src/share/vm/memory/allocation.hpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2191
894b1d7c7e01
child 2357
79d8657be916
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

duke@435 1 /*
stefank@2314 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
stefank@2314 26 #define SHARE_VM_MEMORY_ALLOCATION_HPP
stefank@2314 27
stefank@2314 28 #include "runtime/globals.hpp"
stefank@2314 29 #include "utilities/globalDefinitions.hpp"
stefank@2314 30 #ifdef COMPILER1
stefank@2314 31 #include "c1/c1_globals.hpp"
stefank@2314 32 #endif
stefank@2314 33 #ifdef COMPILER2
stefank@2314 34 #include "opto/c2_globals.hpp"
stefank@2314 35 #endif
stefank@2314 36
duke@435 37 #define ARENA_ALIGN_M1 (((size_t)(ARENA_AMALLOC_ALIGNMENT)) - 1)
duke@435 38 #define ARENA_ALIGN_MASK (~((size_t)ARENA_ALIGN_M1))
duke@435 39 #define ARENA_ALIGN(x) ((((size_t)(x)) + ARENA_ALIGN_M1) & ARENA_ALIGN_MASK)
duke@435 40
duke@435 41 // All classes in the virtual machine must be subclassed
duke@435 42 // by one of the following allocation classes:
duke@435 43 //
duke@435 44 // For objects allocated in the resource area (see resourceArea.hpp).
duke@435 45 // - ResourceObj
duke@435 46 //
duke@435 47 // For objects allocated in the C-heap (managed by: free & malloc).
duke@435 48 // - CHeapObj
duke@435 49 //
duke@435 50 // For objects allocated on the stack.
duke@435 51 // - StackObj
duke@435 52 //
duke@435 53 // For embedded objects.
duke@435 54 // - ValueObj
duke@435 55 //
duke@435 56 // For classes used as name spaces.
duke@435 57 // - AllStatic
duke@435 58 //
duke@435 59 // The printable subclasses are used for debugging and define virtual
duke@435 60 // member functions for printing. Classes that avoid allocating the
duke@435 61 // vtbl entries in the objects should therefore not be the printable
duke@435 62 // subclasses.
duke@435 63 //
duke@435 64 // The following macros and function should be used to allocate memory
duke@435 65 // directly in the resource area or in the C-heap:
duke@435 66 //
duke@435 67 // NEW_RESOURCE_ARRAY(type,size)
duke@435 68 // NEW_RESOURCE_OBJ(type)
duke@435 69 // NEW_C_HEAP_ARRAY(type,size)
duke@435 70 // NEW_C_HEAP_OBJ(type)
duke@435 71 // char* AllocateHeap(size_t size, const char* name);
duke@435 72 // void FreeHeap(void* p);
duke@435 73 //
duke@435 74 // C-heap allocation can be traced using +PrintHeapAllocation.
duke@435 75 // malloc and free should therefore never called directly.
duke@435 76
duke@435 77 // Base class for objects allocated in the C-heap.
duke@435 78
duke@435 79 // In non product mode we introduce a super class for all allocation classes
duke@435 80 // that supports printing.
duke@435 81 // We avoid the superclass in product mode since some C++ compilers add
duke@435 82 // a word overhead for empty super classes.
duke@435 83
duke@435 84 #ifdef PRODUCT
duke@435 85 #define ALLOCATION_SUPER_CLASS_SPEC
duke@435 86 #else
duke@435 87 #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
duke@435 88 class AllocatedObj {
duke@435 89 public:
duke@435 90 // Printing support
duke@435 91 void print() const;
duke@435 92 void print_value() const;
duke@435 93
duke@435 94 virtual void print_on(outputStream* st) const;
duke@435 95 virtual void print_value_on(outputStream* st) const;
duke@435 96 };
duke@435 97 #endif
duke@435 98
duke@435 99 class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
duke@435 100 public:
duke@435 101 void* operator new(size_t size);
duke@435 102 void operator delete(void* p);
duke@435 103 void* new_array(size_t size);
duke@435 104 };
duke@435 105
duke@435 106 // Base class for objects allocated on the stack only.
duke@435 107 // Calling new or delete will result in fatal error.
duke@435 108
duke@435 109 class StackObj ALLOCATION_SUPER_CLASS_SPEC {
duke@435 110 public:
duke@435 111 void* operator new(size_t size);
duke@435 112 void operator delete(void* p);
duke@435 113 };
duke@435 114
duke@435 115 // Base class for objects used as value objects.
duke@435 116 // Calling new or delete will result in fatal error.
duke@435 117 //
duke@435 118 // Portability note: Certain compilers (e.g. gcc) will
duke@435 119 // always make classes bigger if it has a superclass, even
duke@435 120 // if the superclass does not have any virtual methods or
duke@435 121 // instance fields. The HotSpot implementation relies on this
duke@435 122 // not to happen. So never make a ValueObj class a direct subclass
duke@435 123 // of this object, but use the VALUE_OBJ_CLASS_SPEC class instead, e.g.,
duke@435 124 // like this:
duke@435 125 //
duke@435 126 // class A VALUE_OBJ_CLASS_SPEC {
duke@435 127 // ...
duke@435 128 // }
duke@435 129 //
duke@435 130 // With gcc and possible other compilers the VALUE_OBJ_CLASS_SPEC can
duke@435 131 // be defined as a an empty string "".
duke@435 132 //
duke@435 133 class _ValueObj {
duke@435 134 public:
duke@435 135 void* operator new(size_t size);
duke@435 136 void operator delete(void* p);
duke@435 137 };
duke@435 138
duke@435 139 // Base class for classes that constitute name spaces.
duke@435 140
duke@435 141 class AllStatic {
duke@435 142 public:
duke@435 143 AllStatic() { ShouldNotCallThis(); }
duke@435 144 ~AllStatic() { ShouldNotCallThis(); }
duke@435 145 };
duke@435 146
duke@435 147
duke@435 148 //------------------------------Chunk------------------------------------------
duke@435 149 // Linked list of raw memory chunks
duke@435 150 class Chunk: public CHeapObj {
duke@435 151 protected:
duke@435 152 Chunk* _next; // Next Chunk in list
duke@435 153 const size_t _len; // Size of this Chunk
duke@435 154 public:
duke@435 155 void* operator new(size_t size, size_t length);
duke@435 156 void operator delete(void* p);
duke@435 157 Chunk(size_t length);
duke@435 158
duke@435 159 enum {
duke@435 160 // default sizes; make them slightly smaller than 2**k to guard against
duke@435 161 // buddy-system style malloc implementations
duke@435 162 #ifdef _LP64
duke@435 163 slack = 40, // [RGV] Not sure if this is right, but make it
duke@435 164 // a multiple of 8.
duke@435 165 #else
duke@435 166 slack = 20, // suspected sizeof(Chunk) + internal malloc headers
duke@435 167 #endif
duke@435 168
duke@435 169 init_size = 1*K - slack, // Size of first chunk
duke@435 170 medium_size= 10*K - slack, // Size of medium-sized chunk
duke@435 171 size = 32*K - slack, // Default size of an Arena chunk (following the first)
duke@435 172 non_pool_size = init_size + 32 // An initial size which is not one of above
duke@435 173 };
duke@435 174
duke@435 175 void chop(); // Chop this chunk
duke@435 176 void next_chop(); // Chop next chunk
duke@435 177 static size_t aligned_overhead_size(void) { return ARENA_ALIGN(sizeof(Chunk)); }
duke@435 178
duke@435 179 size_t length() const { return _len; }
duke@435 180 Chunk* next() const { return _next; }
duke@435 181 void set_next(Chunk* n) { _next = n; }
duke@435 182 // Boundaries of data area (possibly unused)
duke@435 183 char* bottom() const { return ((char*) this) + aligned_overhead_size(); }
duke@435 184 char* top() const { return bottom() + _len; }
duke@435 185 bool contains(char* p) const { return bottom() <= p && p <= top(); }
duke@435 186
duke@435 187 // Start the chunk_pool cleaner task
duke@435 188 static void start_chunk_pool_cleaner_task();
bobv@2036 189
bobv@2036 190 static void clean_chunk_pool();
duke@435 191 };
duke@435 192
duke@435 193 //------------------------------Arena------------------------------------------
duke@435 194 // Fast allocation of memory
duke@435 195 class Arena: public CHeapObj {
duke@435 196 protected:
duke@435 197 friend class ResourceMark;
duke@435 198 friend class HandleMark;
duke@435 199 friend class NoHandleMark;
duke@435 200 Chunk *_first; // First chunk
duke@435 201 Chunk *_chunk; // current chunk
duke@435 202 char *_hwm, *_max; // High water mark and max in current chunk
duke@435 203 void* grow(size_t x); // Get a new Chunk of at least size x
duke@435 204 NOT_PRODUCT(size_t _size_in_bytes;) // Size of arena (used for memory usage tracing)
duke@435 205 NOT_PRODUCT(static size_t _bytes_allocated;) // total #bytes allocated since start
duke@435 206 friend class AllocStats;
duke@435 207 debug_only(void* malloc(size_t size);)
duke@435 208 debug_only(void* internal_malloc_4(size_t x);)
duke@435 209 public:
duke@435 210 Arena();
duke@435 211 Arena(size_t init_size);
duke@435 212 Arena(Arena *old);
duke@435 213 ~Arena();
duke@435 214 void destruct_contents();
duke@435 215 char* hwm() const { return _hwm; }
duke@435 216
duke@435 217 // Fast allocate in the arena. Common case is: pointer test + increment.
duke@435 218 void* Amalloc(size_t x) {
duke@435 219 assert(is_power_of_2(ARENA_AMALLOC_ALIGNMENT) , "should be a power of 2");
duke@435 220 x = ARENA_ALIGN(x);
duke@435 221 debug_only(if (UseMallocOnly) return malloc(x);)
duke@435 222 NOT_PRODUCT(_bytes_allocated += x);
duke@435 223 if (_hwm + x > _max) {
duke@435 224 return grow(x);
duke@435 225 } else {
duke@435 226 char *old = _hwm;
duke@435 227 _hwm += x;
duke@435 228 return old;
duke@435 229 }
duke@435 230 }
duke@435 231 // Further assume size is padded out to words
duke@435 232 void *Amalloc_4(size_t x) {
duke@435 233 assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
duke@435 234 debug_only(if (UseMallocOnly) return malloc(x);)
duke@435 235 NOT_PRODUCT(_bytes_allocated += x);
duke@435 236 if (_hwm + x > _max) {
duke@435 237 return grow(x);
duke@435 238 } else {
duke@435 239 char *old = _hwm;
duke@435 240 _hwm += x;
duke@435 241 return old;
duke@435 242 }
duke@435 243 }
duke@435 244
duke@435 245 // Allocate with 'double' alignment. It is 8 bytes on sparc.
duke@435 246 // In other cases Amalloc_D() should be the same as Amalloc_4().
duke@435 247 void* Amalloc_D(size_t x) {
duke@435 248 assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
duke@435 249 debug_only(if (UseMallocOnly) return malloc(x);)
duke@435 250 #if defined(SPARC) && !defined(_LP64)
duke@435 251 #define DALIGN_M1 7
duke@435 252 size_t delta = (((size_t)_hwm + DALIGN_M1) & ~DALIGN_M1) - (size_t)_hwm;
duke@435 253 x += delta;
duke@435 254 #endif
duke@435 255 NOT_PRODUCT(_bytes_allocated += x);
duke@435 256 if (_hwm + x > _max) {
duke@435 257 return grow(x); // grow() returns a result aligned >= 8 bytes.
duke@435 258 } else {
duke@435 259 char *old = _hwm;
duke@435 260 _hwm += x;
duke@435 261 #if defined(SPARC) && !defined(_LP64)
duke@435 262 old += delta; // align to 8-bytes
duke@435 263 #endif
duke@435 264 return old;
duke@435 265 }
duke@435 266 }
duke@435 267
duke@435 268 // Fast delete in area. Common case is: NOP (except for storage reclaimed)
duke@435 269 void Afree(void *ptr, size_t size) {
duke@435 270 #ifdef ASSERT
duke@435 271 if (ZapResourceArea) memset(ptr, badResourceValue, size); // zap freed memory
duke@435 272 if (UseMallocOnly) return;
duke@435 273 #endif
duke@435 274 if (((char*)ptr) + size == _hwm) _hwm = (char*)ptr;
duke@435 275 }
duke@435 276
duke@435 277 void *Arealloc( void *old_ptr, size_t old_size, size_t new_size );
duke@435 278
duke@435 279 // Move contents of this arena into an empty arena
duke@435 280 Arena *move_contents(Arena *empty_arena);
duke@435 281
duke@435 282 // Determine if pointer belongs to this Arena or not.
duke@435 283 bool contains( const void *ptr ) const;
duke@435 284
duke@435 285 // Total of all chunks in use (not thread-safe)
duke@435 286 size_t used() const;
duke@435 287
duke@435 288 // Total # of bytes used
duke@435 289 size_t size_in_bytes() const NOT_PRODUCT({ return _size_in_bytes; }) PRODUCT_RETURN0;
duke@435 290 void set_size_in_bytes(size_t size) NOT_PRODUCT({ _size_in_bytes = size; }) PRODUCT_RETURN;
duke@435 291 static void free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) PRODUCT_RETURN;
duke@435 292 static void free_all(char** start, char** end) PRODUCT_RETURN;
duke@435 293
duke@435 294 private:
duke@435 295 // Reset this Arena to empty, access will trigger grow if necessary
duke@435 296 void reset(void) {
duke@435 297 _first = _chunk = NULL;
duke@435 298 _hwm = _max = NULL;
duke@435 299 }
duke@435 300 };
duke@435 301
duke@435 302 // One of the following macros must be used when allocating
duke@435 303 // an array or object from an arena
jcoomes@2191 304 #define NEW_ARENA_ARRAY(arena, type, size) \
jcoomes@2191 305 (type*) (arena)->Amalloc((size) * sizeof(type))
duke@435 306
jcoomes@2191 307 #define REALLOC_ARENA_ARRAY(arena, type, old, old_size, new_size) \
jcoomes@2191 308 (type*) (arena)->Arealloc((char*)(old), (old_size) * sizeof(type), \
jcoomes@2191 309 (new_size) * sizeof(type) )
duke@435 310
jcoomes@2191 311 #define FREE_ARENA_ARRAY(arena, type, old, size) \
jcoomes@2191 312 (arena)->Afree((char*)(old), (size) * sizeof(type))
duke@435 313
jcoomes@2191 314 #define NEW_ARENA_OBJ(arena, type) \
duke@435 315 NEW_ARENA_ARRAY(arena, type, 1)
duke@435 316
duke@435 317
duke@435 318 //%note allocation_1
duke@435 319 extern char* resource_allocate_bytes(size_t size);
duke@435 320 extern char* resource_allocate_bytes(Thread* thread, size_t size);
duke@435 321 extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size);
duke@435 322 extern void resource_free_bytes( char *old, size_t size );
duke@435 323
duke@435 324 //----------------------------------------------------------------------
duke@435 325 // Base class for objects allocated in the resource area per default.
duke@435 326 // Optionally, objects may be allocated on the C heap with
duke@435 327 // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
duke@435 328 // ResourceObj's can be allocated within other objects, but don't use
duke@435 329 // new or delete (allocation_type is unknown). If new is used to allocate,
duke@435 330 // use delete to deallocate.
duke@435 331 class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
duke@435 332 public:
kvn@2040 333 enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
kvn@2043 334 static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
duke@435 335 #ifdef ASSERT
duke@435 336 private:
kvn@2040 337 // When this object is allocated on stack the new() operator is not
kvn@2040 338 // called but garbage on stack may look like a valid allocation_type.
kvn@2040 339 // Store negated 'this' pointer when new() is called to distinguish cases.
kvn@2040 340 uintptr_t _allocation;
duke@435 341 public:
kvn@2043 342 allocation_type get_allocation_type() const;
kvn@2043 343 bool allocated_on_stack() const { return get_allocation_type() == STACK_OR_EMBEDDED; }
kvn@2043 344 bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
kvn@2043 345 bool allocated_on_C_heap() const { return get_allocation_type() == C_HEAP; }
kvn@2043 346 bool allocated_on_arena() const { return get_allocation_type() == ARENA; }
kvn@2040 347 ResourceObj(); // default construtor
kvn@2040 348 ResourceObj(const ResourceObj& r); // default copy construtor
kvn@2040 349 ResourceObj& operator=(const ResourceObj& r); // default copy assignment
kvn@2040 350 ~ResourceObj();
duke@435 351 #endif // ASSERT
duke@435 352
duke@435 353 public:
duke@435 354 void* operator new(size_t size, allocation_type type);
duke@435 355 void* operator new(size_t size, Arena *arena) {
duke@435 356 address res = (address)arena->Amalloc(size);
kvn@2040 357 DEBUG_ONLY(set_allocation_type(res, ARENA);)
duke@435 358 return res;
duke@435 359 }
duke@435 360 void* operator new(size_t size) {
duke@435 361 address res = (address)resource_allocate_bytes(size);
kvn@2040 362 DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
duke@435 363 return res;
duke@435 364 }
duke@435 365 void operator delete(void* p);
duke@435 366 };
duke@435 367
duke@435 368 // One of the following macros must be used when allocating an array
duke@435 369 // or object to determine whether it should reside in the C heap on in
duke@435 370 // the resource area.
duke@435 371
duke@435 372 #define NEW_RESOURCE_ARRAY(type, size)\
duke@435 373 (type*) resource_allocate_bytes((size) * sizeof(type))
duke@435 374
duke@435 375 #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
duke@435 376 (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
duke@435 377
duke@435 378 #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
duke@435 379 (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type) )
duke@435 380
duke@435 381 #define FREE_RESOURCE_ARRAY(type, old, size)\
duke@435 382 resource_free_bytes((char*)(old), (size) * sizeof(type))
duke@435 383
duke@435 384 #define FREE_FAST(old)\
duke@435 385 /* nop */
duke@435 386
duke@435 387 #define NEW_RESOURCE_OBJ(type)\
duke@435 388 NEW_RESOURCE_ARRAY(type, 1)
duke@435 389
duke@435 390 #define NEW_C_HEAP_ARRAY(type, size)\
duke@435 391 (type*) (AllocateHeap((size) * sizeof(type), XSTR(type) " in " __FILE__))
duke@435 392
duke@435 393 #define REALLOC_C_HEAP_ARRAY(type, old, size)\
duke@435 394 (type*) (ReallocateHeap((char*)old, (size) * sizeof(type), XSTR(type) " in " __FILE__))
duke@435 395
duke@435 396 #define FREE_C_HEAP_ARRAY(type,old) \
duke@435 397 FreeHeap((char*)(old))
duke@435 398
duke@435 399 #define NEW_C_HEAP_OBJ(type)\
duke@435 400 NEW_C_HEAP_ARRAY(type, 1)
duke@435 401
duke@435 402 extern bool warn_new_operator;
duke@435 403
duke@435 404 // for statistics
duke@435 405 #ifndef PRODUCT
duke@435 406 class AllocStats : StackObj {
duke@435 407 int start_mallocs, start_frees;
duke@435 408 size_t start_malloc_bytes, start_res_bytes;
duke@435 409 public:
duke@435 410 AllocStats();
duke@435 411
duke@435 412 int num_mallocs(); // since creation of receiver
duke@435 413 size_t alloc_bytes();
duke@435 414 size_t resource_bytes();
duke@435 415 int num_frees();
duke@435 416 void print();
duke@435 417 };
duke@435 418 #endif
duke@435 419
duke@435 420
duke@435 421 //------------------------------ReallocMark---------------------------------
duke@435 422 // Code which uses REALLOC_RESOURCE_ARRAY should check an associated
duke@435 423 // ReallocMark, which is declared in the same scope as the reallocated
duke@435 424 // pointer. Any operation that could __potentially__ cause a reallocation
duke@435 425 // should check the ReallocMark.
duke@435 426 class ReallocMark: public StackObj {
duke@435 427 protected:
duke@435 428 NOT_PRODUCT(int _nesting;)
duke@435 429
duke@435 430 public:
duke@435 431 ReallocMark() PRODUCT_RETURN;
duke@435 432 void check() PRODUCT_RETURN;
duke@435 433 };
stefank@2314 434
stefank@2314 435 #endif // SHARE_VM_MEMORY_ALLOCATION_HPP

mercurial