src/share/vm/opto/buildOopMap.cpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 1
2d8a650513c2
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #include "precompiled.hpp"
aoqi@0 26 #include "compiler/oopMap.hpp"
aoqi@0 27 #include "opto/addnode.hpp"
aoqi@0 28 #include "opto/callnode.hpp"
aoqi@0 29 #include "opto/compile.hpp"
aoqi@0 30 #include "opto/machnode.hpp"
aoqi@0 31 #include "opto/matcher.hpp"
aoqi@0 32 #include "opto/phase.hpp"
aoqi@0 33 #include "opto/regalloc.hpp"
aoqi@0 34 #include "opto/rootnode.hpp"
aoqi@0 35 #ifdef TARGET_ARCH_x86
aoqi@0 36 # include "vmreg_x86.inline.hpp"
aoqi@0 37 #endif
aoqi@0 38 #ifdef TARGET_ARCH_sparc
aoqi@0 39 # include "vmreg_sparc.inline.hpp"
aoqi@0 40 #endif
aoqi@0 41 #ifdef TARGET_ARCH_zero
aoqi@0 42 # include "vmreg_zero.inline.hpp"
aoqi@0 43 #endif
aoqi@0 44 #ifdef TARGET_ARCH_arm
aoqi@0 45 # include "vmreg_arm.inline.hpp"
aoqi@0 46 #endif
aoqi@0 47 #ifdef TARGET_ARCH_ppc
aoqi@0 48 # include "vmreg_ppc.inline.hpp"
aoqi@0 49 #endif
aoqi@0 50
aoqi@0 51 // The functions in this file builds OopMaps after all scheduling is done.
aoqi@0 52 //
aoqi@0 53 // OopMaps contain a list of all registers and stack-slots containing oops (so
aoqi@0 54 // they can be updated by GC). OopMaps also contain a list of derived-pointer
aoqi@0 55 // base-pointer pairs. When the base is moved, the derived pointer moves to
aoqi@0 56 // follow it. Finally, any registers holding callee-save values are also
aoqi@0 57 // recorded. These might contain oops, but only the caller knows.
aoqi@0 58 //
aoqi@0 59 // BuildOopMaps implements a simple forward reaching-defs solution. At each
aoqi@0 60 // GC point we'll have the reaching-def Nodes. If the reaching Nodes are
aoqi@0 61 // typed as pointers (no offset), then they are oops. Pointers+offsets are
aoqi@0 62 // derived pointers, and bases can be found from them. Finally, we'll also
aoqi@0 63 // track reaching callee-save values. Note that a copy of a callee-save value
aoqi@0 64 // "kills" it's source, so that only 1 copy of a callee-save value is alive at
aoqi@0 65 // a time.
aoqi@0 66 //
aoqi@0 67 // We run a simple bitvector liveness pass to help trim out dead oops. Due to
aoqi@0 68 // irreducible loops, we can have a reaching def of an oop that only reaches
aoqi@0 69 // along one path and no way to know if it's valid or not on the other path.
aoqi@0 70 // The bitvectors are quite dense and the liveness pass is fast.
aoqi@0 71 //
aoqi@0 72 // At GC points, we consult this information to build OopMaps. All reaching
aoqi@0 73 // defs typed as oops are added to the OopMap. Only 1 instance of a
aoqi@0 74 // callee-save register can be recorded. For derived pointers, we'll have to
aoqi@0 75 // find and record the register holding the base.
aoqi@0 76 //
aoqi@0 77 // The reaching def's is a simple 1-pass worklist approach. I tried a clever
aoqi@0 78 // breadth-first approach but it was worse (showed O(n^2) in the
aoqi@0 79 // pick-next-block code).
aoqi@0 80 //
aoqi@0 81 // The relevant data is kept in a struct of arrays (it could just as well be
aoqi@0 82 // an array of structs, but the struct-of-arrays is generally a little more
aoqi@0 83 // efficient). The arrays are indexed by register number (including
aoqi@0 84 // stack-slots as registers) and so is bounded by 200 to 300 elements in
aoqi@0 85 // practice. One array will map to a reaching def Node (or NULL for
aoqi@0 86 // conflict/dead). The other array will map to a callee-saved register or
aoqi@0 87 // OptoReg::Bad for not-callee-saved.
aoqi@0 88
aoqi@0 89
aoqi@0 90 // Structure to pass around
aoqi@0 91 struct OopFlow : public ResourceObj {
aoqi@0 92 short *_callees; // Array mapping register to callee-saved
aoqi@0 93 Node **_defs; // array mapping register to reaching def
aoqi@0 94 // or NULL if dead/conflict
aoqi@0 95 // OopFlow structs, when not being actively modified, describe the _end_ of
aoqi@0 96 // this block.
aoqi@0 97 Block *_b; // Block for this struct
aoqi@0 98 OopFlow *_next; // Next free OopFlow
aoqi@0 99 // or NULL if dead/conflict
aoqi@0 100 Compile* C;
aoqi@0 101
aoqi@0 102 OopFlow( short *callees, Node **defs, Compile* c ) : _callees(callees), _defs(defs),
aoqi@0 103 _b(NULL), _next(NULL), C(c) { }
aoqi@0 104
aoqi@0 105 // Given reaching-defs for this block start, compute it for this block end
aoqi@0 106 void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );
aoqi@0 107
aoqi@0 108 // Merge these two OopFlows into the 'this' pointer.
aoqi@0 109 void merge( OopFlow *flow, int max_reg );
aoqi@0 110
aoqi@0 111 // Copy a 'flow' over an existing flow
aoqi@0 112 void clone( OopFlow *flow, int max_size);
aoqi@0 113
aoqi@0 114 // Make a new OopFlow from scratch
aoqi@0 115 static OopFlow *make( Arena *A, int max_size, Compile* C );
aoqi@0 116
aoqi@0 117 // Build an oopmap from the current flow info
aoqi@0 118 OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
aoqi@0 119 };
aoqi@0 120
aoqi@0 121 // Given reaching-defs for this block start, compute it for this block end
aoqi@0 122 void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
aoqi@0 123
aoqi@0 124 for( uint i=0; i<_b->number_of_nodes(); i++ ) {
aoqi@0 125 Node *n = _b->get_node(i);
aoqi@0 126
aoqi@0 127 if( n->jvms() ) { // Build an OopMap here?
aoqi@0 128 JVMState *jvms = n->jvms();
aoqi@0 129 // no map needed for leaf calls
aoqi@0 130 if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
aoqi@0 131 int *live = (int*) (*safehash)[n];
aoqi@0 132 assert( live, "must find live" );
aoqi@0 133 n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
aoqi@0 134 }
aoqi@0 135 }
aoqi@0 136
aoqi@0 137 // Assign new reaching def's.
aoqi@0 138 // Note that I padded the _defs and _callees arrays so it's legal
aoqi@0 139 // to index at _defs[OptoReg::Bad].
aoqi@0 140 OptoReg::Name first = regalloc->get_reg_first(n);
aoqi@0 141 OptoReg::Name second = regalloc->get_reg_second(n);
aoqi@0 142 _defs[first] = n;
aoqi@0 143 _defs[second] = n;
aoqi@0 144
aoqi@0 145 // Pass callee-save info around copies
aoqi@0 146 int idx = n->is_Copy();
aoqi@0 147 if( idx ) { // Copies move callee-save info
aoqi@0 148 OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
aoqi@0 149 OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
aoqi@0 150 int tmp_first = _callees[old_first];
aoqi@0 151 int tmp_second = _callees[old_second];
aoqi@0 152 _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
aoqi@0 153 _callees[old_second] = OptoReg::Bad;
aoqi@0 154 _callees[first] = tmp_first;
aoqi@0 155 _callees[second] = tmp_second;
aoqi@0 156 } else if( n->is_Phi() ) { // Phis do not mod callee-saves
aoqi@0 157 assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
aoqi@0 158 assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
aoqi@0 159 assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
aoqi@0 160 assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
aoqi@0 161 } else {
aoqi@0 162 _callees[first] = OptoReg::Bad; // No longer holding a callee-save value
aoqi@0 163 _callees[second] = OptoReg::Bad;
aoqi@0 164
aoqi@0 165 // Find base case for callee saves
aoqi@0 166 if( n->is_Proj() && n->in(0)->is_Start() ) {
aoqi@0 167 if( OptoReg::is_reg(first) &&
aoqi@0 168 regalloc->_matcher.is_save_on_entry(first) )
aoqi@0 169 _callees[first] = first;
aoqi@0 170 if( OptoReg::is_reg(second) &&
aoqi@0 171 regalloc->_matcher.is_save_on_entry(second) )
aoqi@0 172 _callees[second] = second;
aoqi@0 173 }
aoqi@0 174 }
aoqi@0 175 }
aoqi@0 176 }
aoqi@0 177
aoqi@0 178 // Merge the given flow into the 'this' flow
aoqi@0 179 void OopFlow::merge( OopFlow *flow, int max_reg ) {
aoqi@0 180 assert( _b == NULL, "merging into a happy flow" );
aoqi@0 181 assert( flow->_b, "this flow is still alive" );
aoqi@0 182 assert( flow != this, "no self flow" );
aoqi@0 183
aoqi@0 184 // Do the merge. If there are any differences, drop to 'bottom' which
aoqi@0 185 // is OptoReg::Bad or NULL depending.
aoqi@0 186 for( int i=0; i<max_reg; i++ ) {
aoqi@0 187 // Merge the callee-save's
aoqi@0 188 if( _callees[i] != flow->_callees[i] )
aoqi@0 189 _callees[i] = OptoReg::Bad;
aoqi@0 190 // Merge the reaching defs
aoqi@0 191 if( _defs[i] != flow->_defs[i] )
aoqi@0 192 _defs[i] = NULL;
aoqi@0 193 }
aoqi@0 194
aoqi@0 195 }
aoqi@0 196
aoqi@0 197 void OopFlow::clone( OopFlow *flow, int max_size ) {
aoqi@0 198 _b = flow->_b;
aoqi@0 199 memcpy( _callees, flow->_callees, sizeof(short)*max_size);
aoqi@0 200 memcpy( _defs , flow->_defs , sizeof(Node*)*max_size);
aoqi@0 201 }
aoqi@0 202
aoqi@0 203 OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) {
aoqi@0 204 short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
aoqi@0 205 Node **defs = NEW_ARENA_ARRAY(A,Node*,max_size+1);
aoqi@0 206 debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
aoqi@0 207 OopFlow *flow = new (A) OopFlow(callees+1, defs+1, C);
aoqi@0 208 assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
aoqi@0 209 assert( &flow->_defs [OptoReg::Bad] == defs , "Ok to index at OptoReg::Bad" );
aoqi@0 210 return flow;
aoqi@0 211 }
aoqi@0 212
aoqi@0 213 static int get_live_bit( int *live, int reg ) {
aoqi@0 214 return live[reg>>LogBitsPerInt] & (1<<(reg&(BitsPerInt-1))); }
aoqi@0 215 static void set_live_bit( int *live, int reg ) {
aoqi@0 216 live[reg>>LogBitsPerInt] |= (1<<(reg&(BitsPerInt-1))); }
aoqi@0 217 static void clr_live_bit( int *live, int reg ) {
aoqi@0 218 live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
aoqi@0 219
aoqi@0 220 // Build an oopmap from the current flow info
aoqi@0 221 OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
aoqi@0 222 int framesize = regalloc->_framesize;
aoqi@0 223 int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
aoqi@0 224 debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0());
aoqi@0 225 memset(dup_check,0,OptoReg::stack0()) );
aoqi@0 226
aoqi@0 227 OopMap *omap = new OopMap( framesize, max_inarg_slot );
aoqi@0 228 MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : NULL;
aoqi@0 229 JVMState* jvms = n->jvms();
aoqi@0 230
aoqi@0 231 // For all registers do...
aoqi@0 232 for( int reg=0; reg<max_reg; reg++ ) {
aoqi@0 233 if( get_live_bit(live,reg) == 0 )
aoqi@0 234 continue; // Ignore if not live
aoqi@0 235
aoqi@0 236 // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
aoqi@0 237 // register in that case we'll get an non-concrete register for the second
aoqi@0 238 // half. We only need to tell the map the register once!
aoqi@0 239 //
aoqi@0 240 // However for the moment we disable this change and leave things as they
aoqi@0 241 // were.
aoqi@0 242
aoqi@0 243 VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);
aoqi@0 244
aoqi@0 245 if (false && r->is_reg() && !r->is_concrete()) {
aoqi@0 246 continue;
aoqi@0 247 }
aoqi@0 248
aoqi@0 249 // See if dead (no reaching def).
aoqi@0 250 Node *def = _defs[reg]; // Get reaching def
aoqi@0 251 assert( def, "since live better have reaching def" );
aoqi@0 252
aoqi@0 253 // Classify the reaching def as oop, derived, callee-save, dead, or other
aoqi@0 254 const Type *t = def->bottom_type();
aoqi@0 255 if( t->isa_oop_ptr() ) { // Oop or derived?
aoqi@0 256 assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
aoqi@0 257 #ifdef _LP64
aoqi@0 258 // 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
aoqi@0 259 // Make sure both are record from the same reaching def, but do not
aoqi@0 260 // put both into the oopmap.
aoqi@0 261 if( (reg&1) == 1 ) { // High half of oop-pair?
aoqi@0 262 assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
aoqi@0 263 continue; // Do not record high parts in oopmap
aoqi@0 264 }
aoqi@0 265 #endif
aoqi@0 266
aoqi@0 267 // Check for a legal reg name in the oopMap and bailout if it is not.
aoqi@0 268 if (!omap->legal_vm_reg_name(r)) {
aoqi@0 269 regalloc->C->record_method_not_compilable("illegal oopMap register name");
aoqi@0 270 continue;
aoqi@0 271 }
aoqi@0 272 if( t->is_ptr()->_offset == 0 ) { // Not derived?
aoqi@0 273 if( mcall ) {
aoqi@0 274 // Outgoing argument GC mask responsibility belongs to the callee,
aoqi@0 275 // not the caller. Inspect the inputs to the call, to see if
aoqi@0 276 // this live-range is one of them.
aoqi@0 277 uint cnt = mcall->tf()->domain()->cnt();
aoqi@0 278 uint j;
aoqi@0 279 for( j = TypeFunc::Parms; j < cnt; j++)
aoqi@0 280 if( mcall->in(j) == def )
aoqi@0 281 break; // reaching def is an argument oop
aoqi@0 282 if( j < cnt ) // arg oops dont go in GC map
aoqi@0 283 continue; // Continue on to the next register
aoqi@0 284 }
aoqi@0 285 omap->set_oop(r);
aoqi@0 286 } else { // Else it's derived.
aoqi@0 287 // Find the base of the derived value.
aoqi@0 288 uint i;
aoqi@0 289 // Fast, common case, scan
aoqi@0 290 for( i = jvms->oopoff(); i < n->req(); i+=2 )
aoqi@0 291 if( n->in(i) == def ) break; // Common case
aoqi@0 292 if( i == n->req() ) { // Missed, try a more generous scan
aoqi@0 293 // Scan again, but this time peek through copies
aoqi@0 294 for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
aoqi@0 295 Node *m = n->in(i); // Get initial derived value
aoqi@0 296 while( 1 ) {
aoqi@0 297 Node *d = def; // Get initial reaching def
aoqi@0 298 while( 1 ) { // Follow copies of reaching def to end
aoqi@0 299 if( m == d ) goto found; // breaks 3 loops
aoqi@0 300 int idx = d->is_Copy();
aoqi@0 301 if( !idx ) break;
aoqi@0 302 d = d->in(idx); // Link through copy
aoqi@0 303 }
aoqi@0 304 int idx = m->is_Copy();
aoqi@0 305 if( !idx ) break;
aoqi@0 306 m = m->in(idx);
aoqi@0 307 }
aoqi@0 308 }
aoqi@0 309 guarantee( 0, "must find derived/base pair" );
aoqi@0 310 }
aoqi@0 311 found: ;
aoqi@0 312 Node *base = n->in(i+1); // Base is other half of pair
aoqi@0 313 int breg = regalloc->get_reg_first(base);
aoqi@0 314 VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);
aoqi@0 315
aoqi@0 316 // I record liveness at safepoints BEFORE I make the inputs
aoqi@0 317 // live. This is because argument oops are NOT live at a
aoqi@0 318 // safepoint (or at least they cannot appear in the oopmap).
aoqi@0 319 // Thus bases of base/derived pairs might not be in the
aoqi@0 320 // liveness data but they need to appear in the oopmap.
aoqi@0 321 if( get_live_bit(live,breg) == 0 ) {// Not live?
aoqi@0 322 // Flag it, so next derived pointer won't re-insert into oopmap
aoqi@0 323 set_live_bit(live,breg);
aoqi@0 324 // Already missed our turn?
aoqi@0 325 if( breg < reg ) {
aoqi@0 326 if (b->is_stack() || b->is_concrete() || true ) {
aoqi@0 327 omap->set_oop( b);
aoqi@0 328 }
aoqi@0 329 }
aoqi@0 330 }
aoqi@0 331 if (b->is_stack() || b->is_concrete() || true ) {
aoqi@0 332 omap->set_derived_oop( r, b);
aoqi@0 333 }
aoqi@0 334 }
aoqi@0 335
aoqi@0 336 } else if( t->isa_narrowoop() ) {
aoqi@0 337 assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
aoqi@0 338 // Check for a legal reg name in the oopMap and bailout if it is not.
aoqi@0 339 if (!omap->legal_vm_reg_name(r)) {
aoqi@0 340 regalloc->C->record_method_not_compilable("illegal oopMap register name");
aoqi@0 341 continue;
aoqi@0 342 }
aoqi@0 343 if( mcall ) {
aoqi@0 344 // Outgoing argument GC mask responsibility belongs to the callee,
aoqi@0 345 // not the caller. Inspect the inputs to the call, to see if
aoqi@0 346 // this live-range is one of them.
aoqi@0 347 uint cnt = mcall->tf()->domain()->cnt();
aoqi@0 348 uint j;
aoqi@0 349 for( j = TypeFunc::Parms; j < cnt; j++)
aoqi@0 350 if( mcall->in(j) == def )
aoqi@0 351 break; // reaching def is an argument oop
aoqi@0 352 if( j < cnt ) // arg oops dont go in GC map
aoqi@0 353 continue; // Continue on to the next register
aoqi@0 354 }
aoqi@0 355 omap->set_narrowoop(r);
aoqi@0 356 } else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
aoqi@0 357 // It's a callee-save value
aoqi@0 358 assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
aoqi@0 359 debug_only( dup_check[_callees[reg]]=1; )
aoqi@0 360 VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
aoqi@0 361 if ( callee->is_concrete() || true ) {
aoqi@0 362 omap->set_callee_saved( r, callee);
aoqi@0 363 }
aoqi@0 364
aoqi@0 365 } else {
aoqi@0 366 // Other - some reaching non-oop value
aoqi@0 367 omap->set_value( r);
aoqi@0 368 #ifdef ASSERT
aoqi@0 369 if( t->isa_rawptr() && C->cfg()->_raw_oops.member(def) ) {
aoqi@0 370 def->dump();
aoqi@0 371 n->dump();
aoqi@0 372 assert(false, "there should be a oop in OopMap instead of a live raw oop at safepoint");
aoqi@0 373 }
aoqi@0 374 #endif
aoqi@0 375 }
aoqi@0 376
aoqi@0 377 }
aoqi@0 378
aoqi@0 379 #ifdef ASSERT
aoqi@0 380 /* Nice, Intel-only assert
aoqi@0 381 int cnt_callee_saves=0;
aoqi@0 382 int reg2 = 0;
aoqi@0 383 while (OptoReg::is_reg(reg2)) {
aoqi@0 384 if( dup_check[reg2] != 0) cnt_callee_saves++;
aoqi@0 385 assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
aoqi@0 386 reg2++;
aoqi@0 387 }
aoqi@0 388 */
aoqi@0 389 #endif
aoqi@0 390
aoqi@0 391 #ifdef ASSERT
aoqi@0 392 for( OopMapStream oms1(omap, OopMapValue::derived_oop_value); !oms1.is_done(); oms1.next()) {
aoqi@0 393 OopMapValue omv1 = oms1.current();
aoqi@0 394 bool found = false;
aoqi@0 395 for( OopMapStream oms2(omap,OopMapValue::oop_value); !oms2.is_done(); oms2.next()) {
aoqi@0 396 if( omv1.content_reg() == oms2.current().reg() ) {
aoqi@0 397 found = true;
aoqi@0 398 break;
aoqi@0 399 }
aoqi@0 400 }
aoqi@0 401 assert( found, "derived with no base in oopmap" );
aoqi@0 402 }
aoqi@0 403 #endif
aoqi@0 404
aoqi@0 405 return omap;
aoqi@0 406 }
aoqi@0 407
aoqi@0 408 // Compute backwards liveness on registers
aoqi@0 409 static void do_liveness(PhaseRegAlloc* regalloc, PhaseCFG* cfg, Block_List* worklist, int max_reg_ints, Arena* A, Dict* safehash) {
aoqi@0 410 int* live = NEW_ARENA_ARRAY(A, int, (cfg->number_of_blocks() + 1) * max_reg_ints);
aoqi@0 411 int* tmp_live = &live[cfg->number_of_blocks() * max_reg_ints];
aoqi@0 412 Node* root = cfg->get_root_node();
aoqi@0 413 // On CISC platforms, get the node representing the stack pointer that regalloc
aoqi@0 414 // used for spills
aoqi@0 415 Node *fp = NodeSentinel;
aoqi@0 416 if (UseCISCSpill && root->req() > 1) {
aoqi@0 417 fp = root->in(1)->in(TypeFunc::FramePtr);
aoqi@0 418 }
aoqi@0 419 memset(live, 0, cfg->number_of_blocks() * (max_reg_ints << LogBytesPerInt));
aoqi@0 420 // Push preds onto worklist
aoqi@0 421 for (uint i = 1; i < root->req(); i++) {
aoqi@0 422 Block* block = cfg->get_block_for_node(root->in(i));
aoqi@0 423 worklist->push(block);
aoqi@0 424 }
aoqi@0 425
aoqi@0 426 // ZKM.jar includes tiny infinite loops which are unreached from below.
aoqi@0 427 // If we missed any blocks, we'll retry here after pushing all missed
aoqi@0 428 // blocks on the worklist. Normally this outer loop never trips more
aoqi@0 429 // than once.
aoqi@0 430 while (1) {
aoqi@0 431
aoqi@0 432 while( worklist->size() ) { // Standard worklist algorithm
aoqi@0 433 Block *b = worklist->rpop();
aoqi@0 434
aoqi@0 435 // Copy first successor into my tmp_live space
aoqi@0 436 int s0num = b->_succs[0]->_pre_order;
aoqi@0 437 int *t = &live[s0num*max_reg_ints];
aoqi@0 438 for( int i=0; i<max_reg_ints; i++ )
aoqi@0 439 tmp_live[i] = t[i];
aoqi@0 440
aoqi@0 441 // OR in the remaining live registers
aoqi@0 442 for( uint j=1; j<b->_num_succs; j++ ) {
aoqi@0 443 uint sjnum = b->_succs[j]->_pre_order;
aoqi@0 444 int *t = &live[sjnum*max_reg_ints];
aoqi@0 445 for( int i=0; i<max_reg_ints; i++ )
aoqi@0 446 tmp_live[i] |= t[i];
aoqi@0 447 }
aoqi@0 448
aoqi@0 449 // Now walk tmp_live up the block backwards, computing live
aoqi@0 450 for( int k=b->number_of_nodes()-1; k>=0; k-- ) {
aoqi@0 451 Node *n = b->get_node(k);
aoqi@0 452 // KILL def'd bits
aoqi@0 453 int first = regalloc->get_reg_first(n);
aoqi@0 454 int second = regalloc->get_reg_second(n);
aoqi@0 455 if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
aoqi@0 456 if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);
aoqi@0 457
aoqi@0 458 MachNode *m = n->is_Mach() ? n->as_Mach() : NULL;
aoqi@0 459
aoqi@0 460 // Check if m is potentially a CISC alternate instruction (i.e, possibly
aoqi@0 461 // synthesized by RegAlloc from a conventional instruction and a
aoqi@0 462 // spilled input)
aoqi@0 463 bool is_cisc_alternate = false;
aoqi@0 464 if (UseCISCSpill && m) {
aoqi@0 465 is_cisc_alternate = m->is_cisc_alternate();
aoqi@0 466 }
aoqi@0 467
aoqi@0 468 // GEN use'd bits
aoqi@0 469 for( uint l=1; l<n->req(); l++ ) {
aoqi@0 470 Node *def = n->in(l);
aoqi@0 471 assert(def != 0, "input edge required");
aoqi@0 472 int first = regalloc->get_reg_first(def);
aoqi@0 473 int second = regalloc->get_reg_second(def);
aoqi@0 474 if( OptoReg::is_valid(first) ) set_live_bit(tmp_live,first);
aoqi@0 475 if( OptoReg::is_valid(second) ) set_live_bit(tmp_live,second);
aoqi@0 476 // If we use the stack pointer in a cisc-alternative instruction,
aoqi@0 477 // check for use as a memory operand. Then reconstruct the RegName
aoqi@0 478 // for this stack location, and set the appropriate bit in the
aoqi@0 479 // live vector 4987749.
aoqi@0 480 if (is_cisc_alternate && def == fp) {
aoqi@0 481 const TypePtr *adr_type = NULL;
aoqi@0 482 intptr_t offset;
aoqi@0 483 const Node* base = m->get_base_and_disp(offset, adr_type);
aoqi@0 484 if (base == NodeSentinel) {
aoqi@0 485 // Machnode has multiple memory inputs. We are unable to reason
aoqi@0 486 // with these, but are presuming (with trepidation) that not any of
aoqi@0 487 // them are oops. This can be fixed by making get_base_and_disp()
aoqi@0 488 // look at a specific input instead of all inputs.
aoqi@0 489 assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
aoqi@0 490 } else if (base != fp || offset == Type::OffsetBot) {
aoqi@0 491 // Do nothing: the fp operand is either not from a memory use
aoqi@0 492 // (base == NULL) OR the fp is used in a non-memory context
aoqi@0 493 // (base is some other register) OR the offset is not constant,
aoqi@0 494 // so it is not a stack slot.
aoqi@0 495 } else {
aoqi@0 496 assert(offset >= 0, "unexpected negative offset");
aoqi@0 497 offset -= (offset % jintSize); // count the whole word
aoqi@0 498 int stack_reg = regalloc->offset2reg(offset);
aoqi@0 499 if (OptoReg::is_stack(stack_reg)) {
aoqi@0 500 set_live_bit(tmp_live, stack_reg);
aoqi@0 501 } else {
aoqi@0 502 assert(false, "stack_reg not on stack?");
aoqi@0 503 }
aoqi@0 504 }
aoqi@0 505 }
aoqi@0 506 }
aoqi@0 507
aoqi@0 508 if( n->jvms() ) { // Record liveness at safepoint
aoqi@0 509
aoqi@0 510 // This placement of this stanza means inputs to calls are
aoqi@0 511 // considered live at the callsite's OopMap. Argument oops are
aoqi@0 512 // hence live, but NOT included in the oopmap. See cutout in
aoqi@0 513 // build_oop_map. Debug oops are live (and in OopMap).
aoqi@0 514 int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
aoqi@0 515 for( int l=0; l<max_reg_ints; l++ )
aoqi@0 516 n_live[l] = tmp_live[l];
aoqi@0 517 safehash->Insert(n,n_live);
aoqi@0 518 }
aoqi@0 519
aoqi@0 520 }
aoqi@0 521
aoqi@0 522 // Now at block top, see if we have any changes. If so, propagate
aoqi@0 523 // to prior blocks.
aoqi@0 524 int *old_live = &live[b->_pre_order*max_reg_ints];
aoqi@0 525 int l;
aoqi@0 526 for( l=0; l<max_reg_ints; l++ )
aoqi@0 527 if( tmp_live[l] != old_live[l] )
aoqi@0 528 break;
aoqi@0 529 if( l<max_reg_ints ) { // Change!
aoqi@0 530 // Copy in new value
aoqi@0 531 for( l=0; l<max_reg_ints; l++ )
aoqi@0 532 old_live[l] = tmp_live[l];
aoqi@0 533 // Push preds onto worklist
aoqi@0 534 for (l = 1; l < (int)b->num_preds(); l++) {
aoqi@0 535 Block* block = cfg->get_block_for_node(b->pred(l));
aoqi@0 536 worklist->push(block);
aoqi@0 537 }
aoqi@0 538 }
aoqi@0 539 }
aoqi@0 540
aoqi@0 541 // Scan for any missing safepoints. Happens to infinite loops
aoqi@0 542 // ala ZKM.jar
aoqi@0 543 uint i;
aoqi@0 544 for (i = 1; i < cfg->number_of_blocks(); i++) {
aoqi@0 545 Block* block = cfg->get_block(i);
aoqi@0 546 uint j;
aoqi@0 547 for (j = 1; j < block->number_of_nodes(); j++) {
aoqi@0 548 if (block->get_node(j)->jvms() && (*safehash)[block->get_node(j)] == NULL) {
aoqi@0 549 break;
aoqi@0 550 }
aoqi@0 551 }
aoqi@0 552 if (j < block->number_of_nodes()) {
aoqi@0 553 break;
aoqi@0 554 }
aoqi@0 555 }
aoqi@0 556 if (i == cfg->number_of_blocks()) {
aoqi@0 557 break; // Got 'em all
aoqi@0 558 }
aoqi@0 559 #ifndef PRODUCT
aoqi@0 560 if( PrintOpto && Verbose )
aoqi@0 561 tty->print_cr("retripping live calc");
aoqi@0 562 #endif
aoqi@0 563 // Force the issue (expensively): recheck everybody
aoqi@0 564 for (i = 1; i < cfg->number_of_blocks(); i++) {
aoqi@0 565 worklist->push(cfg->get_block(i));
aoqi@0 566 }
aoqi@0 567 }
aoqi@0 568 }
aoqi@0 569
aoqi@0 570 // Collect GC mask info - where are all the OOPs?
aoqi@0 571 void Compile::BuildOopMaps() {
aoqi@0 572 NOT_PRODUCT( TracePhase t3("bldOopMaps", &_t_buildOopMaps, TimeCompiler); )
aoqi@0 573 // Can't resource-mark because I need to leave all those OopMaps around,
aoqi@0 574 // or else I need to resource-mark some arena other than the default.
aoqi@0 575 // ResourceMark rm; // Reclaim all OopFlows when done
aoqi@0 576 int max_reg = _regalloc->_max_reg; // Current array extent
aoqi@0 577
aoqi@0 578 Arena *A = Thread::current()->resource_area();
aoqi@0 579 Block_List worklist; // Worklist of pending blocks
aoqi@0 580
aoqi@0 581 int max_reg_ints = round_to(max_reg, BitsPerInt)>>LogBitsPerInt;
aoqi@0 582 Dict *safehash = NULL; // Used for assert only
aoqi@0 583 // Compute a backwards liveness per register. Needs a bitarray of
aoqi@0 584 // #blocks x (#registers, rounded up to ints)
aoqi@0 585 safehash = new Dict(cmpkey,hashkey,A);
aoqi@0 586 do_liveness( _regalloc, _cfg, &worklist, max_reg_ints, A, safehash );
aoqi@0 587 OopFlow *free_list = NULL; // Free, unused
aoqi@0 588
aoqi@0 589 // Array mapping blocks to completed oopflows
aoqi@0 590 OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->number_of_blocks());
aoqi@0 591 memset( flows, 0, _cfg->number_of_blocks() * sizeof(OopFlow*) );
aoqi@0 592
aoqi@0 593
aoqi@0 594 // Do the first block 'by hand' to prime the worklist
aoqi@0 595 Block *entry = _cfg->get_block(1);
aoqi@0 596 OopFlow *rootflow = OopFlow::make(A,max_reg,this);
aoqi@0 597 // Initialize to 'bottom' (not 'top')
aoqi@0 598 memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
aoqi@0 599 memset( rootflow->_defs , 0, max_reg*sizeof(Node*) );
aoqi@0 600 flows[entry->_pre_order] = rootflow;
aoqi@0 601
aoqi@0 602 // Do the first block 'by hand' to prime the worklist
aoqi@0 603 rootflow->_b = entry;
aoqi@0 604 rootflow->compute_reach( _regalloc, max_reg, safehash );
aoqi@0 605 for( uint i=0; i<entry->_num_succs; i++ )
aoqi@0 606 worklist.push(entry->_succs[i]);
aoqi@0 607
aoqi@0 608 // Now worklist contains blocks which have some, but perhaps not all,
aoqi@0 609 // predecessors visited.
aoqi@0 610 while( worklist.size() ) {
aoqi@0 611 // Scan for a block with all predecessors visited, or any randoms slob
aoqi@0 612 // otherwise. All-preds-visited order allows me to recycle OopFlow
aoqi@0 613 // structures rapidly and cut down on the memory footprint.
aoqi@0 614 // Note: not all predecessors might be visited yet (must happen for
aoqi@0 615 // irreducible loops). This is OK, since every live value must have the
aoqi@0 616 // SAME reaching def for the block, so any reaching def is OK.
aoqi@0 617 uint i;
aoqi@0 618
aoqi@0 619 Block *b = worklist.pop();
aoqi@0 620 // Ignore root block
aoqi@0 621 if (b == _cfg->get_root_block()) {
aoqi@0 622 continue;
aoqi@0 623 }
aoqi@0 624 // Block is already done? Happens if block has several predecessors,
aoqi@0 625 // he can get on the worklist more than once.
aoqi@0 626 if( flows[b->_pre_order] ) continue;
aoqi@0 627
aoqi@0 628 // If this block has a visited predecessor AND that predecessor has this
aoqi@0 629 // last block as his only undone child, we can move the OopFlow from the
aoqi@0 630 // pred to this block. Otherwise we have to grab a new OopFlow.
aoqi@0 631 OopFlow *flow = NULL; // Flag for finding optimized flow
aoqi@0 632 Block *pred = (Block*)0xdeadbeef;
aoqi@0 633 // Scan this block's preds to find a done predecessor
aoqi@0 634 for (uint j = 1; j < b->num_preds(); j++) {
aoqi@0 635 Block* p = _cfg->get_block_for_node(b->pred(j));
aoqi@0 636 OopFlow *p_flow = flows[p->_pre_order];
aoqi@0 637 if( p_flow ) { // Predecessor is done
aoqi@0 638 assert( p_flow->_b == p, "cross check" );
aoqi@0 639 pred = p; // Record some predecessor
aoqi@0 640 // If all successors of p are done except for 'b', then we can carry
aoqi@0 641 // p_flow forward to 'b' without copying, otherwise we have to draw
aoqi@0 642 // from the free_list and clone data.
aoqi@0 643 uint k;
aoqi@0 644 for( k=0; k<p->_num_succs; k++ )
aoqi@0 645 if( !flows[p->_succs[k]->_pre_order] &&
aoqi@0 646 p->_succs[k] != b )
aoqi@0 647 break;
aoqi@0 648
aoqi@0 649 // Either carry-forward the now-unused OopFlow for b's use
aoqi@0 650 // or draw a new one from the free list
aoqi@0 651 if( k==p->_num_succs ) {
aoqi@0 652 flow = p_flow;
aoqi@0 653 break; // Found an ideal pred, use him
aoqi@0 654 }
aoqi@0 655 }
aoqi@0 656 }
aoqi@0 657
aoqi@0 658 if( flow ) {
aoqi@0 659 // We have an OopFlow that's the last-use of a predecessor.
aoqi@0 660 // Carry it forward.
aoqi@0 661 } else { // Draw a new OopFlow from the freelist
aoqi@0 662 if( !free_list )
aoqi@0 663 free_list = OopFlow::make(A,max_reg,C);
aoqi@0 664 flow = free_list;
aoqi@0 665 assert( flow->_b == NULL, "oopFlow is not free" );
aoqi@0 666 free_list = flow->_next;
aoqi@0 667 flow->_next = NULL;
aoqi@0 668
aoqi@0 669 // Copy/clone over the data
aoqi@0 670 flow->clone(flows[pred->_pre_order], max_reg);
aoqi@0 671 }
aoqi@0 672
aoqi@0 673 // Mark flow for block. Blocks can only be flowed over once,
aoqi@0 674 // because after the first time they are guarded from entering
aoqi@0 675 // this code again.
aoqi@0 676 assert( flow->_b == pred, "have some prior flow" );
aoqi@0 677 flow->_b = NULL;
aoqi@0 678
aoqi@0 679 // Now push flow forward
aoqi@0 680 flows[b->_pre_order] = flow;// Mark flow for this block
aoqi@0 681 flow->_b = b;
aoqi@0 682 flow->compute_reach( _regalloc, max_reg, safehash );
aoqi@0 683
aoqi@0 684 // Now push children onto worklist
aoqi@0 685 for( i=0; i<b->_num_succs; i++ )
aoqi@0 686 worklist.push(b->_succs[i]);
aoqi@0 687
aoqi@0 688 }
aoqi@0 689 }

mercurial