src/share/vm/gc_implementation/shared/mutableNUMASpace.cpp

Thu, 14 Jun 2018 09:15:08 -0700

author
kevinw
date
Thu, 14 Jun 2018 09:15:08 -0700
changeset 9327
f96fcd9e1e1b
parent 6680
78bbf4d43a14
child 9448
73d689add964
permissions
-rw-r--r--

8081202: Hotspot compile warning: "Invalid suffix on literal; C++11 requires a space between literal and identifier"
Summary: Need to add a space between macro identifier and string literal
Reviewed-by: bpittore, stefank, dholmes, kbarrett

duke@435 1
duke@435 2 /*
drchase@6680 3 * Copyright (c) 2006, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 5 *
duke@435 6 * This code is free software; you can redistribute it and/or modify it
duke@435 7 * under the terms of the GNU General Public License version 2 only, as
duke@435 8 * published by the Free Software Foundation.
duke@435 9 *
duke@435 10 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 13 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 14 * accompanied this code).
duke@435 15 *
duke@435 16 * You should have received a copy of the GNU General Public License version
duke@435 17 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 19 *
trims@1907 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 21 * or visit www.oracle.com if you need additional information or have any
trims@1907 22 * questions.
duke@435 23 *
duke@435 24 */
duke@435 25
stefank@2314 26 #include "precompiled.hpp"
stefank@2314 27 #include "gc_implementation/shared/mutableNUMASpace.hpp"
stefank@2314 28 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 29 #include "memory/sharedHeap.hpp"
stefank@2314 30 #include "oops/oop.inline.hpp"
stefank@4299 31 #include "runtime/thread.inline.hpp"
duke@435 32
drchase@6680 33 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 34
iveresov@970 35 MutableNUMASpace::MutableNUMASpace(size_t alignment) : MutableSpace(alignment) {
zgu@3900 36 _lgrp_spaces = new (ResourceObj::C_HEAP, mtGC) GrowableArray<LGRPSpace*>(0, true);
duke@435 37 _page_size = os::vm_page_size();
duke@435 38 _adaptation_cycles = 0;
duke@435 39 _samples_count = 0;
duke@435 40 update_layout(true);
duke@435 41 }
duke@435 42
duke@435 43 MutableNUMASpace::~MutableNUMASpace() {
duke@435 44 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 45 delete lgrp_spaces()->at(i);
duke@435 46 }
duke@435 47 delete lgrp_spaces();
duke@435 48 }
duke@435 49
jmasa@698 50 #ifndef PRODUCT
duke@435 51 void MutableNUMASpace::mangle_unused_area() {
jmasa@698 52 // This method should do nothing.
jmasa@698 53 // It can be called on a numa space during a full compaction.
duke@435 54 }
jmasa@698 55 void MutableNUMASpace::mangle_unused_area_complete() {
jmasa@698 56 // This method should do nothing.
jmasa@698 57 // It can be called on a numa space during a full compaction.
jmasa@698 58 }
jmasa@698 59 void MutableNUMASpace::mangle_region(MemRegion mr) {
jmasa@698 60 // This method should do nothing because numa spaces are not mangled.
jmasa@698 61 }
jmasa@698 62 void MutableNUMASpace::set_top_for_allocations(HeapWord* v) {
jmasa@698 63 assert(false, "Do not mangle MutableNUMASpace's");
jmasa@698 64 }
jmasa@698 65 void MutableNUMASpace::set_top_for_allocations() {
jmasa@698 66 // This method should do nothing.
jmasa@698 67 }
jmasa@698 68 void MutableNUMASpace::check_mangled_unused_area(HeapWord* limit) {
jmasa@698 69 // This method should do nothing.
jmasa@698 70 }
jmasa@698 71 void MutableNUMASpace::check_mangled_unused_area_complete() {
jmasa@698 72 // This method should do nothing.
jmasa@698 73 }
jmasa@698 74 #endif // NOT_PRODUCT
duke@435 75
duke@435 76 // There may be unallocated holes in the middle chunks
duke@435 77 // that should be filled with dead objects to ensure parseability.
duke@435 78 void MutableNUMASpace::ensure_parsability() {
duke@435 79 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 80 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 81 MutableSpace *s = ls->space();
twisti@1040 82 if (s->top() < top()) { // For all spaces preceding the one containing top()
duke@435 83 if (s->free_in_words() > 0) {
brutisso@3668 84 intptr_t cur_top = (intptr_t)s->top();
brutisso@3668 85 size_t words_left_to_fill = pointer_delta(s->end(), s->top());;
brutisso@3668 86 while (words_left_to_fill > 0) {
brutisso@3668 87 size_t words_to_fill = MIN2(words_left_to_fill, CollectedHeap::filler_array_max_size());
brutisso@3668 88 assert(words_to_fill >= CollectedHeap::min_fill_size(),
kevinw@9327 89 err_msg("Remaining size (" SIZE_FORMAT ") is too small to fill (based on " SIZE_FORMAT " and " SIZE_FORMAT ")",
brutisso@3668 90 words_to_fill, words_left_to_fill, CollectedHeap::filler_array_max_size()));
brutisso@3668 91 CollectedHeap::fill_with_object((HeapWord*)cur_top, words_to_fill);
brutisso@3668 92 if (!os::numa_has_static_binding()) {
brutisso@3668 93 size_t touched_words = words_to_fill;
duke@435 94 #ifndef ASSERT
brutisso@3668 95 if (!ZapUnusedHeapArea) {
brutisso@3668 96 touched_words = MIN2((size_t)align_object_size(typeArrayOopDesc::header_size(T_INT)),
brutisso@3668 97 touched_words);
brutisso@3668 98 }
duke@435 99 #endif
brutisso@3668 100 MemRegion invalid;
brutisso@3668 101 HeapWord *crossing_start = (HeapWord*)round_to(cur_top, os::vm_page_size());
brutisso@3668 102 HeapWord *crossing_end = (HeapWord*)round_to(cur_top + touched_words, os::vm_page_size());
brutisso@3668 103 if (crossing_start != crossing_end) {
brutisso@3668 104 // If object header crossed a small page boundary we mark the area
brutisso@3668 105 // as invalid rounding it to a page_size().
brutisso@3668 106 HeapWord *start = MAX2((HeapWord*)round_down(cur_top, page_size()), s->bottom());
brutisso@3668 107 HeapWord *end = MIN2((HeapWord*)round_to(cur_top + touched_words, page_size()), s->end());
brutisso@3668 108 invalid = MemRegion(start, end);
brutisso@3668 109 }
brutisso@3668 110
brutisso@3668 111 ls->add_invalid_region(invalid);
iveresov@576 112 }
brutisso@3668 113 cur_top = cur_top + (words_to_fill * HeapWordSize);
brutisso@3668 114 words_left_to_fill -= words_to_fill;
duke@435 115 }
duke@435 116 }
duke@435 117 } else {
iveresov@576 118 if (!os::numa_has_static_binding()) {
duke@435 119 #ifdef ASSERT
duke@435 120 MemRegion invalid(s->top(), s->end());
duke@435 121 ls->add_invalid_region(invalid);
iveresov@576 122 #else
iveresov@576 123 if (ZapUnusedHeapArea) {
iveresov@576 124 MemRegion invalid(s->top(), s->end());
iveresov@576 125 ls->add_invalid_region(invalid);
iveresov@579 126 } else {
iveresov@579 127 return;
iveresov@579 128 }
duke@435 129 #endif
iveresov@579 130 } else {
iveresov@579 131 return;
iveresov@576 132 }
duke@435 133 }
duke@435 134 }
duke@435 135 }
duke@435 136
duke@435 137 size_t MutableNUMASpace::used_in_words() const {
duke@435 138 size_t s = 0;
duke@435 139 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 140 s += lgrp_spaces()->at(i)->space()->used_in_words();
duke@435 141 }
duke@435 142 return s;
duke@435 143 }
duke@435 144
duke@435 145 size_t MutableNUMASpace::free_in_words() const {
duke@435 146 size_t s = 0;
duke@435 147 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 148 s += lgrp_spaces()->at(i)->space()->free_in_words();
duke@435 149 }
duke@435 150 return s;
duke@435 151 }
duke@435 152
duke@435 153
duke@435 154 size_t MutableNUMASpace::tlab_capacity(Thread *thr) const {
duke@435 155 guarantee(thr != NULL, "No thread");
duke@435 156 int lgrp_id = thr->lgrp_id();
iveresov@703 157 if (lgrp_id == -1) {
iveresov@703 158 // This case can occur after the topology of the system has
iveresov@703 159 // changed. Thread can change their location, the new home
iveresov@703 160 // group will be determined during the first allocation
iveresov@703 161 // attempt. For now we can safely assume that all spaces
iveresov@703 162 // have equal size because the whole space will be reinitialized.
iveresov@703 163 if (lgrp_spaces()->length() > 0) {
iveresov@703 164 return capacity_in_bytes() / lgrp_spaces()->length();
iveresov@703 165 } else {
iveresov@703 166 assert(false, "There should be at least one locality group");
iveresov@703 167 return 0;
iveresov@703 168 }
iveresov@703 169 }
iveresov@703 170 // That's the normal case, where we know the locality group of the thread.
duke@435 171 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
duke@435 172 if (i == -1) {
duke@435 173 return 0;
duke@435 174 }
duke@435 175 return lgrp_spaces()->at(i)->space()->capacity_in_bytes();
duke@435 176 }
duke@435 177
brutisso@6376 178 size_t MutableNUMASpace::tlab_used(Thread *thr) const {
brutisso@6376 179 // Please see the comments for tlab_capacity().
brutisso@6376 180 guarantee(thr != NULL, "No thread");
brutisso@6376 181 int lgrp_id = thr->lgrp_id();
brutisso@6376 182 if (lgrp_id == -1) {
brutisso@6376 183 if (lgrp_spaces()->length() > 0) {
brutisso@6376 184 return (used_in_bytes()) / lgrp_spaces()->length();
brutisso@6376 185 } else {
brutisso@6376 186 assert(false, "There should be at least one locality group");
brutisso@6376 187 return 0;
brutisso@6376 188 }
brutisso@6376 189 }
brutisso@6376 190 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
brutisso@6376 191 if (i == -1) {
brutisso@6376 192 return 0;
brutisso@6376 193 }
brutisso@6376 194 return lgrp_spaces()->at(i)->space()->used_in_bytes();
brutisso@6376 195 }
brutisso@6376 196
brutisso@6376 197
duke@435 198 size_t MutableNUMASpace::unsafe_max_tlab_alloc(Thread *thr) const {
iveresov@703 199 // Please see the comments for tlab_capacity().
duke@435 200 guarantee(thr != NULL, "No thread");
duke@435 201 int lgrp_id = thr->lgrp_id();
iveresov@703 202 if (lgrp_id == -1) {
iveresov@703 203 if (lgrp_spaces()->length() > 0) {
iveresov@703 204 return free_in_bytes() / lgrp_spaces()->length();
iveresov@703 205 } else {
iveresov@703 206 assert(false, "There should be at least one locality group");
iveresov@703 207 return 0;
iveresov@703 208 }
iveresov@703 209 }
duke@435 210 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
duke@435 211 if (i == -1) {
duke@435 212 return 0;
duke@435 213 }
duke@435 214 return lgrp_spaces()->at(i)->space()->free_in_bytes();
duke@435 215 }
duke@435 216
iveresov@808 217
iveresov@808 218 size_t MutableNUMASpace::capacity_in_words(Thread* thr) const {
iveresov@808 219 guarantee(thr != NULL, "No thread");
iveresov@808 220 int lgrp_id = thr->lgrp_id();
iveresov@808 221 if (lgrp_id == -1) {
iveresov@808 222 if (lgrp_spaces()->length() > 0) {
iveresov@808 223 return capacity_in_words() / lgrp_spaces()->length();
iveresov@808 224 } else {
iveresov@808 225 assert(false, "There should be at least one locality group");
iveresov@808 226 return 0;
iveresov@808 227 }
iveresov@808 228 }
iveresov@808 229 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
iveresov@808 230 if (i == -1) {
iveresov@808 231 return 0;
iveresov@808 232 }
iveresov@808 233 return lgrp_spaces()->at(i)->space()->capacity_in_words();
iveresov@808 234 }
iveresov@808 235
duke@435 236 // Check if the NUMA topology has changed. Add and remove spaces if needed.
duke@435 237 // The update can be forced by setting the force parameter equal to true.
duke@435 238 bool MutableNUMASpace::update_layout(bool force) {
duke@435 239 // Check if the topology had changed.
duke@435 240 bool changed = os::numa_topology_changed();
duke@435 241 if (force || changed) {
duke@435 242 // Compute lgrp intersection. Add/remove spaces.
duke@435 243 int lgrp_limit = (int)os::numa_get_groups_num();
zgu@3900 244 int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtGC);
duke@435 245 int lgrp_num = (int)os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
duke@435 246 assert(lgrp_num > 0, "There should be at least one locality group");
duke@435 247 // Add new spaces for the new nodes
duke@435 248 for (int i = 0; i < lgrp_num; i++) {
duke@435 249 bool found = false;
duke@435 250 for (int j = 0; j < lgrp_spaces()->length(); j++) {
duke@435 251 if (lgrp_spaces()->at(j)->lgrp_id() == lgrp_ids[i]) {
duke@435 252 found = true;
duke@435 253 break;
duke@435 254 }
duke@435 255 }
duke@435 256 if (!found) {
iveresov@970 257 lgrp_spaces()->append(new LGRPSpace(lgrp_ids[i], alignment()));
duke@435 258 }
duke@435 259 }
duke@435 260
duke@435 261 // Remove spaces for the removed nodes.
duke@435 262 for (int i = 0; i < lgrp_spaces()->length();) {
duke@435 263 bool found = false;
duke@435 264 for (int j = 0; j < lgrp_num; j++) {
duke@435 265 if (lgrp_spaces()->at(i)->lgrp_id() == lgrp_ids[j]) {
duke@435 266 found = true;
duke@435 267 break;
duke@435 268 }
duke@435 269 }
duke@435 270 if (!found) {
duke@435 271 delete lgrp_spaces()->at(i);
duke@435 272 lgrp_spaces()->remove_at(i);
duke@435 273 } else {
duke@435 274 i++;
duke@435 275 }
duke@435 276 }
duke@435 277
zgu@3900 278 FREE_C_HEAP_ARRAY(int, lgrp_ids, mtGC);
duke@435 279
duke@435 280 if (changed) {
duke@435 281 for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
duke@435 282 thread->set_lgrp_id(-1);
duke@435 283 }
duke@435 284 }
duke@435 285 return true;
duke@435 286 }
duke@435 287 return false;
duke@435 288 }
duke@435 289
duke@435 290 // Bias region towards the first-touching lgrp. Set the right page sizes.
iveresov@576 291 void MutableNUMASpace::bias_region(MemRegion mr, int lgrp_id) {
duke@435 292 HeapWord *start = (HeapWord*)round_to((intptr_t)mr.start(), page_size());
duke@435 293 HeapWord *end = (HeapWord*)round_down((intptr_t)mr.end(), page_size());
duke@435 294 if (end > start) {
duke@435 295 MemRegion aligned_region(start, end);
duke@435 296 assert((intptr_t)aligned_region.start() % page_size() == 0 &&
duke@435 297 (intptr_t)aligned_region.byte_size() % page_size() == 0, "Bad alignment");
duke@435 298 assert(region().contains(aligned_region), "Sanity");
iveresov@576 299 // First we tell the OS which page size we want in the given range. The underlying
iveresov@576 300 // large page can be broken down if we require small pages.
iveresov@576 301 os::realign_memory((char*)aligned_region.start(), aligned_region.byte_size(), page_size());
iveresov@576 302 // Then we uncommit the pages in the range.
iveresov@3363 303 os::free_memory((char*)aligned_region.start(), aligned_region.byte_size(), page_size());
iveresov@576 304 // And make them local/first-touch biased.
iveresov@576 305 os::numa_make_local((char*)aligned_region.start(), aligned_region.byte_size(), lgrp_id);
duke@435 306 }
duke@435 307 }
duke@435 308
duke@435 309 // Free all pages in the region.
duke@435 310 void MutableNUMASpace::free_region(MemRegion mr) {
duke@435 311 HeapWord *start = (HeapWord*)round_to((intptr_t)mr.start(), page_size());
duke@435 312 HeapWord *end = (HeapWord*)round_down((intptr_t)mr.end(), page_size());
duke@435 313 if (end > start) {
duke@435 314 MemRegion aligned_region(start, end);
duke@435 315 assert((intptr_t)aligned_region.start() % page_size() == 0 &&
duke@435 316 (intptr_t)aligned_region.byte_size() % page_size() == 0, "Bad alignment");
duke@435 317 assert(region().contains(aligned_region), "Sanity");
iveresov@3363 318 os::free_memory((char*)aligned_region.start(), aligned_region.byte_size(), page_size());
duke@435 319 }
duke@435 320 }
duke@435 321
duke@435 322 // Update space layout. Perform adaptation.
duke@435 323 void MutableNUMASpace::update() {
duke@435 324 if (update_layout(false)) {
duke@435 325 // If the topology has changed, make all chunks zero-sized.
iveresov@703 326 // And clear the alloc-rate statistics.
iveresov@703 327 // In future we may want to handle this more gracefully in order
iveresov@703 328 // to avoid the reallocation of the pages as much as possible.
duke@435 329 for (int i = 0; i < lgrp_spaces()->length(); i++) {
iveresov@703 330 LGRPSpace *ls = lgrp_spaces()->at(i);
iveresov@703 331 MutableSpace *s = ls->space();
duke@435 332 s->set_end(s->bottom());
duke@435 333 s->set_top(s->bottom());
iveresov@703 334 ls->clear_alloc_rate();
duke@435 335 }
jmasa@698 336 // A NUMA space is never mangled
jmasa@698 337 initialize(region(),
jmasa@698 338 SpaceDecorator::Clear,
jmasa@698 339 SpaceDecorator::DontMangle);
duke@435 340 } else {
duke@435 341 bool should_initialize = false;
iveresov@576 342 if (!os::numa_has_static_binding()) {
iveresov@576 343 for (int i = 0; i < lgrp_spaces()->length(); i++) {
iveresov@576 344 if (!lgrp_spaces()->at(i)->invalid_region().is_empty()) {
iveresov@576 345 should_initialize = true;
iveresov@576 346 break;
iveresov@576 347 }
duke@435 348 }
duke@435 349 }
duke@435 350
duke@435 351 if (should_initialize ||
duke@435 352 (UseAdaptiveNUMAChunkSizing && adaptation_cycles() < samples_count())) {
jmasa@698 353 // A NUMA space is never mangled
jmasa@698 354 initialize(region(),
jmasa@698 355 SpaceDecorator::Clear,
jmasa@698 356 SpaceDecorator::DontMangle);
duke@435 357 }
duke@435 358 }
duke@435 359
duke@435 360 if (NUMAStats) {
duke@435 361 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 362 lgrp_spaces()->at(i)->accumulate_statistics(page_size());
duke@435 363 }
duke@435 364 }
duke@435 365
duke@435 366 scan_pages(NUMAPageScanRate);
duke@435 367 }
duke@435 368
duke@435 369 // Scan pages. Free pages that have smaller size or wrong placement.
duke@435 370 void MutableNUMASpace::scan_pages(size_t page_count)
duke@435 371 {
duke@435 372 size_t pages_per_chunk = page_count / lgrp_spaces()->length();
duke@435 373 if (pages_per_chunk > 0) {
duke@435 374 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 375 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 376 ls->scan_pages(page_size(), pages_per_chunk);
duke@435 377 }
duke@435 378 }
duke@435 379 }
duke@435 380
duke@435 381 // Accumulate statistics about the allocation rate of each lgrp.
duke@435 382 void MutableNUMASpace::accumulate_statistics() {
duke@435 383 if (UseAdaptiveNUMAChunkSizing) {
duke@435 384 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 385 lgrp_spaces()->at(i)->sample();
duke@435 386 }
duke@435 387 increment_samples_count();
duke@435 388 }
duke@435 389
duke@435 390 if (NUMAStats) {
duke@435 391 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 392 lgrp_spaces()->at(i)->accumulate_statistics(page_size());
duke@435 393 }
duke@435 394 }
duke@435 395 }
duke@435 396
duke@435 397 // Get the current size of a chunk.
duke@435 398 // This function computes the size of the chunk based on the
duke@435 399 // difference between chunk ends. This allows it to work correctly in
duke@435 400 // case the whole space is resized and during the process of adaptive
duke@435 401 // chunk resizing.
duke@435 402 size_t MutableNUMASpace::current_chunk_size(int i) {
duke@435 403 HeapWord *cur_end, *prev_end;
duke@435 404 if (i == 0) {
duke@435 405 prev_end = bottom();
duke@435 406 } else {
duke@435 407 prev_end = lgrp_spaces()->at(i - 1)->space()->end();
duke@435 408 }
duke@435 409 if (i == lgrp_spaces()->length() - 1) {
duke@435 410 cur_end = end();
duke@435 411 } else {
duke@435 412 cur_end = lgrp_spaces()->at(i)->space()->end();
duke@435 413 }
duke@435 414 if (cur_end > prev_end) {
duke@435 415 return pointer_delta(cur_end, prev_end, sizeof(char));
duke@435 416 }
duke@435 417 return 0;
duke@435 418 }
duke@435 419
duke@435 420 // Return the default chunk size by equally diving the space.
duke@435 421 // page_size() aligned.
duke@435 422 size_t MutableNUMASpace::default_chunk_size() {
duke@435 423 return base_space_size() / lgrp_spaces()->length() * page_size();
duke@435 424 }
duke@435 425
duke@435 426 // Produce a new chunk size. page_size() aligned.
iveresov@826 427 // This function is expected to be called on sequence of i's from 0 to
iveresov@826 428 // lgrp_spaces()->length().
duke@435 429 size_t MutableNUMASpace::adaptive_chunk_size(int i, size_t limit) {
duke@435 430 size_t pages_available = base_space_size();
duke@435 431 for (int j = 0; j < i; j++) {
duke@435 432 pages_available -= round_down(current_chunk_size(j), page_size()) / page_size();
duke@435 433 }
duke@435 434 pages_available -= lgrp_spaces()->length() - i - 1;
duke@435 435 assert(pages_available > 0, "No pages left");
duke@435 436 float alloc_rate = 0;
duke@435 437 for (int j = i; j < lgrp_spaces()->length(); j++) {
duke@435 438 alloc_rate += lgrp_spaces()->at(j)->alloc_rate()->average();
duke@435 439 }
duke@435 440 size_t chunk_size = 0;
duke@435 441 if (alloc_rate > 0) {
duke@435 442 LGRPSpace *ls = lgrp_spaces()->at(i);
iveresov@826 443 chunk_size = (size_t)(ls->alloc_rate()->average() / alloc_rate * pages_available) * page_size();
duke@435 444 }
duke@435 445 chunk_size = MAX2(chunk_size, page_size());
duke@435 446
duke@435 447 if (limit > 0) {
duke@435 448 limit = round_down(limit, page_size());
duke@435 449 if (chunk_size > current_chunk_size(i)) {
iveresov@897 450 size_t upper_bound = pages_available * page_size();
iveresov@897 451 if (upper_bound > limit &&
iveresov@897 452 current_chunk_size(i) < upper_bound - limit) {
iveresov@897 453 // The resulting upper bound should not exceed the available
iveresov@897 454 // amount of memory (pages_available * page_size()).
iveresov@897 455 upper_bound = current_chunk_size(i) + limit;
iveresov@897 456 }
iveresov@897 457 chunk_size = MIN2(chunk_size, upper_bound);
duke@435 458 } else {
iveresov@897 459 size_t lower_bound = page_size();
iveresov@897 460 if (current_chunk_size(i) > limit) { // lower_bound shouldn't underflow.
iveresov@897 461 lower_bound = current_chunk_size(i) - limit;
iveresov@897 462 }
iveresov@897 463 chunk_size = MAX2(chunk_size, lower_bound);
duke@435 464 }
duke@435 465 }
duke@435 466 assert(chunk_size <= pages_available * page_size(), "Chunk size out of range");
duke@435 467 return chunk_size;
duke@435 468 }
duke@435 469
duke@435 470
duke@435 471 // Return the bottom_region and the top_region. Align them to page_size() boundary.
duke@435 472 // |------------------new_region---------------------------------|
duke@435 473 // |----bottom_region--|---intersection---|------top_region------|
duke@435 474 void MutableNUMASpace::select_tails(MemRegion new_region, MemRegion intersection,
duke@435 475 MemRegion* bottom_region, MemRegion *top_region) {
duke@435 476 // Is there bottom?
duke@435 477 if (new_region.start() < intersection.start()) { // Yes
duke@435 478 // Try to coalesce small pages into a large one.
iveresov@970 479 if (UseLargePages && page_size() >= alignment()) {
iveresov@970 480 HeapWord* p = (HeapWord*)round_to((intptr_t) intersection.start(), alignment());
duke@435 481 if (new_region.contains(p)
iveresov@970 482 && pointer_delta(p, new_region.start(), sizeof(char)) >= alignment()) {
duke@435 483 if (intersection.contains(p)) {
duke@435 484 intersection = MemRegion(p, intersection.end());
duke@435 485 } else {
duke@435 486 intersection = MemRegion(p, p);
duke@435 487 }
duke@435 488 }
duke@435 489 }
duke@435 490 *bottom_region = MemRegion(new_region.start(), intersection.start());
duke@435 491 } else {
duke@435 492 *bottom_region = MemRegion();
duke@435 493 }
duke@435 494
duke@435 495 // Is there top?
duke@435 496 if (intersection.end() < new_region.end()) { // Yes
duke@435 497 // Try to coalesce small pages into a large one.
iveresov@970 498 if (UseLargePages && page_size() >= alignment()) {
iveresov@970 499 HeapWord* p = (HeapWord*)round_down((intptr_t) intersection.end(), alignment());
duke@435 500 if (new_region.contains(p)
iveresov@970 501 && pointer_delta(new_region.end(), p, sizeof(char)) >= alignment()) {
duke@435 502 if (intersection.contains(p)) {
duke@435 503 intersection = MemRegion(intersection.start(), p);
duke@435 504 } else {
duke@435 505 intersection = MemRegion(p, p);
duke@435 506 }
duke@435 507 }
duke@435 508 }
duke@435 509 *top_region = MemRegion(intersection.end(), new_region.end());
duke@435 510 } else {
duke@435 511 *top_region = MemRegion();
duke@435 512 }
duke@435 513 }
duke@435 514
duke@435 515 // Try to merge the invalid region with the bottom or top region by decreasing
duke@435 516 // the intersection area. Return the invalid_region aligned to the page_size()
duke@435 517 // boundary if it's inside the intersection. Return non-empty invalid_region
duke@435 518 // if it lies inside the intersection (also page-aligned).
duke@435 519 // |------------------new_region---------------------------------|
duke@435 520 // |----------------|-------invalid---|--------------------------|
duke@435 521 // |----bottom_region--|---intersection---|------top_region------|
duke@435 522 void MutableNUMASpace::merge_regions(MemRegion new_region, MemRegion* intersection,
duke@435 523 MemRegion *invalid_region) {
duke@435 524 if (intersection->start() >= invalid_region->start() && intersection->contains(invalid_region->end())) {
duke@435 525 *intersection = MemRegion(invalid_region->end(), intersection->end());
duke@435 526 *invalid_region = MemRegion();
duke@435 527 } else
duke@435 528 if (intersection->end() <= invalid_region->end() && intersection->contains(invalid_region->start())) {
duke@435 529 *intersection = MemRegion(intersection->start(), invalid_region->start());
duke@435 530 *invalid_region = MemRegion();
duke@435 531 } else
duke@435 532 if (intersection->equals(*invalid_region) || invalid_region->contains(*intersection)) {
duke@435 533 *intersection = MemRegion(new_region.start(), new_region.start());
duke@435 534 *invalid_region = MemRegion();
duke@435 535 } else
duke@435 536 if (intersection->contains(invalid_region)) {
duke@435 537 // That's the only case we have to make an additional bias_region() call.
duke@435 538 HeapWord* start = invalid_region->start();
duke@435 539 HeapWord* end = invalid_region->end();
iveresov@970 540 if (UseLargePages && page_size() >= alignment()) {
iveresov@970 541 HeapWord *p = (HeapWord*)round_down((intptr_t) start, alignment());
duke@435 542 if (new_region.contains(p)) {
duke@435 543 start = p;
duke@435 544 }
iveresov@970 545 p = (HeapWord*)round_to((intptr_t) end, alignment());
duke@435 546 if (new_region.contains(end)) {
duke@435 547 end = p;
duke@435 548 }
duke@435 549 }
duke@435 550 if (intersection->start() > start) {
duke@435 551 *intersection = MemRegion(start, intersection->end());
duke@435 552 }
duke@435 553 if (intersection->end() < end) {
duke@435 554 *intersection = MemRegion(intersection->start(), end);
duke@435 555 }
duke@435 556 *invalid_region = MemRegion(start, end);
duke@435 557 }
duke@435 558 }
duke@435 559
jmasa@698 560 void MutableNUMASpace::initialize(MemRegion mr,
jmasa@698 561 bool clear_space,
iveresov@970 562 bool mangle_space,
iveresov@970 563 bool setup_pages) {
duke@435 564 assert(clear_space, "Reallocation will destory data!");
duke@435 565 assert(lgrp_spaces()->length() > 0, "There should be at least one space");
duke@435 566
duke@435 567 MemRegion old_region = region(), new_region;
duke@435 568 set_bottom(mr.start());
duke@435 569 set_end(mr.end());
jmasa@698 570 // Must always clear the space
jmasa@698 571 clear(SpaceDecorator::DontMangle);
duke@435 572
duke@435 573 // Compute chunk sizes
duke@435 574 size_t prev_page_size = page_size();
iveresov@970 575 set_page_size(UseLargePages ? alignment() : os::vm_page_size());
duke@435 576 HeapWord* rounded_bottom = (HeapWord*)round_to((intptr_t) bottom(), page_size());
duke@435 577 HeapWord* rounded_end = (HeapWord*)round_down((intptr_t) end(), page_size());
duke@435 578 size_t base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size();
duke@435 579
duke@435 580 // Try small pages if the chunk size is too small
duke@435 581 if (base_space_size_pages / lgrp_spaces()->length() == 0
duke@435 582 && page_size() > (size_t)os::vm_page_size()) {
duke@435 583 set_page_size(os::vm_page_size());
duke@435 584 rounded_bottom = (HeapWord*)round_to((intptr_t) bottom(), page_size());
duke@435 585 rounded_end = (HeapWord*)round_down((intptr_t) end(), page_size());
duke@435 586 base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size();
duke@435 587 }
duke@435 588 guarantee(base_space_size_pages / lgrp_spaces()->length() > 0, "Space too small");
duke@435 589 set_base_space_size(base_space_size_pages);
duke@435 590
duke@435 591 // Handle space resize
duke@435 592 MemRegion top_region, bottom_region;
duke@435 593 if (!old_region.equals(region())) {
duke@435 594 new_region = MemRegion(rounded_bottom, rounded_end);
duke@435 595 MemRegion intersection = new_region.intersection(old_region);
duke@435 596 if (intersection.start() == NULL ||
duke@435 597 intersection.end() == NULL ||
duke@435 598 prev_page_size > page_size()) { // If the page size got smaller we have to change
duke@435 599 // the page size preference for the whole space.
duke@435 600 intersection = MemRegion(new_region.start(), new_region.start());
duke@435 601 }
duke@435 602 select_tails(new_region, intersection, &bottom_region, &top_region);
iveresov@576 603 bias_region(bottom_region, lgrp_spaces()->at(0)->lgrp_id());
iveresov@576 604 bias_region(top_region, lgrp_spaces()->at(lgrp_spaces()->length() - 1)->lgrp_id());
duke@435 605 }
duke@435 606
duke@435 607 // Check if the space layout has changed significantly?
duke@435 608 // This happens when the space has been resized so that either head or tail
duke@435 609 // chunk became less than a page.
duke@435 610 bool layout_valid = UseAdaptiveNUMAChunkSizing &&
duke@435 611 current_chunk_size(0) > page_size() &&
duke@435 612 current_chunk_size(lgrp_spaces()->length() - 1) > page_size();
duke@435 613
duke@435 614
duke@435 615 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 616 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 617 MutableSpace *s = ls->space();
duke@435 618 old_region = s->region();
duke@435 619
duke@435 620 size_t chunk_byte_size = 0, old_chunk_byte_size = 0;
duke@435 621 if (i < lgrp_spaces()->length() - 1) {
duke@435 622 if (!UseAdaptiveNUMAChunkSizing ||
duke@435 623 (UseAdaptiveNUMAChunkSizing && NUMAChunkResizeWeight == 0) ||
duke@435 624 samples_count() < AdaptiveSizePolicyReadyThreshold) {
duke@435 625 // No adaptation. Divide the space equally.
duke@435 626 chunk_byte_size = default_chunk_size();
duke@435 627 } else
duke@435 628 if (!layout_valid || NUMASpaceResizeRate == 0) {
duke@435 629 // Fast adaptation. If no space resize rate is set, resize
duke@435 630 // the chunks instantly.
duke@435 631 chunk_byte_size = adaptive_chunk_size(i, 0);
duke@435 632 } else {
duke@435 633 // Slow adaptation. Resize the chunks moving no more than
duke@435 634 // NUMASpaceResizeRate bytes per collection.
duke@435 635 size_t limit = NUMASpaceResizeRate /
duke@435 636 (lgrp_spaces()->length() * (lgrp_spaces()->length() + 1) / 2);
duke@435 637 chunk_byte_size = adaptive_chunk_size(i, MAX2(limit * (i + 1), page_size()));
duke@435 638 }
duke@435 639
duke@435 640 assert(chunk_byte_size >= page_size(), "Chunk size too small");
duke@435 641 assert(chunk_byte_size <= capacity_in_bytes(), "Sanity check");
duke@435 642 }
duke@435 643
duke@435 644 if (i == 0) { // Bottom chunk
duke@435 645 if (i != lgrp_spaces()->length() - 1) {
duke@435 646 new_region = MemRegion(bottom(), rounded_bottom + (chunk_byte_size >> LogHeapWordSize));
duke@435 647 } else {
duke@435 648 new_region = MemRegion(bottom(), end());
duke@435 649 }
duke@435 650 } else
duke@435 651 if (i < lgrp_spaces()->length() - 1) { // Middle chunks
duke@435 652 MutableSpace *ps = lgrp_spaces()->at(i - 1)->space();
duke@435 653 new_region = MemRegion(ps->end(),
duke@435 654 ps->end() + (chunk_byte_size >> LogHeapWordSize));
duke@435 655 } else { // Top chunk
duke@435 656 MutableSpace *ps = lgrp_spaces()->at(i - 1)->space();
duke@435 657 new_region = MemRegion(ps->end(), end());
duke@435 658 }
duke@435 659 guarantee(region().contains(new_region), "Region invariant");
duke@435 660
duke@435 661
duke@435 662 // The general case:
duke@435 663 // |---------------------|--invalid---|--------------------------|
duke@435 664 // |------------------new_region---------------------------------|
duke@435 665 // |----bottom_region--|---intersection---|------top_region------|
duke@435 666 // |----old_region----|
duke@435 667 // The intersection part has all pages in place we don't need to migrate them.
duke@435 668 // Pages for the top and bottom part should be freed and then reallocated.
duke@435 669
duke@435 670 MemRegion intersection = old_region.intersection(new_region);
duke@435 671
duke@435 672 if (intersection.start() == NULL || intersection.end() == NULL) {
duke@435 673 intersection = MemRegion(new_region.start(), new_region.start());
duke@435 674 }
duke@435 675
iveresov@576 676 if (!os::numa_has_static_binding()) {
iveresov@576 677 MemRegion invalid_region = ls->invalid_region().intersection(new_region);
iveresov@576 678 // Invalid region is a range of memory that could've possibly
iveresov@576 679 // been allocated on the other node. That's relevant only on Solaris where
iveresov@576 680 // there is no static memory binding.
iveresov@576 681 if (!invalid_region.is_empty()) {
iveresov@576 682 merge_regions(new_region, &intersection, &invalid_region);
iveresov@576 683 free_region(invalid_region);
iveresov@576 684 ls->set_invalid_region(MemRegion());
iveresov@576 685 }
duke@435 686 }
iveresov@576 687
duke@435 688 select_tails(new_region, intersection, &bottom_region, &top_region);
iveresov@576 689
iveresov@576 690 if (!os::numa_has_static_binding()) {
iveresov@576 691 // If that's a system with the first-touch policy then it's enough
iveresov@576 692 // to free the pages.
iveresov@576 693 free_region(bottom_region);
iveresov@576 694 free_region(top_region);
iveresov@576 695 } else {
iveresov@576 696 // In a system with static binding we have to change the bias whenever
iveresov@576 697 // we reshape the heap.
iveresov@576 698 bias_region(bottom_region, ls->lgrp_id());
iveresov@576 699 bias_region(top_region, ls->lgrp_id());
iveresov@576 700 }
duke@435 701
jmasa@698 702 // Clear space (set top = bottom) but never mangle.
iveresov@970 703 s->initialize(new_region, SpaceDecorator::Clear, SpaceDecorator::DontMangle, MutableSpace::DontSetupPages);
duke@435 704
duke@435 705 set_adaptation_cycles(samples_count());
duke@435 706 }
duke@435 707 }
duke@435 708
duke@435 709 // Set the top of the whole space.
duke@435 710 // Mark the the holes in chunks below the top() as invalid.
duke@435 711 void MutableNUMASpace::set_top(HeapWord* value) {
duke@435 712 bool found_top = false;
iveresov@625 713 for (int i = 0; i < lgrp_spaces()->length();) {
duke@435 714 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 715 MutableSpace *s = ls->space();
duke@435 716 HeapWord *top = MAX2((HeapWord*)round_down((intptr_t)s->top(), page_size()), s->bottom());
duke@435 717
duke@435 718 if (s->contains(value)) {
iveresov@625 719 // Check if setting the chunk's top to a given value would create a hole less than
iveresov@625 720 // a minimal object; assuming that's not the last chunk in which case we don't care.
iveresov@625 721 if (i < lgrp_spaces()->length() - 1) {
iveresov@625 722 size_t remainder = pointer_delta(s->end(), value);
jcoomes@916 723 const size_t min_fill_size = CollectedHeap::min_fill_size();
jcoomes@916 724 if (remainder < min_fill_size && remainder > 0) {
jcoomes@916 725 // Add a minimum size filler object; it will cross the chunk boundary.
jcoomes@916 726 CollectedHeap::fill_with_object(value, min_fill_size);
jcoomes@916 727 value += min_fill_size;
iveresov@625 728 assert(!s->contains(value), "Should be in the next chunk");
iveresov@625 729 // Restart the loop from the same chunk, since the value has moved
iveresov@625 730 // to the next one.
iveresov@625 731 continue;
iveresov@625 732 }
iveresov@625 733 }
iveresov@625 734
iveresov@576 735 if (!os::numa_has_static_binding() && top < value && top < s->end()) {
duke@435 736 ls->add_invalid_region(MemRegion(top, value));
duke@435 737 }
duke@435 738 s->set_top(value);
duke@435 739 found_top = true;
duke@435 740 } else {
duke@435 741 if (found_top) {
duke@435 742 s->set_top(s->bottom());
duke@435 743 } else {
iveresov@576 744 if (!os::numa_has_static_binding() && top < s->end()) {
iveresov@576 745 ls->add_invalid_region(MemRegion(top, s->end()));
iveresov@576 746 }
iveresov@576 747 s->set_top(s->end());
duke@435 748 }
duke@435 749 }
iveresov@625 750 i++;
duke@435 751 }
duke@435 752 MutableSpace::set_top(value);
duke@435 753 }
duke@435 754
jmasa@698 755 void MutableNUMASpace::clear(bool mangle_space) {
duke@435 756 MutableSpace::set_top(bottom());
duke@435 757 for (int i = 0; i < lgrp_spaces()->length(); i++) {
jmasa@698 758 // Never mangle NUMA spaces because the mangling will
jmasa@698 759 // bind the memory to a possibly unwanted lgroup.
jmasa@698 760 lgrp_spaces()->at(i)->space()->clear(SpaceDecorator::DontMangle);
duke@435 761 }
duke@435 762 }
duke@435 763
iveresov@576 764 /*
iveresov@576 765 Linux supports static memory binding, therefore the most part of the
iveresov@576 766 logic dealing with the possible invalid page allocation is effectively
iveresov@576 767 disabled. Besides there is no notion of the home node in Linux. A
iveresov@576 768 thread is allowed to migrate freely. Although the scheduler is rather
iveresov@576 769 reluctant to move threads between the nodes. We check for the current
iveresov@576 770 node every allocation. And with a high probability a thread stays on
iveresov@576 771 the same node for some time allowing local access to recently allocated
iveresov@576 772 objects.
iveresov@576 773 */
iveresov@576 774
duke@435 775 HeapWord* MutableNUMASpace::allocate(size_t size) {
iveresov@576 776 Thread* thr = Thread::current();
iveresov@576 777 int lgrp_id = thr->lgrp_id();
iveresov@576 778 if (lgrp_id == -1 || !os::numa_has_group_homing()) {
duke@435 779 lgrp_id = os::numa_get_group_id();
iveresov@576 780 thr->set_lgrp_id(lgrp_id);
duke@435 781 }
duke@435 782
duke@435 783 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
duke@435 784
duke@435 785 // It is possible that a new CPU has been hotplugged and
duke@435 786 // we haven't reshaped the space accordingly.
duke@435 787 if (i == -1) {
duke@435 788 i = os::random() % lgrp_spaces()->length();
duke@435 789 }
duke@435 790
iveresov@808 791 LGRPSpace* ls = lgrp_spaces()->at(i);
iveresov@808 792 MutableSpace *s = ls->space();
duke@435 793 HeapWord *p = s->allocate(size);
duke@435 794
iveresov@579 795 if (p != NULL) {
iveresov@579 796 size_t remainder = s->free_in_words();
kvn@1926 797 if (remainder < CollectedHeap::min_fill_size() && remainder > 0) {
iveresov@579 798 s->set_top(s->top() - size);
iveresov@579 799 p = NULL;
iveresov@579 800 }
duke@435 801 }
duke@435 802 if (p != NULL) {
duke@435 803 if (top() < s->top()) { // Keep _top updated.
duke@435 804 MutableSpace::set_top(s->top());
duke@435 805 }
duke@435 806 }
iveresov@576 807 // Make the page allocation happen here if there is no static binding..
iveresov@576 808 if (p != NULL && !os::numa_has_static_binding()) {
duke@435 809 for (HeapWord *i = p; i < p + size; i += os::vm_page_size() >> LogHeapWordSize) {
duke@435 810 *(int*)i = 0;
duke@435 811 }
duke@435 812 }
iveresov@808 813 if (p == NULL) {
iveresov@808 814 ls->set_allocation_failed();
iveresov@808 815 }
duke@435 816 return p;
duke@435 817 }
duke@435 818
duke@435 819 // This version is lock-free.
duke@435 820 HeapWord* MutableNUMASpace::cas_allocate(size_t size) {
iveresov@576 821 Thread* thr = Thread::current();
iveresov@576 822 int lgrp_id = thr->lgrp_id();
iveresov@576 823 if (lgrp_id == -1 || !os::numa_has_group_homing()) {
duke@435 824 lgrp_id = os::numa_get_group_id();
iveresov@576 825 thr->set_lgrp_id(lgrp_id);
duke@435 826 }
duke@435 827
duke@435 828 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
duke@435 829 // It is possible that a new CPU has been hotplugged and
duke@435 830 // we haven't reshaped the space accordingly.
duke@435 831 if (i == -1) {
duke@435 832 i = os::random() % lgrp_spaces()->length();
duke@435 833 }
iveresov@808 834 LGRPSpace *ls = lgrp_spaces()->at(i);
iveresov@808 835 MutableSpace *s = ls->space();
duke@435 836 HeapWord *p = s->cas_allocate(size);
iveresov@579 837 if (p != NULL) {
iveresov@625 838 size_t remainder = pointer_delta(s->end(), p + size);
kvn@1926 839 if (remainder < CollectedHeap::min_fill_size() && remainder > 0) {
iveresov@579 840 if (s->cas_deallocate(p, size)) {
iveresov@579 841 // We were the last to allocate and created a fragment less than
iveresov@579 842 // a minimal object.
iveresov@579 843 p = NULL;
iveresov@625 844 } else {
iveresov@625 845 guarantee(false, "Deallocation should always succeed");
iveresov@579 846 }
duke@435 847 }
duke@435 848 }
duke@435 849 if (p != NULL) {
duke@435 850 HeapWord* cur_top, *cur_chunk_top = p + size;
duke@435 851 while ((cur_top = top()) < cur_chunk_top) { // Keep _top updated.
duke@435 852 if (Atomic::cmpxchg_ptr(cur_chunk_top, top_addr(), cur_top) == cur_top) {
duke@435 853 break;
duke@435 854 }
duke@435 855 }
duke@435 856 }
duke@435 857
iveresov@576 858 // Make the page allocation happen here if there is no static binding.
iveresov@576 859 if (p != NULL && !os::numa_has_static_binding() ) {
duke@435 860 for (HeapWord *i = p; i < p + size; i += os::vm_page_size() >> LogHeapWordSize) {
duke@435 861 *(int*)i = 0;
duke@435 862 }
duke@435 863 }
iveresov@808 864 if (p == NULL) {
iveresov@808 865 ls->set_allocation_failed();
iveresov@808 866 }
duke@435 867 return p;
duke@435 868 }
duke@435 869
duke@435 870 void MutableNUMASpace::print_short_on(outputStream* st) const {
duke@435 871 MutableSpace::print_short_on(st);
duke@435 872 st->print(" (");
duke@435 873 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 874 st->print("lgrp %d: ", lgrp_spaces()->at(i)->lgrp_id());
duke@435 875 lgrp_spaces()->at(i)->space()->print_short_on(st);
duke@435 876 if (i < lgrp_spaces()->length() - 1) {
duke@435 877 st->print(", ");
duke@435 878 }
duke@435 879 }
duke@435 880 st->print(")");
duke@435 881 }
duke@435 882
duke@435 883 void MutableNUMASpace::print_on(outputStream* st) const {
duke@435 884 MutableSpace::print_on(st);
duke@435 885 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 886 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 887 st->print(" lgrp %d", ls->lgrp_id());
duke@435 888 ls->space()->print_on(st);
duke@435 889 if (NUMAStats) {
iveresov@579 890 for (int i = 0; i < lgrp_spaces()->length(); i++) {
iveresov@579 891 lgrp_spaces()->at(i)->accumulate_statistics(page_size());
iveresov@579 892 }
duke@435 893 st->print(" local/remote/unbiased/uncommitted: %dK/%dK/%dK/%dK, large/small pages: %d/%d\n",
duke@435 894 ls->space_stats()->_local_space / K,
duke@435 895 ls->space_stats()->_remote_space / K,
duke@435 896 ls->space_stats()->_unbiased_space / K,
duke@435 897 ls->space_stats()->_uncommited_space / K,
duke@435 898 ls->space_stats()->_large_pages,
duke@435 899 ls->space_stats()->_small_pages);
duke@435 900 }
duke@435 901 }
duke@435 902 }
duke@435 903
brutisso@3711 904 void MutableNUMASpace::verify() {
iveresov@625 905 // This can be called after setting an arbitary value to the space's top,
iveresov@625 906 // so an object can cross the chunk boundary. We ensure the parsablity
iveresov@625 907 // of the space and just walk the objects in linear fashion.
iveresov@625 908 ensure_parsability();
brutisso@3711 909 MutableSpace::verify();
duke@435 910 }
duke@435 911
duke@435 912 // Scan pages and gather stats about page placement and size.
duke@435 913 void MutableNUMASpace::LGRPSpace::accumulate_statistics(size_t page_size) {
duke@435 914 clear_space_stats();
duke@435 915 char *start = (char*)round_to((intptr_t) space()->bottom(), page_size);
duke@435 916 char* end = (char*)round_down((intptr_t) space()->end(), page_size);
duke@435 917 if (start < end) {
duke@435 918 for (char *p = start; p < end;) {
duke@435 919 os::page_info info;
duke@435 920 if (os::get_page_info(p, &info)) {
duke@435 921 if (info.size > 0) {
duke@435 922 if (info.size > (size_t)os::vm_page_size()) {
duke@435 923 space_stats()->_large_pages++;
duke@435 924 } else {
duke@435 925 space_stats()->_small_pages++;
duke@435 926 }
duke@435 927 if (info.lgrp_id == lgrp_id()) {
duke@435 928 space_stats()->_local_space += info.size;
duke@435 929 } else {
duke@435 930 space_stats()->_remote_space += info.size;
duke@435 931 }
duke@435 932 p += info.size;
duke@435 933 } else {
duke@435 934 p += os::vm_page_size();
duke@435 935 space_stats()->_uncommited_space += os::vm_page_size();
duke@435 936 }
duke@435 937 } else {
duke@435 938 return;
duke@435 939 }
duke@435 940 }
duke@435 941 }
duke@435 942 space_stats()->_unbiased_space = pointer_delta(start, space()->bottom(), sizeof(char)) +
duke@435 943 pointer_delta(space()->end(), end, sizeof(char));
duke@435 944
duke@435 945 }
duke@435 946
duke@435 947 // Scan page_count pages and verify if they have the right size and right placement.
duke@435 948 // If invalid pages are found they are freed in hope that subsequent reallocation
duke@435 949 // will be more successful.
duke@435 950 void MutableNUMASpace::LGRPSpace::scan_pages(size_t page_size, size_t page_count)
duke@435 951 {
duke@435 952 char* range_start = (char*)round_to((intptr_t) space()->bottom(), page_size);
duke@435 953 char* range_end = (char*)round_down((intptr_t) space()->end(), page_size);
duke@435 954
duke@435 955 if (range_start > last_page_scanned() || last_page_scanned() >= range_end) {
duke@435 956 set_last_page_scanned(range_start);
duke@435 957 }
duke@435 958
duke@435 959 char *scan_start = last_page_scanned();
duke@435 960 char* scan_end = MIN2(scan_start + page_size * page_count, range_end);
duke@435 961
duke@435 962 os::page_info page_expected, page_found;
duke@435 963 page_expected.size = page_size;
duke@435 964 page_expected.lgrp_id = lgrp_id();
duke@435 965
duke@435 966 char *s = scan_start;
duke@435 967 while (s < scan_end) {
duke@435 968 char *e = os::scan_pages(s, (char*)scan_end, &page_expected, &page_found);
duke@435 969 if (e == NULL) {
duke@435 970 break;
duke@435 971 }
duke@435 972 if (e != scan_end) {
stefank@4739 973 assert(e < scan_end, err_msg("e: " PTR_FORMAT " scan_end: " PTR_FORMAT, e, scan_end));
stefank@4739 974
duke@435 975 if ((page_expected.size != page_size || page_expected.lgrp_id != lgrp_id())
duke@435 976 && page_expected.size != 0) {
iveresov@3363 977 os::free_memory(s, pointer_delta(e, s, sizeof(char)), page_size);
duke@435 978 }
duke@435 979 page_expected = page_found;
duke@435 980 }
duke@435 981 s = e;
duke@435 982 }
duke@435 983
duke@435 984 set_last_page_scanned(scan_end);
duke@435 985 }

mercurial