src/share/vm/gc_implementation/parNew/parCardTableModRefBS.cpp

Tue, 10 May 2011 00:33:21 -0700

author
ysr
date
Tue, 10 May 2011 00:33:21 -0700
changeset 2889
fc2b798ab316
parent 2819
c48ad6ab8bdf
child 2891
7d64aa23eb96
permissions
-rw-r--r--

6883834: ParNew: assert(!_g->to()->is_in_reserved(obj),"Scanning field twice?") with LargeObjects tests
Summary: Fixed process_chunk_boundaries(), used for parallel card scanning when using ParNew/CMS, so as to prevent double-scanning, or worse, non-scanning of imprecisely marked objects exceeding parallel chunk size. Made some sizing parameters for parallel card scanning diagnostic, disabled ParallelGCRetainPLAB, and elaborated and clarified some comments.
Reviewed-by: stefank, johnc

     1 /*
     2  * Copyright (c) 2007, 2011 Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "memory/cardTableModRefBS.hpp"
    28 #include "memory/cardTableRS.hpp"
    29 #include "memory/sharedHeap.hpp"
    30 #include "memory/space.inline.hpp"
    31 #include "memory/universe.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "runtime/java.hpp"
    34 #include "runtime/mutexLocker.hpp"
    35 #include "runtime/virtualspace.hpp"
    37 void CardTableModRefBS::non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
    38                                                              OopsInGenClosure* cl,
    39                                                              CardTableRS* ct,
    40                                                              int n_threads) {
    41   assert(n_threads > 0, "Error: expected n_threads > 0");
    42   assert((n_threads == 1 && ParallelGCThreads == 0) ||
    43          n_threads <= (int)ParallelGCThreads,
    44          "# worker threads != # requested!");
    45   // Make sure the LNC array is valid for the space.
    46   jbyte**   lowest_non_clean;
    47   uintptr_t lowest_non_clean_base_chunk_index;
    48   size_t    lowest_non_clean_chunk_size;
    49   get_LNC_array_for_space(sp, lowest_non_clean,
    50                           lowest_non_clean_base_chunk_index,
    51                           lowest_non_clean_chunk_size);
    53   int n_strides = n_threads * ParGCStridesPerThread;
    54   SequentialSubTasksDone* pst = sp->par_seq_tasks();
    55   pst->set_n_threads(n_threads);
    56   pst->set_n_tasks(n_strides);
    58   int stride = 0;
    59   while (!pst->is_task_claimed(/* reference */ stride)) {
    60     process_stride(sp, mr, stride, n_strides, cl, ct,
    61                    lowest_non_clean,
    62                    lowest_non_clean_base_chunk_index,
    63                    lowest_non_clean_chunk_size);
    64   }
    65   if (pst->all_tasks_completed()) {
    66     // Clear lowest_non_clean array for next time.
    67     intptr_t first_chunk_index = addr_to_chunk_index(mr.start());
    68     uintptr_t last_chunk_index  = addr_to_chunk_index(mr.last());
    69     for (uintptr_t ch = first_chunk_index; ch <= last_chunk_index; ch++) {
    70       intptr_t ind = ch - lowest_non_clean_base_chunk_index;
    71       assert(0 <= ind && ind < (intptr_t)lowest_non_clean_chunk_size,
    72              "Bounds error");
    73       lowest_non_clean[ind] = NULL;
    74     }
    75   }
    76 }
    78 void
    79 CardTableModRefBS::
    80 process_stride(Space* sp,
    81                MemRegion used,
    82                jint stride, int n_strides,
    83                OopsInGenClosure* cl,
    84                CardTableRS* ct,
    85                jbyte** lowest_non_clean,
    86                uintptr_t lowest_non_clean_base_chunk_index,
    87                size_t    lowest_non_clean_chunk_size) {
    88   // We go from higher to lower addresses here; it wouldn't help that much
    89   // because of the strided parallelism pattern used here.
    91   // Find the first card address of the first chunk in the stride that is
    92   // at least "bottom" of the used region.
    93   jbyte*    start_card  = byte_for(used.start());
    94   jbyte*    end_card    = byte_after(used.last());
    95   uintptr_t start_chunk = addr_to_chunk_index(used.start());
    96   uintptr_t start_chunk_stride_num = start_chunk % n_strides;
    97   jbyte* chunk_card_start;
    99   if ((uintptr_t)stride >= start_chunk_stride_num) {
   100     chunk_card_start = (jbyte*)(start_card +
   101                                 (stride - start_chunk_stride_num) *
   102                                 ParGCCardsPerStrideChunk);
   103   } else {
   104     // Go ahead to the next chunk group boundary, then to the requested stride.
   105     chunk_card_start = (jbyte*)(start_card +
   106                                 (n_strides - start_chunk_stride_num + stride) *
   107                                 ParGCCardsPerStrideChunk);
   108   }
   110   while (chunk_card_start < end_card) {
   111     // Even though we go from lower to higher addresses below, the
   112     // strided parallelism can interleave the actual processing of the
   113     // dirty pages in various ways. For a specific chunk within this
   114     // stride, we take care to avoid double scanning or missing a card
   115     // by suitably initializing the "min_done" field in process_chunk_boundaries()
   116     // below, together with the dirty region extension accomplished in
   117     // DirtyCardToOopClosure::do_MemRegion().
   118     jbyte*    chunk_card_end = chunk_card_start + ParGCCardsPerStrideChunk;
   119     // Invariant: chunk_mr should be fully contained within the "used" region.
   120     MemRegion chunk_mr       = MemRegion(addr_for(chunk_card_start),
   121                                          chunk_card_end >= end_card ?
   122                                            used.end() : addr_for(chunk_card_end));
   123     assert(chunk_mr.word_size() > 0, "[chunk_card_start > used_end)");
   124     assert(used.contains(chunk_mr), "chunk_mr should be subset of used");
   126     DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
   127                                                      cl->gen_boundary());
   128     ClearNoncleanCardWrapper clear_cl(dcto_cl, ct);
   131     // Process the chunk.
   132     process_chunk_boundaries(sp,
   133                              dcto_cl,
   134                              chunk_mr,
   135                              used,
   136                              lowest_non_clean,
   137                              lowest_non_clean_base_chunk_index,
   138                              lowest_non_clean_chunk_size);
   140     // We want the LNC array updates above in process_chunk_boundaries
   141     // to be visible before any of the card table value changes as a
   142     // result of the dirty card iteration below.
   143     OrderAccess::storestore();
   145     // We do not call the non_clean_card_iterate_serial() version because
   146     // we want to clear the cards: clear_cl here does the work of finding
   147     // contiguous dirty ranges of cards to process and clear.
   148     clear_cl.do_MemRegion(chunk_mr);
   150     // Find the next chunk of the stride.
   151     chunk_card_start += ParGCCardsPerStrideChunk * n_strides;
   152   }
   153 }
   156 // If you want a talkative process_chunk_boundaries,
   157 // then #define NOISY(x) x
   158 #ifdef NOISY
   159 #error "Encountered a global preprocessor flag, NOISY, which might clash with local definition to follow"
   160 #else
   161 #define NOISY(x)
   162 #endif
   164 void
   165 CardTableModRefBS::
   166 process_chunk_boundaries(Space* sp,
   167                          DirtyCardToOopClosure* dcto_cl,
   168                          MemRegion chunk_mr,
   169                          MemRegion used,
   170                          jbyte** lowest_non_clean,
   171                          uintptr_t lowest_non_clean_base_chunk_index,
   172                          size_t    lowest_non_clean_chunk_size)
   173 {
   174   // We must worry about non-array objects that cross chunk boundaries,
   175   // because such objects are both precisely and imprecisely marked:
   176   // .. if the head of such an object is dirty, the entire object
   177   //    needs to be scanned, under the interpretation that this
   178   //    was an imprecise mark
   179   // .. if the head of such an object is not dirty, we can assume
   180   //    precise marking and it's efficient to scan just the dirty
   181   //    cards.
   182   // In either case, each scanned reference must be scanned precisely
   183   // once so as to avoid cloning of a young referent. For efficiency,
   184   // our closures depend on this property and do not protect against
   185   // double scans.
   187   uintptr_t cur_chunk_index = addr_to_chunk_index(chunk_mr.start());
   188   cur_chunk_index           = cur_chunk_index - lowest_non_clean_base_chunk_index;
   190   NOISY(tty->print_cr("===========================================================================");)
   191   NOISY(tty->print_cr(" process_chunk_boundary: Called with [" PTR_FORMAT "," PTR_FORMAT ")",
   192                       chunk_mr.start(), chunk_mr.end());)
   194   // First, set "our" lowest_non_clean entry, which would be
   195   // used by the thread scanning an adjoining left chunk with
   196   // a non-array object straddling the mutual boundary.
   197   // Find the object that spans our boundary, if one exists.
   198   // first_block is the block possibly straddling our left boundary.
   199   HeapWord* first_block = sp->block_start(chunk_mr.start());
   200   assert((chunk_mr.start() != used.start()) || (first_block == chunk_mr.start()),
   201          "First chunk should always have a co-initial block");
   202   // Does the block straddle the chunk's left boundary, and is it
   203   // a non-array object?
   204   if (first_block < chunk_mr.start()        // first block straddles left bdry
   205       && sp->block_is_obj(first_block)      // first block is an object
   206       && !(oop(first_block)->is_objArray()  // first block is not an array (arrays are precisely dirtied)
   207            || oop(first_block)->is_typeArray())) {
   208     // Find our least non-clean card, so that a left neighbour
   209     // does not scan an object straddling the mutual boundary
   210     // too far to the right, and attempt to scan a portion of
   211     // that object twice.
   212     jbyte* first_dirty_card = NULL;
   213     jbyte* last_card_of_first_obj =
   214         byte_for(first_block + sp->block_size(first_block) - 1);
   215     jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
   216     jbyte* last_card_of_cur_chunk = byte_for(chunk_mr.last());
   217     jbyte* last_card_to_check =
   218       (jbyte*) MIN2((intptr_t) last_card_of_cur_chunk,
   219                     (intptr_t) last_card_of_first_obj);
   220     // Note that this does not need to go beyond our last card
   221     // if our first object completely straddles this chunk.
   222     for (jbyte* cur = first_card_of_cur_chunk;
   223          cur <= last_card_to_check; cur++) {
   224       jbyte val = *cur;
   225       if (card_will_be_scanned(val)) {
   226         first_dirty_card = cur; break;
   227       } else {
   228         assert(!card_may_have_been_dirty(val), "Error");
   229       }
   230     }
   231     if (first_dirty_card != NULL) {
   232       NOISY(tty->print_cr(" LNC: Found a dirty card at " PTR_FORMAT " in current chunk",
   233                     first_dirty_card);)
   234       assert(0 <= cur_chunk_index && cur_chunk_index < lowest_non_clean_chunk_size,
   235              "Bounds error.");
   236       assert(lowest_non_clean[cur_chunk_index] == NULL,
   237              "Write exactly once : value should be stable hereafter for this round");
   238       lowest_non_clean[cur_chunk_index] = first_dirty_card;
   239     } NOISY(else {
   240       tty->print_cr(" LNC: Found no dirty card in current chunk; leaving LNC entry NULL");
   241       // In the future, we could have this thread look for a non-NULL value to copy from its
   242       // right neighbour (up to the end of the first object).
   243       if (last_card_of_cur_chunk < last_card_of_first_obj) {
   244         tty->print_cr(" LNC: BEWARE!!! first obj straddles past right end of chunk:\n"
   245                       "   might be efficient to get value from right neighbour?");
   246       }
   247     })
   248   } else {
   249     // In this case we can help our neighbour by just asking them
   250     // to stop at our first card (even though it may not be dirty).
   251     NOISY(tty->print_cr(" LNC: first block is not a non-array object; setting LNC to first card of current chunk");)
   252     assert(lowest_non_clean[cur_chunk_index] == NULL, "Write once : value should be stable hereafter");
   253     jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
   254     lowest_non_clean[cur_chunk_index] = first_card_of_cur_chunk;
   255   }
   256   NOISY(tty->print_cr(" process_chunk_boundary: lowest_non_clean[" INTPTR_FORMAT "] = " PTR_FORMAT
   257                 "   which corresponds to the heap address " PTR_FORMAT,
   258                 cur_chunk_index, lowest_non_clean[cur_chunk_index],
   259                 (lowest_non_clean[cur_chunk_index] != NULL)
   260                 ? addr_for(lowest_non_clean[cur_chunk_index])
   261                 : NULL);)
   262   NOISY(tty->print_cr("---------------------------------------------------------------------------");)
   264   // Next, set our own max_to_do, which will strictly/exclusively bound
   265   // the highest address that we will scan past the right end of our chunk.
   266   HeapWord* max_to_do = NULL;
   267   if (chunk_mr.end() < used.end()) {
   268     // This is not the last chunk in the used region.
   269     // What is our last block? We check the first block of
   270     // the next (right) chunk rather than strictly check our last block
   271     // because it's potentially more efficient to do so.
   272     HeapWord* const last_block = sp->block_start(chunk_mr.end());
   273     assert(last_block <= chunk_mr.end(), "In case this property changes.");
   274     if ((last_block == chunk_mr.end())     // our last block does not straddle boundary
   275         || !sp->block_is_obj(last_block)   // last_block isn't an object
   276         || oop(last_block)->is_objArray()  // last_block is an array (precisely marked)
   277         || oop(last_block)->is_typeArray()) {
   278       max_to_do = chunk_mr.end();
   279       NOISY(tty->print_cr(" process_chunk_boundary: Last block on this card is not a non-array object;\n"
   280                          "   max_to_do left at " PTR_FORMAT, max_to_do);)
   281     } else {
   282       assert(last_block < chunk_mr.end(), "Tautology");
   283       // It is a non-array object that straddles the right boundary of this chunk.
   284       // last_obj_card is the card corresponding to the start of the last object
   285       // in the chunk.  Note that the last object may not start in
   286       // the chunk.
   287       jbyte* const last_obj_card = byte_for(last_block);
   288       const jbyte val = *last_obj_card;
   289       if (!card_will_be_scanned(val)) {
   290         assert(!card_may_have_been_dirty(val), "Error");
   291         // The card containing the head is not dirty.  Any marks on
   292         // subsequent cards still in this chunk must have been made
   293         // precisely; we can cap processing at the end of our chunk.
   294         max_to_do = chunk_mr.end();
   295         NOISY(tty->print_cr(" process_chunk_boundary: Head of last object on this card is not dirty;\n"
   296                             "   max_to_do left at " PTR_FORMAT,
   297                             max_to_do);)
   298       } else {
   299         // The last object must be considered dirty, and extends onto the
   300         // following chunk.  Look for a dirty card in that chunk that will
   301         // bound our processing.
   302         jbyte* limit_card = NULL;
   303         const size_t last_block_size = sp->block_size(last_block);
   304         jbyte* const last_card_of_last_obj =
   305           byte_for(last_block + last_block_size - 1);
   306         jbyte* const first_card_of_next_chunk = byte_for(chunk_mr.end());
   307         // This search potentially goes a long distance looking
   308         // for the next card that will be scanned, terminating
   309         // at the end of the last_block, if no earlier dirty card
   310         // is found.
   311         assert(byte_for(chunk_mr.end()) - byte_for(chunk_mr.start()) == ParGCCardsPerStrideChunk,
   312                "last card of next chunk may be wrong");
   313         for (jbyte* cur = first_card_of_next_chunk;
   314              cur <= last_card_of_last_obj; cur++) {
   315           const jbyte val = *cur;
   316           if (card_will_be_scanned(val)) {
   317             NOISY(tty->print_cr(" Found a non-clean card " PTR_FORMAT " with value 0x%x",
   318                                 cur, (int)val);)
   319             limit_card = cur; break;
   320           } else {
   321             assert(!card_may_have_been_dirty(val), "Error: card can't be skipped");
   322           }
   323         }
   324         if (limit_card != NULL) {
   325           max_to_do = addr_for(limit_card);
   326           assert(limit_card != NULL && max_to_do != NULL, "Error");
   327           NOISY(tty->print_cr(" process_chunk_boundary: Found a dirty card at " PTR_FORMAT
   328                         "   max_to_do set at " PTR_FORMAT " which is before end of last block in chunk: "
   329                         PTR_FORMAT " + " PTR_FORMAT " = " PTR_FORMAT,
   330                         limit_card, max_to_do, last_block, last_block_size, (last_block+last_block_size));)
   331         } else {
   332           // The following is a pessimistic value, because it's possible
   333           // that a dirty card on a subsequent chunk has been cleared by
   334           // the time we get to look at it; we'll correct for that further below,
   335           // using the LNC array which records the least non-clean card
   336           // before cards were cleared in a particular chunk.
   337           limit_card = last_card_of_last_obj;
   338           max_to_do = last_block + last_block_size;
   339           assert(limit_card != NULL && max_to_do != NULL, "Error");
   340           NOISY(tty->print_cr(" process_chunk_boundary: Found no dirty card before end of last block in chunk\n"
   341                               "   Setting limit_card to " PTR_FORMAT
   342                               " and max_to_do " PTR_FORMAT " + " PTR_FORMAT " = " PTR_FORMAT,
   343                               limit_card, last_block, last_block_size, max_to_do);)
   344         }
   345         assert(0 < cur_chunk_index+1 && cur_chunk_index+1 < lowest_non_clean_chunk_size,
   346                "Bounds error.");
   347         // It is possible that a dirty card for the last object may have been
   348         // cleared before we had a chance to examine it. In that case, the value
   349         // will have been logged in the LNC for that chunk.
   350         // We need to examine as many chunks to the right as this object
   351         // covers.
   352         const uintptr_t last_chunk_index_to_check = addr_to_chunk_index(last_block + last_block_size - 1)
   353                                                     - lowest_non_clean_base_chunk_index;
   354         DEBUG_ONLY(const uintptr_t last_chunk_index = addr_to_chunk_index(used.end())
   355                                                       - lowest_non_clean_base_chunk_index;)
   356         assert(last_chunk_index_to_check <= last_chunk_index,
   357                err_msg("Out of bounds: last_chunk_index_to_check " INTPTR_FORMAT
   358                        " exceeds last_chunk_index " INTPTR_FORMAT,
   359                        last_chunk_index_to_check, last_chunk_index));
   360         for (uintptr_t lnc_index = cur_chunk_index + 1;
   361              lnc_index <= last_chunk_index_to_check;
   362              lnc_index++) {
   363           jbyte* lnc_card = lowest_non_clean[lnc_index];
   364           if (lnc_card != NULL) {
   365             // we can stop at the first non-NULL entry we find
   366             if (lnc_card <= limit_card) {
   367               NOISY(tty->print_cr(" process_chunk_boundary: LNC card " PTR_FORMAT " is lower than limit_card " PTR_FORMAT,
   368                                   "   max_to_do will be lowered to " PTR_FORMAT " from " PTR_FORMAT,
   369                                   lnc_card, limit_card, addr_for(lnc_card), max_to_do);)
   370               limit_card = lnc_card;
   371               max_to_do = addr_for(limit_card);
   372               assert(limit_card != NULL && max_to_do != NULL, "Error");
   373             }
   374             // In any case, we break now
   375             break;
   376           }  // else continue to look for a non-NULL entry if any
   377         }
   378         assert(limit_card != NULL && max_to_do != NULL, "Error");
   379       }
   380       assert(max_to_do != NULL, "OOPS 1 !");
   381     }
   382     assert(max_to_do != NULL, "OOPS 2!");
   383   } else {
   384     max_to_do = used.end();
   385     NOISY(tty->print_cr(" process_chunk_boundary: Last chunk of this space;\n"
   386                   "   max_to_do left at " PTR_FORMAT,
   387                   max_to_do);)
   388   }
   389   assert(max_to_do != NULL, "OOPS 3!");
   390   // Now we can set the closure we're using so it doesn't to beyond
   391   // max_to_do.
   392   dcto_cl->set_min_done(max_to_do);
   393 #ifndef PRODUCT
   394   dcto_cl->set_last_bottom(max_to_do);
   395 #endif
   396   NOISY(tty->print_cr("===========================================================================\n");)
   397 }
   399 #undef NOISY
   401 void
   402 CardTableModRefBS::
   403 get_LNC_array_for_space(Space* sp,
   404                         jbyte**& lowest_non_clean,
   405                         uintptr_t& lowest_non_clean_base_chunk_index,
   406                         size_t& lowest_non_clean_chunk_size) {
   408   int       i        = find_covering_region_containing(sp->bottom());
   409   MemRegion covered  = _covered[i];
   410   size_t    n_chunks = chunks_to_cover(covered);
   412   // Only the first thread to obtain the lock will resize the
   413   // LNC array for the covered region.  Any later expansion can't affect
   414   // the used_at_save_marks region.
   415   // (I observed a bug in which the first thread to execute this would
   416   // resize, and then it would cause "expand_and_allocate" that would
   417   // increase the number of chunks in the covered region.  Then a second
   418   // thread would come and execute this, see that the size didn't match,
   419   // and free and allocate again.  So the first thread would be using a
   420   // freed "_lowest_non_clean" array.)
   422   // Do a dirty read here. If we pass the conditional then take the rare
   423   // event lock and do the read again in case some other thread had already
   424   // succeeded and done the resize.
   425   int cur_collection = Universe::heap()->total_collections();
   426   if (_last_LNC_resizing_collection[i] != cur_collection) {
   427     MutexLocker x(ParGCRareEvent_lock);
   428     if (_last_LNC_resizing_collection[i] != cur_collection) {
   429       if (_lowest_non_clean[i] == NULL ||
   430           n_chunks != _lowest_non_clean_chunk_size[i]) {
   432         // Should we delete the old?
   433         if (_lowest_non_clean[i] != NULL) {
   434           assert(n_chunks != _lowest_non_clean_chunk_size[i],
   435                  "logical consequence");
   436           FREE_C_HEAP_ARRAY(CardPtr, _lowest_non_clean[i]);
   437           _lowest_non_clean[i] = NULL;
   438         }
   439         // Now allocate a new one if necessary.
   440         if (_lowest_non_clean[i] == NULL) {
   441           _lowest_non_clean[i]                  = NEW_C_HEAP_ARRAY(CardPtr, n_chunks);
   442           _lowest_non_clean_chunk_size[i]       = n_chunks;
   443           _lowest_non_clean_base_chunk_index[i] = addr_to_chunk_index(covered.start());
   444           for (int j = 0; j < (int)n_chunks; j++)
   445             _lowest_non_clean[i][j] = NULL;
   446         }
   447       }
   448       _last_LNC_resizing_collection[i] = cur_collection;
   449     }
   450   }
   451   // In any case, now do the initialization.
   452   lowest_non_clean                  = _lowest_non_clean[i];
   453   lowest_non_clean_base_chunk_index = _lowest_non_clean_base_chunk_index[i];
   454   lowest_non_clean_chunk_size       = _lowest_non_clean_chunk_size[i];
   455 }

mercurial