src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Wed, 23 Mar 2011 14:12:51 +0100

author
brutisso
date
Wed, 23 Mar 2011 14:12:51 +0100
changeset 2712
5c0b591e1074
parent 2333
016a3628c885
child 2961
053d84a76d3d
permissions
-rw-r--r--

6948149: G1: Imbalance in termination times
Summary: Changed default value of WorkStealingYieldsBeforeSleep from 1000 to 5000. Added more information to G1 pause logging.
Reviewed-by: jwilhelm, tonyp, jmasa

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    28 #include "gc_implementation/g1/collectionSetChooser.hpp"
    29 #include "gc_implementation/g1/g1MMUTracker.hpp"
    30 #include "memory/collectorPolicy.hpp"
    32 // A G1CollectorPolicy makes policy decisions that determine the
    33 // characteristics of the collector.  Examples include:
    34 //   * choice of collection set.
    35 //   * when to collect.
    37 class HeapRegion;
    38 class CollectionSetChooser;
    40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    41 // over and over again and introducing subtle problems through small typos and
    42 // cutting and pasting mistakes. The macros below introduces a number
    43 // sequnce into the following two classes and the methods that access it.
    45 #define define_num_seq(name)                                                  \
    46 private:                                                                      \
    47   NumberSeq _all_##name##_times_ms;                                           \
    48 public:                                                                       \
    49   void record_##name##_time_ms(double ms) {                                   \
    50     _all_##name##_times_ms.add(ms);                                           \
    51   }                                                                           \
    52   NumberSeq* get_##name##_seq() {                                             \
    53     return &_all_##name##_times_ms;                                           \
    54   }
    56 class MainBodySummary;
    58 class PauseSummary: public CHeapObj {
    59   define_num_seq(total)
    60     define_num_seq(other)
    62 public:
    63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    64 };
    66 class MainBodySummary: public CHeapObj {
    67   define_num_seq(satb_drain) // optional
    68   define_num_seq(parallel) // parallel only
    69     define_num_seq(ext_root_scan)
    70     define_num_seq(mark_stack_scan)
    71     define_num_seq(update_rs)
    72     define_num_seq(scan_rs)
    73     define_num_seq(obj_copy)
    74     define_num_seq(termination) // parallel only
    75     define_num_seq(parallel_other) // parallel only
    76   define_num_seq(mark_closure)
    77   define_num_seq(clear_ct)  // parallel only
    78 };
    80 class Summary: public PauseSummary,
    81                public MainBodySummary {
    82 public:
    83   virtual MainBodySummary*    main_body_summary()    { return this; }
    84 };
    86 class G1CollectorPolicy: public CollectorPolicy {
    87 protected:
    88   // The number of pauses during the execution.
    89   long _n_pauses;
    91   // either equal to the number of parallel threads, if ParallelGCThreads
    92   // has been set, or 1 otherwise
    93   int _parallel_gc_threads;
    95   enum SomePrivateConstants {
    96     NumPrevPausesForHeuristics = 10
    97   };
    99   G1MMUTracker* _mmu_tracker;
   101   void initialize_flags();
   103   void initialize_all() {
   104     initialize_flags();
   105     initialize_size_info();
   106     initialize_perm_generation(PermGen::MarkSweepCompact);
   107   }
   109   virtual size_t default_init_heap_size() {
   110     // Pick some reasonable default.
   111     return 8*M;
   112   }
   114   double _cur_collection_start_sec;
   115   size_t _cur_collection_pause_used_at_start_bytes;
   116   size_t _cur_collection_pause_used_regions_at_start;
   117   size_t _prev_collection_pause_used_at_end_bytes;
   118   double _cur_collection_par_time_ms;
   119   double _cur_satb_drain_time_ms;
   120   double _cur_clear_ct_time_ms;
   121   bool   _satb_drain_time_set;
   123 #ifndef PRODUCT
   124   // Card Table Count Cache stats
   125   double _min_clear_cc_time_ms;         // min
   126   double _max_clear_cc_time_ms;         // max
   127   double _cur_clear_cc_time_ms;         // clearing time during current pause
   128   double _cum_clear_cc_time_ms;         // cummulative clearing time
   129   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   130 #endif
   132   double _cur_CH_strong_roots_end_sec;
   133   double _cur_CH_strong_roots_dur_ms;
   134   double _cur_G1_strong_roots_end_sec;
   135   double _cur_G1_strong_roots_dur_ms;
   137   // Statistics for recent GC pauses.  See below for how indexed.
   138   TruncatedSeq* _recent_CH_strong_roots_times_ms;
   139   TruncatedSeq* _recent_G1_strong_roots_times_ms;
   140   TruncatedSeq* _recent_evac_times_ms;
   141   // These exclude marking times.
   142   TruncatedSeq* _recent_pause_times_ms;
   143   TruncatedSeq* _recent_gc_times_ms;
   145   TruncatedSeq* _recent_CS_bytes_used_before;
   146   TruncatedSeq* _recent_CS_bytes_surviving;
   148   TruncatedSeq* _recent_rs_sizes;
   150   TruncatedSeq* _concurrent_mark_init_times_ms;
   151   TruncatedSeq* _concurrent_mark_remark_times_ms;
   152   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   154   Summary*           _summary;
   156   NumberSeq* _all_pause_times_ms;
   157   NumberSeq* _all_full_gc_times_ms;
   158   double _stop_world_start;
   159   NumberSeq* _all_stop_world_times_ms;
   160   NumberSeq* _all_yield_times_ms;
   162   size_t     _region_num_young;
   163   size_t     _region_num_tenured;
   164   size_t     _prev_region_num_young;
   165   size_t     _prev_region_num_tenured;
   167   NumberSeq* _all_mod_union_times_ms;
   169   int        _aux_num;
   170   NumberSeq* _all_aux_times_ms;
   171   double*    _cur_aux_start_times_ms;
   172   double*    _cur_aux_times_ms;
   173   bool*      _cur_aux_times_set;
   175   double* _par_last_gc_worker_start_times_ms;
   176   double* _par_last_ext_root_scan_times_ms;
   177   double* _par_last_mark_stack_scan_times_ms;
   178   double* _par_last_update_rs_times_ms;
   179   double* _par_last_update_rs_processed_buffers;
   180   double* _par_last_scan_rs_times_ms;
   181   double* _par_last_obj_copy_times_ms;
   182   double* _par_last_termination_times_ms;
   183   double* _par_last_termination_attempts;
   184   double* _par_last_gc_worker_end_times_ms;
   185   double* _par_last_gc_worker_times_ms;
   187   // indicates that we are in young GC mode
   188   bool _in_young_gc_mode;
   190   // indicates whether we are in full young or partially young GC mode
   191   bool _full_young_gcs;
   193   // if true, then it tries to dynamically adjust the length of the
   194   // young list
   195   bool _adaptive_young_list_length;
   196   size_t _young_list_min_length;
   197   size_t _young_list_target_length;
   198   size_t _young_list_fixed_length;
   200   // The max number of regions we can extend the eden by while the GC
   201   // locker is active. This should be >= _young_list_target_length;
   202   size_t _young_list_max_length;
   204   size_t _young_cset_length;
   205   bool   _last_young_gc_full;
   207   unsigned              _full_young_pause_num;
   208   unsigned              _partial_young_pause_num;
   210   bool                  _during_marking;
   211   bool                  _in_marking_window;
   212   bool                  _in_marking_window_im;
   214   SurvRateGroup*        _short_lived_surv_rate_group;
   215   SurvRateGroup*        _survivor_surv_rate_group;
   216   // add here any more surv rate groups
   218   double                _gc_overhead_perc;
   220   bool during_marking() {
   221     return _during_marking;
   222   }
   224   // <NEW PREDICTION>
   226 private:
   227   enum PredictionConstants {
   228     TruncatedSeqLength = 10
   229   };
   231   TruncatedSeq* _alloc_rate_ms_seq;
   232   double        _prev_collection_pause_end_ms;
   234   TruncatedSeq* _pending_card_diff_seq;
   235   TruncatedSeq* _rs_length_diff_seq;
   236   TruncatedSeq* _cost_per_card_ms_seq;
   237   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
   238   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
   239   TruncatedSeq* _cost_per_entry_ms_seq;
   240   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
   241   TruncatedSeq* _cost_per_byte_ms_seq;
   242   TruncatedSeq* _constant_other_time_ms_seq;
   243   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   244   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   246   TruncatedSeq* _pending_cards_seq;
   247   TruncatedSeq* _scanned_cards_seq;
   248   TruncatedSeq* _rs_lengths_seq;
   250   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   252   TruncatedSeq* _young_gc_eff_seq;
   254   TruncatedSeq* _max_conc_overhead_seq;
   256   size_t _recorded_young_regions;
   257   size_t _recorded_non_young_regions;
   258   size_t _recorded_region_num;
   260   size_t _free_regions_at_end_of_collection;
   262   size_t _recorded_rs_lengths;
   263   size_t _max_rs_lengths;
   265   size_t _recorded_marked_bytes;
   266   size_t _recorded_young_bytes;
   268   size_t _predicted_pending_cards;
   269   size_t _predicted_cards_scanned;
   270   size_t _predicted_rs_lengths;
   271   size_t _predicted_bytes_to_copy;
   273   double _predicted_survival_ratio;
   274   double _predicted_rs_update_time_ms;
   275   double _predicted_rs_scan_time_ms;
   276   double _predicted_object_copy_time_ms;
   277   double _predicted_constant_other_time_ms;
   278   double _predicted_young_other_time_ms;
   279   double _predicted_non_young_other_time_ms;
   280   double _predicted_pause_time_ms;
   282   double _vtime_diff_ms;
   284   double _recorded_young_free_cset_time_ms;
   285   double _recorded_non_young_free_cset_time_ms;
   287   double _sigma;
   288   double _expensive_region_limit_ms;
   290   size_t _rs_lengths_prediction;
   292   size_t _known_garbage_bytes;
   293   double _known_garbage_ratio;
   295   double sigma() {
   296     return _sigma;
   297   }
   299   // A function that prevents us putting too much stock in small sample
   300   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   301   // of samples.  5 or more samples yields one; fewer scales linearly from
   302   // 2.0 at 1 sample to 1.0 at 5.
   303   double confidence_factor(int samples) {
   304     if (samples > 4) return 1.0;
   305     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   306   }
   308   double get_new_neg_prediction(TruncatedSeq* seq) {
   309     return seq->davg() - sigma() * seq->dsd();
   310   }
   312 #ifndef PRODUCT
   313   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   314 #endif // PRODUCT
   316   void adjust_concurrent_refinement(double update_rs_time,
   317                                     double update_rs_processed_buffers,
   318                                     double goal_ms);
   320 protected:
   321   double _pause_time_target_ms;
   322   double _recorded_young_cset_choice_time_ms;
   323   double _recorded_non_young_cset_choice_time_ms;
   324   bool   _within_target;
   325   size_t _pending_cards;
   326   size_t _max_pending_cards;
   328 public:
   330   void set_region_short_lived(HeapRegion* hr) {
   331     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   332   }
   334   void set_region_survivors(HeapRegion* hr) {
   335     hr->install_surv_rate_group(_survivor_surv_rate_group);
   336   }
   338 #ifndef PRODUCT
   339   bool verify_young_ages();
   340 #endif // PRODUCT
   342   double get_new_prediction(TruncatedSeq* seq) {
   343     return MAX2(seq->davg() + sigma() * seq->dsd(),
   344                 seq->davg() * confidence_factor(seq->num()));
   345   }
   347   size_t young_cset_length() {
   348     return _young_cset_length;
   349   }
   351   void record_max_rs_lengths(size_t rs_lengths) {
   352     _max_rs_lengths = rs_lengths;
   353   }
   355   size_t predict_pending_card_diff() {
   356     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   357     if (prediction < 0.00001)
   358       return 0;
   359     else
   360       return (size_t) prediction;
   361   }
   363   size_t predict_pending_cards() {
   364     size_t max_pending_card_num = _g1->max_pending_card_num();
   365     size_t diff = predict_pending_card_diff();
   366     size_t prediction;
   367     if (diff > max_pending_card_num)
   368       prediction = max_pending_card_num;
   369     else
   370       prediction = max_pending_card_num - diff;
   372     return prediction;
   373   }
   375   size_t predict_rs_length_diff() {
   376     return (size_t) get_new_prediction(_rs_length_diff_seq);
   377   }
   379   double predict_alloc_rate_ms() {
   380     return get_new_prediction(_alloc_rate_ms_seq);
   381   }
   383   double predict_cost_per_card_ms() {
   384     return get_new_prediction(_cost_per_card_ms_seq);
   385   }
   387   double predict_rs_update_time_ms(size_t pending_cards) {
   388     return (double) pending_cards * predict_cost_per_card_ms();
   389   }
   391   double predict_fully_young_cards_per_entry_ratio() {
   392     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
   393   }
   395   double predict_partially_young_cards_per_entry_ratio() {
   396     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
   397       return predict_fully_young_cards_per_entry_ratio();
   398     else
   399       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
   400   }
   402   size_t predict_young_card_num(size_t rs_length) {
   403     return (size_t) ((double) rs_length *
   404                      predict_fully_young_cards_per_entry_ratio());
   405   }
   407   size_t predict_non_young_card_num(size_t rs_length) {
   408     return (size_t) ((double) rs_length *
   409                      predict_partially_young_cards_per_entry_ratio());
   410   }
   412   double predict_rs_scan_time_ms(size_t card_num) {
   413     if (full_young_gcs())
   414       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   415     else
   416       return predict_partially_young_rs_scan_time_ms(card_num);
   417   }
   419   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
   420     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
   421       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   422     else
   423       return (double) card_num *
   424         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
   425   }
   427   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   428     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
   429       return 1.1 * (double) bytes_to_copy *
   430         get_new_prediction(_cost_per_byte_ms_seq);
   431     else
   432       return (double) bytes_to_copy *
   433         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   434   }
   436   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   437     if (_in_marking_window && !_in_marking_window_im)
   438       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   439     else
   440       return (double) bytes_to_copy *
   441         get_new_prediction(_cost_per_byte_ms_seq);
   442   }
   444   double predict_constant_other_time_ms() {
   445     return get_new_prediction(_constant_other_time_ms_seq);
   446   }
   448   double predict_young_other_time_ms(size_t young_num) {
   449     return
   450       (double) young_num *
   451       get_new_prediction(_young_other_cost_per_region_ms_seq);
   452   }
   454   double predict_non_young_other_time_ms(size_t non_young_num) {
   455     return
   456       (double) non_young_num *
   457       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   458   }
   460   void check_if_region_is_too_expensive(double predicted_time_ms);
   462   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   463   double predict_base_elapsed_time_ms(size_t pending_cards);
   464   double predict_base_elapsed_time_ms(size_t pending_cards,
   465                                       size_t scanned_cards);
   466   size_t predict_bytes_to_copy(HeapRegion* hr);
   467   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   469     // for use by: calculate_young_list_target_length(rs_length)
   470   bool predict_will_fit(size_t young_region_num,
   471                         double base_time_ms,
   472                         size_t init_free_regions,
   473                         double target_pause_time_ms);
   475   void start_recording_regions();
   476   void record_cset_region_info(HeapRegion* hr, bool young);
   477   void record_non_young_cset_region(HeapRegion* hr);
   479   void set_recorded_young_regions(size_t n_regions);
   480   void set_recorded_young_bytes(size_t bytes);
   481   void set_recorded_rs_lengths(size_t rs_lengths);
   482   void set_predicted_bytes_to_copy(size_t bytes);
   484   void end_recording_regions();
   486   void record_vtime_diff_ms(double vtime_diff_ms) {
   487     _vtime_diff_ms = vtime_diff_ms;
   488   }
   490   void record_young_free_cset_time_ms(double time_ms) {
   491     _recorded_young_free_cset_time_ms = time_ms;
   492   }
   494   void record_non_young_free_cset_time_ms(double time_ms) {
   495     _recorded_non_young_free_cset_time_ms = time_ms;
   496   }
   498   double predict_young_gc_eff() {
   499     return get_new_neg_prediction(_young_gc_eff_seq);
   500   }
   502   double predict_survivor_regions_evac_time();
   504   // </NEW PREDICTION>
   506 public:
   507   void cset_regions_freed() {
   508     bool propagate = _last_young_gc_full && !_in_marking_window;
   509     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   510     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   511     // also call it on any more surv rate groups
   512   }
   514   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   515     _known_garbage_bytes = known_garbage_bytes;
   516     size_t heap_bytes = _g1->capacity();
   517     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   518   }
   520   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   521     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   523     _known_garbage_bytes -= known_garbage_bytes;
   524     size_t heap_bytes = _g1->capacity();
   525     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   526   }
   528   G1MMUTracker* mmu_tracker() {
   529     return _mmu_tracker;
   530   }
   532   double max_pause_time_ms() {
   533     return _mmu_tracker->max_gc_time() * 1000.0;
   534   }
   536   double predict_init_time_ms() {
   537     return get_new_prediction(_concurrent_mark_init_times_ms);
   538   }
   540   double predict_remark_time_ms() {
   541     return get_new_prediction(_concurrent_mark_remark_times_ms);
   542   }
   544   double predict_cleanup_time_ms() {
   545     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   546   }
   548   // Returns an estimate of the survival rate of the region at yg-age
   549   // "yg_age".
   550   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   551     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   552     if (seq->num() == 0)
   553       gclog_or_tty->print("BARF! age is %d", age);
   554     guarantee( seq->num() > 0, "invariant" );
   555     double pred = get_new_prediction(seq);
   556     if (pred > 1.0)
   557       pred = 1.0;
   558     return pred;
   559   }
   561   double predict_yg_surv_rate(int age) {
   562     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   563   }
   565   double accum_yg_surv_rate_pred(int age) {
   566     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   567   }
   569 protected:
   570   void print_stats(int level, const char* str, double value);
   571   void print_stats(int level, const char* str, int value);
   573   void print_par_stats(int level, const char* str, double* data);
   574   void print_par_sizes(int level, const char* str, double* data);
   576   void check_other_times(int level,
   577                          NumberSeq* other_times_ms,
   578                          NumberSeq* calc_other_times_ms) const;
   580   void print_summary (PauseSummary* stats) const;
   582   void print_summary (int level, const char* str, NumberSeq* seq) const;
   583   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   585   double avg_value (double* data);
   586   double max_value (double* data);
   587   double sum_of_values (double* data);
   588   double max_sum (double* data1, double* data2);
   590   int _last_satb_drain_processed_buffers;
   591   int _last_update_rs_processed_buffers;
   592   double _last_pause_time_ms;
   594   size_t _bytes_in_to_space_before_gc;
   595   size_t _bytes_in_to_space_after_gc;
   596   size_t bytes_in_to_space_during_gc() {
   597     return
   598       _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
   599   }
   600   size_t _bytes_in_collection_set_before_gc;
   601   // Used to count used bytes in CS.
   602   friend class CountCSClosure;
   604   // Statistics kept per GC stoppage, pause or full.
   605   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   607   // We track markings.
   608   int _num_markings;
   609   double _mark_thread_startup_sec;       // Time at startup of marking thread
   611   // Add a new GC of the given duration and end time to the record.
   612   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   614   // The head of the list (via "next_in_collection_set()") representing the
   615   // current collection set. Set from the incrementally built collection
   616   // set at the start of the pause.
   617   HeapRegion* _collection_set;
   619   // The number of regions in the collection set. Set from the incrementally
   620   // built collection set at the start of an evacuation pause.
   621   size_t _collection_set_size;
   623   // The number of bytes in the collection set before the pause. Set from
   624   // the incrementally built collection set at the start of an evacuation
   625   // pause.
   626   size_t _collection_set_bytes_used_before;
   628   // The associated information that is maintained while the incremental
   629   // collection set is being built with young regions. Used to populate
   630   // the recorded info for the evacuation pause.
   632   enum CSetBuildType {
   633     Active,             // We are actively building the collection set
   634     Inactive            // We are not actively building the collection set
   635   };
   637   CSetBuildType _inc_cset_build_state;
   639   // The head of the incrementally built collection set.
   640   HeapRegion* _inc_cset_head;
   642   // The tail of the incrementally built collection set.
   643   HeapRegion* _inc_cset_tail;
   645   // The number of regions in the incrementally built collection set.
   646   // Used to set _collection_set_size at the start of an evacuation
   647   // pause.
   648   size_t _inc_cset_size;
   650   // Used as the index in the surving young words structure
   651   // which tracks the amount of space, for each young region,
   652   // that survives the pause.
   653   size_t _inc_cset_young_index;
   655   // The number of bytes in the incrementally built collection set.
   656   // Used to set _collection_set_bytes_used_before at the start of
   657   // an evacuation pause.
   658   size_t _inc_cset_bytes_used_before;
   660   // Used to record the highest end of heap region in collection set
   661   HeapWord* _inc_cset_max_finger;
   663   // The number of recorded used bytes in the young regions
   664   // of the collection set. This is the sum of the used() bytes
   665   // of retired young regions in the collection set.
   666   size_t _inc_cset_recorded_young_bytes;
   668   // The RSet lengths recorded for regions in the collection set
   669   // (updated by the periodic sampling of the regions in the
   670   // young list/collection set).
   671   size_t _inc_cset_recorded_rs_lengths;
   673   // The predicted elapsed time it will take to collect the regions
   674   // in the collection set (updated by the periodic sampling of the
   675   // regions in the young list/collection set).
   676   double _inc_cset_predicted_elapsed_time_ms;
   678   // The predicted bytes to copy for the regions in the collection
   679   // set (updated by the periodic sampling of the regions in the
   680   // young list/collection set).
   681   size_t _inc_cset_predicted_bytes_to_copy;
   683   // Info about marking.
   684   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
   686   // The number of collection pauses at the end of the last mark.
   687   size_t _n_pauses_at_mark_end;
   689   // Stash a pointer to the g1 heap.
   690   G1CollectedHeap* _g1;
   692   // The average time in ms per collection pause, averaged over recent pauses.
   693   double recent_avg_time_for_pauses_ms();
   695   // The average time in ms for processing CollectedHeap strong roots, per
   696   // collection pause, averaged over recent pauses.
   697   double recent_avg_time_for_CH_strong_ms();
   699   // The average time in ms for processing the G1 remembered set, per
   700   // pause, averaged over recent pauses.
   701   double recent_avg_time_for_G1_strong_ms();
   703   // The average time in ms for "evacuating followers", per pause, averaged
   704   // over recent pauses.
   705   double recent_avg_time_for_evac_ms();
   707   // The number of "recent" GCs recorded in the number sequences
   708   int number_of_recent_gcs();
   710   // The average survival ratio, computed by the total number of bytes
   711   // suriviving / total number of bytes before collection over the last
   712   // several recent pauses.
   713   double recent_avg_survival_fraction();
   714   // The survival fraction of the most recent pause; if there have been no
   715   // pauses, returns 1.0.
   716   double last_survival_fraction();
   718   // Returns a "conservative" estimate of the recent survival rate, i.e.,
   719   // one that may be higher than "recent_avg_survival_fraction".
   720   // This is conservative in several ways:
   721   //   If there have been few pauses, it will assume a potential high
   722   //     variance, and err on the side of caution.
   723   //   It puts a lower bound (currently 0.1) on the value it will return.
   724   //   To try to detect phase changes, if the most recent pause ("latest") has a
   725   //     higher-than average ("avg") survival rate, it returns that rate.
   726   // "work" version is a utility function; young is restricted to young regions.
   727   double conservative_avg_survival_fraction_work(double avg,
   728                                                  double latest);
   730   // The arguments are the two sequences that keep track of the number of bytes
   731   //   surviving and the total number of bytes before collection, resp.,
   732   //   over the last evereal recent pauses
   733   // Returns the survival rate for the category in the most recent pause.
   734   // If there have been no pauses, returns 1.0.
   735   double last_survival_fraction_work(TruncatedSeq* surviving,
   736                                      TruncatedSeq* before);
   738   // The arguments are the two sequences that keep track of the number of bytes
   739   //   surviving and the total number of bytes before collection, resp.,
   740   //   over the last several recent pauses
   741   // Returns the average survival ration over the last several recent pauses
   742   // If there have been no pauses, return 1.0
   743   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
   744                                            TruncatedSeq* before);
   746   double conservative_avg_survival_fraction() {
   747     double avg = recent_avg_survival_fraction();
   748     double latest = last_survival_fraction();
   749     return conservative_avg_survival_fraction_work(avg, latest);
   750   }
   752   // The ratio of gc time to elapsed time, computed over recent pauses.
   753   double _recent_avg_pause_time_ratio;
   755   double recent_avg_pause_time_ratio() {
   756     return _recent_avg_pause_time_ratio;
   757   }
   759   // Number of pauses between concurrent marking.
   760   size_t _pauses_btwn_concurrent_mark;
   762   size_t _n_marks_since_last_pause;
   764   // At the end of a pause we check the heap occupancy and we decide
   765   // whether we will start a marking cycle during the next pause. If
   766   // we decide that we want to do that, we will set this parameter to
   767   // true. So, this parameter will stay true between the end of a
   768   // pause and the beginning of a subsequent pause (not necessarily
   769   // the next one, see the comments on the next field) when we decide
   770   // that we will indeed start a marking cycle and do the initial-mark
   771   // work.
   772   volatile bool _initiate_conc_mark_if_possible;
   774   // If initiate_conc_mark_if_possible() is set at the beginning of a
   775   // pause, it is a suggestion that the pause should start a marking
   776   // cycle by doing the initial-mark work. However, it is possible
   777   // that the concurrent marking thread is still finishing up the
   778   // previous marking cycle (e.g., clearing the next marking
   779   // bitmap). If that is the case we cannot start a new cycle and
   780   // we'll have to wait for the concurrent marking thread to finish
   781   // what it is doing. In this case we will postpone the marking cycle
   782   // initiation decision for the next pause. When we eventually decide
   783   // to start a cycle, we will set _during_initial_mark_pause which
   784   // will stay true until the end of the initial-mark pause and it's
   785   // the condition that indicates that a pause is doing the
   786   // initial-mark work.
   787   volatile bool _during_initial_mark_pause;
   789   bool _should_revert_to_full_young_gcs;
   790   bool _last_full_young_gc;
   792   // This set of variables tracks the collector efficiency, in order to
   793   // determine whether we should initiate a new marking.
   794   double _cur_mark_stop_world_time_ms;
   795   double _mark_init_start_sec;
   796   double _mark_remark_start_sec;
   797   double _mark_cleanup_start_sec;
   798   double _mark_closure_time_ms;
   800   void   calculate_young_list_min_length();
   801   void   calculate_young_list_target_length();
   802   void   calculate_young_list_target_length(size_t rs_lengths);
   804 public:
   806   G1CollectorPolicy();
   808   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   810   virtual CollectorPolicy::Name kind() {
   811     return CollectorPolicy::G1CollectorPolicyKind;
   812   }
   814   void check_prediction_validity();
   816   size_t bytes_in_collection_set() {
   817     return _bytes_in_collection_set_before_gc;
   818   }
   820   size_t bytes_in_to_space() {
   821     return bytes_in_to_space_during_gc();
   822   }
   824   unsigned calc_gc_alloc_time_stamp() {
   825     return _all_pause_times_ms->num() + 1;
   826   }
   828 protected:
   830   // Count the number of bytes used in the CS.
   831   void count_CS_bytes_used();
   833   // Together these do the base cleanup-recording work.  Subclasses might
   834   // want to put something between them.
   835   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
   836                                                 size_t max_live_bytes);
   837   void record_concurrent_mark_cleanup_end_work2();
   839 public:
   841   virtual void init();
   843   // Create jstat counters for the policy.
   844   virtual void initialize_gc_policy_counters();
   846   virtual HeapWord* mem_allocate_work(size_t size,
   847                                       bool is_tlab,
   848                                       bool* gc_overhead_limit_was_exceeded);
   850   // This method controls how a collector handles one or more
   851   // of its generations being fully allocated.
   852   virtual HeapWord* satisfy_failed_allocation(size_t size,
   853                                               bool is_tlab);
   855   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   857   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   859   // The number of collection pauses so far.
   860   long n_pauses() const { return _n_pauses; }
   862   // Update the heuristic info to record a collection pause of the given
   863   // start time, where the given number of bytes were used at the start.
   864   // This may involve changing the desired size of a collection set.
   866   virtual void record_stop_world_start();
   868   virtual void record_collection_pause_start(double start_time_sec,
   869                                              size_t start_used);
   871   // Must currently be called while the world is stopped.
   872   virtual void record_concurrent_mark_init_start();
   873   virtual void record_concurrent_mark_init_end();
   874   void record_concurrent_mark_init_end_pre(double
   875                                            mark_init_elapsed_time_ms);
   877   void record_mark_closure_time(double mark_closure_time_ms);
   879   virtual void record_concurrent_mark_remark_start();
   880   virtual void record_concurrent_mark_remark_end();
   882   virtual void record_concurrent_mark_cleanup_start();
   883   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
   884                                                   size_t max_live_bytes);
   885   virtual void record_concurrent_mark_cleanup_completed();
   887   virtual void record_concurrent_pause();
   888   virtual void record_concurrent_pause_end();
   890   virtual void record_collection_pause_end_CH_strong_roots();
   891   virtual void record_collection_pause_end_G1_strong_roots();
   893   virtual void record_collection_pause_end();
   895   // Record the fact that a full collection occurred.
   896   virtual void record_full_collection_start();
   897   virtual void record_full_collection_end();
   899   void record_gc_worker_start_time(int worker_i, double ms) {
   900     _par_last_gc_worker_start_times_ms[worker_i] = ms;
   901   }
   903   void record_ext_root_scan_time(int worker_i, double ms) {
   904     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   905   }
   907   void record_mark_stack_scan_time(int worker_i, double ms) {
   908     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   909   }
   911   void record_satb_drain_time(double ms) {
   912     _cur_satb_drain_time_ms = ms;
   913     _satb_drain_time_set    = true;
   914   }
   916   void record_satb_drain_processed_buffers (int processed_buffers) {
   917     _last_satb_drain_processed_buffers = processed_buffers;
   918   }
   920   void record_mod_union_time(double ms) {
   921     _all_mod_union_times_ms->add(ms);
   922   }
   924   void record_update_rs_time(int thread, double ms) {
   925     _par_last_update_rs_times_ms[thread] = ms;
   926   }
   928   void record_update_rs_processed_buffers (int thread,
   929                                            double processed_buffers) {
   930     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   931   }
   933   void record_scan_rs_time(int thread, double ms) {
   934     _par_last_scan_rs_times_ms[thread] = ms;
   935   }
   937   void reset_obj_copy_time(int thread) {
   938     _par_last_obj_copy_times_ms[thread] = 0.0;
   939   }
   941   void reset_obj_copy_time() {
   942     reset_obj_copy_time(0);
   943   }
   945   void record_obj_copy_time(int thread, double ms) {
   946     _par_last_obj_copy_times_ms[thread] += ms;
   947   }
   949   void record_termination(int thread, double ms, size_t attempts) {
   950     _par_last_termination_times_ms[thread] = ms;
   951     _par_last_termination_attempts[thread] = (double) attempts;
   952   }
   954   void record_gc_worker_end_time(int worker_i, double ms) {
   955     _par_last_gc_worker_end_times_ms[worker_i] = ms;
   956   }
   958   void record_pause_time_ms(double ms) {
   959     _last_pause_time_ms = ms;
   960   }
   962   void record_clear_ct_time(double ms) {
   963     _cur_clear_ct_time_ms = ms;
   964   }
   966   void record_par_time(double ms) {
   967     _cur_collection_par_time_ms = ms;
   968   }
   970   void record_aux_start_time(int i) {
   971     guarantee(i < _aux_num, "should be within range");
   972     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   973   }
   975   void record_aux_end_time(int i) {
   976     guarantee(i < _aux_num, "should be within range");
   977     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   978     _cur_aux_times_set[i] = true;
   979     _cur_aux_times_ms[i] += ms;
   980   }
   982 #ifndef PRODUCT
   983   void record_cc_clear_time(double ms) {
   984     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
   985       _min_clear_cc_time_ms = ms;
   986     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
   987       _max_clear_cc_time_ms = ms;
   988     _cur_clear_cc_time_ms = ms;
   989     _cum_clear_cc_time_ms += ms;
   990     _num_cc_clears++;
   991   }
   992 #endif
   994   // Record the fact that "bytes" bytes allocated in a region.
   995   void record_before_bytes(size_t bytes);
   996   void record_after_bytes(size_t bytes);
   998   // Choose a new collection set.  Marks the chosen regions as being
   999   // "in_collection_set", and links them together.  The head and number of
  1000   // the collection set are available via access methods.
  1001   virtual void choose_collection_set(double target_pause_time_ms) = 0;
  1003   // The head of the list (via "next_in_collection_set()") representing the
  1004   // current collection set.
  1005   HeapRegion* collection_set() { return _collection_set; }
  1007   void clear_collection_set() { _collection_set = NULL; }
  1009   // The number of elements in the current collection set.
  1010   size_t collection_set_size() { return _collection_set_size; }
  1012   // Add "hr" to the CS.
  1013   void add_to_collection_set(HeapRegion* hr);
  1015   // Incremental CSet Support
  1017   // The head of the incrementally built collection set.
  1018   HeapRegion* inc_cset_head() { return _inc_cset_head; }
  1020   // The tail of the incrementally built collection set.
  1021   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
  1023   // The number of elements in the incrementally built collection set.
  1024   size_t inc_cset_size() { return _inc_cset_size; }
  1026   // Initialize incremental collection set info.
  1027   void start_incremental_cset_building();
  1029   void clear_incremental_cset() {
  1030     _inc_cset_head = NULL;
  1031     _inc_cset_tail = NULL;
  1034   // Stop adding regions to the incremental collection set
  1035   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
  1037   // Add/remove information about hr to the aggregated information
  1038   // for the incrementally built collection set.
  1039   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
  1040   void remove_from_incremental_cset_info(HeapRegion* hr);
  1042   // Update information about hr in the aggregated information for
  1043   // the incrementally built collection set.
  1044   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
  1046 private:
  1047   // Update the incremental cset information when adding a region
  1048   // (should not be called directly).
  1049   void add_region_to_incremental_cset_common(HeapRegion* hr);
  1051 public:
  1052   // Add hr to the LHS of the incremental collection set.
  1053   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
  1055   // Add hr to the RHS of the incremental collection set.
  1056   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
  1058 #ifndef PRODUCT
  1059   void print_collection_set(HeapRegion* list_head, outputStream* st);
  1060 #endif // !PRODUCT
  1062   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  1063   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  1064   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
  1066   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  1067   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  1068   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
  1070   // This sets the initiate_conc_mark_if_possible() flag to start a
  1071   // new cycle, as long as we are not already in one. It's best if it
  1072   // is called during a safepoint when the test whether a cycle is in
  1073   // progress or not is stable.
  1074   bool force_initial_mark_if_outside_cycle();
  1076   // This is called at the very beginning of an evacuation pause (it
  1077   // has to be the first thing that the pause does). If
  1078   // initiate_conc_mark_if_possible() is true, and the concurrent
  1079   // marking thread has completed its work during the previous cycle,
  1080   // it will set during_initial_mark_pause() to so that the pause does
  1081   // the initial-mark work and start a marking cycle.
  1082   void decide_on_conc_mark_initiation();
  1084   // If an expansion would be appropriate, because recent GC overhead had
  1085   // exceeded the desired limit, return an amount to expand by.
  1086   virtual size_t expansion_amount();
  1088   // note start of mark thread
  1089   void note_start_of_mark_thread();
  1091   // The marked bytes of the "r" has changed; reclassify it's desirability
  1092   // for marking.  Also asserts that "r" is eligible for a CS.
  1093   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
  1095 #ifndef PRODUCT
  1096   // Check any appropriate marked bytes info, asserting false if
  1097   // something's wrong, else returning "true".
  1098   virtual bool assertMarkedBytesDataOK() = 0;
  1099 #endif
  1101   // Print tracing information.
  1102   void print_tracing_info() const;
  1104   // Print stats on young survival ratio
  1105   void print_yg_surv_rate_info() const;
  1107   void finished_recalculating_age_indexes(bool is_survivors) {
  1108     if (is_survivors) {
  1109       _survivor_surv_rate_group->finished_recalculating_age_indexes();
  1110     } else {
  1111       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
  1113     // do that for any other surv rate groups
  1116   bool is_young_list_full() {
  1117     size_t young_list_length = _g1->young_list()->length();
  1118     size_t young_list_target_length = _young_list_target_length;
  1119     if (G1FixedEdenSize) {
  1120       young_list_target_length -= _max_survivor_regions;
  1122     return young_list_length >= young_list_target_length;
  1125   bool can_expand_young_list() {
  1126     size_t young_list_length = _g1->young_list()->length();
  1127     size_t young_list_max_length = _young_list_max_length;
  1128     if (G1FixedEdenSize) {
  1129       young_list_max_length -= _max_survivor_regions;
  1131     return young_list_length < young_list_max_length;
  1134   void update_region_num(bool young);
  1136   bool in_young_gc_mode() {
  1137     return _in_young_gc_mode;
  1139   void set_in_young_gc_mode(bool in_young_gc_mode) {
  1140     _in_young_gc_mode = in_young_gc_mode;
  1143   bool full_young_gcs() {
  1144     return _full_young_gcs;
  1146   void set_full_young_gcs(bool full_young_gcs) {
  1147     _full_young_gcs = full_young_gcs;
  1150   bool adaptive_young_list_length() {
  1151     return _adaptive_young_list_length;
  1153   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1154     _adaptive_young_list_length = adaptive_young_list_length;
  1157   inline double get_gc_eff_factor() {
  1158     double ratio = _known_garbage_ratio;
  1160     double square = ratio * ratio;
  1161     // square = square * square;
  1162     double ret = square * 9.0 + 1.0;
  1163 #if 0
  1164     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1165 #endif // 0
  1166     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1167     return ret;
  1170   //
  1171   // Survivor regions policy.
  1172   //
  1173 protected:
  1175   // Current tenuring threshold, set to 0 if the collector reaches the
  1176   // maximum amount of suvivors regions.
  1177   int _tenuring_threshold;
  1179   // The limit on the number of regions allocated for survivors.
  1180   size_t _max_survivor_regions;
  1182   // The amount of survor regions after a collection.
  1183   size_t _recorded_survivor_regions;
  1184   // List of survivor regions.
  1185   HeapRegion* _recorded_survivor_head;
  1186   HeapRegion* _recorded_survivor_tail;
  1188   ageTable _survivors_age_table;
  1190 public:
  1192   inline GCAllocPurpose
  1193     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1194       if (age < _tenuring_threshold && src_region->is_young()) {
  1195         return GCAllocForSurvived;
  1196       } else {
  1197         return GCAllocForTenured;
  1201   inline bool track_object_age(GCAllocPurpose purpose) {
  1202     return purpose == GCAllocForSurvived;
  1205   inline GCAllocPurpose alternative_purpose(int purpose) {
  1206     return GCAllocForTenured;
  1209   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1211   size_t max_regions(int purpose);
  1213   // The limit on regions for a particular purpose is reached.
  1214   void note_alloc_region_limit_reached(int purpose) {
  1215     if (purpose == GCAllocForSurvived) {
  1216       _tenuring_threshold = 0;
  1220   void note_start_adding_survivor_regions() {
  1221     _survivor_surv_rate_group->start_adding_regions();
  1224   void note_stop_adding_survivor_regions() {
  1225     _survivor_surv_rate_group->stop_adding_regions();
  1228   void record_survivor_regions(size_t      regions,
  1229                                HeapRegion* head,
  1230                                HeapRegion* tail) {
  1231     _recorded_survivor_regions = regions;
  1232     _recorded_survivor_head    = head;
  1233     _recorded_survivor_tail    = tail;
  1236   size_t recorded_survivor_regions() {
  1237     return _recorded_survivor_regions;
  1240   void record_thread_age_table(ageTable* age_table)
  1242     _survivors_age_table.merge_par(age_table);
  1245   void calculate_max_gc_locker_expansion();
  1247   // Calculates survivor space parameters.
  1248   void calculate_survivors_policy();
  1250 };
  1252 // This encapsulates a particular strategy for a g1 Collector.
  1253 //
  1254 //      Start a concurrent mark when our heap size is n bytes
  1255 //            greater then our heap size was at the last concurrent
  1256 //            mark.  Where n is a function of the CMSTriggerRatio
  1257 //            and the MinHeapFreeRatio.
  1258 //
  1259 //      Start a g1 collection pause when we have allocated the
  1260 //            average number of bytes currently being freed in
  1261 //            a collection, but only if it is at least one region
  1262 //            full
  1263 //
  1264 //      Resize Heap based on desired
  1265 //      allocation space, where desired allocation space is
  1266 //      a function of survival rate and desired future to size.
  1267 //
  1268 //      Choose collection set by first picking all older regions
  1269 //      which have a survival rate which beats our projected young
  1270 //      survival rate.  Then fill out the number of needed regions
  1271 //      with young regions.
  1273 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
  1274   CollectionSetChooser* _collectionSetChooser;
  1275   // If the estimated is less then desirable, resize if possible.
  1276   void expand_if_possible(size_t numRegions);
  1278   virtual void choose_collection_set(double target_pause_time_ms);
  1279   virtual void record_collection_pause_start(double start_time_sec,
  1280                                              size_t start_used);
  1281   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
  1282                                                   size_t max_live_bytes);
  1283   virtual void record_full_collection_end();
  1285 public:
  1286   G1CollectorPolicy_BestRegionsFirst() {
  1287     _collectionSetChooser = new CollectionSetChooser();
  1289   void record_collection_pause_end();
  1290   // This is not needed any more, after the CSet choosing code was
  1291   // changed to use the pause prediction work. But let's leave the
  1292   // hook in just in case.
  1293   void note_change_in_marked_bytes(HeapRegion* r) { }
  1294 #ifndef PRODUCT
  1295   bool assertMarkedBytesDataOK();
  1296 #endif
  1297 };
  1299 // This should move to some place more general...
  1301 // If we have "n" measurements, and we've kept track of their "sum" and the
  1302 // "sum_of_squares" of the measurements, this returns the variance of the
  1303 // sequence.
  1304 inline double variance(int n, double sum_of_squares, double sum) {
  1305   double n_d = (double)n;
  1306   double avg = sum/n_d;
  1307   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1310 // Local Variables: ***
  1311 // c-indentation-style: gnu ***
  1312 // End: ***
  1314 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial