src/cpu/x86/vm/c1_LIRGenerator_x86.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2228
07a218de38cb
child 2344
ac637b7220d1
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

duke@435 1 /*
iveresov@2138 2 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "c1/c1_Compilation.hpp"
stefank@2314 27 #include "c1/c1_FrameMap.hpp"
stefank@2314 28 #include "c1/c1_Instruction.hpp"
stefank@2314 29 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 30 #include "c1/c1_LIRGenerator.hpp"
stefank@2314 31 #include "c1/c1_Runtime1.hpp"
stefank@2314 32 #include "c1/c1_ValueStack.hpp"
stefank@2314 33 #include "ci/ciArray.hpp"
stefank@2314 34 #include "ci/ciObjArrayKlass.hpp"
stefank@2314 35 #include "ci/ciTypeArrayKlass.hpp"
stefank@2314 36 #include "runtime/sharedRuntime.hpp"
stefank@2314 37 #include "runtime/stubRoutines.hpp"
stefank@2314 38 #include "vmreg_x86.inline.hpp"
duke@435 39
duke@435 40 #ifdef ASSERT
duke@435 41 #define __ gen()->lir(__FILE__, __LINE__)->
duke@435 42 #else
duke@435 43 #define __ gen()->lir()->
duke@435 44 #endif
duke@435 45
duke@435 46 // Item will be loaded into a byte register; Intel only
duke@435 47 void LIRItem::load_byte_item() {
duke@435 48 load_item();
duke@435 49 LIR_Opr res = result();
duke@435 50
duke@435 51 if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
duke@435 52 // make sure that it is a byte register
duke@435 53 assert(!value()->type()->is_float() && !value()->type()->is_double(),
duke@435 54 "can't load floats in byte register");
duke@435 55 LIR_Opr reg = _gen->rlock_byte(T_BYTE);
duke@435 56 __ move(res, reg);
duke@435 57
duke@435 58 _result = reg;
duke@435 59 }
duke@435 60 }
duke@435 61
duke@435 62
duke@435 63 void LIRItem::load_nonconstant() {
duke@435 64 LIR_Opr r = value()->operand();
duke@435 65 if (r->is_constant()) {
duke@435 66 _result = r;
duke@435 67 } else {
duke@435 68 load_item();
duke@435 69 }
duke@435 70 }
duke@435 71
duke@435 72 //--------------------------------------------------------------
duke@435 73 // LIRGenerator
duke@435 74 //--------------------------------------------------------------
duke@435 75
duke@435 76
duke@435 77 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
duke@435 78 LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::rdx_opr; }
duke@435 79 LIR_Opr LIRGenerator::divInOpr() { return FrameMap::rax_opr; }
duke@435 80 LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::rax_opr; }
duke@435 81 LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::rdx_opr; }
duke@435 82 LIR_Opr LIRGenerator::shiftCountOpr() { return FrameMap::rcx_opr; }
duke@435 83 LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::rax_opr; }
duke@435 84 LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; }
duke@435 85
duke@435 86
duke@435 87 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
duke@435 88 LIR_Opr opr;
duke@435 89 switch (type->tag()) {
duke@435 90 case intTag: opr = FrameMap::rax_opr; break;
duke@435 91 case objectTag: opr = FrameMap::rax_oop_opr; break;
never@739 92 case longTag: opr = FrameMap::long0_opr; break;
duke@435 93 case floatTag: opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr : FrameMap::fpu0_float_opr; break;
duke@435 94 case doubleTag: opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr; break;
duke@435 95
duke@435 96 case addressTag:
duke@435 97 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
duke@435 98 }
duke@435 99
duke@435 100 assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
duke@435 101 return opr;
duke@435 102 }
duke@435 103
duke@435 104
duke@435 105 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
duke@435 106 LIR_Opr reg = new_register(T_INT);
duke@435 107 set_vreg_flag(reg, LIRGenerator::byte_reg);
duke@435 108 return reg;
duke@435 109 }
duke@435 110
duke@435 111
duke@435 112 //--------- loading items into registers --------------------------------
duke@435 113
duke@435 114
duke@435 115 // i486 instructions can inline constants
duke@435 116 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
duke@435 117 if (type == T_SHORT || type == T_CHAR) {
duke@435 118 // there is no immediate move of word values in asembler_i486.?pp
duke@435 119 return false;
duke@435 120 }
duke@435 121 Constant* c = v->as_Constant();
roland@2174 122 if (c && c->state_before() == NULL) {
duke@435 123 // constants of any type can be stored directly, except for
duke@435 124 // unloaded object constants.
duke@435 125 return true;
duke@435 126 }
duke@435 127 return false;
duke@435 128 }
duke@435 129
duke@435 130
duke@435 131 bool LIRGenerator::can_inline_as_constant(Value v) const {
never@739 132 if (v->type()->tag() == longTag) return false;
duke@435 133 return v->type()->tag() != objectTag ||
duke@435 134 (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
duke@435 135 }
duke@435 136
duke@435 137
duke@435 138 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
never@739 139 if (c->type() == T_LONG) return false;
duke@435 140 return c->type() != T_OBJECT || c->as_jobject() == NULL;
duke@435 141 }
duke@435 142
duke@435 143
duke@435 144 LIR_Opr LIRGenerator::safepoint_poll_register() {
duke@435 145 return LIR_OprFact::illegalOpr;
duke@435 146 }
duke@435 147
duke@435 148
duke@435 149 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
duke@435 150 int shift, int disp, BasicType type) {
duke@435 151 assert(base->is_register(), "must be");
duke@435 152 if (index->is_constant()) {
duke@435 153 return new LIR_Address(base,
duke@435 154 (index->as_constant_ptr()->as_jint() << shift) + disp,
duke@435 155 type);
duke@435 156 } else {
duke@435 157 return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
duke@435 158 }
duke@435 159 }
duke@435 160
duke@435 161
duke@435 162 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
duke@435 163 BasicType type, bool needs_card_mark) {
duke@435 164 int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
duke@435 165
duke@435 166 LIR_Address* addr;
duke@435 167 if (index_opr->is_constant()) {
kvn@464 168 int elem_size = type2aelembytes(type);
duke@435 169 addr = new LIR_Address(array_opr,
duke@435 170 offset_in_bytes + index_opr->as_jint() * elem_size, type);
duke@435 171 } else {
never@739 172 #ifdef _LP64
never@739 173 if (index_opr->type() == T_INT) {
never@739 174 LIR_Opr tmp = new_register(T_LONG);
never@739 175 __ convert(Bytecodes::_i2l, index_opr, tmp);
never@739 176 index_opr = tmp;
never@739 177 }
never@739 178 #endif // _LP64
duke@435 179 addr = new LIR_Address(array_opr,
duke@435 180 index_opr,
duke@435 181 LIR_Address::scale(type),
duke@435 182 offset_in_bytes, type);
duke@435 183 }
duke@435 184 if (needs_card_mark) {
duke@435 185 // This store will need a precise card mark, so go ahead and
duke@435 186 // compute the full adddres instead of computing once for the
duke@435 187 // store and again for the card mark.
never@739 188 LIR_Opr tmp = new_pointer_register();
duke@435 189 __ leal(LIR_OprFact::address(addr), tmp);
iveresov@1927 190 return new LIR_Address(tmp, type);
duke@435 191 } else {
duke@435 192 return addr;
duke@435 193 }
duke@435 194 }
duke@435 195
duke@435 196
iveresov@2138 197 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
iveresov@2138 198 LIR_Opr r;
iveresov@2138 199 if (type == T_LONG) {
iveresov@2138 200 r = LIR_OprFact::longConst(x);
iveresov@2138 201 } else if (type == T_INT) {
iveresov@2138 202 r = LIR_OprFact::intConst(x);
iveresov@2138 203 } else {
iveresov@2138 204 ShouldNotReachHere();
iveresov@2138 205 }
iveresov@2138 206 return r;
iveresov@2138 207 }
iveresov@2138 208
iveresov@2138 209 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
never@739 210 LIR_Opr pointer = new_pointer_register();
never@739 211 __ move(LIR_OprFact::intptrConst(counter), pointer);
iveresov@2138 212 LIR_Address* addr = new LIR_Address(pointer, type);
duke@435 213 increment_counter(addr, step);
duke@435 214 }
duke@435 215
duke@435 216
duke@435 217 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
duke@435 218 __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
duke@435 219 }
duke@435 220
duke@435 221 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
duke@435 222 __ cmp_mem_int(condition, base, disp, c, info);
duke@435 223 }
duke@435 224
duke@435 225
duke@435 226 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
duke@435 227 __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
duke@435 228 }
duke@435 229
duke@435 230
duke@435 231 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
duke@435 232 __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
duke@435 233 }
duke@435 234
duke@435 235
duke@435 236 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
duke@435 237 if (tmp->is_valid()) {
duke@435 238 if (is_power_of_2(c + 1)) {
duke@435 239 __ move(left, tmp);
duke@435 240 __ shift_left(left, log2_intptr(c + 1), left);
duke@435 241 __ sub(left, tmp, result);
duke@435 242 return true;
duke@435 243 } else if (is_power_of_2(c - 1)) {
duke@435 244 __ move(left, tmp);
duke@435 245 __ shift_left(left, log2_intptr(c - 1), left);
duke@435 246 __ add(left, tmp, result);
duke@435 247 return true;
duke@435 248 }
duke@435 249 }
duke@435 250 return false;
duke@435 251 }
duke@435 252
duke@435 253
duke@435 254 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
duke@435 255 BasicType type = item->type();
duke@435 256 __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
duke@435 257 }
duke@435 258
duke@435 259 //----------------------------------------------------------------------
duke@435 260 // visitor functions
duke@435 261 //----------------------------------------------------------------------
duke@435 262
duke@435 263
duke@435 264 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
roland@2174 265 assert(x->is_pinned(),"");
duke@435 266 bool needs_range_check = true;
duke@435 267 bool use_length = x->length() != NULL;
duke@435 268 bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
duke@435 269 bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
duke@435 270 !get_jobject_constant(x->value())->is_null_object());
duke@435 271
duke@435 272 LIRItem array(x->array(), this);
duke@435 273 LIRItem index(x->index(), this);
duke@435 274 LIRItem value(x->value(), this);
duke@435 275 LIRItem length(this);
duke@435 276
duke@435 277 array.load_item();
duke@435 278 index.load_nonconstant();
duke@435 279
duke@435 280 if (use_length) {
duke@435 281 needs_range_check = x->compute_needs_range_check();
duke@435 282 if (needs_range_check) {
duke@435 283 length.set_instruction(x->length());
duke@435 284 length.load_item();
duke@435 285 }
duke@435 286 }
duke@435 287 if (needs_store_check) {
duke@435 288 value.load_item();
duke@435 289 } else {
duke@435 290 value.load_for_store(x->elt_type());
duke@435 291 }
duke@435 292
duke@435 293 set_no_result(x);
duke@435 294
duke@435 295 // the CodeEmitInfo must be duplicated for each different
duke@435 296 // LIR-instruction because spilling can occur anywhere between two
duke@435 297 // instructions and so the debug information must be different
duke@435 298 CodeEmitInfo* range_check_info = state_for(x);
duke@435 299 CodeEmitInfo* null_check_info = NULL;
duke@435 300 if (x->needs_null_check()) {
duke@435 301 null_check_info = new CodeEmitInfo(range_check_info);
duke@435 302 }
duke@435 303
duke@435 304 // emit array address setup early so it schedules better
duke@435 305 LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
duke@435 306
duke@435 307 if (GenerateRangeChecks && needs_range_check) {
duke@435 308 if (use_length) {
duke@435 309 __ cmp(lir_cond_belowEqual, length.result(), index.result());
duke@435 310 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
duke@435 311 } else {
duke@435 312 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
duke@435 313 // range_check also does the null check
duke@435 314 null_check_info = NULL;
duke@435 315 }
duke@435 316 }
duke@435 317
duke@435 318 if (GenerateArrayStoreCheck && needs_store_check) {
duke@435 319 LIR_Opr tmp1 = new_register(objectType);
duke@435 320 LIR_Opr tmp2 = new_register(objectType);
duke@435 321 LIR_Opr tmp3 = new_register(objectType);
duke@435 322
duke@435 323 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
duke@435 324 __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info);
duke@435 325 }
duke@435 326
duke@435 327 if (obj_store) {
ysr@777 328 // Needs GC write barriers.
ysr@777 329 pre_barrier(LIR_OprFact::address(array_addr), false, NULL);
duke@435 330 __ move(value.result(), array_addr, null_check_info);
duke@435 331 // Seems to be a precise
duke@435 332 post_barrier(LIR_OprFact::address(array_addr), value.result());
duke@435 333 } else {
duke@435 334 __ move(value.result(), array_addr, null_check_info);
duke@435 335 }
duke@435 336 }
duke@435 337
duke@435 338
duke@435 339 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
roland@2174 340 assert(x->is_pinned(),"");
duke@435 341 LIRItem obj(x->obj(), this);
duke@435 342 obj.load_item();
duke@435 343
duke@435 344 set_no_result(x);
duke@435 345
duke@435 346 // "lock" stores the address of the monitor stack slot, so this is not an oop
duke@435 347 LIR_Opr lock = new_register(T_INT);
duke@435 348 // Need a scratch register for biased locking on x86
duke@435 349 LIR_Opr scratch = LIR_OprFact::illegalOpr;
duke@435 350 if (UseBiasedLocking) {
duke@435 351 scratch = new_register(T_INT);
duke@435 352 }
duke@435 353
duke@435 354 CodeEmitInfo* info_for_exception = NULL;
duke@435 355 if (x->needs_null_check()) {
roland@2174 356 info_for_exception = state_for(x);
duke@435 357 }
duke@435 358 // this CodeEmitInfo must not have the xhandlers because here the
duke@435 359 // object is already locked (xhandlers expect object to be unlocked)
duke@435 360 CodeEmitInfo* info = state_for(x, x->state(), true);
duke@435 361 monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
duke@435 362 x->monitor_no(), info_for_exception, info);
duke@435 363 }
duke@435 364
duke@435 365
duke@435 366 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
roland@2174 367 assert(x->is_pinned(),"");
duke@435 368
duke@435 369 LIRItem obj(x->obj(), this);
duke@435 370 obj.dont_load_item();
duke@435 371
duke@435 372 LIR_Opr lock = new_register(T_INT);
duke@435 373 LIR_Opr obj_temp = new_register(T_INT);
duke@435 374 set_no_result(x);
bobv@2036 375 monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
duke@435 376 }
duke@435 377
duke@435 378
duke@435 379 // _ineg, _lneg, _fneg, _dneg
duke@435 380 void LIRGenerator::do_NegateOp(NegateOp* x) {
duke@435 381 LIRItem value(x->x(), this);
duke@435 382 value.set_destroys_register();
duke@435 383 value.load_item();
duke@435 384 LIR_Opr reg = rlock(x);
duke@435 385 __ negate(value.result(), reg);
duke@435 386
duke@435 387 set_result(x, round_item(reg));
duke@435 388 }
duke@435 389
duke@435 390
duke@435 391 // for _fadd, _fmul, _fsub, _fdiv, _frem
duke@435 392 // _dadd, _dmul, _dsub, _ddiv, _drem
duke@435 393 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
duke@435 394 LIRItem left(x->x(), this);
duke@435 395 LIRItem right(x->y(), this);
duke@435 396 LIRItem* left_arg = &left;
duke@435 397 LIRItem* right_arg = &right;
duke@435 398 assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
duke@435 399 bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
duke@435 400 if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
duke@435 401 left.load_item();
duke@435 402 } else {
duke@435 403 left.dont_load_item();
duke@435 404 }
duke@435 405
duke@435 406 // do not load right operand if it is a constant. only 0 and 1 are
duke@435 407 // loaded because there are special instructions for loading them
duke@435 408 // without memory access (not needed for SSE2 instructions)
duke@435 409 bool must_load_right = false;
duke@435 410 if (right.is_constant()) {
duke@435 411 LIR_Const* c = right.result()->as_constant_ptr();
duke@435 412 assert(c != NULL, "invalid constant");
duke@435 413 assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
duke@435 414
duke@435 415 if (c->type() == T_FLOAT) {
duke@435 416 must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
duke@435 417 } else {
duke@435 418 must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
duke@435 419 }
duke@435 420 }
duke@435 421
duke@435 422 if (must_load_both) {
duke@435 423 // frem and drem destroy also right operand, so move it to a new register
duke@435 424 right.set_destroys_register();
duke@435 425 right.load_item();
duke@435 426 } else if (right.is_register() || must_load_right) {
duke@435 427 right.load_item();
duke@435 428 } else {
duke@435 429 right.dont_load_item();
duke@435 430 }
duke@435 431 LIR_Opr reg = rlock(x);
duke@435 432 LIR_Opr tmp = LIR_OprFact::illegalOpr;
duke@435 433 if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
duke@435 434 tmp = new_register(T_DOUBLE);
duke@435 435 }
duke@435 436
duke@435 437 if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
duke@435 438 // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
duke@435 439 LIR_Opr fpu0, fpu1;
duke@435 440 if (x->op() == Bytecodes::_frem) {
duke@435 441 fpu0 = LIR_OprFact::single_fpu(0);
duke@435 442 fpu1 = LIR_OprFact::single_fpu(1);
duke@435 443 } else {
duke@435 444 fpu0 = LIR_OprFact::double_fpu(0);
duke@435 445 fpu1 = LIR_OprFact::double_fpu(1);
duke@435 446 }
duke@435 447 __ move(right.result(), fpu1); // order of left and right operand is important!
duke@435 448 __ move(left.result(), fpu0);
duke@435 449 __ rem (fpu0, fpu1, fpu0);
duke@435 450 __ move(fpu0, reg);
duke@435 451
duke@435 452 } else {
duke@435 453 arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
duke@435 454 }
duke@435 455
duke@435 456 set_result(x, round_item(reg));
duke@435 457 }
duke@435 458
duke@435 459
duke@435 460 // for _ladd, _lmul, _lsub, _ldiv, _lrem
duke@435 461 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
duke@435 462 if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
duke@435 463 // long division is implemented as a direct call into the runtime
duke@435 464 LIRItem left(x->x(), this);
duke@435 465 LIRItem right(x->y(), this);
duke@435 466
duke@435 467 // the check for division by zero destroys the right operand
duke@435 468 right.set_destroys_register();
duke@435 469
duke@435 470 BasicTypeList signature(2);
duke@435 471 signature.append(T_LONG);
duke@435 472 signature.append(T_LONG);
duke@435 473 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
duke@435 474
duke@435 475 // check for division by zero (destroys registers of right operand!)
duke@435 476 CodeEmitInfo* info = state_for(x);
duke@435 477
duke@435 478 const LIR_Opr result_reg = result_register_for(x->type());
duke@435 479 left.load_item_force(cc->at(1));
duke@435 480 right.load_item();
duke@435 481
duke@435 482 __ move(right.result(), cc->at(0));
duke@435 483
duke@435 484 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
duke@435 485 __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
duke@435 486
duke@435 487 address entry;
duke@435 488 switch (x->op()) {
duke@435 489 case Bytecodes::_lrem:
duke@435 490 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
duke@435 491 break; // check if dividend is 0 is done elsewhere
duke@435 492 case Bytecodes::_ldiv:
duke@435 493 entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
duke@435 494 break; // check if dividend is 0 is done elsewhere
duke@435 495 case Bytecodes::_lmul:
duke@435 496 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
duke@435 497 break;
duke@435 498 default:
duke@435 499 ShouldNotReachHere();
duke@435 500 }
duke@435 501
duke@435 502 LIR_Opr result = rlock_result(x);
duke@435 503 __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
duke@435 504 __ move(result_reg, result);
duke@435 505 } else if (x->op() == Bytecodes::_lmul) {
duke@435 506 // missing test if instr is commutative and if we should swap
duke@435 507 LIRItem left(x->x(), this);
duke@435 508 LIRItem right(x->y(), this);
duke@435 509
duke@435 510 // right register is destroyed by the long mul, so it must be
duke@435 511 // copied to a new register.
duke@435 512 right.set_destroys_register();
duke@435 513
duke@435 514 left.load_item();
duke@435 515 right.load_item();
duke@435 516
never@739 517 LIR_Opr reg = FrameMap::long0_opr;
duke@435 518 arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
duke@435 519 LIR_Opr result = rlock_result(x);
duke@435 520 __ move(reg, result);
duke@435 521 } else {
duke@435 522 // missing test if instr is commutative and if we should swap
duke@435 523 LIRItem left(x->x(), this);
duke@435 524 LIRItem right(x->y(), this);
duke@435 525
duke@435 526 left.load_item();
twisti@1040 527 // don't load constants to save register
duke@435 528 right.load_nonconstant();
duke@435 529 rlock_result(x);
duke@435 530 arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
duke@435 531 }
duke@435 532 }
duke@435 533
duke@435 534
duke@435 535
duke@435 536 // for: _iadd, _imul, _isub, _idiv, _irem
duke@435 537 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
duke@435 538 if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
duke@435 539 // The requirements for division and modulo
duke@435 540 // input : rax,: dividend min_int
duke@435 541 // reg: divisor (may not be rax,/rdx) -1
duke@435 542 //
duke@435 543 // output: rax,: quotient (= rax, idiv reg) min_int
duke@435 544 // rdx: remainder (= rax, irem reg) 0
duke@435 545
duke@435 546 // rax, and rdx will be destroyed
duke@435 547
duke@435 548 // Note: does this invalidate the spec ???
duke@435 549 LIRItem right(x->y(), this);
duke@435 550 LIRItem left(x->x() , this); // visit left second, so that the is_register test is valid
duke@435 551
duke@435 552 // call state_for before load_item_force because state_for may
duke@435 553 // force the evaluation of other instructions that are needed for
duke@435 554 // correct debug info. Otherwise the live range of the fix
duke@435 555 // register might be too long.
duke@435 556 CodeEmitInfo* info = state_for(x);
duke@435 557
duke@435 558 left.load_item_force(divInOpr());
duke@435 559
duke@435 560 right.load_item();
duke@435 561
duke@435 562 LIR_Opr result = rlock_result(x);
duke@435 563 LIR_Opr result_reg;
duke@435 564 if (x->op() == Bytecodes::_idiv) {
duke@435 565 result_reg = divOutOpr();
duke@435 566 } else {
duke@435 567 result_reg = remOutOpr();
duke@435 568 }
duke@435 569
duke@435 570 if (!ImplicitDiv0Checks) {
duke@435 571 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
duke@435 572 __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
duke@435 573 }
duke@435 574 LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
duke@435 575 if (x->op() == Bytecodes::_irem) {
duke@435 576 __ irem(left.result(), right.result(), result_reg, tmp, info);
duke@435 577 } else if (x->op() == Bytecodes::_idiv) {
duke@435 578 __ idiv(left.result(), right.result(), result_reg, tmp, info);
duke@435 579 } else {
duke@435 580 ShouldNotReachHere();
duke@435 581 }
duke@435 582
duke@435 583 __ move(result_reg, result);
duke@435 584 } else {
duke@435 585 // missing test if instr is commutative and if we should swap
duke@435 586 LIRItem left(x->x(), this);
duke@435 587 LIRItem right(x->y(), this);
duke@435 588 LIRItem* left_arg = &left;
duke@435 589 LIRItem* right_arg = &right;
duke@435 590 if (x->is_commutative() && left.is_stack() && right.is_register()) {
duke@435 591 // swap them if left is real stack (or cached) and right is real register(not cached)
duke@435 592 left_arg = &right;
duke@435 593 right_arg = &left;
duke@435 594 }
duke@435 595
duke@435 596 left_arg->load_item();
duke@435 597
duke@435 598 // do not need to load right, as we can handle stack and constants
duke@435 599 if (x->op() == Bytecodes::_imul ) {
duke@435 600 // check if we can use shift instead
duke@435 601 bool use_constant = false;
duke@435 602 bool use_tmp = false;
duke@435 603 if (right_arg->is_constant()) {
duke@435 604 int iconst = right_arg->get_jint_constant();
duke@435 605 if (iconst > 0) {
duke@435 606 if (is_power_of_2(iconst)) {
duke@435 607 use_constant = true;
duke@435 608 } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
duke@435 609 use_constant = true;
duke@435 610 use_tmp = true;
duke@435 611 }
duke@435 612 }
duke@435 613 }
duke@435 614 if (use_constant) {
duke@435 615 right_arg->dont_load_item();
duke@435 616 } else {
duke@435 617 right_arg->load_item();
duke@435 618 }
duke@435 619 LIR_Opr tmp = LIR_OprFact::illegalOpr;
duke@435 620 if (use_tmp) {
duke@435 621 tmp = new_register(T_INT);
duke@435 622 }
duke@435 623 rlock_result(x);
duke@435 624
duke@435 625 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
duke@435 626 } else {
duke@435 627 right_arg->dont_load_item();
duke@435 628 rlock_result(x);
duke@435 629 LIR_Opr tmp = LIR_OprFact::illegalOpr;
duke@435 630 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
duke@435 631 }
duke@435 632 }
duke@435 633 }
duke@435 634
duke@435 635
duke@435 636 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
duke@435 637 // when an operand with use count 1 is the left operand, then it is
duke@435 638 // likely that no move for 2-operand-LIR-form is necessary
duke@435 639 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
duke@435 640 x->swap_operands();
duke@435 641 }
duke@435 642
duke@435 643 ValueTag tag = x->type()->tag();
duke@435 644 assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
duke@435 645 switch (tag) {
duke@435 646 case floatTag:
duke@435 647 case doubleTag: do_ArithmeticOp_FPU(x); return;
duke@435 648 case longTag: do_ArithmeticOp_Long(x); return;
duke@435 649 case intTag: do_ArithmeticOp_Int(x); return;
duke@435 650 }
duke@435 651 ShouldNotReachHere();
duke@435 652 }
duke@435 653
duke@435 654
duke@435 655 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
duke@435 656 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
duke@435 657 // count must always be in rcx
duke@435 658 LIRItem value(x->x(), this);
duke@435 659 LIRItem count(x->y(), this);
duke@435 660
duke@435 661 ValueTag elemType = x->type()->tag();
duke@435 662 bool must_load_count = !count.is_constant() || elemType == longTag;
duke@435 663 if (must_load_count) {
duke@435 664 // count for long must be in register
duke@435 665 count.load_item_force(shiftCountOpr());
duke@435 666 } else {
duke@435 667 count.dont_load_item();
duke@435 668 }
duke@435 669 value.load_item();
duke@435 670 LIR_Opr reg = rlock_result(x);
duke@435 671
duke@435 672 shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
duke@435 673 }
duke@435 674
duke@435 675
duke@435 676 // _iand, _land, _ior, _lor, _ixor, _lxor
duke@435 677 void LIRGenerator::do_LogicOp(LogicOp* x) {
duke@435 678 // when an operand with use count 1 is the left operand, then it is
duke@435 679 // likely that no move for 2-operand-LIR-form is necessary
duke@435 680 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
duke@435 681 x->swap_operands();
duke@435 682 }
duke@435 683
duke@435 684 LIRItem left(x->x(), this);
duke@435 685 LIRItem right(x->y(), this);
duke@435 686
duke@435 687 left.load_item();
duke@435 688 right.load_nonconstant();
duke@435 689 LIR_Opr reg = rlock_result(x);
duke@435 690
duke@435 691 logic_op(x->op(), reg, left.result(), right.result());
duke@435 692 }
duke@435 693
duke@435 694
duke@435 695
duke@435 696 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
duke@435 697 void LIRGenerator::do_CompareOp(CompareOp* x) {
duke@435 698 LIRItem left(x->x(), this);
duke@435 699 LIRItem right(x->y(), this);
duke@435 700 ValueTag tag = x->x()->type()->tag();
duke@435 701 if (tag == longTag) {
duke@435 702 left.set_destroys_register();
duke@435 703 }
duke@435 704 left.load_item();
duke@435 705 right.load_item();
duke@435 706 LIR_Opr reg = rlock_result(x);
duke@435 707
duke@435 708 if (x->x()->type()->is_float_kind()) {
duke@435 709 Bytecodes::Code code = x->op();
duke@435 710 __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
duke@435 711 } else if (x->x()->type()->tag() == longTag) {
duke@435 712 __ lcmp2int(left.result(), right.result(), reg);
duke@435 713 } else {
duke@435 714 Unimplemented();
duke@435 715 }
duke@435 716 }
duke@435 717
duke@435 718
duke@435 719 void LIRGenerator::do_AttemptUpdate(Intrinsic* x) {
duke@435 720 assert(x->number_of_arguments() == 3, "wrong type");
duke@435 721 LIRItem obj (x->argument_at(0), this); // AtomicLong object
duke@435 722 LIRItem cmp_value (x->argument_at(1), this); // value to compare with field
duke@435 723 LIRItem new_value (x->argument_at(2), this); // replace field with new_value if it matches cmp_value
duke@435 724
duke@435 725 // compare value must be in rdx,eax (hi,lo); may be destroyed by cmpxchg8 instruction
never@739 726 cmp_value.load_item_force(FrameMap::long0_opr);
duke@435 727
duke@435 728 // new value must be in rcx,ebx (hi,lo)
never@739 729 new_value.load_item_force(FrameMap::long1_opr);
duke@435 730
duke@435 731 // object pointer register is overwritten with field address
duke@435 732 obj.load_item();
duke@435 733
duke@435 734 // generate compare-and-swap; produces zero condition if swap occurs
duke@435 735 int value_offset = sun_misc_AtomicLongCSImpl::value_offset();
duke@435 736 LIR_Opr addr = obj.result();
duke@435 737 __ add(addr, LIR_OprFact::intConst(value_offset), addr);
duke@435 738 LIR_Opr t1 = LIR_OprFact::illegalOpr; // no temp needed
duke@435 739 LIR_Opr t2 = LIR_OprFact::illegalOpr; // no temp needed
duke@435 740 __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);
duke@435 741
duke@435 742 // generate conditional move of boolean result
duke@435 743 LIR_Opr result = rlock_result(x);
duke@435 744 __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
duke@435 745 }
duke@435 746
duke@435 747
duke@435 748 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
duke@435 749 assert(x->number_of_arguments() == 4, "wrong type");
duke@435 750 LIRItem obj (x->argument_at(0), this); // object
duke@435 751 LIRItem offset(x->argument_at(1), this); // offset of field
duke@435 752 LIRItem cmp (x->argument_at(2), this); // value to compare with field
duke@435 753 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
duke@435 754
duke@435 755 assert(obj.type()->tag() == objectTag, "invalid type");
never@739 756
never@739 757 // In 64bit the type can be long, sparc doesn't have this assert
never@739 758 // assert(offset.type()->tag() == intTag, "invalid type");
never@739 759
duke@435 760 assert(cmp.type()->tag() == type->tag(), "invalid type");
duke@435 761 assert(val.type()->tag() == type->tag(), "invalid type");
duke@435 762
duke@435 763 // get address of field
duke@435 764 obj.load_item();
duke@435 765 offset.load_nonconstant();
duke@435 766
duke@435 767 if (type == objectType) {
duke@435 768 cmp.load_item_force(FrameMap::rax_oop_opr);
duke@435 769 val.load_item();
duke@435 770 } else if (type == intType) {
duke@435 771 cmp.load_item_force(FrameMap::rax_opr);
duke@435 772 val.load_item();
duke@435 773 } else if (type == longType) {
never@739 774 cmp.load_item_force(FrameMap::long0_opr);
never@739 775 val.load_item_force(FrameMap::long1_opr);
duke@435 776 } else {
duke@435 777 ShouldNotReachHere();
duke@435 778 }
duke@435 779
never@2228 780 LIR_Opr addr = new_pointer_register();
roland@1495 781 LIR_Address* a;
roland@1495 782 if(offset.result()->is_constant()) {
roland@1495 783 a = new LIR_Address(obj.result(),
roland@1495 784 NOT_LP64(offset.result()->as_constant_ptr()->as_jint()) LP64_ONLY((int)offset.result()->as_constant_ptr()->as_jlong()),
roland@1495 785 as_BasicType(type));
roland@1495 786 } else {
roland@1495 787 a = new LIR_Address(obj.result(),
roland@1495 788 offset.result(),
roland@1495 789 LIR_Address::times_1,
roland@1495 790 0,
roland@1495 791 as_BasicType(type));
roland@1495 792 }
roland@1495 793 __ leal(LIR_OprFact::address(a), addr);
duke@435 794
ysr@777 795 if (type == objectType) { // Write-barrier needed for Object fields.
ysr@777 796 // Do the pre-write barrier, if any.
ysr@777 797 pre_barrier(addr, false, NULL);
ysr@777 798 }
duke@435 799
duke@435 800 LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience
duke@435 801 if (type == objectType)
duke@435 802 __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
duke@435 803 else if (type == intType)
duke@435 804 __ cas_int(addr, cmp.result(), val.result(), ill, ill);
duke@435 805 else if (type == longType)
duke@435 806 __ cas_long(addr, cmp.result(), val.result(), ill, ill);
duke@435 807 else {
duke@435 808 ShouldNotReachHere();
duke@435 809 }
duke@435 810
duke@435 811 // generate conditional move of boolean result
duke@435 812 LIR_Opr result = rlock_result(x);
duke@435 813 __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
duke@435 814 if (type == objectType) { // Write-barrier needed for Object fields.
duke@435 815 // Seems to be precise
duke@435 816 post_barrier(addr, val.result());
duke@435 817 }
duke@435 818 }
duke@435 819
duke@435 820
duke@435 821 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
duke@435 822 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 823 LIRItem value(x->argument_at(0), this);
duke@435 824
duke@435 825 bool use_fpu = false;
duke@435 826 if (UseSSE >= 2) {
duke@435 827 switch(x->id()) {
duke@435 828 case vmIntrinsics::_dsin:
duke@435 829 case vmIntrinsics::_dcos:
duke@435 830 case vmIntrinsics::_dtan:
duke@435 831 case vmIntrinsics::_dlog:
duke@435 832 case vmIntrinsics::_dlog10:
duke@435 833 use_fpu = true;
duke@435 834 }
duke@435 835 } else {
duke@435 836 value.set_destroys_register();
duke@435 837 }
duke@435 838
duke@435 839 value.load_item();
duke@435 840
duke@435 841 LIR_Opr calc_input = value.result();
duke@435 842 LIR_Opr calc_result = rlock_result(x);
duke@435 843
duke@435 844 // sin and cos need two free fpu stack slots, so register two temporary operands
duke@435 845 LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
duke@435 846 LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
duke@435 847
duke@435 848 if (use_fpu) {
duke@435 849 LIR_Opr tmp = FrameMap::fpu0_double_opr;
duke@435 850 __ move(calc_input, tmp);
duke@435 851
duke@435 852 calc_input = tmp;
duke@435 853 calc_result = tmp;
duke@435 854 tmp1 = FrameMap::caller_save_fpu_reg_at(1);
duke@435 855 tmp2 = FrameMap::caller_save_fpu_reg_at(2);
duke@435 856 }
duke@435 857
duke@435 858 switch(x->id()) {
duke@435 859 case vmIntrinsics::_dabs: __ abs (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
duke@435 860 case vmIntrinsics::_dsqrt: __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
duke@435 861 case vmIntrinsics::_dsin: __ sin (calc_input, calc_result, tmp1, tmp2); break;
duke@435 862 case vmIntrinsics::_dcos: __ cos (calc_input, calc_result, tmp1, tmp2); break;
duke@435 863 case vmIntrinsics::_dtan: __ tan (calc_input, calc_result, tmp1, tmp2); break;
never@1388 864 case vmIntrinsics::_dlog: __ log (calc_input, calc_result, tmp1); break;
never@1388 865 case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1); break;
duke@435 866 default: ShouldNotReachHere();
duke@435 867 }
duke@435 868
duke@435 869 if (use_fpu) {
duke@435 870 __ move(calc_result, x->operand());
duke@435 871 }
duke@435 872 }
duke@435 873
duke@435 874
duke@435 875 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
duke@435 876 assert(x->number_of_arguments() == 5, "wrong type");
duke@435 877 LIRItem src(x->argument_at(0), this);
duke@435 878 LIRItem src_pos(x->argument_at(1), this);
duke@435 879 LIRItem dst(x->argument_at(2), this);
duke@435 880 LIRItem dst_pos(x->argument_at(3), this);
duke@435 881 LIRItem length(x->argument_at(4), this);
duke@435 882
duke@435 883 // operands for arraycopy must use fixed registers, otherwise
duke@435 884 // LinearScan will fail allocation (because arraycopy always needs a
duke@435 885 // call)
never@739 886
never@739 887 #ifndef _LP64
duke@435 888 src.load_item_force (FrameMap::rcx_oop_opr);
duke@435 889 src_pos.load_item_force (FrameMap::rdx_opr);
duke@435 890 dst.load_item_force (FrameMap::rax_oop_opr);
duke@435 891 dst_pos.load_item_force (FrameMap::rbx_opr);
duke@435 892 length.load_item_force (FrameMap::rdi_opr);
duke@435 893 LIR_Opr tmp = (FrameMap::rsi_opr);
never@739 894 #else
never@739 895
never@739 896 // The java calling convention will give us enough registers
never@739 897 // so that on the stub side the args will be perfect already.
never@739 898 // On the other slow/special case side we call C and the arg
never@739 899 // positions are not similar enough to pick one as the best.
never@739 900 // Also because the java calling convention is a "shifted" version
never@739 901 // of the C convention we can process the java args trivially into C
never@739 902 // args without worry of overwriting during the xfer
never@739 903
never@739 904 src.load_item_force (FrameMap::as_oop_opr(j_rarg0));
never@739 905 src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
never@739 906 dst.load_item_force (FrameMap::as_oop_opr(j_rarg2));
never@739 907 dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
never@739 908 length.load_item_force (FrameMap::as_opr(j_rarg4));
never@739 909
never@739 910 LIR_Opr tmp = FrameMap::as_opr(j_rarg5);
never@739 911 #endif // LP64
never@739 912
duke@435 913 set_no_result(x);
duke@435 914
duke@435 915 int flags;
duke@435 916 ciArrayKlass* expected_type;
duke@435 917 arraycopy_helper(x, &flags, &expected_type);
duke@435 918
duke@435 919 CodeEmitInfo* info = state_for(x, x->state()); // we may want to have stack (deoptimization?)
duke@435 920 __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
duke@435 921 }
duke@435 922
duke@435 923
duke@435 924 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
duke@435 925 // _i2b, _i2c, _i2s
duke@435 926 LIR_Opr fixed_register_for(BasicType type) {
duke@435 927 switch (type) {
duke@435 928 case T_FLOAT: return FrameMap::fpu0_float_opr;
duke@435 929 case T_DOUBLE: return FrameMap::fpu0_double_opr;
duke@435 930 case T_INT: return FrameMap::rax_opr;
never@739 931 case T_LONG: return FrameMap::long0_opr;
duke@435 932 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
duke@435 933 }
duke@435 934 }
duke@435 935
duke@435 936 void LIRGenerator::do_Convert(Convert* x) {
duke@435 937 // flags that vary for the different operations and different SSE-settings
duke@435 938 bool fixed_input, fixed_result, round_result, needs_stub;
duke@435 939
duke@435 940 switch (x->op()) {
duke@435 941 case Bytecodes::_i2l: // fall through
duke@435 942 case Bytecodes::_l2i: // fall through
duke@435 943 case Bytecodes::_i2b: // fall through
duke@435 944 case Bytecodes::_i2c: // fall through
duke@435 945 case Bytecodes::_i2s: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
duke@435 946
duke@435 947 case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false; round_result = false; needs_stub = false; break;
duke@435 948 case Bytecodes::_d2f: fixed_input = false; fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
duke@435 949 case Bytecodes::_i2f: fixed_input = false; fixed_result = false; round_result = UseSSE < 1; needs_stub = false; break;
duke@435 950 case Bytecodes::_i2d: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
duke@435 951 case Bytecodes::_f2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
duke@435 952 case Bytecodes::_d2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
duke@435 953 case Bytecodes::_l2f: fixed_input = false; fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
duke@435 954 case Bytecodes::_l2d: fixed_input = false; fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
duke@435 955 case Bytecodes::_f2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
duke@435 956 case Bytecodes::_d2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
duke@435 957 default: ShouldNotReachHere();
duke@435 958 }
duke@435 959
duke@435 960 LIRItem value(x->value(), this);
duke@435 961 value.load_item();
duke@435 962 LIR_Opr input = value.result();
duke@435 963 LIR_Opr result = rlock(x);
duke@435 964
duke@435 965 // arguments of lir_convert
duke@435 966 LIR_Opr conv_input = input;
duke@435 967 LIR_Opr conv_result = result;
duke@435 968 ConversionStub* stub = NULL;
duke@435 969
duke@435 970 if (fixed_input) {
duke@435 971 conv_input = fixed_register_for(input->type());
duke@435 972 __ move(input, conv_input);
duke@435 973 }
duke@435 974
duke@435 975 assert(fixed_result == false || round_result == false, "cannot set both");
duke@435 976 if (fixed_result) {
duke@435 977 conv_result = fixed_register_for(result->type());
duke@435 978 } else if (round_result) {
duke@435 979 result = new_register(result->type());
duke@435 980 set_vreg_flag(result, must_start_in_memory);
duke@435 981 }
duke@435 982
duke@435 983 if (needs_stub) {
duke@435 984 stub = new ConversionStub(x->op(), conv_input, conv_result);
duke@435 985 }
duke@435 986
duke@435 987 __ convert(x->op(), conv_input, conv_result, stub);
duke@435 988
duke@435 989 if (result != conv_result) {
duke@435 990 __ move(conv_result, result);
duke@435 991 }
duke@435 992
duke@435 993 assert(result->is_virtual(), "result must be virtual register");
duke@435 994 set_result(x, result);
duke@435 995 }
duke@435 996
duke@435 997
duke@435 998 void LIRGenerator::do_NewInstance(NewInstance* x) {
roland@2174 999 #ifndef PRODUCT
duke@435 1000 if (PrintNotLoaded && !x->klass()->is_loaded()) {
roland@2174 1001 tty->print_cr(" ###class not loaded at new bci %d", x->printable_bci());
duke@435 1002 }
roland@2174 1003 #endif
duke@435 1004 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1005 LIR_Opr reg = result_register_for(x->type());
duke@435 1006 LIR_Opr klass_reg = new_register(objectType);
duke@435 1007 new_instance(reg, x->klass(),
duke@435 1008 FrameMap::rcx_oop_opr,
duke@435 1009 FrameMap::rdi_oop_opr,
duke@435 1010 FrameMap::rsi_oop_opr,
duke@435 1011 LIR_OprFact::illegalOpr,
duke@435 1012 FrameMap::rdx_oop_opr, info);
duke@435 1013 LIR_Opr result = rlock_result(x);
duke@435 1014 __ move(reg, result);
duke@435 1015 }
duke@435 1016
duke@435 1017
duke@435 1018 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
duke@435 1019 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1020
duke@435 1021 LIRItem length(x->length(), this);
duke@435 1022 length.load_item_force(FrameMap::rbx_opr);
duke@435 1023
duke@435 1024 LIR_Opr reg = result_register_for(x->type());
duke@435 1025 LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
duke@435 1026 LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
duke@435 1027 LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
duke@435 1028 LIR_Opr tmp4 = reg;
duke@435 1029 LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
duke@435 1030 LIR_Opr len = length.result();
duke@435 1031 BasicType elem_type = x->elt_type();
duke@435 1032
jrose@1424 1033 __ oop2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
duke@435 1034
duke@435 1035 CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
duke@435 1036 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
duke@435 1037
duke@435 1038 LIR_Opr result = rlock_result(x);
duke@435 1039 __ move(reg, result);
duke@435 1040 }
duke@435 1041
duke@435 1042
duke@435 1043 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
duke@435 1044 LIRItem length(x->length(), this);
duke@435 1045 // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
duke@435 1046 // and therefore provide the state before the parameters have been consumed
duke@435 1047 CodeEmitInfo* patching_info = NULL;
duke@435 1048 if (!x->klass()->is_loaded() || PatchALot) {
duke@435 1049 patching_info = state_for(x, x->state_before());
duke@435 1050 }
duke@435 1051
duke@435 1052 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1053
duke@435 1054 const LIR_Opr reg = result_register_for(x->type());
duke@435 1055 LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
duke@435 1056 LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
duke@435 1057 LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
duke@435 1058 LIR_Opr tmp4 = reg;
duke@435 1059 LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
duke@435 1060
duke@435 1061 length.load_item_force(FrameMap::rbx_opr);
duke@435 1062 LIR_Opr len = length.result();
duke@435 1063
duke@435 1064 CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
duke@435 1065 ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
duke@435 1066 if (obj == ciEnv::unloaded_ciobjarrayklass()) {
duke@435 1067 BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
duke@435 1068 }
duke@435 1069 jobject2reg_with_patching(klass_reg, obj, patching_info);
duke@435 1070 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
duke@435 1071
duke@435 1072 LIR_Opr result = rlock_result(x);
duke@435 1073 __ move(reg, result);
duke@435 1074 }
duke@435 1075
duke@435 1076
duke@435 1077 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
duke@435 1078 Values* dims = x->dims();
duke@435 1079 int i = dims->length();
duke@435 1080 LIRItemList* items = new LIRItemList(dims->length(), NULL);
duke@435 1081 while (i-- > 0) {
duke@435 1082 LIRItem* size = new LIRItem(dims->at(i), this);
duke@435 1083 items->at_put(i, size);
duke@435 1084 }
duke@435 1085
never@1368 1086 // Evaluate state_for early since it may emit code.
duke@435 1087 CodeEmitInfo* patching_info = NULL;
duke@435 1088 if (!x->klass()->is_loaded() || PatchALot) {
duke@435 1089 patching_info = state_for(x, x->state_before());
duke@435 1090
duke@435 1091 // cannot re-use same xhandlers for multiple CodeEmitInfos, so
never@1368 1092 // clone all handlers. This is handled transparently in other
never@1368 1093 // places by the CodeEmitInfo cloning logic but is handled
never@1368 1094 // specially here because a stub isn't being used.
duke@435 1095 x->set_exception_handlers(new XHandlers(x->exception_handlers()));
duke@435 1096 }
duke@435 1097 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1098
duke@435 1099 i = dims->length();
duke@435 1100 while (i-- > 0) {
duke@435 1101 LIRItem* size = items->at(i);
duke@435 1102 size->load_nonconstant();
duke@435 1103
duke@435 1104 store_stack_parameter(size->result(), in_ByteSize(i*4));
duke@435 1105 }
duke@435 1106
duke@435 1107 LIR_Opr reg = result_register_for(x->type());
duke@435 1108 jobject2reg_with_patching(reg, x->klass(), patching_info);
duke@435 1109
duke@435 1110 LIR_Opr rank = FrameMap::rbx_opr;
duke@435 1111 __ move(LIR_OprFact::intConst(x->rank()), rank);
duke@435 1112 LIR_Opr varargs = FrameMap::rcx_opr;
duke@435 1113 __ move(FrameMap::rsp_opr, varargs);
duke@435 1114 LIR_OprList* args = new LIR_OprList(3);
duke@435 1115 args->append(reg);
duke@435 1116 args->append(rank);
duke@435 1117 args->append(varargs);
duke@435 1118 __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
duke@435 1119 LIR_OprFact::illegalOpr,
duke@435 1120 reg, args, info);
duke@435 1121
duke@435 1122 LIR_Opr result = rlock_result(x);
duke@435 1123 __ move(reg, result);
duke@435 1124 }
duke@435 1125
duke@435 1126
duke@435 1127 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
duke@435 1128 // nothing to do for now
duke@435 1129 }
duke@435 1130
duke@435 1131
duke@435 1132 void LIRGenerator::do_CheckCast(CheckCast* x) {
duke@435 1133 LIRItem obj(x->obj(), this);
duke@435 1134
duke@435 1135 CodeEmitInfo* patching_info = NULL;
duke@435 1136 if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
duke@435 1137 // must do this before locking the destination register as an oop register,
duke@435 1138 // and before the obj is loaded (the latter is for deoptimization)
duke@435 1139 patching_info = state_for(x, x->state_before());
duke@435 1140 }
duke@435 1141 obj.load_item();
duke@435 1142
duke@435 1143 // info for exceptions
roland@2174 1144 CodeEmitInfo* info_for_exception = state_for(x);
duke@435 1145
duke@435 1146 CodeStub* stub;
duke@435 1147 if (x->is_incompatible_class_change_check()) {
duke@435 1148 assert(patching_info == NULL, "can't patch this");
duke@435 1149 stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
duke@435 1150 } else {
duke@435 1151 stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
duke@435 1152 }
duke@435 1153 LIR_Opr reg = rlock_result(x);
duke@435 1154 __ checkcast(reg, obj.result(), x->klass(),
duke@435 1155 new_register(objectType), new_register(objectType),
duke@435 1156 !x->klass()->is_loaded() ? new_register(objectType) : LIR_OprFact::illegalOpr,
duke@435 1157 x->direct_compare(), info_for_exception, patching_info, stub,
duke@435 1158 x->profiled_method(), x->profiled_bci());
duke@435 1159 }
duke@435 1160
duke@435 1161
duke@435 1162 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
duke@435 1163 LIRItem obj(x->obj(), this);
duke@435 1164
duke@435 1165 // result and test object may not be in same register
duke@435 1166 LIR_Opr reg = rlock_result(x);
duke@435 1167 CodeEmitInfo* patching_info = NULL;
duke@435 1168 if ((!x->klass()->is_loaded() || PatchALot)) {
duke@435 1169 // must do this before locking the destination register as an oop register
duke@435 1170 patching_info = state_for(x, x->state_before());
duke@435 1171 }
duke@435 1172 obj.load_item();
duke@435 1173 __ instanceof(reg, obj.result(), x->klass(),
iveresov@2146 1174 new_register(objectType), new_register(objectType),
iveresov@2146 1175 !x->klass()->is_loaded() ? new_register(objectType) : LIR_OprFact::illegalOpr,
iveresov@2146 1176 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
duke@435 1177 }
duke@435 1178
duke@435 1179
duke@435 1180 void LIRGenerator::do_If(If* x) {
duke@435 1181 assert(x->number_of_sux() == 2, "inconsistency");
duke@435 1182 ValueTag tag = x->x()->type()->tag();
duke@435 1183 bool is_safepoint = x->is_safepoint();
duke@435 1184
duke@435 1185 If::Condition cond = x->cond();
duke@435 1186
duke@435 1187 LIRItem xitem(x->x(), this);
duke@435 1188 LIRItem yitem(x->y(), this);
duke@435 1189 LIRItem* xin = &xitem;
duke@435 1190 LIRItem* yin = &yitem;
duke@435 1191
duke@435 1192 if (tag == longTag) {
duke@435 1193 // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
duke@435 1194 // mirror for other conditions
duke@435 1195 if (cond == If::gtr || cond == If::leq) {
duke@435 1196 cond = Instruction::mirror(cond);
duke@435 1197 xin = &yitem;
duke@435 1198 yin = &xitem;
duke@435 1199 }
duke@435 1200 xin->set_destroys_register();
duke@435 1201 }
duke@435 1202 xin->load_item();
duke@435 1203 if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
duke@435 1204 // inline long zero
duke@435 1205 yin->dont_load_item();
duke@435 1206 } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
duke@435 1207 // longs cannot handle constants at right side
duke@435 1208 yin->load_item();
duke@435 1209 } else {
duke@435 1210 yin->dont_load_item();
duke@435 1211 }
duke@435 1212
duke@435 1213 // add safepoint before generating condition code so it can be recomputed
duke@435 1214 if (x->is_safepoint()) {
duke@435 1215 // increment backedge counter if needed
iveresov@2138 1216 increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
duke@435 1217 __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
duke@435 1218 }
duke@435 1219 set_no_result(x);
duke@435 1220
duke@435 1221 LIR_Opr left = xin->result();
duke@435 1222 LIR_Opr right = yin->result();
duke@435 1223 __ cmp(lir_cond(cond), left, right);
iveresov@2138 1224 // Generate branch profiling. Profiling code doesn't kill flags.
duke@435 1225 profile_branch(x, cond);
duke@435 1226 move_to_phi(x->state());
duke@435 1227 if (x->x()->type()->is_float_kind()) {
duke@435 1228 __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
duke@435 1229 } else {
duke@435 1230 __ branch(lir_cond(cond), right->type(), x->tsux());
duke@435 1231 }
duke@435 1232 assert(x->default_sux() == x->fsux(), "wrong destination above");
duke@435 1233 __ jump(x->default_sux());
duke@435 1234 }
duke@435 1235
duke@435 1236
duke@435 1237 LIR_Opr LIRGenerator::getThreadPointer() {
never@739 1238 #ifdef _LP64
never@739 1239 return FrameMap::as_pointer_opr(r15_thread);
never@739 1240 #else
duke@435 1241 LIR_Opr result = new_register(T_INT);
duke@435 1242 __ get_thread(result);
duke@435 1243 return result;
never@739 1244 #endif //
duke@435 1245 }
duke@435 1246
duke@435 1247 void LIRGenerator::trace_block_entry(BlockBegin* block) {
duke@435 1248 store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
duke@435 1249 LIR_OprList* args = new LIR_OprList();
duke@435 1250 address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
duke@435 1251 __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
duke@435 1252 }
duke@435 1253
duke@435 1254
duke@435 1255 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
duke@435 1256 CodeEmitInfo* info) {
duke@435 1257 if (address->type() == T_LONG) {
duke@435 1258 address = new LIR_Address(address->base(),
duke@435 1259 address->index(), address->scale(),
duke@435 1260 address->disp(), T_DOUBLE);
duke@435 1261 // Transfer the value atomically by using FP moves. This means
duke@435 1262 // the value has to be moved between CPU and FPU registers. It
duke@435 1263 // always has to be moved through spill slot since there's no
duke@435 1264 // quick way to pack the value into an SSE register.
duke@435 1265 LIR_Opr temp_double = new_register(T_DOUBLE);
duke@435 1266 LIR_Opr spill = new_register(T_LONG);
duke@435 1267 set_vreg_flag(spill, must_start_in_memory);
duke@435 1268 __ move(value, spill);
duke@435 1269 __ volatile_move(spill, temp_double, T_LONG);
duke@435 1270 __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
duke@435 1271 } else {
duke@435 1272 __ store(value, address, info);
duke@435 1273 }
duke@435 1274 }
duke@435 1275
duke@435 1276
duke@435 1277
duke@435 1278 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
duke@435 1279 CodeEmitInfo* info) {
duke@435 1280 if (address->type() == T_LONG) {
duke@435 1281 address = new LIR_Address(address->base(),
duke@435 1282 address->index(), address->scale(),
duke@435 1283 address->disp(), T_DOUBLE);
duke@435 1284 // Transfer the value atomically by using FP moves. This means
duke@435 1285 // the value has to be moved between CPU and FPU registers. In
duke@435 1286 // SSE0 and SSE1 mode it has to be moved through spill slot but in
duke@435 1287 // SSE2+ mode it can be moved directly.
duke@435 1288 LIR_Opr temp_double = new_register(T_DOUBLE);
duke@435 1289 __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
duke@435 1290 __ volatile_move(temp_double, result, T_LONG);
duke@435 1291 if (UseSSE < 2) {
duke@435 1292 // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
duke@435 1293 set_vreg_flag(result, must_start_in_memory);
duke@435 1294 }
duke@435 1295 } else {
duke@435 1296 __ load(address, result, info);
duke@435 1297 }
duke@435 1298 }
duke@435 1299
duke@435 1300 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
duke@435 1301 BasicType type, bool is_volatile) {
duke@435 1302 if (is_volatile && type == T_LONG) {
duke@435 1303 LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
duke@435 1304 LIR_Opr tmp = new_register(T_DOUBLE);
duke@435 1305 __ load(addr, tmp);
duke@435 1306 LIR_Opr spill = new_register(T_LONG);
duke@435 1307 set_vreg_flag(spill, must_start_in_memory);
duke@435 1308 __ move(tmp, spill);
duke@435 1309 __ move(spill, dst);
duke@435 1310 } else {
duke@435 1311 LIR_Address* addr = new LIR_Address(src, offset, type);
duke@435 1312 __ load(addr, dst);
duke@435 1313 }
duke@435 1314 }
duke@435 1315
duke@435 1316
duke@435 1317 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
duke@435 1318 BasicType type, bool is_volatile) {
duke@435 1319 if (is_volatile && type == T_LONG) {
duke@435 1320 LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
duke@435 1321 LIR_Opr tmp = new_register(T_DOUBLE);
duke@435 1322 LIR_Opr spill = new_register(T_DOUBLE);
duke@435 1323 set_vreg_flag(spill, must_start_in_memory);
duke@435 1324 __ move(data, spill);
duke@435 1325 __ move(spill, tmp);
duke@435 1326 __ move(tmp, addr);
duke@435 1327 } else {
duke@435 1328 LIR_Address* addr = new LIR_Address(src, offset, type);
duke@435 1329 bool is_obj = (type == T_ARRAY || type == T_OBJECT);
duke@435 1330 if (is_obj) {
ysr@777 1331 // Do the pre-write barrier, if any.
ysr@777 1332 pre_barrier(LIR_OprFact::address(addr), false, NULL);
duke@435 1333 __ move(data, addr);
duke@435 1334 assert(src->is_register(), "must be register");
duke@435 1335 // Seems to be a precise address
duke@435 1336 post_barrier(LIR_OprFact::address(addr), data);
duke@435 1337 } else {
duke@435 1338 __ move(data, addr);
duke@435 1339 }
duke@435 1340 }
duke@435 1341 }

mercurial