diff -r 000000000000 -r f90c822e73f8 src/share/vm/opto/regmask.hpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/share/vm/opto/regmask.hpp Wed Apr 27 01:25:04 2016 +0800 @@ -0,0 +1,337 @@ +/* + * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + * + */ + +#ifndef SHARE_VM_OPTO_REGMASK_HPP +#define SHARE_VM_OPTO_REGMASK_HPP + +#include "code/vmreg.hpp" +#include "libadt/port.hpp" +#include "opto/optoreg.hpp" +#ifdef TARGET_ARCH_MODEL_x86_32 +# include "adfiles/adGlobals_x86_32.hpp" +#endif +#ifdef TARGET_ARCH_MODEL_x86_64 +# include "adfiles/adGlobals_x86_64.hpp" +#endif +#ifdef TARGET_ARCH_MODEL_sparc +# include "adfiles/adGlobals_sparc.hpp" +#endif +#ifdef TARGET_ARCH_MODEL_zero +# include "adfiles/adGlobals_zero.hpp" +#endif +#ifdef TARGET_ARCH_MODEL_arm +# include "adfiles/adGlobals_arm.hpp" +#endif +#ifdef TARGET_ARCH_MODEL_ppc_32 +# include "adfiles/adGlobals_ppc_32.hpp" +#endif +#ifdef TARGET_ARCH_MODEL_ppc_64 +# include "adfiles/adGlobals_ppc_64.hpp" +#endif + +// Some fun naming (textual) substitutions: +// +// RegMask::get_low_elem() ==> RegMask::find_first_elem() +// RegMask::Special ==> RegMask::Empty +// RegMask::_flags ==> RegMask::is_AllStack() +// RegMask::operator<<=() ==> RegMask::Insert() +// RegMask::operator>>=() ==> RegMask::Remove() +// RegMask::Union() ==> RegMask::OR +// RegMask::Inter() ==> RegMask::AND +// +// OptoRegister::RegName ==> OptoReg::Name +// +// OptoReg::stack0() ==> _last_Mach_Reg or ZERO in core version +// +// numregs in chaitin ==> proper degree in chaitin + +//-------------Non-zero bit search methods used by RegMask--------------------- +// Find lowest 1, or return 32 if empty +int find_lowest_bit( uint32 mask ); +// Find highest 1, or return 32 if empty +int find_hihghest_bit( uint32 mask ); + +//------------------------------RegMask---------------------------------------- +// The ADL file describes how to print the machine-specific registers, as well +// as any notion of register classes. We provide a register mask, which is +// just a collection of Register numbers. + +// The ADLC defines 2 macros, RM_SIZE and FORALL_BODY. +// RM_SIZE is the size of a register mask in words. +// FORALL_BODY replicates a BODY macro once per word in the register mask. +// The usage is somewhat clumsy and limited to the regmask.[h,c]pp files. +// However, it means the ADLC can redefine the unroll macro and all loops +// over register masks will be unrolled by the correct amount. + +class RegMask VALUE_OBJ_CLASS_SPEC { + union { + double _dummy_force_double_alignment[RM_SIZE>>1]; + // Array of Register Mask bits. This array is large enough to cover + // all the machine registers and all parameters that need to be passed + // on the stack (stack registers) up to some interesting limit. Methods + // that need more parameters will NOT be compiled. On Intel, the limit + // is something like 90+ parameters. + int _A[RM_SIZE]; + }; + + enum { + _WordBits = BitsPerInt, + _LogWordBits = LogBitsPerInt, + _RM_SIZE = RM_SIZE // local constant, imported, then hidden by #undef + }; + +public: + enum { CHUNK_SIZE = RM_SIZE*_WordBits }; + + // SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits. + // Also, consider the maximum alignment size for a normally allocated + // value. Since we allocate register pairs but not register quads (at + // present), this alignment is SlotsPerLong (== 2). A normally + // aligned allocated register is either a single register, or a pair + // of adjacent registers, the lower-numbered being even. + // See also is_aligned_Pairs() below, and the padding added before + // Matcher::_new_SP to keep allocated pairs aligned properly. + // If we ever go to quad-word allocations, SlotsPerQuad will become + // the controlling alignment constraint. Note that this alignment + // requirement is internal to the allocator, and independent of any + // particular platform. + enum { SlotsPerLong = 2, + SlotsPerVecS = 1, + SlotsPerVecD = 2, + SlotsPerVecX = 4, + SlotsPerVecY = 8 }; + + // A constructor only used by the ADLC output. All mask fields are filled + // in directly. Calls to this look something like RM(1,2,3,4); + RegMask( +# define BODY(I) int a##I, + FORALL_BODY +# undef BODY + int dummy = 0 ) { +# define BODY(I) _A[I] = a##I; + FORALL_BODY +# undef BODY + } + + // Handy copying constructor + RegMask( RegMask *rm ) { +# define BODY(I) _A[I] = rm->_A[I]; + FORALL_BODY +# undef BODY + } + + // Construct an empty mask + RegMask( ) { Clear(); } + + // Construct a mask with a single bit + RegMask( OptoReg::Name reg ) { Clear(); Insert(reg); } + + // Check for register being in mask + int Member( OptoReg::Name reg ) const { + assert( reg < CHUNK_SIZE, "" ); + return _A[reg>>_LogWordBits] & (1<<(reg&(_WordBits-1))); + } + + // The last bit in the register mask indicates that the mask should repeat + // indefinitely with ONE bits. Returns TRUE if mask is infinite or + // unbounded in size. Returns FALSE if mask is finite size. + int is_AllStack() const { return _A[RM_SIZE-1] >> (_WordBits-1); } + + // Work around an -xO3 optimization problme in WS6U1. The old way: + // void set_AllStack() { _A[RM_SIZE-1] |= (1<<(_WordBits-1)); } + // will cause _A[RM_SIZE-1] to be clobbered, not updated when set_AllStack() + // follows an Insert() loop, like the one found in init_spill_mask(). Using + // Insert() instead works because the index into _A in computed instead of + // constant. See bug 4665841. + void set_AllStack() { Insert(OptoReg::Name(CHUNK_SIZE-1)); } + + // Test for being a not-empty mask. + int is_NotEmpty( ) const { + int tmp = 0; +# define BODY(I) tmp |= _A[I]; + FORALL_BODY +# undef BODY + return tmp; + } + + // Find lowest-numbered register from mask, or BAD if mask is empty. + OptoReg::Name find_first_elem() const { + int base, bits; +# define BODY(I) if( (bits = _A[I]) != 0 ) base = I<<_LogWordBits; else + FORALL_BODY +# undef BODY + { base = OptoReg::Bad; bits = 1<<0; } + return OptoReg::Name(base + find_lowest_bit(bits)); + } + // Get highest-numbered register from mask, or BAD if mask is empty. + OptoReg::Name find_last_elem() const { + int base, bits; +# define BODY(I) if( (bits = _A[RM_SIZE-1-I]) != 0 ) base = (RM_SIZE-1-I)<<_LogWordBits; else + FORALL_BODY +# undef BODY + { base = OptoReg::Bad; bits = 1<<0; } + return OptoReg::Name(base + find_hihghest_bit(bits)); + } + + // Find the lowest-numbered register pair in the mask. Return the + // HIGHEST register number in the pair, or BAD if no pairs. + // Assert that the mask contains only bit pairs. + OptoReg::Name find_first_pair() const; + + // Clear out partial bits; leave only aligned adjacent bit pairs. + void clear_to_pairs(); + // Smear out partial bits; leave only aligned adjacent bit pairs. + void smear_to_pairs(); + // Verify that the mask contains only aligned adjacent bit pairs + void verify_pairs() const { assert( is_aligned_pairs(), "mask is not aligned, adjacent pairs" ); } + // Test that the mask contains only aligned adjacent bit pairs + bool is_aligned_pairs() const; + + // mask is a pair of misaligned registers + bool is_misaligned_pair() const { return Size()==2 && !is_aligned_pairs(); } + // Test for single register + int is_bound1() const; + // Test for a single adjacent pair + int is_bound_pair() const; + // Test for a single adjacent set of ideal register's size. + int is_bound(uint ireg) const { + if (is_vector(ireg)) { + if (is_bound_set(num_registers(ireg))) + return true; + } else if (is_bound1() || is_bound_pair()) { + return true; + } + return false; + } + + // Find the lowest-numbered register set in the mask. Return the + // HIGHEST register number in the set, or BAD if no sets. + // Assert that the mask contains only bit sets. + OptoReg::Name find_first_set(const int size) const; + + // Clear out partial bits; leave only aligned adjacent bit sets of size. + void clear_to_sets(const int size); + // Smear out partial bits to aligned adjacent bit sets. + void smear_to_sets(const int size); + // Verify that the mask contains only aligned adjacent bit sets + void verify_sets(int size) const { assert(is_aligned_sets(size), "mask is not aligned, adjacent sets"); } + // Test that the mask contains only aligned adjacent bit sets + bool is_aligned_sets(const int size) const; + + // mask is a set of misaligned registers + bool is_misaligned_set(int size) const { return (int)Size()==size && !is_aligned_sets(size);} + + // Test for a single adjacent set + int is_bound_set(const int size) const; + + static bool is_vector(uint ireg); + static int num_registers(uint ireg); + + // Fast overlap test. Non-zero if any registers in common. + int overlap( const RegMask &rm ) const { + return +# define BODY(I) (_A[I] & rm._A[I]) | + FORALL_BODY +# undef BODY + 0 ; + } + + // Special test for register pressure based splitting + // UP means register only, Register plus stack, or stack only is DOWN + bool is_UP() const; + + // Clear a register mask + void Clear( ) { +# define BODY(I) _A[I] = 0; + FORALL_BODY +# undef BODY + } + + // Fill a register mask with 1's + void Set_All( ) { +# define BODY(I) _A[I] = -1; + FORALL_BODY +# undef BODY + } + + // Insert register into mask + void Insert( OptoReg::Name reg ) { + assert( reg < CHUNK_SIZE, "" ); + _A[reg>>_LogWordBits] |= (1<<(reg&(_WordBits-1))); + } + + // Remove register from mask + void Remove( OptoReg::Name reg ) { + assert( reg < CHUNK_SIZE, "" ); + _A[reg>>_LogWordBits] &= ~(1<<(reg&(_WordBits-1))); + } + + // OR 'rm' into 'this' + void OR( const RegMask &rm ) { +# define BODY(I) this->_A[I] |= rm._A[I]; + FORALL_BODY +# undef BODY + } + + // AND 'rm' into 'this' + void AND( const RegMask &rm ) { +# define BODY(I) this->_A[I] &= rm._A[I]; + FORALL_BODY +# undef BODY + } + + // Subtract 'rm' from 'this' + void SUBTRACT( const RegMask &rm ) { +# define BODY(I) _A[I] &= ~rm._A[I]; + FORALL_BODY +# undef BODY + } + + // Compute size of register mask: number of bits + uint Size() const; + +#ifndef PRODUCT + void print() const { dump(); } + void dump(outputStream *st = tty) const; // Print a mask +#endif + + static const RegMask Empty; // Common empty mask + + static bool can_represent(OptoReg::Name reg) { + // NOTE: -1 in computation reflects the usage of the last + // bit of the regmask as an infinite stack flag and + // -7 is to keep mask aligned for largest value (VecY). + return (int)reg < (int)(CHUNK_SIZE-1); + } + static bool can_represent_arg(OptoReg::Name reg) { + // NOTE: -SlotsPerVecY in computation reflects the need + // to keep mask aligned for largest value (VecY). + return (int)reg < (int)(CHUNK_SIZE-SlotsPerVecY); + } +}; + +// Do not use this constant directly in client code! +#undef RM_SIZE + +#endif // SHARE_VM_OPTO_REGMASK_HPP