src/cpu/x86/vm/c1_LIRGenerator_x86.cpp

Fri, 03 Sep 2010 17:51:07 -0700

author
iveresov
date
Fri, 03 Sep 2010 17:51:07 -0700
changeset 2138
d5d065957597
parent 2036
126ea7725993
child 2146
3a294e483abc
permissions
-rw-r--r--

6953144: Tiered compilation
Summary: Infrastructure for tiered compilation support (interpreter + c1 + c2) for 32 and 64 bit. Simple tiered policy implementation.
Reviewed-by: kvn, never, phh, twisti

duke@435 1 /*
iveresov@2138 2 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_c1_LIRGenerator_x86.cpp.incl"
duke@435 27
duke@435 28 #ifdef ASSERT
duke@435 29 #define __ gen()->lir(__FILE__, __LINE__)->
duke@435 30 #else
duke@435 31 #define __ gen()->lir()->
duke@435 32 #endif
duke@435 33
duke@435 34 // Item will be loaded into a byte register; Intel only
duke@435 35 void LIRItem::load_byte_item() {
duke@435 36 load_item();
duke@435 37 LIR_Opr res = result();
duke@435 38
duke@435 39 if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
duke@435 40 // make sure that it is a byte register
duke@435 41 assert(!value()->type()->is_float() && !value()->type()->is_double(),
duke@435 42 "can't load floats in byte register");
duke@435 43 LIR_Opr reg = _gen->rlock_byte(T_BYTE);
duke@435 44 __ move(res, reg);
duke@435 45
duke@435 46 _result = reg;
duke@435 47 }
duke@435 48 }
duke@435 49
duke@435 50
duke@435 51 void LIRItem::load_nonconstant() {
duke@435 52 LIR_Opr r = value()->operand();
duke@435 53 if (r->is_constant()) {
duke@435 54 _result = r;
duke@435 55 } else {
duke@435 56 load_item();
duke@435 57 }
duke@435 58 }
duke@435 59
duke@435 60 //--------------------------------------------------------------
duke@435 61 // LIRGenerator
duke@435 62 //--------------------------------------------------------------
duke@435 63
duke@435 64
duke@435 65 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
duke@435 66 LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::rdx_opr; }
duke@435 67 LIR_Opr LIRGenerator::divInOpr() { return FrameMap::rax_opr; }
duke@435 68 LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::rax_opr; }
duke@435 69 LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::rdx_opr; }
duke@435 70 LIR_Opr LIRGenerator::shiftCountOpr() { return FrameMap::rcx_opr; }
duke@435 71 LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::rax_opr; }
duke@435 72 LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; }
duke@435 73
duke@435 74
duke@435 75 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
duke@435 76 LIR_Opr opr;
duke@435 77 switch (type->tag()) {
duke@435 78 case intTag: opr = FrameMap::rax_opr; break;
duke@435 79 case objectTag: opr = FrameMap::rax_oop_opr; break;
never@739 80 case longTag: opr = FrameMap::long0_opr; break;
duke@435 81 case floatTag: opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr : FrameMap::fpu0_float_opr; break;
duke@435 82 case doubleTag: opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr; break;
duke@435 83
duke@435 84 case addressTag:
duke@435 85 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
duke@435 86 }
duke@435 87
duke@435 88 assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
duke@435 89 return opr;
duke@435 90 }
duke@435 91
duke@435 92
duke@435 93 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
duke@435 94 LIR_Opr reg = new_register(T_INT);
duke@435 95 set_vreg_flag(reg, LIRGenerator::byte_reg);
duke@435 96 return reg;
duke@435 97 }
duke@435 98
duke@435 99
duke@435 100 //--------- loading items into registers --------------------------------
duke@435 101
duke@435 102
duke@435 103 // i486 instructions can inline constants
duke@435 104 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
duke@435 105 if (type == T_SHORT || type == T_CHAR) {
duke@435 106 // there is no immediate move of word values in asembler_i486.?pp
duke@435 107 return false;
duke@435 108 }
duke@435 109 Constant* c = v->as_Constant();
duke@435 110 if (c && c->state() == NULL) {
duke@435 111 // constants of any type can be stored directly, except for
duke@435 112 // unloaded object constants.
duke@435 113 return true;
duke@435 114 }
duke@435 115 return false;
duke@435 116 }
duke@435 117
duke@435 118
duke@435 119 bool LIRGenerator::can_inline_as_constant(Value v) const {
never@739 120 if (v->type()->tag() == longTag) return false;
duke@435 121 return v->type()->tag() != objectTag ||
duke@435 122 (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
duke@435 123 }
duke@435 124
duke@435 125
duke@435 126 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
never@739 127 if (c->type() == T_LONG) return false;
duke@435 128 return c->type() != T_OBJECT || c->as_jobject() == NULL;
duke@435 129 }
duke@435 130
duke@435 131
duke@435 132 LIR_Opr LIRGenerator::safepoint_poll_register() {
duke@435 133 return LIR_OprFact::illegalOpr;
duke@435 134 }
duke@435 135
duke@435 136
duke@435 137 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
duke@435 138 int shift, int disp, BasicType type) {
duke@435 139 assert(base->is_register(), "must be");
duke@435 140 if (index->is_constant()) {
duke@435 141 return new LIR_Address(base,
duke@435 142 (index->as_constant_ptr()->as_jint() << shift) + disp,
duke@435 143 type);
duke@435 144 } else {
duke@435 145 return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
duke@435 146 }
duke@435 147 }
duke@435 148
duke@435 149
duke@435 150 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
duke@435 151 BasicType type, bool needs_card_mark) {
duke@435 152 int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
duke@435 153
duke@435 154 LIR_Address* addr;
duke@435 155 if (index_opr->is_constant()) {
kvn@464 156 int elem_size = type2aelembytes(type);
duke@435 157 addr = new LIR_Address(array_opr,
duke@435 158 offset_in_bytes + index_opr->as_jint() * elem_size, type);
duke@435 159 } else {
never@739 160 #ifdef _LP64
never@739 161 if (index_opr->type() == T_INT) {
never@739 162 LIR_Opr tmp = new_register(T_LONG);
never@739 163 __ convert(Bytecodes::_i2l, index_opr, tmp);
never@739 164 index_opr = tmp;
never@739 165 }
never@739 166 #endif // _LP64
duke@435 167 addr = new LIR_Address(array_opr,
duke@435 168 index_opr,
duke@435 169 LIR_Address::scale(type),
duke@435 170 offset_in_bytes, type);
duke@435 171 }
duke@435 172 if (needs_card_mark) {
duke@435 173 // This store will need a precise card mark, so go ahead and
duke@435 174 // compute the full adddres instead of computing once for the
duke@435 175 // store and again for the card mark.
never@739 176 LIR_Opr tmp = new_pointer_register();
duke@435 177 __ leal(LIR_OprFact::address(addr), tmp);
iveresov@1927 178 return new LIR_Address(tmp, type);
duke@435 179 } else {
duke@435 180 return addr;
duke@435 181 }
duke@435 182 }
duke@435 183
duke@435 184
iveresov@2138 185 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
iveresov@2138 186 LIR_Opr r;
iveresov@2138 187 if (type == T_LONG) {
iveresov@2138 188 r = LIR_OprFact::longConst(x);
iveresov@2138 189 } else if (type == T_INT) {
iveresov@2138 190 r = LIR_OprFact::intConst(x);
iveresov@2138 191 } else {
iveresov@2138 192 ShouldNotReachHere();
iveresov@2138 193 }
iveresov@2138 194 return r;
iveresov@2138 195 }
iveresov@2138 196
iveresov@2138 197 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
never@739 198 LIR_Opr pointer = new_pointer_register();
never@739 199 __ move(LIR_OprFact::intptrConst(counter), pointer);
iveresov@2138 200 LIR_Address* addr = new LIR_Address(pointer, type);
duke@435 201 increment_counter(addr, step);
duke@435 202 }
duke@435 203
duke@435 204
duke@435 205 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
duke@435 206 __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
duke@435 207 }
duke@435 208
duke@435 209 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
duke@435 210 __ cmp_mem_int(condition, base, disp, c, info);
duke@435 211 }
duke@435 212
duke@435 213
duke@435 214 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
duke@435 215 __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
duke@435 216 }
duke@435 217
duke@435 218
duke@435 219 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
duke@435 220 __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
duke@435 221 }
duke@435 222
duke@435 223
duke@435 224 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
duke@435 225 if (tmp->is_valid()) {
duke@435 226 if (is_power_of_2(c + 1)) {
duke@435 227 __ move(left, tmp);
duke@435 228 __ shift_left(left, log2_intptr(c + 1), left);
duke@435 229 __ sub(left, tmp, result);
duke@435 230 return true;
duke@435 231 } else if (is_power_of_2(c - 1)) {
duke@435 232 __ move(left, tmp);
duke@435 233 __ shift_left(left, log2_intptr(c - 1), left);
duke@435 234 __ add(left, tmp, result);
duke@435 235 return true;
duke@435 236 }
duke@435 237 }
duke@435 238 return false;
duke@435 239 }
duke@435 240
duke@435 241
duke@435 242 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
duke@435 243 BasicType type = item->type();
duke@435 244 __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
duke@435 245 }
duke@435 246
duke@435 247 //----------------------------------------------------------------------
duke@435 248 // visitor functions
duke@435 249 //----------------------------------------------------------------------
duke@435 250
duke@435 251
duke@435 252 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
duke@435 253 assert(x->is_root(),"");
duke@435 254 bool needs_range_check = true;
duke@435 255 bool use_length = x->length() != NULL;
duke@435 256 bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
duke@435 257 bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
duke@435 258 !get_jobject_constant(x->value())->is_null_object());
duke@435 259
duke@435 260 LIRItem array(x->array(), this);
duke@435 261 LIRItem index(x->index(), this);
duke@435 262 LIRItem value(x->value(), this);
duke@435 263 LIRItem length(this);
duke@435 264
duke@435 265 array.load_item();
duke@435 266 index.load_nonconstant();
duke@435 267
duke@435 268 if (use_length) {
duke@435 269 needs_range_check = x->compute_needs_range_check();
duke@435 270 if (needs_range_check) {
duke@435 271 length.set_instruction(x->length());
duke@435 272 length.load_item();
duke@435 273 }
duke@435 274 }
duke@435 275 if (needs_store_check) {
duke@435 276 value.load_item();
duke@435 277 } else {
duke@435 278 value.load_for_store(x->elt_type());
duke@435 279 }
duke@435 280
duke@435 281 set_no_result(x);
duke@435 282
duke@435 283 // the CodeEmitInfo must be duplicated for each different
duke@435 284 // LIR-instruction because spilling can occur anywhere between two
duke@435 285 // instructions and so the debug information must be different
duke@435 286 CodeEmitInfo* range_check_info = state_for(x);
duke@435 287 CodeEmitInfo* null_check_info = NULL;
duke@435 288 if (x->needs_null_check()) {
duke@435 289 null_check_info = new CodeEmitInfo(range_check_info);
duke@435 290 }
duke@435 291
duke@435 292 // emit array address setup early so it schedules better
duke@435 293 LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
duke@435 294
duke@435 295 if (GenerateRangeChecks && needs_range_check) {
duke@435 296 if (use_length) {
duke@435 297 __ cmp(lir_cond_belowEqual, length.result(), index.result());
duke@435 298 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
duke@435 299 } else {
duke@435 300 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
duke@435 301 // range_check also does the null check
duke@435 302 null_check_info = NULL;
duke@435 303 }
duke@435 304 }
duke@435 305
duke@435 306 if (GenerateArrayStoreCheck && needs_store_check) {
duke@435 307 LIR_Opr tmp1 = new_register(objectType);
duke@435 308 LIR_Opr tmp2 = new_register(objectType);
duke@435 309 LIR_Opr tmp3 = new_register(objectType);
duke@435 310
duke@435 311 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
duke@435 312 __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info);
duke@435 313 }
duke@435 314
duke@435 315 if (obj_store) {
ysr@777 316 // Needs GC write barriers.
ysr@777 317 pre_barrier(LIR_OprFact::address(array_addr), false, NULL);
duke@435 318 __ move(value.result(), array_addr, null_check_info);
duke@435 319 // Seems to be a precise
duke@435 320 post_barrier(LIR_OprFact::address(array_addr), value.result());
duke@435 321 } else {
duke@435 322 __ move(value.result(), array_addr, null_check_info);
duke@435 323 }
duke@435 324 }
duke@435 325
duke@435 326
duke@435 327 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
duke@435 328 assert(x->is_root(),"");
duke@435 329 LIRItem obj(x->obj(), this);
duke@435 330 obj.load_item();
duke@435 331
duke@435 332 set_no_result(x);
duke@435 333
duke@435 334 // "lock" stores the address of the monitor stack slot, so this is not an oop
duke@435 335 LIR_Opr lock = new_register(T_INT);
duke@435 336 // Need a scratch register for biased locking on x86
duke@435 337 LIR_Opr scratch = LIR_OprFact::illegalOpr;
duke@435 338 if (UseBiasedLocking) {
duke@435 339 scratch = new_register(T_INT);
duke@435 340 }
duke@435 341
duke@435 342 CodeEmitInfo* info_for_exception = NULL;
duke@435 343 if (x->needs_null_check()) {
duke@435 344 info_for_exception = state_for(x, x->lock_stack_before());
duke@435 345 }
duke@435 346 // this CodeEmitInfo must not have the xhandlers because here the
duke@435 347 // object is already locked (xhandlers expect object to be unlocked)
duke@435 348 CodeEmitInfo* info = state_for(x, x->state(), true);
duke@435 349 monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
duke@435 350 x->monitor_no(), info_for_exception, info);
duke@435 351 }
duke@435 352
duke@435 353
duke@435 354 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
duke@435 355 assert(x->is_root(),"");
duke@435 356
duke@435 357 LIRItem obj(x->obj(), this);
duke@435 358 obj.dont_load_item();
duke@435 359
duke@435 360 LIR_Opr lock = new_register(T_INT);
duke@435 361 LIR_Opr obj_temp = new_register(T_INT);
duke@435 362 set_no_result(x);
bobv@2036 363 monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
duke@435 364 }
duke@435 365
duke@435 366
duke@435 367 // _ineg, _lneg, _fneg, _dneg
duke@435 368 void LIRGenerator::do_NegateOp(NegateOp* x) {
duke@435 369 LIRItem value(x->x(), this);
duke@435 370 value.set_destroys_register();
duke@435 371 value.load_item();
duke@435 372 LIR_Opr reg = rlock(x);
duke@435 373 __ negate(value.result(), reg);
duke@435 374
duke@435 375 set_result(x, round_item(reg));
duke@435 376 }
duke@435 377
duke@435 378
duke@435 379 // for _fadd, _fmul, _fsub, _fdiv, _frem
duke@435 380 // _dadd, _dmul, _dsub, _ddiv, _drem
duke@435 381 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
duke@435 382 LIRItem left(x->x(), this);
duke@435 383 LIRItem right(x->y(), this);
duke@435 384 LIRItem* left_arg = &left;
duke@435 385 LIRItem* right_arg = &right;
duke@435 386 assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
duke@435 387 bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
duke@435 388 if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
duke@435 389 left.load_item();
duke@435 390 } else {
duke@435 391 left.dont_load_item();
duke@435 392 }
duke@435 393
duke@435 394 // do not load right operand if it is a constant. only 0 and 1 are
duke@435 395 // loaded because there are special instructions for loading them
duke@435 396 // without memory access (not needed for SSE2 instructions)
duke@435 397 bool must_load_right = false;
duke@435 398 if (right.is_constant()) {
duke@435 399 LIR_Const* c = right.result()->as_constant_ptr();
duke@435 400 assert(c != NULL, "invalid constant");
duke@435 401 assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
duke@435 402
duke@435 403 if (c->type() == T_FLOAT) {
duke@435 404 must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
duke@435 405 } else {
duke@435 406 must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
duke@435 407 }
duke@435 408 }
duke@435 409
duke@435 410 if (must_load_both) {
duke@435 411 // frem and drem destroy also right operand, so move it to a new register
duke@435 412 right.set_destroys_register();
duke@435 413 right.load_item();
duke@435 414 } else if (right.is_register() || must_load_right) {
duke@435 415 right.load_item();
duke@435 416 } else {
duke@435 417 right.dont_load_item();
duke@435 418 }
duke@435 419 LIR_Opr reg = rlock(x);
duke@435 420 LIR_Opr tmp = LIR_OprFact::illegalOpr;
duke@435 421 if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
duke@435 422 tmp = new_register(T_DOUBLE);
duke@435 423 }
duke@435 424
duke@435 425 if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
duke@435 426 // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
duke@435 427 LIR_Opr fpu0, fpu1;
duke@435 428 if (x->op() == Bytecodes::_frem) {
duke@435 429 fpu0 = LIR_OprFact::single_fpu(0);
duke@435 430 fpu1 = LIR_OprFact::single_fpu(1);
duke@435 431 } else {
duke@435 432 fpu0 = LIR_OprFact::double_fpu(0);
duke@435 433 fpu1 = LIR_OprFact::double_fpu(1);
duke@435 434 }
duke@435 435 __ move(right.result(), fpu1); // order of left and right operand is important!
duke@435 436 __ move(left.result(), fpu0);
duke@435 437 __ rem (fpu0, fpu1, fpu0);
duke@435 438 __ move(fpu0, reg);
duke@435 439
duke@435 440 } else {
duke@435 441 arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
duke@435 442 }
duke@435 443
duke@435 444 set_result(x, round_item(reg));
duke@435 445 }
duke@435 446
duke@435 447
duke@435 448 // for _ladd, _lmul, _lsub, _ldiv, _lrem
duke@435 449 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
duke@435 450 if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
duke@435 451 // long division is implemented as a direct call into the runtime
duke@435 452 LIRItem left(x->x(), this);
duke@435 453 LIRItem right(x->y(), this);
duke@435 454
duke@435 455 // the check for division by zero destroys the right operand
duke@435 456 right.set_destroys_register();
duke@435 457
duke@435 458 BasicTypeList signature(2);
duke@435 459 signature.append(T_LONG);
duke@435 460 signature.append(T_LONG);
duke@435 461 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
duke@435 462
duke@435 463 // check for division by zero (destroys registers of right operand!)
duke@435 464 CodeEmitInfo* info = state_for(x);
duke@435 465
duke@435 466 const LIR_Opr result_reg = result_register_for(x->type());
duke@435 467 left.load_item_force(cc->at(1));
duke@435 468 right.load_item();
duke@435 469
duke@435 470 __ move(right.result(), cc->at(0));
duke@435 471
duke@435 472 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
duke@435 473 __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
duke@435 474
duke@435 475 address entry;
duke@435 476 switch (x->op()) {
duke@435 477 case Bytecodes::_lrem:
duke@435 478 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
duke@435 479 break; // check if dividend is 0 is done elsewhere
duke@435 480 case Bytecodes::_ldiv:
duke@435 481 entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
duke@435 482 break; // check if dividend is 0 is done elsewhere
duke@435 483 case Bytecodes::_lmul:
duke@435 484 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
duke@435 485 break;
duke@435 486 default:
duke@435 487 ShouldNotReachHere();
duke@435 488 }
duke@435 489
duke@435 490 LIR_Opr result = rlock_result(x);
duke@435 491 __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
duke@435 492 __ move(result_reg, result);
duke@435 493 } else if (x->op() == Bytecodes::_lmul) {
duke@435 494 // missing test if instr is commutative and if we should swap
duke@435 495 LIRItem left(x->x(), this);
duke@435 496 LIRItem right(x->y(), this);
duke@435 497
duke@435 498 // right register is destroyed by the long mul, so it must be
duke@435 499 // copied to a new register.
duke@435 500 right.set_destroys_register();
duke@435 501
duke@435 502 left.load_item();
duke@435 503 right.load_item();
duke@435 504
never@739 505 LIR_Opr reg = FrameMap::long0_opr;
duke@435 506 arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
duke@435 507 LIR_Opr result = rlock_result(x);
duke@435 508 __ move(reg, result);
duke@435 509 } else {
duke@435 510 // missing test if instr is commutative and if we should swap
duke@435 511 LIRItem left(x->x(), this);
duke@435 512 LIRItem right(x->y(), this);
duke@435 513
duke@435 514 left.load_item();
twisti@1040 515 // don't load constants to save register
duke@435 516 right.load_nonconstant();
duke@435 517 rlock_result(x);
duke@435 518 arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
duke@435 519 }
duke@435 520 }
duke@435 521
duke@435 522
duke@435 523
duke@435 524 // for: _iadd, _imul, _isub, _idiv, _irem
duke@435 525 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
duke@435 526 if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
duke@435 527 // The requirements for division and modulo
duke@435 528 // input : rax,: dividend min_int
duke@435 529 // reg: divisor (may not be rax,/rdx) -1
duke@435 530 //
duke@435 531 // output: rax,: quotient (= rax, idiv reg) min_int
duke@435 532 // rdx: remainder (= rax, irem reg) 0
duke@435 533
duke@435 534 // rax, and rdx will be destroyed
duke@435 535
duke@435 536 // Note: does this invalidate the spec ???
duke@435 537 LIRItem right(x->y(), this);
duke@435 538 LIRItem left(x->x() , this); // visit left second, so that the is_register test is valid
duke@435 539
duke@435 540 // call state_for before load_item_force because state_for may
duke@435 541 // force the evaluation of other instructions that are needed for
duke@435 542 // correct debug info. Otherwise the live range of the fix
duke@435 543 // register might be too long.
duke@435 544 CodeEmitInfo* info = state_for(x);
duke@435 545
duke@435 546 left.load_item_force(divInOpr());
duke@435 547
duke@435 548 right.load_item();
duke@435 549
duke@435 550 LIR_Opr result = rlock_result(x);
duke@435 551 LIR_Opr result_reg;
duke@435 552 if (x->op() == Bytecodes::_idiv) {
duke@435 553 result_reg = divOutOpr();
duke@435 554 } else {
duke@435 555 result_reg = remOutOpr();
duke@435 556 }
duke@435 557
duke@435 558 if (!ImplicitDiv0Checks) {
duke@435 559 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
duke@435 560 __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
duke@435 561 }
duke@435 562 LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
duke@435 563 if (x->op() == Bytecodes::_irem) {
duke@435 564 __ irem(left.result(), right.result(), result_reg, tmp, info);
duke@435 565 } else if (x->op() == Bytecodes::_idiv) {
duke@435 566 __ idiv(left.result(), right.result(), result_reg, tmp, info);
duke@435 567 } else {
duke@435 568 ShouldNotReachHere();
duke@435 569 }
duke@435 570
duke@435 571 __ move(result_reg, result);
duke@435 572 } else {
duke@435 573 // missing test if instr is commutative and if we should swap
duke@435 574 LIRItem left(x->x(), this);
duke@435 575 LIRItem right(x->y(), this);
duke@435 576 LIRItem* left_arg = &left;
duke@435 577 LIRItem* right_arg = &right;
duke@435 578 if (x->is_commutative() && left.is_stack() && right.is_register()) {
duke@435 579 // swap them if left is real stack (or cached) and right is real register(not cached)
duke@435 580 left_arg = &right;
duke@435 581 right_arg = &left;
duke@435 582 }
duke@435 583
duke@435 584 left_arg->load_item();
duke@435 585
duke@435 586 // do not need to load right, as we can handle stack and constants
duke@435 587 if (x->op() == Bytecodes::_imul ) {
duke@435 588 // check if we can use shift instead
duke@435 589 bool use_constant = false;
duke@435 590 bool use_tmp = false;
duke@435 591 if (right_arg->is_constant()) {
duke@435 592 int iconst = right_arg->get_jint_constant();
duke@435 593 if (iconst > 0) {
duke@435 594 if (is_power_of_2(iconst)) {
duke@435 595 use_constant = true;
duke@435 596 } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
duke@435 597 use_constant = true;
duke@435 598 use_tmp = true;
duke@435 599 }
duke@435 600 }
duke@435 601 }
duke@435 602 if (use_constant) {
duke@435 603 right_arg->dont_load_item();
duke@435 604 } else {
duke@435 605 right_arg->load_item();
duke@435 606 }
duke@435 607 LIR_Opr tmp = LIR_OprFact::illegalOpr;
duke@435 608 if (use_tmp) {
duke@435 609 tmp = new_register(T_INT);
duke@435 610 }
duke@435 611 rlock_result(x);
duke@435 612
duke@435 613 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
duke@435 614 } else {
duke@435 615 right_arg->dont_load_item();
duke@435 616 rlock_result(x);
duke@435 617 LIR_Opr tmp = LIR_OprFact::illegalOpr;
duke@435 618 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
duke@435 619 }
duke@435 620 }
duke@435 621 }
duke@435 622
duke@435 623
duke@435 624 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
duke@435 625 // when an operand with use count 1 is the left operand, then it is
duke@435 626 // likely that no move for 2-operand-LIR-form is necessary
duke@435 627 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
duke@435 628 x->swap_operands();
duke@435 629 }
duke@435 630
duke@435 631 ValueTag tag = x->type()->tag();
duke@435 632 assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
duke@435 633 switch (tag) {
duke@435 634 case floatTag:
duke@435 635 case doubleTag: do_ArithmeticOp_FPU(x); return;
duke@435 636 case longTag: do_ArithmeticOp_Long(x); return;
duke@435 637 case intTag: do_ArithmeticOp_Int(x); return;
duke@435 638 }
duke@435 639 ShouldNotReachHere();
duke@435 640 }
duke@435 641
duke@435 642
duke@435 643 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
duke@435 644 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
duke@435 645 // count must always be in rcx
duke@435 646 LIRItem value(x->x(), this);
duke@435 647 LIRItem count(x->y(), this);
duke@435 648
duke@435 649 ValueTag elemType = x->type()->tag();
duke@435 650 bool must_load_count = !count.is_constant() || elemType == longTag;
duke@435 651 if (must_load_count) {
duke@435 652 // count for long must be in register
duke@435 653 count.load_item_force(shiftCountOpr());
duke@435 654 } else {
duke@435 655 count.dont_load_item();
duke@435 656 }
duke@435 657 value.load_item();
duke@435 658 LIR_Opr reg = rlock_result(x);
duke@435 659
duke@435 660 shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
duke@435 661 }
duke@435 662
duke@435 663
duke@435 664 // _iand, _land, _ior, _lor, _ixor, _lxor
duke@435 665 void LIRGenerator::do_LogicOp(LogicOp* x) {
duke@435 666 // when an operand with use count 1 is the left operand, then it is
duke@435 667 // likely that no move for 2-operand-LIR-form is necessary
duke@435 668 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
duke@435 669 x->swap_operands();
duke@435 670 }
duke@435 671
duke@435 672 LIRItem left(x->x(), this);
duke@435 673 LIRItem right(x->y(), this);
duke@435 674
duke@435 675 left.load_item();
duke@435 676 right.load_nonconstant();
duke@435 677 LIR_Opr reg = rlock_result(x);
duke@435 678
duke@435 679 logic_op(x->op(), reg, left.result(), right.result());
duke@435 680 }
duke@435 681
duke@435 682
duke@435 683
duke@435 684 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
duke@435 685 void LIRGenerator::do_CompareOp(CompareOp* x) {
duke@435 686 LIRItem left(x->x(), this);
duke@435 687 LIRItem right(x->y(), this);
duke@435 688 ValueTag tag = x->x()->type()->tag();
duke@435 689 if (tag == longTag) {
duke@435 690 left.set_destroys_register();
duke@435 691 }
duke@435 692 left.load_item();
duke@435 693 right.load_item();
duke@435 694 LIR_Opr reg = rlock_result(x);
duke@435 695
duke@435 696 if (x->x()->type()->is_float_kind()) {
duke@435 697 Bytecodes::Code code = x->op();
duke@435 698 __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
duke@435 699 } else if (x->x()->type()->tag() == longTag) {
duke@435 700 __ lcmp2int(left.result(), right.result(), reg);
duke@435 701 } else {
duke@435 702 Unimplemented();
duke@435 703 }
duke@435 704 }
duke@435 705
duke@435 706
duke@435 707 void LIRGenerator::do_AttemptUpdate(Intrinsic* x) {
duke@435 708 assert(x->number_of_arguments() == 3, "wrong type");
duke@435 709 LIRItem obj (x->argument_at(0), this); // AtomicLong object
duke@435 710 LIRItem cmp_value (x->argument_at(1), this); // value to compare with field
duke@435 711 LIRItem new_value (x->argument_at(2), this); // replace field with new_value if it matches cmp_value
duke@435 712
duke@435 713 // compare value must be in rdx,eax (hi,lo); may be destroyed by cmpxchg8 instruction
never@739 714 cmp_value.load_item_force(FrameMap::long0_opr);
duke@435 715
duke@435 716 // new value must be in rcx,ebx (hi,lo)
never@739 717 new_value.load_item_force(FrameMap::long1_opr);
duke@435 718
duke@435 719 // object pointer register is overwritten with field address
duke@435 720 obj.load_item();
duke@435 721
duke@435 722 // generate compare-and-swap; produces zero condition if swap occurs
duke@435 723 int value_offset = sun_misc_AtomicLongCSImpl::value_offset();
duke@435 724 LIR_Opr addr = obj.result();
duke@435 725 __ add(addr, LIR_OprFact::intConst(value_offset), addr);
duke@435 726 LIR_Opr t1 = LIR_OprFact::illegalOpr; // no temp needed
duke@435 727 LIR_Opr t2 = LIR_OprFact::illegalOpr; // no temp needed
duke@435 728 __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);
duke@435 729
duke@435 730 // generate conditional move of boolean result
duke@435 731 LIR_Opr result = rlock_result(x);
duke@435 732 __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
duke@435 733 }
duke@435 734
duke@435 735
duke@435 736 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
duke@435 737 assert(x->number_of_arguments() == 4, "wrong type");
duke@435 738 LIRItem obj (x->argument_at(0), this); // object
duke@435 739 LIRItem offset(x->argument_at(1), this); // offset of field
duke@435 740 LIRItem cmp (x->argument_at(2), this); // value to compare with field
duke@435 741 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
duke@435 742
duke@435 743 assert(obj.type()->tag() == objectTag, "invalid type");
never@739 744
never@739 745 // In 64bit the type can be long, sparc doesn't have this assert
never@739 746 // assert(offset.type()->tag() == intTag, "invalid type");
never@739 747
duke@435 748 assert(cmp.type()->tag() == type->tag(), "invalid type");
duke@435 749 assert(val.type()->tag() == type->tag(), "invalid type");
duke@435 750
duke@435 751 // get address of field
duke@435 752 obj.load_item();
duke@435 753 offset.load_nonconstant();
duke@435 754
duke@435 755 if (type == objectType) {
duke@435 756 cmp.load_item_force(FrameMap::rax_oop_opr);
duke@435 757 val.load_item();
duke@435 758 } else if (type == intType) {
duke@435 759 cmp.load_item_force(FrameMap::rax_opr);
duke@435 760 val.load_item();
duke@435 761 } else if (type == longType) {
never@739 762 cmp.load_item_force(FrameMap::long0_opr);
never@739 763 val.load_item_force(FrameMap::long1_opr);
duke@435 764 } else {
duke@435 765 ShouldNotReachHere();
duke@435 766 }
duke@435 767
duke@435 768 LIR_Opr addr = new_pointer_register();
roland@1495 769 LIR_Address* a;
roland@1495 770 if(offset.result()->is_constant()) {
roland@1495 771 a = new LIR_Address(obj.result(),
roland@1495 772 NOT_LP64(offset.result()->as_constant_ptr()->as_jint()) LP64_ONLY((int)offset.result()->as_constant_ptr()->as_jlong()),
roland@1495 773 as_BasicType(type));
roland@1495 774 } else {
roland@1495 775 a = new LIR_Address(obj.result(),
roland@1495 776 offset.result(),
roland@1495 777 LIR_Address::times_1,
roland@1495 778 0,
roland@1495 779 as_BasicType(type));
roland@1495 780 }
roland@1495 781 __ leal(LIR_OprFact::address(a), addr);
duke@435 782
ysr@777 783 if (type == objectType) { // Write-barrier needed for Object fields.
ysr@777 784 // Do the pre-write barrier, if any.
ysr@777 785 pre_barrier(addr, false, NULL);
ysr@777 786 }
duke@435 787
duke@435 788 LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience
duke@435 789 if (type == objectType)
duke@435 790 __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
duke@435 791 else if (type == intType)
duke@435 792 __ cas_int(addr, cmp.result(), val.result(), ill, ill);
duke@435 793 else if (type == longType)
duke@435 794 __ cas_long(addr, cmp.result(), val.result(), ill, ill);
duke@435 795 else {
duke@435 796 ShouldNotReachHere();
duke@435 797 }
duke@435 798
duke@435 799 // generate conditional move of boolean result
duke@435 800 LIR_Opr result = rlock_result(x);
duke@435 801 __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
duke@435 802 if (type == objectType) { // Write-barrier needed for Object fields.
duke@435 803 // Seems to be precise
duke@435 804 post_barrier(addr, val.result());
duke@435 805 }
duke@435 806 }
duke@435 807
duke@435 808
duke@435 809 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
duke@435 810 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 811 LIRItem value(x->argument_at(0), this);
duke@435 812
duke@435 813 bool use_fpu = false;
duke@435 814 if (UseSSE >= 2) {
duke@435 815 switch(x->id()) {
duke@435 816 case vmIntrinsics::_dsin:
duke@435 817 case vmIntrinsics::_dcos:
duke@435 818 case vmIntrinsics::_dtan:
duke@435 819 case vmIntrinsics::_dlog:
duke@435 820 case vmIntrinsics::_dlog10:
duke@435 821 use_fpu = true;
duke@435 822 }
duke@435 823 } else {
duke@435 824 value.set_destroys_register();
duke@435 825 }
duke@435 826
duke@435 827 value.load_item();
duke@435 828
duke@435 829 LIR_Opr calc_input = value.result();
duke@435 830 LIR_Opr calc_result = rlock_result(x);
duke@435 831
duke@435 832 // sin and cos need two free fpu stack slots, so register two temporary operands
duke@435 833 LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
duke@435 834 LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
duke@435 835
duke@435 836 if (use_fpu) {
duke@435 837 LIR_Opr tmp = FrameMap::fpu0_double_opr;
duke@435 838 __ move(calc_input, tmp);
duke@435 839
duke@435 840 calc_input = tmp;
duke@435 841 calc_result = tmp;
duke@435 842 tmp1 = FrameMap::caller_save_fpu_reg_at(1);
duke@435 843 tmp2 = FrameMap::caller_save_fpu_reg_at(2);
duke@435 844 }
duke@435 845
duke@435 846 switch(x->id()) {
duke@435 847 case vmIntrinsics::_dabs: __ abs (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
duke@435 848 case vmIntrinsics::_dsqrt: __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
duke@435 849 case vmIntrinsics::_dsin: __ sin (calc_input, calc_result, tmp1, tmp2); break;
duke@435 850 case vmIntrinsics::_dcos: __ cos (calc_input, calc_result, tmp1, tmp2); break;
duke@435 851 case vmIntrinsics::_dtan: __ tan (calc_input, calc_result, tmp1, tmp2); break;
never@1388 852 case vmIntrinsics::_dlog: __ log (calc_input, calc_result, tmp1); break;
never@1388 853 case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1); break;
duke@435 854 default: ShouldNotReachHere();
duke@435 855 }
duke@435 856
duke@435 857 if (use_fpu) {
duke@435 858 __ move(calc_result, x->operand());
duke@435 859 }
duke@435 860 }
duke@435 861
duke@435 862
duke@435 863 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
duke@435 864 assert(x->number_of_arguments() == 5, "wrong type");
duke@435 865 LIRItem src(x->argument_at(0), this);
duke@435 866 LIRItem src_pos(x->argument_at(1), this);
duke@435 867 LIRItem dst(x->argument_at(2), this);
duke@435 868 LIRItem dst_pos(x->argument_at(3), this);
duke@435 869 LIRItem length(x->argument_at(4), this);
duke@435 870
duke@435 871 // operands for arraycopy must use fixed registers, otherwise
duke@435 872 // LinearScan will fail allocation (because arraycopy always needs a
duke@435 873 // call)
never@739 874
never@739 875 #ifndef _LP64
duke@435 876 src.load_item_force (FrameMap::rcx_oop_opr);
duke@435 877 src_pos.load_item_force (FrameMap::rdx_opr);
duke@435 878 dst.load_item_force (FrameMap::rax_oop_opr);
duke@435 879 dst_pos.load_item_force (FrameMap::rbx_opr);
duke@435 880 length.load_item_force (FrameMap::rdi_opr);
duke@435 881 LIR_Opr tmp = (FrameMap::rsi_opr);
never@739 882 #else
never@739 883
never@739 884 // The java calling convention will give us enough registers
never@739 885 // so that on the stub side the args will be perfect already.
never@739 886 // On the other slow/special case side we call C and the arg
never@739 887 // positions are not similar enough to pick one as the best.
never@739 888 // Also because the java calling convention is a "shifted" version
never@739 889 // of the C convention we can process the java args trivially into C
never@739 890 // args without worry of overwriting during the xfer
never@739 891
never@739 892 src.load_item_force (FrameMap::as_oop_opr(j_rarg0));
never@739 893 src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
never@739 894 dst.load_item_force (FrameMap::as_oop_opr(j_rarg2));
never@739 895 dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
never@739 896 length.load_item_force (FrameMap::as_opr(j_rarg4));
never@739 897
never@739 898 LIR_Opr tmp = FrameMap::as_opr(j_rarg5);
never@739 899 #endif // LP64
never@739 900
duke@435 901 set_no_result(x);
duke@435 902
duke@435 903 int flags;
duke@435 904 ciArrayKlass* expected_type;
duke@435 905 arraycopy_helper(x, &flags, &expected_type);
duke@435 906
duke@435 907 CodeEmitInfo* info = state_for(x, x->state()); // we may want to have stack (deoptimization?)
duke@435 908 __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
duke@435 909 }
duke@435 910
duke@435 911
duke@435 912 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
duke@435 913 // _i2b, _i2c, _i2s
duke@435 914 LIR_Opr fixed_register_for(BasicType type) {
duke@435 915 switch (type) {
duke@435 916 case T_FLOAT: return FrameMap::fpu0_float_opr;
duke@435 917 case T_DOUBLE: return FrameMap::fpu0_double_opr;
duke@435 918 case T_INT: return FrameMap::rax_opr;
never@739 919 case T_LONG: return FrameMap::long0_opr;
duke@435 920 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
duke@435 921 }
duke@435 922 }
duke@435 923
duke@435 924 void LIRGenerator::do_Convert(Convert* x) {
duke@435 925 // flags that vary for the different operations and different SSE-settings
duke@435 926 bool fixed_input, fixed_result, round_result, needs_stub;
duke@435 927
duke@435 928 switch (x->op()) {
duke@435 929 case Bytecodes::_i2l: // fall through
duke@435 930 case Bytecodes::_l2i: // fall through
duke@435 931 case Bytecodes::_i2b: // fall through
duke@435 932 case Bytecodes::_i2c: // fall through
duke@435 933 case Bytecodes::_i2s: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
duke@435 934
duke@435 935 case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false; round_result = false; needs_stub = false; break;
duke@435 936 case Bytecodes::_d2f: fixed_input = false; fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
duke@435 937 case Bytecodes::_i2f: fixed_input = false; fixed_result = false; round_result = UseSSE < 1; needs_stub = false; break;
duke@435 938 case Bytecodes::_i2d: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
duke@435 939 case Bytecodes::_f2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
duke@435 940 case Bytecodes::_d2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
duke@435 941 case Bytecodes::_l2f: fixed_input = false; fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
duke@435 942 case Bytecodes::_l2d: fixed_input = false; fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
duke@435 943 case Bytecodes::_f2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
duke@435 944 case Bytecodes::_d2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
duke@435 945 default: ShouldNotReachHere();
duke@435 946 }
duke@435 947
duke@435 948 LIRItem value(x->value(), this);
duke@435 949 value.load_item();
duke@435 950 LIR_Opr input = value.result();
duke@435 951 LIR_Opr result = rlock(x);
duke@435 952
duke@435 953 // arguments of lir_convert
duke@435 954 LIR_Opr conv_input = input;
duke@435 955 LIR_Opr conv_result = result;
duke@435 956 ConversionStub* stub = NULL;
duke@435 957
duke@435 958 if (fixed_input) {
duke@435 959 conv_input = fixed_register_for(input->type());
duke@435 960 __ move(input, conv_input);
duke@435 961 }
duke@435 962
duke@435 963 assert(fixed_result == false || round_result == false, "cannot set both");
duke@435 964 if (fixed_result) {
duke@435 965 conv_result = fixed_register_for(result->type());
duke@435 966 } else if (round_result) {
duke@435 967 result = new_register(result->type());
duke@435 968 set_vreg_flag(result, must_start_in_memory);
duke@435 969 }
duke@435 970
duke@435 971 if (needs_stub) {
duke@435 972 stub = new ConversionStub(x->op(), conv_input, conv_result);
duke@435 973 }
duke@435 974
duke@435 975 __ convert(x->op(), conv_input, conv_result, stub);
duke@435 976
duke@435 977 if (result != conv_result) {
duke@435 978 __ move(conv_result, result);
duke@435 979 }
duke@435 980
duke@435 981 assert(result->is_virtual(), "result must be virtual register");
duke@435 982 set_result(x, result);
duke@435 983 }
duke@435 984
duke@435 985
duke@435 986 void LIRGenerator::do_NewInstance(NewInstance* x) {
duke@435 987 if (PrintNotLoaded && !x->klass()->is_loaded()) {
duke@435 988 tty->print_cr(" ###class not loaded at new bci %d", x->bci());
duke@435 989 }
duke@435 990 CodeEmitInfo* info = state_for(x, x->state());
duke@435 991 LIR_Opr reg = result_register_for(x->type());
duke@435 992 LIR_Opr klass_reg = new_register(objectType);
duke@435 993 new_instance(reg, x->klass(),
duke@435 994 FrameMap::rcx_oop_opr,
duke@435 995 FrameMap::rdi_oop_opr,
duke@435 996 FrameMap::rsi_oop_opr,
duke@435 997 LIR_OprFact::illegalOpr,
duke@435 998 FrameMap::rdx_oop_opr, info);
duke@435 999 LIR_Opr result = rlock_result(x);
duke@435 1000 __ move(reg, result);
duke@435 1001 }
duke@435 1002
duke@435 1003
duke@435 1004 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
duke@435 1005 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1006
duke@435 1007 LIRItem length(x->length(), this);
duke@435 1008 length.load_item_force(FrameMap::rbx_opr);
duke@435 1009
duke@435 1010 LIR_Opr reg = result_register_for(x->type());
duke@435 1011 LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
duke@435 1012 LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
duke@435 1013 LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
duke@435 1014 LIR_Opr tmp4 = reg;
duke@435 1015 LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
duke@435 1016 LIR_Opr len = length.result();
duke@435 1017 BasicType elem_type = x->elt_type();
duke@435 1018
jrose@1424 1019 __ oop2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
duke@435 1020
duke@435 1021 CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
duke@435 1022 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
duke@435 1023
duke@435 1024 LIR_Opr result = rlock_result(x);
duke@435 1025 __ move(reg, result);
duke@435 1026 }
duke@435 1027
duke@435 1028
duke@435 1029 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
duke@435 1030 LIRItem length(x->length(), this);
duke@435 1031 // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
duke@435 1032 // and therefore provide the state before the parameters have been consumed
duke@435 1033 CodeEmitInfo* patching_info = NULL;
duke@435 1034 if (!x->klass()->is_loaded() || PatchALot) {
duke@435 1035 patching_info = state_for(x, x->state_before());
duke@435 1036 }
duke@435 1037
duke@435 1038 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1039
duke@435 1040 const LIR_Opr reg = result_register_for(x->type());
duke@435 1041 LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
duke@435 1042 LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
duke@435 1043 LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
duke@435 1044 LIR_Opr tmp4 = reg;
duke@435 1045 LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
duke@435 1046
duke@435 1047 length.load_item_force(FrameMap::rbx_opr);
duke@435 1048 LIR_Opr len = length.result();
duke@435 1049
duke@435 1050 CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
duke@435 1051 ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
duke@435 1052 if (obj == ciEnv::unloaded_ciobjarrayklass()) {
duke@435 1053 BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
duke@435 1054 }
duke@435 1055 jobject2reg_with_patching(klass_reg, obj, patching_info);
duke@435 1056 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
duke@435 1057
duke@435 1058 LIR_Opr result = rlock_result(x);
duke@435 1059 __ move(reg, result);
duke@435 1060 }
duke@435 1061
duke@435 1062
duke@435 1063 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
duke@435 1064 Values* dims = x->dims();
duke@435 1065 int i = dims->length();
duke@435 1066 LIRItemList* items = new LIRItemList(dims->length(), NULL);
duke@435 1067 while (i-- > 0) {
duke@435 1068 LIRItem* size = new LIRItem(dims->at(i), this);
duke@435 1069 items->at_put(i, size);
duke@435 1070 }
duke@435 1071
never@1368 1072 // Evaluate state_for early since it may emit code.
duke@435 1073 CodeEmitInfo* patching_info = NULL;
duke@435 1074 if (!x->klass()->is_loaded() || PatchALot) {
duke@435 1075 patching_info = state_for(x, x->state_before());
duke@435 1076
duke@435 1077 // cannot re-use same xhandlers for multiple CodeEmitInfos, so
never@1368 1078 // clone all handlers. This is handled transparently in other
never@1368 1079 // places by the CodeEmitInfo cloning logic but is handled
never@1368 1080 // specially here because a stub isn't being used.
duke@435 1081 x->set_exception_handlers(new XHandlers(x->exception_handlers()));
duke@435 1082 }
duke@435 1083 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1084
duke@435 1085 i = dims->length();
duke@435 1086 while (i-- > 0) {
duke@435 1087 LIRItem* size = items->at(i);
duke@435 1088 size->load_nonconstant();
duke@435 1089
duke@435 1090 store_stack_parameter(size->result(), in_ByteSize(i*4));
duke@435 1091 }
duke@435 1092
duke@435 1093 LIR_Opr reg = result_register_for(x->type());
duke@435 1094 jobject2reg_with_patching(reg, x->klass(), patching_info);
duke@435 1095
duke@435 1096 LIR_Opr rank = FrameMap::rbx_opr;
duke@435 1097 __ move(LIR_OprFact::intConst(x->rank()), rank);
duke@435 1098 LIR_Opr varargs = FrameMap::rcx_opr;
duke@435 1099 __ move(FrameMap::rsp_opr, varargs);
duke@435 1100 LIR_OprList* args = new LIR_OprList(3);
duke@435 1101 args->append(reg);
duke@435 1102 args->append(rank);
duke@435 1103 args->append(varargs);
duke@435 1104 __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
duke@435 1105 LIR_OprFact::illegalOpr,
duke@435 1106 reg, args, info);
duke@435 1107
duke@435 1108 LIR_Opr result = rlock_result(x);
duke@435 1109 __ move(reg, result);
duke@435 1110 }
duke@435 1111
duke@435 1112
duke@435 1113 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
duke@435 1114 // nothing to do for now
duke@435 1115 }
duke@435 1116
duke@435 1117
duke@435 1118 void LIRGenerator::do_CheckCast(CheckCast* x) {
duke@435 1119 LIRItem obj(x->obj(), this);
duke@435 1120
duke@435 1121 CodeEmitInfo* patching_info = NULL;
duke@435 1122 if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
duke@435 1123 // must do this before locking the destination register as an oop register,
duke@435 1124 // and before the obj is loaded (the latter is for deoptimization)
duke@435 1125 patching_info = state_for(x, x->state_before());
duke@435 1126 }
duke@435 1127 obj.load_item();
duke@435 1128
duke@435 1129 // info for exceptions
duke@435 1130 CodeEmitInfo* info_for_exception = state_for(x, x->state()->copy_locks());
duke@435 1131
duke@435 1132 CodeStub* stub;
duke@435 1133 if (x->is_incompatible_class_change_check()) {
duke@435 1134 assert(patching_info == NULL, "can't patch this");
duke@435 1135 stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
duke@435 1136 } else {
duke@435 1137 stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
duke@435 1138 }
duke@435 1139 LIR_Opr reg = rlock_result(x);
duke@435 1140 __ checkcast(reg, obj.result(), x->klass(),
duke@435 1141 new_register(objectType), new_register(objectType),
duke@435 1142 !x->klass()->is_loaded() ? new_register(objectType) : LIR_OprFact::illegalOpr,
duke@435 1143 x->direct_compare(), info_for_exception, patching_info, stub,
duke@435 1144 x->profiled_method(), x->profiled_bci());
duke@435 1145 }
duke@435 1146
duke@435 1147
duke@435 1148 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
duke@435 1149 LIRItem obj(x->obj(), this);
duke@435 1150
duke@435 1151 // result and test object may not be in same register
duke@435 1152 LIR_Opr reg = rlock_result(x);
duke@435 1153 CodeEmitInfo* patching_info = NULL;
duke@435 1154 if ((!x->klass()->is_loaded() || PatchALot)) {
duke@435 1155 // must do this before locking the destination register as an oop register
duke@435 1156 patching_info = state_for(x, x->state_before());
duke@435 1157 }
duke@435 1158 obj.load_item();
duke@435 1159 LIR_Opr tmp = new_register(objectType);
duke@435 1160 __ instanceof(reg, obj.result(), x->klass(),
duke@435 1161 tmp, new_register(objectType), LIR_OprFact::illegalOpr,
duke@435 1162 x->direct_compare(), patching_info);
duke@435 1163 }
duke@435 1164
duke@435 1165
duke@435 1166 void LIRGenerator::do_If(If* x) {
duke@435 1167 assert(x->number_of_sux() == 2, "inconsistency");
duke@435 1168 ValueTag tag = x->x()->type()->tag();
duke@435 1169 bool is_safepoint = x->is_safepoint();
duke@435 1170
duke@435 1171 If::Condition cond = x->cond();
duke@435 1172
duke@435 1173 LIRItem xitem(x->x(), this);
duke@435 1174 LIRItem yitem(x->y(), this);
duke@435 1175 LIRItem* xin = &xitem;
duke@435 1176 LIRItem* yin = &yitem;
duke@435 1177
duke@435 1178 if (tag == longTag) {
duke@435 1179 // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
duke@435 1180 // mirror for other conditions
duke@435 1181 if (cond == If::gtr || cond == If::leq) {
duke@435 1182 cond = Instruction::mirror(cond);
duke@435 1183 xin = &yitem;
duke@435 1184 yin = &xitem;
duke@435 1185 }
duke@435 1186 xin->set_destroys_register();
duke@435 1187 }
duke@435 1188 xin->load_item();
duke@435 1189 if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
duke@435 1190 // inline long zero
duke@435 1191 yin->dont_load_item();
duke@435 1192 } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
duke@435 1193 // longs cannot handle constants at right side
duke@435 1194 yin->load_item();
duke@435 1195 } else {
duke@435 1196 yin->dont_load_item();
duke@435 1197 }
duke@435 1198
duke@435 1199 // add safepoint before generating condition code so it can be recomputed
duke@435 1200 if (x->is_safepoint()) {
duke@435 1201 // increment backedge counter if needed
iveresov@2138 1202 increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
duke@435 1203 __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
duke@435 1204 }
duke@435 1205 set_no_result(x);
duke@435 1206
duke@435 1207 LIR_Opr left = xin->result();
duke@435 1208 LIR_Opr right = yin->result();
duke@435 1209 __ cmp(lir_cond(cond), left, right);
iveresov@2138 1210 // Generate branch profiling. Profiling code doesn't kill flags.
duke@435 1211 profile_branch(x, cond);
duke@435 1212 move_to_phi(x->state());
duke@435 1213 if (x->x()->type()->is_float_kind()) {
duke@435 1214 __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
duke@435 1215 } else {
duke@435 1216 __ branch(lir_cond(cond), right->type(), x->tsux());
duke@435 1217 }
duke@435 1218 assert(x->default_sux() == x->fsux(), "wrong destination above");
duke@435 1219 __ jump(x->default_sux());
duke@435 1220 }
duke@435 1221
duke@435 1222
duke@435 1223 LIR_Opr LIRGenerator::getThreadPointer() {
never@739 1224 #ifdef _LP64
never@739 1225 return FrameMap::as_pointer_opr(r15_thread);
never@739 1226 #else
duke@435 1227 LIR_Opr result = new_register(T_INT);
duke@435 1228 __ get_thread(result);
duke@435 1229 return result;
never@739 1230 #endif //
duke@435 1231 }
duke@435 1232
duke@435 1233 void LIRGenerator::trace_block_entry(BlockBegin* block) {
duke@435 1234 store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
duke@435 1235 LIR_OprList* args = new LIR_OprList();
duke@435 1236 address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
duke@435 1237 __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
duke@435 1238 }
duke@435 1239
duke@435 1240
duke@435 1241 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
duke@435 1242 CodeEmitInfo* info) {
duke@435 1243 if (address->type() == T_LONG) {
duke@435 1244 address = new LIR_Address(address->base(),
duke@435 1245 address->index(), address->scale(),
duke@435 1246 address->disp(), T_DOUBLE);
duke@435 1247 // Transfer the value atomically by using FP moves. This means
duke@435 1248 // the value has to be moved between CPU and FPU registers. It
duke@435 1249 // always has to be moved through spill slot since there's no
duke@435 1250 // quick way to pack the value into an SSE register.
duke@435 1251 LIR_Opr temp_double = new_register(T_DOUBLE);
duke@435 1252 LIR_Opr spill = new_register(T_LONG);
duke@435 1253 set_vreg_flag(spill, must_start_in_memory);
duke@435 1254 __ move(value, spill);
duke@435 1255 __ volatile_move(spill, temp_double, T_LONG);
duke@435 1256 __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
duke@435 1257 } else {
duke@435 1258 __ store(value, address, info);
duke@435 1259 }
duke@435 1260 }
duke@435 1261
duke@435 1262
duke@435 1263
duke@435 1264 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
duke@435 1265 CodeEmitInfo* info) {
duke@435 1266 if (address->type() == T_LONG) {
duke@435 1267 address = new LIR_Address(address->base(),
duke@435 1268 address->index(), address->scale(),
duke@435 1269 address->disp(), T_DOUBLE);
duke@435 1270 // Transfer the value atomically by using FP moves. This means
duke@435 1271 // the value has to be moved between CPU and FPU registers. In
duke@435 1272 // SSE0 and SSE1 mode it has to be moved through spill slot but in
duke@435 1273 // SSE2+ mode it can be moved directly.
duke@435 1274 LIR_Opr temp_double = new_register(T_DOUBLE);
duke@435 1275 __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
duke@435 1276 __ volatile_move(temp_double, result, T_LONG);
duke@435 1277 if (UseSSE < 2) {
duke@435 1278 // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
duke@435 1279 set_vreg_flag(result, must_start_in_memory);
duke@435 1280 }
duke@435 1281 } else {
duke@435 1282 __ load(address, result, info);
duke@435 1283 }
duke@435 1284 }
duke@435 1285
duke@435 1286 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
duke@435 1287 BasicType type, bool is_volatile) {
duke@435 1288 if (is_volatile && type == T_LONG) {
duke@435 1289 LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
duke@435 1290 LIR_Opr tmp = new_register(T_DOUBLE);
duke@435 1291 __ load(addr, tmp);
duke@435 1292 LIR_Opr spill = new_register(T_LONG);
duke@435 1293 set_vreg_flag(spill, must_start_in_memory);
duke@435 1294 __ move(tmp, spill);
duke@435 1295 __ move(spill, dst);
duke@435 1296 } else {
duke@435 1297 LIR_Address* addr = new LIR_Address(src, offset, type);
duke@435 1298 __ load(addr, dst);
duke@435 1299 }
duke@435 1300 }
duke@435 1301
duke@435 1302
duke@435 1303 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
duke@435 1304 BasicType type, bool is_volatile) {
duke@435 1305 if (is_volatile && type == T_LONG) {
duke@435 1306 LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
duke@435 1307 LIR_Opr tmp = new_register(T_DOUBLE);
duke@435 1308 LIR_Opr spill = new_register(T_DOUBLE);
duke@435 1309 set_vreg_flag(spill, must_start_in_memory);
duke@435 1310 __ move(data, spill);
duke@435 1311 __ move(spill, tmp);
duke@435 1312 __ move(tmp, addr);
duke@435 1313 } else {
duke@435 1314 LIR_Address* addr = new LIR_Address(src, offset, type);
duke@435 1315 bool is_obj = (type == T_ARRAY || type == T_OBJECT);
duke@435 1316 if (is_obj) {
ysr@777 1317 // Do the pre-write barrier, if any.
ysr@777 1318 pre_barrier(LIR_OprFact::address(addr), false, NULL);
duke@435 1319 __ move(data, addr);
duke@435 1320 assert(src->is_register(), "must be register");
duke@435 1321 // Seems to be a precise address
duke@435 1322 post_barrier(LIR_OprFact::address(addr), data);
duke@435 1323 } else {
duke@435 1324 __ move(data, addr);
duke@435 1325 }
duke@435 1326 }
duke@435 1327 }

mercurial