src/share/vm/gc_implementation/shared/mutableNUMASpace.cpp

Wed, 09 Jul 2008 15:08:55 -0700

author
jmasa
date
Wed, 09 Jul 2008 15:08:55 -0700
changeset 698
12eea04c8b06
parent 625
d1635bf93939
child 703
d6340ab4105b
permissions
-rw-r--r--

6672698: mangle_unused_area() should not remangle the entire heap at each collection.
Summary: Maintain a high water mark for the allocations in a space and mangle only up to that high water mark.
Reviewed-by: ysr, apetrusenko

duke@435 1
duke@435 2 /*
duke@435 3 * Copyright 2006-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 5 *
duke@435 6 * This code is free software; you can redistribute it and/or modify it
duke@435 7 * under the terms of the GNU General Public License version 2 only, as
duke@435 8 * published by the Free Software Foundation.
duke@435 9 *
duke@435 10 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 13 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 14 * accompanied this code).
duke@435 15 *
duke@435 16 * You should have received a copy of the GNU General Public License version
duke@435 17 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 19 *
duke@435 20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 21 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 22 * have any questions.
duke@435 23 *
duke@435 24 */
duke@435 25
duke@435 26 # include "incls/_precompiled.incl"
duke@435 27 # include "incls/_mutableNUMASpace.cpp.incl"
duke@435 28
duke@435 29
duke@435 30 MutableNUMASpace::MutableNUMASpace() {
duke@435 31 _lgrp_spaces = new (ResourceObj::C_HEAP) GrowableArray<LGRPSpace*>(0, true);
duke@435 32 _page_size = os::vm_page_size();
duke@435 33 _adaptation_cycles = 0;
duke@435 34 _samples_count = 0;
duke@435 35 update_layout(true);
duke@435 36 }
duke@435 37
duke@435 38 MutableNUMASpace::~MutableNUMASpace() {
duke@435 39 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 40 delete lgrp_spaces()->at(i);
duke@435 41 }
duke@435 42 delete lgrp_spaces();
duke@435 43 }
duke@435 44
jmasa@698 45 #ifndef PRODUCT
duke@435 46 void MutableNUMASpace::mangle_unused_area() {
jmasa@698 47 // This method should do nothing.
jmasa@698 48 // It can be called on a numa space during a full compaction.
duke@435 49 }
jmasa@698 50 void MutableNUMASpace::mangle_unused_area_complete() {
jmasa@698 51 // This method should do nothing.
jmasa@698 52 // It can be called on a numa space during a full compaction.
jmasa@698 53 }
jmasa@698 54 void MutableNUMASpace::mangle_region(MemRegion mr) {
jmasa@698 55 // This method should do nothing because numa spaces are not mangled.
jmasa@698 56 }
jmasa@698 57 void MutableNUMASpace::set_top_for_allocations(HeapWord* v) {
jmasa@698 58 assert(false, "Do not mangle MutableNUMASpace's");
jmasa@698 59 }
jmasa@698 60 void MutableNUMASpace::set_top_for_allocations() {
jmasa@698 61 // This method should do nothing.
jmasa@698 62 }
jmasa@698 63 void MutableNUMASpace::check_mangled_unused_area(HeapWord* limit) {
jmasa@698 64 // This method should do nothing.
jmasa@698 65 }
jmasa@698 66 void MutableNUMASpace::check_mangled_unused_area_complete() {
jmasa@698 67 // This method should do nothing.
jmasa@698 68 }
jmasa@698 69 #endif // NOT_PRODUCT
duke@435 70
duke@435 71 // There may be unallocated holes in the middle chunks
duke@435 72 // that should be filled with dead objects to ensure parseability.
duke@435 73 void MutableNUMASpace::ensure_parsability() {
duke@435 74 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 75 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 76 MutableSpace *s = ls->space();
iveresov@579 77 if (s->top() < top()) { // For all spaces preceeding the one containing top()
duke@435 78 if (s->free_in_words() > 0) {
duke@435 79 SharedHeap::fill_region_with_object(MemRegion(s->top(), s->end()));
iveresov@579 80 size_t area_touched_words = pointer_delta(s->end(), s->top());
duke@435 81 #ifndef ASSERT
duke@435 82 if (!ZapUnusedHeapArea) {
duke@435 83 area_touched_words = MIN2((size_t)align_object_size(typeArrayOopDesc::header_size(T_INT)),
duke@435 84 area_touched_words);
duke@435 85 }
duke@435 86 #endif
iveresov@576 87 if (!os::numa_has_static_binding()) {
iveresov@576 88 MemRegion invalid;
iveresov@576 89 HeapWord *crossing_start = (HeapWord*)round_to((intptr_t)s->top(), os::vm_page_size());
iveresov@576 90 HeapWord *crossing_end = (HeapWord*)round_to((intptr_t)(s->top() + area_touched_words),
iveresov@576 91 os::vm_page_size());
iveresov@576 92 if (crossing_start != crossing_end) {
iveresov@576 93 // If object header crossed a small page boundary we mark the area
iveresov@576 94 // as invalid rounding it to a page_size().
iveresov@576 95 HeapWord *start = MAX2((HeapWord*)round_down((intptr_t)s->top(), page_size()), s->bottom());
iveresov@576 96 HeapWord *end = MIN2((HeapWord*)round_to((intptr_t)(s->top() + area_touched_words), page_size()),
iveresov@576 97 s->end());
iveresov@576 98 invalid = MemRegion(start, end);
iveresov@576 99 }
iveresov@576 100
iveresov@576 101 ls->add_invalid_region(invalid);
duke@435 102 }
duke@435 103 }
duke@435 104 } else {
iveresov@576 105 if (!os::numa_has_static_binding()) {
duke@435 106 #ifdef ASSERT
duke@435 107 MemRegion invalid(s->top(), s->end());
duke@435 108 ls->add_invalid_region(invalid);
iveresov@576 109 #else
iveresov@576 110 if (ZapUnusedHeapArea) {
iveresov@576 111 MemRegion invalid(s->top(), s->end());
iveresov@576 112 ls->add_invalid_region(invalid);
iveresov@579 113 } else {
iveresov@579 114 return;
iveresov@579 115 }
duke@435 116 #endif
iveresov@579 117 } else {
iveresov@579 118 return;
iveresov@576 119 }
duke@435 120 }
duke@435 121 }
duke@435 122 }
duke@435 123
duke@435 124 size_t MutableNUMASpace::used_in_words() const {
duke@435 125 size_t s = 0;
duke@435 126 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 127 s += lgrp_spaces()->at(i)->space()->used_in_words();
duke@435 128 }
duke@435 129 return s;
duke@435 130 }
duke@435 131
duke@435 132 size_t MutableNUMASpace::free_in_words() const {
duke@435 133 size_t s = 0;
duke@435 134 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 135 s += lgrp_spaces()->at(i)->space()->free_in_words();
duke@435 136 }
duke@435 137 return s;
duke@435 138 }
duke@435 139
duke@435 140
duke@435 141 size_t MutableNUMASpace::tlab_capacity(Thread *thr) const {
duke@435 142 guarantee(thr != NULL, "No thread");
duke@435 143 int lgrp_id = thr->lgrp_id();
duke@435 144 assert(lgrp_id != -1, "No lgrp_id set");
duke@435 145 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
duke@435 146 if (i == -1) {
duke@435 147 return 0;
duke@435 148 }
duke@435 149 return lgrp_spaces()->at(i)->space()->capacity_in_bytes();
duke@435 150 }
duke@435 151
duke@435 152 size_t MutableNUMASpace::unsafe_max_tlab_alloc(Thread *thr) const {
duke@435 153 guarantee(thr != NULL, "No thread");
duke@435 154 int lgrp_id = thr->lgrp_id();
duke@435 155 assert(lgrp_id != -1, "No lgrp_id set");
duke@435 156 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
duke@435 157 if (i == -1) {
duke@435 158 return 0;
duke@435 159 }
duke@435 160 return lgrp_spaces()->at(i)->space()->free_in_bytes();
duke@435 161 }
duke@435 162
duke@435 163 // Check if the NUMA topology has changed. Add and remove spaces if needed.
duke@435 164 // The update can be forced by setting the force parameter equal to true.
duke@435 165 bool MutableNUMASpace::update_layout(bool force) {
duke@435 166 // Check if the topology had changed.
duke@435 167 bool changed = os::numa_topology_changed();
duke@435 168 if (force || changed) {
duke@435 169 // Compute lgrp intersection. Add/remove spaces.
duke@435 170 int lgrp_limit = (int)os::numa_get_groups_num();
duke@435 171 int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit);
duke@435 172 int lgrp_num = (int)os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
duke@435 173 assert(lgrp_num > 0, "There should be at least one locality group");
duke@435 174 // Add new spaces for the new nodes
duke@435 175 for (int i = 0; i < lgrp_num; i++) {
duke@435 176 bool found = false;
duke@435 177 for (int j = 0; j < lgrp_spaces()->length(); j++) {
duke@435 178 if (lgrp_spaces()->at(j)->lgrp_id() == lgrp_ids[i]) {
duke@435 179 found = true;
duke@435 180 break;
duke@435 181 }
duke@435 182 }
duke@435 183 if (!found) {
duke@435 184 lgrp_spaces()->append(new LGRPSpace(lgrp_ids[i]));
duke@435 185 }
duke@435 186 }
duke@435 187
duke@435 188 // Remove spaces for the removed nodes.
duke@435 189 for (int i = 0; i < lgrp_spaces()->length();) {
duke@435 190 bool found = false;
duke@435 191 for (int j = 0; j < lgrp_num; j++) {
duke@435 192 if (lgrp_spaces()->at(i)->lgrp_id() == lgrp_ids[j]) {
duke@435 193 found = true;
duke@435 194 break;
duke@435 195 }
duke@435 196 }
duke@435 197 if (!found) {
duke@435 198 delete lgrp_spaces()->at(i);
duke@435 199 lgrp_spaces()->remove_at(i);
duke@435 200 } else {
duke@435 201 i++;
duke@435 202 }
duke@435 203 }
duke@435 204
duke@435 205 FREE_C_HEAP_ARRAY(int, lgrp_ids);
duke@435 206
duke@435 207 if (changed) {
duke@435 208 for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
duke@435 209 thread->set_lgrp_id(-1);
duke@435 210 }
duke@435 211 }
duke@435 212 return true;
duke@435 213 }
duke@435 214 return false;
duke@435 215 }
duke@435 216
duke@435 217 // Bias region towards the first-touching lgrp. Set the right page sizes.
iveresov@576 218 void MutableNUMASpace::bias_region(MemRegion mr, int lgrp_id) {
duke@435 219 HeapWord *start = (HeapWord*)round_to((intptr_t)mr.start(), page_size());
duke@435 220 HeapWord *end = (HeapWord*)round_down((intptr_t)mr.end(), page_size());
duke@435 221 if (end > start) {
duke@435 222 MemRegion aligned_region(start, end);
duke@435 223 assert((intptr_t)aligned_region.start() % page_size() == 0 &&
duke@435 224 (intptr_t)aligned_region.byte_size() % page_size() == 0, "Bad alignment");
duke@435 225 assert(region().contains(aligned_region), "Sanity");
iveresov@576 226 // First we tell the OS which page size we want in the given range. The underlying
iveresov@576 227 // large page can be broken down if we require small pages.
iveresov@576 228 os::realign_memory((char*)aligned_region.start(), aligned_region.byte_size(), page_size());
iveresov@576 229 // Then we uncommit the pages in the range.
duke@435 230 os::free_memory((char*)aligned_region.start(), aligned_region.byte_size());
iveresov@576 231 // And make them local/first-touch biased.
iveresov@576 232 os::numa_make_local((char*)aligned_region.start(), aligned_region.byte_size(), lgrp_id);
duke@435 233 }
duke@435 234 }
duke@435 235
duke@435 236 // Free all pages in the region.
duke@435 237 void MutableNUMASpace::free_region(MemRegion mr) {
duke@435 238 HeapWord *start = (HeapWord*)round_to((intptr_t)mr.start(), page_size());
duke@435 239 HeapWord *end = (HeapWord*)round_down((intptr_t)mr.end(), page_size());
duke@435 240 if (end > start) {
duke@435 241 MemRegion aligned_region(start, end);
duke@435 242 assert((intptr_t)aligned_region.start() % page_size() == 0 &&
duke@435 243 (intptr_t)aligned_region.byte_size() % page_size() == 0, "Bad alignment");
duke@435 244 assert(region().contains(aligned_region), "Sanity");
duke@435 245 os::free_memory((char*)aligned_region.start(), aligned_region.byte_size());
duke@435 246 }
duke@435 247 }
duke@435 248
duke@435 249 // Update space layout. Perform adaptation.
duke@435 250 void MutableNUMASpace::update() {
duke@435 251 if (update_layout(false)) {
duke@435 252 // If the topology has changed, make all chunks zero-sized.
duke@435 253 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 254 MutableSpace *s = lgrp_spaces()->at(i)->space();
duke@435 255 s->set_end(s->bottom());
duke@435 256 s->set_top(s->bottom());
duke@435 257 }
jmasa@698 258 // A NUMA space is never mangled
jmasa@698 259 initialize(region(),
jmasa@698 260 SpaceDecorator::Clear,
jmasa@698 261 SpaceDecorator::DontMangle);
duke@435 262 } else {
duke@435 263 bool should_initialize = false;
iveresov@576 264 if (!os::numa_has_static_binding()) {
iveresov@576 265 for (int i = 0; i < lgrp_spaces()->length(); i++) {
iveresov@576 266 if (!lgrp_spaces()->at(i)->invalid_region().is_empty()) {
iveresov@576 267 should_initialize = true;
iveresov@576 268 break;
iveresov@576 269 }
duke@435 270 }
duke@435 271 }
duke@435 272
duke@435 273 if (should_initialize ||
duke@435 274 (UseAdaptiveNUMAChunkSizing && adaptation_cycles() < samples_count())) {
jmasa@698 275 // A NUMA space is never mangled
jmasa@698 276 initialize(region(),
jmasa@698 277 SpaceDecorator::Clear,
jmasa@698 278 SpaceDecorator::DontMangle);
duke@435 279 }
duke@435 280 }
duke@435 281
duke@435 282 if (NUMAStats) {
duke@435 283 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 284 lgrp_spaces()->at(i)->accumulate_statistics(page_size());
duke@435 285 }
duke@435 286 }
duke@435 287
duke@435 288 scan_pages(NUMAPageScanRate);
duke@435 289 }
duke@435 290
duke@435 291 // Scan pages. Free pages that have smaller size or wrong placement.
duke@435 292 void MutableNUMASpace::scan_pages(size_t page_count)
duke@435 293 {
duke@435 294 size_t pages_per_chunk = page_count / lgrp_spaces()->length();
duke@435 295 if (pages_per_chunk > 0) {
duke@435 296 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 297 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 298 ls->scan_pages(page_size(), pages_per_chunk);
duke@435 299 }
duke@435 300 }
duke@435 301 }
duke@435 302
duke@435 303 // Accumulate statistics about the allocation rate of each lgrp.
duke@435 304 void MutableNUMASpace::accumulate_statistics() {
duke@435 305 if (UseAdaptiveNUMAChunkSizing) {
duke@435 306 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 307 lgrp_spaces()->at(i)->sample();
duke@435 308 }
duke@435 309 increment_samples_count();
duke@435 310 }
duke@435 311
duke@435 312 if (NUMAStats) {
duke@435 313 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 314 lgrp_spaces()->at(i)->accumulate_statistics(page_size());
duke@435 315 }
duke@435 316 }
duke@435 317 }
duke@435 318
duke@435 319 // Get the current size of a chunk.
duke@435 320 // This function computes the size of the chunk based on the
duke@435 321 // difference between chunk ends. This allows it to work correctly in
duke@435 322 // case the whole space is resized and during the process of adaptive
duke@435 323 // chunk resizing.
duke@435 324 size_t MutableNUMASpace::current_chunk_size(int i) {
duke@435 325 HeapWord *cur_end, *prev_end;
duke@435 326 if (i == 0) {
duke@435 327 prev_end = bottom();
duke@435 328 } else {
duke@435 329 prev_end = lgrp_spaces()->at(i - 1)->space()->end();
duke@435 330 }
duke@435 331 if (i == lgrp_spaces()->length() - 1) {
duke@435 332 cur_end = end();
duke@435 333 } else {
duke@435 334 cur_end = lgrp_spaces()->at(i)->space()->end();
duke@435 335 }
duke@435 336 if (cur_end > prev_end) {
duke@435 337 return pointer_delta(cur_end, prev_end, sizeof(char));
duke@435 338 }
duke@435 339 return 0;
duke@435 340 }
duke@435 341
duke@435 342 // Return the default chunk size by equally diving the space.
duke@435 343 // page_size() aligned.
duke@435 344 size_t MutableNUMASpace::default_chunk_size() {
duke@435 345 return base_space_size() / lgrp_spaces()->length() * page_size();
duke@435 346 }
duke@435 347
duke@435 348 // Produce a new chunk size. page_size() aligned.
duke@435 349 size_t MutableNUMASpace::adaptive_chunk_size(int i, size_t limit) {
duke@435 350 size_t pages_available = base_space_size();
duke@435 351 for (int j = 0; j < i; j++) {
duke@435 352 pages_available -= round_down(current_chunk_size(j), page_size()) / page_size();
duke@435 353 }
duke@435 354 pages_available -= lgrp_spaces()->length() - i - 1;
duke@435 355 assert(pages_available > 0, "No pages left");
duke@435 356 float alloc_rate = 0;
duke@435 357 for (int j = i; j < lgrp_spaces()->length(); j++) {
duke@435 358 alloc_rate += lgrp_spaces()->at(j)->alloc_rate()->average();
duke@435 359 }
duke@435 360 size_t chunk_size = 0;
duke@435 361 if (alloc_rate > 0) {
duke@435 362 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 363 chunk_size = (size_t)(ls->alloc_rate()->average() * pages_available / alloc_rate) * page_size();
duke@435 364 }
duke@435 365 chunk_size = MAX2(chunk_size, page_size());
duke@435 366
duke@435 367 if (limit > 0) {
duke@435 368 limit = round_down(limit, page_size());
duke@435 369 if (chunk_size > current_chunk_size(i)) {
duke@435 370 chunk_size = MIN2((off_t)chunk_size, (off_t)current_chunk_size(i) + (off_t)limit);
duke@435 371 } else {
duke@435 372 chunk_size = MAX2((off_t)chunk_size, (off_t)current_chunk_size(i) - (off_t)limit);
duke@435 373 }
duke@435 374 }
duke@435 375 assert(chunk_size <= pages_available * page_size(), "Chunk size out of range");
duke@435 376 return chunk_size;
duke@435 377 }
duke@435 378
duke@435 379
duke@435 380 // Return the bottom_region and the top_region. Align them to page_size() boundary.
duke@435 381 // |------------------new_region---------------------------------|
duke@435 382 // |----bottom_region--|---intersection---|------top_region------|
duke@435 383 void MutableNUMASpace::select_tails(MemRegion new_region, MemRegion intersection,
duke@435 384 MemRegion* bottom_region, MemRegion *top_region) {
duke@435 385 // Is there bottom?
duke@435 386 if (new_region.start() < intersection.start()) { // Yes
duke@435 387 // Try to coalesce small pages into a large one.
duke@435 388 if (UseLargePages && page_size() >= os::large_page_size()) {
duke@435 389 HeapWord* p = (HeapWord*)round_to((intptr_t) intersection.start(), os::large_page_size());
duke@435 390 if (new_region.contains(p)
duke@435 391 && pointer_delta(p, new_region.start(), sizeof(char)) >= os::large_page_size()) {
duke@435 392 if (intersection.contains(p)) {
duke@435 393 intersection = MemRegion(p, intersection.end());
duke@435 394 } else {
duke@435 395 intersection = MemRegion(p, p);
duke@435 396 }
duke@435 397 }
duke@435 398 }
duke@435 399 *bottom_region = MemRegion(new_region.start(), intersection.start());
duke@435 400 } else {
duke@435 401 *bottom_region = MemRegion();
duke@435 402 }
duke@435 403
duke@435 404 // Is there top?
duke@435 405 if (intersection.end() < new_region.end()) { // Yes
duke@435 406 // Try to coalesce small pages into a large one.
duke@435 407 if (UseLargePages && page_size() >= os::large_page_size()) {
duke@435 408 HeapWord* p = (HeapWord*)round_down((intptr_t) intersection.end(), os::large_page_size());
duke@435 409 if (new_region.contains(p)
duke@435 410 && pointer_delta(new_region.end(), p, sizeof(char)) >= os::large_page_size()) {
duke@435 411 if (intersection.contains(p)) {
duke@435 412 intersection = MemRegion(intersection.start(), p);
duke@435 413 } else {
duke@435 414 intersection = MemRegion(p, p);
duke@435 415 }
duke@435 416 }
duke@435 417 }
duke@435 418 *top_region = MemRegion(intersection.end(), new_region.end());
duke@435 419 } else {
duke@435 420 *top_region = MemRegion();
duke@435 421 }
duke@435 422 }
duke@435 423
duke@435 424 // Try to merge the invalid region with the bottom or top region by decreasing
duke@435 425 // the intersection area. Return the invalid_region aligned to the page_size()
duke@435 426 // boundary if it's inside the intersection. Return non-empty invalid_region
duke@435 427 // if it lies inside the intersection (also page-aligned).
duke@435 428 // |------------------new_region---------------------------------|
duke@435 429 // |----------------|-------invalid---|--------------------------|
duke@435 430 // |----bottom_region--|---intersection---|------top_region------|
duke@435 431 void MutableNUMASpace::merge_regions(MemRegion new_region, MemRegion* intersection,
duke@435 432 MemRegion *invalid_region) {
duke@435 433 if (intersection->start() >= invalid_region->start() && intersection->contains(invalid_region->end())) {
duke@435 434 *intersection = MemRegion(invalid_region->end(), intersection->end());
duke@435 435 *invalid_region = MemRegion();
duke@435 436 } else
duke@435 437 if (intersection->end() <= invalid_region->end() && intersection->contains(invalid_region->start())) {
duke@435 438 *intersection = MemRegion(intersection->start(), invalid_region->start());
duke@435 439 *invalid_region = MemRegion();
duke@435 440 } else
duke@435 441 if (intersection->equals(*invalid_region) || invalid_region->contains(*intersection)) {
duke@435 442 *intersection = MemRegion(new_region.start(), new_region.start());
duke@435 443 *invalid_region = MemRegion();
duke@435 444 } else
duke@435 445 if (intersection->contains(invalid_region)) {
duke@435 446 // That's the only case we have to make an additional bias_region() call.
duke@435 447 HeapWord* start = invalid_region->start();
duke@435 448 HeapWord* end = invalid_region->end();
duke@435 449 if (UseLargePages && page_size() >= os::large_page_size()) {
duke@435 450 HeapWord *p = (HeapWord*)round_down((intptr_t) start, os::large_page_size());
duke@435 451 if (new_region.contains(p)) {
duke@435 452 start = p;
duke@435 453 }
duke@435 454 p = (HeapWord*)round_to((intptr_t) end, os::large_page_size());
duke@435 455 if (new_region.contains(end)) {
duke@435 456 end = p;
duke@435 457 }
duke@435 458 }
duke@435 459 if (intersection->start() > start) {
duke@435 460 *intersection = MemRegion(start, intersection->end());
duke@435 461 }
duke@435 462 if (intersection->end() < end) {
duke@435 463 *intersection = MemRegion(intersection->start(), end);
duke@435 464 }
duke@435 465 *invalid_region = MemRegion(start, end);
duke@435 466 }
duke@435 467 }
duke@435 468
jmasa@698 469 void MutableNUMASpace::initialize(MemRegion mr,
jmasa@698 470 bool clear_space,
jmasa@698 471 bool mangle_space) {
duke@435 472 assert(clear_space, "Reallocation will destory data!");
duke@435 473 assert(lgrp_spaces()->length() > 0, "There should be at least one space");
duke@435 474
duke@435 475 MemRegion old_region = region(), new_region;
duke@435 476 set_bottom(mr.start());
duke@435 477 set_end(mr.end());
jmasa@698 478 // Must always clear the space
jmasa@698 479 clear(SpaceDecorator::DontMangle);
duke@435 480
duke@435 481 // Compute chunk sizes
duke@435 482 size_t prev_page_size = page_size();
duke@435 483 set_page_size(UseLargePages ? os::large_page_size() : os::vm_page_size());
duke@435 484 HeapWord* rounded_bottom = (HeapWord*)round_to((intptr_t) bottom(), page_size());
duke@435 485 HeapWord* rounded_end = (HeapWord*)round_down((intptr_t) end(), page_size());
duke@435 486 size_t base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size();
duke@435 487
duke@435 488 // Try small pages if the chunk size is too small
duke@435 489 if (base_space_size_pages / lgrp_spaces()->length() == 0
duke@435 490 && page_size() > (size_t)os::vm_page_size()) {
duke@435 491 set_page_size(os::vm_page_size());
duke@435 492 rounded_bottom = (HeapWord*)round_to((intptr_t) bottom(), page_size());
duke@435 493 rounded_end = (HeapWord*)round_down((intptr_t) end(), page_size());
duke@435 494 base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size();
duke@435 495 }
duke@435 496 guarantee(base_space_size_pages / lgrp_spaces()->length() > 0, "Space too small");
duke@435 497 set_base_space_size(base_space_size_pages);
duke@435 498
duke@435 499 // Handle space resize
duke@435 500 MemRegion top_region, bottom_region;
duke@435 501 if (!old_region.equals(region())) {
duke@435 502 new_region = MemRegion(rounded_bottom, rounded_end);
duke@435 503 MemRegion intersection = new_region.intersection(old_region);
duke@435 504 if (intersection.start() == NULL ||
duke@435 505 intersection.end() == NULL ||
duke@435 506 prev_page_size > page_size()) { // If the page size got smaller we have to change
duke@435 507 // the page size preference for the whole space.
duke@435 508 intersection = MemRegion(new_region.start(), new_region.start());
duke@435 509 }
duke@435 510 select_tails(new_region, intersection, &bottom_region, &top_region);
iveresov@576 511 bias_region(bottom_region, lgrp_spaces()->at(0)->lgrp_id());
iveresov@576 512 bias_region(top_region, lgrp_spaces()->at(lgrp_spaces()->length() - 1)->lgrp_id());
duke@435 513 }
duke@435 514
duke@435 515 // Check if the space layout has changed significantly?
duke@435 516 // This happens when the space has been resized so that either head or tail
duke@435 517 // chunk became less than a page.
duke@435 518 bool layout_valid = UseAdaptiveNUMAChunkSizing &&
duke@435 519 current_chunk_size(0) > page_size() &&
duke@435 520 current_chunk_size(lgrp_spaces()->length() - 1) > page_size();
duke@435 521
duke@435 522
duke@435 523 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 524 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 525 MutableSpace *s = ls->space();
duke@435 526 old_region = s->region();
duke@435 527
duke@435 528 size_t chunk_byte_size = 0, old_chunk_byte_size = 0;
duke@435 529 if (i < lgrp_spaces()->length() - 1) {
duke@435 530 if (!UseAdaptiveNUMAChunkSizing ||
duke@435 531 (UseAdaptiveNUMAChunkSizing && NUMAChunkResizeWeight == 0) ||
duke@435 532 samples_count() < AdaptiveSizePolicyReadyThreshold) {
duke@435 533 // No adaptation. Divide the space equally.
duke@435 534 chunk_byte_size = default_chunk_size();
duke@435 535 } else
duke@435 536 if (!layout_valid || NUMASpaceResizeRate == 0) {
duke@435 537 // Fast adaptation. If no space resize rate is set, resize
duke@435 538 // the chunks instantly.
duke@435 539 chunk_byte_size = adaptive_chunk_size(i, 0);
duke@435 540 } else {
duke@435 541 // Slow adaptation. Resize the chunks moving no more than
duke@435 542 // NUMASpaceResizeRate bytes per collection.
duke@435 543 size_t limit = NUMASpaceResizeRate /
duke@435 544 (lgrp_spaces()->length() * (lgrp_spaces()->length() + 1) / 2);
duke@435 545 chunk_byte_size = adaptive_chunk_size(i, MAX2(limit * (i + 1), page_size()));
duke@435 546 }
duke@435 547
duke@435 548 assert(chunk_byte_size >= page_size(), "Chunk size too small");
duke@435 549 assert(chunk_byte_size <= capacity_in_bytes(), "Sanity check");
duke@435 550 }
duke@435 551
duke@435 552 if (i == 0) { // Bottom chunk
duke@435 553 if (i != lgrp_spaces()->length() - 1) {
duke@435 554 new_region = MemRegion(bottom(), rounded_bottom + (chunk_byte_size >> LogHeapWordSize));
duke@435 555 } else {
duke@435 556 new_region = MemRegion(bottom(), end());
duke@435 557 }
duke@435 558 } else
duke@435 559 if (i < lgrp_spaces()->length() - 1) { // Middle chunks
duke@435 560 MutableSpace *ps = lgrp_spaces()->at(i - 1)->space();
duke@435 561 new_region = MemRegion(ps->end(),
duke@435 562 ps->end() + (chunk_byte_size >> LogHeapWordSize));
duke@435 563 } else { // Top chunk
duke@435 564 MutableSpace *ps = lgrp_spaces()->at(i - 1)->space();
duke@435 565 new_region = MemRegion(ps->end(), end());
duke@435 566 }
duke@435 567 guarantee(region().contains(new_region), "Region invariant");
duke@435 568
duke@435 569
duke@435 570 // The general case:
duke@435 571 // |---------------------|--invalid---|--------------------------|
duke@435 572 // |------------------new_region---------------------------------|
duke@435 573 // |----bottom_region--|---intersection---|------top_region------|
duke@435 574 // |----old_region----|
duke@435 575 // The intersection part has all pages in place we don't need to migrate them.
duke@435 576 // Pages for the top and bottom part should be freed and then reallocated.
duke@435 577
duke@435 578 MemRegion intersection = old_region.intersection(new_region);
duke@435 579
duke@435 580 if (intersection.start() == NULL || intersection.end() == NULL) {
duke@435 581 intersection = MemRegion(new_region.start(), new_region.start());
duke@435 582 }
duke@435 583
iveresov@576 584 if (!os::numa_has_static_binding()) {
iveresov@576 585 MemRegion invalid_region = ls->invalid_region().intersection(new_region);
iveresov@576 586 // Invalid region is a range of memory that could've possibly
iveresov@576 587 // been allocated on the other node. That's relevant only on Solaris where
iveresov@576 588 // there is no static memory binding.
iveresov@576 589 if (!invalid_region.is_empty()) {
iveresov@576 590 merge_regions(new_region, &intersection, &invalid_region);
iveresov@576 591 free_region(invalid_region);
iveresov@576 592 ls->set_invalid_region(MemRegion());
iveresov@576 593 }
duke@435 594 }
iveresov@576 595
duke@435 596 select_tails(new_region, intersection, &bottom_region, &top_region);
iveresov@576 597
iveresov@576 598 if (!os::numa_has_static_binding()) {
iveresov@576 599 // If that's a system with the first-touch policy then it's enough
iveresov@576 600 // to free the pages.
iveresov@576 601 free_region(bottom_region);
iveresov@576 602 free_region(top_region);
iveresov@576 603 } else {
iveresov@576 604 // In a system with static binding we have to change the bias whenever
iveresov@576 605 // we reshape the heap.
iveresov@576 606 bias_region(bottom_region, ls->lgrp_id());
iveresov@576 607 bias_region(top_region, ls->lgrp_id());
iveresov@576 608 }
duke@435 609
jmasa@698 610 // Clear space (set top = bottom) but never mangle.
jmasa@698 611 s->initialize(new_region, SpaceDecorator::Clear, SpaceDecorator::DontMangle);
duke@435 612
duke@435 613 set_adaptation_cycles(samples_count());
duke@435 614 }
duke@435 615 }
duke@435 616
duke@435 617 // Set the top of the whole space.
duke@435 618 // Mark the the holes in chunks below the top() as invalid.
duke@435 619 void MutableNUMASpace::set_top(HeapWord* value) {
duke@435 620 bool found_top = false;
iveresov@625 621 for (int i = 0; i < lgrp_spaces()->length();) {
duke@435 622 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 623 MutableSpace *s = ls->space();
duke@435 624 HeapWord *top = MAX2((HeapWord*)round_down((intptr_t)s->top(), page_size()), s->bottom());
duke@435 625
duke@435 626 if (s->contains(value)) {
iveresov@625 627 // Check if setting the chunk's top to a given value would create a hole less than
iveresov@625 628 // a minimal object; assuming that's not the last chunk in which case we don't care.
iveresov@625 629 if (i < lgrp_spaces()->length() - 1) {
iveresov@625 630 size_t remainder = pointer_delta(s->end(), value);
iveresov@625 631 const size_t minimal_object_size = oopDesc::header_size();
iveresov@625 632 if (remainder < minimal_object_size && remainder > 0) {
iveresov@625 633 // Add a filler object of a minimal size, it will cross the chunk boundary.
iveresov@625 634 SharedHeap::fill_region_with_object(MemRegion(value, minimal_object_size));
iveresov@625 635 value += minimal_object_size;
iveresov@625 636 assert(!s->contains(value), "Should be in the next chunk");
iveresov@625 637 // Restart the loop from the same chunk, since the value has moved
iveresov@625 638 // to the next one.
iveresov@625 639 continue;
iveresov@625 640 }
iveresov@625 641 }
iveresov@625 642
iveresov@576 643 if (!os::numa_has_static_binding() && top < value && top < s->end()) {
duke@435 644 ls->add_invalid_region(MemRegion(top, value));
duke@435 645 }
duke@435 646 s->set_top(value);
duke@435 647 found_top = true;
duke@435 648 } else {
duke@435 649 if (found_top) {
duke@435 650 s->set_top(s->bottom());
duke@435 651 } else {
iveresov@576 652 if (!os::numa_has_static_binding() && top < s->end()) {
iveresov@576 653 ls->add_invalid_region(MemRegion(top, s->end()));
iveresov@576 654 }
iveresov@576 655 s->set_top(s->end());
duke@435 656 }
duke@435 657 }
iveresov@625 658 i++;
duke@435 659 }
duke@435 660 MutableSpace::set_top(value);
duke@435 661 }
duke@435 662
jmasa@698 663 void MutableNUMASpace::clear(bool mangle_space) {
duke@435 664 MutableSpace::set_top(bottom());
duke@435 665 for (int i = 0; i < lgrp_spaces()->length(); i++) {
jmasa@698 666 // Never mangle NUMA spaces because the mangling will
jmasa@698 667 // bind the memory to a possibly unwanted lgroup.
jmasa@698 668 lgrp_spaces()->at(i)->space()->clear(SpaceDecorator::DontMangle);
duke@435 669 }
duke@435 670 }
duke@435 671
iveresov@576 672 /*
iveresov@576 673 Linux supports static memory binding, therefore the most part of the
iveresov@576 674 logic dealing with the possible invalid page allocation is effectively
iveresov@576 675 disabled. Besides there is no notion of the home node in Linux. A
iveresov@576 676 thread is allowed to migrate freely. Although the scheduler is rather
iveresov@576 677 reluctant to move threads between the nodes. We check for the current
iveresov@576 678 node every allocation. And with a high probability a thread stays on
iveresov@576 679 the same node for some time allowing local access to recently allocated
iveresov@576 680 objects.
iveresov@576 681 */
iveresov@576 682
duke@435 683 HeapWord* MutableNUMASpace::allocate(size_t size) {
iveresov@576 684 Thread* thr = Thread::current();
iveresov@576 685 int lgrp_id = thr->lgrp_id();
iveresov@576 686 if (lgrp_id == -1 || !os::numa_has_group_homing()) {
duke@435 687 lgrp_id = os::numa_get_group_id();
iveresov@576 688 thr->set_lgrp_id(lgrp_id);
duke@435 689 }
duke@435 690
duke@435 691 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
duke@435 692
duke@435 693 // It is possible that a new CPU has been hotplugged and
duke@435 694 // we haven't reshaped the space accordingly.
duke@435 695 if (i == -1) {
duke@435 696 i = os::random() % lgrp_spaces()->length();
duke@435 697 }
duke@435 698
duke@435 699 MutableSpace *s = lgrp_spaces()->at(i)->space();
duke@435 700 HeapWord *p = s->allocate(size);
duke@435 701
iveresov@579 702 if (p != NULL) {
iveresov@579 703 size_t remainder = s->free_in_words();
iveresov@579 704 if (remainder < (size_t)oopDesc::header_size() && remainder > 0) {
iveresov@579 705 s->set_top(s->top() - size);
iveresov@579 706 p = NULL;
iveresov@579 707 }
duke@435 708 }
duke@435 709 if (p != NULL) {
duke@435 710 if (top() < s->top()) { // Keep _top updated.
duke@435 711 MutableSpace::set_top(s->top());
duke@435 712 }
duke@435 713 }
iveresov@576 714 // Make the page allocation happen here if there is no static binding..
iveresov@576 715 if (p != NULL && !os::numa_has_static_binding()) {
duke@435 716 for (HeapWord *i = p; i < p + size; i += os::vm_page_size() >> LogHeapWordSize) {
duke@435 717 *(int*)i = 0;
duke@435 718 }
duke@435 719 }
duke@435 720 return p;
duke@435 721 }
duke@435 722
duke@435 723 // This version is lock-free.
duke@435 724 HeapWord* MutableNUMASpace::cas_allocate(size_t size) {
iveresov@576 725 Thread* thr = Thread::current();
iveresov@576 726 int lgrp_id = thr->lgrp_id();
iveresov@576 727 if (lgrp_id == -1 || !os::numa_has_group_homing()) {
duke@435 728 lgrp_id = os::numa_get_group_id();
iveresov@576 729 thr->set_lgrp_id(lgrp_id);
duke@435 730 }
duke@435 731
duke@435 732 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
duke@435 733 // It is possible that a new CPU has been hotplugged and
duke@435 734 // we haven't reshaped the space accordingly.
duke@435 735 if (i == -1) {
duke@435 736 i = os::random() % lgrp_spaces()->length();
duke@435 737 }
duke@435 738 MutableSpace *s = lgrp_spaces()->at(i)->space();
duke@435 739 HeapWord *p = s->cas_allocate(size);
iveresov@579 740 if (p != NULL) {
iveresov@625 741 size_t remainder = pointer_delta(s->end(), p + size);
iveresov@579 742 if (remainder < (size_t)oopDesc::header_size() && remainder > 0) {
iveresov@579 743 if (s->cas_deallocate(p, size)) {
iveresov@579 744 // We were the last to allocate and created a fragment less than
iveresov@579 745 // a minimal object.
iveresov@579 746 p = NULL;
iveresov@625 747 } else {
iveresov@625 748 guarantee(false, "Deallocation should always succeed");
iveresov@579 749 }
duke@435 750 }
duke@435 751 }
duke@435 752 if (p != NULL) {
duke@435 753 HeapWord* cur_top, *cur_chunk_top = p + size;
duke@435 754 while ((cur_top = top()) < cur_chunk_top) { // Keep _top updated.
duke@435 755 if (Atomic::cmpxchg_ptr(cur_chunk_top, top_addr(), cur_top) == cur_top) {
duke@435 756 break;
duke@435 757 }
duke@435 758 }
duke@435 759 }
duke@435 760
iveresov@576 761 // Make the page allocation happen here if there is no static binding.
iveresov@576 762 if (p != NULL && !os::numa_has_static_binding() ) {
duke@435 763 for (HeapWord *i = p; i < p + size; i += os::vm_page_size() >> LogHeapWordSize) {
duke@435 764 *(int*)i = 0;
duke@435 765 }
duke@435 766 }
duke@435 767 return p;
duke@435 768 }
duke@435 769
duke@435 770 void MutableNUMASpace::print_short_on(outputStream* st) const {
duke@435 771 MutableSpace::print_short_on(st);
duke@435 772 st->print(" (");
duke@435 773 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 774 st->print("lgrp %d: ", lgrp_spaces()->at(i)->lgrp_id());
duke@435 775 lgrp_spaces()->at(i)->space()->print_short_on(st);
duke@435 776 if (i < lgrp_spaces()->length() - 1) {
duke@435 777 st->print(", ");
duke@435 778 }
duke@435 779 }
duke@435 780 st->print(")");
duke@435 781 }
duke@435 782
duke@435 783 void MutableNUMASpace::print_on(outputStream* st) const {
duke@435 784 MutableSpace::print_on(st);
duke@435 785 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 786 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 787 st->print(" lgrp %d", ls->lgrp_id());
duke@435 788 ls->space()->print_on(st);
duke@435 789 if (NUMAStats) {
iveresov@579 790 for (int i = 0; i < lgrp_spaces()->length(); i++) {
iveresov@579 791 lgrp_spaces()->at(i)->accumulate_statistics(page_size());
iveresov@579 792 }
duke@435 793 st->print(" local/remote/unbiased/uncommitted: %dK/%dK/%dK/%dK, large/small pages: %d/%d\n",
duke@435 794 ls->space_stats()->_local_space / K,
duke@435 795 ls->space_stats()->_remote_space / K,
duke@435 796 ls->space_stats()->_unbiased_space / K,
duke@435 797 ls->space_stats()->_uncommited_space / K,
duke@435 798 ls->space_stats()->_large_pages,
duke@435 799 ls->space_stats()->_small_pages);
duke@435 800 }
duke@435 801 }
duke@435 802 }
duke@435 803
iveresov@625 804 void MutableNUMASpace::verify(bool allow_dirty) {
iveresov@625 805 // This can be called after setting an arbitary value to the space's top,
iveresov@625 806 // so an object can cross the chunk boundary. We ensure the parsablity
iveresov@625 807 // of the space and just walk the objects in linear fashion.
iveresov@625 808 ensure_parsability();
iveresov@625 809 MutableSpace::verify(allow_dirty);
duke@435 810 }
duke@435 811
duke@435 812 // Scan pages and gather stats about page placement and size.
duke@435 813 void MutableNUMASpace::LGRPSpace::accumulate_statistics(size_t page_size) {
duke@435 814 clear_space_stats();
duke@435 815 char *start = (char*)round_to((intptr_t) space()->bottom(), page_size);
duke@435 816 char* end = (char*)round_down((intptr_t) space()->end(), page_size);
duke@435 817 if (start < end) {
duke@435 818 for (char *p = start; p < end;) {
duke@435 819 os::page_info info;
duke@435 820 if (os::get_page_info(p, &info)) {
duke@435 821 if (info.size > 0) {
duke@435 822 if (info.size > (size_t)os::vm_page_size()) {
duke@435 823 space_stats()->_large_pages++;
duke@435 824 } else {
duke@435 825 space_stats()->_small_pages++;
duke@435 826 }
duke@435 827 if (info.lgrp_id == lgrp_id()) {
duke@435 828 space_stats()->_local_space += info.size;
duke@435 829 } else {
duke@435 830 space_stats()->_remote_space += info.size;
duke@435 831 }
duke@435 832 p += info.size;
duke@435 833 } else {
duke@435 834 p += os::vm_page_size();
duke@435 835 space_stats()->_uncommited_space += os::vm_page_size();
duke@435 836 }
duke@435 837 } else {
duke@435 838 return;
duke@435 839 }
duke@435 840 }
duke@435 841 }
duke@435 842 space_stats()->_unbiased_space = pointer_delta(start, space()->bottom(), sizeof(char)) +
duke@435 843 pointer_delta(space()->end(), end, sizeof(char));
duke@435 844
duke@435 845 }
duke@435 846
duke@435 847 // Scan page_count pages and verify if they have the right size and right placement.
duke@435 848 // If invalid pages are found they are freed in hope that subsequent reallocation
duke@435 849 // will be more successful.
duke@435 850 void MutableNUMASpace::LGRPSpace::scan_pages(size_t page_size, size_t page_count)
duke@435 851 {
duke@435 852 char* range_start = (char*)round_to((intptr_t) space()->bottom(), page_size);
duke@435 853 char* range_end = (char*)round_down((intptr_t) space()->end(), page_size);
duke@435 854
duke@435 855 if (range_start > last_page_scanned() || last_page_scanned() >= range_end) {
duke@435 856 set_last_page_scanned(range_start);
duke@435 857 }
duke@435 858
duke@435 859 char *scan_start = last_page_scanned();
duke@435 860 char* scan_end = MIN2(scan_start + page_size * page_count, range_end);
duke@435 861
duke@435 862 os::page_info page_expected, page_found;
duke@435 863 page_expected.size = page_size;
duke@435 864 page_expected.lgrp_id = lgrp_id();
duke@435 865
duke@435 866 char *s = scan_start;
duke@435 867 while (s < scan_end) {
duke@435 868 char *e = os::scan_pages(s, (char*)scan_end, &page_expected, &page_found);
duke@435 869 if (e == NULL) {
duke@435 870 break;
duke@435 871 }
duke@435 872 if (e != scan_end) {
duke@435 873 if ((page_expected.size != page_size || page_expected.lgrp_id != lgrp_id())
duke@435 874 && page_expected.size != 0) {
duke@435 875 os::free_memory(s, pointer_delta(e, s, sizeof(char)));
duke@435 876 }
duke@435 877 page_expected = page_found;
duke@435 878 }
duke@435 879 s = e;
duke@435 880 }
duke@435 881
duke@435 882 set_last_page_scanned(scan_end);
duke@435 883 }

mercurial