src/share/vm/opto/buildOopMap.cpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 1
2d8a650513c2
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/oopMap.hpp"
    27 #include "opto/addnode.hpp"
    28 #include "opto/callnode.hpp"
    29 #include "opto/compile.hpp"
    30 #include "opto/machnode.hpp"
    31 #include "opto/matcher.hpp"
    32 #include "opto/phase.hpp"
    33 #include "opto/regalloc.hpp"
    34 #include "opto/rootnode.hpp"
    35 #ifdef TARGET_ARCH_x86
    36 # include "vmreg_x86.inline.hpp"
    37 #endif
    38 #ifdef TARGET_ARCH_sparc
    39 # include "vmreg_sparc.inline.hpp"
    40 #endif
    41 #ifdef TARGET_ARCH_zero
    42 # include "vmreg_zero.inline.hpp"
    43 #endif
    44 #ifdef TARGET_ARCH_arm
    45 # include "vmreg_arm.inline.hpp"
    46 #endif
    47 #ifdef TARGET_ARCH_ppc
    48 # include "vmreg_ppc.inline.hpp"
    49 #endif
    51 // The functions in this file builds OopMaps after all scheduling is done.
    52 //
    53 // OopMaps contain a list of all registers and stack-slots containing oops (so
    54 // they can be updated by GC).  OopMaps also contain a list of derived-pointer
    55 // base-pointer pairs.  When the base is moved, the derived pointer moves to
    56 // follow it.  Finally, any registers holding callee-save values are also
    57 // recorded.  These might contain oops, but only the caller knows.
    58 //
    59 // BuildOopMaps implements a simple forward reaching-defs solution.  At each
    60 // GC point we'll have the reaching-def Nodes.  If the reaching Nodes are
    61 // typed as pointers (no offset), then they are oops.  Pointers+offsets are
    62 // derived pointers, and bases can be found from them.  Finally, we'll also
    63 // track reaching callee-save values.  Note that a copy of a callee-save value
    64 // "kills" it's source, so that only 1 copy of a callee-save value is alive at
    65 // a time.
    66 //
    67 // We run a simple bitvector liveness pass to help trim out dead oops.  Due to
    68 // irreducible loops, we can have a reaching def of an oop that only reaches
    69 // along one path and no way to know if it's valid or not on the other path.
    70 // The bitvectors are quite dense and the liveness pass is fast.
    71 //
    72 // At GC points, we consult this information to build OopMaps.  All reaching
    73 // defs typed as oops are added to the OopMap.  Only 1 instance of a
    74 // callee-save register can be recorded.  For derived pointers, we'll have to
    75 // find and record the register holding the base.
    76 //
    77 // The reaching def's is a simple 1-pass worklist approach.  I tried a clever
    78 // breadth-first approach but it was worse (showed O(n^2) in the
    79 // pick-next-block code).
    80 //
    81 // The relevant data is kept in a struct of arrays (it could just as well be
    82 // an array of structs, but the struct-of-arrays is generally a little more
    83 // efficient).  The arrays are indexed by register number (including
    84 // stack-slots as registers) and so is bounded by 200 to 300 elements in
    85 // practice.  One array will map to a reaching def Node (or NULL for
    86 // conflict/dead).  The other array will map to a callee-saved register or
    87 // OptoReg::Bad for not-callee-saved.
    90 // Structure to pass around
    91 struct OopFlow : public ResourceObj {
    92   short *_callees;              // Array mapping register to callee-saved
    93   Node **_defs;                 // array mapping register to reaching def
    94                                 // or NULL if dead/conflict
    95   // OopFlow structs, when not being actively modified, describe the _end_ of
    96   // this block.
    97   Block *_b;                    // Block for this struct
    98   OopFlow *_next;               // Next free OopFlow
    99                                 // or NULL if dead/conflict
   100   Compile* C;
   102   OopFlow( short *callees, Node **defs, Compile* c ) : _callees(callees), _defs(defs),
   103     _b(NULL), _next(NULL), C(c) { }
   105   // Given reaching-defs for this block start, compute it for this block end
   106   void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );
   108   // Merge these two OopFlows into the 'this' pointer.
   109   void merge( OopFlow *flow, int max_reg );
   111   // Copy a 'flow' over an existing flow
   112   void clone( OopFlow *flow, int max_size);
   114   // Make a new OopFlow from scratch
   115   static OopFlow *make( Arena *A, int max_size, Compile* C );
   117   // Build an oopmap from the current flow info
   118   OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
   119 };
   121 // Given reaching-defs for this block start, compute it for this block end
   122 void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
   124   for( uint i=0; i<_b->number_of_nodes(); i++ ) {
   125     Node *n = _b->get_node(i);
   127     if( n->jvms() ) {           // Build an OopMap here?
   128       JVMState *jvms = n->jvms();
   129       // no map needed for leaf calls
   130       if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
   131         int *live = (int*) (*safehash)[n];
   132         assert( live, "must find live" );
   133         n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
   134       }
   135     }
   137     // Assign new reaching def's.
   138     // Note that I padded the _defs and _callees arrays so it's legal
   139     // to index at _defs[OptoReg::Bad].
   140     OptoReg::Name first = regalloc->get_reg_first(n);
   141     OptoReg::Name second = regalloc->get_reg_second(n);
   142     _defs[first] = n;
   143     _defs[second] = n;
   145     // Pass callee-save info around copies
   146     int idx = n->is_Copy();
   147     if( idx ) {                 // Copies move callee-save info
   148       OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
   149       OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
   150       int tmp_first = _callees[old_first];
   151       int tmp_second = _callees[old_second];
   152       _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
   153       _callees[old_second] = OptoReg::Bad;
   154       _callees[first] = tmp_first;
   155       _callees[second] = tmp_second;
   156     } else if( n->is_Phi() ) {  // Phis do not mod callee-saves
   157       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
   158       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
   159       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
   160       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
   161     } else {
   162       _callees[first] = OptoReg::Bad; // No longer holding a callee-save value
   163       _callees[second] = OptoReg::Bad;
   165       // Find base case for callee saves
   166       if( n->is_Proj() && n->in(0)->is_Start() ) {
   167         if( OptoReg::is_reg(first) &&
   168             regalloc->_matcher.is_save_on_entry(first) )
   169           _callees[first] = first;
   170         if( OptoReg::is_reg(second) &&
   171             regalloc->_matcher.is_save_on_entry(second) )
   172           _callees[second] = second;
   173       }
   174     }
   175   }
   176 }
   178 // Merge the given flow into the 'this' flow
   179 void OopFlow::merge( OopFlow *flow, int max_reg ) {
   180   assert( _b == NULL, "merging into a happy flow" );
   181   assert( flow->_b, "this flow is still alive" );
   182   assert( flow != this, "no self flow" );
   184   // Do the merge.  If there are any differences, drop to 'bottom' which
   185   // is OptoReg::Bad or NULL depending.
   186   for( int i=0; i<max_reg; i++ ) {
   187     // Merge the callee-save's
   188     if( _callees[i] != flow->_callees[i] )
   189       _callees[i] = OptoReg::Bad;
   190     // Merge the reaching defs
   191     if( _defs[i] != flow->_defs[i] )
   192       _defs[i] = NULL;
   193   }
   195 }
   197 void OopFlow::clone( OopFlow *flow, int max_size ) {
   198   _b = flow->_b;
   199   memcpy( _callees, flow->_callees, sizeof(short)*max_size);
   200   memcpy( _defs   , flow->_defs   , sizeof(Node*)*max_size);
   201 }
   203 OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) {
   204   short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
   205   Node **defs    = NEW_ARENA_ARRAY(A,Node*,max_size+1);
   206   debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
   207   OopFlow *flow = new (A) OopFlow(callees+1, defs+1, C);
   208   assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
   209   assert( &flow->_defs   [OptoReg::Bad] == defs   , "Ok to index at OptoReg::Bad" );
   210   return flow;
   211 }
   213 static int get_live_bit( int *live, int reg ) {
   214   return live[reg>>LogBitsPerInt] &   (1<<(reg&(BitsPerInt-1))); }
   215 static void set_live_bit( int *live, int reg ) {
   216          live[reg>>LogBitsPerInt] |=  (1<<(reg&(BitsPerInt-1))); }
   217 static void clr_live_bit( int *live, int reg ) {
   218          live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
   220 // Build an oopmap from the current flow info
   221 OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
   222   int framesize = regalloc->_framesize;
   223   int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
   224   debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0());
   225               memset(dup_check,0,OptoReg::stack0()) );
   227   OopMap *omap = new OopMap( framesize,  max_inarg_slot );
   228   MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : NULL;
   229   JVMState* jvms = n->jvms();
   231   // For all registers do...
   232   for( int reg=0; reg<max_reg; reg++ ) {
   233     if( get_live_bit(live,reg) == 0 )
   234       continue;                 // Ignore if not live
   236     // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
   237     // register in that case we'll get an non-concrete register for the second
   238     // half. We only need to tell the map the register once!
   239     //
   240     // However for the moment we disable this change and leave things as they
   241     // were.
   243     VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);
   245     if (false && r->is_reg() && !r->is_concrete()) {
   246       continue;
   247     }
   249     // See if dead (no reaching def).
   250     Node *def = _defs[reg];     // Get reaching def
   251     assert( def, "since live better have reaching def" );
   253     // Classify the reaching def as oop, derived, callee-save, dead, or other
   254     const Type *t = def->bottom_type();
   255     if( t->isa_oop_ptr() ) {    // Oop or derived?
   256       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
   257 #ifdef _LP64
   258       // 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
   259       // Make sure both are record from the same reaching def, but do not
   260       // put both into the oopmap.
   261       if( (reg&1) == 1 ) {      // High half of oop-pair?
   262         assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
   263         continue;               // Do not record high parts in oopmap
   264       }
   265 #endif
   267       // Check for a legal reg name in the oopMap and bailout if it is not.
   268       if (!omap->legal_vm_reg_name(r)) {
   269         regalloc->C->record_method_not_compilable("illegal oopMap register name");
   270         continue;
   271       }
   272       if( t->is_ptr()->_offset == 0 ) { // Not derived?
   273         if( mcall ) {
   274           // Outgoing argument GC mask responsibility belongs to the callee,
   275           // not the caller.  Inspect the inputs to the call, to see if
   276           // this live-range is one of them.
   277           uint cnt = mcall->tf()->domain()->cnt();
   278           uint j;
   279           for( j = TypeFunc::Parms; j < cnt; j++)
   280             if( mcall->in(j) == def )
   281               break;            // reaching def is an argument oop
   282           if( j < cnt )         // arg oops dont go in GC map
   283             continue;           // Continue on to the next register
   284         }
   285         omap->set_oop(r);
   286       } else {                  // Else it's derived.
   287         // Find the base of the derived value.
   288         uint i;
   289         // Fast, common case, scan
   290         for( i = jvms->oopoff(); i < n->req(); i+=2 )
   291           if( n->in(i) == def ) break; // Common case
   292         if( i == n->req() ) {   // Missed, try a more generous scan
   293           // Scan again, but this time peek through copies
   294           for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
   295             Node *m = n->in(i); // Get initial derived value
   296             while( 1 ) {
   297               Node *d = def;    // Get initial reaching def
   298               while( 1 ) {      // Follow copies of reaching def to end
   299                 if( m == d ) goto found; // breaks 3 loops
   300                 int idx = d->is_Copy();
   301                 if( !idx ) break;
   302                 d = d->in(idx);     // Link through copy
   303               }
   304               int idx = m->is_Copy();
   305               if( !idx ) break;
   306               m = m->in(idx);
   307             }
   308           }
   309           guarantee( 0, "must find derived/base pair" );
   310         }
   311       found: ;
   312         Node *base = n->in(i+1); // Base is other half of pair
   313         int breg = regalloc->get_reg_first(base);
   314         VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);
   316         // I record liveness at safepoints BEFORE I make the inputs
   317         // live.  This is because argument oops are NOT live at a
   318         // safepoint (or at least they cannot appear in the oopmap).
   319         // Thus bases of base/derived pairs might not be in the
   320         // liveness data but they need to appear in the oopmap.
   321         if( get_live_bit(live,breg) == 0 ) {// Not live?
   322           // Flag it, so next derived pointer won't re-insert into oopmap
   323           set_live_bit(live,breg);
   324           // Already missed our turn?
   325           if( breg < reg ) {
   326             if (b->is_stack() || b->is_concrete() || true ) {
   327               omap->set_oop( b);
   328             }
   329           }
   330         }
   331         if (b->is_stack() || b->is_concrete() || true ) {
   332           omap->set_derived_oop( r, b);
   333         }
   334       }
   336     } else if( t->isa_narrowoop() ) {
   337       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
   338       // Check for a legal reg name in the oopMap and bailout if it is not.
   339       if (!omap->legal_vm_reg_name(r)) {
   340         regalloc->C->record_method_not_compilable("illegal oopMap register name");
   341         continue;
   342       }
   343       if( mcall ) {
   344           // Outgoing argument GC mask responsibility belongs to the callee,
   345           // not the caller.  Inspect the inputs to the call, to see if
   346           // this live-range is one of them.
   347         uint cnt = mcall->tf()->domain()->cnt();
   348         uint j;
   349         for( j = TypeFunc::Parms; j < cnt; j++)
   350           if( mcall->in(j) == def )
   351             break;            // reaching def is an argument oop
   352         if( j < cnt )         // arg oops dont go in GC map
   353           continue;           // Continue on to the next register
   354       }
   355       omap->set_narrowoop(r);
   356     } else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
   357       // It's a callee-save value
   358       assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
   359       debug_only( dup_check[_callees[reg]]=1; )
   360       VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
   361       if ( callee->is_concrete() || true ) {
   362         omap->set_callee_saved( r, callee);
   363       }
   365     } else {
   366       // Other - some reaching non-oop value
   367       omap->set_value( r);
   368 #ifdef ASSERT
   369       if( t->isa_rawptr() && C->cfg()->_raw_oops.member(def) ) {
   370         def->dump();
   371         n->dump();
   372         assert(false, "there should be a oop in OopMap instead of a live raw oop at safepoint");
   373       }
   374 #endif
   375     }
   377   }
   379 #ifdef ASSERT
   380   /* Nice, Intel-only assert
   381   int cnt_callee_saves=0;
   382   int reg2 = 0;
   383   while (OptoReg::is_reg(reg2)) {
   384     if( dup_check[reg2] != 0) cnt_callee_saves++;
   385     assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
   386     reg2++;
   387   }
   388   */
   389 #endif
   391 #ifdef ASSERT
   392   for( OopMapStream oms1(omap, OopMapValue::derived_oop_value); !oms1.is_done(); oms1.next()) {
   393     OopMapValue omv1 = oms1.current();
   394     bool found = false;
   395     for( OopMapStream oms2(omap,OopMapValue::oop_value); !oms2.is_done(); oms2.next()) {
   396       if( omv1.content_reg() == oms2.current().reg() ) {
   397         found = true;
   398         break;
   399       }
   400     }
   401     assert( found, "derived with no base in oopmap" );
   402   }
   403 #endif
   405   return omap;
   406 }
   408 // Compute backwards liveness on registers
   409 static void do_liveness(PhaseRegAlloc* regalloc, PhaseCFG* cfg, Block_List* worklist, int max_reg_ints, Arena* A, Dict* safehash) {
   410   int* live = NEW_ARENA_ARRAY(A, int, (cfg->number_of_blocks() + 1) * max_reg_ints);
   411   int* tmp_live = &live[cfg->number_of_blocks() * max_reg_ints];
   412   Node* root = cfg->get_root_node();
   413   // On CISC platforms, get the node representing the stack pointer  that regalloc
   414   // used for spills
   415   Node *fp = NodeSentinel;
   416   if (UseCISCSpill && root->req() > 1) {
   417     fp = root->in(1)->in(TypeFunc::FramePtr);
   418   }
   419   memset(live, 0, cfg->number_of_blocks() * (max_reg_ints << LogBytesPerInt));
   420   // Push preds onto worklist
   421   for (uint i = 1; i < root->req(); i++) {
   422     Block* block = cfg->get_block_for_node(root->in(i));
   423     worklist->push(block);
   424   }
   426   // ZKM.jar includes tiny infinite loops which are unreached from below.
   427   // If we missed any blocks, we'll retry here after pushing all missed
   428   // blocks on the worklist.  Normally this outer loop never trips more
   429   // than once.
   430   while (1) {
   432     while( worklist->size() ) { // Standard worklist algorithm
   433       Block *b = worklist->rpop();
   435       // Copy first successor into my tmp_live space
   436       int s0num = b->_succs[0]->_pre_order;
   437       int *t = &live[s0num*max_reg_ints];
   438       for( int i=0; i<max_reg_ints; i++ )
   439         tmp_live[i] = t[i];
   441       // OR in the remaining live registers
   442       for( uint j=1; j<b->_num_succs; j++ ) {
   443         uint sjnum = b->_succs[j]->_pre_order;
   444         int *t = &live[sjnum*max_reg_ints];
   445         for( int i=0; i<max_reg_ints; i++ )
   446           tmp_live[i] |= t[i];
   447       }
   449       // Now walk tmp_live up the block backwards, computing live
   450       for( int k=b->number_of_nodes()-1; k>=0; k-- ) {
   451         Node *n = b->get_node(k);
   452         // KILL def'd bits
   453         int first = regalloc->get_reg_first(n);
   454         int second = regalloc->get_reg_second(n);
   455         if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
   456         if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);
   458         MachNode *m = n->is_Mach() ? n->as_Mach() : NULL;
   460         // Check if m is potentially a CISC alternate instruction (i.e, possibly
   461         // synthesized by RegAlloc from a conventional instruction and a
   462         // spilled input)
   463         bool is_cisc_alternate = false;
   464         if (UseCISCSpill && m) {
   465           is_cisc_alternate = m->is_cisc_alternate();
   466         }
   468         // GEN use'd bits
   469         for( uint l=1; l<n->req(); l++ ) {
   470           Node *def = n->in(l);
   471           assert(def != 0, "input edge required");
   472           int first = regalloc->get_reg_first(def);
   473           int second = regalloc->get_reg_second(def);
   474           if( OptoReg::is_valid(first) ) set_live_bit(tmp_live,first);
   475           if( OptoReg::is_valid(second) ) set_live_bit(tmp_live,second);
   476           // If we use the stack pointer in a cisc-alternative instruction,
   477           // check for use as a memory operand.  Then reconstruct the RegName
   478           // for this stack location, and set the appropriate bit in the
   479           // live vector 4987749.
   480           if (is_cisc_alternate && def == fp) {
   481             const TypePtr *adr_type = NULL;
   482             intptr_t offset;
   483             const Node* base = m->get_base_and_disp(offset, adr_type);
   484             if (base == NodeSentinel) {
   485               // Machnode has multiple memory inputs. We are unable to reason
   486               // with these, but are presuming (with trepidation) that not any of
   487               // them are oops. This can be fixed by making get_base_and_disp()
   488               // look at a specific input instead of all inputs.
   489               assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
   490             } else if (base != fp || offset == Type::OffsetBot) {
   491               // Do nothing: the fp operand is either not from a memory use
   492               // (base == NULL) OR the fp is used in a non-memory context
   493               // (base is some other register) OR the offset is not constant,
   494               // so it is not a stack slot.
   495             } else {
   496               assert(offset >= 0, "unexpected negative offset");
   497               offset -= (offset % jintSize);  // count the whole word
   498               int stack_reg = regalloc->offset2reg(offset);
   499               if (OptoReg::is_stack(stack_reg)) {
   500                 set_live_bit(tmp_live, stack_reg);
   501               } else {
   502                 assert(false, "stack_reg not on stack?");
   503               }
   504             }
   505           }
   506         }
   508         if( n->jvms() ) {       // Record liveness at safepoint
   510           // This placement of this stanza means inputs to calls are
   511           // considered live at the callsite's OopMap.  Argument oops are
   512           // hence live, but NOT included in the oopmap.  See cutout in
   513           // build_oop_map.  Debug oops are live (and in OopMap).
   514           int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
   515           for( int l=0; l<max_reg_ints; l++ )
   516             n_live[l] = tmp_live[l];
   517           safehash->Insert(n,n_live);
   518         }
   520       }
   522       // Now at block top, see if we have any changes.  If so, propagate
   523       // to prior blocks.
   524       int *old_live = &live[b->_pre_order*max_reg_ints];
   525       int l;
   526       for( l=0; l<max_reg_ints; l++ )
   527         if( tmp_live[l] != old_live[l] )
   528           break;
   529       if( l<max_reg_ints ) {     // Change!
   530         // Copy in new value
   531         for( l=0; l<max_reg_ints; l++ )
   532           old_live[l] = tmp_live[l];
   533         // Push preds onto worklist
   534         for (l = 1; l < (int)b->num_preds(); l++) {
   535           Block* block = cfg->get_block_for_node(b->pred(l));
   536           worklist->push(block);
   537         }
   538       }
   539     }
   541     // Scan for any missing safepoints.  Happens to infinite loops
   542     // ala ZKM.jar
   543     uint i;
   544     for (i = 1; i < cfg->number_of_blocks(); i++) {
   545       Block* block = cfg->get_block(i);
   546       uint j;
   547       for (j = 1; j < block->number_of_nodes(); j++) {
   548         if (block->get_node(j)->jvms() && (*safehash)[block->get_node(j)] == NULL) {
   549            break;
   550         }
   551       }
   552       if (j < block->number_of_nodes()) {
   553         break;
   554       }
   555     }
   556     if (i == cfg->number_of_blocks()) {
   557       break;                    // Got 'em all
   558     }
   559 #ifndef PRODUCT
   560     if( PrintOpto && Verbose )
   561       tty->print_cr("retripping live calc");
   562 #endif
   563     // Force the issue (expensively): recheck everybody
   564     for (i = 1; i < cfg->number_of_blocks(); i++) {
   565       worklist->push(cfg->get_block(i));
   566     }
   567   }
   568 }
   570 // Collect GC mask info - where are all the OOPs?
   571 void Compile::BuildOopMaps() {
   572   NOT_PRODUCT( TracePhase t3("bldOopMaps", &_t_buildOopMaps, TimeCompiler); )
   573   // Can't resource-mark because I need to leave all those OopMaps around,
   574   // or else I need to resource-mark some arena other than the default.
   575   // ResourceMark rm;              // Reclaim all OopFlows when done
   576   int max_reg = _regalloc->_max_reg; // Current array extent
   578   Arena *A = Thread::current()->resource_area();
   579   Block_List worklist;          // Worklist of pending blocks
   581   int max_reg_ints = round_to(max_reg, BitsPerInt)>>LogBitsPerInt;
   582   Dict *safehash = NULL;        // Used for assert only
   583   // Compute a backwards liveness per register.  Needs a bitarray of
   584   // #blocks x (#registers, rounded up to ints)
   585   safehash = new Dict(cmpkey,hashkey,A);
   586   do_liveness( _regalloc, _cfg, &worklist, max_reg_ints, A, safehash );
   587   OopFlow *free_list = NULL;    // Free, unused
   589   // Array mapping blocks to completed oopflows
   590   OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->number_of_blocks());
   591   memset( flows, 0, _cfg->number_of_blocks() * sizeof(OopFlow*) );
   594   // Do the first block 'by hand' to prime the worklist
   595   Block *entry = _cfg->get_block(1);
   596   OopFlow *rootflow = OopFlow::make(A,max_reg,this);
   597   // Initialize to 'bottom' (not 'top')
   598   memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
   599   memset( rootflow->_defs   ,            0, max_reg*sizeof(Node*) );
   600   flows[entry->_pre_order] = rootflow;
   602   // Do the first block 'by hand' to prime the worklist
   603   rootflow->_b = entry;
   604   rootflow->compute_reach( _regalloc, max_reg, safehash );
   605   for( uint i=0; i<entry->_num_succs; i++ )
   606     worklist.push(entry->_succs[i]);
   608   // Now worklist contains blocks which have some, but perhaps not all,
   609   // predecessors visited.
   610   while( worklist.size() ) {
   611     // Scan for a block with all predecessors visited, or any randoms slob
   612     // otherwise.  All-preds-visited order allows me to recycle OopFlow
   613     // structures rapidly and cut down on the memory footprint.
   614     // Note: not all predecessors might be visited yet (must happen for
   615     // irreducible loops).  This is OK, since every live value must have the
   616     // SAME reaching def for the block, so any reaching def is OK.
   617     uint i;
   619     Block *b = worklist.pop();
   620     // Ignore root block
   621     if (b == _cfg->get_root_block()) {
   622       continue;
   623     }
   624     // Block is already done?  Happens if block has several predecessors,
   625     // he can get on the worklist more than once.
   626     if( flows[b->_pre_order] ) continue;
   628     // If this block has a visited predecessor AND that predecessor has this
   629     // last block as his only undone child, we can move the OopFlow from the
   630     // pred to this block.  Otherwise we have to grab a new OopFlow.
   631     OopFlow *flow = NULL;       // Flag for finding optimized flow
   632     Block *pred = (Block*)0xdeadbeef;
   633     // Scan this block's preds to find a done predecessor
   634     for (uint j = 1; j < b->num_preds(); j++) {
   635       Block* p = _cfg->get_block_for_node(b->pred(j));
   636       OopFlow *p_flow = flows[p->_pre_order];
   637       if( p_flow ) {            // Predecessor is done
   638         assert( p_flow->_b == p, "cross check" );
   639         pred = p;               // Record some predecessor
   640         // If all successors of p are done except for 'b', then we can carry
   641         // p_flow forward to 'b' without copying, otherwise we have to draw
   642         // from the free_list and clone data.
   643         uint k;
   644         for( k=0; k<p->_num_succs; k++ )
   645           if( !flows[p->_succs[k]->_pre_order] &&
   646               p->_succs[k] != b )
   647             break;
   649         // Either carry-forward the now-unused OopFlow for b's use
   650         // or draw a new one from the free list
   651         if( k==p->_num_succs ) {
   652           flow = p_flow;
   653           break;                // Found an ideal pred, use him
   654         }
   655       }
   656     }
   658     if( flow ) {
   659       // We have an OopFlow that's the last-use of a predecessor.
   660       // Carry it forward.
   661     } else {                    // Draw a new OopFlow from the freelist
   662       if( !free_list )
   663         free_list = OopFlow::make(A,max_reg,C);
   664       flow = free_list;
   665       assert( flow->_b == NULL, "oopFlow is not free" );
   666       free_list = flow->_next;
   667       flow->_next = NULL;
   669       // Copy/clone over the data
   670       flow->clone(flows[pred->_pre_order], max_reg);
   671     }
   673     // Mark flow for block.  Blocks can only be flowed over once,
   674     // because after the first time they are guarded from entering
   675     // this code again.
   676     assert( flow->_b == pred, "have some prior flow" );
   677     flow->_b = NULL;
   679     // Now push flow forward
   680     flows[b->_pre_order] = flow;// Mark flow for this block
   681     flow->_b = b;
   682     flow->compute_reach( _regalloc, max_reg, safehash );
   684     // Now push children onto worklist
   685     for( i=0; i<b->_num_succs; i++ )
   686       worklist.push(b->_succs[i]);
   688   }
   689 }

mercurial