young_free_cset_time_ms;
   286   double _sigma;
   287   double _expensive_region_limit_ms;
   289   size_t _rs_lengths_prediction;
   291   size_t _known_garbage_bytes;
   292   double _known_garbage_ratio;
   294   double sigma() {
   295     return _sigma;
   296   }
   298   // A function that prevents us putting too much stock in small sample
   299   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   300   // of samples.  5 or more samples yields one; fewer scales linearly from
   301   // 2.0 at 1 sample to 1.0 at 5.
   302   double confidence_factor(int samples) {
   303     if (samples > 4) return 1.0;
   304     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   305   }
   307   double get_new_neg_prediction(TruncatedSeq* seq) {
   308     return seq->davg() - sigma() * seq->dsd();
   309   }
   311 #ifndef PRODUCT
   312   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   313 #endif // PRODUCT
   315   void adjust_concurrent_refinement(double update_rs_time,
   316                                     double update_rs_processed_buffers,
   317                                     double goal_ms);
   319 protected:
   320   double _pause_time_target_ms;
   321   double _recorded_young_cset_choice_time_ms;
   322   double _recorded_non_young_cset_choice_time_ms;
   323   bool   _within_target;
   324   size_t _pending_cards;
   325   size_t _max_pending_cards;
   327 public:
   329   void set_region_short_lived(HeapRegion* hr) {
   330     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   331   }
   333   void set_region_survivors(HeapRegion* hr) {
   334     hr->install_surv_rate_group(_survivor_surv_rate_group);
   335   }
   337 #ifndef PRODUCT
   338   bool verify_young_ages();
   339 #endif // PRODUCT
   341   double get_new_prediction(TruncatedSeq* seq) {
   342     return MAX2(seq->davg() + sigma() * seq->dsd(),
   343                 seq->davg() * confidence_factor(seq->num()));
   344   }
   346   size_t young_cset_length() {
   347     return _young_cset_length;
   348   }
   350   void record_max_rs_lengths(size_t rs_lengths) {
   351     _max_rs_lengths = rs_lengths;
   352   }
   354   size_t predict_pending_card_diff() {
   355     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   356     if (prediction < 0.00001)
   357       return 0;
   358     else
   359       return (size_t) prediction;
   360   }
   362   size_t predict_pending_cards() {
   363     size_t max_pending_card_num = _g1->max_pending_card_num();
   364     size_t diff = predict_pending_card_diff();
   365     size_t prediction;
   366     if (diff > max_pending_card_num)
   367       prediction = max_pending_card_num;
   368     else
   369       prediction = max_pending_card_num - diff;
   371     return prediction;
   372   }
   374   size_t predict_rs_length_diff() {
   375     return (size_t) get_new_prediction(_rs_length_diff_seq);
   376   }
   378   double predict_alloc_rate_ms() {
   379     return get_new_prediction(_alloc_rate_ms_seq);
   380   }
   382   double predict_cost_per_card_ms() {
   383     return get_new_prediction(_cost_per_card_ms_seq);
   384   }
   386   double predict_rs_update_time_ms(size_t pending_cards) {
   387     return (double) pending_cards * predict_cost_per_card_ms();
   388   }
   390   double predict_fully_young_cards_per_entry_ratio() {
   391     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
   392   }
   394   double predict_partially_young_cards_per_entry_ratio() {
   395     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
   396       return predict_fully_young_cards_per_entry_ratio();
   397     else
   398       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
   399   }
   401   size_t predict_young_card_num(size_t rs_length) {
   402     return (size_t) ((double) rs_length *
   403                      predict_fully_young_cards_per_entry_ratio());
   404   }
   406   size_t predict_non_young_card_num(size_t rs_length) {
   407     return (size_t) ((double) rs_length *
   408                      predict_partially_young_cards_per_entry_ratio());
   409   }
   411   double predict_rs_scan_time_ms(size_t card_num) {
   412     if (full_young_gcs())
   413       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   414     else
   415       return predict_partially_young_rs_scan_time_ms(card_num);
   416   }
   418   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
   419     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
   420       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   421     else
   422       return (double) card_num *
   423         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
   424   }
   426   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   427     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
   428       return 1.1 * (double) bytes_to_copy *
   429         get_new_prediction(_cost_per_byte_ms_seq);
   430     else
   431       return (double) bytes_to_copy *
   432         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   433   }
   435   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   436     if (_in_marking_window && !_in_marking_window_im)
   437       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   438     else
   439       return (double) bytes_to_copy *
   440         get_new_prediction(_cost_per_byte_ms_seq);
   441   }
   443   double predict_constant_other_time_ms() {
   444     return get_new_prediction(_constant_other_time_ms_seq);
   445   }
   447   double predict_young_other_time_ms(size_t young_num) {
   448     return
   449       (double) young_num *
   450       get_new_prediction(_young_other_cost_per_region_ms_seq);
   451   }
   453   double predict_non_young_other_time_ms(size_t non_young_num) {
   454     return
   455       (double) non_young_num *
   456       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   457   }
   459   void check_if_region_is_too_expensive(double predicted_time_ms);
   461   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   462   double predict_base_elapsed_time_ms(size_t pending_cards);
   463   double predict_base_elapsed_time_ms(size_t pending_cards,
   464                                       size_t scanned_cards);
   465   size_t predict_bytes_to_copy(HeapRegion* hr);
   466   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   468     // for use by: calculate_young_list_target_length(rs_length)
   469   bool predict_will_fit(size_t young_region_num,
   470                         double base_time_ms,
   471                         size_t init_free_regions,
   472                         double target_pause_time_ms);
   474   void start_recording_regions();
   475   void record_cset_region_info(HeapRegion* hr, bool young);
   476   void record_non_young_cset_region(HeapRegion* hr);
   478   void set_recorded_young_regions(size_t n_regions);
   479   void set_recorded_young_bytes(size_t bytes);
   480   void set_recorded_rs_lengths(size_t rs_lengths);
   481   void set_predicted_bytes_to_copy(size_t bytes);
   483   void end_recording_regions();
   485   void record_vtime_diff_ms(double vtime_diff_ms) {
   486     _vtime_diff_ms = vtime_diff_ms;
   487   }
   489   void record_young_free_cset_time_ms(double time_ms) {
   490     _recorded_young_free_cset_time_ms = time_ms;
   491   }
   493   void record_non_young_free_cset_time_ms(double time_ms) {
   494     _recorded_non_young_free_cset_time_ms = time_ms;
   495   }
   497   double predict_young_gc_eff() {
   498     return get_new_neg_prediction(_young_gc_eff_seq);
   499   }
   501   double predict_survivor_regions_evac_time();
   503   // </NEW PREDICTION>
   505 public:
   506   void cset_regions_freed() {
   507     bool propagate = _last_young_gc_full && !_in_marking_window;
   508     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   509     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   510     // also call it on any more surv rate groups
   511   }
   513   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   514     _known_garbage_bytes = known_garbage_bytes;
   515     size_t heap_bytes = _g1->capacity();
   516     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   517   }
   519   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   520     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   522     _known_garbage_bytes -= known_garbage_bytes;
   523     size_t heap_bytes = _g1->capacity();
   524     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   525   }
   527   G1MMUTracker* mmu_tracker() {
   528     return _mmu_tracker;
   529   }
   531   double max_pause_time_ms() {
   532     return _mmu_tracker->max_gc_time() * 1000.0;
   533   }
   535   double predict_init_time_ms() {
   536     return get_new_prediction(_concurrent_mark_init_times_ms);
   537   }
   539   double predict_remark_time_ms() {
   540     return get_new_prediction(_concurrent_mark_remark_times_ms);
   541   }
   543   double predict_cleanup_time_ms() {
   544     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   545   }
   547   // Returns an estimate of the survival rate of the region at yg-age
   548   // "yg_age".
   549   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   550     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   551     if (seq->num() == 0)
   552       gclog_or_tty->print("BARF! age is %d", age);
   553     guarantee( seq->num() > 0, "invariant" );
   554     double pred = get_new_prediction(seq);
   555     if (pred > 1.0)
   556       pred = 1.0;
   557     return pred;
   558   }
   560   double predict_yg_surv_rate(int age) {
   561     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   562   }
   564   double accum_yg_surv_rate_pred(int age) {
   565     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   566   }
   568 protected:
   569   void print_stats(int level, const char* str, double value);
   570   void print_stats(int level, const char* str, int value);
   572   void print_par_stats(int level, const char* str, double* data) {
   573     print_par_stats(level, str, data, true);
   574   }
   575   void print_par_stats(int level, const char* str, double* data, bool summary);
   576   void print_par_sizes(int level, const char* str, double* data, bool summary);
   578   void check_other_times(int level,
   579                          NumberSeq* other_times_ms,
   580                          NumberSeq* calc_other_times_ms) const;
   582   void print_summary (PauseSummary* stats) const;
   584   void print_summary (int level, const char* str, NumberSeq* seq) const;
   585   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   587   double avg_value (double* data);
   588   double max_value (double* data);
   589   double sum_of_values (double* data);
   590   double max_sum (double* data1, double* data2);
   592   int _last_satb_drain_processed_buffers;
   593   int _last_update_rs_processed_buffers;
   594   double _last_pause_time_ms;
   596   size_t _bytes_in_to_space_before_gc;
   597   size_t _bytes_in_to_space_after_gc;
   598   size_t bytes_in_to_space_during_gc() {
   599     return
   600       _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
   601   }
   602   size_t _bytes_in_collection_set_before_gc;
   603   // Used to count used bytes in CS.
   604   friend class CountCSClosure;
   606   // Statistics kept per GC stoppage, pause or full.
   607   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   609   // We track markings.
   610   int _num_markings;
   611   double _mark_thread_startup_sec;       // Time at startup of marking thread
   613   // Add a new GC of the given duration and end time to the record.
   614   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   616   // The head of the list (via "next_in_collection_set()") representing the
   617   // current collection set. Set from the incrementally built collection
   618   // set at the start of the pause.
   619   HeapRegion* _collection_set;
   621   // The number of regions in the collection set. Set from the incrementally
   622   // built collection set at the start of an evacuation pause.
   623   size_t _collection_set_size;
   625   // The number of bytes in the collection set before the pause. Set from
   626   // the incrementally built collection set at the start of an evacuation
   627   // pause.
   628   size_t _collection_set_bytes_used_before;
   630   // The associated information that is maintained while the incremental
   631   // collection set is being built with young regions. Used to populate
   632   // the recorded info for the evacuation pause.
   634   enum CSetBuildType {
   635     Active,             // We are actively building the collection set
   636     Inactive            // We are not actively building the collection set
   637   };
   639   CSetBuildType _inc_cset_build_state;
   641   // The head of the incrementally built collection set.
   642   HeapRegion* _inc_cset_head;
   644   // The tail of the incrementally built collection set.
   645   HeapRegion* _inc_cset_tail;
   647   // The number of regions in the incrementally built collection set.
   648   // Used to set _collection_set_size at the start of an evacuation
   649   // pause.
   650   size_t _inc_cset_size;
   652   // Used as the index in the surving young words structure
   653   // which tracks the amount of space, for each young region,
   654   // that survives the pause.
   655   size_t _inc_cset_young_index;
   657   // The number of bytes in the incrementally built collection set.
   658   // Used to set _collection_set_bytes_used_before at the start of
   659   // an evacuation pause.
   660   size_t _inc_cset_bytes_used_before;
   662   // Used to record the highest end of heap region in collection set
   663   HeapWord* _inc_cset_max_finger;
   665   // The number of recorded used bytes in the young regions
   666   // of the collection set. This is the sum of the used() bytes
   667   // of retired young regions in the collection set.
   668   size_t _inc_cset_recorded_young_bytes;
   670   // The RSet lengths recorded for regions in the collection set
   671   // (updated by the periodic sampling of the regions in the
   672   // young list/collection set).
   673   size_t _inc_cset_recorded_rs_lengths;
   675   // The predicted elapsed time it will take to collect the regions
   676   // in the collection set (updated by the periodic sampling of the
   677   // regions in the young list/collection set).
   678   double _inc_cset_predicted_elapsed_time_ms;
   680   // The predicted bytes to copy for the regions in the collection
   681   // set (updated by the periodic sampling of the regions in the
   682   // young list/collection set).
   683   size_t _inc_cset_predicted_bytes_to_copy;
   685   // Info about marking.
   686   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
   688   // The number of collection pauses at the end of the last mark.
   689   size_t _n_pauses_at_mark_end;
   691   // Stash a pointer to the g1 heap.
   692   G1CollectedHeap* _g1;
   694   // The average time in ms per collection pause, averaged over recent pauses.
   695   double recent_avg_time_for_pauses_ms();
   697   // The average time in ms for processing CollectedHeap strong roots, per
   698   // collection pause, averaged over recent pauses.
   699   double recent_avg_time_for_CH_strong_ms();
   701   // The average time in ms for processing the G1 remembered set, per
   702   // pause, averaged over recent pauses.
   703   double recent_avg_time_for_G1_strong_ms();
   705   // The average time in ms for "evacuating followers", per pause, averaged
   706   // over recent pauses.
   707   double recent_avg_time_for_evac_ms();
   709   // The number of "recent" GCs recorded in the number sequences
   710   int number_of_recent_gcs();
   712   // The average survival ratio, computed by the total number of bytes
   713   // suriviving / total number of bytes before collection over the last
   714   // several recent pauses.
   715   double recent_avg_survival_fraction();
   716   // The survival fraction of the most recent pause; if there have been no
   717   // pauses, returns 1.0.
   718   double last_survival_fraction();
   720   // Returns a "conservative" estimate of the recent survival rate, i.e.,
   721   // one that may be higher than "recent_avg_survival_fraction".
   722   // This is conservative in several ways:
   723   //   If there have been few pauses, it will assume a potential high
   724   //     variance, and err on the side of caution.
   725   //   It puts a lower bound (currently 0.1) on the value it will return.
   726   //   To try to detect phase changes, if the most recent pause ("latest") has a
   727   //     higher-than average ("avg") survival rate, it returns that rate.
   728   // "work" version is a utility function; young is restricted to young regions.
   729   double conservative_avg_survival_fraction_work(double avg,
   730                                                  double latest);
   732   // The arguments are the two sequences that keep track of the number of bytes
   733   //   surviving and the total number of bytes before collection, resp.,
   734   //   over the last evereal recent pauses
   735   // Returns the survival rate for the category in the most recent pause.
   736   // If there have been no pauses, returns 1.0.
   737   double last_survival_fraction_work(TruncatedSeq* surviving,
   738                                      TruncatedSeq* before);
   740   // The arguments are the two sequences that keep track of the number of bytes
   741   //   surviving and the total number of bytes before collection, resp.,
   742   //   over the last several recent pauses
   743   // Returns the average survival ration over the last several recent pauses
   744   // If there have been no pauses, return 1.0
   745   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
   746                                            TruncatedSeq* before);
   748   double conservative_avg_survival_fraction() {
   749     double avg = recent_avg_survival_fraction();
   750     double latest = last_survival_fraction();
   751     return conservative_avg_survival_fraction_work(avg, latest);
   752   }
   754   // The ratio of gc time to elapsed time, computed over recent pauses.
   755   double _recent_avg_pause_time_ratio;
   757   double recent_avg_pause_time_ratio() {
   758     return _recent_avg_pause_time_ratio;
   759   }
   761   // Number of pauses between concurrent marking.
   762   size_t _pauses_btwn_concurrent_mark;
   764   size_t _n_marks_since_last_pause;
   766   // At the end of a pause we check the heap occupancy and we decide
   767   // whether we will start a marking cycle during the next pause. If
   768   // we decide that we want to do that, we will set this parameter to
   769   // true. So, this parameter will stay true between the end of a
   770   // pause and the beginning of a subsequent pause (not necessarily
   771   // the next one, see the comments on the next field) when we decide
   772   // that we will indeed start a marking cycle and do the initial-mark
   773   // work.
   774   volatile bool _initiate_conc_mark_if_possible;
   776   // If initiate_conc_mark_if_possible() is set at the beginning of a
   777   // pause, it is a suggestion that the pause should start a marking
   778   // cycle by doing the initial-mark work. However, it is possible
   779   // that the concurrent marking thread is still finishing up the
   780   // previous marking cycle (e.g., clearing the next marking
   781   // bitmap). If that is the case we cannot start a new cycle and
   782   // we'll have to wait for the concurrent marking thread to finish
   783   // what it is doing. In this case we will postpone the marking cycle
   784   // initiation decision for the next pause. When we eventually decide
   785   // to start a cycle, we will set _during_initial_mark_pause which
   786   // will stay true until the end of the initial-mark pause and it's
   787   // the condition that indicates that a pause is doing the
   788   // initial-mark work.
   789   volatile bool _during_initial_mark_pause;
   791   bool _should_revert_to_full_young_gcs;
   792   bool _last_full_young_gc;
   794   // This set of variables tracks the collector efficiency, in order to
   795   // determine whether we should initiate a new marking.
   796   double _cur_mark_stop_world_time_ms;
   797   double _mark_init_start_sec;
   798   double _mark_remark_start_sec;
   799   double _mark_cleanup_start_sec;
   800   double _mark_closure_time_ms;
   802   void   calculate_young_list_min_length();
   803   void   calculate_young_list_target_length();
   804   void   calculate_young_list_target_length(size_t rs_lengths);
   806 public:
   808   G1CollectorPolicy();
   810   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   812   virtual CollectorPolicy::Name kind() {
   813     return CollectorPolicy::G1CollectorPolicyKind;
   814   }
   816   void check_prediction_validity();
   818   size_t bytes_in_collection_set() {
   819     return _bytes_in_collection_set_before_gc;
   820   }
   822   size_t bytes_in_to_space() {
   823     return bytes_in_to_space_during_gc();
   824   }
   826   unsigned calc_gc_alloc_time_stamp() {
   827     return _all_pause_times_ms->num() + 1;
   828   }
   830 protected:
   832   // Count the number of bytes used in the CS.
   833   void count_CS_bytes_used();
   835   // Together these do the base cleanup-recording work.  Subclasses might
   836   // want to put something between them.
   837   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
   838                                                 size_t max_live_bytes);
   839   void record_concurrent_mark_cleanup_end_work2();
   841 public:
   843   virtual void init();
   845   // Create jstat counters for the policy.
   846   virtual void initialize_gc_policy_counters();
   848   virtual HeapWord* mem_allocate_work(size_t size,
   849                                       bool is_tlab,
   850                                       bool* gc_overhead_limit_was_exceeded);
   852   // This method controls how a collector handles one or more
   853   // of its generations being fully allocated.
   854   virtual HeapWord* satisfy_failed_allocation(size_t size,
   855                                               bool is_tlab);
   857   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   859   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   861   // The number of collection pauses so far.
   862   long n_pauses() const { return _n_pauses; }
   864   // Update the heuristic info to record a collection pause of the given
   865   // start time, where the given number of bytes were used at the start.
   866   // This may involve changing the desired size of a collection set.
   868   virtual void record_stop_world_start();
   870   virtual void record_collection_pause_start(double start_time_sec,
   871                                              size_t start_used);
   873   // Must currently be called while the world is stopped.
   874   virtual void record_concurrent_mark_init_start();
   875   virtual void record_concurrent_mark_init_end();
   876   void record_concurrent_mark_init_end_pre(double
   877                                            mark_init_elapsed_time_ms);
   879   void record_mark_closure_time(double mark_closure_time_ms);
   881   virtual void record_concurrent_mark_remark_start();
   882   virtual void record_concurrent_mark_remark_end();
   884   virtual void record_concurrent_mark_cleanup_start();
   885   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
   886                                                   size_t max_live_bytes);
   887   virtual void record_concurrent_mark_cleanup_completed();
   889   virtual void record_concurrent_pause();
   890   virtual void record_concurrent_pause_end();
   892   virtual void record_collection_pause_end_CH_strong_roots();
   893   virtual void record_collection_pause_end_G1_strong_roots();
   895   virtual void record_collection_pause_end();
   897   // Record the fact that a full collection occurred.
   898   virtual void record_full_collection_start();
   899   virtual void record_full_collection_end();
   901   void record_gc_worker_start_time(int worker_i, double ms) {
   902     _par_last_gc_worker_start_times_ms[worker_i] = ms;
   903   }
   905   void record_ext_root_scan_time(int worker_i, double ms) {
   906     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   907   }
   909   void record_mark_stack_scan_time(int worker_i, double ms) {
   910     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   911   }
   913   void record_satb_drain_time(double ms) {
   914     _cur_satb_drain_time_ms = ms;
   915     _satb_drain_time_set    = true;
   916   }
   918   void record_satb_drain_processed_buffers (int processed_buffers) {
   919     _last_satb_drain_processed_buffers = processed_buffers;
   920   }
   922   void record_mod_union_time(double ms) {
   923     _all_mod_union_times_ms->add(ms);
   924   }
   926   void record_update_rs_time(int thread, double ms) {
   927     _par_last_update_rs_times_ms[thread] = ms;
   928   }
   930   void record_update_rs_processed_buffers (int thread,
   931                                            double processed_buffers) {
   932     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   933   }
   935   void record_scan_rs_time(int thread, double ms) {
   936     _par_last_scan_rs_times_ms[thread] = ms;
   937   }
   939   void reset_obj_copy_time(int thread) {
   940     _par_last_obj_copy_times_ms[thread] = 0.0;
   941   }
   943   void reset_obj_copy_time() {
   944     reset_obj_copy_time(0);
   945   }
   947   void record_obj_copy_time(int thread, double ms) {
   948     _par_last_obj_copy_times_ms[thread] += ms;
   949   }
   951   void record_termination(int thread, double ms, size_t attempts) {
   952     _par_last_termination_times_ms[thread] = ms;
   953     _par_last_termination_attempts[thread] = (double) attempts;
   954   }
   956   void record_gc_worker_end_time(int worker_i, double ms) {
   957     _par_last_gc_worker_end_times_ms[worker_i] = ms;
   958   }
   960   void record_pause_time_ms(double ms) {
   961     _last_pause_time_ms = ms;
   962   }
   964   void record_clear_ct_time(double ms) {
   965     _cur_clear_ct_time_ms = ms;
   966   }
   968   void record_par_time(double ms) {
   969     _cur_collection_par_time_ms = ms;
   970   }
   972   void record_aux_start_time(int i) {
   973     guarantee(i < _aux_num, "should be within range");
   974     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   975   }
   977   void record_aux_end_time(int i) {
   978     guarantee(i < _aux_num, "should be within range");
   979     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   980     _cur_aux_times_set[i] = true;
   981     _cur_aux_times_ms[i] += ms;
   982   }
   984 #ifndef PRODUCT
   985   void record_cc_clear_time(double ms) {
   986     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
   987       _min_clear_cc_time_ms = ms;
   988     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
   989       _max_clear_cc_time_ms = ms;
   990     _cur_clear_cc_time_ms = ms;
   991     _cum_clear_cc_time_ms += ms;
   992     _num_cc_clears++;
   993   }
   994 #endif
   996   // Record the fact that "bytes" bytes allocated in a region.
   997   void record_before_bytes(size_t bytes);
   998   void record_after_bytes(size_t bytes);
  1000   // Choose a new collection set.  Marks the chosen regions as being
  1001   // "in_collection_set", and links them together.  The head and number of
  1002   // the collection set are available via access methods.
  1003   virtual void choose_collection_set(double target_pause_time_ms) = 0;
  1005   // The head of the list (via "next_in_collection_set()") representing the
  1006   // current collection set.
  1007   HeapRegion* collection_set() { return _collection_set; }
  1009   void clear_collection_set() { _collection_set = NULL; }
  1011   // The number of elements in the current collection set.
  1012   size_t collection_set_size() { return _collection_set_size; }
  1014   // Add "hr" to the CS.
  1015   void add_to_collection_set(HeapRegion* hr);
  1017   // Incremental CSet Support
  1019   // The head of the incrementally built collection set.
  1020   HeapRegion* inc_cset_head() { return _inc_cset_head; }
  1022   // The tail of the incrementally built collection set.
  1023   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
  1025   // The number of elements in the incrementally built collection set.
  1026   size_t inc_cset_size() { return _inc_cset_size; }
  1028   // Initialize incremental collection set info.
  1029   void start_incremental_cset_building();
  1031   void clear_incremental_cset() {
  1032     _inc_cset_head = NULL;
  1033     _inc_cset_tail = NULL;
  1036   // Stop adding regions to the incremental collection set
  1037   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
  1039   // Add/remove information about hr to the aggregated information
  1040   // for the incrementally built collection set.
  1041   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
  1042   void remove_from_incremental_cset_info(HeapRegion* hr);
  1044   // Update information about hr in the aggregated information for
  1045   // the incrementally built collection set.
  1046   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
  1048 private:
  1049   // Update the incremental cset information when adding a region
  1050   // (should not be called directly).
  1051   void add_region_to_incremental_cset_common(HeapRegion* hr);
  1053 public:
  1054   // Add hr to the LHS of the incremental collection set.
  1055   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
  1057   // Add hr to the RHS of the incremental collection set.
  1058   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
  1060 #ifndef PRODUCT
  1061   void print_collection_set(HeapRegion* list_head, outputStream* st);
  1062 #endif // !PRODUCT
  1064   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  1065   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  1066   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
  1068   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  1069   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  1070   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
  1072   // This sets the initiate_conc_mark_if_possible() flag to start a
  1073   // new cycle, as long as we are not already in one. It's best if it
  1074   // is called during a safepoint when the test whether a cycle is in
  1075   // progress or not is stable.
  1076   bool force_initial_mark_if_outside_cycle();
  1078   // This is called at the very beginning of an evacuation pause (it
  1079   // has to be the first thing that the pause does). If
  1080   // initiate_conc_mark_if_possible() is true, and the concurrent
  1081   // marking thread has completed its work during the previous cycle,
  1082   // it will set during_initial_mark_pause() to so that the pause does
  1083   // the initial-mark work and start a marking cycle.
  1084   void decide_on_conc_mark_initiation();
  1086   // If an expansion would be appropriate, because recent GC overhead had
  1087   // exceeded the desired limit, return an amount to expand by.
  1088   virtual size_t expansion_amount();
  1090   // note start of mark thread
  1091   void note_start_of_mark_thread();
  1093   // The marked bytes of the "r" has changed; reclassify it's desirability
  1094   // for marking.  Also asserts that "r" is eligible for a CS.
  1095   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
  1097 #ifndef PRODUCT
  1098   // Check any appropriate marked bytes info, asserting false if
  1099   // something's wrong, else returning "true".
  1100   virtual bool assertMarkedBytesDataOK() = 0;
  1101 #endif
  1103   // Print tracing information.
  1104   void print_tracing_info() const;
  1106   // Print stats on young survival ratio
  1107   void print_yg_surv_rate_info() const;
  1109   void finished_recalculating_age_indexes(bool is_survivors) {
  1110     if (is_survivors) {
  1111       _survivor_surv_rate_group->finished_recalculating_age_indexes();
  1112     } else {
  1113       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
  1115     // do that for any other surv rate groups
  1118   bool is_young_list_full() {
  1119     size_t young_list_length = _g1->young_list()->length();
  1120     size_t young_list_target_length = _young_list_target_length;
  1121     if (G1FixedEdenSize) {
  1122       young_list_target_length -= _max_survivor_regions;
  1124     return young_list_length >= young_list_target_length;
  1127   bool can_expand_young_list() {
  1128     size_t young_list_length = _g1->young_list()->length();
  1129     size_t young_list_max_length = _young_list_max_length;
  1130     if (G1FixedEdenSize) {
  1131       young_list_max_length -= _max_survivor_regions;
  1133     return young_list_length < young_list_max_length;
  1136   void update_region_num(bool young);
  1138   bool in_young_gc_mode() {
  1139     return _in_young_gc_mode;
  1141   void set_in_young_gc_mode(bool in_young_gc_mode) {
  1142     _in_young_gc_mode = in_young_gc_mode;
  1145   bool full_young_gcs() {
  1146     return _full_young_gcs;
  1148   void set_full_young_gcs(bool full_young_gcs) {
  1149     _full_young_gcs = full_young_gcs;
  1152   bool adaptive_young_list_length() {
  1153     return _adaptive_young_list_length;
  1155   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1156     _adaptive_young_list_length = adaptive_young_list_length;
  1159   inline double get_gc_eff_factor() {
  1160     double ratio = _known_garbage_ratio;
  1162     double square = ratio * ratio;
  1163     // square = square * square;
  1164     double ret = square * 9.0 + 1.0;
  1165 #if 0
  1166     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1167 #endif // 0
  1168     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1169     return ret;
  1172   //
  1173   // Survivor regions policy.
  1174   //
  1175 protected:
  1177   // Current tenuring threshold, set to 0 if the collector reaches the
  1178   // maximum amount of suvivors regions.
  1179   int _tenuring_threshold;
  1181   // The limit on the number of regions allocated for survivors.
  1182   size_t _max_survivor_regions;
  1184   // The amount of survor regions after a collection.
  1185   size_t _recorded_survivor_regions;
  1186   // List of survivor regions.
  1187   HeapRegion* _recorded_survivor_head;
  1188   HeapRegion* _recorded_survivor_tail;
  1190   ageTable _survivors_age_table;
  1192 public:
  1194   inline GCAllocPurpose
  1195     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1196       if (age < _tenuring_threshold && src_region->is_young()) {
  1197         return GCAllocForSurvived;
  1198       } else {
  1199         return GCAllocForTenured;
  1203   inline bool track_object_age(GCAllocPurpose purpose) {
  1204     return purpose == GCAllocForSurvived;
  1207   inline GCAllocPurpose alternative_purpose(int purpose) {
  1208     return GCAllocForTenured;
  1211   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1213   size_t max_regions(int purpose);
  1215   // The limit on regions for a particular purpose is reached.
  1216   void note_alloc_region_limit_reached(int purpose) {
  1217     if (purpose == GCAllocForSurvived) {
  1218       _tenuring_threshold = 0;
  1222   void note_start_adding_survivor_regions() {
  1223     _survivor_surv_rate_group->start_adding_regions();
  1226   void note_stop_adding_survivor_regions() {
  1227     _survivor_surv_rate_group->stop_adding_regions();
  1230   void record_survivor_regions(size_t      regions,
  1231                                HeapRegion* head,
  1232                                HeapRegion* tail) {
  1233     _recorded_survivor_regions = regions;
  1234     _recorded_survivor_head    = head;
  1235     _recorded_survivor_tail    = tail;
  1238   size_t recorded_survivor_regions() {
  1239     return _recorded_survivor_regions;
  1242   void record_thread_age_table(ageTable* age_table)
  1244     _survivors_age_table.merge_par(age_table);
  1247   void calculate_max_gc_locker_expansion();
  1249   // Calculates survivor space parameters.
  1250   void calculate_survivors_policy();
  1252 };
  1254 // This encapsulates a particular strategy for a g1 Collector.
  1255 //
  1256 //      Start a concurrent mark when our heap size is n bytes
  1257 //            greater then our heap size was at the last concurrent
  1258 //            mark.  Where n is a function of the CMSTriggerRatio
  1259 //            and the MinHeapFreeRatio.
  1260 //
  1261 //      Start a g1 collection pause when we have allocated the
  1262 //            average number of bytes currently being freed in
  1263 //            a collection, but only if it is at least one region
  1264 //            full
  1265 //
  1266 //      Resize Heap based on desired
  1267 //      allocation space, where desired allocation space is
  1268 //      a function of survival rate and desired future to size.
  1269 //
  1270 //      Choose collection set by first picking all older regions
  1271 //      which have a survival rate which beats our projected young
  1272 //      survival rate.  Then fill out the number of needed regions
  1273 //      with young regions.
  1275 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
  1276   CollectionSetChooser* _collectionSetChooser;
  1277   // If the estimated is less then desirable, resize if possible.
  1278   void expand_if_possible(size_t numRegions);
  1280   virtual void choose_collection_set(double target_pause_time_ms);
  1281   virtual void record_collection_pause_start(double start_time_sec,
  1282                                              size_t start_used);
  1283   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
  1284                                                   size_t max_live_bytes);
  1285   virtual void record_full_collection_end();
  1287 public:
  1288   G1CollectorPolicy_BestRegionsFirst() {
  1289     _collectionSetChooser = new CollectionSetChooser();
  1291   void record_collection_pause_end();
  1292   // This is not needed any more, after the CSet choosing code was
  1293   // changed to use the pause prediction work. But let's leave the
  1294   // hook in just in case.
  1295   void note_change_in_marked_bytes(HeapRegion* r) { }
  1296 #ifndef PRODUCT
  1297   bool assertMarkedBytesDataOK();
  1298 #endif
  1299 };
  1301 // This should move to some place more general...
  1303 // If we have "n" measurements, and we've kept track of their "sum" and the
  1304 // "sum_of_squares" of the measurements, this returns the variance of the
  1305 // sequence.
  1306 inline double variance(int n, double sum_of_squares, double sum) {
  1307   double n_d = (double)n;
  1308   double avg = sum/n_d;
  1309   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1312 // Local Variables: ***
  1313 // c-indentation-style: gnu ***
  1314 // End: ***
  1316 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial