src/cpu/sparc/vm/sharedRuntime_sparc.cpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #include "precompiled.hpp"
aoqi@0 26 #include "asm/macroAssembler.inline.hpp"
aoqi@0 27 #include "code/debugInfoRec.hpp"
aoqi@0 28 #include "code/icBuffer.hpp"
aoqi@0 29 #include "code/vtableStubs.hpp"
aoqi@0 30 #include "interpreter/interpreter.hpp"
aoqi@0 31 #include "oops/compiledICHolder.hpp"
aoqi@0 32 #include "prims/jvmtiRedefineClassesTrace.hpp"
aoqi@0 33 #include "runtime/sharedRuntime.hpp"
aoqi@0 34 #include "runtime/vframeArray.hpp"
aoqi@0 35 #include "vmreg_sparc.inline.hpp"
aoqi@0 36 #ifdef COMPILER1
aoqi@0 37 #include "c1/c1_Runtime1.hpp"
aoqi@0 38 #endif
aoqi@0 39 #ifdef COMPILER2
aoqi@0 40 #include "opto/runtime.hpp"
aoqi@0 41 #endif
aoqi@0 42 #ifdef SHARK
aoqi@0 43 #include "compiler/compileBroker.hpp"
aoqi@0 44 #include "shark/sharkCompiler.hpp"
aoqi@0 45 #endif
aoqi@0 46
aoqi@0 47 #define __ masm->
aoqi@0 48
aoqi@0 49
aoqi@0 50 class RegisterSaver {
aoqi@0 51
aoqi@0 52 // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
aoqi@0 53 // The Oregs are problematic. In the 32bit build the compiler can
aoqi@0 54 // have O registers live with 64 bit quantities. A window save will
aoqi@0 55 // cut the heads off of the registers. We have to do a very extensive
aoqi@0 56 // stack dance to save and restore these properly.
aoqi@0 57
aoqi@0 58 // Note that the Oregs problem only exists if we block at either a polling
aoqi@0 59 // page exception a compiled code safepoint that was not originally a call
aoqi@0 60 // or deoptimize following one of these kinds of safepoints.
aoqi@0 61
aoqi@0 62 // Lots of registers to save. For all builds, a window save will preserve
aoqi@0 63 // the %i and %l registers. For the 32-bit longs-in-two entries and 64-bit
aoqi@0 64 // builds a window-save will preserve the %o registers. In the LION build
aoqi@0 65 // we need to save the 64-bit %o registers which requires we save them
aoqi@0 66 // before the window-save (as then they become %i registers and get their
aoqi@0 67 // heads chopped off on interrupt). We have to save some %g registers here
aoqi@0 68 // as well.
aoqi@0 69 enum {
aoqi@0 70 // This frame's save area. Includes extra space for the native call:
aoqi@0 71 // vararg's layout space and the like. Briefly holds the caller's
aoqi@0 72 // register save area.
aoqi@0 73 call_args_area = frame::register_save_words_sp_offset +
aoqi@0 74 frame::memory_parameter_word_sp_offset*wordSize,
aoqi@0 75 // Make sure save locations are always 8 byte aligned.
aoqi@0 76 // can't use round_to because it doesn't produce compile time constant
aoqi@0 77 start_of_extra_save_area = ((call_args_area + 7) & ~7),
aoqi@0 78 g1_offset = start_of_extra_save_area, // g-regs needing saving
aoqi@0 79 g3_offset = g1_offset+8,
aoqi@0 80 g4_offset = g3_offset+8,
aoqi@0 81 g5_offset = g4_offset+8,
aoqi@0 82 o0_offset = g5_offset+8,
aoqi@0 83 o1_offset = o0_offset+8,
aoqi@0 84 o2_offset = o1_offset+8,
aoqi@0 85 o3_offset = o2_offset+8,
aoqi@0 86 o4_offset = o3_offset+8,
aoqi@0 87 o5_offset = o4_offset+8,
aoqi@0 88 start_of_flags_save_area = o5_offset+8,
aoqi@0 89 ccr_offset = start_of_flags_save_area,
aoqi@0 90 fsr_offset = ccr_offset + 8,
aoqi@0 91 d00_offset = fsr_offset+8, // Start of float save area
aoqi@0 92 register_save_size = d00_offset+8*32
aoqi@0 93 };
aoqi@0 94
aoqi@0 95
aoqi@0 96 public:
aoqi@0 97
aoqi@0 98 static int Oexception_offset() { return o0_offset; };
aoqi@0 99 static int G3_offset() { return g3_offset; };
aoqi@0 100 static int G5_offset() { return g5_offset; };
aoqi@0 101 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
aoqi@0 102 static void restore_live_registers(MacroAssembler* masm);
aoqi@0 103
aoqi@0 104 // During deoptimization only the result register need to be restored
aoqi@0 105 // all the other values have already been extracted.
aoqi@0 106
aoqi@0 107 static void restore_result_registers(MacroAssembler* masm);
aoqi@0 108 };
aoqi@0 109
aoqi@0 110 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
aoqi@0 111 // Record volatile registers as callee-save values in an OopMap so their save locations will be
aoqi@0 112 // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
aoqi@0 113 // deoptimization; see compiledVFrame::create_stack_value). The caller's I, L and O registers
aoqi@0 114 // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
aoqi@0 115 // (as the stub's I's) when the runtime routine called by the stub creates its frame.
aoqi@0 116 int i;
aoqi@0 117 // Always make the frame size 16 byte aligned.
aoqi@0 118 int frame_size = round_to(additional_frame_words + register_save_size, 16);
aoqi@0 119 // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
aoqi@0 120 int frame_size_in_slots = frame_size / sizeof(jint);
aoqi@0 121 // CodeBlob frame size is in words.
aoqi@0 122 *total_frame_words = frame_size / wordSize;
aoqi@0 123 // OopMap* map = new OopMap(*total_frame_words, 0);
aoqi@0 124 OopMap* map = new OopMap(frame_size_in_slots, 0);
aoqi@0 125
aoqi@0 126 #if !defined(_LP64)
aoqi@0 127
aoqi@0 128 // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
aoqi@0 129 __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
aoqi@0 130 __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
aoqi@0 131 __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
aoqi@0 132 __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
aoqi@0 133 __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
aoqi@0 134 __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
aoqi@0 135 #endif /* _LP64 */
aoqi@0 136
aoqi@0 137 __ save(SP, -frame_size, SP);
aoqi@0 138
aoqi@0 139 #ifndef _LP64
aoqi@0 140 // Reload the 64 bit Oregs. Although they are now Iregs we load them
aoqi@0 141 // to Oregs here to avoid interrupts cutting off their heads
aoqi@0 142
aoqi@0 143 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
aoqi@0 144 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
aoqi@0 145 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
aoqi@0 146 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
aoqi@0 147 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
aoqi@0 148 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
aoqi@0 149
aoqi@0 150 __ stx(O0, SP, o0_offset+STACK_BIAS);
aoqi@0 151 map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
aoqi@0 152
aoqi@0 153 __ stx(O1, SP, o1_offset+STACK_BIAS);
aoqi@0 154
aoqi@0 155 map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
aoqi@0 156
aoqi@0 157 __ stx(O2, SP, o2_offset+STACK_BIAS);
aoqi@0 158 map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
aoqi@0 159
aoqi@0 160 __ stx(O3, SP, o3_offset+STACK_BIAS);
aoqi@0 161 map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
aoqi@0 162
aoqi@0 163 __ stx(O4, SP, o4_offset+STACK_BIAS);
aoqi@0 164 map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
aoqi@0 165
aoqi@0 166 __ stx(O5, SP, o5_offset+STACK_BIAS);
aoqi@0 167 map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
aoqi@0 168 #endif /* _LP64 */
aoqi@0 169
aoqi@0 170
aoqi@0 171 #ifdef _LP64
aoqi@0 172 int debug_offset = 0;
aoqi@0 173 #else
aoqi@0 174 int debug_offset = 4;
aoqi@0 175 #endif
aoqi@0 176 // Save the G's
aoqi@0 177 __ stx(G1, SP, g1_offset+STACK_BIAS);
aoqi@0 178 map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
aoqi@0 179
aoqi@0 180 __ stx(G3, SP, g3_offset+STACK_BIAS);
aoqi@0 181 map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
aoqi@0 182
aoqi@0 183 __ stx(G4, SP, g4_offset+STACK_BIAS);
aoqi@0 184 map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
aoqi@0 185
aoqi@0 186 __ stx(G5, SP, g5_offset+STACK_BIAS);
aoqi@0 187 map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
aoqi@0 188
aoqi@0 189 // This is really a waste but we'll keep things as they were for now
aoqi@0 190 if (true) {
aoqi@0 191 #ifndef _LP64
aoqi@0 192 map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
aoqi@0 193 map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
aoqi@0 194 map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
aoqi@0 195 map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
aoqi@0 196 map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
aoqi@0 197 map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
aoqi@0 198 map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
aoqi@0 199 map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
aoqi@0 200 map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
aoqi@0 201 map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
aoqi@0 202 #endif /* _LP64 */
aoqi@0 203 }
aoqi@0 204
aoqi@0 205
aoqi@0 206 // Save the flags
aoqi@0 207 __ rdccr( G5 );
aoqi@0 208 __ stx(G5, SP, ccr_offset+STACK_BIAS);
aoqi@0 209 __ stxfsr(SP, fsr_offset+STACK_BIAS);
aoqi@0 210
aoqi@0 211 // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
aoqi@0 212 int offset = d00_offset;
aoqi@0 213 for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
aoqi@0 214 FloatRegister f = as_FloatRegister(i);
aoqi@0 215 __ stf(FloatRegisterImpl::D, f, SP, offset+STACK_BIAS);
aoqi@0 216 // Record as callee saved both halves of double registers (2 float registers).
aoqi@0 217 map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
aoqi@0 218 map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
aoqi@0 219 offset += sizeof(double);
aoqi@0 220 }
aoqi@0 221
aoqi@0 222 // And we're done.
aoqi@0 223
aoqi@0 224 return map;
aoqi@0 225 }
aoqi@0 226
aoqi@0 227
aoqi@0 228 // Pop the current frame and restore all the registers that we
aoqi@0 229 // saved.
aoqi@0 230 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
aoqi@0 231
aoqi@0 232 // Restore all the FP registers
aoqi@0 233 for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
aoqi@0 234 __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
aoqi@0 235 }
aoqi@0 236
aoqi@0 237 __ ldx(SP, ccr_offset+STACK_BIAS, G1);
aoqi@0 238 __ wrccr (G1) ;
aoqi@0 239
aoqi@0 240 // Restore the G's
aoqi@0 241 // Note that G2 (AKA GThread) must be saved and restored separately.
aoqi@0 242 // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
aoqi@0 243
aoqi@0 244 __ ldx(SP, g1_offset+STACK_BIAS, G1);
aoqi@0 245 __ ldx(SP, g3_offset+STACK_BIAS, G3);
aoqi@0 246 __ ldx(SP, g4_offset+STACK_BIAS, G4);
aoqi@0 247 __ ldx(SP, g5_offset+STACK_BIAS, G5);
aoqi@0 248
aoqi@0 249
aoqi@0 250 #if !defined(_LP64)
aoqi@0 251 // Restore the 64-bit O's.
aoqi@0 252 __ ldx(SP, o0_offset+STACK_BIAS, O0);
aoqi@0 253 __ ldx(SP, o1_offset+STACK_BIAS, O1);
aoqi@0 254 __ ldx(SP, o2_offset+STACK_BIAS, O2);
aoqi@0 255 __ ldx(SP, o3_offset+STACK_BIAS, O3);
aoqi@0 256 __ ldx(SP, o4_offset+STACK_BIAS, O4);
aoqi@0 257 __ ldx(SP, o5_offset+STACK_BIAS, O5);
aoqi@0 258
aoqi@0 259 // And temporarily place them in TLS
aoqi@0 260
aoqi@0 261 __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
aoqi@0 262 __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
aoqi@0 263 __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
aoqi@0 264 __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
aoqi@0 265 __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
aoqi@0 266 __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
aoqi@0 267 #endif /* _LP64 */
aoqi@0 268
aoqi@0 269 // Restore flags
aoqi@0 270
aoqi@0 271 __ ldxfsr(SP, fsr_offset+STACK_BIAS);
aoqi@0 272
aoqi@0 273 __ restore();
aoqi@0 274
aoqi@0 275 #if !defined(_LP64)
aoqi@0 276 // Now reload the 64bit Oregs after we've restore the window.
aoqi@0 277 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
aoqi@0 278 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
aoqi@0 279 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
aoqi@0 280 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
aoqi@0 281 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
aoqi@0 282 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
aoqi@0 283 #endif /* _LP64 */
aoqi@0 284
aoqi@0 285 }
aoqi@0 286
aoqi@0 287 // Pop the current frame and restore the registers that might be holding
aoqi@0 288 // a result.
aoqi@0 289 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
aoqi@0 290
aoqi@0 291 #if !defined(_LP64)
aoqi@0 292 // 32bit build returns longs in G1
aoqi@0 293 __ ldx(SP, g1_offset+STACK_BIAS, G1);
aoqi@0 294
aoqi@0 295 // Retrieve the 64-bit O's.
aoqi@0 296 __ ldx(SP, o0_offset+STACK_BIAS, O0);
aoqi@0 297 __ ldx(SP, o1_offset+STACK_BIAS, O1);
aoqi@0 298 // and save to TLS
aoqi@0 299 __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
aoqi@0 300 __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
aoqi@0 301 #endif /* _LP64 */
aoqi@0 302
aoqi@0 303 __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
aoqi@0 304
aoqi@0 305 __ restore();
aoqi@0 306
aoqi@0 307 #if !defined(_LP64)
aoqi@0 308 // Now reload the 64bit Oregs after we've restore the window.
aoqi@0 309 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
aoqi@0 310 __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
aoqi@0 311 #endif /* _LP64 */
aoqi@0 312
aoqi@0 313 }
aoqi@0 314
aoqi@0 315 // Is vector's size (in bytes) bigger than a size saved by default?
aoqi@0 316 // 8 bytes FP registers are saved by default on SPARC.
aoqi@0 317 bool SharedRuntime::is_wide_vector(int size) {
aoqi@0 318 // Note, MaxVectorSize == 8 on SPARC.
aoqi@0 319 assert(size <= 8, err_msg_res("%d bytes vectors are not supported", size));
aoqi@0 320 return size > 8;
aoqi@0 321 }
aoqi@0 322
aoqi@0 323 // The java_calling_convention describes stack locations as ideal slots on
aoqi@0 324 // a frame with no abi restrictions. Since we must observe abi restrictions
aoqi@0 325 // (like the placement of the register window) the slots must be biased by
aoqi@0 326 // the following value.
aoqi@0 327 static int reg2offset(VMReg r) {
aoqi@0 328 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
aoqi@0 329 }
aoqi@0 330
aoqi@0 331 static VMRegPair reg64_to_VMRegPair(Register r) {
aoqi@0 332 VMRegPair ret;
aoqi@0 333 if (wordSize == 8) {
aoqi@0 334 ret.set2(r->as_VMReg());
aoqi@0 335 } else {
aoqi@0 336 ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
aoqi@0 337 }
aoqi@0 338 return ret;
aoqi@0 339 }
aoqi@0 340
aoqi@0 341 // ---------------------------------------------------------------------------
aoqi@0 342 // Read the array of BasicTypes from a signature, and compute where the
aoqi@0 343 // arguments should go. Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
aoqi@0 344 // quantities. Values less than VMRegImpl::stack0 are registers, those above
aoqi@0 345 // refer to 4-byte stack slots. All stack slots are based off of the window
aoqi@0 346 // top. VMRegImpl::stack0 refers to the first slot past the 16-word window,
aoqi@0 347 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
aoqi@0 348 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
aoqi@0 349 // integer registers. Values 64-95 are the (32-bit only) float registers.
aoqi@0 350 // Each 32-bit quantity is given its own number, so the integer registers
aoqi@0 351 // (in either 32- or 64-bit builds) use 2 numbers. For example, there is
aoqi@0 352 // an O0-low and an O0-high. Essentially, all int register numbers are doubled.
aoqi@0 353
aoqi@0 354 // Register results are passed in O0-O5, for outgoing call arguments. To
aoqi@0 355 // convert to incoming arguments, convert all O's to I's. The regs array
aoqi@0 356 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
aoqi@0 357 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
aoqi@0 358 // 32-bit value was passed). If both are VMRegImpl::Bad(), it means no value was
aoqi@0 359 // passed (used as a placeholder for the other half of longs and doubles in
aoqi@0 360 // the 64-bit build). regs[].second() is either VMRegImpl::Bad() or regs[].second() is
aoqi@0 361 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
aoqi@0 362 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
aoqi@0 363 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
aoqi@0 364 // same VMRegPair.
aoqi@0 365
aoqi@0 366 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
aoqi@0 367 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
aoqi@0 368 // units regardless of build.
aoqi@0 369
aoqi@0 370
aoqi@0 371 // ---------------------------------------------------------------------------
aoqi@0 372 // The compiled Java calling convention. The Java convention always passes
aoqi@0 373 // 64-bit values in adjacent aligned locations (either registers or stack),
aoqi@0 374 // floats in float registers and doubles in aligned float pairs. There is
aoqi@0 375 // no backing varargs store for values in registers.
aoqi@0 376 // In the 32-bit build, longs are passed on the stack (cannot be
aoqi@0 377 // passed in I's, because longs in I's get their heads chopped off at
aoqi@0 378 // interrupt).
aoqi@0 379 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
aoqi@0 380 VMRegPair *regs,
aoqi@0 381 int total_args_passed,
aoqi@0 382 int is_outgoing) {
aoqi@0 383 assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
aoqi@0 384
aoqi@0 385 const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
aoqi@0 386 const int flt_reg_max = 8;
aoqi@0 387
aoqi@0 388 int int_reg = 0;
aoqi@0 389 int flt_reg = 0;
aoqi@0 390 int slot = 0;
aoqi@0 391
aoqi@0 392 for (int i = 0; i < total_args_passed; i++) {
aoqi@0 393 switch (sig_bt[i]) {
aoqi@0 394 case T_INT:
aoqi@0 395 case T_SHORT:
aoqi@0 396 case T_CHAR:
aoqi@0 397 case T_BYTE:
aoqi@0 398 case T_BOOLEAN:
aoqi@0 399 #ifndef _LP64
aoqi@0 400 case T_OBJECT:
aoqi@0 401 case T_ARRAY:
aoqi@0 402 case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
aoqi@0 403 #endif // _LP64
aoqi@0 404 if (int_reg < int_reg_max) {
aoqi@0 405 Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
aoqi@0 406 regs[i].set1(r->as_VMReg());
aoqi@0 407 } else {
aoqi@0 408 regs[i].set1(VMRegImpl::stack2reg(slot++));
aoqi@0 409 }
aoqi@0 410 break;
aoqi@0 411
aoqi@0 412 #ifdef _LP64
aoqi@0 413 case T_LONG:
aoqi@0 414 assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
aoqi@0 415 // fall-through
aoqi@0 416 case T_OBJECT:
aoqi@0 417 case T_ARRAY:
aoqi@0 418 case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
aoqi@0 419 if (int_reg < int_reg_max) {
aoqi@0 420 Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
aoqi@0 421 regs[i].set2(r->as_VMReg());
aoqi@0 422 } else {
aoqi@0 423 slot = round_to(slot, 2); // align
aoqi@0 424 regs[i].set2(VMRegImpl::stack2reg(slot));
aoqi@0 425 slot += 2;
aoqi@0 426 }
aoqi@0 427 break;
aoqi@0 428 #else
aoqi@0 429 case T_LONG:
aoqi@0 430 assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
aoqi@0 431 // On 32-bit SPARC put longs always on the stack to keep the pressure off
aoqi@0 432 // integer argument registers. They should be used for oops.
aoqi@0 433 slot = round_to(slot, 2); // align
aoqi@0 434 regs[i].set2(VMRegImpl::stack2reg(slot));
aoqi@0 435 slot += 2;
aoqi@0 436 #endif
aoqi@0 437 break;
aoqi@0 438
aoqi@0 439 case T_FLOAT:
aoqi@0 440 if (flt_reg < flt_reg_max) {
aoqi@0 441 FloatRegister r = as_FloatRegister(flt_reg++);
aoqi@0 442 regs[i].set1(r->as_VMReg());
aoqi@0 443 } else {
aoqi@0 444 regs[i].set1(VMRegImpl::stack2reg(slot++));
aoqi@0 445 }
aoqi@0 446 break;
aoqi@0 447
aoqi@0 448 case T_DOUBLE:
aoqi@0 449 assert(sig_bt[i+1] == T_VOID, "expecting half");
aoqi@0 450 if (round_to(flt_reg, 2) + 1 < flt_reg_max) {
aoqi@0 451 flt_reg = round_to(flt_reg, 2); // align
aoqi@0 452 FloatRegister r = as_FloatRegister(flt_reg);
aoqi@0 453 regs[i].set2(r->as_VMReg());
aoqi@0 454 flt_reg += 2;
aoqi@0 455 } else {
aoqi@0 456 slot = round_to(slot, 2); // align
aoqi@0 457 regs[i].set2(VMRegImpl::stack2reg(slot));
aoqi@0 458 slot += 2;
aoqi@0 459 }
aoqi@0 460 break;
aoqi@0 461
aoqi@0 462 case T_VOID:
aoqi@0 463 regs[i].set_bad(); // Halves of longs & doubles
aoqi@0 464 break;
aoqi@0 465
aoqi@0 466 default:
aoqi@0 467 fatal(err_msg_res("unknown basic type %d", sig_bt[i]));
aoqi@0 468 break;
aoqi@0 469 }
aoqi@0 470 }
aoqi@0 471
aoqi@0 472 // retun the amount of stack space these arguments will need.
aoqi@0 473 return slot;
aoqi@0 474 }
aoqi@0 475
aoqi@0 476 // Helper class mostly to avoid passing masm everywhere, and handle
aoqi@0 477 // store displacement overflow logic.
aoqi@0 478 class AdapterGenerator {
aoqi@0 479 MacroAssembler *masm;
aoqi@0 480 Register Rdisp;
aoqi@0 481 void set_Rdisp(Register r) { Rdisp = r; }
aoqi@0 482
aoqi@0 483 void patch_callers_callsite();
aoqi@0 484
aoqi@0 485 // base+st_off points to top of argument
aoqi@0 486 int arg_offset(const int st_off) { return st_off; }
aoqi@0 487 int next_arg_offset(const int st_off) {
aoqi@0 488 return st_off - Interpreter::stackElementSize;
aoqi@0 489 }
aoqi@0 490
aoqi@0 491 // Argument slot values may be loaded first into a register because
aoqi@0 492 // they might not fit into displacement.
aoqi@0 493 RegisterOrConstant arg_slot(const int st_off);
aoqi@0 494 RegisterOrConstant next_arg_slot(const int st_off);
aoqi@0 495
aoqi@0 496 // Stores long into offset pointed to by base
aoqi@0 497 void store_c2i_long(Register r, Register base,
aoqi@0 498 const int st_off, bool is_stack);
aoqi@0 499 void store_c2i_object(Register r, Register base,
aoqi@0 500 const int st_off);
aoqi@0 501 void store_c2i_int(Register r, Register base,
aoqi@0 502 const int st_off);
aoqi@0 503 void store_c2i_double(VMReg r_2,
aoqi@0 504 VMReg r_1, Register base, const int st_off);
aoqi@0 505 void store_c2i_float(FloatRegister f, Register base,
aoqi@0 506 const int st_off);
aoqi@0 507
aoqi@0 508 public:
aoqi@0 509 void gen_c2i_adapter(int total_args_passed,
aoqi@0 510 // VMReg max_arg,
aoqi@0 511 int comp_args_on_stack, // VMRegStackSlots
aoqi@0 512 const BasicType *sig_bt,
aoqi@0 513 const VMRegPair *regs,
aoqi@0 514 Label& skip_fixup);
aoqi@0 515 void gen_i2c_adapter(int total_args_passed,
aoqi@0 516 // VMReg max_arg,
aoqi@0 517 int comp_args_on_stack, // VMRegStackSlots
aoqi@0 518 const BasicType *sig_bt,
aoqi@0 519 const VMRegPair *regs);
aoqi@0 520
aoqi@0 521 AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
aoqi@0 522 };
aoqi@0 523
aoqi@0 524
aoqi@0 525 // Patch the callers callsite with entry to compiled code if it exists.
aoqi@0 526 void AdapterGenerator::patch_callers_callsite() {
aoqi@0 527 Label L;
aoqi@0 528 __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
aoqi@0 529 __ br_null(G3_scratch, false, Assembler::pt, L);
aoqi@0 530 __ delayed()->nop();
aoqi@0 531 // Call into the VM to patch the caller, then jump to compiled callee
aoqi@0 532 __ save_frame(4); // Args in compiled layout; do not blow them
aoqi@0 533
aoqi@0 534 // Must save all the live Gregs the list is:
aoqi@0 535 // G1: 1st Long arg (32bit build)
aoqi@0 536 // G2: global allocated to TLS
aoqi@0 537 // G3: used in inline cache check (scratch)
aoqi@0 538 // G4: 2nd Long arg (32bit build);
aoqi@0 539 // G5: used in inline cache check (Method*)
aoqi@0 540
aoqi@0 541 // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
aoqi@0 542
aoqi@0 543 #ifdef _LP64
aoqi@0 544 // mov(s,d)
aoqi@0 545 __ mov(G1, L1);
aoqi@0 546 __ mov(G4, L4);
aoqi@0 547 __ mov(G5_method, L5);
aoqi@0 548 __ mov(G5_method, O0); // VM needs target method
aoqi@0 549 __ mov(I7, O1); // VM needs caller's callsite
aoqi@0 550 // Must be a leaf call...
aoqi@0 551 // can be very far once the blob has been relocated
aoqi@0 552 AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
aoqi@0 553 __ relocate(relocInfo::runtime_call_type);
aoqi@0 554 __ jumpl_to(dest, O7, O7);
aoqi@0 555 __ delayed()->mov(G2_thread, L7_thread_cache);
aoqi@0 556 __ mov(L7_thread_cache, G2_thread);
aoqi@0 557 __ mov(L1, G1);
aoqi@0 558 __ mov(L4, G4);
aoqi@0 559 __ mov(L5, G5_method);
aoqi@0 560 #else
aoqi@0 561 __ stx(G1, FP, -8 + STACK_BIAS);
aoqi@0 562 __ stx(G4, FP, -16 + STACK_BIAS);
aoqi@0 563 __ mov(G5_method, L5);
aoqi@0 564 __ mov(G5_method, O0); // VM needs target method
aoqi@0 565 __ mov(I7, O1); // VM needs caller's callsite
aoqi@0 566 // Must be a leaf call...
aoqi@0 567 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
aoqi@0 568 __ delayed()->mov(G2_thread, L7_thread_cache);
aoqi@0 569 __ mov(L7_thread_cache, G2_thread);
aoqi@0 570 __ ldx(FP, -8 + STACK_BIAS, G1);
aoqi@0 571 __ ldx(FP, -16 + STACK_BIAS, G4);
aoqi@0 572 __ mov(L5, G5_method);
aoqi@0 573 #endif /* _LP64 */
aoqi@0 574
aoqi@0 575 __ restore(); // Restore args
aoqi@0 576 __ bind(L);
aoqi@0 577 }
aoqi@0 578
aoqi@0 579
aoqi@0 580 RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
aoqi@0 581 RegisterOrConstant roc(arg_offset(st_off));
aoqi@0 582 return __ ensure_simm13_or_reg(roc, Rdisp);
aoqi@0 583 }
aoqi@0 584
aoqi@0 585 RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
aoqi@0 586 RegisterOrConstant roc(next_arg_offset(st_off));
aoqi@0 587 return __ ensure_simm13_or_reg(roc, Rdisp);
aoqi@0 588 }
aoqi@0 589
aoqi@0 590
aoqi@0 591 // Stores long into offset pointed to by base
aoqi@0 592 void AdapterGenerator::store_c2i_long(Register r, Register base,
aoqi@0 593 const int st_off, bool is_stack) {
aoqi@0 594 #ifdef _LP64
aoqi@0 595 // In V9, longs are given 2 64-bit slots in the interpreter, but the
aoqi@0 596 // data is passed in only 1 slot.
aoqi@0 597 __ stx(r, base, next_arg_slot(st_off));
aoqi@0 598 #else
aoqi@0 599 #ifdef COMPILER2
aoqi@0 600 // Misaligned store of 64-bit data
aoqi@0 601 __ stw(r, base, arg_slot(st_off)); // lo bits
aoqi@0 602 __ srlx(r, 32, r);
aoqi@0 603 __ stw(r, base, next_arg_slot(st_off)); // hi bits
aoqi@0 604 #else
aoqi@0 605 if (is_stack) {
aoqi@0 606 // Misaligned store of 64-bit data
aoqi@0 607 __ stw(r, base, arg_slot(st_off)); // lo bits
aoqi@0 608 __ srlx(r, 32, r);
aoqi@0 609 __ stw(r, base, next_arg_slot(st_off)); // hi bits
aoqi@0 610 } else {
aoqi@0 611 __ stw(r->successor(), base, arg_slot(st_off) ); // lo bits
aoqi@0 612 __ stw(r , base, next_arg_slot(st_off)); // hi bits
aoqi@0 613 }
aoqi@0 614 #endif // COMPILER2
aoqi@0 615 #endif // _LP64
aoqi@0 616 }
aoqi@0 617
aoqi@0 618 void AdapterGenerator::store_c2i_object(Register r, Register base,
aoqi@0 619 const int st_off) {
aoqi@0 620 __ st_ptr (r, base, arg_slot(st_off));
aoqi@0 621 }
aoqi@0 622
aoqi@0 623 void AdapterGenerator::store_c2i_int(Register r, Register base,
aoqi@0 624 const int st_off) {
aoqi@0 625 __ st (r, base, arg_slot(st_off));
aoqi@0 626 }
aoqi@0 627
aoqi@0 628 // Stores into offset pointed to by base
aoqi@0 629 void AdapterGenerator::store_c2i_double(VMReg r_2,
aoqi@0 630 VMReg r_1, Register base, const int st_off) {
aoqi@0 631 #ifdef _LP64
aoqi@0 632 // In V9, doubles are given 2 64-bit slots in the interpreter, but the
aoqi@0 633 // data is passed in only 1 slot.
aoqi@0 634 __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
aoqi@0 635 #else
aoqi@0 636 // Need to marshal 64-bit value from misaligned Lesp loads
aoqi@0 637 __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
aoqi@0 638 __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
aoqi@0 639 #endif
aoqi@0 640 }
aoqi@0 641
aoqi@0 642 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
aoqi@0 643 const int st_off) {
aoqi@0 644 __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
aoqi@0 645 }
aoqi@0 646
aoqi@0 647 void AdapterGenerator::gen_c2i_adapter(
aoqi@0 648 int total_args_passed,
aoqi@0 649 // VMReg max_arg,
aoqi@0 650 int comp_args_on_stack, // VMRegStackSlots
aoqi@0 651 const BasicType *sig_bt,
aoqi@0 652 const VMRegPair *regs,
aoqi@0 653 Label& L_skip_fixup) {
aoqi@0 654
aoqi@0 655 // Before we get into the guts of the C2I adapter, see if we should be here
aoqi@0 656 // at all. We've come from compiled code and are attempting to jump to the
aoqi@0 657 // interpreter, which means the caller made a static call to get here
aoqi@0 658 // (vcalls always get a compiled target if there is one). Check for a
aoqi@0 659 // compiled target. If there is one, we need to patch the caller's call.
aoqi@0 660 // However we will run interpreted if we come thru here. The next pass
aoqi@0 661 // thru the call site will run compiled. If we ran compiled here then
aoqi@0 662 // we can (theorectically) do endless i2c->c2i->i2c transitions during
aoqi@0 663 // deopt/uncommon trap cycles. If we always go interpreted here then
aoqi@0 664 // we can have at most one and don't need to play any tricks to keep
aoqi@0 665 // from endlessly growing the stack.
aoqi@0 666 //
aoqi@0 667 // Actually if we detected that we had an i2c->c2i transition here we
aoqi@0 668 // ought to be able to reset the world back to the state of the interpreted
aoqi@0 669 // call and not bother building another interpreter arg area. We don't
aoqi@0 670 // do that at this point.
aoqi@0 671
aoqi@0 672 patch_callers_callsite();
aoqi@0 673
aoqi@0 674 __ bind(L_skip_fixup);
aoqi@0 675
aoqi@0 676 // Since all args are passed on the stack, total_args_passed*wordSize is the
aoqi@0 677 // space we need. Add in varargs area needed by the interpreter. Round up
aoqi@0 678 // to stack alignment.
aoqi@0 679 const int arg_size = total_args_passed * Interpreter::stackElementSize;
aoqi@0 680 const int varargs_area =
aoqi@0 681 (frame::varargs_offset - frame::register_save_words)*wordSize;
aoqi@0 682 const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
aoqi@0 683
aoqi@0 684 const int bias = STACK_BIAS;
aoqi@0 685 const int interp_arg_offset = frame::varargs_offset*wordSize +
aoqi@0 686 (total_args_passed-1)*Interpreter::stackElementSize;
aoqi@0 687
aoqi@0 688 const Register base = SP;
aoqi@0 689
aoqi@0 690 // Make some extra space on the stack.
aoqi@0 691 __ sub(SP, __ ensure_simm13_or_reg(extraspace, G3_scratch), SP);
aoqi@0 692 set_Rdisp(G3_scratch);
aoqi@0 693
aoqi@0 694 // Write the args into the outgoing interpreter space.
aoqi@0 695 for (int i = 0; i < total_args_passed; i++) {
aoqi@0 696 const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
aoqi@0 697 VMReg r_1 = regs[i].first();
aoqi@0 698 VMReg r_2 = regs[i].second();
aoqi@0 699 if (!r_1->is_valid()) {
aoqi@0 700 assert(!r_2->is_valid(), "");
aoqi@0 701 continue;
aoqi@0 702 }
aoqi@0 703 if (r_1->is_stack()) { // Pretend stack targets are loaded into G1
aoqi@0 704 RegisterOrConstant ld_off = reg2offset(r_1) + extraspace + bias;
aoqi@0 705 ld_off = __ ensure_simm13_or_reg(ld_off, Rdisp);
aoqi@0 706 r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
aoqi@0 707 if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
aoqi@0 708 else __ ldx(base, ld_off, G1_scratch);
aoqi@0 709 }
aoqi@0 710
aoqi@0 711 if (r_1->is_Register()) {
aoqi@0 712 Register r = r_1->as_Register()->after_restore();
aoqi@0 713 if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
aoqi@0 714 store_c2i_object(r, base, st_off);
aoqi@0 715 } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
aoqi@0 716 store_c2i_long(r, base, st_off, r_2->is_stack());
aoqi@0 717 } else {
aoqi@0 718 store_c2i_int(r, base, st_off);
aoqi@0 719 }
aoqi@0 720 } else {
aoqi@0 721 assert(r_1->is_FloatRegister(), "");
aoqi@0 722 if (sig_bt[i] == T_FLOAT) {
aoqi@0 723 store_c2i_float(r_1->as_FloatRegister(), base, st_off);
aoqi@0 724 } else {
aoqi@0 725 assert(sig_bt[i] == T_DOUBLE, "wrong type");
aoqi@0 726 store_c2i_double(r_2, r_1, base, st_off);
aoqi@0 727 }
aoqi@0 728 }
aoqi@0 729 }
aoqi@0 730
aoqi@0 731 // Load the interpreter entry point.
aoqi@0 732 __ ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), G3_scratch);
aoqi@0 733
aoqi@0 734 // Pass O5_savedSP as an argument to the interpreter.
aoqi@0 735 // The interpreter will restore SP to this value before returning.
aoqi@0 736 __ add(SP, __ ensure_simm13_or_reg(extraspace, G1), O5_savedSP);
aoqi@0 737
aoqi@0 738 __ mov((frame::varargs_offset)*wordSize -
aoqi@0 739 1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
aoqi@0 740 // Jump to the interpreter just as if interpreter was doing it.
aoqi@0 741 __ jmpl(G3_scratch, 0, G0);
aoqi@0 742 // Setup Lesp for the call. Cannot actually set Lesp as the current Lesp
aoqi@0 743 // (really L0) is in use by the compiled frame as a generic temp. However,
aoqi@0 744 // the interpreter does not know where its args are without some kind of
aoqi@0 745 // arg pointer being passed in. Pass it in Gargs.
aoqi@0 746 __ delayed()->add(SP, G1, Gargs);
aoqi@0 747 }
aoqi@0 748
aoqi@0 749 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, Register temp2_reg,
aoqi@0 750 address code_start, address code_end,
aoqi@0 751 Label& L_ok) {
aoqi@0 752 Label L_fail;
aoqi@0 753 __ set(ExternalAddress(code_start), temp_reg);
aoqi@0 754 __ set(pointer_delta(code_end, code_start, 1), temp2_reg);
aoqi@0 755 __ cmp(pc_reg, temp_reg);
aoqi@0 756 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pn, L_fail);
aoqi@0 757 __ delayed()->add(temp_reg, temp2_reg, temp_reg);
aoqi@0 758 __ cmp(pc_reg, temp_reg);
aoqi@0 759 __ cmp_and_brx_short(pc_reg, temp_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
aoqi@0 760 __ bind(L_fail);
aoqi@0 761 }
aoqi@0 762
aoqi@0 763 void AdapterGenerator::gen_i2c_adapter(
aoqi@0 764 int total_args_passed,
aoqi@0 765 // VMReg max_arg,
aoqi@0 766 int comp_args_on_stack, // VMRegStackSlots
aoqi@0 767 const BasicType *sig_bt,
aoqi@0 768 const VMRegPair *regs) {
aoqi@0 769
aoqi@0 770 // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
aoqi@0 771 // layout. Lesp was saved by the calling I-frame and will be restored on
aoqi@0 772 // return. Meanwhile, outgoing arg space is all owned by the callee
aoqi@0 773 // C-frame, so we can mangle it at will. After adjusting the frame size,
aoqi@0 774 // hoist register arguments and repack other args according to the compiled
aoqi@0 775 // code convention. Finally, end in a jump to the compiled code. The entry
aoqi@0 776 // point address is the start of the buffer.
aoqi@0 777
aoqi@0 778 // We will only enter here from an interpreted frame and never from after
aoqi@0 779 // passing thru a c2i. Azul allowed this but we do not. If we lose the
aoqi@0 780 // race and use a c2i we will remain interpreted for the race loser(s).
aoqi@0 781 // This removes all sorts of headaches on the x86 side and also eliminates
aoqi@0 782 // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
aoqi@0 783
aoqi@0 784 // More detail:
aoqi@0 785 // Adapters can be frameless because they do not require the caller
aoqi@0 786 // to perform additional cleanup work, such as correcting the stack pointer.
aoqi@0 787 // An i2c adapter is frameless because the *caller* frame, which is interpreted,
aoqi@0 788 // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
aoqi@0 789 // even if a callee has modified the stack pointer.
aoqi@0 790 // A c2i adapter is frameless because the *callee* frame, which is interpreted,
aoqi@0 791 // routinely repairs its caller's stack pointer (from sender_sp, which is set
aoqi@0 792 // up via the senderSP register).
aoqi@0 793 // In other words, if *either* the caller or callee is interpreted, we can
aoqi@0 794 // get the stack pointer repaired after a call.
aoqi@0 795 // This is why c2i and i2c adapters cannot be indefinitely composed.
aoqi@0 796 // In particular, if a c2i adapter were to somehow call an i2c adapter,
aoqi@0 797 // both caller and callee would be compiled methods, and neither would
aoqi@0 798 // clean up the stack pointer changes performed by the two adapters.
aoqi@0 799 // If this happens, control eventually transfers back to the compiled
aoqi@0 800 // caller, but with an uncorrected stack, causing delayed havoc.
aoqi@0 801
aoqi@0 802 if (VerifyAdapterCalls &&
aoqi@0 803 (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
aoqi@0 804 // So, let's test for cascading c2i/i2c adapters right now.
aoqi@0 805 // assert(Interpreter::contains($return_addr) ||
aoqi@0 806 // StubRoutines::contains($return_addr),
aoqi@0 807 // "i2c adapter must return to an interpreter frame");
aoqi@0 808 __ block_comment("verify_i2c { ");
aoqi@0 809 Label L_ok;
aoqi@0 810 if (Interpreter::code() != NULL)
aoqi@0 811 range_check(masm, O7, O0, O1,
aoqi@0 812 Interpreter::code()->code_start(), Interpreter::code()->code_end(),
aoqi@0 813 L_ok);
aoqi@0 814 if (StubRoutines::code1() != NULL)
aoqi@0 815 range_check(masm, O7, O0, O1,
aoqi@0 816 StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
aoqi@0 817 L_ok);
aoqi@0 818 if (StubRoutines::code2() != NULL)
aoqi@0 819 range_check(masm, O7, O0, O1,
aoqi@0 820 StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
aoqi@0 821 L_ok);
aoqi@0 822 const char* msg = "i2c adapter must return to an interpreter frame";
aoqi@0 823 __ block_comment(msg);
aoqi@0 824 __ stop(msg);
aoqi@0 825 __ bind(L_ok);
aoqi@0 826 __ block_comment("} verify_i2ce ");
aoqi@0 827 }
aoqi@0 828
aoqi@0 829 // As you can see from the list of inputs & outputs there are not a lot
aoqi@0 830 // of temp registers to work with: mostly G1, G3 & G4.
aoqi@0 831
aoqi@0 832 // Inputs:
aoqi@0 833 // G2_thread - TLS
aoqi@0 834 // G5_method - Method oop
aoqi@0 835 // G4 (Gargs) - Pointer to interpreter's args
aoqi@0 836 // O0..O4 - free for scratch
aoqi@0 837 // O5_savedSP - Caller's saved SP, to be restored if needed
aoqi@0 838 // O6 - Current SP!
aoqi@0 839 // O7 - Valid return address
aoqi@0 840 // L0-L7, I0-I7 - Caller's temps (no frame pushed yet)
aoqi@0 841
aoqi@0 842 // Outputs:
aoqi@0 843 // G2_thread - TLS
aoqi@0 844 // O0-O5 - Outgoing args in compiled layout
aoqi@0 845 // O6 - Adjusted or restored SP
aoqi@0 846 // O7 - Valid return address
aoqi@0 847 // L0-L7, I0-I7 - Caller's temps (no frame pushed yet)
aoqi@0 848 // F0-F7 - more outgoing args
aoqi@0 849
aoqi@0 850
aoqi@0 851 // Gargs is the incoming argument base, and also an outgoing argument.
aoqi@0 852 __ sub(Gargs, BytesPerWord, Gargs);
aoqi@0 853
aoqi@0 854 // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
aoqi@0 855 // WITH O7 HOLDING A VALID RETURN PC
aoqi@0 856 //
aoqi@0 857 // | |
aoqi@0 858 // : java stack :
aoqi@0 859 // | |
aoqi@0 860 // +--------------+ <--- start of outgoing args
aoqi@0 861 // | receiver | |
aoqi@0 862 // : rest of args : |---size is java-arg-words
aoqi@0 863 // | | |
aoqi@0 864 // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
aoqi@0 865 // | | |
aoqi@0 866 // : unused : |---Space for max Java stack, plus stack alignment
aoqi@0 867 // | | |
aoqi@0 868 // +--------------+ <--- SP + 16*wordsize
aoqi@0 869 // | |
aoqi@0 870 // : window :
aoqi@0 871 // | |
aoqi@0 872 // +--------------+ <--- SP
aoqi@0 873
aoqi@0 874 // WE REPACK THE STACK. We use the common calling convention layout as
aoqi@0 875 // discovered by calling SharedRuntime::calling_convention. We assume it
aoqi@0 876 // causes an arbitrary shuffle of memory, which may require some register
aoqi@0 877 // temps to do the shuffle. We hope for (and optimize for) the case where
aoqi@0 878 // temps are not needed. We may have to resize the stack slightly, in case
aoqi@0 879 // we need alignment padding (32-bit interpreter can pass longs & doubles
aoqi@0 880 // misaligned, but the compilers expect them aligned).
aoqi@0 881 //
aoqi@0 882 // | |
aoqi@0 883 // : java stack :
aoqi@0 884 // | |
aoqi@0 885 // +--------------+ <--- start of outgoing args
aoqi@0 886 // | pad, align | |
aoqi@0 887 // +--------------+ |
aoqi@0 888 // | ints, longs, | |
aoqi@0 889 // | floats, | |---Outgoing stack args.
aoqi@0 890 // : doubles : | First few args in registers.
aoqi@0 891 // | | |
aoqi@0 892 // +--------------+ <--- SP' + 16*wordsize
aoqi@0 893 // | |
aoqi@0 894 // : window :
aoqi@0 895 // | |
aoqi@0 896 // +--------------+ <--- SP'
aoqi@0 897
aoqi@0 898 // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
aoqi@0 899 // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
aoqi@0 900 // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
aoqi@0 901
aoqi@0 902 // Cut-out for having no stack args. Since up to 6 args are passed
aoqi@0 903 // in registers, we will commonly have no stack args.
aoqi@0 904 if (comp_args_on_stack > 0) {
aoqi@0 905 // Convert VMReg stack slots to words.
aoqi@0 906 int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
aoqi@0 907 // Round up to miminum stack alignment, in wordSize
aoqi@0 908 comp_words_on_stack = round_to(comp_words_on_stack, 2);
aoqi@0 909 // Now compute the distance from Lesp to SP. This calculation does not
aoqi@0 910 // include the space for total_args_passed because Lesp has not yet popped
aoqi@0 911 // the arguments.
aoqi@0 912 __ sub(SP, (comp_words_on_stack)*wordSize, SP);
aoqi@0 913 }
aoqi@0 914
aoqi@0 915 // Now generate the shuffle code. Pick up all register args and move the
aoqi@0 916 // rest through G1_scratch.
aoqi@0 917 for (int i = 0; i < total_args_passed; i++) {
aoqi@0 918 if (sig_bt[i] == T_VOID) {
aoqi@0 919 // Longs and doubles are passed in native word order, but misaligned
aoqi@0 920 // in the 32-bit build.
aoqi@0 921 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
aoqi@0 922 continue;
aoqi@0 923 }
aoqi@0 924
aoqi@0 925 // Pick up 0, 1 or 2 words from Lesp+offset. Assume mis-aligned in the
aoqi@0 926 // 32-bit build and aligned in the 64-bit build. Look for the obvious
aoqi@0 927 // ldx/lddf optimizations.
aoqi@0 928
aoqi@0 929 // Load in argument order going down.
aoqi@0 930 const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
aoqi@0 931 set_Rdisp(G1_scratch);
aoqi@0 932
aoqi@0 933 VMReg r_1 = regs[i].first();
aoqi@0 934 VMReg r_2 = regs[i].second();
aoqi@0 935 if (!r_1->is_valid()) {
aoqi@0 936 assert(!r_2->is_valid(), "");
aoqi@0 937 continue;
aoqi@0 938 }
aoqi@0 939 if (r_1->is_stack()) { // Pretend stack targets are loaded into F8/F9
aoqi@0 940 r_1 = F8->as_VMReg(); // as part of the load/store shuffle
aoqi@0 941 if (r_2->is_valid()) r_2 = r_1->next();
aoqi@0 942 }
aoqi@0 943 if (r_1->is_Register()) { // Register argument
aoqi@0 944 Register r = r_1->as_Register()->after_restore();
aoqi@0 945 if (!r_2->is_valid()) {
aoqi@0 946 __ ld(Gargs, arg_slot(ld_off), r);
aoqi@0 947 } else {
aoqi@0 948 #ifdef _LP64
aoqi@0 949 // In V9, longs are given 2 64-bit slots in the interpreter, but the
aoqi@0 950 // data is passed in only 1 slot.
aoqi@0 951 RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
aoqi@0 952 next_arg_slot(ld_off) : arg_slot(ld_off);
aoqi@0 953 __ ldx(Gargs, slot, r);
aoqi@0 954 #else
aoqi@0 955 fatal("longs should be on stack");
aoqi@0 956 #endif
aoqi@0 957 }
aoqi@0 958 } else {
aoqi@0 959 assert(r_1->is_FloatRegister(), "");
aoqi@0 960 if (!r_2->is_valid()) {
aoqi@0 961 __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
aoqi@0 962 } else {
aoqi@0 963 #ifdef _LP64
aoqi@0 964 // In V9, doubles are given 2 64-bit slots in the interpreter, but the
aoqi@0 965 // data is passed in only 1 slot. This code also handles longs that
aoqi@0 966 // are passed on the stack, but need a stack-to-stack move through a
aoqi@0 967 // spare float register.
aoqi@0 968 RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
aoqi@0 969 next_arg_slot(ld_off) : arg_slot(ld_off);
aoqi@0 970 __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
aoqi@0 971 #else
aoqi@0 972 // Need to marshal 64-bit value from misaligned Lesp loads
aoqi@0 973 __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
aoqi@0 974 __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
aoqi@0 975 #endif
aoqi@0 976 }
aoqi@0 977 }
aoqi@0 978 // Was the argument really intended to be on the stack, but was loaded
aoqi@0 979 // into F8/F9?
aoqi@0 980 if (regs[i].first()->is_stack()) {
aoqi@0 981 assert(r_1->as_FloatRegister() == F8, "fix this code");
aoqi@0 982 // Convert stack slot to an SP offset
aoqi@0 983 int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
aoqi@0 984 // Store down the shuffled stack word. Target address _is_ aligned.
aoqi@0 985 RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
aoqi@0 986 if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
aoqi@0 987 else __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
aoqi@0 988 }
aoqi@0 989 }
aoqi@0 990
aoqi@0 991 // Jump to the compiled code just as if compiled code was doing it.
aoqi@0 992 __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3);
aoqi@0 993
aoqi@0 994 // 6243940 We might end up in handle_wrong_method if
aoqi@0 995 // the callee is deoptimized as we race thru here. If that
aoqi@0 996 // happens we don't want to take a safepoint because the
aoqi@0 997 // caller frame will look interpreted and arguments are now
aoqi@0 998 // "compiled" so it is much better to make this transition
aoqi@0 999 // invisible to the stack walking code. Unfortunately if
aoqi@0 1000 // we try and find the callee by normal means a safepoint
aoqi@0 1001 // is possible. So we stash the desired callee in the thread
aoqi@0 1002 // and the vm will find there should this case occur.
aoqi@0 1003 Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
aoqi@0 1004 __ st_ptr(G5_method, callee_target_addr);
aoqi@0 1005 __ jmpl(G3, 0, G0);
aoqi@0 1006 __ delayed()->nop();
aoqi@0 1007 }
aoqi@0 1008
aoqi@0 1009 // ---------------------------------------------------------------
aoqi@0 1010 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
aoqi@0 1011 int total_args_passed,
aoqi@0 1012 // VMReg max_arg,
aoqi@0 1013 int comp_args_on_stack, // VMRegStackSlots
aoqi@0 1014 const BasicType *sig_bt,
aoqi@0 1015 const VMRegPair *regs,
aoqi@0 1016 AdapterFingerPrint* fingerprint) {
aoqi@0 1017 address i2c_entry = __ pc();
aoqi@0 1018
aoqi@0 1019 AdapterGenerator agen(masm);
aoqi@0 1020
aoqi@0 1021 agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
aoqi@0 1022
aoqi@0 1023
aoqi@0 1024 // -------------------------------------------------------------------------
aoqi@0 1025 // Generate a C2I adapter. On entry we know G5 holds the Method*. The
aoqi@0 1026 // args start out packed in the compiled layout. They need to be unpacked
aoqi@0 1027 // into the interpreter layout. This will almost always require some stack
aoqi@0 1028 // space. We grow the current (compiled) stack, then repack the args. We
aoqi@0 1029 // finally end in a jump to the generic interpreter entry point. On exit
aoqi@0 1030 // from the interpreter, the interpreter will restore our SP (lest the
aoqi@0 1031 // compiled code, which relys solely on SP and not FP, get sick).
aoqi@0 1032
aoqi@0 1033 address c2i_unverified_entry = __ pc();
aoqi@0 1034 Label L_skip_fixup;
aoqi@0 1035 {
aoqi@0 1036 Register R_temp = G1; // another scratch register
aoqi@0 1037
aoqi@0 1038 AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
aoqi@0 1039
aoqi@0 1040 __ verify_oop(O0);
aoqi@0 1041 __ load_klass(O0, G3_scratch);
aoqi@0 1042
aoqi@0 1043 __ ld_ptr(G5_method, CompiledICHolder::holder_klass_offset(), R_temp);
aoqi@0 1044 __ cmp(G3_scratch, R_temp);
aoqi@0 1045
aoqi@0 1046 Label ok, ok2;
aoqi@0 1047 __ brx(Assembler::equal, false, Assembler::pt, ok);
aoqi@0 1048 __ delayed()->ld_ptr(G5_method, CompiledICHolder::holder_method_offset(), G5_method);
aoqi@0 1049 __ jump_to(ic_miss, G3_scratch);
aoqi@0 1050 __ delayed()->nop();
aoqi@0 1051
aoqi@0 1052 __ bind(ok);
aoqi@0 1053 // Method might have been compiled since the call site was patched to
aoqi@0 1054 // interpreted if that is the case treat it as a miss so we can get
aoqi@0 1055 // the call site corrected.
aoqi@0 1056 __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
aoqi@0 1057 __ bind(ok2);
aoqi@0 1058 __ br_null(G3_scratch, false, Assembler::pt, L_skip_fixup);
aoqi@0 1059 __ delayed()->nop();
aoqi@0 1060 __ jump_to(ic_miss, G3_scratch);
aoqi@0 1061 __ delayed()->nop();
aoqi@0 1062
aoqi@0 1063 }
aoqi@0 1064
aoqi@0 1065 address c2i_entry = __ pc();
aoqi@0 1066
aoqi@0 1067 agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, L_skip_fixup);
aoqi@0 1068
aoqi@0 1069 __ flush();
aoqi@0 1070 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
aoqi@0 1071
aoqi@0 1072 }
aoqi@0 1073
aoqi@0 1074 // Helper function for native calling conventions
aoqi@0 1075 static VMReg int_stk_helper( int i ) {
aoqi@0 1076 // Bias any stack based VMReg we get by ignoring the window area
aoqi@0 1077 // but not the register parameter save area.
aoqi@0 1078 //
aoqi@0 1079 // This is strange for the following reasons. We'd normally expect
aoqi@0 1080 // the calling convention to return an VMReg for a stack slot
aoqi@0 1081 // completely ignoring any abi reserved area. C2 thinks of that
aoqi@0 1082 // abi area as only out_preserve_stack_slots. This does not include
aoqi@0 1083 // the area allocated by the C abi to store down integer arguments
aoqi@0 1084 // because the java calling convention does not use it. So
aoqi@0 1085 // since c2 assumes that there are only out_preserve_stack_slots
aoqi@0 1086 // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
aoqi@0 1087 // location the c calling convention must add in this bias amount
aoqi@0 1088 // to make up for the fact that the out_preserve_stack_slots is
aoqi@0 1089 // insufficient for C calls. What a mess. I sure hope those 6
aoqi@0 1090 // stack words were worth it on every java call!
aoqi@0 1091
aoqi@0 1092 // Another way of cleaning this up would be for out_preserve_stack_slots
aoqi@0 1093 // to take a parameter to say whether it was C or java calling conventions.
aoqi@0 1094 // Then things might look a little better (but not much).
aoqi@0 1095
aoqi@0 1096 int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
aoqi@0 1097 if( mem_parm_offset < 0 ) {
aoqi@0 1098 return as_oRegister(i)->as_VMReg();
aoqi@0 1099 } else {
aoqi@0 1100 int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
aoqi@0 1101 // Now return a biased offset that will be correct when out_preserve_slots is added back in
aoqi@0 1102 return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
aoqi@0 1103 }
aoqi@0 1104 }
aoqi@0 1105
aoqi@0 1106
aoqi@0 1107 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
aoqi@0 1108 VMRegPair *regs,
aoqi@0 1109 VMRegPair *regs2,
aoqi@0 1110 int total_args_passed) {
aoqi@0 1111 assert(regs2 == NULL, "not needed on sparc");
aoqi@0 1112
aoqi@0 1113 // Return the number of VMReg stack_slots needed for the args.
aoqi@0 1114 // This value does not include an abi space (like register window
aoqi@0 1115 // save area).
aoqi@0 1116
aoqi@0 1117 // The native convention is V8 if !LP64
aoqi@0 1118 // The LP64 convention is the V9 convention which is slightly more sane.
aoqi@0 1119
aoqi@0 1120 // We return the amount of VMReg stack slots we need to reserve for all
aoqi@0 1121 // the arguments NOT counting out_preserve_stack_slots. Since we always
aoqi@0 1122 // have space for storing at least 6 registers to memory we start with that.
aoqi@0 1123 // See int_stk_helper for a further discussion.
aoqi@0 1124 int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
aoqi@0 1125
aoqi@0 1126 #ifdef _LP64
aoqi@0 1127 // V9 convention: All things "as-if" on double-wide stack slots.
aoqi@0 1128 // Hoist any int/ptr/long's in the first 6 to int regs.
aoqi@0 1129 // Hoist any flt/dbl's in the first 16 dbl regs.
aoqi@0 1130 int j = 0; // Count of actual args, not HALVES
aoqi@0 1131 for( int i=0; i<total_args_passed; i++, j++ ) {
aoqi@0 1132 switch( sig_bt[i] ) {
aoqi@0 1133 case T_BOOLEAN:
aoqi@0 1134 case T_BYTE:
aoqi@0 1135 case T_CHAR:
aoqi@0 1136 case T_INT:
aoqi@0 1137 case T_SHORT:
aoqi@0 1138 regs[i].set1( int_stk_helper( j ) ); break;
aoqi@0 1139 case T_LONG:
aoqi@0 1140 assert( sig_bt[i+1] == T_VOID, "expecting half" );
aoqi@0 1141 case T_ADDRESS: // raw pointers, like current thread, for VM calls
aoqi@0 1142 case T_ARRAY:
aoqi@0 1143 case T_OBJECT:
aoqi@0 1144 case T_METADATA:
aoqi@0 1145 regs[i].set2( int_stk_helper( j ) );
aoqi@0 1146 break;
aoqi@0 1147 case T_FLOAT:
aoqi@0 1148 if ( j < 16 ) {
aoqi@0 1149 // V9ism: floats go in ODD registers
aoqi@0 1150 regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
aoqi@0 1151 } else {
aoqi@0 1152 // V9ism: floats go in ODD stack slot
aoqi@0 1153 regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
aoqi@0 1154 }
aoqi@0 1155 break;
aoqi@0 1156 case T_DOUBLE:
aoqi@0 1157 assert( sig_bt[i+1] == T_VOID, "expecting half" );
aoqi@0 1158 if ( j < 16 ) {
aoqi@0 1159 // V9ism: doubles go in EVEN/ODD regs
aoqi@0 1160 regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
aoqi@0 1161 } else {
aoqi@0 1162 // V9ism: doubles go in EVEN/ODD stack slots
aoqi@0 1163 regs[i].set2(VMRegImpl::stack2reg(j<<1));
aoqi@0 1164 }
aoqi@0 1165 break;
aoqi@0 1166 case T_VOID: regs[i].set_bad(); j--; break; // Do not count HALVES
aoqi@0 1167 default:
aoqi@0 1168 ShouldNotReachHere();
aoqi@0 1169 }
aoqi@0 1170 if (regs[i].first()->is_stack()) {
aoqi@0 1171 int off = regs[i].first()->reg2stack();
aoqi@0 1172 if (off > max_stack_slots) max_stack_slots = off;
aoqi@0 1173 }
aoqi@0 1174 if (regs[i].second()->is_stack()) {
aoqi@0 1175 int off = regs[i].second()->reg2stack();
aoqi@0 1176 if (off > max_stack_slots) max_stack_slots = off;
aoqi@0 1177 }
aoqi@0 1178 }
aoqi@0 1179
aoqi@0 1180 #else // _LP64
aoqi@0 1181 // V8 convention: first 6 things in O-regs, rest on stack.
aoqi@0 1182 // Alignment is willy-nilly.
aoqi@0 1183 for( int i=0; i<total_args_passed; i++ ) {
aoqi@0 1184 switch( sig_bt[i] ) {
aoqi@0 1185 case T_ADDRESS: // raw pointers, like current thread, for VM calls
aoqi@0 1186 case T_ARRAY:
aoqi@0 1187 case T_BOOLEAN:
aoqi@0 1188 case T_BYTE:
aoqi@0 1189 case T_CHAR:
aoqi@0 1190 case T_FLOAT:
aoqi@0 1191 case T_INT:
aoqi@0 1192 case T_OBJECT:
aoqi@0 1193 case T_METADATA:
aoqi@0 1194 case T_SHORT:
aoqi@0 1195 regs[i].set1( int_stk_helper( i ) );
aoqi@0 1196 break;
aoqi@0 1197 case T_DOUBLE:
aoqi@0 1198 case T_LONG:
aoqi@0 1199 assert( sig_bt[i+1] == T_VOID, "expecting half" );
aoqi@0 1200 regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
aoqi@0 1201 break;
aoqi@0 1202 case T_VOID: regs[i].set_bad(); break;
aoqi@0 1203 default:
aoqi@0 1204 ShouldNotReachHere();
aoqi@0 1205 }
aoqi@0 1206 if (regs[i].first()->is_stack()) {
aoqi@0 1207 int off = regs[i].first()->reg2stack();
aoqi@0 1208 if (off > max_stack_slots) max_stack_slots = off;
aoqi@0 1209 }
aoqi@0 1210 if (regs[i].second()->is_stack()) {
aoqi@0 1211 int off = regs[i].second()->reg2stack();
aoqi@0 1212 if (off > max_stack_slots) max_stack_slots = off;
aoqi@0 1213 }
aoqi@0 1214 }
aoqi@0 1215 #endif // _LP64
aoqi@0 1216
aoqi@0 1217 return round_to(max_stack_slots + 1, 2);
aoqi@0 1218
aoqi@0 1219 }
aoqi@0 1220
aoqi@0 1221
aoqi@0 1222 // ---------------------------------------------------------------------------
aoqi@0 1223 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
aoqi@0 1224 switch (ret_type) {
aoqi@0 1225 case T_FLOAT:
aoqi@0 1226 __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
aoqi@0 1227 break;
aoqi@0 1228 case T_DOUBLE:
aoqi@0 1229 __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
aoqi@0 1230 break;
aoqi@0 1231 }
aoqi@0 1232 }
aoqi@0 1233
aoqi@0 1234 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
aoqi@0 1235 switch (ret_type) {
aoqi@0 1236 case T_FLOAT:
aoqi@0 1237 __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
aoqi@0 1238 break;
aoqi@0 1239 case T_DOUBLE:
aoqi@0 1240 __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
aoqi@0 1241 break;
aoqi@0 1242 }
aoqi@0 1243 }
aoqi@0 1244
aoqi@0 1245 // Check and forward and pending exception. Thread is stored in
aoqi@0 1246 // L7_thread_cache and possibly NOT in G2_thread. Since this is a native call, there
aoqi@0 1247 // is no exception handler. We merely pop this frame off and throw the
aoqi@0 1248 // exception in the caller's frame.
aoqi@0 1249 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
aoqi@0 1250 Label L;
aoqi@0 1251 __ br_null(Rex_oop, false, Assembler::pt, L);
aoqi@0 1252 __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
aoqi@0 1253 // Since this is a native call, we *know* the proper exception handler
aoqi@0 1254 // without calling into the VM: it's the empty function. Just pop this
aoqi@0 1255 // frame and then jump to forward_exception_entry; O7 will contain the
aoqi@0 1256 // native caller's return PC.
aoqi@0 1257 AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
aoqi@0 1258 __ jump_to(exception_entry, G3_scratch);
aoqi@0 1259 __ delayed()->restore(); // Pop this frame off.
aoqi@0 1260 __ bind(L);
aoqi@0 1261 }
aoqi@0 1262
aoqi@0 1263 // A simple move of integer like type
aoqi@0 1264 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
aoqi@0 1265 if (src.first()->is_stack()) {
aoqi@0 1266 if (dst.first()->is_stack()) {
aoqi@0 1267 // stack to stack
aoqi@0 1268 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
aoqi@0 1269 __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 1270 } else {
aoqi@0 1271 // stack to reg
aoqi@0 1272 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
aoqi@0 1273 }
aoqi@0 1274 } else if (dst.first()->is_stack()) {
aoqi@0 1275 // reg to stack
aoqi@0 1276 __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 1277 } else {
aoqi@0 1278 __ mov(src.first()->as_Register(), dst.first()->as_Register());
aoqi@0 1279 }
aoqi@0 1280 }
aoqi@0 1281
aoqi@0 1282 // On 64 bit we will store integer like items to the stack as
aoqi@0 1283 // 64 bits items (sparc abi) even though java would only store
aoqi@0 1284 // 32bits for a parameter. On 32bit it will simply be 32 bits
aoqi@0 1285 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
aoqi@0 1286 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
aoqi@0 1287 if (src.first()->is_stack()) {
aoqi@0 1288 if (dst.first()->is_stack()) {
aoqi@0 1289 // stack to stack
aoqi@0 1290 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
aoqi@0 1291 __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 1292 } else {
aoqi@0 1293 // stack to reg
aoqi@0 1294 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
aoqi@0 1295 }
aoqi@0 1296 } else if (dst.first()->is_stack()) {
aoqi@0 1297 // reg to stack
aoqi@0 1298 __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 1299 } else {
aoqi@0 1300 __ mov(src.first()->as_Register(), dst.first()->as_Register());
aoqi@0 1301 }
aoqi@0 1302 }
aoqi@0 1303
aoqi@0 1304
aoqi@0 1305 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
aoqi@0 1306 if (src.first()->is_stack()) {
aoqi@0 1307 if (dst.first()->is_stack()) {
aoqi@0 1308 // stack to stack
aoqi@0 1309 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, L5);
aoqi@0 1310 __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 1311 } else {
aoqi@0 1312 // stack to reg
aoqi@0 1313 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
aoqi@0 1314 }
aoqi@0 1315 } else if (dst.first()->is_stack()) {
aoqi@0 1316 // reg to stack
aoqi@0 1317 __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 1318 } else {
aoqi@0 1319 __ mov(src.first()->as_Register(), dst.first()->as_Register());
aoqi@0 1320 }
aoqi@0 1321 }
aoqi@0 1322
aoqi@0 1323
aoqi@0 1324 // An oop arg. Must pass a handle not the oop itself
aoqi@0 1325 static void object_move(MacroAssembler* masm,
aoqi@0 1326 OopMap* map,
aoqi@0 1327 int oop_handle_offset,
aoqi@0 1328 int framesize_in_slots,
aoqi@0 1329 VMRegPair src,
aoqi@0 1330 VMRegPair dst,
aoqi@0 1331 bool is_receiver,
aoqi@0 1332 int* receiver_offset) {
aoqi@0 1333
aoqi@0 1334 // must pass a handle. First figure out the location we use as a handle
aoqi@0 1335
aoqi@0 1336 if (src.first()->is_stack()) {
aoqi@0 1337 // Oop is already on the stack
aoqi@0 1338 Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
aoqi@0 1339 __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
aoqi@0 1340 __ ld_ptr(rHandle, 0, L4);
aoqi@0 1341 #ifdef _LP64
aoqi@0 1342 __ movr( Assembler::rc_z, L4, G0, rHandle );
aoqi@0 1343 #else
aoqi@0 1344 __ tst( L4 );
aoqi@0 1345 __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
aoqi@0 1346 #endif
aoqi@0 1347 if (dst.first()->is_stack()) {
aoqi@0 1348 __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 1349 }
aoqi@0 1350 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
aoqi@0 1351 if (is_receiver) {
aoqi@0 1352 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
aoqi@0 1353 }
aoqi@0 1354 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
aoqi@0 1355 } else {
aoqi@0 1356 // Oop is in an input register pass we must flush it to the stack
aoqi@0 1357 const Register rOop = src.first()->as_Register();
aoqi@0 1358 const Register rHandle = L5;
aoqi@0 1359 int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
aoqi@0 1360 int offset = oop_slot*VMRegImpl::stack_slot_size;
aoqi@0 1361 Label skip;
aoqi@0 1362 __ st_ptr(rOop, SP, offset + STACK_BIAS);
aoqi@0 1363 if (is_receiver) {
aoqi@0 1364 *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
aoqi@0 1365 }
aoqi@0 1366 map->set_oop(VMRegImpl::stack2reg(oop_slot));
aoqi@0 1367 __ add(SP, offset + STACK_BIAS, rHandle);
aoqi@0 1368 #ifdef _LP64
aoqi@0 1369 __ movr( Assembler::rc_z, rOop, G0, rHandle );
aoqi@0 1370 #else
aoqi@0 1371 __ tst( rOop );
aoqi@0 1372 __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
aoqi@0 1373 #endif
aoqi@0 1374
aoqi@0 1375 if (dst.first()->is_stack()) {
aoqi@0 1376 __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 1377 } else {
aoqi@0 1378 __ mov(rHandle, dst.first()->as_Register());
aoqi@0 1379 }
aoqi@0 1380 }
aoqi@0 1381 }
aoqi@0 1382
aoqi@0 1383 // A float arg may have to do float reg int reg conversion
aoqi@0 1384 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
aoqi@0 1385 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
aoqi@0 1386
aoqi@0 1387 if (src.first()->is_stack()) {
aoqi@0 1388 if (dst.first()->is_stack()) {
aoqi@0 1389 // stack to stack the easiest of the bunch
aoqi@0 1390 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
aoqi@0 1391 __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 1392 } else {
aoqi@0 1393 // stack to reg
aoqi@0 1394 if (dst.first()->is_Register()) {
aoqi@0 1395 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
aoqi@0 1396 } else {
aoqi@0 1397 __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
aoqi@0 1398 }
aoqi@0 1399 }
aoqi@0 1400 } else if (dst.first()->is_stack()) {
aoqi@0 1401 // reg to stack
aoqi@0 1402 if (src.first()->is_Register()) {
aoqi@0 1403 __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 1404 } else {
aoqi@0 1405 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 1406 }
aoqi@0 1407 } else {
aoqi@0 1408 // reg to reg
aoqi@0 1409 if (src.first()->is_Register()) {
aoqi@0 1410 if (dst.first()->is_Register()) {
aoqi@0 1411 // gpr -> gpr
aoqi@0 1412 __ mov(src.first()->as_Register(), dst.first()->as_Register());
aoqi@0 1413 } else {
aoqi@0 1414 // gpr -> fpr
aoqi@0 1415 __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
aoqi@0 1416 __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
aoqi@0 1417 }
aoqi@0 1418 } else if (dst.first()->is_Register()) {
aoqi@0 1419 // fpr -> gpr
aoqi@0 1420 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
aoqi@0 1421 __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
aoqi@0 1422 } else {
aoqi@0 1423 // fpr -> fpr
aoqi@0 1424 // In theory these overlap but the ordering is such that this is likely a nop
aoqi@0 1425 if ( src.first() != dst.first()) {
aoqi@0 1426 __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
aoqi@0 1427 }
aoqi@0 1428 }
aoqi@0 1429 }
aoqi@0 1430 }
aoqi@0 1431
aoqi@0 1432 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
aoqi@0 1433 VMRegPair src_lo(src.first());
aoqi@0 1434 VMRegPair src_hi(src.second());
aoqi@0 1435 VMRegPair dst_lo(dst.first());
aoqi@0 1436 VMRegPair dst_hi(dst.second());
aoqi@0 1437 simple_move32(masm, src_lo, dst_lo);
aoqi@0 1438 simple_move32(masm, src_hi, dst_hi);
aoqi@0 1439 }
aoqi@0 1440
aoqi@0 1441 // A long move
aoqi@0 1442 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
aoqi@0 1443
aoqi@0 1444 // Do the simple ones here else do two int moves
aoqi@0 1445 if (src.is_single_phys_reg() ) {
aoqi@0 1446 if (dst.is_single_phys_reg()) {
aoqi@0 1447 __ mov(src.first()->as_Register(), dst.first()->as_Register());
aoqi@0 1448 } else {
aoqi@0 1449 // split src into two separate registers
aoqi@0 1450 // Remember hi means hi address or lsw on sparc
aoqi@0 1451 // Move msw to lsw
aoqi@0 1452 if (dst.second()->is_reg()) {
aoqi@0 1453 // MSW -> MSW
aoqi@0 1454 __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
aoqi@0 1455 // Now LSW -> LSW
aoqi@0 1456 // this will only move lo -> lo and ignore hi
aoqi@0 1457 VMRegPair split(dst.second());
aoqi@0 1458 simple_move32(masm, src, split);
aoqi@0 1459 } else {
aoqi@0 1460 VMRegPair split(src.first(), L4->as_VMReg());
aoqi@0 1461 // MSW -> MSW (lo ie. first word)
aoqi@0 1462 __ srax(src.first()->as_Register(), 32, L4);
aoqi@0 1463 split_long_move(masm, split, dst);
aoqi@0 1464 }
aoqi@0 1465 }
aoqi@0 1466 } else if (dst.is_single_phys_reg()) {
aoqi@0 1467 if (src.is_adjacent_aligned_on_stack(2)) {
aoqi@0 1468 __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
aoqi@0 1469 } else {
aoqi@0 1470 // dst is a single reg.
aoqi@0 1471 // Remember lo is low address not msb for stack slots
aoqi@0 1472 // and lo is the "real" register for registers
aoqi@0 1473 // src is
aoqi@0 1474
aoqi@0 1475 VMRegPair split;
aoqi@0 1476
aoqi@0 1477 if (src.first()->is_reg()) {
aoqi@0 1478 // src.lo (msw) is a reg, src.hi is stk/reg
aoqi@0 1479 // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
aoqi@0 1480 split.set_pair(dst.first(), src.first());
aoqi@0 1481 } else {
aoqi@0 1482 // msw is stack move to L5
aoqi@0 1483 // lsw is stack move to dst.lo (real reg)
aoqi@0 1484 // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
aoqi@0 1485 split.set_pair(dst.first(), L5->as_VMReg());
aoqi@0 1486 }
aoqi@0 1487
aoqi@0 1488 // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
aoqi@0 1489 // msw -> src.lo/L5, lsw -> dst.lo
aoqi@0 1490 split_long_move(masm, src, split);
aoqi@0 1491
aoqi@0 1492 // So dst now has the low order correct position the
aoqi@0 1493 // msw half
aoqi@0 1494 __ sllx(split.first()->as_Register(), 32, L5);
aoqi@0 1495
aoqi@0 1496 const Register d = dst.first()->as_Register();
aoqi@0 1497 __ or3(L5, d, d);
aoqi@0 1498 }
aoqi@0 1499 } else {
aoqi@0 1500 // For LP64 we can probably do better.
aoqi@0 1501 split_long_move(masm, src, dst);
aoqi@0 1502 }
aoqi@0 1503 }
aoqi@0 1504
aoqi@0 1505 // A double move
aoqi@0 1506 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
aoqi@0 1507
aoqi@0 1508 // The painful thing here is that like long_move a VMRegPair might be
aoqi@0 1509 // 1: a single physical register
aoqi@0 1510 // 2: two physical registers (v8)
aoqi@0 1511 // 3: a physical reg [lo] and a stack slot [hi] (v8)
aoqi@0 1512 // 4: two stack slots
aoqi@0 1513
aoqi@0 1514 // Since src is always a java calling convention we know that the src pair
aoqi@0 1515 // is always either all registers or all stack (and aligned?)
aoqi@0 1516
aoqi@0 1517 // in a register [lo] and a stack slot [hi]
aoqi@0 1518 if (src.first()->is_stack()) {
aoqi@0 1519 if (dst.first()->is_stack()) {
aoqi@0 1520 // stack to stack the easiest of the bunch
aoqi@0 1521 // ought to be a way to do this where if alignment is ok we use ldd/std when possible
aoqi@0 1522 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
aoqi@0 1523 __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
aoqi@0 1524 __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 1525 __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
aoqi@0 1526 } else {
aoqi@0 1527 // stack to reg
aoqi@0 1528 if (dst.second()->is_stack()) {
aoqi@0 1529 // stack -> reg, stack -> stack
aoqi@0 1530 __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
aoqi@0 1531 if (dst.first()->is_Register()) {
aoqi@0 1532 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
aoqi@0 1533 } else {
aoqi@0 1534 __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
aoqi@0 1535 }
aoqi@0 1536 // This was missing. (very rare case)
aoqi@0 1537 __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
aoqi@0 1538 } else {
aoqi@0 1539 // stack -> reg
aoqi@0 1540 // Eventually optimize for alignment QQQ
aoqi@0 1541 if (dst.first()->is_Register()) {
aoqi@0 1542 __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
aoqi@0 1543 __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
aoqi@0 1544 } else {
aoqi@0 1545 __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
aoqi@0 1546 __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
aoqi@0 1547 }
aoqi@0 1548 }
aoqi@0 1549 }
aoqi@0 1550 } else if (dst.first()->is_stack()) {
aoqi@0 1551 // reg to stack
aoqi@0 1552 if (src.first()->is_Register()) {
aoqi@0 1553 // Eventually optimize for alignment QQQ
aoqi@0 1554 __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 1555 if (src.second()->is_stack()) {
aoqi@0 1556 __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
aoqi@0 1557 __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
aoqi@0 1558 } else {
aoqi@0 1559 __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
aoqi@0 1560 }
aoqi@0 1561 } else {
aoqi@0 1562 // fpr to stack
aoqi@0 1563 if (src.second()->is_stack()) {
aoqi@0 1564 ShouldNotReachHere();
aoqi@0 1565 } else {
aoqi@0 1566 // Is the stack aligned?
aoqi@0 1567 if (reg2offset(dst.first()) & 0x7) {
aoqi@0 1568 // No do as pairs
aoqi@0 1569 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 1570 __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
aoqi@0 1571 } else {
aoqi@0 1572 __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 1573 }
aoqi@0 1574 }
aoqi@0 1575 }
aoqi@0 1576 } else {
aoqi@0 1577 // reg to reg
aoqi@0 1578 if (src.first()->is_Register()) {
aoqi@0 1579 if (dst.first()->is_Register()) {
aoqi@0 1580 // gpr -> gpr
aoqi@0 1581 __ mov(src.first()->as_Register(), dst.first()->as_Register());
aoqi@0 1582 __ mov(src.second()->as_Register(), dst.second()->as_Register());
aoqi@0 1583 } else {
aoqi@0 1584 // gpr -> fpr
aoqi@0 1585 // ought to be able to do a single store
aoqi@0 1586 __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
aoqi@0 1587 __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
aoqi@0 1588 // ought to be able to do a single load
aoqi@0 1589 __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
aoqi@0 1590 __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
aoqi@0 1591 }
aoqi@0 1592 } else if (dst.first()->is_Register()) {
aoqi@0 1593 // fpr -> gpr
aoqi@0 1594 // ought to be able to do a single store
aoqi@0 1595 __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
aoqi@0 1596 // ought to be able to do a single load
aoqi@0 1597 // REMEMBER first() is low address not LSB
aoqi@0 1598 __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
aoqi@0 1599 if (dst.second()->is_Register()) {
aoqi@0 1600 __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
aoqi@0 1601 } else {
aoqi@0 1602 __ ld(FP, -4 + STACK_BIAS, L4);
aoqi@0 1603 __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
aoqi@0 1604 }
aoqi@0 1605 } else {
aoqi@0 1606 // fpr -> fpr
aoqi@0 1607 // In theory these overlap but the ordering is such that this is likely a nop
aoqi@0 1608 if ( src.first() != dst.first()) {
aoqi@0 1609 __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
aoqi@0 1610 }
aoqi@0 1611 }
aoqi@0 1612 }
aoqi@0 1613 }
aoqi@0 1614
aoqi@0 1615 // Creates an inner frame if one hasn't already been created, and
aoqi@0 1616 // saves a copy of the thread in L7_thread_cache
aoqi@0 1617 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
aoqi@0 1618 if (!*already_created) {
aoqi@0 1619 __ save_frame(0);
aoqi@0 1620 // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
aoqi@0 1621 // Don't use save_thread because it smashes G2 and we merely want to save a
aoqi@0 1622 // copy
aoqi@0 1623 __ mov(G2_thread, L7_thread_cache);
aoqi@0 1624 *already_created = true;
aoqi@0 1625 }
aoqi@0 1626 }
aoqi@0 1627
aoqi@0 1628
aoqi@0 1629 static void save_or_restore_arguments(MacroAssembler* masm,
aoqi@0 1630 const int stack_slots,
aoqi@0 1631 const int total_in_args,
aoqi@0 1632 const int arg_save_area,
aoqi@0 1633 OopMap* map,
aoqi@0 1634 VMRegPair* in_regs,
aoqi@0 1635 BasicType* in_sig_bt) {
aoqi@0 1636 // if map is non-NULL then the code should store the values,
aoqi@0 1637 // otherwise it should load them.
aoqi@0 1638 if (map != NULL) {
aoqi@0 1639 // Fill in the map
aoqi@0 1640 for (int i = 0; i < total_in_args; i++) {
aoqi@0 1641 if (in_sig_bt[i] == T_ARRAY) {
aoqi@0 1642 if (in_regs[i].first()->is_stack()) {
aoqi@0 1643 int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
aoqi@0 1644 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
aoqi@0 1645 } else if (in_regs[i].first()->is_Register()) {
aoqi@0 1646 map->set_oop(in_regs[i].first());
aoqi@0 1647 } else {
aoqi@0 1648 ShouldNotReachHere();
aoqi@0 1649 }
aoqi@0 1650 }
aoqi@0 1651 }
aoqi@0 1652 }
aoqi@0 1653
aoqi@0 1654 // Save or restore double word values
aoqi@0 1655 int handle_index = 0;
aoqi@0 1656 for (int i = 0; i < total_in_args; i++) {
aoqi@0 1657 int slot = handle_index + arg_save_area;
aoqi@0 1658 int offset = slot * VMRegImpl::stack_slot_size;
aoqi@0 1659 if (in_sig_bt[i] == T_LONG && in_regs[i].first()->is_Register()) {
aoqi@0 1660 const Register reg = in_regs[i].first()->as_Register();
aoqi@0 1661 if (reg->is_global()) {
aoqi@0 1662 handle_index += 2;
aoqi@0 1663 assert(handle_index <= stack_slots, "overflow");
aoqi@0 1664 if (map != NULL) {
aoqi@0 1665 __ stx(reg, SP, offset + STACK_BIAS);
aoqi@0 1666 } else {
aoqi@0 1667 __ ldx(SP, offset + STACK_BIAS, reg);
aoqi@0 1668 }
aoqi@0 1669 }
aoqi@0 1670 } else if (in_sig_bt[i] == T_DOUBLE && in_regs[i].first()->is_FloatRegister()) {
aoqi@0 1671 handle_index += 2;
aoqi@0 1672 assert(handle_index <= stack_slots, "overflow");
aoqi@0 1673 if (map != NULL) {
aoqi@0 1674 __ stf(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
aoqi@0 1675 } else {
aoqi@0 1676 __ ldf(FloatRegisterImpl::D, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
aoqi@0 1677 }
aoqi@0 1678 }
aoqi@0 1679 }
aoqi@0 1680 // Save floats
aoqi@0 1681 for (int i = 0; i < total_in_args; i++) {
aoqi@0 1682 int slot = handle_index + arg_save_area;
aoqi@0 1683 int offset = slot * VMRegImpl::stack_slot_size;
aoqi@0 1684 if (in_sig_bt[i] == T_FLOAT && in_regs[i].first()->is_FloatRegister()) {
aoqi@0 1685 handle_index++;
aoqi@0 1686 assert(handle_index <= stack_slots, "overflow");
aoqi@0 1687 if (map != NULL) {
aoqi@0 1688 __ stf(FloatRegisterImpl::S, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
aoqi@0 1689 } else {
aoqi@0 1690 __ ldf(FloatRegisterImpl::S, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
aoqi@0 1691 }
aoqi@0 1692 }
aoqi@0 1693 }
aoqi@0 1694
aoqi@0 1695 }
aoqi@0 1696
aoqi@0 1697
aoqi@0 1698 // Check GC_locker::needs_gc and enter the runtime if it's true. This
aoqi@0 1699 // keeps a new JNI critical region from starting until a GC has been
aoqi@0 1700 // forced. Save down any oops in registers and describe them in an
aoqi@0 1701 // OopMap.
aoqi@0 1702 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
aoqi@0 1703 const int stack_slots,
aoqi@0 1704 const int total_in_args,
aoqi@0 1705 const int arg_save_area,
aoqi@0 1706 OopMapSet* oop_maps,
aoqi@0 1707 VMRegPair* in_regs,
aoqi@0 1708 BasicType* in_sig_bt) {
aoqi@0 1709 __ block_comment("check GC_locker::needs_gc");
aoqi@0 1710 Label cont;
aoqi@0 1711 AddressLiteral sync_state(GC_locker::needs_gc_address());
aoqi@0 1712 __ load_bool_contents(sync_state, G3_scratch);
aoqi@0 1713 __ cmp_zero_and_br(Assembler::equal, G3_scratch, cont);
aoqi@0 1714 __ delayed()->nop();
aoqi@0 1715
aoqi@0 1716 // Save down any values that are live in registers and call into the
aoqi@0 1717 // runtime to halt for a GC
aoqi@0 1718 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
aoqi@0 1719 save_or_restore_arguments(masm, stack_slots, total_in_args,
aoqi@0 1720 arg_save_area, map, in_regs, in_sig_bt);
aoqi@0 1721
aoqi@0 1722 __ mov(G2_thread, L7_thread_cache);
aoqi@0 1723
aoqi@0 1724 __ set_last_Java_frame(SP, noreg);
aoqi@0 1725
aoqi@0 1726 __ block_comment("block_for_jni_critical");
aoqi@0 1727 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical), relocInfo::runtime_call_type);
aoqi@0 1728 __ delayed()->mov(L7_thread_cache, O0);
aoqi@0 1729 oop_maps->add_gc_map( __ offset(), map);
aoqi@0 1730
aoqi@0 1731 __ restore_thread(L7_thread_cache); // restore G2_thread
aoqi@0 1732 __ reset_last_Java_frame();
aoqi@0 1733
aoqi@0 1734 // Reload all the register arguments
aoqi@0 1735 save_or_restore_arguments(masm, stack_slots, total_in_args,
aoqi@0 1736 arg_save_area, NULL, in_regs, in_sig_bt);
aoqi@0 1737
aoqi@0 1738 __ bind(cont);
aoqi@0 1739 #ifdef ASSERT
aoqi@0 1740 if (StressCriticalJNINatives) {
aoqi@0 1741 // Stress register saving
aoqi@0 1742 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
aoqi@0 1743 save_or_restore_arguments(masm, stack_slots, total_in_args,
aoqi@0 1744 arg_save_area, map, in_regs, in_sig_bt);
aoqi@0 1745 // Destroy argument registers
aoqi@0 1746 for (int i = 0; i < total_in_args; i++) {
aoqi@0 1747 if (in_regs[i].first()->is_Register()) {
aoqi@0 1748 const Register reg = in_regs[i].first()->as_Register();
aoqi@0 1749 if (reg->is_global()) {
aoqi@0 1750 __ mov(G0, reg);
aoqi@0 1751 }
aoqi@0 1752 } else if (in_regs[i].first()->is_FloatRegister()) {
aoqi@0 1753 __ fneg(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
aoqi@0 1754 }
aoqi@0 1755 }
aoqi@0 1756
aoqi@0 1757 save_or_restore_arguments(masm, stack_slots, total_in_args,
aoqi@0 1758 arg_save_area, NULL, in_regs, in_sig_bt);
aoqi@0 1759 }
aoqi@0 1760 #endif
aoqi@0 1761 }
aoqi@0 1762
aoqi@0 1763 // Unpack an array argument into a pointer to the body and the length
aoqi@0 1764 // if the array is non-null, otherwise pass 0 for both.
aoqi@0 1765 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
aoqi@0 1766 // Pass the length, ptr pair
aoqi@0 1767 Label is_null, done;
aoqi@0 1768 if (reg.first()->is_stack()) {
aoqi@0 1769 VMRegPair tmp = reg64_to_VMRegPair(L2);
aoqi@0 1770 // Load the arg up from the stack
aoqi@0 1771 move_ptr(masm, reg, tmp);
aoqi@0 1772 reg = tmp;
aoqi@0 1773 }
aoqi@0 1774 __ cmp(reg.first()->as_Register(), G0);
aoqi@0 1775 __ brx(Assembler::equal, false, Assembler::pt, is_null);
aoqi@0 1776 __ delayed()->add(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type), L4);
aoqi@0 1777 move_ptr(masm, reg64_to_VMRegPair(L4), body_arg);
aoqi@0 1778 __ ld(reg.first()->as_Register(), arrayOopDesc::length_offset_in_bytes(), L4);
aoqi@0 1779 move32_64(masm, reg64_to_VMRegPair(L4), length_arg);
aoqi@0 1780 __ ba_short(done);
aoqi@0 1781 __ bind(is_null);
aoqi@0 1782 // Pass zeros
aoqi@0 1783 move_ptr(masm, reg64_to_VMRegPair(G0), body_arg);
aoqi@0 1784 move32_64(masm, reg64_to_VMRegPair(G0), length_arg);
aoqi@0 1785 __ bind(done);
aoqi@0 1786 }
aoqi@0 1787
aoqi@0 1788 static void verify_oop_args(MacroAssembler* masm,
aoqi@0 1789 methodHandle method,
aoqi@0 1790 const BasicType* sig_bt,
aoqi@0 1791 const VMRegPair* regs) {
aoqi@0 1792 Register temp_reg = G5_method; // not part of any compiled calling seq
aoqi@0 1793 if (VerifyOops) {
aoqi@0 1794 for (int i = 0; i < method->size_of_parameters(); i++) {
aoqi@0 1795 if (sig_bt[i] == T_OBJECT ||
aoqi@0 1796 sig_bt[i] == T_ARRAY) {
aoqi@0 1797 VMReg r = regs[i].first();
aoqi@0 1798 assert(r->is_valid(), "bad oop arg");
aoqi@0 1799 if (r->is_stack()) {
aoqi@0 1800 RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
aoqi@0 1801 ld_off = __ ensure_simm13_or_reg(ld_off, temp_reg);
aoqi@0 1802 __ ld_ptr(SP, ld_off, temp_reg);
aoqi@0 1803 __ verify_oop(temp_reg);
aoqi@0 1804 } else {
aoqi@0 1805 __ verify_oop(r->as_Register());
aoqi@0 1806 }
aoqi@0 1807 }
aoqi@0 1808 }
aoqi@0 1809 }
aoqi@0 1810 }
aoqi@0 1811
aoqi@0 1812 static void gen_special_dispatch(MacroAssembler* masm,
aoqi@0 1813 methodHandle method,
aoqi@0 1814 const BasicType* sig_bt,
aoqi@0 1815 const VMRegPair* regs) {
aoqi@0 1816 verify_oop_args(masm, method, sig_bt, regs);
aoqi@0 1817 vmIntrinsics::ID iid = method->intrinsic_id();
aoqi@0 1818
aoqi@0 1819 // Now write the args into the outgoing interpreter space
aoqi@0 1820 bool has_receiver = false;
aoqi@0 1821 Register receiver_reg = noreg;
aoqi@0 1822 int member_arg_pos = -1;
aoqi@0 1823 Register member_reg = noreg;
aoqi@0 1824 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
aoqi@0 1825 if (ref_kind != 0) {
aoqi@0 1826 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument
aoqi@0 1827 member_reg = G5_method; // known to be free at this point
aoqi@0 1828 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
aoqi@0 1829 } else if (iid == vmIntrinsics::_invokeBasic) {
aoqi@0 1830 has_receiver = true;
aoqi@0 1831 } else {
aoqi@0 1832 fatal(err_msg_res("unexpected intrinsic id %d", iid));
aoqi@0 1833 }
aoqi@0 1834
aoqi@0 1835 if (member_reg != noreg) {
aoqi@0 1836 // Load the member_arg into register, if necessary.
aoqi@0 1837 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
aoqi@0 1838 VMReg r = regs[member_arg_pos].first();
aoqi@0 1839 if (r->is_stack()) {
aoqi@0 1840 RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
aoqi@0 1841 ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
aoqi@0 1842 __ ld_ptr(SP, ld_off, member_reg);
aoqi@0 1843 } else {
aoqi@0 1844 // no data motion is needed
aoqi@0 1845 member_reg = r->as_Register();
aoqi@0 1846 }
aoqi@0 1847 }
aoqi@0 1848
aoqi@0 1849 if (has_receiver) {
aoqi@0 1850 // Make sure the receiver is loaded into a register.
aoqi@0 1851 assert(method->size_of_parameters() > 0, "oob");
aoqi@0 1852 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
aoqi@0 1853 VMReg r = regs[0].first();
aoqi@0 1854 assert(r->is_valid(), "bad receiver arg");
aoqi@0 1855 if (r->is_stack()) {
aoqi@0 1856 // Porting note: This assumes that compiled calling conventions always
aoqi@0 1857 // pass the receiver oop in a register. If this is not true on some
aoqi@0 1858 // platform, pick a temp and load the receiver from stack.
aoqi@0 1859 fatal("receiver always in a register");
aoqi@0 1860 receiver_reg = G3_scratch; // known to be free at this point
aoqi@0 1861 RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
aoqi@0 1862 ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
aoqi@0 1863 __ ld_ptr(SP, ld_off, receiver_reg);
aoqi@0 1864 } else {
aoqi@0 1865 // no data motion is needed
aoqi@0 1866 receiver_reg = r->as_Register();
aoqi@0 1867 }
aoqi@0 1868 }
aoqi@0 1869
aoqi@0 1870 // Figure out which address we are really jumping to:
aoqi@0 1871 MethodHandles::generate_method_handle_dispatch(masm, iid,
aoqi@0 1872 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
aoqi@0 1873 }
aoqi@0 1874
aoqi@0 1875 // ---------------------------------------------------------------------------
aoqi@0 1876 // Generate a native wrapper for a given method. The method takes arguments
aoqi@0 1877 // in the Java compiled code convention, marshals them to the native
aoqi@0 1878 // convention (handlizes oops, etc), transitions to native, makes the call,
aoqi@0 1879 // returns to java state (possibly blocking), unhandlizes any result and
aoqi@0 1880 // returns.
aoqi@0 1881 //
aoqi@0 1882 // Critical native functions are a shorthand for the use of
aoqi@0 1883 // GetPrimtiveArrayCritical and disallow the use of any other JNI
aoqi@0 1884 // functions. The wrapper is expected to unpack the arguments before
aoqi@0 1885 // passing them to the callee and perform checks before and after the
aoqi@0 1886 // native call to ensure that they GC_locker
aoqi@0 1887 // lock_critical/unlock_critical semantics are followed. Some other
aoqi@0 1888 // parts of JNI setup are skipped like the tear down of the JNI handle
aoqi@0 1889 // block and the check for pending exceptions it's impossible for them
aoqi@0 1890 // to be thrown.
aoqi@0 1891 //
aoqi@0 1892 // They are roughly structured like this:
aoqi@0 1893 // if (GC_locker::needs_gc())
aoqi@0 1894 // SharedRuntime::block_for_jni_critical();
aoqi@0 1895 // tranistion to thread_in_native
aoqi@0 1896 // unpack arrray arguments and call native entry point
aoqi@0 1897 // check for safepoint in progress
aoqi@0 1898 // check if any thread suspend flags are set
aoqi@0 1899 // call into JVM and possible unlock the JNI critical
aoqi@0 1900 // if a GC was suppressed while in the critical native.
aoqi@0 1901 // transition back to thread_in_Java
aoqi@0 1902 // return to caller
aoqi@0 1903 //
aoqi@0 1904 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
aoqi@0 1905 methodHandle method,
aoqi@0 1906 int compile_id,
aoqi@0 1907 BasicType* in_sig_bt,
aoqi@0 1908 VMRegPair* in_regs,
aoqi@0 1909 BasicType ret_type) {
aoqi@0 1910 if (method->is_method_handle_intrinsic()) {
aoqi@0 1911 vmIntrinsics::ID iid = method->intrinsic_id();
aoqi@0 1912 intptr_t start = (intptr_t)__ pc();
aoqi@0 1913 int vep_offset = ((intptr_t)__ pc()) - start;
aoqi@0 1914 gen_special_dispatch(masm,
aoqi@0 1915 method,
aoqi@0 1916 in_sig_bt,
aoqi@0 1917 in_regs);
aoqi@0 1918 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
aoqi@0 1919 __ flush();
aoqi@0 1920 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
aoqi@0 1921 return nmethod::new_native_nmethod(method,
aoqi@0 1922 compile_id,
aoqi@0 1923 masm->code(),
aoqi@0 1924 vep_offset,
aoqi@0 1925 frame_complete,
aoqi@0 1926 stack_slots / VMRegImpl::slots_per_word,
aoqi@0 1927 in_ByteSize(-1),
aoqi@0 1928 in_ByteSize(-1),
aoqi@0 1929 (OopMapSet*)NULL);
aoqi@0 1930 }
aoqi@0 1931 bool is_critical_native = true;
aoqi@0 1932 address native_func = method->critical_native_function();
aoqi@0 1933 if (native_func == NULL) {
aoqi@0 1934 native_func = method->native_function();
aoqi@0 1935 is_critical_native = false;
aoqi@0 1936 }
aoqi@0 1937 assert(native_func != NULL, "must have function");
aoqi@0 1938
aoqi@0 1939 // Native nmethod wrappers never take possesion of the oop arguments.
aoqi@0 1940 // So the caller will gc the arguments. The only thing we need an
aoqi@0 1941 // oopMap for is if the call is static
aoqi@0 1942 //
aoqi@0 1943 // An OopMap for lock (and class if static), and one for the VM call itself
aoqi@0 1944 OopMapSet *oop_maps = new OopMapSet();
aoqi@0 1945 intptr_t start = (intptr_t)__ pc();
aoqi@0 1946
aoqi@0 1947 // First thing make an ic check to see if we should even be here
aoqi@0 1948 {
aoqi@0 1949 Label L;
aoqi@0 1950 const Register temp_reg = G3_scratch;
aoqi@0 1951 AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
aoqi@0 1952 __ verify_oop(O0);
aoqi@0 1953 __ load_klass(O0, temp_reg);
aoqi@0 1954 __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
aoqi@0 1955
aoqi@0 1956 __ jump_to(ic_miss, temp_reg);
aoqi@0 1957 __ delayed()->nop();
aoqi@0 1958 __ align(CodeEntryAlignment);
aoqi@0 1959 __ bind(L);
aoqi@0 1960 }
aoqi@0 1961
aoqi@0 1962 int vep_offset = ((intptr_t)__ pc()) - start;
aoqi@0 1963
aoqi@0 1964 #ifdef COMPILER1
aoqi@0 1965 if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
aoqi@0 1966 // Object.hashCode can pull the hashCode from the header word
aoqi@0 1967 // instead of doing a full VM transition once it's been computed.
aoqi@0 1968 // Since hashCode is usually polymorphic at call sites we can't do
aoqi@0 1969 // this optimization at the call site without a lot of work.
aoqi@0 1970 Label slowCase;
aoqi@0 1971 Register receiver = O0;
aoqi@0 1972 Register result = O0;
aoqi@0 1973 Register header = G3_scratch;
aoqi@0 1974 Register hash = G3_scratch; // overwrite header value with hash value
aoqi@0 1975 Register mask = G1; // to get hash field from header
aoqi@0 1976
aoqi@0 1977 // Read the header and build a mask to get its hash field. Give up if the object is not unlocked.
aoqi@0 1978 // We depend on hash_mask being at most 32 bits and avoid the use of
aoqi@0 1979 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
aoqi@0 1980 // vm: see markOop.hpp.
aoqi@0 1981 __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
aoqi@0 1982 __ sethi(markOopDesc::hash_mask, mask);
aoqi@0 1983 __ btst(markOopDesc::unlocked_value, header);
aoqi@0 1984 __ br(Assembler::zero, false, Assembler::pn, slowCase);
aoqi@0 1985 if (UseBiasedLocking) {
aoqi@0 1986 // Check if biased and fall through to runtime if so
aoqi@0 1987 __ delayed()->nop();
aoqi@0 1988 __ btst(markOopDesc::biased_lock_bit_in_place, header);
aoqi@0 1989 __ br(Assembler::notZero, false, Assembler::pn, slowCase);
aoqi@0 1990 }
aoqi@0 1991 __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
aoqi@0 1992
aoqi@0 1993 // Check for a valid (non-zero) hash code and get its value.
aoqi@0 1994 #ifdef _LP64
aoqi@0 1995 __ srlx(header, markOopDesc::hash_shift, hash);
aoqi@0 1996 #else
aoqi@0 1997 __ srl(header, markOopDesc::hash_shift, hash);
aoqi@0 1998 #endif
aoqi@0 1999 __ andcc(hash, mask, hash);
aoqi@0 2000 __ br(Assembler::equal, false, Assembler::pn, slowCase);
aoqi@0 2001 __ delayed()->nop();
aoqi@0 2002
aoqi@0 2003 // leaf return.
aoqi@0 2004 __ retl();
aoqi@0 2005 __ delayed()->mov(hash, result);
aoqi@0 2006 __ bind(slowCase);
aoqi@0 2007 }
aoqi@0 2008 #endif // COMPILER1
aoqi@0 2009
aoqi@0 2010
aoqi@0 2011 // We have received a description of where all the java arg are located
aoqi@0 2012 // on entry to the wrapper. We need to convert these args to where
aoqi@0 2013 // the jni function will expect them. To figure out where they go
aoqi@0 2014 // we convert the java signature to a C signature by inserting
aoqi@0 2015 // the hidden arguments as arg[0] and possibly arg[1] (static method)
aoqi@0 2016
aoqi@0 2017 const int total_in_args = method->size_of_parameters();
aoqi@0 2018 int total_c_args = total_in_args;
aoqi@0 2019 int total_save_slots = 6 * VMRegImpl::slots_per_word;
aoqi@0 2020 if (!is_critical_native) {
aoqi@0 2021 total_c_args += 1;
aoqi@0 2022 if (method->is_static()) {
aoqi@0 2023 total_c_args++;
aoqi@0 2024 }
aoqi@0 2025 } else {
aoqi@0 2026 for (int i = 0; i < total_in_args; i++) {
aoqi@0 2027 if (in_sig_bt[i] == T_ARRAY) {
aoqi@0 2028 // These have to be saved and restored across the safepoint
aoqi@0 2029 total_c_args++;
aoqi@0 2030 }
aoqi@0 2031 }
aoqi@0 2032 }
aoqi@0 2033
aoqi@0 2034 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
aoqi@0 2035 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
aoqi@0 2036 BasicType* in_elem_bt = NULL;
aoqi@0 2037
aoqi@0 2038 int argc = 0;
aoqi@0 2039 if (!is_critical_native) {
aoqi@0 2040 out_sig_bt[argc++] = T_ADDRESS;
aoqi@0 2041 if (method->is_static()) {
aoqi@0 2042 out_sig_bt[argc++] = T_OBJECT;
aoqi@0 2043 }
aoqi@0 2044
aoqi@0 2045 for (int i = 0; i < total_in_args ; i++ ) {
aoqi@0 2046 out_sig_bt[argc++] = in_sig_bt[i];
aoqi@0 2047 }
aoqi@0 2048 } else {
aoqi@0 2049 Thread* THREAD = Thread::current();
aoqi@0 2050 in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
aoqi@0 2051 SignatureStream ss(method->signature());
aoqi@0 2052 for (int i = 0; i < total_in_args ; i++ ) {
aoqi@0 2053 if (in_sig_bt[i] == T_ARRAY) {
aoqi@0 2054 // Arrays are passed as int, elem* pair
aoqi@0 2055 out_sig_bt[argc++] = T_INT;
aoqi@0 2056 out_sig_bt[argc++] = T_ADDRESS;
aoqi@0 2057 Symbol* atype = ss.as_symbol(CHECK_NULL);
aoqi@0 2058 const char* at = atype->as_C_string();
aoqi@0 2059 if (strlen(at) == 2) {
aoqi@0 2060 assert(at[0] == '[', "must be");
aoqi@0 2061 switch (at[1]) {
aoqi@0 2062 case 'B': in_elem_bt[i] = T_BYTE; break;
aoqi@0 2063 case 'C': in_elem_bt[i] = T_CHAR; break;
aoqi@0 2064 case 'D': in_elem_bt[i] = T_DOUBLE; break;
aoqi@0 2065 case 'F': in_elem_bt[i] = T_FLOAT; break;
aoqi@0 2066 case 'I': in_elem_bt[i] = T_INT; break;
aoqi@0 2067 case 'J': in_elem_bt[i] = T_LONG; break;
aoqi@0 2068 case 'S': in_elem_bt[i] = T_SHORT; break;
aoqi@0 2069 case 'Z': in_elem_bt[i] = T_BOOLEAN; break;
aoqi@0 2070 default: ShouldNotReachHere();
aoqi@0 2071 }
aoqi@0 2072 }
aoqi@0 2073 } else {
aoqi@0 2074 out_sig_bt[argc++] = in_sig_bt[i];
aoqi@0 2075 in_elem_bt[i] = T_VOID;
aoqi@0 2076 }
aoqi@0 2077 if (in_sig_bt[i] != T_VOID) {
aoqi@0 2078 assert(in_sig_bt[i] == ss.type(), "must match");
aoqi@0 2079 ss.next();
aoqi@0 2080 }
aoqi@0 2081 }
aoqi@0 2082 }
aoqi@0 2083
aoqi@0 2084 // Now figure out where the args must be stored and how much stack space
aoqi@0 2085 // they require (neglecting out_preserve_stack_slots but space for storing
aoqi@0 2086 // the 1st six register arguments). It's weird see int_stk_helper.
aoqi@0 2087 //
aoqi@0 2088 int out_arg_slots;
aoqi@0 2089 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
aoqi@0 2090
aoqi@0 2091 if (is_critical_native) {
aoqi@0 2092 // Critical natives may have to call out so they need a save area
aoqi@0 2093 // for register arguments.
aoqi@0 2094 int double_slots = 0;
aoqi@0 2095 int single_slots = 0;
aoqi@0 2096 for ( int i = 0; i < total_in_args; i++) {
aoqi@0 2097 if (in_regs[i].first()->is_Register()) {
aoqi@0 2098 const Register reg = in_regs[i].first()->as_Register();
aoqi@0 2099 switch (in_sig_bt[i]) {
aoqi@0 2100 case T_ARRAY:
aoqi@0 2101 case T_BOOLEAN:
aoqi@0 2102 case T_BYTE:
aoqi@0 2103 case T_SHORT:
aoqi@0 2104 case T_CHAR:
aoqi@0 2105 case T_INT: assert(reg->is_in(), "don't need to save these"); break;
aoqi@0 2106 case T_LONG: if (reg->is_global()) double_slots++; break;
aoqi@0 2107 default: ShouldNotReachHere();
aoqi@0 2108 }
aoqi@0 2109 } else if (in_regs[i].first()->is_FloatRegister()) {
aoqi@0 2110 switch (in_sig_bt[i]) {
aoqi@0 2111 case T_FLOAT: single_slots++; break;
aoqi@0 2112 case T_DOUBLE: double_slots++; break;
aoqi@0 2113 default: ShouldNotReachHere();
aoqi@0 2114 }
aoqi@0 2115 }
aoqi@0 2116 }
aoqi@0 2117 total_save_slots = double_slots * 2 + single_slots;
aoqi@0 2118 }
aoqi@0 2119
aoqi@0 2120 // Compute framesize for the wrapper. We need to handlize all oops in
aoqi@0 2121 // registers. We must create space for them here that is disjoint from
aoqi@0 2122 // the windowed save area because we have no control over when we might
aoqi@0 2123 // flush the window again and overwrite values that gc has since modified.
aoqi@0 2124 // (The live window race)
aoqi@0 2125 //
aoqi@0 2126 // We always just allocate 6 word for storing down these object. This allow
aoqi@0 2127 // us to simply record the base and use the Ireg number to decide which
aoqi@0 2128 // slot to use. (Note that the reg number is the inbound number not the
aoqi@0 2129 // outbound number).
aoqi@0 2130 // We must shuffle args to match the native convention, and include var-args space.
aoqi@0 2131
aoqi@0 2132 // Calculate the total number of stack slots we will need.
aoqi@0 2133
aoqi@0 2134 // First count the abi requirement plus all of the outgoing args
aoqi@0 2135 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
aoqi@0 2136
aoqi@0 2137 // Now the space for the inbound oop handle area
aoqi@0 2138
aoqi@0 2139 int oop_handle_offset = round_to(stack_slots, 2);
aoqi@0 2140 stack_slots += total_save_slots;
aoqi@0 2141
aoqi@0 2142 // Now any space we need for handlizing a klass if static method
aoqi@0 2143
aoqi@0 2144 int klass_slot_offset = 0;
aoqi@0 2145 int klass_offset = -1;
aoqi@0 2146 int lock_slot_offset = 0;
aoqi@0 2147 bool is_static = false;
aoqi@0 2148
aoqi@0 2149 if (method->is_static()) {
aoqi@0 2150 klass_slot_offset = stack_slots;
aoqi@0 2151 stack_slots += VMRegImpl::slots_per_word;
aoqi@0 2152 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
aoqi@0 2153 is_static = true;
aoqi@0 2154 }
aoqi@0 2155
aoqi@0 2156 // Plus a lock if needed
aoqi@0 2157
aoqi@0 2158 if (method->is_synchronized()) {
aoqi@0 2159 lock_slot_offset = stack_slots;
aoqi@0 2160 stack_slots += VMRegImpl::slots_per_word;
aoqi@0 2161 }
aoqi@0 2162
aoqi@0 2163 // Now a place to save return value or as a temporary for any gpr -> fpr moves
aoqi@0 2164 stack_slots += 2;
aoqi@0 2165
aoqi@0 2166 // Ok The space we have allocated will look like:
aoqi@0 2167 //
aoqi@0 2168 //
aoqi@0 2169 // FP-> | |
aoqi@0 2170 // |---------------------|
aoqi@0 2171 // | 2 slots for moves |
aoqi@0 2172 // |---------------------|
aoqi@0 2173 // | lock box (if sync) |
aoqi@0 2174 // |---------------------| <- lock_slot_offset
aoqi@0 2175 // | klass (if static) |
aoqi@0 2176 // |---------------------| <- klass_slot_offset
aoqi@0 2177 // | oopHandle area |
aoqi@0 2178 // |---------------------| <- oop_handle_offset
aoqi@0 2179 // | outbound memory |
aoqi@0 2180 // | based arguments |
aoqi@0 2181 // | |
aoqi@0 2182 // |---------------------|
aoqi@0 2183 // | vararg area |
aoqi@0 2184 // |---------------------|
aoqi@0 2185 // | |
aoqi@0 2186 // SP-> | out_preserved_slots |
aoqi@0 2187 //
aoqi@0 2188 //
aoqi@0 2189
aoqi@0 2190
aoqi@0 2191 // Now compute actual number of stack words we need rounding to make
aoqi@0 2192 // stack properly aligned.
aoqi@0 2193 stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
aoqi@0 2194
aoqi@0 2195 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
aoqi@0 2196
aoqi@0 2197 // Generate stack overflow check before creating frame
aoqi@0 2198 __ generate_stack_overflow_check(stack_size);
aoqi@0 2199
aoqi@0 2200 // Generate a new frame for the wrapper.
aoqi@0 2201 __ save(SP, -stack_size, SP);
aoqi@0 2202
aoqi@0 2203 int frame_complete = ((intptr_t)__ pc()) - start;
aoqi@0 2204
aoqi@0 2205 __ verify_thread();
aoqi@0 2206
aoqi@0 2207 if (is_critical_native) {
aoqi@0 2208 check_needs_gc_for_critical_native(masm, stack_slots, total_in_args,
aoqi@0 2209 oop_handle_offset, oop_maps, in_regs, in_sig_bt);
aoqi@0 2210 }
aoqi@0 2211
aoqi@0 2212 //
aoqi@0 2213 // We immediately shuffle the arguments so that any vm call we have to
aoqi@0 2214 // make from here on out (sync slow path, jvmti, etc.) we will have
aoqi@0 2215 // captured the oops from our caller and have a valid oopMap for
aoqi@0 2216 // them.
aoqi@0 2217
aoqi@0 2218 // -----------------
aoqi@0 2219 // The Grand Shuffle
aoqi@0 2220 //
aoqi@0 2221 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
aoqi@0 2222 // (derived from JavaThread* which is in L7_thread_cache) and, if static,
aoqi@0 2223 // the class mirror instead of a receiver. This pretty much guarantees that
aoqi@0 2224 // register layout will not match. We ignore these extra arguments during
aoqi@0 2225 // the shuffle. The shuffle is described by the two calling convention
aoqi@0 2226 // vectors we have in our possession. We simply walk the java vector to
aoqi@0 2227 // get the source locations and the c vector to get the destinations.
aoqi@0 2228 // Because we have a new window and the argument registers are completely
aoqi@0 2229 // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
aoqi@0 2230 // here.
aoqi@0 2231
aoqi@0 2232 // This is a trick. We double the stack slots so we can claim
aoqi@0 2233 // the oops in the caller's frame. Since we are sure to have
aoqi@0 2234 // more args than the caller doubling is enough to make
aoqi@0 2235 // sure we can capture all the incoming oop args from the
aoqi@0 2236 // caller.
aoqi@0 2237 //
aoqi@0 2238 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
aoqi@0 2239 // Record sp-based slot for receiver on stack for non-static methods
aoqi@0 2240 int receiver_offset = -1;
aoqi@0 2241
aoqi@0 2242 // We move the arguments backward because the floating point registers
aoqi@0 2243 // destination will always be to a register with a greater or equal register
aoqi@0 2244 // number or the stack.
aoqi@0 2245
aoqi@0 2246 #ifdef ASSERT
aoqi@0 2247 bool reg_destroyed[RegisterImpl::number_of_registers];
aoqi@0 2248 bool freg_destroyed[FloatRegisterImpl::number_of_registers];
aoqi@0 2249 for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
aoqi@0 2250 reg_destroyed[r] = false;
aoqi@0 2251 }
aoqi@0 2252 for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
aoqi@0 2253 freg_destroyed[f] = false;
aoqi@0 2254 }
aoqi@0 2255
aoqi@0 2256 #endif /* ASSERT */
aoqi@0 2257
aoqi@0 2258 for ( int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0 ; i--, c_arg-- ) {
aoqi@0 2259
aoqi@0 2260 #ifdef ASSERT
aoqi@0 2261 if (in_regs[i].first()->is_Register()) {
aoqi@0 2262 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
aoqi@0 2263 } else if (in_regs[i].first()->is_FloatRegister()) {
aoqi@0 2264 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
aoqi@0 2265 }
aoqi@0 2266 if (out_regs[c_arg].first()->is_Register()) {
aoqi@0 2267 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
aoqi@0 2268 } else if (out_regs[c_arg].first()->is_FloatRegister()) {
aoqi@0 2269 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
aoqi@0 2270 }
aoqi@0 2271 #endif /* ASSERT */
aoqi@0 2272
aoqi@0 2273 switch (in_sig_bt[i]) {
aoqi@0 2274 case T_ARRAY:
aoqi@0 2275 if (is_critical_native) {
aoqi@0 2276 unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg], out_regs[c_arg - 1]);
aoqi@0 2277 c_arg--;
aoqi@0 2278 break;
aoqi@0 2279 }
aoqi@0 2280 case T_OBJECT:
aoqi@0 2281 assert(!is_critical_native, "no oop arguments");
aoqi@0 2282 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
aoqi@0 2283 ((i == 0) && (!is_static)),
aoqi@0 2284 &receiver_offset);
aoqi@0 2285 break;
aoqi@0 2286 case T_VOID:
aoqi@0 2287 break;
aoqi@0 2288
aoqi@0 2289 case T_FLOAT:
aoqi@0 2290 float_move(masm, in_regs[i], out_regs[c_arg]);
aoqi@0 2291 break;
aoqi@0 2292
aoqi@0 2293 case T_DOUBLE:
aoqi@0 2294 assert( i + 1 < total_in_args &&
aoqi@0 2295 in_sig_bt[i + 1] == T_VOID &&
aoqi@0 2296 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
aoqi@0 2297 double_move(masm, in_regs[i], out_regs[c_arg]);
aoqi@0 2298 break;
aoqi@0 2299
aoqi@0 2300 case T_LONG :
aoqi@0 2301 long_move(masm, in_regs[i], out_regs[c_arg]);
aoqi@0 2302 break;
aoqi@0 2303
aoqi@0 2304 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
aoqi@0 2305
aoqi@0 2306 default:
aoqi@0 2307 move32_64(masm, in_regs[i], out_regs[c_arg]);
aoqi@0 2308 }
aoqi@0 2309 }
aoqi@0 2310
aoqi@0 2311 // Pre-load a static method's oop into O1. Used both by locking code and
aoqi@0 2312 // the normal JNI call code.
aoqi@0 2313 if (method->is_static() && !is_critical_native) {
aoqi@0 2314 __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()), O1);
aoqi@0 2315
aoqi@0 2316 // Now handlize the static class mirror in O1. It's known not-null.
aoqi@0 2317 __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
aoqi@0 2318 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
aoqi@0 2319 __ add(SP, klass_offset + STACK_BIAS, O1);
aoqi@0 2320 }
aoqi@0 2321
aoqi@0 2322
aoqi@0 2323 const Register L6_handle = L6;
aoqi@0 2324
aoqi@0 2325 if (method->is_synchronized()) {
aoqi@0 2326 assert(!is_critical_native, "unhandled");
aoqi@0 2327 __ mov(O1, L6_handle);
aoqi@0 2328 }
aoqi@0 2329
aoqi@0 2330 // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
aoqi@0 2331 // except O6/O7. So if we must call out we must push a new frame. We immediately
aoqi@0 2332 // push a new frame and flush the windows.
aoqi@0 2333 #ifdef _LP64
aoqi@0 2334 intptr_t thepc = (intptr_t) __ pc();
aoqi@0 2335 {
aoqi@0 2336 address here = __ pc();
aoqi@0 2337 // Call the next instruction
aoqi@0 2338 __ call(here + 8, relocInfo::none);
aoqi@0 2339 __ delayed()->nop();
aoqi@0 2340 }
aoqi@0 2341 #else
aoqi@0 2342 intptr_t thepc = __ load_pc_address(O7, 0);
aoqi@0 2343 #endif /* _LP64 */
aoqi@0 2344
aoqi@0 2345 // We use the same pc/oopMap repeatedly when we call out
aoqi@0 2346 oop_maps->add_gc_map(thepc - start, map);
aoqi@0 2347
aoqi@0 2348 // O7 now has the pc loaded that we will use when we finally call to native.
aoqi@0 2349
aoqi@0 2350 // Save thread in L7; it crosses a bunch of VM calls below
aoqi@0 2351 // Don't use save_thread because it smashes G2 and we merely
aoqi@0 2352 // want to save a copy
aoqi@0 2353 __ mov(G2_thread, L7_thread_cache);
aoqi@0 2354
aoqi@0 2355
aoqi@0 2356 // If we create an inner frame once is plenty
aoqi@0 2357 // when we create it we must also save G2_thread
aoqi@0 2358 bool inner_frame_created = false;
aoqi@0 2359
aoqi@0 2360 // dtrace method entry support
aoqi@0 2361 {
aoqi@0 2362 SkipIfEqual skip_if(
aoqi@0 2363 masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
aoqi@0 2364 // create inner frame
aoqi@0 2365 __ save_frame(0);
aoqi@0 2366 __ mov(G2_thread, L7_thread_cache);
aoqi@0 2367 __ set_metadata_constant(method(), O1);
aoqi@0 2368 __ call_VM_leaf(L7_thread_cache,
aoqi@0 2369 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
aoqi@0 2370 G2_thread, O1);
aoqi@0 2371 __ restore();
aoqi@0 2372 }
aoqi@0 2373
aoqi@0 2374 // RedefineClasses() tracing support for obsolete method entry
aoqi@0 2375 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
aoqi@0 2376 // create inner frame
aoqi@0 2377 __ save_frame(0);
aoqi@0 2378 __ mov(G2_thread, L7_thread_cache);
aoqi@0 2379 __ set_metadata_constant(method(), O1);
aoqi@0 2380 __ call_VM_leaf(L7_thread_cache,
aoqi@0 2381 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
aoqi@0 2382 G2_thread, O1);
aoqi@0 2383 __ restore();
aoqi@0 2384 }
aoqi@0 2385
aoqi@0 2386 // We are in the jni frame unless saved_frame is true in which case
aoqi@0 2387 // we are in one frame deeper (the "inner" frame). If we are in the
aoqi@0 2388 // "inner" frames the args are in the Iregs and if the jni frame then
aoqi@0 2389 // they are in the Oregs.
aoqi@0 2390 // If we ever need to go to the VM (for locking, jvmti) then
aoqi@0 2391 // we will always be in the "inner" frame.
aoqi@0 2392
aoqi@0 2393 // Lock a synchronized method
aoqi@0 2394 int lock_offset = -1; // Set if locked
aoqi@0 2395 if (method->is_synchronized()) {
aoqi@0 2396 Register Roop = O1;
aoqi@0 2397 const Register L3_box = L3;
aoqi@0 2398
aoqi@0 2399 create_inner_frame(masm, &inner_frame_created);
aoqi@0 2400
aoqi@0 2401 __ ld_ptr(I1, 0, O1);
aoqi@0 2402 Label done;
aoqi@0 2403
aoqi@0 2404 lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
aoqi@0 2405 __ add(FP, lock_offset+STACK_BIAS, L3_box);
aoqi@0 2406 #ifdef ASSERT
aoqi@0 2407 if (UseBiasedLocking) {
aoqi@0 2408 // making the box point to itself will make it clear it went unused
aoqi@0 2409 // but also be obviously invalid
aoqi@0 2410 __ st_ptr(L3_box, L3_box, 0);
aoqi@0 2411 }
aoqi@0 2412 #endif // ASSERT
aoqi@0 2413 //
aoqi@0 2414 // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
aoqi@0 2415 //
aoqi@0 2416 __ compiler_lock_object(Roop, L1, L3_box, L2);
aoqi@0 2417 __ br(Assembler::equal, false, Assembler::pt, done);
aoqi@0 2418 __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
aoqi@0 2419
aoqi@0 2420
aoqi@0 2421 // None of the above fast optimizations worked so we have to get into the
aoqi@0 2422 // slow case of monitor enter. Inline a special case of call_VM that
aoqi@0 2423 // disallows any pending_exception.
aoqi@0 2424 __ mov(Roop, O0); // Need oop in O0
aoqi@0 2425 __ mov(L3_box, O1);
aoqi@0 2426
aoqi@0 2427 // Record last_Java_sp, in case the VM code releases the JVM lock.
aoqi@0 2428
aoqi@0 2429 __ set_last_Java_frame(FP, I7);
aoqi@0 2430
aoqi@0 2431 // do the call
aoqi@0 2432 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
aoqi@0 2433 __ delayed()->mov(L7_thread_cache, O2);
aoqi@0 2434
aoqi@0 2435 __ restore_thread(L7_thread_cache); // restore G2_thread
aoqi@0 2436 __ reset_last_Java_frame();
aoqi@0 2437
aoqi@0 2438 #ifdef ASSERT
aoqi@0 2439 { Label L;
aoqi@0 2440 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
aoqi@0 2441 __ br_null_short(O0, Assembler::pt, L);
aoqi@0 2442 __ stop("no pending exception allowed on exit from IR::monitorenter");
aoqi@0 2443 __ bind(L);
aoqi@0 2444 }
aoqi@0 2445 #endif
aoqi@0 2446 __ bind(done);
aoqi@0 2447 }
aoqi@0 2448
aoqi@0 2449
aoqi@0 2450 // Finally just about ready to make the JNI call
aoqi@0 2451
aoqi@0 2452 __ flushw();
aoqi@0 2453 if (inner_frame_created) {
aoqi@0 2454 __ restore();
aoqi@0 2455 } else {
aoqi@0 2456 // Store only what we need from this frame
aoqi@0 2457 // QQQ I think that non-v9 (like we care) we don't need these saves
aoqi@0 2458 // either as the flush traps and the current window goes too.
aoqi@0 2459 __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
aoqi@0 2460 __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
aoqi@0 2461 }
aoqi@0 2462
aoqi@0 2463 // get JNIEnv* which is first argument to native
aoqi@0 2464 if (!is_critical_native) {
aoqi@0 2465 __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
aoqi@0 2466 }
aoqi@0 2467
aoqi@0 2468 // Use that pc we placed in O7 a while back as the current frame anchor
aoqi@0 2469 __ set_last_Java_frame(SP, O7);
aoqi@0 2470
aoqi@0 2471 // We flushed the windows ages ago now mark them as flushed before transitioning.
aoqi@0 2472 __ set(JavaFrameAnchor::flushed, G3_scratch);
aoqi@0 2473 __ st(G3_scratch, G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
aoqi@0 2474
aoqi@0 2475 // Transition from _thread_in_Java to _thread_in_native.
aoqi@0 2476 __ set(_thread_in_native, G3_scratch);
aoqi@0 2477
aoqi@0 2478 #ifdef _LP64
aoqi@0 2479 AddressLiteral dest(native_func);
aoqi@0 2480 __ relocate(relocInfo::runtime_call_type);
aoqi@0 2481 __ jumpl_to(dest, O7, O7);
aoqi@0 2482 #else
aoqi@0 2483 __ call(native_func, relocInfo::runtime_call_type);
aoqi@0 2484 #endif
aoqi@0 2485 __ delayed()->st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
aoqi@0 2486
aoqi@0 2487 __ restore_thread(L7_thread_cache); // restore G2_thread
aoqi@0 2488
aoqi@0 2489 // Unpack native results. For int-types, we do any needed sign-extension
aoqi@0 2490 // and move things into I0. The return value there will survive any VM
aoqi@0 2491 // calls for blocking or unlocking. An FP or OOP result (handle) is done
aoqi@0 2492 // specially in the slow-path code.
aoqi@0 2493 switch (ret_type) {
aoqi@0 2494 case T_VOID: break; // Nothing to do!
aoqi@0 2495 case T_FLOAT: break; // Got it where we want it (unless slow-path)
aoqi@0 2496 case T_DOUBLE: break; // Got it where we want it (unless slow-path)
aoqi@0 2497 // In 64 bits build result is in O0, in O0, O1 in 32bit build
aoqi@0 2498 case T_LONG:
aoqi@0 2499 #ifndef _LP64
aoqi@0 2500 __ mov(O1, I1);
aoqi@0 2501 #endif
aoqi@0 2502 // Fall thru
aoqi@0 2503 case T_OBJECT: // Really a handle
aoqi@0 2504 case T_ARRAY:
aoqi@0 2505 case T_INT:
aoqi@0 2506 __ mov(O0, I0);
aoqi@0 2507 break;
aoqi@0 2508 case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
aoqi@0 2509 case T_BYTE : __ sll(O0, 24, O0); __ sra(O0, 24, I0); break;
aoqi@0 2510 case T_CHAR : __ sll(O0, 16, O0); __ srl(O0, 16, I0); break; // cannot use and3, 0xFFFF too big as immediate value!
aoqi@0 2511 case T_SHORT : __ sll(O0, 16, O0); __ sra(O0, 16, I0); break;
aoqi@0 2512 break; // Cannot de-handlize until after reclaiming jvm_lock
aoqi@0 2513 default:
aoqi@0 2514 ShouldNotReachHere();
aoqi@0 2515 }
aoqi@0 2516
aoqi@0 2517 Label after_transition;
aoqi@0 2518 // must we block?
aoqi@0 2519
aoqi@0 2520 // Block, if necessary, before resuming in _thread_in_Java state.
aoqi@0 2521 // In order for GC to work, don't clear the last_Java_sp until after blocking.
aoqi@0 2522 { Label no_block;
aoqi@0 2523 AddressLiteral sync_state(SafepointSynchronize::address_of_state());
aoqi@0 2524
aoqi@0 2525 // Switch thread to "native transition" state before reading the synchronization state.
aoqi@0 2526 // This additional state is necessary because reading and testing the synchronization
aoqi@0 2527 // state is not atomic w.r.t. GC, as this scenario demonstrates:
aoqi@0 2528 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
aoqi@0 2529 // VM thread changes sync state to synchronizing and suspends threads for GC.
aoqi@0 2530 // Thread A is resumed to finish this native method, but doesn't block here since it
aoqi@0 2531 // didn't see any synchronization is progress, and escapes.
aoqi@0 2532 __ set(_thread_in_native_trans, G3_scratch);
aoqi@0 2533 __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
aoqi@0 2534 if(os::is_MP()) {
aoqi@0 2535 if (UseMembar) {
aoqi@0 2536 // Force this write out before the read below
aoqi@0 2537 __ membar(Assembler::StoreLoad);
aoqi@0 2538 } else {
aoqi@0 2539 // Write serialization page so VM thread can do a pseudo remote membar.
aoqi@0 2540 // We use the current thread pointer to calculate a thread specific
aoqi@0 2541 // offset to write to within the page. This minimizes bus traffic
aoqi@0 2542 // due to cache line collision.
aoqi@0 2543 __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
aoqi@0 2544 }
aoqi@0 2545 }
aoqi@0 2546 __ load_contents(sync_state, G3_scratch);
aoqi@0 2547 __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
aoqi@0 2548
aoqi@0 2549 Label L;
aoqi@0 2550 Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
aoqi@0 2551 __ br(Assembler::notEqual, false, Assembler::pn, L);
aoqi@0 2552 __ delayed()->ld(suspend_state, G3_scratch);
aoqi@0 2553 __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
aoqi@0 2554 __ bind(L);
aoqi@0 2555
aoqi@0 2556 // Block. Save any potential method result value before the operation and
aoqi@0 2557 // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
aoqi@0 2558 // lets us share the oopMap we used when we went native rather the create
aoqi@0 2559 // a distinct one for this pc
aoqi@0 2560 //
aoqi@0 2561 save_native_result(masm, ret_type, stack_slots);
aoqi@0 2562 if (!is_critical_native) {
aoqi@0 2563 __ call_VM_leaf(L7_thread_cache,
aoqi@0 2564 CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
aoqi@0 2565 G2_thread);
aoqi@0 2566 } else {
aoqi@0 2567 __ call_VM_leaf(L7_thread_cache,
aoqi@0 2568 CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition),
aoqi@0 2569 G2_thread);
aoqi@0 2570 }
aoqi@0 2571
aoqi@0 2572 // Restore any method result value
aoqi@0 2573 restore_native_result(masm, ret_type, stack_slots);
aoqi@0 2574
aoqi@0 2575 if (is_critical_native) {
aoqi@0 2576 // The call above performed the transition to thread_in_Java so
aoqi@0 2577 // skip the transition logic below.
aoqi@0 2578 __ ba(after_transition);
aoqi@0 2579 __ delayed()->nop();
aoqi@0 2580 }
aoqi@0 2581
aoqi@0 2582 __ bind(no_block);
aoqi@0 2583 }
aoqi@0 2584
aoqi@0 2585 // thread state is thread_in_native_trans. Any safepoint blocking has already
aoqi@0 2586 // happened so we can now change state to _thread_in_Java.
aoqi@0 2587 __ set(_thread_in_Java, G3_scratch);
aoqi@0 2588 __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
aoqi@0 2589 __ bind(after_transition);
aoqi@0 2590
aoqi@0 2591 Label no_reguard;
aoqi@0 2592 __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
aoqi@0 2593 __ cmp_and_br_short(G3_scratch, JavaThread::stack_guard_yellow_disabled, Assembler::notEqual, Assembler::pt, no_reguard);
aoqi@0 2594
aoqi@0 2595 save_native_result(masm, ret_type, stack_slots);
aoqi@0 2596 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
aoqi@0 2597 __ delayed()->nop();
aoqi@0 2598
aoqi@0 2599 __ restore_thread(L7_thread_cache); // restore G2_thread
aoqi@0 2600 restore_native_result(masm, ret_type, stack_slots);
aoqi@0 2601
aoqi@0 2602 __ bind(no_reguard);
aoqi@0 2603
aoqi@0 2604 // Handle possible exception (will unlock if necessary)
aoqi@0 2605
aoqi@0 2606 // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
aoqi@0 2607
aoqi@0 2608 // Unlock
aoqi@0 2609 if (method->is_synchronized()) {
aoqi@0 2610 Label done;
aoqi@0 2611 Register I2_ex_oop = I2;
aoqi@0 2612 const Register L3_box = L3;
aoqi@0 2613 // Get locked oop from the handle we passed to jni
aoqi@0 2614 __ ld_ptr(L6_handle, 0, L4);
aoqi@0 2615 __ add(SP, lock_offset+STACK_BIAS, L3_box);
aoqi@0 2616 // Must save pending exception around the slow-path VM call. Since it's a
aoqi@0 2617 // leaf call, the pending exception (if any) can be kept in a register.
aoqi@0 2618 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
aoqi@0 2619 // Now unlock
aoqi@0 2620 // (Roop, Rmark, Rbox, Rscratch)
aoqi@0 2621 __ compiler_unlock_object(L4, L1, L3_box, L2);
aoqi@0 2622 __ br(Assembler::equal, false, Assembler::pt, done);
aoqi@0 2623 __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
aoqi@0 2624
aoqi@0 2625 // save and restore any potential method result value around the unlocking
aoqi@0 2626 // operation. Will save in I0 (or stack for FP returns).
aoqi@0 2627 save_native_result(masm, ret_type, stack_slots);
aoqi@0 2628
aoqi@0 2629 // Must clear pending-exception before re-entering the VM. Since this is
aoqi@0 2630 // a leaf call, pending-exception-oop can be safely kept in a register.
aoqi@0 2631 __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
aoqi@0 2632
aoqi@0 2633 // slow case of monitor enter. Inline a special case of call_VM that
aoqi@0 2634 // disallows any pending_exception.
aoqi@0 2635 __ mov(L3_box, O1);
aoqi@0 2636
aoqi@0 2637 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
aoqi@0 2638 __ delayed()->mov(L4, O0); // Need oop in O0
aoqi@0 2639
aoqi@0 2640 __ restore_thread(L7_thread_cache); // restore G2_thread
aoqi@0 2641
aoqi@0 2642 #ifdef ASSERT
aoqi@0 2643 { Label L;
aoqi@0 2644 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
aoqi@0 2645 __ br_null_short(O0, Assembler::pt, L);
aoqi@0 2646 __ stop("no pending exception allowed on exit from IR::monitorexit");
aoqi@0 2647 __ bind(L);
aoqi@0 2648 }
aoqi@0 2649 #endif
aoqi@0 2650 restore_native_result(masm, ret_type, stack_slots);
aoqi@0 2651 // check_forward_pending_exception jump to forward_exception if any pending
aoqi@0 2652 // exception is set. The forward_exception routine expects to see the
aoqi@0 2653 // exception in pending_exception and not in a register. Kind of clumsy,
aoqi@0 2654 // since all folks who branch to forward_exception must have tested
aoqi@0 2655 // pending_exception first and hence have it in a register already.
aoqi@0 2656 __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
aoqi@0 2657 __ bind(done);
aoqi@0 2658 }
aoqi@0 2659
aoqi@0 2660 // Tell dtrace about this method exit
aoqi@0 2661 {
aoqi@0 2662 SkipIfEqual skip_if(
aoqi@0 2663 masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
aoqi@0 2664 save_native_result(masm, ret_type, stack_slots);
aoqi@0 2665 __ set_metadata_constant(method(), O1);
aoqi@0 2666 __ call_VM_leaf(L7_thread_cache,
aoqi@0 2667 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
aoqi@0 2668 G2_thread, O1);
aoqi@0 2669 restore_native_result(masm, ret_type, stack_slots);
aoqi@0 2670 }
aoqi@0 2671
aoqi@0 2672 // Clear "last Java frame" SP and PC.
aoqi@0 2673 __ verify_thread(); // G2_thread must be correct
aoqi@0 2674 __ reset_last_Java_frame();
aoqi@0 2675
aoqi@0 2676 // Unpack oop result
aoqi@0 2677 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
aoqi@0 2678 Label L;
aoqi@0 2679 __ addcc(G0, I0, G0);
aoqi@0 2680 __ brx(Assembler::notZero, true, Assembler::pt, L);
aoqi@0 2681 __ delayed()->ld_ptr(I0, 0, I0);
aoqi@0 2682 __ mov(G0, I0);
aoqi@0 2683 __ bind(L);
aoqi@0 2684 __ verify_oop(I0);
aoqi@0 2685 }
aoqi@0 2686
aoqi@0 2687 if (!is_critical_native) {
aoqi@0 2688 // reset handle block
aoqi@0 2689 __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
aoqi@0 2690 __ st(G0, L5, JNIHandleBlock::top_offset_in_bytes());
aoqi@0 2691
aoqi@0 2692 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
aoqi@0 2693 check_forward_pending_exception(masm, G3_scratch);
aoqi@0 2694 }
aoqi@0 2695
aoqi@0 2696
aoqi@0 2697 // Return
aoqi@0 2698
aoqi@0 2699 #ifndef _LP64
aoqi@0 2700 if (ret_type == T_LONG) {
aoqi@0 2701
aoqi@0 2702 // Must leave proper result in O0,O1 and G1 (c2/tiered only)
aoqi@0 2703 __ sllx(I0, 32, G1); // Shift bits into high G1
aoqi@0 2704 __ srl (I1, 0, I1); // Zero extend O1 (harmless?)
aoqi@0 2705 __ or3 (I1, G1, G1); // OR 64 bits into G1
aoqi@0 2706 }
aoqi@0 2707 #endif
aoqi@0 2708
aoqi@0 2709 __ ret();
aoqi@0 2710 __ delayed()->restore();
aoqi@0 2711
aoqi@0 2712 __ flush();
aoqi@0 2713
aoqi@0 2714 nmethod *nm = nmethod::new_native_nmethod(method,
aoqi@0 2715 compile_id,
aoqi@0 2716 masm->code(),
aoqi@0 2717 vep_offset,
aoqi@0 2718 frame_complete,
aoqi@0 2719 stack_slots / VMRegImpl::slots_per_word,
aoqi@0 2720 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
aoqi@0 2721 in_ByteSize(lock_offset),
aoqi@0 2722 oop_maps);
aoqi@0 2723
aoqi@0 2724 if (is_critical_native) {
aoqi@0 2725 nm->set_lazy_critical_native(true);
aoqi@0 2726 }
aoqi@0 2727 return nm;
aoqi@0 2728
aoqi@0 2729 }
aoqi@0 2730
aoqi@0 2731 #ifdef HAVE_DTRACE_H
aoqi@0 2732 // ---------------------------------------------------------------------------
aoqi@0 2733 // Generate a dtrace nmethod for a given signature. The method takes arguments
aoqi@0 2734 // in the Java compiled code convention, marshals them to the native
aoqi@0 2735 // abi and then leaves nops at the position you would expect to call a native
aoqi@0 2736 // function. When the probe is enabled the nops are replaced with a trap
aoqi@0 2737 // instruction that dtrace inserts and the trace will cause a notification
aoqi@0 2738 // to dtrace.
aoqi@0 2739 //
aoqi@0 2740 // The probes are only able to take primitive types and java/lang/String as
aoqi@0 2741 // arguments. No other java types are allowed. Strings are converted to utf8
aoqi@0 2742 // strings so that from dtrace point of view java strings are converted to C
aoqi@0 2743 // strings. There is an arbitrary fixed limit on the total space that a method
aoqi@0 2744 // can use for converting the strings. (256 chars per string in the signature).
aoqi@0 2745 // So any java string larger then this is truncated.
aoqi@0 2746
aoqi@0 2747 static int fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
aoqi@0 2748 static bool offsets_initialized = false;
aoqi@0 2749
aoqi@0 2750 nmethod *SharedRuntime::generate_dtrace_nmethod(
aoqi@0 2751 MacroAssembler *masm, methodHandle method) {
aoqi@0 2752
aoqi@0 2753
aoqi@0 2754 // generate_dtrace_nmethod is guarded by a mutex so we are sure to
aoqi@0 2755 // be single threaded in this method.
aoqi@0 2756 assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
aoqi@0 2757
aoqi@0 2758 // Fill in the signature array, for the calling-convention call.
aoqi@0 2759 int total_args_passed = method->size_of_parameters();
aoqi@0 2760
aoqi@0 2761 BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
aoqi@0 2762 VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
aoqi@0 2763
aoqi@0 2764 // The signature we are going to use for the trap that dtrace will see
aoqi@0 2765 // java/lang/String is converted. We drop "this" and any other object
aoqi@0 2766 // is converted to NULL. (A one-slot java/lang/Long object reference
aoqi@0 2767 // is converted to a two-slot long, which is why we double the allocation).
aoqi@0 2768 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
aoqi@0 2769 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
aoqi@0 2770
aoqi@0 2771 int i=0;
aoqi@0 2772 int total_strings = 0;
aoqi@0 2773 int first_arg_to_pass = 0;
aoqi@0 2774 int total_c_args = 0;
aoqi@0 2775
aoqi@0 2776 // Skip the receiver as dtrace doesn't want to see it
aoqi@0 2777 if( !method->is_static() ) {
aoqi@0 2778 in_sig_bt[i++] = T_OBJECT;
aoqi@0 2779 first_arg_to_pass = 1;
aoqi@0 2780 }
aoqi@0 2781
aoqi@0 2782 SignatureStream ss(method->signature());
aoqi@0 2783 for ( ; !ss.at_return_type(); ss.next()) {
aoqi@0 2784 BasicType bt = ss.type();
aoqi@0 2785 in_sig_bt[i++] = bt; // Collect remaining bits of signature
aoqi@0 2786 out_sig_bt[total_c_args++] = bt;
aoqi@0 2787 if( bt == T_OBJECT) {
aoqi@0 2788 Symbol* s = ss.as_symbol_or_null();
aoqi@0 2789 if (s == vmSymbols::java_lang_String()) {
aoqi@0 2790 total_strings++;
aoqi@0 2791 out_sig_bt[total_c_args-1] = T_ADDRESS;
aoqi@0 2792 } else if (s == vmSymbols::java_lang_Boolean() ||
aoqi@0 2793 s == vmSymbols::java_lang_Byte()) {
aoqi@0 2794 out_sig_bt[total_c_args-1] = T_BYTE;
aoqi@0 2795 } else if (s == vmSymbols::java_lang_Character() ||
aoqi@0 2796 s == vmSymbols::java_lang_Short()) {
aoqi@0 2797 out_sig_bt[total_c_args-1] = T_SHORT;
aoqi@0 2798 } else if (s == vmSymbols::java_lang_Integer() ||
aoqi@0 2799 s == vmSymbols::java_lang_Float()) {
aoqi@0 2800 out_sig_bt[total_c_args-1] = T_INT;
aoqi@0 2801 } else if (s == vmSymbols::java_lang_Long() ||
aoqi@0 2802 s == vmSymbols::java_lang_Double()) {
aoqi@0 2803 out_sig_bt[total_c_args-1] = T_LONG;
aoqi@0 2804 out_sig_bt[total_c_args++] = T_VOID;
aoqi@0 2805 }
aoqi@0 2806 } else if ( bt == T_LONG || bt == T_DOUBLE ) {
aoqi@0 2807 in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
aoqi@0 2808 // We convert double to long
aoqi@0 2809 out_sig_bt[total_c_args-1] = T_LONG;
aoqi@0 2810 out_sig_bt[total_c_args++] = T_VOID;
aoqi@0 2811 } else if ( bt == T_FLOAT) {
aoqi@0 2812 // We convert float to int
aoqi@0 2813 out_sig_bt[total_c_args-1] = T_INT;
aoqi@0 2814 }
aoqi@0 2815 }
aoqi@0 2816
aoqi@0 2817 assert(i==total_args_passed, "validly parsed signature");
aoqi@0 2818
aoqi@0 2819 // Now get the compiled-Java layout as input arguments
aoqi@0 2820 int comp_args_on_stack;
aoqi@0 2821 comp_args_on_stack = SharedRuntime::java_calling_convention(
aoqi@0 2822 in_sig_bt, in_regs, total_args_passed, false);
aoqi@0 2823
aoqi@0 2824 // We have received a description of where all the java arg are located
aoqi@0 2825 // on entry to the wrapper. We need to convert these args to where
aoqi@0 2826 // the a native (non-jni) function would expect them. To figure out
aoqi@0 2827 // where they go we convert the java signature to a C signature and remove
aoqi@0 2828 // T_VOID for any long/double we might have received.
aoqi@0 2829
aoqi@0 2830
aoqi@0 2831 // Now figure out where the args must be stored and how much stack space
aoqi@0 2832 // they require (neglecting out_preserve_stack_slots but space for storing
aoqi@0 2833 // the 1st six register arguments). It's weird see int_stk_helper.
aoqi@0 2834 //
aoqi@0 2835 int out_arg_slots;
aoqi@0 2836 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
aoqi@0 2837
aoqi@0 2838 // Calculate the total number of stack slots we will need.
aoqi@0 2839
aoqi@0 2840 // First count the abi requirement plus all of the outgoing args
aoqi@0 2841 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
aoqi@0 2842
aoqi@0 2843 // Plus a temp for possible converion of float/double/long register args
aoqi@0 2844
aoqi@0 2845 int conversion_temp = stack_slots;
aoqi@0 2846 stack_slots += 2;
aoqi@0 2847
aoqi@0 2848
aoqi@0 2849 // Now space for the string(s) we must convert
aoqi@0 2850
aoqi@0 2851 int string_locs = stack_slots;
aoqi@0 2852 stack_slots += total_strings *
aoqi@0 2853 (max_dtrace_string_size / VMRegImpl::stack_slot_size);
aoqi@0 2854
aoqi@0 2855 // Ok The space we have allocated will look like:
aoqi@0 2856 //
aoqi@0 2857 //
aoqi@0 2858 // FP-> | |
aoqi@0 2859 // |---------------------|
aoqi@0 2860 // | string[n] |
aoqi@0 2861 // |---------------------| <- string_locs[n]
aoqi@0 2862 // | string[n-1] |
aoqi@0 2863 // |---------------------| <- string_locs[n-1]
aoqi@0 2864 // | ... |
aoqi@0 2865 // | ... |
aoqi@0 2866 // |---------------------| <- string_locs[1]
aoqi@0 2867 // | string[0] |
aoqi@0 2868 // |---------------------| <- string_locs[0]
aoqi@0 2869 // | temp |
aoqi@0 2870 // |---------------------| <- conversion_temp
aoqi@0 2871 // | outbound memory |
aoqi@0 2872 // | based arguments |
aoqi@0 2873 // | |
aoqi@0 2874 // |---------------------|
aoqi@0 2875 // | |
aoqi@0 2876 // SP-> | out_preserved_slots |
aoqi@0 2877 //
aoqi@0 2878 //
aoqi@0 2879
aoqi@0 2880 // Now compute actual number of stack words we need rounding to make
aoqi@0 2881 // stack properly aligned.
aoqi@0 2882 stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
aoqi@0 2883
aoqi@0 2884 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
aoqi@0 2885
aoqi@0 2886 intptr_t start = (intptr_t)__ pc();
aoqi@0 2887
aoqi@0 2888 // First thing make an ic check to see if we should even be here
aoqi@0 2889
aoqi@0 2890 {
aoqi@0 2891 Label L;
aoqi@0 2892 const Register temp_reg = G3_scratch;
aoqi@0 2893 AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
aoqi@0 2894 __ verify_oop(O0);
aoqi@0 2895 __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
aoqi@0 2896 __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
aoqi@0 2897
aoqi@0 2898 __ jump_to(ic_miss, temp_reg);
aoqi@0 2899 __ delayed()->nop();
aoqi@0 2900 __ align(CodeEntryAlignment);
aoqi@0 2901 __ bind(L);
aoqi@0 2902 }
aoqi@0 2903
aoqi@0 2904 int vep_offset = ((intptr_t)__ pc()) - start;
aoqi@0 2905
aoqi@0 2906
aoqi@0 2907 // The instruction at the verified entry point must be 5 bytes or longer
aoqi@0 2908 // because it can be patched on the fly by make_non_entrant. The stack bang
aoqi@0 2909 // instruction fits that requirement.
aoqi@0 2910
aoqi@0 2911 // Generate stack overflow check before creating frame
aoqi@0 2912 __ generate_stack_overflow_check(stack_size);
aoqi@0 2913
aoqi@0 2914 assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
aoqi@0 2915 "valid size for make_non_entrant");
aoqi@0 2916
aoqi@0 2917 // Generate a new frame for the wrapper.
aoqi@0 2918 __ save(SP, -stack_size, SP);
aoqi@0 2919
aoqi@0 2920 // Frame is now completed as far a size and linkage.
aoqi@0 2921
aoqi@0 2922 int frame_complete = ((intptr_t)__ pc()) - start;
aoqi@0 2923
aoqi@0 2924 #ifdef ASSERT
aoqi@0 2925 bool reg_destroyed[RegisterImpl::number_of_registers];
aoqi@0 2926 bool freg_destroyed[FloatRegisterImpl::number_of_registers];
aoqi@0 2927 for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
aoqi@0 2928 reg_destroyed[r] = false;
aoqi@0 2929 }
aoqi@0 2930 for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
aoqi@0 2931 freg_destroyed[f] = false;
aoqi@0 2932 }
aoqi@0 2933
aoqi@0 2934 #endif /* ASSERT */
aoqi@0 2935
aoqi@0 2936 VMRegPair zero;
aoqi@0 2937 const Register g0 = G0; // without this we get a compiler warning (why??)
aoqi@0 2938 zero.set2(g0->as_VMReg());
aoqi@0 2939
aoqi@0 2940 int c_arg, j_arg;
aoqi@0 2941
aoqi@0 2942 Register conversion_off = noreg;
aoqi@0 2943
aoqi@0 2944 for (j_arg = first_arg_to_pass, c_arg = 0 ;
aoqi@0 2945 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
aoqi@0 2946
aoqi@0 2947 VMRegPair src = in_regs[j_arg];
aoqi@0 2948 VMRegPair dst = out_regs[c_arg];
aoqi@0 2949
aoqi@0 2950 #ifdef ASSERT
aoqi@0 2951 if (src.first()->is_Register()) {
aoqi@0 2952 assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
aoqi@0 2953 } else if (src.first()->is_FloatRegister()) {
aoqi@0 2954 assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
aoqi@0 2955 FloatRegisterImpl::S)], "ack!");
aoqi@0 2956 }
aoqi@0 2957 if (dst.first()->is_Register()) {
aoqi@0 2958 reg_destroyed[dst.first()->as_Register()->encoding()] = true;
aoqi@0 2959 } else if (dst.first()->is_FloatRegister()) {
aoqi@0 2960 freg_destroyed[dst.first()->as_FloatRegister()->encoding(
aoqi@0 2961 FloatRegisterImpl::S)] = true;
aoqi@0 2962 }
aoqi@0 2963 #endif /* ASSERT */
aoqi@0 2964
aoqi@0 2965 switch (in_sig_bt[j_arg]) {
aoqi@0 2966 case T_ARRAY:
aoqi@0 2967 case T_OBJECT:
aoqi@0 2968 {
aoqi@0 2969 if (out_sig_bt[c_arg] == T_BYTE || out_sig_bt[c_arg] == T_SHORT ||
aoqi@0 2970 out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
aoqi@0 2971 // need to unbox a one-slot value
aoqi@0 2972 Register in_reg = L0;
aoqi@0 2973 Register tmp = L2;
aoqi@0 2974 if ( src.first()->is_reg() ) {
aoqi@0 2975 in_reg = src.first()->as_Register();
aoqi@0 2976 } else {
aoqi@0 2977 assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
aoqi@0 2978 "must be");
aoqi@0 2979 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
aoqi@0 2980 }
aoqi@0 2981 // If the final destination is an acceptable register
aoqi@0 2982 if ( dst.first()->is_reg() ) {
aoqi@0 2983 if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
aoqi@0 2984 tmp = dst.first()->as_Register();
aoqi@0 2985 }
aoqi@0 2986 }
aoqi@0 2987
aoqi@0 2988 Label skipUnbox;
aoqi@0 2989 if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
aoqi@0 2990 __ mov(G0, tmp->successor());
aoqi@0 2991 }
aoqi@0 2992 __ br_null(in_reg, true, Assembler::pn, skipUnbox);
aoqi@0 2993 __ delayed()->mov(G0, tmp);
aoqi@0 2994
aoqi@0 2995 BasicType bt = out_sig_bt[c_arg];
aoqi@0 2996 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
aoqi@0 2997 switch (bt) {
aoqi@0 2998 case T_BYTE:
aoqi@0 2999 __ ldub(in_reg, box_offset, tmp); break;
aoqi@0 3000 case T_SHORT:
aoqi@0 3001 __ lduh(in_reg, box_offset, tmp); break;
aoqi@0 3002 case T_INT:
aoqi@0 3003 __ ld(in_reg, box_offset, tmp); break;
aoqi@0 3004 case T_LONG:
aoqi@0 3005 __ ld_long(in_reg, box_offset, tmp); break;
aoqi@0 3006 default: ShouldNotReachHere();
aoqi@0 3007 }
aoqi@0 3008
aoqi@0 3009 __ bind(skipUnbox);
aoqi@0 3010 // If tmp wasn't final destination copy to final destination
aoqi@0 3011 if (tmp == L2) {
aoqi@0 3012 VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
aoqi@0 3013 if (out_sig_bt[c_arg] == T_LONG) {
aoqi@0 3014 long_move(masm, tmp_as_VM, dst);
aoqi@0 3015 } else {
aoqi@0 3016 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
aoqi@0 3017 }
aoqi@0 3018 }
aoqi@0 3019 if (out_sig_bt[c_arg] == T_LONG) {
aoqi@0 3020 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
aoqi@0 3021 ++c_arg; // move over the T_VOID to keep the loop indices in sync
aoqi@0 3022 }
aoqi@0 3023 } else if (out_sig_bt[c_arg] == T_ADDRESS) {
aoqi@0 3024 Register s =
aoqi@0 3025 src.first()->is_reg() ? src.first()->as_Register() : L2;
aoqi@0 3026 Register d =
aoqi@0 3027 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
aoqi@0 3028
aoqi@0 3029 // We store the oop now so that the conversion pass can reach
aoqi@0 3030 // while in the inner frame. This will be the only store if
aoqi@0 3031 // the oop is NULL.
aoqi@0 3032 if (s != L2) {
aoqi@0 3033 // src is register
aoqi@0 3034 if (d != L2) {
aoqi@0 3035 // dst is register
aoqi@0 3036 __ mov(s, d);
aoqi@0 3037 } else {
aoqi@0 3038 assert(Assembler::is_simm13(reg2offset(dst.first()) +
aoqi@0 3039 STACK_BIAS), "must be");
aoqi@0 3040 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 3041 }
aoqi@0 3042 } else {
aoqi@0 3043 // src not a register
aoqi@0 3044 assert(Assembler::is_simm13(reg2offset(src.first()) +
aoqi@0 3045 STACK_BIAS), "must be");
aoqi@0 3046 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
aoqi@0 3047 if (d == L2) {
aoqi@0 3048 assert(Assembler::is_simm13(reg2offset(dst.first()) +
aoqi@0 3049 STACK_BIAS), "must be");
aoqi@0 3050 __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 3051 }
aoqi@0 3052 }
aoqi@0 3053 } else if (out_sig_bt[c_arg] != T_VOID) {
aoqi@0 3054 // Convert the arg to NULL
aoqi@0 3055 if (dst.first()->is_reg()) {
aoqi@0 3056 __ mov(G0, dst.first()->as_Register());
aoqi@0 3057 } else {
aoqi@0 3058 assert(Assembler::is_simm13(reg2offset(dst.first()) +
aoqi@0 3059 STACK_BIAS), "must be");
aoqi@0 3060 __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 3061 }
aoqi@0 3062 }
aoqi@0 3063 }
aoqi@0 3064 break;
aoqi@0 3065 case T_VOID:
aoqi@0 3066 break;
aoqi@0 3067
aoqi@0 3068 case T_FLOAT:
aoqi@0 3069 if (src.first()->is_stack()) {
aoqi@0 3070 // Stack to stack/reg is simple
aoqi@0 3071 move32_64(masm, src, dst);
aoqi@0 3072 } else {
aoqi@0 3073 if (dst.first()->is_reg()) {
aoqi@0 3074 // freg -> reg
aoqi@0 3075 int off =
aoqi@0 3076 STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
aoqi@0 3077 Register d = dst.first()->as_Register();
aoqi@0 3078 if (Assembler::is_simm13(off)) {
aoqi@0 3079 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
aoqi@0 3080 SP, off);
aoqi@0 3081 __ ld(SP, off, d);
aoqi@0 3082 } else {
aoqi@0 3083 if (conversion_off == noreg) {
aoqi@0 3084 __ set(off, L6);
aoqi@0 3085 conversion_off = L6;
aoqi@0 3086 }
aoqi@0 3087 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
aoqi@0 3088 SP, conversion_off);
aoqi@0 3089 __ ld(SP, conversion_off , d);
aoqi@0 3090 }
aoqi@0 3091 } else {
aoqi@0 3092 // freg -> mem
aoqi@0 3093 int off = STACK_BIAS + reg2offset(dst.first());
aoqi@0 3094 if (Assembler::is_simm13(off)) {
aoqi@0 3095 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
aoqi@0 3096 SP, off);
aoqi@0 3097 } else {
aoqi@0 3098 if (conversion_off == noreg) {
aoqi@0 3099 __ set(off, L6);
aoqi@0 3100 conversion_off = L6;
aoqi@0 3101 }
aoqi@0 3102 __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
aoqi@0 3103 SP, conversion_off);
aoqi@0 3104 }
aoqi@0 3105 }
aoqi@0 3106 }
aoqi@0 3107 break;
aoqi@0 3108
aoqi@0 3109 case T_DOUBLE:
aoqi@0 3110 assert( j_arg + 1 < total_args_passed &&
aoqi@0 3111 in_sig_bt[j_arg + 1] == T_VOID &&
aoqi@0 3112 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
aoqi@0 3113 if (src.first()->is_stack()) {
aoqi@0 3114 // Stack to stack/reg is simple
aoqi@0 3115 long_move(masm, src, dst);
aoqi@0 3116 } else {
aoqi@0 3117 Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
aoqi@0 3118
aoqi@0 3119 // Destination could be an odd reg on 32bit in which case
aoqi@0 3120 // we can't load direct to the destination.
aoqi@0 3121
aoqi@0 3122 if (!d->is_even() && wordSize == 4) {
aoqi@0 3123 d = L2;
aoqi@0 3124 }
aoqi@0 3125 int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
aoqi@0 3126 if (Assembler::is_simm13(off)) {
aoqi@0 3127 __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
aoqi@0 3128 SP, off);
aoqi@0 3129 __ ld_long(SP, off, d);
aoqi@0 3130 } else {
aoqi@0 3131 if (conversion_off == noreg) {
aoqi@0 3132 __ set(off, L6);
aoqi@0 3133 conversion_off = L6;
aoqi@0 3134 }
aoqi@0 3135 __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
aoqi@0 3136 SP, conversion_off);
aoqi@0 3137 __ ld_long(SP, conversion_off, d);
aoqi@0 3138 }
aoqi@0 3139 if (d == L2) {
aoqi@0 3140 long_move(masm, reg64_to_VMRegPair(L2), dst);
aoqi@0 3141 }
aoqi@0 3142 }
aoqi@0 3143 break;
aoqi@0 3144
aoqi@0 3145 case T_LONG :
aoqi@0 3146 // 32bit can't do a split move of something like g1 -> O0, O1
aoqi@0 3147 // so use a memory temp
aoqi@0 3148 if (src.is_single_phys_reg() && wordSize == 4) {
aoqi@0 3149 Register tmp = L2;
aoqi@0 3150 if (dst.first()->is_reg() &&
aoqi@0 3151 (wordSize == 8 || dst.first()->as_Register()->is_even())) {
aoqi@0 3152 tmp = dst.first()->as_Register();
aoqi@0 3153 }
aoqi@0 3154
aoqi@0 3155 int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
aoqi@0 3156 if (Assembler::is_simm13(off)) {
aoqi@0 3157 __ stx(src.first()->as_Register(), SP, off);
aoqi@0 3158 __ ld_long(SP, off, tmp);
aoqi@0 3159 } else {
aoqi@0 3160 if (conversion_off == noreg) {
aoqi@0 3161 __ set(off, L6);
aoqi@0 3162 conversion_off = L6;
aoqi@0 3163 }
aoqi@0 3164 __ stx(src.first()->as_Register(), SP, conversion_off);
aoqi@0 3165 __ ld_long(SP, conversion_off, tmp);
aoqi@0 3166 }
aoqi@0 3167
aoqi@0 3168 if (tmp == L2) {
aoqi@0 3169 long_move(masm, reg64_to_VMRegPair(L2), dst);
aoqi@0 3170 }
aoqi@0 3171 } else {
aoqi@0 3172 long_move(masm, src, dst);
aoqi@0 3173 }
aoqi@0 3174 break;
aoqi@0 3175
aoqi@0 3176 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
aoqi@0 3177
aoqi@0 3178 default:
aoqi@0 3179 move32_64(masm, src, dst);
aoqi@0 3180 }
aoqi@0 3181 }
aoqi@0 3182
aoqi@0 3183
aoqi@0 3184 // If we have any strings we must store any register based arg to the stack
aoqi@0 3185 // This includes any still live xmm registers too.
aoqi@0 3186
aoqi@0 3187 if (total_strings > 0 ) {
aoqi@0 3188
aoqi@0 3189 // protect all the arg registers
aoqi@0 3190 __ save_frame(0);
aoqi@0 3191 __ mov(G2_thread, L7_thread_cache);
aoqi@0 3192 const Register L2_string_off = L2;
aoqi@0 3193
aoqi@0 3194 // Get first string offset
aoqi@0 3195 __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
aoqi@0 3196
aoqi@0 3197 for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
aoqi@0 3198 if (out_sig_bt[c_arg] == T_ADDRESS) {
aoqi@0 3199
aoqi@0 3200 VMRegPair dst = out_regs[c_arg];
aoqi@0 3201 const Register d = dst.first()->is_reg() ?
aoqi@0 3202 dst.first()->as_Register()->after_save() : noreg;
aoqi@0 3203
aoqi@0 3204 // It's a string the oop and it was already copied to the out arg
aoqi@0 3205 // position
aoqi@0 3206 if (d != noreg) {
aoqi@0 3207 __ mov(d, O0);
aoqi@0 3208 } else {
aoqi@0 3209 assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
aoqi@0 3210 "must be");
aoqi@0 3211 __ ld_ptr(FP, reg2offset(dst.first()) + STACK_BIAS, O0);
aoqi@0 3212 }
aoqi@0 3213 Label skip;
aoqi@0 3214
aoqi@0 3215 __ br_null(O0, false, Assembler::pn, skip);
aoqi@0 3216 __ delayed()->add(FP, L2_string_off, O1);
aoqi@0 3217
aoqi@0 3218 if (d != noreg) {
aoqi@0 3219 __ mov(O1, d);
aoqi@0 3220 } else {
aoqi@0 3221 assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
aoqi@0 3222 "must be");
aoqi@0 3223 __ st_ptr(O1, FP, reg2offset(dst.first()) + STACK_BIAS);
aoqi@0 3224 }
aoqi@0 3225
aoqi@0 3226 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
aoqi@0 3227 relocInfo::runtime_call_type);
aoqi@0 3228 __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
aoqi@0 3229
aoqi@0 3230 __ bind(skip);
aoqi@0 3231
aoqi@0 3232 }
aoqi@0 3233
aoqi@0 3234 }
aoqi@0 3235 __ mov(L7_thread_cache, G2_thread);
aoqi@0 3236 __ restore();
aoqi@0 3237
aoqi@0 3238 }
aoqi@0 3239
aoqi@0 3240
aoqi@0 3241 // Ok now we are done. Need to place the nop that dtrace wants in order to
aoqi@0 3242 // patch in the trap
aoqi@0 3243
aoqi@0 3244 int patch_offset = ((intptr_t)__ pc()) - start;
aoqi@0 3245
aoqi@0 3246 __ nop();
aoqi@0 3247
aoqi@0 3248
aoqi@0 3249 // Return
aoqi@0 3250
aoqi@0 3251 __ ret();
aoqi@0 3252 __ delayed()->restore();
aoqi@0 3253
aoqi@0 3254 __ flush();
aoqi@0 3255
aoqi@0 3256 nmethod *nm = nmethod::new_dtrace_nmethod(
aoqi@0 3257 method, masm->code(), vep_offset, patch_offset, frame_complete,
aoqi@0 3258 stack_slots / VMRegImpl::slots_per_word);
aoqi@0 3259 return nm;
aoqi@0 3260
aoqi@0 3261 }
aoqi@0 3262
aoqi@0 3263 #endif // HAVE_DTRACE_H
aoqi@0 3264
aoqi@0 3265 // this function returns the adjust size (in number of words) to a c2i adapter
aoqi@0 3266 // activation for use during deoptimization
aoqi@0 3267 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
aoqi@0 3268 assert(callee_locals >= callee_parameters,
aoqi@0 3269 "test and remove; got more parms than locals");
aoqi@0 3270 if (callee_locals < callee_parameters)
aoqi@0 3271 return 0; // No adjustment for negative locals
aoqi@0 3272 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
aoqi@0 3273 return round_to(diff, WordsPerLong);
aoqi@0 3274 }
aoqi@0 3275
aoqi@0 3276 // "Top of Stack" slots that may be unused by the calling convention but must
aoqi@0 3277 // otherwise be preserved.
aoqi@0 3278 // On Intel these are not necessary and the value can be zero.
aoqi@0 3279 // On Sparc this describes the words reserved for storing a register window
aoqi@0 3280 // when an interrupt occurs.
aoqi@0 3281 uint SharedRuntime::out_preserve_stack_slots() {
aoqi@0 3282 return frame::register_save_words * VMRegImpl::slots_per_word;
aoqi@0 3283 }
aoqi@0 3284
aoqi@0 3285 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
aoqi@0 3286 //
aoqi@0 3287 // Common out the new frame generation for deopt and uncommon trap
aoqi@0 3288 //
aoqi@0 3289 Register G3pcs = G3_scratch; // Array of new pcs (input)
aoqi@0 3290 Register Oreturn0 = O0;
aoqi@0 3291 Register Oreturn1 = O1;
aoqi@0 3292 Register O2UnrollBlock = O2;
aoqi@0 3293 Register O3array = O3; // Array of frame sizes (input)
aoqi@0 3294 Register O4array_size = O4; // number of frames (input)
aoqi@0 3295 Register O7frame_size = O7; // number of frames (input)
aoqi@0 3296
aoqi@0 3297 __ ld_ptr(O3array, 0, O7frame_size);
aoqi@0 3298 __ sub(G0, O7frame_size, O7frame_size);
aoqi@0 3299 __ save(SP, O7frame_size, SP);
aoqi@0 3300 __ ld_ptr(G3pcs, 0, I7); // load frame's new pc
aoqi@0 3301
aoqi@0 3302 #ifdef ASSERT
aoqi@0 3303 // make sure that the frames are aligned properly
aoqi@0 3304 #ifndef _LP64
aoqi@0 3305 __ btst(wordSize*2-1, SP);
aoqi@0 3306 __ breakpoint_trap(Assembler::notZero, Assembler::ptr_cc);
aoqi@0 3307 #endif
aoqi@0 3308 #endif
aoqi@0 3309
aoqi@0 3310 // Deopt needs to pass some extra live values from frame to frame
aoqi@0 3311
aoqi@0 3312 if (deopt) {
aoqi@0 3313 __ mov(Oreturn0->after_save(), Oreturn0);
aoqi@0 3314 __ mov(Oreturn1->after_save(), Oreturn1);
aoqi@0 3315 }
aoqi@0 3316
aoqi@0 3317 __ mov(O4array_size->after_save(), O4array_size);
aoqi@0 3318 __ sub(O4array_size, 1, O4array_size);
aoqi@0 3319 __ mov(O3array->after_save(), O3array);
aoqi@0 3320 __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
aoqi@0 3321 __ add(G3pcs, wordSize, G3pcs); // point to next pc value
aoqi@0 3322
aoqi@0 3323 #ifdef ASSERT
aoqi@0 3324 // trash registers to show a clear pattern in backtraces
aoqi@0 3325 __ set(0xDEAD0000, I0);
aoqi@0 3326 __ add(I0, 2, I1);
aoqi@0 3327 __ add(I0, 4, I2);
aoqi@0 3328 __ add(I0, 6, I3);
aoqi@0 3329 __ add(I0, 8, I4);
aoqi@0 3330 // Don't touch I5 could have valuable savedSP
aoqi@0 3331 __ set(0xDEADBEEF, L0);
aoqi@0 3332 __ mov(L0, L1);
aoqi@0 3333 __ mov(L0, L2);
aoqi@0 3334 __ mov(L0, L3);
aoqi@0 3335 __ mov(L0, L4);
aoqi@0 3336 __ mov(L0, L5);
aoqi@0 3337
aoqi@0 3338 // trash the return value as there is nothing to return yet
aoqi@0 3339 __ set(0xDEAD0001, O7);
aoqi@0 3340 #endif
aoqi@0 3341
aoqi@0 3342 __ mov(SP, O5_savedSP);
aoqi@0 3343 }
aoqi@0 3344
aoqi@0 3345
aoqi@0 3346 static void make_new_frames(MacroAssembler* masm, bool deopt) {
aoqi@0 3347 //
aoqi@0 3348 // loop through the UnrollBlock info and create new frames
aoqi@0 3349 //
aoqi@0 3350 Register G3pcs = G3_scratch;
aoqi@0 3351 Register Oreturn0 = O0;
aoqi@0 3352 Register Oreturn1 = O1;
aoqi@0 3353 Register O2UnrollBlock = O2;
aoqi@0 3354 Register O3array = O3;
aoqi@0 3355 Register O4array_size = O4;
aoqi@0 3356 Label loop;
aoqi@0 3357
aoqi@0 3358 #ifdef ASSERT
aoqi@0 3359 // Compilers generate code that bang the stack by as much as the
aoqi@0 3360 // interpreter would need. So this stack banging should never
aoqi@0 3361 // trigger a fault. Verify that it does not on non product builds.
aoqi@0 3362 if (UseStackBanging) {
aoqi@0 3363 // Get total frame size for interpreted frames
aoqi@0 3364 __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
aoqi@0 3365 __ bang_stack_size(O4, O3, G3_scratch);
aoqi@0 3366 }
aoqi@0 3367 #endif
aoqi@0 3368
aoqi@0 3369 __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
aoqi@0 3370 __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
aoqi@0 3371 __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
aoqi@0 3372
aoqi@0 3373 // Adjust old interpreter frame to make space for new frame's extra java locals
aoqi@0 3374 //
aoqi@0 3375 // We capture the original sp for the transition frame only because it is needed in
aoqi@0 3376 // order to properly calculate interpreter_sp_adjustment. Even though in real life
aoqi@0 3377 // every interpreter frame captures a savedSP it is only needed at the transition
aoqi@0 3378 // (fortunately). If we had to have it correct everywhere then we would need to
aoqi@0 3379 // be told the sp_adjustment for each frame we create. If the frame size array
aoqi@0 3380 // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
aoqi@0 3381 // for each frame we create and keep up the illusion every where.
aoqi@0 3382 //
aoqi@0 3383
aoqi@0 3384 __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
aoqi@0 3385 __ mov(SP, O5_savedSP); // remember initial sender's original sp before adjustment
aoqi@0 3386 __ sub(SP, O7, SP);
aoqi@0 3387
aoqi@0 3388 #ifdef ASSERT
aoqi@0 3389 // make sure that there is at least one entry in the array
aoqi@0 3390 __ tst(O4array_size);
aoqi@0 3391 __ breakpoint_trap(Assembler::zero, Assembler::icc);
aoqi@0 3392 #endif
aoqi@0 3393
aoqi@0 3394 // Now push the new interpreter frames
aoqi@0 3395 __ bind(loop);
aoqi@0 3396
aoqi@0 3397 // allocate a new frame, filling the registers
aoqi@0 3398
aoqi@0 3399 gen_new_frame(masm, deopt); // allocate an interpreter frame
aoqi@0 3400
aoqi@0 3401 __ cmp_zero_and_br(Assembler::notZero, O4array_size, loop);
aoqi@0 3402 __ delayed()->add(O3array, wordSize, O3array);
aoqi@0 3403 __ ld_ptr(G3pcs, 0, O7); // load final frame new pc
aoqi@0 3404
aoqi@0 3405 }
aoqi@0 3406
aoqi@0 3407 //------------------------------generate_deopt_blob----------------------------
aoqi@0 3408 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
aoqi@0 3409 // instead.
aoqi@0 3410 void SharedRuntime::generate_deopt_blob() {
aoqi@0 3411 // allocate space for the code
aoqi@0 3412 ResourceMark rm;
aoqi@0 3413 // setup code generation tools
aoqi@0 3414 int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
aoqi@0 3415 #ifdef ASSERT
aoqi@0 3416 if (UseStackBanging) {
aoqi@0 3417 pad += StackShadowPages*16 + 32;
aoqi@0 3418 }
aoqi@0 3419 #endif
aoqi@0 3420 #ifdef _LP64
aoqi@0 3421 CodeBuffer buffer("deopt_blob", 2100+pad, 512);
aoqi@0 3422 #else
aoqi@0 3423 // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
aoqi@0 3424 // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
aoqi@0 3425 CodeBuffer buffer("deopt_blob", 1600+pad, 512);
aoqi@0 3426 #endif /* _LP64 */
aoqi@0 3427 MacroAssembler* masm = new MacroAssembler(&buffer);
aoqi@0 3428 FloatRegister Freturn0 = F0;
aoqi@0 3429 Register Greturn1 = G1;
aoqi@0 3430 Register Oreturn0 = O0;
aoqi@0 3431 Register Oreturn1 = O1;
aoqi@0 3432 Register O2UnrollBlock = O2;
aoqi@0 3433 Register L0deopt_mode = L0;
aoqi@0 3434 Register G4deopt_mode = G4_scratch;
aoqi@0 3435 int frame_size_words;
aoqi@0 3436 Address saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
aoqi@0 3437 #if !defined(_LP64) && defined(COMPILER2)
aoqi@0 3438 Address saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
aoqi@0 3439 #endif
aoqi@0 3440 Label cont;
aoqi@0 3441
aoqi@0 3442 OopMapSet *oop_maps = new OopMapSet();
aoqi@0 3443
aoqi@0 3444 //
aoqi@0 3445 // This is the entry point for code which is returning to a de-optimized
aoqi@0 3446 // frame.
aoqi@0 3447 // The steps taken by this frame are as follows:
aoqi@0 3448 // - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
aoqi@0 3449 // and all potentially live registers (at a pollpoint many registers can be live).
aoqi@0 3450 //
aoqi@0 3451 // - call the C routine: Deoptimization::fetch_unroll_info (this function
aoqi@0 3452 // returns information about the number and size of interpreter frames
aoqi@0 3453 // which are equivalent to the frame which is being deoptimized)
aoqi@0 3454 // - deallocate the unpack frame, restoring only results values. Other
aoqi@0 3455 // volatile registers will now be captured in the vframeArray as needed.
aoqi@0 3456 // - deallocate the deoptimization frame
aoqi@0 3457 // - in a loop using the information returned in the previous step
aoqi@0 3458 // push new interpreter frames (take care to propagate the return
aoqi@0 3459 // values through each new frame pushed)
aoqi@0 3460 // - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
aoqi@0 3461 // - call the C routine: Deoptimization::unpack_frames (this function
aoqi@0 3462 // lays out values on the interpreter frame which was just created)
aoqi@0 3463 // - deallocate the dummy unpack_frame
aoqi@0 3464 // - ensure that all the return values are correctly set and then do
aoqi@0 3465 // a return to the interpreter entry point
aoqi@0 3466 //
aoqi@0 3467 // Refer to the following methods for more information:
aoqi@0 3468 // - Deoptimization::fetch_unroll_info
aoqi@0 3469 // - Deoptimization::unpack_frames
aoqi@0 3470
aoqi@0 3471 OopMap* map = NULL;
aoqi@0 3472
aoqi@0 3473 int start = __ offset();
aoqi@0 3474
aoqi@0 3475 // restore G2, the trampoline destroyed it
aoqi@0 3476 __ get_thread();
aoqi@0 3477
aoqi@0 3478 // On entry we have been called by the deoptimized nmethod with a call that
aoqi@0 3479 // replaced the original call (or safepoint polling location) so the deoptimizing
aoqi@0 3480 // pc is now in O7. Return values are still in the expected places
aoqi@0 3481
aoqi@0 3482 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
aoqi@0 3483 __ ba(cont);
aoqi@0 3484 __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
aoqi@0 3485
aoqi@0 3486 int exception_offset = __ offset() - start;
aoqi@0 3487
aoqi@0 3488 // restore G2, the trampoline destroyed it
aoqi@0 3489 __ get_thread();
aoqi@0 3490
aoqi@0 3491 // On entry we have been jumped to by the exception handler (or exception_blob
aoqi@0 3492 // for server). O0 contains the exception oop and O7 contains the original
aoqi@0 3493 // exception pc. So if we push a frame here it will look to the
aoqi@0 3494 // stack walking code (fetch_unroll_info) just like a normal call so
aoqi@0 3495 // state will be extracted normally.
aoqi@0 3496
aoqi@0 3497 // save exception oop in JavaThread and fall through into the
aoqi@0 3498 // exception_in_tls case since they are handled in same way except
aoqi@0 3499 // for where the pending exception is kept.
aoqi@0 3500 __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
aoqi@0 3501
aoqi@0 3502 //
aoqi@0 3503 // Vanilla deoptimization with an exception pending in exception_oop
aoqi@0 3504 //
aoqi@0 3505 int exception_in_tls_offset = __ offset() - start;
aoqi@0 3506
aoqi@0 3507 // No need to update oop_map as each call to save_live_registers will produce identical oopmap
aoqi@0 3508 (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
aoqi@0 3509
aoqi@0 3510 // Restore G2_thread
aoqi@0 3511 __ get_thread();
aoqi@0 3512
aoqi@0 3513 #ifdef ASSERT
aoqi@0 3514 {
aoqi@0 3515 // verify that there is really an exception oop in exception_oop
aoqi@0 3516 Label has_exception;
aoqi@0 3517 __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
aoqi@0 3518 __ br_notnull_short(Oexception, Assembler::pt, has_exception);
aoqi@0 3519 __ stop("no exception in thread");
aoqi@0 3520 __ bind(has_exception);
aoqi@0 3521
aoqi@0 3522 // verify that there is no pending exception
aoqi@0 3523 Label no_pending_exception;
aoqi@0 3524 Address exception_addr(G2_thread, Thread::pending_exception_offset());
aoqi@0 3525 __ ld_ptr(exception_addr, Oexception);
aoqi@0 3526 __ br_null_short(Oexception, Assembler::pt, no_pending_exception);
aoqi@0 3527 __ stop("must not have pending exception here");
aoqi@0 3528 __ bind(no_pending_exception);
aoqi@0 3529 }
aoqi@0 3530 #endif
aoqi@0 3531
aoqi@0 3532 __ ba(cont);
aoqi@0 3533 __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
aoqi@0 3534
aoqi@0 3535 //
aoqi@0 3536 // Reexecute entry, similar to c2 uncommon trap
aoqi@0 3537 //
aoqi@0 3538 int reexecute_offset = __ offset() - start;
aoqi@0 3539
aoqi@0 3540 // No need to update oop_map as each call to save_live_registers will produce identical oopmap
aoqi@0 3541 (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
aoqi@0 3542
aoqi@0 3543 __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
aoqi@0 3544
aoqi@0 3545 __ bind(cont);
aoqi@0 3546
aoqi@0 3547 __ set_last_Java_frame(SP, noreg);
aoqi@0 3548
aoqi@0 3549 // do the call by hand so we can get the oopmap
aoqi@0 3550
aoqi@0 3551 __ mov(G2_thread, L7_thread_cache);
aoqi@0 3552 __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
aoqi@0 3553 __ delayed()->mov(G2_thread, O0);
aoqi@0 3554
aoqi@0 3555 // Set an oopmap for the call site this describes all our saved volatile registers
aoqi@0 3556
aoqi@0 3557 oop_maps->add_gc_map( __ offset()-start, map);
aoqi@0 3558
aoqi@0 3559 __ mov(L7_thread_cache, G2_thread);
aoqi@0 3560
aoqi@0 3561 __ reset_last_Java_frame();
aoqi@0 3562
aoqi@0 3563 // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
aoqi@0 3564 // so this move will survive
aoqi@0 3565
aoqi@0 3566 __ mov(L0deopt_mode, G4deopt_mode);
aoqi@0 3567
aoqi@0 3568 __ mov(O0, O2UnrollBlock->after_save());
aoqi@0 3569
aoqi@0 3570 RegisterSaver::restore_result_registers(masm);
aoqi@0 3571
aoqi@0 3572 Label noException;
aoqi@0 3573 __ cmp_and_br_short(G4deopt_mode, Deoptimization::Unpack_exception, Assembler::notEqual, Assembler::pt, noException);
aoqi@0 3574
aoqi@0 3575 // Move the pending exception from exception_oop to Oexception so
aoqi@0 3576 // the pending exception will be picked up the interpreter.
aoqi@0 3577 __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
aoqi@0 3578 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
aoqi@0 3579 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
aoqi@0 3580 __ bind(noException);
aoqi@0 3581
aoqi@0 3582 // deallocate the deoptimization frame taking care to preserve the return values
aoqi@0 3583 __ mov(Oreturn0, Oreturn0->after_save());
aoqi@0 3584 __ mov(Oreturn1, Oreturn1->after_save());
aoqi@0 3585 __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
aoqi@0 3586 __ restore();
aoqi@0 3587
aoqi@0 3588 // Allocate new interpreter frame(s) and possible c2i adapter frame
aoqi@0 3589
aoqi@0 3590 make_new_frames(masm, true);
aoqi@0 3591
aoqi@0 3592 // push a dummy "unpack_frame" taking care of float return values and
aoqi@0 3593 // call Deoptimization::unpack_frames to have the unpacker layout
aoqi@0 3594 // information in the interpreter frames just created and then return
aoqi@0 3595 // to the interpreter entry point
aoqi@0 3596 __ save(SP, -frame_size_words*wordSize, SP);
aoqi@0 3597 __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
aoqi@0 3598 #if !defined(_LP64)
aoqi@0 3599 #if defined(COMPILER2)
aoqi@0 3600 // 32-bit 1-register longs return longs in G1
aoqi@0 3601 __ stx(Greturn1, saved_Greturn1_addr);
aoqi@0 3602 #endif
aoqi@0 3603 __ set_last_Java_frame(SP, noreg);
aoqi@0 3604 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
aoqi@0 3605 #else
aoqi@0 3606 // LP64 uses g4 in set_last_Java_frame
aoqi@0 3607 __ mov(G4deopt_mode, O1);
aoqi@0 3608 __ set_last_Java_frame(SP, G0);
aoqi@0 3609 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
aoqi@0 3610 #endif
aoqi@0 3611 __ reset_last_Java_frame();
aoqi@0 3612 __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
aoqi@0 3613
aoqi@0 3614 #if !defined(_LP64) && defined(COMPILER2)
aoqi@0 3615 // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
aoqi@0 3616 // I0/I1 if the return value is long.
aoqi@0 3617 Label not_long;
aoqi@0 3618 __ cmp_and_br_short(O0,T_LONG, Assembler::notEqual, Assembler::pt, not_long);
aoqi@0 3619 __ ldd(saved_Greturn1_addr,I0);
aoqi@0 3620 __ bind(not_long);
aoqi@0 3621 #endif
aoqi@0 3622 __ ret();
aoqi@0 3623 __ delayed()->restore();
aoqi@0 3624
aoqi@0 3625 masm->flush();
aoqi@0 3626 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
aoqi@0 3627 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
aoqi@0 3628 }
aoqi@0 3629
aoqi@0 3630 #ifdef COMPILER2
aoqi@0 3631
aoqi@0 3632 //------------------------------generate_uncommon_trap_blob--------------------
aoqi@0 3633 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
aoqi@0 3634 // instead.
aoqi@0 3635 void SharedRuntime::generate_uncommon_trap_blob() {
aoqi@0 3636 // allocate space for the code
aoqi@0 3637 ResourceMark rm;
aoqi@0 3638 // setup code generation tools
aoqi@0 3639 int pad = VerifyThread ? 512 : 0;
aoqi@0 3640 #ifdef ASSERT
aoqi@0 3641 if (UseStackBanging) {
aoqi@0 3642 pad += StackShadowPages*16 + 32;
aoqi@0 3643 }
aoqi@0 3644 #endif
aoqi@0 3645 #ifdef _LP64
aoqi@0 3646 CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
aoqi@0 3647 #else
aoqi@0 3648 // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
aoqi@0 3649 // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
aoqi@0 3650 CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
aoqi@0 3651 #endif
aoqi@0 3652 MacroAssembler* masm = new MacroAssembler(&buffer);
aoqi@0 3653 Register O2UnrollBlock = O2;
aoqi@0 3654 Register O2klass_index = O2;
aoqi@0 3655
aoqi@0 3656 //
aoqi@0 3657 // This is the entry point for all traps the compiler takes when it thinks
aoqi@0 3658 // it cannot handle further execution of compilation code. The frame is
aoqi@0 3659 // deoptimized in these cases and converted into interpreter frames for
aoqi@0 3660 // execution
aoqi@0 3661 // The steps taken by this frame are as follows:
aoqi@0 3662 // - push a fake "unpack_frame"
aoqi@0 3663 // - call the C routine Deoptimization::uncommon_trap (this function
aoqi@0 3664 // packs the current compiled frame into vframe arrays and returns
aoqi@0 3665 // information about the number and size of interpreter frames which
aoqi@0 3666 // are equivalent to the frame which is being deoptimized)
aoqi@0 3667 // - deallocate the "unpack_frame"
aoqi@0 3668 // - deallocate the deoptimization frame
aoqi@0 3669 // - in a loop using the information returned in the previous step
aoqi@0 3670 // push interpreter frames;
aoqi@0 3671 // - create a dummy "unpack_frame"
aoqi@0 3672 // - call the C routine: Deoptimization::unpack_frames (this function
aoqi@0 3673 // lays out values on the interpreter frame which was just created)
aoqi@0 3674 // - deallocate the dummy unpack_frame
aoqi@0 3675 // - return to the interpreter entry point
aoqi@0 3676 //
aoqi@0 3677 // Refer to the following methods for more information:
aoqi@0 3678 // - Deoptimization::uncommon_trap
aoqi@0 3679 // - Deoptimization::unpack_frame
aoqi@0 3680
aoqi@0 3681 // the unloaded class index is in O0 (first parameter to this blob)
aoqi@0 3682
aoqi@0 3683 // push a dummy "unpack_frame"
aoqi@0 3684 // and call Deoptimization::uncommon_trap to pack the compiled frame into
aoqi@0 3685 // vframe array and return the UnrollBlock information
aoqi@0 3686 __ save_frame(0);
aoqi@0 3687 __ set_last_Java_frame(SP, noreg);
aoqi@0 3688 __ mov(I0, O2klass_index);
aoqi@0 3689 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
aoqi@0 3690 __ reset_last_Java_frame();
aoqi@0 3691 __ mov(O0, O2UnrollBlock->after_save());
aoqi@0 3692 __ restore();
aoqi@0 3693
aoqi@0 3694 // deallocate the deoptimized frame taking care to preserve the return values
aoqi@0 3695 __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
aoqi@0 3696 __ restore();
aoqi@0 3697
aoqi@0 3698 // Allocate new interpreter frame(s) and possible c2i adapter frame
aoqi@0 3699
aoqi@0 3700 make_new_frames(masm, false);
aoqi@0 3701
aoqi@0 3702 // push a dummy "unpack_frame" taking care of float return values and
aoqi@0 3703 // call Deoptimization::unpack_frames to have the unpacker layout
aoqi@0 3704 // information in the interpreter frames just created and then return
aoqi@0 3705 // to the interpreter entry point
aoqi@0 3706 __ save_frame(0);
aoqi@0 3707 __ set_last_Java_frame(SP, noreg);
aoqi@0 3708 __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
aoqi@0 3709 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
aoqi@0 3710 __ reset_last_Java_frame();
aoqi@0 3711 __ ret();
aoqi@0 3712 __ delayed()->restore();
aoqi@0 3713
aoqi@0 3714 masm->flush();
aoqi@0 3715 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
aoqi@0 3716 }
aoqi@0 3717
aoqi@0 3718 #endif // COMPILER2
aoqi@0 3719
aoqi@0 3720 //------------------------------generate_handler_blob-------------------
aoqi@0 3721 //
aoqi@0 3722 // Generate a special Compile2Runtime blob that saves all registers, and sets
aoqi@0 3723 // up an OopMap.
aoqi@0 3724 //
aoqi@0 3725 // This blob is jumped to (via a breakpoint and the signal handler) from a
aoqi@0 3726 // safepoint in compiled code. On entry to this blob, O7 contains the
aoqi@0 3727 // address in the original nmethod at which we should resume normal execution.
aoqi@0 3728 // Thus, this blob looks like a subroutine which must preserve lots of
aoqi@0 3729 // registers and return normally. Note that O7 is never register-allocated,
aoqi@0 3730 // so it is guaranteed to be free here.
aoqi@0 3731 //
aoqi@0 3732
aoqi@0 3733 // The hardest part of what this blob must do is to save the 64-bit %o
aoqi@0 3734 // registers in the 32-bit build. A simple 'save' turn the %o's to %i's and
aoqi@0 3735 // an interrupt will chop off their heads. Making space in the caller's frame
aoqi@0 3736 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
aoqi@0 3737 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
aoqi@0 3738 // SP and mess up HIS OopMaps. So we first adjust the caller's SP, then save
aoqi@0 3739 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
aoqi@0 3740 // Tricky, tricky, tricky...
aoqi@0 3741
aoqi@0 3742 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
aoqi@0 3743 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
aoqi@0 3744
aoqi@0 3745 // allocate space for the code
aoqi@0 3746 ResourceMark rm;
aoqi@0 3747 // setup code generation tools
aoqi@0 3748 // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
aoqi@0 3749 // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
aoqi@0 3750 // even larger with TraceJumps
aoqi@0 3751 int pad = TraceJumps ? 512 : 0;
aoqi@0 3752 CodeBuffer buffer("handler_blob", 1600 + pad, 512);
aoqi@0 3753 MacroAssembler* masm = new MacroAssembler(&buffer);
aoqi@0 3754 int frame_size_words;
aoqi@0 3755 OopMapSet *oop_maps = new OopMapSet();
aoqi@0 3756 OopMap* map = NULL;
aoqi@0 3757
aoqi@0 3758 int start = __ offset();
aoqi@0 3759
aoqi@0 3760 bool cause_return = (poll_type == POLL_AT_RETURN);
aoqi@0 3761 // If this causes a return before the processing, then do a "restore"
aoqi@0 3762 if (cause_return) {
aoqi@0 3763 __ restore();
aoqi@0 3764 } else {
aoqi@0 3765 // Make it look like we were called via the poll
aoqi@0 3766 // so that frame constructor always sees a valid return address
aoqi@0 3767 __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
aoqi@0 3768 __ sub(O7, frame::pc_return_offset, O7);
aoqi@0 3769 }
aoqi@0 3770
aoqi@0 3771 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
aoqi@0 3772
aoqi@0 3773 // setup last_Java_sp (blows G4)
aoqi@0 3774 __ set_last_Java_frame(SP, noreg);
aoqi@0 3775
aoqi@0 3776 // call into the runtime to handle illegal instructions exception
aoqi@0 3777 // Do not use call_VM_leaf, because we need to make a GC map at this call site.
aoqi@0 3778 __ mov(G2_thread, O0);
aoqi@0 3779 __ save_thread(L7_thread_cache);
aoqi@0 3780 __ call(call_ptr);
aoqi@0 3781 __ delayed()->nop();
aoqi@0 3782
aoqi@0 3783 // Set an oopmap for the call site.
aoqi@0 3784 // We need this not only for callee-saved registers, but also for volatile
aoqi@0 3785 // registers that the compiler might be keeping live across a safepoint.
aoqi@0 3786
aoqi@0 3787 oop_maps->add_gc_map( __ offset() - start, map);
aoqi@0 3788
aoqi@0 3789 __ restore_thread(L7_thread_cache);
aoqi@0 3790 // clear last_Java_sp
aoqi@0 3791 __ reset_last_Java_frame();
aoqi@0 3792
aoqi@0 3793 // Check for exceptions
aoqi@0 3794 Label pending;
aoqi@0 3795
aoqi@0 3796 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
aoqi@0 3797 __ br_notnull_short(O1, Assembler::pn, pending);
aoqi@0 3798
aoqi@0 3799 RegisterSaver::restore_live_registers(masm);
aoqi@0 3800
aoqi@0 3801 // We are back the the original state on entry and ready to go.
aoqi@0 3802
aoqi@0 3803 __ retl();
aoqi@0 3804 __ delayed()->nop();
aoqi@0 3805
aoqi@0 3806 // Pending exception after the safepoint
aoqi@0 3807
aoqi@0 3808 __ bind(pending);
aoqi@0 3809
aoqi@0 3810 RegisterSaver::restore_live_registers(masm);
aoqi@0 3811
aoqi@0 3812 // We are back the the original state on entry.
aoqi@0 3813
aoqi@0 3814 // Tail-call forward_exception_entry, with the issuing PC in O7,
aoqi@0 3815 // so it looks like the original nmethod called forward_exception_entry.
aoqi@0 3816 __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
aoqi@0 3817 __ JMP(O0, 0);
aoqi@0 3818 __ delayed()->nop();
aoqi@0 3819
aoqi@0 3820 // -------------
aoqi@0 3821 // make sure all code is generated
aoqi@0 3822 masm->flush();
aoqi@0 3823
aoqi@0 3824 // return exception blob
aoqi@0 3825 return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
aoqi@0 3826 }
aoqi@0 3827
aoqi@0 3828 //
aoqi@0 3829 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
aoqi@0 3830 //
aoqi@0 3831 // Generate a stub that calls into vm to find out the proper destination
aoqi@0 3832 // of a java call. All the argument registers are live at this point
aoqi@0 3833 // but since this is generic code we don't know what they are and the caller
aoqi@0 3834 // must do any gc of the args.
aoqi@0 3835 //
aoqi@0 3836 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
aoqi@0 3837 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
aoqi@0 3838
aoqi@0 3839 // allocate space for the code
aoqi@0 3840 ResourceMark rm;
aoqi@0 3841 // setup code generation tools
aoqi@0 3842 // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
aoqi@0 3843 // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
aoqi@0 3844 // even larger with TraceJumps
aoqi@0 3845 int pad = TraceJumps ? 512 : 0;
aoqi@0 3846 CodeBuffer buffer(name, 1600 + pad, 512);
aoqi@0 3847 MacroAssembler* masm = new MacroAssembler(&buffer);
aoqi@0 3848 int frame_size_words;
aoqi@0 3849 OopMapSet *oop_maps = new OopMapSet();
aoqi@0 3850 OopMap* map = NULL;
aoqi@0 3851
aoqi@0 3852 int start = __ offset();
aoqi@0 3853
aoqi@0 3854 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
aoqi@0 3855
aoqi@0 3856 int frame_complete = __ offset();
aoqi@0 3857
aoqi@0 3858 // setup last_Java_sp (blows G4)
aoqi@0 3859 __ set_last_Java_frame(SP, noreg);
aoqi@0 3860
aoqi@0 3861 // call into the runtime to handle illegal instructions exception
aoqi@0 3862 // Do not use call_VM_leaf, because we need to make a GC map at this call site.
aoqi@0 3863 __ mov(G2_thread, O0);
aoqi@0 3864 __ save_thread(L7_thread_cache);
aoqi@0 3865 __ call(destination, relocInfo::runtime_call_type);
aoqi@0 3866 __ delayed()->nop();
aoqi@0 3867
aoqi@0 3868 // O0 contains the address we are going to jump to assuming no exception got installed
aoqi@0 3869
aoqi@0 3870 // Set an oopmap for the call site.
aoqi@0 3871 // We need this not only for callee-saved registers, but also for volatile
aoqi@0 3872 // registers that the compiler might be keeping live across a safepoint.
aoqi@0 3873
aoqi@0 3874 oop_maps->add_gc_map( __ offset() - start, map);
aoqi@0 3875
aoqi@0 3876 __ restore_thread(L7_thread_cache);
aoqi@0 3877 // clear last_Java_sp
aoqi@0 3878 __ reset_last_Java_frame();
aoqi@0 3879
aoqi@0 3880 // Check for exceptions
aoqi@0 3881 Label pending;
aoqi@0 3882
aoqi@0 3883 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
aoqi@0 3884 __ br_notnull_short(O1, Assembler::pn, pending);
aoqi@0 3885
aoqi@0 3886 // get the returned Method*
aoqi@0 3887
aoqi@0 3888 __ get_vm_result_2(G5_method);
aoqi@0 3889 __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
aoqi@0 3890
aoqi@0 3891 // O0 is where we want to jump, overwrite G3 which is saved and scratch
aoqi@0 3892
aoqi@0 3893 __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
aoqi@0 3894
aoqi@0 3895 RegisterSaver::restore_live_registers(masm);
aoqi@0 3896
aoqi@0 3897 // We are back the the original state on entry and ready to go.
aoqi@0 3898
aoqi@0 3899 __ JMP(G3, 0);
aoqi@0 3900 __ delayed()->nop();
aoqi@0 3901
aoqi@0 3902 // Pending exception after the safepoint
aoqi@0 3903
aoqi@0 3904 __ bind(pending);
aoqi@0 3905
aoqi@0 3906 RegisterSaver::restore_live_registers(masm);
aoqi@0 3907
aoqi@0 3908 // We are back the the original state on entry.
aoqi@0 3909
aoqi@0 3910 // Tail-call forward_exception_entry, with the issuing PC in O7,
aoqi@0 3911 // so it looks like the original nmethod called forward_exception_entry.
aoqi@0 3912 __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
aoqi@0 3913 __ JMP(O0, 0);
aoqi@0 3914 __ delayed()->nop();
aoqi@0 3915
aoqi@0 3916 // -------------
aoqi@0 3917 // make sure all code is generated
aoqi@0 3918 masm->flush();
aoqi@0 3919
aoqi@0 3920 // return the blob
aoqi@0 3921 // frame_size_words or bytes??
aoqi@0 3922 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
aoqi@0 3923 }

mercurial