src/share/vm/opto/regmask.hpp

changeset 0
f90c822e73f8
child 1
2d8a650513c2
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/share/vm/opto/regmask.hpp	Wed Apr 27 01:25:04 2016 +0800
     1.3 @@ -0,0 +1,337 @@
     1.4 +/*
     1.5 + * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     1.6 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     1.7 + *
     1.8 + * This code is free software; you can redistribute it and/or modify it
     1.9 + * under the terms of the GNU General Public License version 2 only, as
    1.10 + * published by the Free Software Foundation.
    1.11 + *
    1.12 + * This code is distributed in the hope that it will be useful, but WITHOUT
    1.13 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    1.14 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    1.15 + * version 2 for more details (a copy is included in the LICENSE file that
    1.16 + * accompanied this code).
    1.17 + *
    1.18 + * You should have received a copy of the GNU General Public License version
    1.19 + * 2 along with this work; if not, write to the Free Software Foundation,
    1.20 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    1.21 + *
    1.22 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    1.23 + * or visit www.oracle.com if you need additional information or have any
    1.24 + * questions.
    1.25 + *
    1.26 + */
    1.27 +
    1.28 +#ifndef SHARE_VM_OPTO_REGMASK_HPP
    1.29 +#define SHARE_VM_OPTO_REGMASK_HPP
    1.30 +
    1.31 +#include "code/vmreg.hpp"
    1.32 +#include "libadt/port.hpp"
    1.33 +#include "opto/optoreg.hpp"
    1.34 +#ifdef TARGET_ARCH_MODEL_x86_32
    1.35 +# include "adfiles/adGlobals_x86_32.hpp"
    1.36 +#endif
    1.37 +#ifdef TARGET_ARCH_MODEL_x86_64
    1.38 +# include "adfiles/adGlobals_x86_64.hpp"
    1.39 +#endif
    1.40 +#ifdef TARGET_ARCH_MODEL_sparc
    1.41 +# include "adfiles/adGlobals_sparc.hpp"
    1.42 +#endif
    1.43 +#ifdef TARGET_ARCH_MODEL_zero
    1.44 +# include "adfiles/adGlobals_zero.hpp"
    1.45 +#endif
    1.46 +#ifdef TARGET_ARCH_MODEL_arm
    1.47 +# include "adfiles/adGlobals_arm.hpp"
    1.48 +#endif
    1.49 +#ifdef TARGET_ARCH_MODEL_ppc_32
    1.50 +# include "adfiles/adGlobals_ppc_32.hpp"
    1.51 +#endif
    1.52 +#ifdef TARGET_ARCH_MODEL_ppc_64
    1.53 +# include "adfiles/adGlobals_ppc_64.hpp"
    1.54 +#endif
    1.55 +
    1.56 +// Some fun naming (textual) substitutions:
    1.57 +//
    1.58 +// RegMask::get_low_elem() ==> RegMask::find_first_elem()
    1.59 +// RegMask::Special        ==> RegMask::Empty
    1.60 +// RegMask::_flags         ==> RegMask::is_AllStack()
    1.61 +// RegMask::operator<<=()  ==> RegMask::Insert()
    1.62 +// RegMask::operator>>=()  ==> RegMask::Remove()
    1.63 +// RegMask::Union()        ==> RegMask::OR
    1.64 +// RegMask::Inter()        ==> RegMask::AND
    1.65 +//
    1.66 +// OptoRegister::RegName   ==> OptoReg::Name
    1.67 +//
    1.68 +// OptoReg::stack0()       ==> _last_Mach_Reg  or ZERO in core version
    1.69 +//
    1.70 +// numregs in chaitin      ==> proper degree in chaitin
    1.71 +
    1.72 +//-------------Non-zero bit search methods used by RegMask---------------------
    1.73 +// Find lowest 1, or return 32 if empty
    1.74 +int find_lowest_bit( uint32 mask );
    1.75 +// Find highest 1, or return 32 if empty
    1.76 +int find_hihghest_bit( uint32 mask );
    1.77 +
    1.78 +//------------------------------RegMask----------------------------------------
    1.79 +// The ADL file describes how to print the machine-specific registers, as well
    1.80 +// as any notion of register classes.  We provide a register mask, which is
    1.81 +// just a collection of Register numbers.
    1.82 +
    1.83 +// The ADLC defines 2 macros, RM_SIZE and FORALL_BODY.
    1.84 +// RM_SIZE is the size of a register mask in words.
    1.85 +// FORALL_BODY replicates a BODY macro once per word in the register mask.
    1.86 +// The usage is somewhat clumsy and limited to the regmask.[h,c]pp files.
    1.87 +// However, it means the ADLC can redefine the unroll macro and all loops
    1.88 +// over register masks will be unrolled by the correct amount.
    1.89 +
    1.90 +class RegMask VALUE_OBJ_CLASS_SPEC {
    1.91 +  union {
    1.92 +    double _dummy_force_double_alignment[RM_SIZE>>1];
    1.93 +    // Array of Register Mask bits.  This array is large enough to cover
    1.94 +    // all the machine registers and all parameters that need to be passed
    1.95 +    // on the stack (stack registers) up to some interesting limit.  Methods
    1.96 +    // that need more parameters will NOT be compiled.  On Intel, the limit
    1.97 +    // is something like 90+ parameters.
    1.98 +    int _A[RM_SIZE];
    1.99 +  };
   1.100 +
   1.101 +  enum {
   1.102 +    _WordBits    = BitsPerInt,
   1.103 +    _LogWordBits = LogBitsPerInt,
   1.104 +    _RM_SIZE     = RM_SIZE   // local constant, imported, then hidden by #undef
   1.105 +  };
   1.106 +
   1.107 +public:
   1.108 +  enum { CHUNK_SIZE = RM_SIZE*_WordBits };
   1.109 +
   1.110 +  // SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits.
   1.111 +  // Also, consider the maximum alignment size for a normally allocated
   1.112 +  // value.  Since we allocate register pairs but not register quads (at
   1.113 +  // present), this alignment is SlotsPerLong (== 2).  A normally
   1.114 +  // aligned allocated register is either a single register, or a pair
   1.115 +  // of adjacent registers, the lower-numbered being even.
   1.116 +  // See also is_aligned_Pairs() below, and the padding added before
   1.117 +  // Matcher::_new_SP to keep allocated pairs aligned properly.
   1.118 +  // If we ever go to quad-word allocations, SlotsPerQuad will become
   1.119 +  // the controlling alignment constraint.  Note that this alignment
   1.120 +  // requirement is internal to the allocator, and independent of any
   1.121 +  // particular platform.
   1.122 +  enum { SlotsPerLong = 2,
   1.123 +         SlotsPerVecS = 1,
   1.124 +         SlotsPerVecD = 2,
   1.125 +         SlotsPerVecX = 4,
   1.126 +         SlotsPerVecY = 8 };
   1.127 +
   1.128 +  // A constructor only used by the ADLC output.  All mask fields are filled
   1.129 +  // in directly.  Calls to this look something like RM(1,2,3,4);
   1.130 +  RegMask(
   1.131 +#   define BODY(I) int a##I,
   1.132 +    FORALL_BODY
   1.133 +#   undef BODY
   1.134 +    int dummy = 0 ) {
   1.135 +#   define BODY(I) _A[I] = a##I;
   1.136 +    FORALL_BODY
   1.137 +#   undef BODY
   1.138 +  }
   1.139 +
   1.140 +  // Handy copying constructor
   1.141 +  RegMask( RegMask *rm ) {
   1.142 +#   define BODY(I) _A[I] = rm->_A[I];
   1.143 +    FORALL_BODY
   1.144 +#   undef BODY
   1.145 +  }
   1.146 +
   1.147 +  // Construct an empty mask
   1.148 +  RegMask( ) { Clear(); }
   1.149 +
   1.150 +  // Construct a mask with a single bit
   1.151 +  RegMask( OptoReg::Name reg ) { Clear(); Insert(reg); }
   1.152 +
   1.153 +  // Check for register being in mask
   1.154 +  int Member( OptoReg::Name reg ) const {
   1.155 +    assert( reg < CHUNK_SIZE, "" );
   1.156 +    return _A[reg>>_LogWordBits] & (1<<(reg&(_WordBits-1)));
   1.157 +  }
   1.158 +
   1.159 +  // The last bit in the register mask indicates that the mask should repeat
   1.160 +  // indefinitely with ONE bits.  Returns TRUE if mask is infinite or
   1.161 +  // unbounded in size.  Returns FALSE if mask is finite size.
   1.162 +  int is_AllStack() const { return _A[RM_SIZE-1] >> (_WordBits-1); }
   1.163 +
   1.164 +  // Work around an -xO3 optimization problme in WS6U1. The old way:
   1.165 +  //   void set_AllStack() { _A[RM_SIZE-1] |= (1<<(_WordBits-1)); }
   1.166 +  // will cause _A[RM_SIZE-1] to be clobbered, not updated when set_AllStack()
   1.167 +  // follows an Insert() loop, like the one found in init_spill_mask(). Using
   1.168 +  // Insert() instead works because the index into _A in computed instead of
   1.169 +  // constant.  See bug 4665841.
   1.170 +  void set_AllStack() { Insert(OptoReg::Name(CHUNK_SIZE-1)); }
   1.171 +
   1.172 +  // Test for being a not-empty mask.
   1.173 +  int is_NotEmpty( ) const {
   1.174 +    int tmp = 0;
   1.175 +#   define BODY(I) tmp |= _A[I];
   1.176 +    FORALL_BODY
   1.177 +#   undef BODY
   1.178 +    return tmp;
   1.179 +  }
   1.180 +
   1.181 +  // Find lowest-numbered register from mask, or BAD if mask is empty.
   1.182 +  OptoReg::Name find_first_elem() const {
   1.183 +    int base, bits;
   1.184 +#   define BODY(I) if( (bits = _A[I]) != 0 ) base = I<<_LogWordBits; else
   1.185 +    FORALL_BODY
   1.186 +#   undef BODY
   1.187 +      { base = OptoReg::Bad; bits = 1<<0; }
   1.188 +    return OptoReg::Name(base + find_lowest_bit(bits));
   1.189 +  }
   1.190 +  // Get highest-numbered register from mask, or BAD if mask is empty.
   1.191 +  OptoReg::Name find_last_elem() const {
   1.192 +    int base, bits;
   1.193 +#   define BODY(I) if( (bits = _A[RM_SIZE-1-I]) != 0 ) base = (RM_SIZE-1-I)<<_LogWordBits; else
   1.194 +    FORALL_BODY
   1.195 +#   undef BODY
   1.196 +      { base = OptoReg::Bad; bits = 1<<0; }
   1.197 +    return OptoReg::Name(base + find_hihghest_bit(bits));
   1.198 +  }
   1.199 +
   1.200 +  // Find the lowest-numbered register pair in the mask.  Return the
   1.201 +  // HIGHEST register number in the pair, or BAD if no pairs.
   1.202 +  // Assert that the mask contains only bit pairs.
   1.203 +  OptoReg::Name find_first_pair() const;
   1.204 +
   1.205 +  // Clear out partial bits; leave only aligned adjacent bit pairs.
   1.206 +  void clear_to_pairs();
   1.207 +  // Smear out partial bits; leave only aligned adjacent bit pairs.
   1.208 +  void smear_to_pairs();
   1.209 +  // Verify that the mask contains only aligned adjacent bit pairs
   1.210 +  void verify_pairs() const { assert( is_aligned_pairs(), "mask is not aligned, adjacent pairs" ); }
   1.211 +  // Test that the mask contains only aligned adjacent bit pairs
   1.212 +  bool is_aligned_pairs() const;
   1.213 +
   1.214 +  // mask is a pair of misaligned registers
   1.215 +  bool is_misaligned_pair() const { return Size()==2 && !is_aligned_pairs(); }
   1.216 +  // Test for single register
   1.217 +  int is_bound1() const;
   1.218 +  // Test for a single adjacent pair
   1.219 +  int is_bound_pair() const;
   1.220 +  // Test for a single adjacent set of ideal register's size.
   1.221 +  int is_bound(uint ireg) const {
   1.222 +    if (is_vector(ireg)) {
   1.223 +      if (is_bound_set(num_registers(ireg)))
   1.224 +        return true;
   1.225 +    } else if (is_bound1() || is_bound_pair()) {
   1.226 +      return true;
   1.227 +    }
   1.228 +    return false;
   1.229 +  }
   1.230 +
   1.231 +  // Find the lowest-numbered register set in the mask.  Return the
   1.232 +  // HIGHEST register number in the set, or BAD if no sets.
   1.233 +  // Assert that the mask contains only bit sets.
   1.234 +  OptoReg::Name find_first_set(const int size) const;
   1.235 +
   1.236 +  // Clear out partial bits; leave only aligned adjacent bit sets of size.
   1.237 +  void clear_to_sets(const int size);
   1.238 +  // Smear out partial bits to aligned adjacent bit sets.
   1.239 +  void smear_to_sets(const int size);
   1.240 +  // Verify that the mask contains only aligned adjacent bit sets
   1.241 +  void verify_sets(int size) const { assert(is_aligned_sets(size), "mask is not aligned, adjacent sets"); }
   1.242 +  // Test that the mask contains only aligned adjacent bit sets
   1.243 +  bool is_aligned_sets(const int size) const;
   1.244 +
   1.245 +  // mask is a set of misaligned registers
   1.246 +  bool is_misaligned_set(int size) const { return (int)Size()==size && !is_aligned_sets(size);}
   1.247 +
   1.248 +  // Test for a single adjacent set
   1.249 +  int is_bound_set(const int size) const;
   1.250 +
   1.251 +  static bool is_vector(uint ireg);
   1.252 +  static int num_registers(uint ireg);
   1.253 +
   1.254 +  // Fast overlap test.  Non-zero if any registers in common.
   1.255 +  int overlap( const RegMask &rm ) const {
   1.256 +    return
   1.257 +#   define BODY(I) (_A[I] & rm._A[I]) |
   1.258 +    FORALL_BODY
   1.259 +#   undef BODY
   1.260 +    0 ;
   1.261 +  }
   1.262 +
   1.263 +  // Special test for register pressure based splitting
   1.264 +  // UP means register only, Register plus stack, or stack only is DOWN
   1.265 +  bool is_UP() const;
   1.266 +
   1.267 +  // Clear a register mask
   1.268 +  void Clear( ) {
   1.269 +#   define BODY(I) _A[I] = 0;
   1.270 +    FORALL_BODY
   1.271 +#   undef BODY
   1.272 +  }
   1.273 +
   1.274 +  // Fill a register mask with 1's
   1.275 +  void Set_All( ) {
   1.276 +#   define BODY(I) _A[I] = -1;
   1.277 +    FORALL_BODY
   1.278 +#   undef BODY
   1.279 +  }
   1.280 +
   1.281 +  // Insert register into mask
   1.282 +  void Insert( OptoReg::Name reg ) {
   1.283 +    assert( reg < CHUNK_SIZE, "" );
   1.284 +    _A[reg>>_LogWordBits] |= (1<<(reg&(_WordBits-1)));
   1.285 +  }
   1.286 +
   1.287 +  // Remove register from mask
   1.288 +  void Remove( OptoReg::Name reg ) {
   1.289 +    assert( reg < CHUNK_SIZE, "" );
   1.290 +    _A[reg>>_LogWordBits] &= ~(1<<(reg&(_WordBits-1)));
   1.291 +  }
   1.292 +
   1.293 +  // OR 'rm' into 'this'
   1.294 +  void OR( const RegMask &rm ) {
   1.295 +#   define BODY(I) this->_A[I] |= rm._A[I];
   1.296 +    FORALL_BODY
   1.297 +#   undef BODY
   1.298 +  }
   1.299 +
   1.300 +  // AND 'rm' into 'this'
   1.301 +  void AND( const RegMask &rm ) {
   1.302 +#   define BODY(I) this->_A[I] &= rm._A[I];
   1.303 +    FORALL_BODY
   1.304 +#   undef BODY
   1.305 +  }
   1.306 +
   1.307 +  // Subtract 'rm' from 'this'
   1.308 +  void SUBTRACT( const RegMask &rm ) {
   1.309 +#   define BODY(I) _A[I] &= ~rm._A[I];
   1.310 +    FORALL_BODY
   1.311 +#   undef BODY
   1.312 +  }
   1.313 +
   1.314 +  // Compute size of register mask: number of bits
   1.315 +  uint Size() const;
   1.316 +
   1.317 +#ifndef PRODUCT
   1.318 +  void print() const { dump(); }
   1.319 +  void dump(outputStream *st = tty) const; // Print a mask
   1.320 +#endif
   1.321 +
   1.322 +  static const RegMask Empty;   // Common empty mask
   1.323 +
   1.324 +  static bool can_represent(OptoReg::Name reg) {
   1.325 +    // NOTE: -1 in computation reflects the usage of the last
   1.326 +    //       bit of the regmask as an infinite stack flag and
   1.327 +    //       -7 is to keep mask aligned for largest value (VecY).
   1.328 +    return (int)reg < (int)(CHUNK_SIZE-1);
   1.329 +  }
   1.330 +  static bool can_represent_arg(OptoReg::Name reg) {
   1.331 +    // NOTE: -SlotsPerVecY in computation reflects the need
   1.332 +    //       to keep mask aligned for largest value (VecY).
   1.333 +    return (int)reg < (int)(CHUNK_SIZE-SlotsPerVecY);
   1.334 +  }
   1.335 +};
   1.336 +
   1.337 +// Do not use this constant directly in client code!
   1.338 +#undef RM_SIZE
   1.339 +
   1.340 +#endif // SHARE_VM_OPTO_REGMASK_HPP

mercurial