src/share/vm/gc_implementation/parNew/parCardTableModRefBS.cpp

Tue, 10 May 2011 00:33:21 -0700

author
ysr
date
Tue, 10 May 2011 00:33:21 -0700
changeset 2889
fc2b798ab316
parent 2819
c48ad6ab8bdf
child 2891
7d64aa23eb96
permissions
-rw-r--r--

6883834: ParNew: assert(!_g->to()->is_in_reserved(obj),"Scanning field twice?") with LargeObjects tests
Summary: Fixed process_chunk_boundaries(), used for parallel card scanning when using ParNew/CMS, so as to prevent double-scanning, or worse, non-scanning of imprecisely marked objects exceeding parallel chunk size. Made some sizing parameters for parallel card scanning diagnostic, disabled ParallelGCRetainPLAB, and elaborated and clarified some comments.
Reviewed-by: stefank, johnc

duke@435 1 /*
ysr@2788 2 * Copyright (c) 2007, 2011 Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "memory/cardTableModRefBS.hpp"
stefank@2314 28 #include "memory/cardTableRS.hpp"
stefank@2314 29 #include "memory/sharedHeap.hpp"
stefank@2314 30 #include "memory/space.inline.hpp"
stefank@2314 31 #include "memory/universe.hpp"
ysr@2889 32 #include "oops/oop.inline.hpp"
stefank@2314 33 #include "runtime/java.hpp"
stefank@2314 34 #include "runtime/mutexLocker.hpp"
stefank@2314 35 #include "runtime/virtualspace.hpp"
duke@435 36
ysr@2819 37 void CardTableModRefBS::non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
ysr@2889 38 OopsInGenClosure* cl,
ysr@2889 39 CardTableRS* ct,
ysr@2819 40 int n_threads) {
ysr@2819 41 assert(n_threads > 0, "Error: expected n_threads > 0");
ysr@2819 42 assert((n_threads == 1 && ParallelGCThreads == 0) ||
ysr@2819 43 n_threads <= (int)ParallelGCThreads,
ysr@2819 44 "# worker threads != # requested!");
ysr@2819 45 // Make sure the LNC array is valid for the space.
ysr@2819 46 jbyte** lowest_non_clean;
ysr@2819 47 uintptr_t lowest_non_clean_base_chunk_index;
ysr@2819 48 size_t lowest_non_clean_chunk_size;
ysr@2819 49 get_LNC_array_for_space(sp, lowest_non_clean,
ysr@2819 50 lowest_non_clean_base_chunk_index,
ysr@2819 51 lowest_non_clean_chunk_size);
duke@435 52
ysr@2889 53 int n_strides = n_threads * ParGCStridesPerThread;
ysr@2819 54 SequentialSubTasksDone* pst = sp->par_seq_tasks();
ysr@2819 55 pst->set_n_threads(n_threads);
ysr@2819 56 pst->set_n_tasks(n_strides);
duke@435 57
ysr@2819 58 int stride = 0;
ysr@2819 59 while (!pst->is_task_claimed(/* reference */ stride)) {
ysr@2889 60 process_stride(sp, mr, stride, n_strides, cl, ct,
ysr@2819 61 lowest_non_clean,
ysr@2819 62 lowest_non_clean_base_chunk_index,
ysr@2819 63 lowest_non_clean_chunk_size);
ysr@2819 64 }
ysr@2819 65 if (pst->all_tasks_completed()) {
ysr@2819 66 // Clear lowest_non_clean array for next time.
ysr@2819 67 intptr_t first_chunk_index = addr_to_chunk_index(mr.start());
ysr@2819 68 uintptr_t last_chunk_index = addr_to_chunk_index(mr.last());
ysr@2819 69 for (uintptr_t ch = first_chunk_index; ch <= last_chunk_index; ch++) {
ysr@2819 70 intptr_t ind = ch - lowest_non_clean_base_chunk_index;
ysr@2819 71 assert(0 <= ind && ind < (intptr_t)lowest_non_clean_chunk_size,
ysr@2819 72 "Bounds error");
ysr@2819 73 lowest_non_clean[ind] = NULL;
duke@435 74 }
duke@435 75 }
duke@435 76 }
duke@435 77
duke@435 78 void
duke@435 79 CardTableModRefBS::
duke@435 80 process_stride(Space* sp,
duke@435 81 MemRegion used,
duke@435 82 jint stride, int n_strides,
ysr@2889 83 OopsInGenClosure* cl,
ysr@2889 84 CardTableRS* ct,
duke@435 85 jbyte** lowest_non_clean,
duke@435 86 uintptr_t lowest_non_clean_base_chunk_index,
duke@435 87 size_t lowest_non_clean_chunk_size) {
ysr@2889 88 // We go from higher to lower addresses here; it wouldn't help that much
ysr@2889 89 // because of the strided parallelism pattern used here.
duke@435 90
duke@435 91 // Find the first card address of the first chunk in the stride that is
duke@435 92 // at least "bottom" of the used region.
duke@435 93 jbyte* start_card = byte_for(used.start());
duke@435 94 jbyte* end_card = byte_after(used.last());
duke@435 95 uintptr_t start_chunk = addr_to_chunk_index(used.start());
duke@435 96 uintptr_t start_chunk_stride_num = start_chunk % n_strides;
duke@435 97 jbyte* chunk_card_start;
duke@435 98
duke@435 99 if ((uintptr_t)stride >= start_chunk_stride_num) {
duke@435 100 chunk_card_start = (jbyte*)(start_card +
duke@435 101 (stride - start_chunk_stride_num) *
ysr@2889 102 ParGCCardsPerStrideChunk);
duke@435 103 } else {
duke@435 104 // Go ahead to the next chunk group boundary, then to the requested stride.
duke@435 105 chunk_card_start = (jbyte*)(start_card +
duke@435 106 (n_strides - start_chunk_stride_num + stride) *
ysr@2889 107 ParGCCardsPerStrideChunk);
duke@435 108 }
duke@435 109
duke@435 110 while (chunk_card_start < end_card) {
ysr@2889 111 // Even though we go from lower to higher addresses below, the
ysr@2889 112 // strided parallelism can interleave the actual processing of the
ysr@2889 113 // dirty pages in various ways. For a specific chunk within this
ysr@2889 114 // stride, we take care to avoid double scanning or missing a card
ysr@2889 115 // by suitably initializing the "min_done" field in process_chunk_boundaries()
ysr@2889 116 // below, together with the dirty region extension accomplished in
ysr@2889 117 // DirtyCardToOopClosure::do_MemRegion().
ysr@2889 118 jbyte* chunk_card_end = chunk_card_start + ParGCCardsPerStrideChunk;
duke@435 119 // Invariant: chunk_mr should be fully contained within the "used" region.
duke@435 120 MemRegion chunk_mr = MemRegion(addr_for(chunk_card_start),
duke@435 121 chunk_card_end >= end_card ?
duke@435 122 used.end() : addr_for(chunk_card_end));
duke@435 123 assert(chunk_mr.word_size() > 0, "[chunk_card_start > used_end)");
duke@435 124 assert(used.contains(chunk_mr), "chunk_mr should be subset of used");
duke@435 125
ysr@2889 126 DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
ysr@2889 127 cl->gen_boundary());
ysr@2889 128 ClearNoncleanCardWrapper clear_cl(dcto_cl, ct);
ysr@2889 129
ysr@2889 130
duke@435 131 // Process the chunk.
duke@435 132 process_chunk_boundaries(sp,
duke@435 133 dcto_cl,
duke@435 134 chunk_mr,
duke@435 135 used,
duke@435 136 lowest_non_clean,
duke@435 137 lowest_non_clean_base_chunk_index,
duke@435 138 lowest_non_clean_chunk_size);
duke@435 139
ysr@2889 140 // We want the LNC array updates above in process_chunk_boundaries
ysr@2889 141 // to be visible before any of the card table value changes as a
ysr@2889 142 // result of the dirty card iteration below.
ysr@2889 143 OrderAccess::storestore();
ysr@2889 144
ysr@2819 145 // We do not call the non_clean_card_iterate_serial() version because
ysr@2889 146 // we want to clear the cards: clear_cl here does the work of finding
ysr@2889 147 // contiguous dirty ranges of cards to process and clear.
ysr@2889 148 clear_cl.do_MemRegion(chunk_mr);
duke@435 149
duke@435 150 // Find the next chunk of the stride.
ysr@2889 151 chunk_card_start += ParGCCardsPerStrideChunk * n_strides;
duke@435 152 }
duke@435 153 }
duke@435 154
ysr@2889 155
ysr@2889 156 // If you want a talkative process_chunk_boundaries,
ysr@2889 157 // then #define NOISY(x) x
ysr@2889 158 #ifdef NOISY
ysr@2889 159 #error "Encountered a global preprocessor flag, NOISY, which might clash with local definition to follow"
ysr@2889 160 #else
ysr@2889 161 #define NOISY(x)
ysr@2889 162 #endif
ysr@2889 163
duke@435 164 void
duke@435 165 CardTableModRefBS::
duke@435 166 process_chunk_boundaries(Space* sp,
duke@435 167 DirtyCardToOopClosure* dcto_cl,
duke@435 168 MemRegion chunk_mr,
duke@435 169 MemRegion used,
duke@435 170 jbyte** lowest_non_clean,
duke@435 171 uintptr_t lowest_non_clean_base_chunk_index,
duke@435 172 size_t lowest_non_clean_chunk_size)
duke@435 173 {
ysr@2889 174 // We must worry about non-array objects that cross chunk boundaries,
ysr@2889 175 // because such objects are both precisely and imprecisely marked:
ysr@2889 176 // .. if the head of such an object is dirty, the entire object
ysr@2889 177 // needs to be scanned, under the interpretation that this
ysr@2889 178 // was an imprecise mark
ysr@2889 179 // .. if the head of such an object is not dirty, we can assume
ysr@2889 180 // precise marking and it's efficient to scan just the dirty
ysr@2889 181 // cards.
ysr@2889 182 // In either case, each scanned reference must be scanned precisely
ysr@2889 183 // once so as to avoid cloning of a young referent. For efficiency,
ysr@2889 184 // our closures depend on this property and do not protect against
ysr@2889 185 // double scans.
duke@435 186
duke@435 187 uintptr_t cur_chunk_index = addr_to_chunk_index(chunk_mr.start());
duke@435 188 cur_chunk_index = cur_chunk_index - lowest_non_clean_base_chunk_index;
duke@435 189
ysr@2889 190 NOISY(tty->print_cr("===========================================================================");)
ysr@2889 191 NOISY(tty->print_cr(" process_chunk_boundary: Called with [" PTR_FORMAT "," PTR_FORMAT ")",
ysr@2889 192 chunk_mr.start(), chunk_mr.end());)
ysr@2889 193
ysr@2889 194 // First, set "our" lowest_non_clean entry, which would be
ysr@2889 195 // used by the thread scanning an adjoining left chunk with
ysr@2889 196 // a non-array object straddling the mutual boundary.
ysr@2889 197 // Find the object that spans our boundary, if one exists.
ysr@2889 198 // first_block is the block possibly straddling our left boundary.
ysr@2889 199 HeapWord* first_block = sp->block_start(chunk_mr.start());
ysr@2889 200 assert((chunk_mr.start() != used.start()) || (first_block == chunk_mr.start()),
ysr@2889 201 "First chunk should always have a co-initial block");
ysr@2889 202 // Does the block straddle the chunk's left boundary, and is it
ysr@2889 203 // a non-array object?
ysr@2889 204 if (first_block < chunk_mr.start() // first block straddles left bdry
ysr@2889 205 && sp->block_is_obj(first_block) // first block is an object
ysr@2889 206 && !(oop(first_block)->is_objArray() // first block is not an array (arrays are precisely dirtied)
ysr@2889 207 || oop(first_block)->is_typeArray())) {
ysr@2889 208 // Find our least non-clean card, so that a left neighbour
ysr@2889 209 // does not scan an object straddling the mutual boundary
ysr@2889 210 // too far to the right, and attempt to scan a portion of
ysr@2889 211 // that object twice.
ysr@2889 212 jbyte* first_dirty_card = NULL;
ysr@2889 213 jbyte* last_card_of_first_obj =
ysr@2889 214 byte_for(first_block + sp->block_size(first_block) - 1);
ysr@2889 215 jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
ysr@2889 216 jbyte* last_card_of_cur_chunk = byte_for(chunk_mr.last());
ysr@2889 217 jbyte* last_card_to_check =
ysr@2889 218 (jbyte*) MIN2((intptr_t) last_card_of_cur_chunk,
ysr@2889 219 (intptr_t) last_card_of_first_obj);
ysr@2889 220 // Note that this does not need to go beyond our last card
ysr@2889 221 // if our first object completely straddles this chunk.
ysr@2889 222 for (jbyte* cur = first_card_of_cur_chunk;
ysr@2889 223 cur <= last_card_to_check; cur++) {
ysr@2889 224 jbyte val = *cur;
ysr@2889 225 if (card_will_be_scanned(val)) {
ysr@2889 226 first_dirty_card = cur; break;
ysr@2889 227 } else {
ysr@2889 228 assert(!card_may_have_been_dirty(val), "Error");
ysr@2889 229 }
ysr@2889 230 }
ysr@2889 231 if (first_dirty_card != NULL) {
ysr@2889 232 NOISY(tty->print_cr(" LNC: Found a dirty card at " PTR_FORMAT " in current chunk",
ysr@2889 233 first_dirty_card);)
ysr@2889 234 assert(0 <= cur_chunk_index && cur_chunk_index < lowest_non_clean_chunk_size,
ysr@2889 235 "Bounds error.");
ysr@2889 236 assert(lowest_non_clean[cur_chunk_index] == NULL,
ysr@2889 237 "Write exactly once : value should be stable hereafter for this round");
ysr@2889 238 lowest_non_clean[cur_chunk_index] = first_dirty_card;
ysr@2889 239 } NOISY(else {
ysr@2889 240 tty->print_cr(" LNC: Found no dirty card in current chunk; leaving LNC entry NULL");
ysr@2889 241 // In the future, we could have this thread look for a non-NULL value to copy from its
ysr@2889 242 // right neighbour (up to the end of the first object).
ysr@2889 243 if (last_card_of_cur_chunk < last_card_of_first_obj) {
ysr@2889 244 tty->print_cr(" LNC: BEWARE!!! first obj straddles past right end of chunk:\n"
ysr@2889 245 " might be efficient to get value from right neighbour?");
ysr@2889 246 }
ysr@2889 247 })
ysr@2889 248 } else {
ysr@2889 249 // In this case we can help our neighbour by just asking them
ysr@2889 250 // to stop at our first card (even though it may not be dirty).
ysr@2889 251 NOISY(tty->print_cr(" LNC: first block is not a non-array object; setting LNC to first card of current chunk");)
ysr@2889 252 assert(lowest_non_clean[cur_chunk_index] == NULL, "Write once : value should be stable hereafter");
ysr@2889 253 jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
ysr@2889 254 lowest_non_clean[cur_chunk_index] = first_card_of_cur_chunk;
ysr@2889 255 }
ysr@2889 256 NOISY(tty->print_cr(" process_chunk_boundary: lowest_non_clean[" INTPTR_FORMAT "] = " PTR_FORMAT
ysr@2889 257 " which corresponds to the heap address " PTR_FORMAT,
ysr@2889 258 cur_chunk_index, lowest_non_clean[cur_chunk_index],
ysr@2889 259 (lowest_non_clean[cur_chunk_index] != NULL)
ysr@2889 260 ? addr_for(lowest_non_clean[cur_chunk_index])
ysr@2889 261 : NULL);)
ysr@2889 262 NOISY(tty->print_cr("---------------------------------------------------------------------------");)
ysr@2889 263
ysr@2889 264 // Next, set our own max_to_do, which will strictly/exclusively bound
ysr@2889 265 // the highest address that we will scan past the right end of our chunk.
ysr@2889 266 HeapWord* max_to_do = NULL;
duke@435 267 if (chunk_mr.end() < used.end()) {
ysr@2889 268 // This is not the last chunk in the used region.
ysr@2889 269 // What is our last block? We check the first block of
ysr@2889 270 // the next (right) chunk rather than strictly check our last block
ysr@2889 271 // because it's potentially more efficient to do so.
ysr@2889 272 HeapWord* const last_block = sp->block_start(chunk_mr.end());
duke@435 273 assert(last_block <= chunk_mr.end(), "In case this property changes.");
ysr@2889 274 if ((last_block == chunk_mr.end()) // our last block does not straddle boundary
ysr@2889 275 || !sp->block_is_obj(last_block) // last_block isn't an object
ysr@2889 276 || oop(last_block)->is_objArray() // last_block is an array (precisely marked)
ysr@2889 277 || oop(last_block)->is_typeArray()) {
duke@435 278 max_to_do = chunk_mr.end();
ysr@2889 279 NOISY(tty->print_cr(" process_chunk_boundary: Last block on this card is not a non-array object;\n"
ysr@2889 280 " max_to_do left at " PTR_FORMAT, max_to_do);)
duke@435 281 } else {
ysr@2889 282 assert(last_block < chunk_mr.end(), "Tautology");
ysr@2889 283 // It is a non-array object that straddles the right boundary of this chunk.
duke@435 284 // last_obj_card is the card corresponding to the start of the last object
duke@435 285 // in the chunk. Note that the last object may not start in
duke@435 286 // the chunk.
ysr@2889 287 jbyte* const last_obj_card = byte_for(last_block);
ysr@2889 288 const jbyte val = *last_obj_card;
ysr@2889 289 if (!card_will_be_scanned(val)) {
ysr@2889 290 assert(!card_may_have_been_dirty(val), "Error");
ysr@2889 291 // The card containing the head is not dirty. Any marks on
duke@435 292 // subsequent cards still in this chunk must have been made
ysr@2889 293 // precisely; we can cap processing at the end of our chunk.
duke@435 294 max_to_do = chunk_mr.end();
ysr@2889 295 NOISY(tty->print_cr(" process_chunk_boundary: Head of last object on this card is not dirty;\n"
ysr@2889 296 " max_to_do left at " PTR_FORMAT,
ysr@2889 297 max_to_do);)
duke@435 298 } else {
duke@435 299 // The last object must be considered dirty, and extends onto the
duke@435 300 // following chunk. Look for a dirty card in that chunk that will
duke@435 301 // bound our processing.
duke@435 302 jbyte* limit_card = NULL;
ysr@2889 303 const size_t last_block_size = sp->block_size(last_block);
ysr@2889 304 jbyte* const last_card_of_last_obj =
duke@435 305 byte_for(last_block + last_block_size - 1);
ysr@2889 306 jbyte* const first_card_of_next_chunk = byte_for(chunk_mr.end());
duke@435 307 // This search potentially goes a long distance looking
ysr@2889 308 // for the next card that will be scanned, terminating
ysr@2889 309 // at the end of the last_block, if no earlier dirty card
ysr@2889 310 // is found.
ysr@2889 311 assert(byte_for(chunk_mr.end()) - byte_for(chunk_mr.start()) == ParGCCardsPerStrideChunk,
ysr@2889 312 "last card of next chunk may be wrong");
duke@435 313 for (jbyte* cur = first_card_of_next_chunk;
ysr@2889 314 cur <= last_card_of_last_obj; cur++) {
ysr@2889 315 const jbyte val = *cur;
ysr@2889 316 if (card_will_be_scanned(val)) {
ysr@2889 317 NOISY(tty->print_cr(" Found a non-clean card " PTR_FORMAT " with value 0x%x",
ysr@2889 318 cur, (int)val);)
duke@435 319 limit_card = cur; break;
ysr@2889 320 } else {
ysr@2889 321 assert(!card_may_have_been_dirty(val), "Error: card can't be skipped");
duke@435 322 }
duke@435 323 }
ysr@2889 324 if (limit_card != NULL) {
ysr@2889 325 max_to_do = addr_for(limit_card);
ysr@2889 326 assert(limit_card != NULL && max_to_do != NULL, "Error");
ysr@2889 327 NOISY(tty->print_cr(" process_chunk_boundary: Found a dirty card at " PTR_FORMAT
ysr@2889 328 " max_to_do set at " PTR_FORMAT " which is before end of last block in chunk: "
ysr@2889 329 PTR_FORMAT " + " PTR_FORMAT " = " PTR_FORMAT,
ysr@2889 330 limit_card, max_to_do, last_block, last_block_size, (last_block+last_block_size));)
ysr@2889 331 } else {
ysr@2889 332 // The following is a pessimistic value, because it's possible
ysr@2889 333 // that a dirty card on a subsequent chunk has been cleared by
ysr@2889 334 // the time we get to look at it; we'll correct for that further below,
ysr@2889 335 // using the LNC array which records the least non-clean card
ysr@2889 336 // before cards were cleared in a particular chunk.
ysr@2889 337 limit_card = last_card_of_last_obj;
ysr@2889 338 max_to_do = last_block + last_block_size;
ysr@2889 339 assert(limit_card != NULL && max_to_do != NULL, "Error");
ysr@2889 340 NOISY(tty->print_cr(" process_chunk_boundary: Found no dirty card before end of last block in chunk\n"
ysr@2889 341 " Setting limit_card to " PTR_FORMAT
ysr@2889 342 " and max_to_do " PTR_FORMAT " + " PTR_FORMAT " = " PTR_FORMAT,
ysr@2889 343 limit_card, last_block, last_block_size, max_to_do);)
ysr@2889 344 }
ysr@2889 345 assert(0 < cur_chunk_index+1 && cur_chunk_index+1 < lowest_non_clean_chunk_size,
duke@435 346 "Bounds error.");
ysr@2889 347 // It is possible that a dirty card for the last object may have been
ysr@2889 348 // cleared before we had a chance to examine it. In that case, the value
ysr@2889 349 // will have been logged in the LNC for that chunk.
ysr@2889 350 // We need to examine as many chunks to the right as this object
ysr@2889 351 // covers.
ysr@2889 352 const uintptr_t last_chunk_index_to_check = addr_to_chunk_index(last_block + last_block_size - 1)
ysr@2889 353 - lowest_non_clean_base_chunk_index;
ysr@2889 354 DEBUG_ONLY(const uintptr_t last_chunk_index = addr_to_chunk_index(used.end())
ysr@2889 355 - lowest_non_clean_base_chunk_index;)
ysr@2889 356 assert(last_chunk_index_to_check <= last_chunk_index,
ysr@2889 357 err_msg("Out of bounds: last_chunk_index_to_check " INTPTR_FORMAT
ysr@2889 358 " exceeds last_chunk_index " INTPTR_FORMAT,
ysr@2889 359 last_chunk_index_to_check, last_chunk_index));
ysr@2889 360 for (uintptr_t lnc_index = cur_chunk_index + 1;
ysr@2889 361 lnc_index <= last_chunk_index_to_check;
ysr@2889 362 lnc_index++) {
ysr@2889 363 jbyte* lnc_card = lowest_non_clean[lnc_index];
ysr@2889 364 if (lnc_card != NULL) {
ysr@2889 365 // we can stop at the first non-NULL entry we find
ysr@2889 366 if (lnc_card <= limit_card) {
ysr@2889 367 NOISY(tty->print_cr(" process_chunk_boundary: LNC card " PTR_FORMAT " is lower than limit_card " PTR_FORMAT,
ysr@2889 368 " max_to_do will be lowered to " PTR_FORMAT " from " PTR_FORMAT,
ysr@2889 369 lnc_card, limit_card, addr_for(lnc_card), max_to_do);)
ysr@2889 370 limit_card = lnc_card;
ysr@2889 371 max_to_do = addr_for(limit_card);
ysr@2889 372 assert(limit_card != NULL && max_to_do != NULL, "Error");
ysr@2889 373 }
ysr@2889 374 // In any case, we break now
ysr@2889 375 break;
ysr@2889 376 } // else continue to look for a non-NULL entry if any
duke@435 377 }
ysr@2889 378 assert(limit_card != NULL && max_to_do != NULL, "Error");
duke@435 379 }
ysr@2889 380 assert(max_to_do != NULL, "OOPS 1 !");
duke@435 381 }
ysr@2889 382 assert(max_to_do != NULL, "OOPS 2!");
duke@435 383 } else {
duke@435 384 max_to_do = used.end();
ysr@2889 385 NOISY(tty->print_cr(" process_chunk_boundary: Last chunk of this space;\n"
ysr@2889 386 " max_to_do left at " PTR_FORMAT,
ysr@2889 387 max_to_do);)
duke@435 388 }
ysr@2889 389 assert(max_to_do != NULL, "OOPS 3!");
duke@435 390 // Now we can set the closure we're using so it doesn't to beyond
duke@435 391 // max_to_do.
duke@435 392 dcto_cl->set_min_done(max_to_do);
duke@435 393 #ifndef PRODUCT
duke@435 394 dcto_cl->set_last_bottom(max_to_do);
duke@435 395 #endif
ysr@2889 396 NOISY(tty->print_cr("===========================================================================\n");)
ysr@2889 397 }
duke@435 398
ysr@2889 399 #undef NOISY
duke@435 400
duke@435 401 void
duke@435 402 CardTableModRefBS::
duke@435 403 get_LNC_array_for_space(Space* sp,
duke@435 404 jbyte**& lowest_non_clean,
duke@435 405 uintptr_t& lowest_non_clean_base_chunk_index,
duke@435 406 size_t& lowest_non_clean_chunk_size) {
duke@435 407
duke@435 408 int i = find_covering_region_containing(sp->bottom());
duke@435 409 MemRegion covered = _covered[i];
duke@435 410 size_t n_chunks = chunks_to_cover(covered);
duke@435 411
duke@435 412 // Only the first thread to obtain the lock will resize the
duke@435 413 // LNC array for the covered region. Any later expansion can't affect
duke@435 414 // the used_at_save_marks region.
duke@435 415 // (I observed a bug in which the first thread to execute this would
ysr@2889 416 // resize, and then it would cause "expand_and_allocate" that would
ysr@2889 417 // increase the number of chunks in the covered region. Then a second
duke@435 418 // thread would come and execute this, see that the size didn't match,
duke@435 419 // and free and allocate again. So the first thread would be using a
duke@435 420 // freed "_lowest_non_clean" array.)
duke@435 421
duke@435 422 // Do a dirty read here. If we pass the conditional then take the rare
duke@435 423 // event lock and do the read again in case some other thread had already
duke@435 424 // succeeded and done the resize.
duke@435 425 int cur_collection = Universe::heap()->total_collections();
duke@435 426 if (_last_LNC_resizing_collection[i] != cur_collection) {
duke@435 427 MutexLocker x(ParGCRareEvent_lock);
duke@435 428 if (_last_LNC_resizing_collection[i] != cur_collection) {
duke@435 429 if (_lowest_non_clean[i] == NULL ||
duke@435 430 n_chunks != _lowest_non_clean_chunk_size[i]) {
duke@435 431
duke@435 432 // Should we delete the old?
duke@435 433 if (_lowest_non_clean[i] != NULL) {
duke@435 434 assert(n_chunks != _lowest_non_clean_chunk_size[i],
duke@435 435 "logical consequence");
duke@435 436 FREE_C_HEAP_ARRAY(CardPtr, _lowest_non_clean[i]);
duke@435 437 _lowest_non_clean[i] = NULL;
duke@435 438 }
duke@435 439 // Now allocate a new one if necessary.
duke@435 440 if (_lowest_non_clean[i] == NULL) {
duke@435 441 _lowest_non_clean[i] = NEW_C_HEAP_ARRAY(CardPtr, n_chunks);
duke@435 442 _lowest_non_clean_chunk_size[i] = n_chunks;
duke@435 443 _lowest_non_clean_base_chunk_index[i] = addr_to_chunk_index(covered.start());
duke@435 444 for (int j = 0; j < (int)n_chunks; j++)
duke@435 445 _lowest_non_clean[i][j] = NULL;
duke@435 446 }
duke@435 447 }
duke@435 448 _last_LNC_resizing_collection[i] = cur_collection;
duke@435 449 }
duke@435 450 }
duke@435 451 // In any case, now do the initialization.
duke@435 452 lowest_non_clean = _lowest_non_clean[i];
duke@435 453 lowest_non_clean_base_chunk_index = _lowest_non_clean_base_chunk_index[i];
duke@435 454 lowest_non_clean_chunk_size = _lowest_non_clean_chunk_size[i];
duke@435 455 }

mercurial