src/cpu/sparc/vm/sharedRuntime_sparc.cpp

Wed, 27 Apr 2016 01:25:04 +0800

author
aoqi
date
Wed, 27 Apr 2016 01:25:04 +0800
changeset 0
f90c822e73f8
child 6876
710a3c8b516e
permissions
-rw-r--r--

Initial load
http://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/
changeset: 6782:28b50d07f6f8
tag: jdk8u25-b17

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.inline.hpp"
    27 #include "code/debugInfoRec.hpp"
    28 #include "code/icBuffer.hpp"
    29 #include "code/vtableStubs.hpp"
    30 #include "interpreter/interpreter.hpp"
    31 #include "oops/compiledICHolder.hpp"
    32 #include "prims/jvmtiRedefineClassesTrace.hpp"
    33 #include "runtime/sharedRuntime.hpp"
    34 #include "runtime/vframeArray.hpp"
    35 #include "vmreg_sparc.inline.hpp"
    36 #ifdef COMPILER1
    37 #include "c1/c1_Runtime1.hpp"
    38 #endif
    39 #ifdef COMPILER2
    40 #include "opto/runtime.hpp"
    41 #endif
    42 #ifdef SHARK
    43 #include "compiler/compileBroker.hpp"
    44 #include "shark/sharkCompiler.hpp"
    45 #endif
    47 #define __ masm->
    50 class RegisterSaver {
    52   // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
    53   // The Oregs are problematic. In the 32bit build the compiler can
    54   // have O registers live with 64 bit quantities. A window save will
    55   // cut the heads off of the registers. We have to do a very extensive
    56   // stack dance to save and restore these properly.
    58   // Note that the Oregs problem only exists if we block at either a polling
    59   // page exception a compiled code safepoint that was not originally a call
    60   // or deoptimize following one of these kinds of safepoints.
    62   // Lots of registers to save.  For all builds, a window save will preserve
    63   // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
    64   // builds a window-save will preserve the %o registers.  In the LION build
    65   // we need to save the 64-bit %o registers which requires we save them
    66   // before the window-save (as then they become %i registers and get their
    67   // heads chopped off on interrupt).  We have to save some %g registers here
    68   // as well.
    69   enum {
    70     // This frame's save area.  Includes extra space for the native call:
    71     // vararg's layout space and the like.  Briefly holds the caller's
    72     // register save area.
    73     call_args_area = frame::register_save_words_sp_offset +
    74                      frame::memory_parameter_word_sp_offset*wordSize,
    75     // Make sure save locations are always 8 byte aligned.
    76     // can't use round_to because it doesn't produce compile time constant
    77     start_of_extra_save_area = ((call_args_area + 7) & ~7),
    78     g1_offset = start_of_extra_save_area, // g-regs needing saving
    79     g3_offset = g1_offset+8,
    80     g4_offset = g3_offset+8,
    81     g5_offset = g4_offset+8,
    82     o0_offset = g5_offset+8,
    83     o1_offset = o0_offset+8,
    84     o2_offset = o1_offset+8,
    85     o3_offset = o2_offset+8,
    86     o4_offset = o3_offset+8,
    87     o5_offset = o4_offset+8,
    88     start_of_flags_save_area = o5_offset+8,
    89     ccr_offset = start_of_flags_save_area,
    90     fsr_offset = ccr_offset + 8,
    91     d00_offset = fsr_offset+8,  // Start of float save area
    92     register_save_size = d00_offset+8*32
    93   };
    96   public:
    98   static int Oexception_offset() { return o0_offset; };
    99   static int G3_offset() { return g3_offset; };
   100   static int G5_offset() { return g5_offset; };
   101   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
   102   static void restore_live_registers(MacroAssembler* masm);
   104   // During deoptimization only the result register need to be restored
   105   // all the other values have already been extracted.
   107   static void restore_result_registers(MacroAssembler* masm);
   108 };
   110 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
   111   // Record volatile registers as callee-save values in an OopMap so their save locations will be
   112   // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
   113   // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
   114   // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
   115   // (as the stub's I's) when the runtime routine called by the stub creates its frame.
   116   int i;
   117   // Always make the frame size 16 byte aligned.
   118   int frame_size = round_to(additional_frame_words + register_save_size, 16);
   119   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
   120   int frame_size_in_slots = frame_size / sizeof(jint);
   121   // CodeBlob frame size is in words.
   122   *total_frame_words = frame_size / wordSize;
   123   // OopMap* map = new OopMap(*total_frame_words, 0);
   124   OopMap* map = new OopMap(frame_size_in_slots, 0);
   126 #if !defined(_LP64)
   128   // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
   129   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   130   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   131   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   132   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   133   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   134   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   135 #endif /* _LP64 */
   137   __ save(SP, -frame_size, SP);
   139 #ifndef _LP64
   140   // Reload the 64 bit Oregs. Although they are now Iregs we load them
   141   // to Oregs here to avoid interrupts cutting off their heads
   143   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   144   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   145   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   146   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   147   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   148   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   150   __ stx(O0, SP, o0_offset+STACK_BIAS);
   151   map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
   153   __ stx(O1, SP, o1_offset+STACK_BIAS);
   155   map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
   157   __ stx(O2, SP, o2_offset+STACK_BIAS);
   158   map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
   160   __ stx(O3, SP, o3_offset+STACK_BIAS);
   161   map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
   163   __ stx(O4, SP, o4_offset+STACK_BIAS);
   164   map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
   166   __ stx(O5, SP, o5_offset+STACK_BIAS);
   167   map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
   168 #endif /* _LP64 */
   171 #ifdef _LP64
   172   int debug_offset = 0;
   173 #else
   174   int debug_offset = 4;
   175 #endif
   176   // Save the G's
   177   __ stx(G1, SP, g1_offset+STACK_BIAS);
   178   map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
   180   __ stx(G3, SP, g3_offset+STACK_BIAS);
   181   map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
   183   __ stx(G4, SP, g4_offset+STACK_BIAS);
   184   map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
   186   __ stx(G5, SP, g5_offset+STACK_BIAS);
   187   map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
   189   // This is really a waste but we'll keep things as they were for now
   190   if (true) {
   191 #ifndef _LP64
   192     map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
   193     map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
   194     map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
   195     map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
   196     map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
   197     map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
   198     map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
   199     map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
   200     map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
   201     map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
   202 #endif /* _LP64 */
   203   }
   206   // Save the flags
   207   __ rdccr( G5 );
   208   __ stx(G5, SP, ccr_offset+STACK_BIAS);
   209   __ stxfsr(SP, fsr_offset+STACK_BIAS);
   211   // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
   212   int offset = d00_offset;
   213   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
   214     FloatRegister f = as_FloatRegister(i);
   215     __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
   216     // Record as callee saved both halves of double registers (2 float registers).
   217     map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
   218     map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
   219     offset += sizeof(double);
   220   }
   222   // And we're done.
   224   return map;
   225 }
   228 // Pop the current frame and restore all the registers that we
   229 // saved.
   230 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   232   // Restore all the FP registers
   233   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
   234     __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
   235   }
   237   __ ldx(SP, ccr_offset+STACK_BIAS, G1);
   238   __ wrccr (G1) ;
   240   // Restore the G's
   241   // Note that G2 (AKA GThread) must be saved and restored separately.
   242   // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
   244   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   245   __ ldx(SP, g3_offset+STACK_BIAS, G3);
   246   __ ldx(SP, g4_offset+STACK_BIAS, G4);
   247   __ ldx(SP, g5_offset+STACK_BIAS, G5);
   250 #if !defined(_LP64)
   251   // Restore the 64-bit O's.
   252   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   253   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   254   __ ldx(SP, o2_offset+STACK_BIAS, O2);
   255   __ ldx(SP, o3_offset+STACK_BIAS, O3);
   256   __ ldx(SP, o4_offset+STACK_BIAS, O4);
   257   __ ldx(SP, o5_offset+STACK_BIAS, O5);
   259   // And temporarily place them in TLS
   261   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   262   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   263   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   264   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   265   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   266   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   267 #endif /* _LP64 */
   269   // Restore flags
   271   __ ldxfsr(SP, fsr_offset+STACK_BIAS);
   273   __ restore();
   275 #if !defined(_LP64)
   276   // Now reload the 64bit Oregs after we've restore the window.
   277   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   278   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   279   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   280   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   281   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   282   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   283 #endif /* _LP64 */
   285 }
   287 // Pop the current frame and restore the registers that might be holding
   288 // a result.
   289 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   291 #if !defined(_LP64)
   292   // 32bit build returns longs in G1
   293   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   295   // Retrieve the 64-bit O's.
   296   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   297   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   298   // and save to TLS
   299   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   300   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   301 #endif /* _LP64 */
   303   __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
   305   __ restore();
   307 #if !defined(_LP64)
   308   // Now reload the 64bit Oregs after we've restore the window.
   309   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   310   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   311 #endif /* _LP64 */
   313 }
   315 // Is vector's size (in bytes) bigger than a size saved by default?
   316 // 8 bytes FP registers are saved by default on SPARC.
   317 bool SharedRuntime::is_wide_vector(int size) {
   318   // Note, MaxVectorSize == 8 on SPARC.
   319   assert(size <= 8, err_msg_res("%d bytes vectors are not supported", size));
   320   return size > 8;
   321 }
   323 // The java_calling_convention describes stack locations as ideal slots on
   324 // a frame with no abi restrictions. Since we must observe abi restrictions
   325 // (like the placement of the register window) the slots must be biased by
   326 // the following value.
   327 static int reg2offset(VMReg r) {
   328   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   329 }
   331 static VMRegPair reg64_to_VMRegPair(Register r) {
   332   VMRegPair ret;
   333   if (wordSize == 8) {
   334     ret.set2(r->as_VMReg());
   335   } else {
   336     ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
   337   }
   338   return ret;
   339 }
   341 // ---------------------------------------------------------------------------
   342 // Read the array of BasicTypes from a signature, and compute where the
   343 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
   344 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   345 // refer to 4-byte stack slots.  All stack slots are based off of the window
   346 // top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
   347 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   348 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
   349 // integer registers.  Values 64-95 are the (32-bit only) float registers.
   350 // Each 32-bit quantity is given its own number, so the integer registers
   351 // (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
   352 // an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
   354 // Register results are passed in O0-O5, for outgoing call arguments.  To
   355 // convert to incoming arguments, convert all O's to I's.  The regs array
   356 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
   357 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
   358 // 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
   359 // passed (used as a placeholder for the other half of longs and doubles in
   360 // the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
   361 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
   362 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
   363 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
   364 // same VMRegPair.
   366 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   367 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   368 // units regardless of build.
   371 // ---------------------------------------------------------------------------
   372 // The compiled Java calling convention.  The Java convention always passes
   373 // 64-bit values in adjacent aligned locations (either registers or stack),
   374 // floats in float registers and doubles in aligned float pairs.  There is
   375 // no backing varargs store for values in registers.
   376 // In the 32-bit build, longs are passed on the stack (cannot be
   377 // passed in I's, because longs in I's get their heads chopped off at
   378 // interrupt).
   379 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   380                                            VMRegPair *regs,
   381                                            int total_args_passed,
   382                                            int is_outgoing) {
   383   assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
   385   const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
   386   const int flt_reg_max = 8;
   388   int int_reg = 0;
   389   int flt_reg = 0;
   390   int slot = 0;
   392   for (int i = 0; i < total_args_passed; i++) {
   393     switch (sig_bt[i]) {
   394     case T_INT:
   395     case T_SHORT:
   396     case T_CHAR:
   397     case T_BYTE:
   398     case T_BOOLEAN:
   399 #ifndef _LP64
   400     case T_OBJECT:
   401     case T_ARRAY:
   402     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   403 #endif // _LP64
   404       if (int_reg < int_reg_max) {
   405         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   406         regs[i].set1(r->as_VMReg());
   407       } else {
   408         regs[i].set1(VMRegImpl::stack2reg(slot++));
   409       }
   410       break;
   412 #ifdef _LP64
   413     case T_LONG:
   414       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
   415       // fall-through
   416     case T_OBJECT:
   417     case T_ARRAY:
   418     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   419       if (int_reg < int_reg_max) {
   420         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   421         regs[i].set2(r->as_VMReg());
   422       } else {
   423         slot = round_to(slot, 2);  // align
   424         regs[i].set2(VMRegImpl::stack2reg(slot));
   425         slot += 2;
   426       }
   427       break;
   428 #else
   429     case T_LONG:
   430       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
   431       // On 32-bit SPARC put longs always on the stack to keep the pressure off
   432       // integer argument registers.  They should be used for oops.
   433       slot = round_to(slot, 2);  // align
   434       regs[i].set2(VMRegImpl::stack2reg(slot));
   435       slot += 2;
   436 #endif
   437       break;
   439     case T_FLOAT:
   440       if (flt_reg < flt_reg_max) {
   441         FloatRegister r = as_FloatRegister(flt_reg++);
   442         regs[i].set1(r->as_VMReg());
   443       } else {
   444         regs[i].set1(VMRegImpl::stack2reg(slot++));
   445       }
   446       break;
   448     case T_DOUBLE:
   449       assert(sig_bt[i+1] == T_VOID, "expecting half");
   450       if (round_to(flt_reg, 2) + 1 < flt_reg_max) {
   451         flt_reg = round_to(flt_reg, 2);  // align
   452         FloatRegister r = as_FloatRegister(flt_reg);
   453         regs[i].set2(r->as_VMReg());
   454         flt_reg += 2;
   455       } else {
   456         slot = round_to(slot, 2);  // align
   457         regs[i].set2(VMRegImpl::stack2reg(slot));
   458         slot += 2;
   459       }
   460       break;
   462     case T_VOID:
   463       regs[i].set_bad();   // Halves of longs & doubles
   464       break;
   466     default:
   467       fatal(err_msg_res("unknown basic type %d", sig_bt[i]));
   468       break;
   469     }
   470   }
   472   // retun the amount of stack space these arguments will need.
   473   return slot;
   474 }
   476 // Helper class mostly to avoid passing masm everywhere, and handle
   477 // store displacement overflow logic.
   478 class AdapterGenerator {
   479   MacroAssembler *masm;
   480   Register Rdisp;
   481   void set_Rdisp(Register r)  { Rdisp = r; }
   483   void patch_callers_callsite();
   485   // base+st_off points to top of argument
   486   int arg_offset(const int st_off) { return st_off; }
   487   int next_arg_offset(const int st_off) {
   488     return st_off - Interpreter::stackElementSize;
   489   }
   491   // Argument slot values may be loaded first into a register because
   492   // they might not fit into displacement.
   493   RegisterOrConstant arg_slot(const int st_off);
   494   RegisterOrConstant next_arg_slot(const int st_off);
   496   // Stores long into offset pointed to by base
   497   void store_c2i_long(Register r, Register base,
   498                       const int st_off, bool is_stack);
   499   void store_c2i_object(Register r, Register base,
   500                         const int st_off);
   501   void store_c2i_int(Register r, Register base,
   502                      const int st_off);
   503   void store_c2i_double(VMReg r_2,
   504                         VMReg r_1, Register base, const int st_off);
   505   void store_c2i_float(FloatRegister f, Register base,
   506                        const int st_off);
   508  public:
   509   void gen_c2i_adapter(int total_args_passed,
   510                               // VMReg max_arg,
   511                               int comp_args_on_stack, // VMRegStackSlots
   512                               const BasicType *sig_bt,
   513                               const VMRegPair *regs,
   514                               Label& skip_fixup);
   515   void gen_i2c_adapter(int total_args_passed,
   516                               // VMReg max_arg,
   517                               int comp_args_on_stack, // VMRegStackSlots
   518                               const BasicType *sig_bt,
   519                               const VMRegPair *regs);
   521   AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
   522 };
   525 // Patch the callers callsite with entry to compiled code if it exists.
   526 void AdapterGenerator::patch_callers_callsite() {
   527   Label L;
   528   __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
   529   __ br_null(G3_scratch, false, Assembler::pt, L);
   530   __ delayed()->nop();
   531   // Call into the VM to patch the caller, then jump to compiled callee
   532   __ save_frame(4);     // Args in compiled layout; do not blow them
   534   // Must save all the live Gregs the list is:
   535   // G1: 1st Long arg (32bit build)
   536   // G2: global allocated to TLS
   537   // G3: used in inline cache check (scratch)
   538   // G4: 2nd Long arg (32bit build);
   539   // G5: used in inline cache check (Method*)
   541   // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
   543 #ifdef _LP64
   544   // mov(s,d)
   545   __ mov(G1, L1);
   546   __ mov(G4, L4);
   547   __ mov(G5_method, L5);
   548   __ mov(G5_method, O0);         // VM needs target method
   549   __ mov(I7, O1);                // VM needs caller's callsite
   550   // Must be a leaf call...
   551   // can be very far once the blob has been relocated
   552   AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
   553   __ relocate(relocInfo::runtime_call_type);
   554   __ jumpl_to(dest, O7, O7);
   555   __ delayed()->mov(G2_thread, L7_thread_cache);
   556   __ mov(L7_thread_cache, G2_thread);
   557   __ mov(L1, G1);
   558   __ mov(L4, G4);
   559   __ mov(L5, G5_method);
   560 #else
   561   __ stx(G1, FP, -8 + STACK_BIAS);
   562   __ stx(G4, FP, -16 + STACK_BIAS);
   563   __ mov(G5_method, L5);
   564   __ mov(G5_method, O0);         // VM needs target method
   565   __ mov(I7, O1);                // VM needs caller's callsite
   566   // Must be a leaf call...
   567   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
   568   __ delayed()->mov(G2_thread, L7_thread_cache);
   569   __ mov(L7_thread_cache, G2_thread);
   570   __ ldx(FP, -8 + STACK_BIAS, G1);
   571   __ ldx(FP, -16 + STACK_BIAS, G4);
   572   __ mov(L5, G5_method);
   573 #endif /* _LP64 */
   575   __ restore();      // Restore args
   576   __ bind(L);
   577 }
   580 RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
   581   RegisterOrConstant roc(arg_offset(st_off));
   582   return __ ensure_simm13_or_reg(roc, Rdisp);
   583 }
   585 RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
   586   RegisterOrConstant roc(next_arg_offset(st_off));
   587   return __ ensure_simm13_or_reg(roc, Rdisp);
   588 }
   591 // Stores long into offset pointed to by base
   592 void AdapterGenerator::store_c2i_long(Register r, Register base,
   593                                       const int st_off, bool is_stack) {
   594 #ifdef _LP64
   595   // In V9, longs are given 2 64-bit slots in the interpreter, but the
   596   // data is passed in only 1 slot.
   597   __ stx(r, base, next_arg_slot(st_off));
   598 #else
   599 #ifdef COMPILER2
   600   // Misaligned store of 64-bit data
   601   __ stw(r, base, arg_slot(st_off));    // lo bits
   602   __ srlx(r, 32, r);
   603   __ stw(r, base, next_arg_slot(st_off));  // hi bits
   604 #else
   605   if (is_stack) {
   606     // Misaligned store of 64-bit data
   607     __ stw(r, base, arg_slot(st_off));    // lo bits
   608     __ srlx(r, 32, r);
   609     __ stw(r, base, next_arg_slot(st_off));  // hi bits
   610   } else {
   611     __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
   612     __ stw(r             , base, next_arg_slot(st_off)); // hi bits
   613   }
   614 #endif // COMPILER2
   615 #endif // _LP64
   616 }
   618 void AdapterGenerator::store_c2i_object(Register r, Register base,
   619                       const int st_off) {
   620   __ st_ptr (r, base, arg_slot(st_off));
   621 }
   623 void AdapterGenerator::store_c2i_int(Register r, Register base,
   624                    const int st_off) {
   625   __ st (r, base, arg_slot(st_off));
   626 }
   628 // Stores into offset pointed to by base
   629 void AdapterGenerator::store_c2i_double(VMReg r_2,
   630                       VMReg r_1, Register base, const int st_off) {
   631 #ifdef _LP64
   632   // In V9, doubles are given 2 64-bit slots in the interpreter, but the
   633   // data is passed in only 1 slot.
   634   __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   635 #else
   636   // Need to marshal 64-bit value from misaligned Lesp loads
   637   __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   638   __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
   639 #endif
   640 }
   642 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
   643                                        const int st_off) {
   644   __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
   645 }
   647 void AdapterGenerator::gen_c2i_adapter(
   648                             int total_args_passed,
   649                             // VMReg max_arg,
   650                             int comp_args_on_stack, // VMRegStackSlots
   651                             const BasicType *sig_bt,
   652                             const VMRegPair *regs,
   653                             Label& L_skip_fixup) {
   655   // Before we get into the guts of the C2I adapter, see if we should be here
   656   // at all.  We've come from compiled code and are attempting to jump to the
   657   // interpreter, which means the caller made a static call to get here
   658   // (vcalls always get a compiled target if there is one).  Check for a
   659   // compiled target.  If there is one, we need to patch the caller's call.
   660   // However we will run interpreted if we come thru here. The next pass
   661   // thru the call site will run compiled. If we ran compiled here then
   662   // we can (theorectically) do endless i2c->c2i->i2c transitions during
   663   // deopt/uncommon trap cycles. If we always go interpreted here then
   664   // we can have at most one and don't need to play any tricks to keep
   665   // from endlessly growing the stack.
   666   //
   667   // Actually if we detected that we had an i2c->c2i transition here we
   668   // ought to be able to reset the world back to the state of the interpreted
   669   // call and not bother building another interpreter arg area. We don't
   670   // do that at this point.
   672   patch_callers_callsite();
   674   __ bind(L_skip_fixup);
   676   // Since all args are passed on the stack, total_args_passed*wordSize is the
   677   // space we need.  Add in varargs area needed by the interpreter. Round up
   678   // to stack alignment.
   679   const int arg_size = total_args_passed * Interpreter::stackElementSize;
   680   const int varargs_area =
   681                  (frame::varargs_offset - frame::register_save_words)*wordSize;
   682   const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
   684   const int bias = STACK_BIAS;
   685   const int interp_arg_offset = frame::varargs_offset*wordSize +
   686                         (total_args_passed-1)*Interpreter::stackElementSize;
   688   const Register base = SP;
   690   // Make some extra space on the stack.
   691   __ sub(SP, __ ensure_simm13_or_reg(extraspace, G3_scratch), SP);
   692   set_Rdisp(G3_scratch);
   694   // Write the args into the outgoing interpreter space.
   695   for (int i = 0; i < total_args_passed; i++) {
   696     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
   697     VMReg r_1 = regs[i].first();
   698     VMReg r_2 = regs[i].second();
   699     if (!r_1->is_valid()) {
   700       assert(!r_2->is_valid(), "");
   701       continue;
   702     }
   703     if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
   704       RegisterOrConstant ld_off = reg2offset(r_1) + extraspace + bias;
   705       ld_off = __ ensure_simm13_or_reg(ld_off, Rdisp);
   706       r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
   707       if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
   708       else                  __ ldx(base, ld_off, G1_scratch);
   709     }
   711     if (r_1->is_Register()) {
   712       Register r = r_1->as_Register()->after_restore();
   713       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
   714         store_c2i_object(r, base, st_off);
   715       } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   716         store_c2i_long(r, base, st_off, r_2->is_stack());
   717       } else {
   718         store_c2i_int(r, base, st_off);
   719       }
   720     } else {
   721       assert(r_1->is_FloatRegister(), "");
   722       if (sig_bt[i] == T_FLOAT) {
   723         store_c2i_float(r_1->as_FloatRegister(), base, st_off);
   724       } else {
   725         assert(sig_bt[i] == T_DOUBLE, "wrong type");
   726         store_c2i_double(r_2, r_1, base, st_off);
   727       }
   728     }
   729   }
   731   // Load the interpreter entry point.
   732   __ ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), G3_scratch);
   734   // Pass O5_savedSP as an argument to the interpreter.
   735   // The interpreter will restore SP to this value before returning.
   736   __ add(SP, __ ensure_simm13_or_reg(extraspace, G1), O5_savedSP);
   738   __ mov((frame::varargs_offset)*wordSize -
   739          1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
   740   // Jump to the interpreter just as if interpreter was doing it.
   741   __ jmpl(G3_scratch, 0, G0);
   742   // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
   743   // (really L0) is in use by the compiled frame as a generic temp.  However,
   744   // the interpreter does not know where its args are without some kind of
   745   // arg pointer being passed in.  Pass it in Gargs.
   746   __ delayed()->add(SP, G1, Gargs);
   747 }
   749 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, Register temp2_reg,
   750                         address code_start, address code_end,
   751                         Label& L_ok) {
   752   Label L_fail;
   753   __ set(ExternalAddress(code_start), temp_reg);
   754   __ set(pointer_delta(code_end, code_start, 1), temp2_reg);
   755   __ cmp(pc_reg, temp_reg);
   756   __ brx(Assembler::lessEqualUnsigned, false, Assembler::pn, L_fail);
   757   __ delayed()->add(temp_reg, temp2_reg, temp_reg);
   758   __ cmp(pc_reg, temp_reg);
   759   __ cmp_and_brx_short(pc_reg, temp_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
   760   __ bind(L_fail);
   761 }
   763 void AdapterGenerator::gen_i2c_adapter(
   764                             int total_args_passed,
   765                             // VMReg max_arg,
   766                             int comp_args_on_stack, // VMRegStackSlots
   767                             const BasicType *sig_bt,
   768                             const VMRegPair *regs) {
   770   // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
   771   // layout.  Lesp was saved by the calling I-frame and will be restored on
   772   // return.  Meanwhile, outgoing arg space is all owned by the callee
   773   // C-frame, so we can mangle it at will.  After adjusting the frame size,
   774   // hoist register arguments and repack other args according to the compiled
   775   // code convention.  Finally, end in a jump to the compiled code.  The entry
   776   // point address is the start of the buffer.
   778   // We will only enter here from an interpreted frame and never from after
   779   // passing thru a c2i. Azul allowed this but we do not. If we lose the
   780   // race and use a c2i we will remain interpreted for the race loser(s).
   781   // This removes all sorts of headaches on the x86 side and also eliminates
   782   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
   784   // More detail:
   785   // Adapters can be frameless because they do not require the caller
   786   // to perform additional cleanup work, such as correcting the stack pointer.
   787   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
   788   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
   789   // even if a callee has modified the stack pointer.
   790   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
   791   // routinely repairs its caller's stack pointer (from sender_sp, which is set
   792   // up via the senderSP register).
   793   // In other words, if *either* the caller or callee is interpreted, we can
   794   // get the stack pointer repaired after a call.
   795   // This is why c2i and i2c adapters cannot be indefinitely composed.
   796   // In particular, if a c2i adapter were to somehow call an i2c adapter,
   797   // both caller and callee would be compiled methods, and neither would
   798   // clean up the stack pointer changes performed by the two adapters.
   799   // If this happens, control eventually transfers back to the compiled
   800   // caller, but with an uncorrected stack, causing delayed havoc.
   802   if (VerifyAdapterCalls &&
   803       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
   804     // So, let's test for cascading c2i/i2c adapters right now.
   805     //  assert(Interpreter::contains($return_addr) ||
   806     //         StubRoutines::contains($return_addr),
   807     //         "i2c adapter must return to an interpreter frame");
   808     __ block_comment("verify_i2c { ");
   809     Label L_ok;
   810     if (Interpreter::code() != NULL)
   811       range_check(masm, O7, O0, O1,
   812                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
   813                   L_ok);
   814     if (StubRoutines::code1() != NULL)
   815       range_check(masm, O7, O0, O1,
   816                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
   817                   L_ok);
   818     if (StubRoutines::code2() != NULL)
   819       range_check(masm, O7, O0, O1,
   820                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
   821                   L_ok);
   822     const char* msg = "i2c adapter must return to an interpreter frame";
   823     __ block_comment(msg);
   824     __ stop(msg);
   825     __ bind(L_ok);
   826     __ block_comment("} verify_i2ce ");
   827   }
   829   // As you can see from the list of inputs & outputs there are not a lot
   830   // of temp registers to work with: mostly G1, G3 & G4.
   832   // Inputs:
   833   // G2_thread      - TLS
   834   // G5_method      - Method oop
   835   // G4 (Gargs)     - Pointer to interpreter's args
   836   // O0..O4         - free for scratch
   837   // O5_savedSP     - Caller's saved SP, to be restored if needed
   838   // O6             - Current SP!
   839   // O7             - Valid return address
   840   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
   842   // Outputs:
   843   // G2_thread      - TLS
   844   // O0-O5          - Outgoing args in compiled layout
   845   // O6             - Adjusted or restored SP
   846   // O7             - Valid return address
   847   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
   848   // F0-F7          - more outgoing args
   851   // Gargs is the incoming argument base, and also an outgoing argument.
   852   __ sub(Gargs, BytesPerWord, Gargs);
   854   // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
   855   // WITH O7 HOLDING A VALID RETURN PC
   856   //
   857   // |              |
   858   // :  java stack  :
   859   // |              |
   860   // +--------------+ <--- start of outgoing args
   861   // |   receiver   |   |
   862   // : rest of args :   |---size is java-arg-words
   863   // |              |   |
   864   // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
   865   // |              |   |
   866   // :    unused    :   |---Space for max Java stack, plus stack alignment
   867   // |              |   |
   868   // +--------------+ <--- SP + 16*wordsize
   869   // |              |
   870   // :    window    :
   871   // |              |
   872   // +--------------+ <--- SP
   874   // WE REPACK THE STACK.  We use the common calling convention layout as
   875   // discovered by calling SharedRuntime::calling_convention.  We assume it
   876   // causes an arbitrary shuffle of memory, which may require some register
   877   // temps to do the shuffle.  We hope for (and optimize for) the case where
   878   // temps are not needed.  We may have to resize the stack slightly, in case
   879   // we need alignment padding (32-bit interpreter can pass longs & doubles
   880   // misaligned, but the compilers expect them aligned).
   881   //
   882   // |              |
   883   // :  java stack  :
   884   // |              |
   885   // +--------------+ <--- start of outgoing args
   886   // |  pad, align  |   |
   887   // +--------------+   |
   888   // | ints, longs, |   |
   889   // |    floats,   |   |---Outgoing stack args.
   890   // :    doubles   :   |   First few args in registers.
   891   // |              |   |
   892   // +--------------+ <--- SP' + 16*wordsize
   893   // |              |
   894   // :    window    :
   895   // |              |
   896   // +--------------+ <--- SP'
   898   // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
   899   // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
   900   // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
   902   // Cut-out for having no stack args.  Since up to 6 args are passed
   903   // in registers, we will commonly have no stack args.
   904   if (comp_args_on_stack > 0) {
   905     // Convert VMReg stack slots to words.
   906     int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
   907     // Round up to miminum stack alignment, in wordSize
   908     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   909     // Now compute the distance from Lesp to SP.  This calculation does not
   910     // include the space for total_args_passed because Lesp has not yet popped
   911     // the arguments.
   912     __ sub(SP, (comp_words_on_stack)*wordSize, SP);
   913   }
   915   // Now generate the shuffle code.  Pick up all register args and move the
   916   // rest through G1_scratch.
   917   for (int i = 0; i < total_args_passed; i++) {
   918     if (sig_bt[i] == T_VOID) {
   919       // Longs and doubles are passed in native word order, but misaligned
   920       // in the 32-bit build.
   921       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   922       continue;
   923     }
   925     // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
   926     // 32-bit build and aligned in the 64-bit build.  Look for the obvious
   927     // ldx/lddf optimizations.
   929     // Load in argument order going down.
   930     const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
   931     set_Rdisp(G1_scratch);
   933     VMReg r_1 = regs[i].first();
   934     VMReg r_2 = regs[i].second();
   935     if (!r_1->is_valid()) {
   936       assert(!r_2->is_valid(), "");
   937       continue;
   938     }
   939     if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
   940       r_1 = F8->as_VMReg();        // as part of the load/store shuffle
   941       if (r_2->is_valid()) r_2 = r_1->next();
   942     }
   943     if (r_1->is_Register()) {  // Register argument
   944       Register r = r_1->as_Register()->after_restore();
   945       if (!r_2->is_valid()) {
   946         __ ld(Gargs, arg_slot(ld_off), r);
   947       } else {
   948 #ifdef _LP64
   949         // In V9, longs are given 2 64-bit slots in the interpreter, but the
   950         // data is passed in only 1 slot.
   951         RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
   952               next_arg_slot(ld_off) : arg_slot(ld_off);
   953         __ ldx(Gargs, slot, r);
   954 #else
   955         fatal("longs should be on stack");
   956 #endif
   957       }
   958     } else {
   959       assert(r_1->is_FloatRegister(), "");
   960       if (!r_2->is_valid()) {
   961         __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_1->as_FloatRegister());
   962       } else {
   963 #ifdef _LP64
   964         // In V9, doubles are given 2 64-bit slots in the interpreter, but the
   965         // data is passed in only 1 slot.  This code also handles longs that
   966         // are passed on the stack, but need a stack-to-stack move through a
   967         // spare float register.
   968         RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
   969               next_arg_slot(ld_off) : arg_slot(ld_off);
   970         __ ldf(FloatRegisterImpl::D, Gargs,                  slot, r_1->as_FloatRegister());
   971 #else
   972         // Need to marshal 64-bit value from misaligned Lesp loads
   973         __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
   974         __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_2->as_FloatRegister());
   975 #endif
   976       }
   977     }
   978     // Was the argument really intended to be on the stack, but was loaded
   979     // into F8/F9?
   980     if (regs[i].first()->is_stack()) {
   981       assert(r_1->as_FloatRegister() == F8, "fix this code");
   982       // Convert stack slot to an SP offset
   983       int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
   984       // Store down the shuffled stack word.  Target address _is_ aligned.
   985       RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
   986       if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
   987       else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
   988     }
   989   }
   991   // Jump to the compiled code just as if compiled code was doing it.
   992   __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3);
   994   // 6243940 We might end up in handle_wrong_method if
   995   // the callee is deoptimized as we race thru here. If that
   996   // happens we don't want to take a safepoint because the
   997   // caller frame will look interpreted and arguments are now
   998   // "compiled" so it is much better to make this transition
   999   // invisible to the stack walking code. Unfortunately if
  1000   // we try and find the callee by normal means a safepoint
  1001   // is possible. So we stash the desired callee in the thread
  1002   // and the vm will find there should this case occur.
  1003   Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
  1004   __ st_ptr(G5_method, callee_target_addr);
  1005   __ jmpl(G3, 0, G0);
  1006   __ delayed()->nop();
  1009 // ---------------------------------------------------------------
  1010 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
  1011                                                             int total_args_passed,
  1012                                                             // VMReg max_arg,
  1013                                                             int comp_args_on_stack, // VMRegStackSlots
  1014                                                             const BasicType *sig_bt,
  1015                                                             const VMRegPair *regs,
  1016                                                             AdapterFingerPrint* fingerprint) {
  1017   address i2c_entry = __ pc();
  1019   AdapterGenerator agen(masm);
  1021   agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
  1024   // -------------------------------------------------------------------------
  1025   // Generate a C2I adapter.  On entry we know G5 holds the Method*.  The
  1026   // args start out packed in the compiled layout.  They need to be unpacked
  1027   // into the interpreter layout.  This will almost always require some stack
  1028   // space.  We grow the current (compiled) stack, then repack the args.  We
  1029   // finally end in a jump to the generic interpreter entry point.  On exit
  1030   // from the interpreter, the interpreter will restore our SP (lest the
  1031   // compiled code, which relys solely on SP and not FP, get sick).
  1033   address c2i_unverified_entry = __ pc();
  1034   Label L_skip_fixup;
  1036     Register R_temp = G1;  // another scratch register
  1038     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  1040     __ verify_oop(O0);
  1041     __ load_klass(O0, G3_scratch);
  1043     __ ld_ptr(G5_method, CompiledICHolder::holder_klass_offset(), R_temp);
  1044     __ cmp(G3_scratch, R_temp);
  1046     Label ok, ok2;
  1047     __ brx(Assembler::equal, false, Assembler::pt, ok);
  1048     __ delayed()->ld_ptr(G5_method, CompiledICHolder::holder_method_offset(), G5_method);
  1049     __ jump_to(ic_miss, G3_scratch);
  1050     __ delayed()->nop();
  1052     __ bind(ok);
  1053     // Method might have been compiled since the call site was patched to
  1054     // interpreted if that is the case treat it as a miss so we can get
  1055     // the call site corrected.
  1056     __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
  1057     __ bind(ok2);
  1058     __ br_null(G3_scratch, false, Assembler::pt, L_skip_fixup);
  1059     __ delayed()->nop();
  1060     __ jump_to(ic_miss, G3_scratch);
  1061     __ delayed()->nop();
  1065   address c2i_entry = __ pc();
  1067   agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, L_skip_fixup);
  1069   __ flush();
  1070   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  1074 // Helper function for native calling conventions
  1075 static VMReg int_stk_helper( int i ) {
  1076   // Bias any stack based VMReg we get by ignoring the window area
  1077   // but not the register parameter save area.
  1078   //
  1079   // This is strange for the following reasons. We'd normally expect
  1080   // the calling convention to return an VMReg for a stack slot
  1081   // completely ignoring any abi reserved area. C2 thinks of that
  1082   // abi area as only out_preserve_stack_slots. This does not include
  1083   // the area allocated by the C abi to store down integer arguments
  1084   // because the java calling convention does not use it. So
  1085   // since c2 assumes that there are only out_preserve_stack_slots
  1086   // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
  1087   // location the c calling convention must add in this bias amount
  1088   // to make up for the fact that the out_preserve_stack_slots is
  1089   // insufficient for C calls. What a mess. I sure hope those 6
  1090   // stack words were worth it on every java call!
  1092   // Another way of cleaning this up would be for out_preserve_stack_slots
  1093   // to take a parameter to say whether it was C or java calling conventions.
  1094   // Then things might look a little better (but not much).
  1096   int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
  1097   if( mem_parm_offset < 0 ) {
  1098     return as_oRegister(i)->as_VMReg();
  1099   } else {
  1100     int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
  1101     // Now return a biased offset that will be correct when out_preserve_slots is added back in
  1102     return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
  1107 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
  1108                                          VMRegPair *regs,
  1109                                          VMRegPair *regs2,
  1110                                          int total_args_passed) {
  1111     assert(regs2 == NULL, "not needed on sparc");
  1113     // Return the number of VMReg stack_slots needed for the args.
  1114     // This value does not include an abi space (like register window
  1115     // save area).
  1117     // The native convention is V8 if !LP64
  1118     // The LP64 convention is the V9 convention which is slightly more sane.
  1120     // We return the amount of VMReg stack slots we need to reserve for all
  1121     // the arguments NOT counting out_preserve_stack_slots. Since we always
  1122     // have space for storing at least 6 registers to memory we start with that.
  1123     // See int_stk_helper for a further discussion.
  1124     int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
  1126 #ifdef _LP64
  1127     // V9 convention: All things "as-if" on double-wide stack slots.
  1128     // Hoist any int/ptr/long's in the first 6 to int regs.
  1129     // Hoist any flt/dbl's in the first 16 dbl regs.
  1130     int j = 0;                  // Count of actual args, not HALVES
  1131     for( int i=0; i<total_args_passed; i++, j++ ) {
  1132       switch( sig_bt[i] ) {
  1133       case T_BOOLEAN:
  1134       case T_BYTE:
  1135       case T_CHAR:
  1136       case T_INT:
  1137       case T_SHORT:
  1138         regs[i].set1( int_stk_helper( j ) ); break;
  1139       case T_LONG:
  1140         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1141       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1142       case T_ARRAY:
  1143       case T_OBJECT:
  1144       case T_METADATA:
  1145         regs[i].set2( int_stk_helper( j ) );
  1146         break;
  1147       case T_FLOAT:
  1148         if ( j < 16 ) {
  1149           // V9ism: floats go in ODD registers
  1150           regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
  1151         } else {
  1152           // V9ism: floats go in ODD stack slot
  1153           regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
  1155         break;
  1156       case T_DOUBLE:
  1157         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1158         if ( j < 16 ) {
  1159           // V9ism: doubles go in EVEN/ODD regs
  1160           regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
  1161         } else {
  1162           // V9ism: doubles go in EVEN/ODD stack slots
  1163           regs[i].set2(VMRegImpl::stack2reg(j<<1));
  1165         break;
  1166       case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
  1167       default:
  1168         ShouldNotReachHere();
  1170       if (regs[i].first()->is_stack()) {
  1171         int off =  regs[i].first()->reg2stack();
  1172         if (off > max_stack_slots) max_stack_slots = off;
  1174       if (regs[i].second()->is_stack()) {
  1175         int off =  regs[i].second()->reg2stack();
  1176         if (off > max_stack_slots) max_stack_slots = off;
  1180 #else // _LP64
  1181     // V8 convention: first 6 things in O-regs, rest on stack.
  1182     // Alignment is willy-nilly.
  1183     for( int i=0; i<total_args_passed; i++ ) {
  1184       switch( sig_bt[i] ) {
  1185       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1186       case T_ARRAY:
  1187       case T_BOOLEAN:
  1188       case T_BYTE:
  1189       case T_CHAR:
  1190       case T_FLOAT:
  1191       case T_INT:
  1192       case T_OBJECT:
  1193       case T_METADATA:
  1194       case T_SHORT:
  1195         regs[i].set1( int_stk_helper( i ) );
  1196         break;
  1197       case T_DOUBLE:
  1198       case T_LONG:
  1199         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1200         regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
  1201         break;
  1202       case T_VOID: regs[i].set_bad(); break;
  1203       default:
  1204         ShouldNotReachHere();
  1206       if (regs[i].first()->is_stack()) {
  1207         int off =  regs[i].first()->reg2stack();
  1208         if (off > max_stack_slots) max_stack_slots = off;
  1210       if (regs[i].second()->is_stack()) {
  1211         int off =  regs[i].second()->reg2stack();
  1212         if (off > max_stack_slots) max_stack_slots = off;
  1215 #endif // _LP64
  1217   return round_to(max_stack_slots + 1, 2);
  1222 // ---------------------------------------------------------------------------
  1223 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1224   switch (ret_type) {
  1225   case T_FLOAT:
  1226     __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
  1227     break;
  1228   case T_DOUBLE:
  1229     __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
  1230     break;
  1234 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1235   switch (ret_type) {
  1236   case T_FLOAT:
  1237     __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
  1238     break;
  1239   case T_DOUBLE:
  1240     __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
  1241     break;
  1245 // Check and forward and pending exception.  Thread is stored in
  1246 // L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
  1247 // is no exception handler.  We merely pop this frame off and throw the
  1248 // exception in the caller's frame.
  1249 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
  1250   Label L;
  1251   __ br_null(Rex_oop, false, Assembler::pt, L);
  1252   __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
  1253   // Since this is a native call, we *know* the proper exception handler
  1254   // without calling into the VM: it's the empty function.  Just pop this
  1255   // frame and then jump to forward_exception_entry; O7 will contain the
  1256   // native caller's return PC.
  1257  AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
  1258   __ jump_to(exception_entry, G3_scratch);
  1259   __ delayed()->restore();      // Pop this frame off.
  1260   __ bind(L);
  1263 // A simple move of integer like type
  1264 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1265   if (src.first()->is_stack()) {
  1266     if (dst.first()->is_stack()) {
  1267       // stack to stack
  1268       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1269       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1270     } else {
  1271       // stack to reg
  1272       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1274   } else if (dst.first()->is_stack()) {
  1275     // reg to stack
  1276     __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1277   } else {
  1278     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1282 // On 64 bit we will store integer like items to the stack as
  1283 // 64 bits items (sparc abi) even though java would only store
  1284 // 32bits for a parameter. On 32bit it will simply be 32 bits
  1285 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  1286 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1287   if (src.first()->is_stack()) {
  1288     if (dst.first()->is_stack()) {
  1289       // stack to stack
  1290       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1291       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1292     } else {
  1293       // stack to reg
  1294       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1296   } else if (dst.first()->is_stack()) {
  1297     // reg to stack
  1298     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1299   } else {
  1300     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1305 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1306   if (src.first()->is_stack()) {
  1307     if (dst.first()->is_stack()) {
  1308       // stack to stack
  1309       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1310       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1311     } else {
  1312       // stack to reg
  1313       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1315   } else if (dst.first()->is_stack()) {
  1316     // reg to stack
  1317     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1318   } else {
  1319     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1324 // An oop arg. Must pass a handle not the oop itself
  1325 static void object_move(MacroAssembler* masm,
  1326                         OopMap* map,
  1327                         int oop_handle_offset,
  1328                         int framesize_in_slots,
  1329                         VMRegPair src,
  1330                         VMRegPair dst,
  1331                         bool is_receiver,
  1332                         int* receiver_offset) {
  1334   // must pass a handle. First figure out the location we use as a handle
  1336   if (src.first()->is_stack()) {
  1337     // Oop is already on the stack
  1338     Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
  1339     __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
  1340     __ ld_ptr(rHandle, 0, L4);
  1341 #ifdef _LP64
  1342     __ movr( Assembler::rc_z, L4, G0, rHandle );
  1343 #else
  1344     __ tst( L4 );
  1345     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1346 #endif
  1347     if (dst.first()->is_stack()) {
  1348       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1350     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1351     if (is_receiver) {
  1352       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1354     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1355   } else {
  1356     // Oop is in an input register pass we must flush it to the stack
  1357     const Register rOop = src.first()->as_Register();
  1358     const Register rHandle = L5;
  1359     int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
  1360     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1361     Label skip;
  1362     __ st_ptr(rOop, SP, offset + STACK_BIAS);
  1363     if (is_receiver) {
  1364       *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
  1366     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1367     __ add(SP, offset + STACK_BIAS, rHandle);
  1368 #ifdef _LP64
  1369     __ movr( Assembler::rc_z, rOop, G0, rHandle );
  1370 #else
  1371     __ tst( rOop );
  1372     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1373 #endif
  1375     if (dst.first()->is_stack()) {
  1376       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1377     } else {
  1378       __ mov(rHandle, dst.first()->as_Register());
  1383 // A float arg may have to do float reg int reg conversion
  1384 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1385   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1387   if (src.first()->is_stack()) {
  1388     if (dst.first()->is_stack()) {
  1389       // stack to stack the easiest of the bunch
  1390       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1391       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1392     } else {
  1393       // stack to reg
  1394       if (dst.first()->is_Register()) {
  1395         __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1396       } else {
  1397         __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1400   } else if (dst.first()->is_stack()) {
  1401     // reg to stack
  1402     if (src.first()->is_Register()) {
  1403       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1404     } else {
  1405       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1407   } else {
  1408     // reg to reg
  1409     if (src.first()->is_Register()) {
  1410       if (dst.first()->is_Register()) {
  1411         // gpr -> gpr
  1412         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1413       } else {
  1414         // gpr -> fpr
  1415         __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
  1416         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
  1418     } else if (dst.first()->is_Register()) {
  1419       // fpr -> gpr
  1420       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
  1421       __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
  1422     } else {
  1423       // fpr -> fpr
  1424       // In theory these overlap but the ordering is such that this is likely a nop
  1425       if ( src.first() != dst.first()) {
  1426         __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1432 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1433   VMRegPair src_lo(src.first());
  1434   VMRegPair src_hi(src.second());
  1435   VMRegPair dst_lo(dst.first());
  1436   VMRegPair dst_hi(dst.second());
  1437   simple_move32(masm, src_lo, dst_lo);
  1438   simple_move32(masm, src_hi, dst_hi);
  1441 // A long move
  1442 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1444   // Do the simple ones here else do two int moves
  1445   if (src.is_single_phys_reg() ) {
  1446     if (dst.is_single_phys_reg()) {
  1447       __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1448     } else {
  1449       // split src into two separate registers
  1450       // Remember hi means hi address or lsw on sparc
  1451       // Move msw to lsw
  1452       if (dst.second()->is_reg()) {
  1453         // MSW -> MSW
  1454         __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
  1455         // Now LSW -> LSW
  1456         // this will only move lo -> lo and ignore hi
  1457         VMRegPair split(dst.second());
  1458         simple_move32(masm, src, split);
  1459       } else {
  1460         VMRegPair split(src.first(), L4->as_VMReg());
  1461         // MSW -> MSW (lo ie. first word)
  1462         __ srax(src.first()->as_Register(), 32, L4);
  1463         split_long_move(masm, split, dst);
  1466   } else if (dst.is_single_phys_reg()) {
  1467     if (src.is_adjacent_aligned_on_stack(2)) {
  1468       __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1469     } else {
  1470       // dst is a single reg.
  1471       // Remember lo is low address not msb for stack slots
  1472       // and lo is the "real" register for registers
  1473       // src is
  1475       VMRegPair split;
  1477       if (src.first()->is_reg()) {
  1478         // src.lo (msw) is a reg, src.hi is stk/reg
  1479         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
  1480         split.set_pair(dst.first(), src.first());
  1481       } else {
  1482         // msw is stack move to L5
  1483         // lsw is stack move to dst.lo (real reg)
  1484         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
  1485         split.set_pair(dst.first(), L5->as_VMReg());
  1488       // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
  1489       // msw   -> src.lo/L5,  lsw -> dst.lo
  1490       split_long_move(masm, src, split);
  1492       // So dst now has the low order correct position the
  1493       // msw half
  1494       __ sllx(split.first()->as_Register(), 32, L5);
  1496       const Register d = dst.first()->as_Register();
  1497       __ or3(L5, d, d);
  1499   } else {
  1500     // For LP64 we can probably do better.
  1501     split_long_move(masm, src, dst);
  1505 // A double move
  1506 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1508   // The painful thing here is that like long_move a VMRegPair might be
  1509   // 1: a single physical register
  1510   // 2: two physical registers (v8)
  1511   // 3: a physical reg [lo] and a stack slot [hi] (v8)
  1512   // 4: two stack slots
  1514   // Since src is always a java calling convention we know that the src pair
  1515   // is always either all registers or all stack (and aligned?)
  1517   // in a register [lo] and a stack slot [hi]
  1518   if (src.first()->is_stack()) {
  1519     if (dst.first()->is_stack()) {
  1520       // stack to stack the easiest of the bunch
  1521       // ought to be a way to do this where if alignment is ok we use ldd/std when possible
  1522       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1523       __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1524       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1525       __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1526     } else {
  1527       // stack to reg
  1528       if (dst.second()->is_stack()) {
  1529         // stack -> reg, stack -> stack
  1530         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1531         if (dst.first()->is_Register()) {
  1532           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1533         } else {
  1534           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1536         // This was missing. (very rare case)
  1537         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1538       } else {
  1539         // stack -> reg
  1540         // Eventually optimize for alignment QQQ
  1541         if (dst.first()->is_Register()) {
  1542           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1543           __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
  1544         } else {
  1545           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1546           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
  1550   } else if (dst.first()->is_stack()) {
  1551     // reg to stack
  1552     if (src.first()->is_Register()) {
  1553       // Eventually optimize for alignment QQQ
  1554       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1555       if (src.second()->is_stack()) {
  1556         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1557         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1558       } else {
  1559         __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1561     } else {
  1562       // fpr to stack
  1563       if (src.second()->is_stack()) {
  1564         ShouldNotReachHere();
  1565       } else {
  1566         // Is the stack aligned?
  1567         if (reg2offset(dst.first()) & 0x7) {
  1568           // No do as pairs
  1569           __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1570           __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1571         } else {
  1572           __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1576   } else {
  1577     // reg to reg
  1578     if (src.first()->is_Register()) {
  1579       if (dst.first()->is_Register()) {
  1580         // gpr -> gpr
  1581         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1582         __ mov(src.second()->as_Register(), dst.second()->as_Register());
  1583       } else {
  1584         // gpr -> fpr
  1585         // ought to be able to do a single store
  1586         __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
  1587         __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
  1588         // ought to be able to do a single load
  1589         __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
  1590         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
  1592     } else if (dst.first()->is_Register()) {
  1593       // fpr -> gpr
  1594       // ought to be able to do a single store
  1595       __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
  1596       // ought to be able to do a single load
  1597       // REMEMBER first() is low address not LSB
  1598       __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
  1599       if (dst.second()->is_Register()) {
  1600         __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
  1601       } else {
  1602         __ ld(FP, -4 + STACK_BIAS, L4);
  1603         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1605     } else {
  1606       // fpr -> fpr
  1607       // In theory these overlap but the ordering is such that this is likely a nop
  1608       if ( src.first() != dst.first()) {
  1609         __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1615 // Creates an inner frame if one hasn't already been created, and
  1616 // saves a copy of the thread in L7_thread_cache
  1617 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
  1618   if (!*already_created) {
  1619     __ save_frame(0);
  1620     // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
  1621     // Don't use save_thread because it smashes G2 and we merely want to save a
  1622     // copy
  1623     __ mov(G2_thread, L7_thread_cache);
  1624     *already_created = true;
  1629 static void save_or_restore_arguments(MacroAssembler* masm,
  1630                                       const int stack_slots,
  1631                                       const int total_in_args,
  1632                                       const int arg_save_area,
  1633                                       OopMap* map,
  1634                                       VMRegPair* in_regs,
  1635                                       BasicType* in_sig_bt) {
  1636   // if map is non-NULL then the code should store the values,
  1637   // otherwise it should load them.
  1638   if (map != NULL) {
  1639     // Fill in the map
  1640     for (int i = 0; i < total_in_args; i++) {
  1641       if (in_sig_bt[i] == T_ARRAY) {
  1642         if (in_regs[i].first()->is_stack()) {
  1643           int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1644           map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1645         } else if (in_regs[i].first()->is_Register()) {
  1646           map->set_oop(in_regs[i].first());
  1647         } else {
  1648           ShouldNotReachHere();
  1654   // Save or restore double word values
  1655   int handle_index = 0;
  1656   for (int i = 0; i < total_in_args; i++) {
  1657     int slot = handle_index + arg_save_area;
  1658     int offset = slot * VMRegImpl::stack_slot_size;
  1659     if (in_sig_bt[i] == T_LONG && in_regs[i].first()->is_Register()) {
  1660       const Register reg = in_regs[i].first()->as_Register();
  1661       if (reg->is_global()) {
  1662         handle_index += 2;
  1663         assert(handle_index <= stack_slots, "overflow");
  1664         if (map != NULL) {
  1665           __ stx(reg, SP, offset + STACK_BIAS);
  1666         } else {
  1667           __ ldx(SP, offset + STACK_BIAS, reg);
  1670     } else if (in_sig_bt[i] == T_DOUBLE && in_regs[i].first()->is_FloatRegister()) {
  1671       handle_index += 2;
  1672       assert(handle_index <= stack_slots, "overflow");
  1673       if (map != NULL) {
  1674         __ stf(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
  1675       } else {
  1676         __ ldf(FloatRegisterImpl::D, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
  1680   // Save floats
  1681   for (int i = 0; i < total_in_args; i++) {
  1682     int slot = handle_index + arg_save_area;
  1683     int offset = slot * VMRegImpl::stack_slot_size;
  1684     if (in_sig_bt[i] == T_FLOAT && in_regs[i].first()->is_FloatRegister()) {
  1685       handle_index++;
  1686       assert(handle_index <= stack_slots, "overflow");
  1687       if (map != NULL) {
  1688         __ stf(FloatRegisterImpl::S, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
  1689       } else {
  1690         __ ldf(FloatRegisterImpl::S, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
  1698 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
  1699 // keeps a new JNI critical region from starting until a GC has been
  1700 // forced.  Save down any oops in registers and describe them in an
  1701 // OopMap.
  1702 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1703                                                const int stack_slots,
  1704                                                const int total_in_args,
  1705                                                const int arg_save_area,
  1706                                                OopMapSet* oop_maps,
  1707                                                VMRegPair* in_regs,
  1708                                                BasicType* in_sig_bt) {
  1709   __ block_comment("check GC_locker::needs_gc");
  1710   Label cont;
  1711   AddressLiteral sync_state(GC_locker::needs_gc_address());
  1712   __ load_bool_contents(sync_state, G3_scratch);
  1713   __ cmp_zero_and_br(Assembler::equal, G3_scratch, cont);
  1714   __ delayed()->nop();
  1716   // Save down any values that are live in registers and call into the
  1717   // runtime to halt for a GC
  1718   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1719   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1720                             arg_save_area, map, in_regs, in_sig_bt);
  1722   __ mov(G2_thread, L7_thread_cache);
  1724   __ set_last_Java_frame(SP, noreg);
  1726   __ block_comment("block_for_jni_critical");
  1727   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical), relocInfo::runtime_call_type);
  1728   __ delayed()->mov(L7_thread_cache, O0);
  1729   oop_maps->add_gc_map( __ offset(), map);
  1731   __ restore_thread(L7_thread_cache); // restore G2_thread
  1732   __ reset_last_Java_frame();
  1734   // Reload all the register arguments
  1735   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1736                             arg_save_area, NULL, in_regs, in_sig_bt);
  1738   __ bind(cont);
  1739 #ifdef ASSERT
  1740   if (StressCriticalJNINatives) {
  1741     // Stress register saving
  1742     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1743     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1744                               arg_save_area, map, in_regs, in_sig_bt);
  1745     // Destroy argument registers
  1746     for (int i = 0; i < total_in_args; i++) {
  1747       if (in_regs[i].first()->is_Register()) {
  1748         const Register reg = in_regs[i].first()->as_Register();
  1749         if (reg->is_global()) {
  1750           __ mov(G0, reg);
  1752       } else if (in_regs[i].first()->is_FloatRegister()) {
  1753         __ fneg(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
  1757     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1758                               arg_save_area, NULL, in_regs, in_sig_bt);
  1760 #endif
  1763 // Unpack an array argument into a pointer to the body and the length
  1764 // if the array is non-null, otherwise pass 0 for both.
  1765 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
  1766   // Pass the length, ptr pair
  1767   Label is_null, done;
  1768   if (reg.first()->is_stack()) {
  1769     VMRegPair tmp  = reg64_to_VMRegPair(L2);
  1770     // Load the arg up from the stack
  1771     move_ptr(masm, reg, tmp);
  1772     reg = tmp;
  1774   __ cmp(reg.first()->as_Register(), G0);
  1775   __ brx(Assembler::equal, false, Assembler::pt, is_null);
  1776   __ delayed()->add(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type), L4);
  1777   move_ptr(masm, reg64_to_VMRegPair(L4), body_arg);
  1778   __ ld(reg.first()->as_Register(), arrayOopDesc::length_offset_in_bytes(), L4);
  1779   move32_64(masm, reg64_to_VMRegPair(L4), length_arg);
  1780   __ ba_short(done);
  1781   __ bind(is_null);
  1782   // Pass zeros
  1783   move_ptr(masm, reg64_to_VMRegPair(G0), body_arg);
  1784   move32_64(masm, reg64_to_VMRegPair(G0), length_arg);
  1785   __ bind(done);
  1788 static void verify_oop_args(MacroAssembler* masm,
  1789                             methodHandle method,
  1790                             const BasicType* sig_bt,
  1791                             const VMRegPair* regs) {
  1792   Register temp_reg = G5_method;  // not part of any compiled calling seq
  1793   if (VerifyOops) {
  1794     for (int i = 0; i < method->size_of_parameters(); i++) {
  1795       if (sig_bt[i] == T_OBJECT ||
  1796           sig_bt[i] == T_ARRAY) {
  1797         VMReg r = regs[i].first();
  1798         assert(r->is_valid(), "bad oop arg");
  1799         if (r->is_stack()) {
  1800           RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
  1801           ld_off = __ ensure_simm13_or_reg(ld_off, temp_reg);
  1802           __ ld_ptr(SP, ld_off, temp_reg);
  1803           __ verify_oop(temp_reg);
  1804         } else {
  1805           __ verify_oop(r->as_Register());
  1812 static void gen_special_dispatch(MacroAssembler* masm,
  1813                                  methodHandle method,
  1814                                  const BasicType* sig_bt,
  1815                                  const VMRegPair* regs) {
  1816   verify_oop_args(masm, method, sig_bt, regs);
  1817   vmIntrinsics::ID iid = method->intrinsic_id();
  1819   // Now write the args into the outgoing interpreter space
  1820   bool     has_receiver   = false;
  1821   Register receiver_reg   = noreg;
  1822   int      member_arg_pos = -1;
  1823   Register member_reg     = noreg;
  1824   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
  1825   if (ref_kind != 0) {
  1826     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
  1827     member_reg = G5_method;  // known to be free at this point
  1828     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  1829   } else if (iid == vmIntrinsics::_invokeBasic) {
  1830     has_receiver = true;
  1831   } else {
  1832     fatal(err_msg_res("unexpected intrinsic id %d", iid));
  1835   if (member_reg != noreg) {
  1836     // Load the member_arg into register, if necessary.
  1837     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
  1838     VMReg r = regs[member_arg_pos].first();
  1839     if (r->is_stack()) {
  1840       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
  1841       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
  1842       __ ld_ptr(SP, ld_off, member_reg);
  1843     } else {
  1844       // no data motion is needed
  1845       member_reg = r->as_Register();
  1849   if (has_receiver) {
  1850     // Make sure the receiver is loaded into a register.
  1851     assert(method->size_of_parameters() > 0, "oob");
  1852     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
  1853     VMReg r = regs[0].first();
  1854     assert(r->is_valid(), "bad receiver arg");
  1855     if (r->is_stack()) {
  1856       // Porting note:  This assumes that compiled calling conventions always
  1857       // pass the receiver oop in a register.  If this is not true on some
  1858       // platform, pick a temp and load the receiver from stack.
  1859       fatal("receiver always in a register");
  1860       receiver_reg = G3_scratch;  // known to be free at this point
  1861       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
  1862       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
  1863       __ ld_ptr(SP, ld_off, receiver_reg);
  1864     } else {
  1865       // no data motion is needed
  1866       receiver_reg = r->as_Register();
  1870   // Figure out which address we are really jumping to:
  1871   MethodHandles::generate_method_handle_dispatch(masm, iid,
  1872                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
  1875 // ---------------------------------------------------------------------------
  1876 // Generate a native wrapper for a given method.  The method takes arguments
  1877 // in the Java compiled code convention, marshals them to the native
  1878 // convention (handlizes oops, etc), transitions to native, makes the call,
  1879 // returns to java state (possibly blocking), unhandlizes any result and
  1880 // returns.
  1881 //
  1882 // Critical native functions are a shorthand for the use of
  1883 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  1884 // functions.  The wrapper is expected to unpack the arguments before
  1885 // passing them to the callee and perform checks before and after the
  1886 // native call to ensure that they GC_locker
  1887 // lock_critical/unlock_critical semantics are followed.  Some other
  1888 // parts of JNI setup are skipped like the tear down of the JNI handle
  1889 // block and the check for pending exceptions it's impossible for them
  1890 // to be thrown.
  1891 //
  1892 // They are roughly structured like this:
  1893 //    if (GC_locker::needs_gc())
  1894 //      SharedRuntime::block_for_jni_critical();
  1895 //    tranistion to thread_in_native
  1896 //    unpack arrray arguments and call native entry point
  1897 //    check for safepoint in progress
  1898 //    check if any thread suspend flags are set
  1899 //      call into JVM and possible unlock the JNI critical
  1900 //      if a GC was suppressed while in the critical native.
  1901 //    transition back to thread_in_Java
  1902 //    return to caller
  1903 //
  1904 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  1905                                                 methodHandle method,
  1906                                                 int compile_id,
  1907                                                 BasicType* in_sig_bt,
  1908                                                 VMRegPair* in_regs,
  1909                                                 BasicType ret_type) {
  1910   if (method->is_method_handle_intrinsic()) {
  1911     vmIntrinsics::ID iid = method->intrinsic_id();
  1912     intptr_t start = (intptr_t)__ pc();
  1913     int vep_offset = ((intptr_t)__ pc()) - start;
  1914     gen_special_dispatch(masm,
  1915                          method,
  1916                          in_sig_bt,
  1917                          in_regs);
  1918     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
  1919     __ flush();
  1920     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
  1921     return nmethod::new_native_nmethod(method,
  1922                                        compile_id,
  1923                                        masm->code(),
  1924                                        vep_offset,
  1925                                        frame_complete,
  1926                                        stack_slots / VMRegImpl::slots_per_word,
  1927                                        in_ByteSize(-1),
  1928                                        in_ByteSize(-1),
  1929                                        (OopMapSet*)NULL);
  1931   bool is_critical_native = true;
  1932   address native_func = method->critical_native_function();
  1933   if (native_func == NULL) {
  1934     native_func = method->native_function();
  1935     is_critical_native = false;
  1937   assert(native_func != NULL, "must have function");
  1939   // Native nmethod wrappers never take possesion of the oop arguments.
  1940   // So the caller will gc the arguments. The only thing we need an
  1941   // oopMap for is if the call is static
  1942   //
  1943   // An OopMap for lock (and class if static), and one for the VM call itself
  1944   OopMapSet *oop_maps = new OopMapSet();
  1945   intptr_t start = (intptr_t)__ pc();
  1947   // First thing make an ic check to see if we should even be here
  1949     Label L;
  1950     const Register temp_reg = G3_scratch;
  1951     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  1952     __ verify_oop(O0);
  1953     __ load_klass(O0, temp_reg);
  1954     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
  1956     __ jump_to(ic_miss, temp_reg);
  1957     __ delayed()->nop();
  1958     __ align(CodeEntryAlignment);
  1959     __ bind(L);
  1962   int vep_offset = ((intptr_t)__ pc()) - start;
  1964 #ifdef COMPILER1
  1965   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  1966     // Object.hashCode can pull the hashCode from the header word
  1967     // instead of doing a full VM transition once it's been computed.
  1968     // Since hashCode is usually polymorphic at call sites we can't do
  1969     // this optimization at the call site without a lot of work.
  1970     Label slowCase;
  1971     Register receiver             = O0;
  1972     Register result               = O0;
  1973     Register header               = G3_scratch;
  1974     Register hash                 = G3_scratch; // overwrite header value with hash value
  1975     Register mask                 = G1;         // to get hash field from header
  1977     // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
  1978     // We depend on hash_mask being at most 32 bits and avoid the use of
  1979     // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  1980     // vm: see markOop.hpp.
  1981     __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
  1982     __ sethi(markOopDesc::hash_mask, mask);
  1983     __ btst(markOopDesc::unlocked_value, header);
  1984     __ br(Assembler::zero, false, Assembler::pn, slowCase);
  1985     if (UseBiasedLocking) {
  1986       // Check if biased and fall through to runtime if so
  1987       __ delayed()->nop();
  1988       __ btst(markOopDesc::biased_lock_bit_in_place, header);
  1989       __ br(Assembler::notZero, false, Assembler::pn, slowCase);
  1991     __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
  1993     // Check for a valid (non-zero) hash code and get its value.
  1994 #ifdef _LP64
  1995     __ srlx(header, markOopDesc::hash_shift, hash);
  1996 #else
  1997     __ srl(header, markOopDesc::hash_shift, hash);
  1998 #endif
  1999     __ andcc(hash, mask, hash);
  2000     __ br(Assembler::equal, false, Assembler::pn, slowCase);
  2001     __ delayed()->nop();
  2003     // leaf return.
  2004     __ retl();
  2005     __ delayed()->mov(hash, result);
  2006     __ bind(slowCase);
  2008 #endif // COMPILER1
  2011   // We have received a description of where all the java arg are located
  2012   // on entry to the wrapper. We need to convert these args to where
  2013   // the jni function will expect them. To figure out where they go
  2014   // we convert the java signature to a C signature by inserting
  2015   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  2017   const int total_in_args = method->size_of_parameters();
  2018   int total_c_args = total_in_args;
  2019   int total_save_slots = 6 * VMRegImpl::slots_per_word;
  2020   if (!is_critical_native) {
  2021     total_c_args += 1;
  2022     if (method->is_static()) {
  2023       total_c_args++;
  2025   } else {
  2026     for (int i = 0; i < total_in_args; i++) {
  2027       if (in_sig_bt[i] == T_ARRAY) {
  2028         // These have to be saved and restored across the safepoint
  2029         total_c_args++;
  2034   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  2035   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  2036   BasicType* in_elem_bt = NULL;
  2038   int argc = 0;
  2039   if (!is_critical_native) {
  2040     out_sig_bt[argc++] = T_ADDRESS;
  2041     if (method->is_static()) {
  2042       out_sig_bt[argc++] = T_OBJECT;
  2045     for (int i = 0; i < total_in_args ; i++ ) {
  2046       out_sig_bt[argc++] = in_sig_bt[i];
  2048   } else {
  2049     Thread* THREAD = Thread::current();
  2050     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
  2051     SignatureStream ss(method->signature());
  2052     for (int i = 0; i < total_in_args ; i++ ) {
  2053       if (in_sig_bt[i] == T_ARRAY) {
  2054         // Arrays are passed as int, elem* pair
  2055         out_sig_bt[argc++] = T_INT;
  2056         out_sig_bt[argc++] = T_ADDRESS;
  2057         Symbol* atype = ss.as_symbol(CHECK_NULL);
  2058         const char* at = atype->as_C_string();
  2059         if (strlen(at) == 2) {
  2060           assert(at[0] == '[', "must be");
  2061           switch (at[1]) {
  2062             case 'B': in_elem_bt[i]  = T_BYTE; break;
  2063             case 'C': in_elem_bt[i]  = T_CHAR; break;
  2064             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
  2065             case 'F': in_elem_bt[i]  = T_FLOAT; break;
  2066             case 'I': in_elem_bt[i]  = T_INT; break;
  2067             case 'J': in_elem_bt[i]  = T_LONG; break;
  2068             case 'S': in_elem_bt[i]  = T_SHORT; break;
  2069             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
  2070             default: ShouldNotReachHere();
  2073       } else {
  2074         out_sig_bt[argc++] = in_sig_bt[i];
  2075         in_elem_bt[i] = T_VOID;
  2077       if (in_sig_bt[i] != T_VOID) {
  2078         assert(in_sig_bt[i] == ss.type(), "must match");
  2079         ss.next();
  2084   // Now figure out where the args must be stored and how much stack space
  2085   // they require (neglecting out_preserve_stack_slots but space for storing
  2086   // the 1st six register arguments). It's weird see int_stk_helper.
  2087   //
  2088   int out_arg_slots;
  2089   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
  2091   if (is_critical_native) {
  2092     // Critical natives may have to call out so they need a save area
  2093     // for register arguments.
  2094     int double_slots = 0;
  2095     int single_slots = 0;
  2096     for ( int i = 0; i < total_in_args; i++) {
  2097       if (in_regs[i].first()->is_Register()) {
  2098         const Register reg = in_regs[i].first()->as_Register();
  2099         switch (in_sig_bt[i]) {
  2100           case T_ARRAY:
  2101           case T_BOOLEAN:
  2102           case T_BYTE:
  2103           case T_SHORT:
  2104           case T_CHAR:
  2105           case T_INT:  assert(reg->is_in(), "don't need to save these"); break;
  2106           case T_LONG: if (reg->is_global()) double_slots++; break;
  2107           default:  ShouldNotReachHere();
  2109       } else if (in_regs[i].first()->is_FloatRegister()) {
  2110         switch (in_sig_bt[i]) {
  2111           case T_FLOAT:  single_slots++; break;
  2112           case T_DOUBLE: double_slots++; break;
  2113           default:  ShouldNotReachHere();
  2117     total_save_slots = double_slots * 2 + single_slots;
  2120   // Compute framesize for the wrapper.  We need to handlize all oops in
  2121   // registers. We must create space for them here that is disjoint from
  2122   // the windowed save area because we have no control over when we might
  2123   // flush the window again and overwrite values that gc has since modified.
  2124   // (The live window race)
  2125   //
  2126   // We always just allocate 6 word for storing down these object. This allow
  2127   // us to simply record the base and use the Ireg number to decide which
  2128   // slot to use. (Note that the reg number is the inbound number not the
  2129   // outbound number).
  2130   // We must shuffle args to match the native convention, and include var-args space.
  2132   // Calculate the total number of stack slots we will need.
  2134   // First count the abi requirement plus all of the outgoing args
  2135   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2137   // Now the space for the inbound oop handle area
  2139   int oop_handle_offset = round_to(stack_slots, 2);
  2140   stack_slots += total_save_slots;
  2142   // Now any space we need for handlizing a klass if static method
  2144   int klass_slot_offset = 0;
  2145   int klass_offset = -1;
  2146   int lock_slot_offset = 0;
  2147   bool is_static = false;
  2149   if (method->is_static()) {
  2150     klass_slot_offset = stack_slots;
  2151     stack_slots += VMRegImpl::slots_per_word;
  2152     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  2153     is_static = true;
  2156   // Plus a lock if needed
  2158   if (method->is_synchronized()) {
  2159     lock_slot_offset = stack_slots;
  2160     stack_slots += VMRegImpl::slots_per_word;
  2163   // Now a place to save return value or as a temporary for any gpr -> fpr moves
  2164   stack_slots += 2;
  2166   // Ok The space we have allocated will look like:
  2167   //
  2168   //
  2169   // FP-> |                     |
  2170   //      |---------------------|
  2171   //      | 2 slots for moves   |
  2172   //      |---------------------|
  2173   //      | lock box (if sync)  |
  2174   //      |---------------------| <- lock_slot_offset
  2175   //      | klass (if static)   |
  2176   //      |---------------------| <- klass_slot_offset
  2177   //      | oopHandle area      |
  2178   //      |---------------------| <- oop_handle_offset
  2179   //      | outbound memory     |
  2180   //      | based arguments     |
  2181   //      |                     |
  2182   //      |---------------------|
  2183   //      | vararg area         |
  2184   //      |---------------------|
  2185   //      |                     |
  2186   // SP-> | out_preserved_slots |
  2187   //
  2188   //
  2191   // Now compute actual number of stack words we need rounding to make
  2192   // stack properly aligned.
  2193   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  2195   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2197   // Generate stack overflow check before creating frame
  2198   __ generate_stack_overflow_check(stack_size);
  2200   // Generate a new frame for the wrapper.
  2201   __ save(SP, -stack_size, SP);
  2203   int frame_complete = ((intptr_t)__ pc()) - start;
  2205   __ verify_thread();
  2207   if (is_critical_native) {
  2208     check_needs_gc_for_critical_native(masm, stack_slots,  total_in_args,
  2209                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
  2212   //
  2213   // We immediately shuffle the arguments so that any vm call we have to
  2214   // make from here on out (sync slow path, jvmti, etc.) we will have
  2215   // captured the oops from our caller and have a valid oopMap for
  2216   // them.
  2218   // -----------------
  2219   // The Grand Shuffle
  2220   //
  2221   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  2222   // (derived from JavaThread* which is in L7_thread_cache) and, if static,
  2223   // the class mirror instead of a receiver.  This pretty much guarantees that
  2224   // register layout will not match.  We ignore these extra arguments during
  2225   // the shuffle. The shuffle is described by the two calling convention
  2226   // vectors we have in our possession. We simply walk the java vector to
  2227   // get the source locations and the c vector to get the destinations.
  2228   // Because we have a new window and the argument registers are completely
  2229   // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
  2230   // here.
  2232   // This is a trick. We double the stack slots so we can claim
  2233   // the oops in the caller's frame. Since we are sure to have
  2234   // more args than the caller doubling is enough to make
  2235   // sure we can capture all the incoming oop args from the
  2236   // caller.
  2237   //
  2238   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  2239   // Record sp-based slot for receiver on stack for non-static methods
  2240   int receiver_offset = -1;
  2242   // We move the arguments backward because the floating point registers
  2243   // destination will always be to a register with a greater or equal register
  2244   // number or the stack.
  2246 #ifdef ASSERT
  2247   bool reg_destroyed[RegisterImpl::number_of_registers];
  2248   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2249   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2250     reg_destroyed[r] = false;
  2252   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  2253     freg_destroyed[f] = false;
  2256 #endif /* ASSERT */
  2258   for ( int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0 ; i--, c_arg-- ) {
  2260 #ifdef ASSERT
  2261     if (in_regs[i].first()->is_Register()) {
  2262       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
  2263     } else if (in_regs[i].first()->is_FloatRegister()) {
  2264       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
  2266     if (out_regs[c_arg].first()->is_Register()) {
  2267       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2268     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
  2269       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
  2271 #endif /* ASSERT */
  2273     switch (in_sig_bt[i]) {
  2274       case T_ARRAY:
  2275         if (is_critical_native) {
  2276           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg], out_regs[c_arg - 1]);
  2277           c_arg--;
  2278           break;
  2280       case T_OBJECT:
  2281         assert(!is_critical_native, "no oop arguments");
  2282         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  2283                     ((i == 0) && (!is_static)),
  2284                     &receiver_offset);
  2285         break;
  2286       case T_VOID:
  2287         break;
  2289       case T_FLOAT:
  2290         float_move(masm, in_regs[i], out_regs[c_arg]);
  2291         break;
  2293       case T_DOUBLE:
  2294         assert( i + 1 < total_in_args &&
  2295                 in_sig_bt[i + 1] == T_VOID &&
  2296                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  2297         double_move(masm, in_regs[i], out_regs[c_arg]);
  2298         break;
  2300       case T_LONG :
  2301         long_move(masm, in_regs[i], out_regs[c_arg]);
  2302         break;
  2304       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2306       default:
  2307         move32_64(masm, in_regs[i], out_regs[c_arg]);
  2311   // Pre-load a static method's oop into O1.  Used both by locking code and
  2312   // the normal JNI call code.
  2313   if (method->is_static() && !is_critical_native) {
  2314     __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()), O1);
  2316     // Now handlize the static class mirror in O1.  It's known not-null.
  2317     __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
  2318     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  2319     __ add(SP, klass_offset + STACK_BIAS, O1);
  2323   const Register L6_handle = L6;
  2325   if (method->is_synchronized()) {
  2326     assert(!is_critical_native, "unhandled");
  2327     __ mov(O1, L6_handle);
  2330   // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
  2331   // except O6/O7. So if we must call out we must push a new frame. We immediately
  2332   // push a new frame and flush the windows.
  2333 #ifdef _LP64
  2334   intptr_t thepc = (intptr_t) __ pc();
  2336     address here = __ pc();
  2337     // Call the next instruction
  2338     __ call(here + 8, relocInfo::none);
  2339     __ delayed()->nop();
  2341 #else
  2342   intptr_t thepc = __ load_pc_address(O7, 0);
  2343 #endif /* _LP64 */
  2345   // We use the same pc/oopMap repeatedly when we call out
  2346   oop_maps->add_gc_map(thepc - start, map);
  2348   // O7 now has the pc loaded that we will use when we finally call to native.
  2350   // Save thread in L7; it crosses a bunch of VM calls below
  2351   // Don't use save_thread because it smashes G2 and we merely
  2352   // want to save a copy
  2353   __ mov(G2_thread, L7_thread_cache);
  2356   // If we create an inner frame once is plenty
  2357   // when we create it we must also save G2_thread
  2358   bool inner_frame_created = false;
  2360   // dtrace method entry support
  2362     SkipIfEqual skip_if(
  2363       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2364     // create inner frame
  2365     __ save_frame(0);
  2366     __ mov(G2_thread, L7_thread_cache);
  2367     __ set_metadata_constant(method(), O1);
  2368     __ call_VM_leaf(L7_thread_cache,
  2369          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2370          G2_thread, O1);
  2371     __ restore();
  2374   // RedefineClasses() tracing support for obsolete method entry
  2375   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2376     // create inner frame
  2377     __ save_frame(0);
  2378     __ mov(G2_thread, L7_thread_cache);
  2379     __ set_metadata_constant(method(), O1);
  2380     __ call_VM_leaf(L7_thread_cache,
  2381          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2382          G2_thread, O1);
  2383     __ restore();
  2386   // We are in the jni frame unless saved_frame is true in which case
  2387   // we are in one frame deeper (the "inner" frame). If we are in the
  2388   // "inner" frames the args are in the Iregs and if the jni frame then
  2389   // they are in the Oregs.
  2390   // If we ever need to go to the VM (for locking, jvmti) then
  2391   // we will always be in the "inner" frame.
  2393   // Lock a synchronized method
  2394   int lock_offset = -1;         // Set if locked
  2395   if (method->is_synchronized()) {
  2396     Register Roop = O1;
  2397     const Register L3_box = L3;
  2399     create_inner_frame(masm, &inner_frame_created);
  2401     __ ld_ptr(I1, 0, O1);
  2402     Label done;
  2404     lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
  2405     __ add(FP, lock_offset+STACK_BIAS, L3_box);
  2406 #ifdef ASSERT
  2407     if (UseBiasedLocking) {
  2408       // making the box point to itself will make it clear it went unused
  2409       // but also be obviously invalid
  2410       __ st_ptr(L3_box, L3_box, 0);
  2412 #endif // ASSERT
  2413     //
  2414     // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
  2415     //
  2416     __ compiler_lock_object(Roop, L1,    L3_box, L2);
  2417     __ br(Assembler::equal, false, Assembler::pt, done);
  2418     __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
  2421     // None of the above fast optimizations worked so we have to get into the
  2422     // slow case of monitor enter.  Inline a special case of call_VM that
  2423     // disallows any pending_exception.
  2424     __ mov(Roop, O0);            // Need oop in O0
  2425     __ mov(L3_box, O1);
  2427     // Record last_Java_sp, in case the VM code releases the JVM lock.
  2429     __ set_last_Java_frame(FP, I7);
  2431     // do the call
  2432     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
  2433     __ delayed()->mov(L7_thread_cache, O2);
  2435     __ restore_thread(L7_thread_cache); // restore G2_thread
  2436     __ reset_last_Java_frame();
  2438 #ifdef ASSERT
  2439     { Label L;
  2440     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2441     __ br_null_short(O0, Assembler::pt, L);
  2442     __ stop("no pending exception allowed on exit from IR::monitorenter");
  2443     __ bind(L);
  2445 #endif
  2446     __ bind(done);
  2450   // Finally just about ready to make the JNI call
  2452   __ flushw();
  2453   if (inner_frame_created) {
  2454     __ restore();
  2455   } else {
  2456     // Store only what we need from this frame
  2457     // QQQ I think that non-v9 (like we care) we don't need these saves
  2458     // either as the flush traps and the current window goes too.
  2459     __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2460     __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2463   // get JNIEnv* which is first argument to native
  2464   if (!is_critical_native) {
  2465     __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
  2468   // Use that pc we placed in O7 a while back as the current frame anchor
  2469   __ set_last_Java_frame(SP, O7);
  2471   // We flushed the windows ages ago now mark them as flushed before transitioning.
  2472   __ set(JavaFrameAnchor::flushed, G3_scratch);
  2473   __ st(G3_scratch, G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  2475   // Transition from _thread_in_Java to _thread_in_native.
  2476   __ set(_thread_in_native, G3_scratch);
  2478 #ifdef _LP64
  2479   AddressLiteral dest(native_func);
  2480   __ relocate(relocInfo::runtime_call_type);
  2481   __ jumpl_to(dest, O7, O7);
  2482 #else
  2483   __ call(native_func, relocInfo::runtime_call_type);
  2484 #endif
  2485   __ delayed()->st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2487   __ restore_thread(L7_thread_cache); // restore G2_thread
  2489   // Unpack native results.  For int-types, we do any needed sign-extension
  2490   // and move things into I0.  The return value there will survive any VM
  2491   // calls for blocking or unlocking.  An FP or OOP result (handle) is done
  2492   // specially in the slow-path code.
  2493   switch (ret_type) {
  2494   case T_VOID:    break;        // Nothing to do!
  2495   case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
  2496   case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
  2497   // In 64 bits build result is in O0, in O0, O1 in 32bit build
  2498   case T_LONG:
  2499 #ifndef _LP64
  2500                   __ mov(O1, I1);
  2501 #endif
  2502                   // Fall thru
  2503   case T_OBJECT:                // Really a handle
  2504   case T_ARRAY:
  2505   case T_INT:
  2506                   __ mov(O0, I0);
  2507                   break;
  2508   case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
  2509   case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
  2510   case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
  2511   case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
  2512     break;                      // Cannot de-handlize until after reclaiming jvm_lock
  2513   default:
  2514     ShouldNotReachHere();
  2517   Label after_transition;
  2518   // must we block?
  2520   // Block, if necessary, before resuming in _thread_in_Java state.
  2521   // In order for GC to work, don't clear the last_Java_sp until after blocking.
  2522   { Label no_block;
  2523     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
  2525     // Switch thread to "native transition" state before reading the synchronization state.
  2526     // This additional state is necessary because reading and testing the synchronization
  2527     // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2528     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2529     //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2530     //     Thread A is resumed to finish this native method, but doesn't block here since it
  2531     //     didn't see any synchronization is progress, and escapes.
  2532     __ set(_thread_in_native_trans, G3_scratch);
  2533     __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2534     if(os::is_MP()) {
  2535       if (UseMembar) {
  2536         // Force this write out before the read below
  2537         __ membar(Assembler::StoreLoad);
  2538       } else {
  2539         // Write serialization page so VM thread can do a pseudo remote membar.
  2540         // We use the current thread pointer to calculate a thread specific
  2541         // offset to write to within the page. This minimizes bus traffic
  2542         // due to cache line collision.
  2543         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
  2546     __ load_contents(sync_state, G3_scratch);
  2547     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
  2549     Label L;
  2550     Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
  2551     __ br(Assembler::notEqual, false, Assembler::pn, L);
  2552     __ delayed()->ld(suspend_state, G3_scratch);
  2553     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
  2554     __ bind(L);
  2556     // Block.  Save any potential method result value before the operation and
  2557     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
  2558     // lets us share the oopMap we used when we went native rather the create
  2559     // a distinct one for this pc
  2560     //
  2561     save_native_result(masm, ret_type, stack_slots);
  2562     if (!is_critical_native) {
  2563       __ call_VM_leaf(L7_thread_cache,
  2564                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  2565                       G2_thread);
  2566     } else {
  2567       __ call_VM_leaf(L7_thread_cache,
  2568                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition),
  2569                       G2_thread);
  2572     // Restore any method result value
  2573     restore_native_result(masm, ret_type, stack_slots);
  2575     if (is_critical_native) {
  2576       // The call above performed the transition to thread_in_Java so
  2577       // skip the transition logic below.
  2578       __ ba(after_transition);
  2579       __ delayed()->nop();
  2582     __ bind(no_block);
  2585   // thread state is thread_in_native_trans. Any safepoint blocking has already
  2586   // happened so we can now change state to _thread_in_Java.
  2587   __ set(_thread_in_Java, G3_scratch);
  2588   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2589   __ bind(after_transition);
  2591   Label no_reguard;
  2592   __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
  2593   __ cmp_and_br_short(G3_scratch, JavaThread::stack_guard_yellow_disabled, Assembler::notEqual, Assembler::pt, no_reguard);
  2595     save_native_result(masm, ret_type, stack_slots);
  2596   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
  2597   __ delayed()->nop();
  2599   __ restore_thread(L7_thread_cache); // restore G2_thread
  2600     restore_native_result(masm, ret_type, stack_slots);
  2602   __ bind(no_reguard);
  2604   // Handle possible exception (will unlock if necessary)
  2606   // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
  2608   // Unlock
  2609   if (method->is_synchronized()) {
  2610     Label done;
  2611     Register I2_ex_oop = I2;
  2612     const Register L3_box = L3;
  2613     // Get locked oop from the handle we passed to jni
  2614     __ ld_ptr(L6_handle, 0, L4);
  2615     __ add(SP, lock_offset+STACK_BIAS, L3_box);
  2616     // Must save pending exception around the slow-path VM call.  Since it's a
  2617     // leaf call, the pending exception (if any) can be kept in a register.
  2618     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
  2619     // Now unlock
  2620     //                       (Roop, Rmark, Rbox,   Rscratch)
  2621     __ compiler_unlock_object(L4,   L1,    L3_box, L2);
  2622     __ br(Assembler::equal, false, Assembler::pt, done);
  2623     __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
  2625     // save and restore any potential method result value around the unlocking
  2626     // operation.  Will save in I0 (or stack for FP returns).
  2627     save_native_result(masm, ret_type, stack_slots);
  2629     // Must clear pending-exception before re-entering the VM.  Since this is
  2630     // a leaf call, pending-exception-oop can be safely kept in a register.
  2631     __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2633     // slow case of monitor enter.  Inline a special case of call_VM that
  2634     // disallows any pending_exception.
  2635     __ mov(L3_box, O1);
  2637     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
  2638     __ delayed()->mov(L4, O0);              // Need oop in O0
  2640     __ restore_thread(L7_thread_cache); // restore G2_thread
  2642 #ifdef ASSERT
  2643     { Label L;
  2644     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2645     __ br_null_short(O0, Assembler::pt, L);
  2646     __ stop("no pending exception allowed on exit from IR::monitorexit");
  2647     __ bind(L);
  2649 #endif
  2650     restore_native_result(masm, ret_type, stack_slots);
  2651     // check_forward_pending_exception jump to forward_exception if any pending
  2652     // exception is set.  The forward_exception routine expects to see the
  2653     // exception in pending_exception and not in a register.  Kind of clumsy,
  2654     // since all folks who branch to forward_exception must have tested
  2655     // pending_exception first and hence have it in a register already.
  2656     __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2657     __ bind(done);
  2660   // Tell dtrace about this method exit
  2662     SkipIfEqual skip_if(
  2663       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2664     save_native_result(masm, ret_type, stack_slots);
  2665     __ set_metadata_constant(method(), O1);
  2666     __ call_VM_leaf(L7_thread_cache,
  2667        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2668        G2_thread, O1);
  2669     restore_native_result(masm, ret_type, stack_slots);
  2672   // Clear "last Java frame" SP and PC.
  2673   __ verify_thread(); // G2_thread must be correct
  2674   __ reset_last_Java_frame();
  2676   // Unpack oop result
  2677   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2678       Label L;
  2679       __ addcc(G0, I0, G0);
  2680       __ brx(Assembler::notZero, true, Assembler::pt, L);
  2681       __ delayed()->ld_ptr(I0, 0, I0);
  2682       __ mov(G0, I0);
  2683       __ bind(L);
  2684       __ verify_oop(I0);
  2687   if (!is_critical_native) {
  2688     // reset handle block
  2689     __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
  2690     __ st(G0, L5, JNIHandleBlock::top_offset_in_bytes());
  2692     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
  2693     check_forward_pending_exception(masm, G3_scratch);
  2697   // Return
  2699 #ifndef _LP64
  2700   if (ret_type == T_LONG) {
  2702     // Must leave proper result in O0,O1 and G1 (c2/tiered only)
  2703     __ sllx(I0, 32, G1);          // Shift bits into high G1
  2704     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  2705     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  2707 #endif
  2709   __ ret();
  2710   __ delayed()->restore();
  2712   __ flush();
  2714   nmethod *nm = nmethod::new_native_nmethod(method,
  2715                                             compile_id,
  2716                                             masm->code(),
  2717                                             vep_offset,
  2718                                             frame_complete,
  2719                                             stack_slots / VMRegImpl::slots_per_word,
  2720                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2721                                             in_ByteSize(lock_offset),
  2722                                             oop_maps);
  2724   if (is_critical_native) {
  2725     nm->set_lazy_critical_native(true);
  2727   return nm;
  2731 #ifdef HAVE_DTRACE_H
  2732 // ---------------------------------------------------------------------------
  2733 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2734 // in the Java compiled code convention, marshals them to the native
  2735 // abi and then leaves nops at the position you would expect to call a native
  2736 // function. When the probe is enabled the nops are replaced with a trap
  2737 // instruction that dtrace inserts and the trace will cause a notification
  2738 // to dtrace.
  2739 //
  2740 // The probes are only able to take primitive types and java/lang/String as
  2741 // arguments.  No other java types are allowed. Strings are converted to utf8
  2742 // strings so that from dtrace point of view java strings are converted to C
  2743 // strings. There is an arbitrary fixed limit on the total space that a method
  2744 // can use for converting the strings. (256 chars per string in the signature).
  2745 // So any java string larger then this is truncated.
  2747 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  2748 static bool offsets_initialized = false;
  2750 nmethod *SharedRuntime::generate_dtrace_nmethod(
  2751     MacroAssembler *masm, methodHandle method) {
  2754   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2755   // be single threaded in this method.
  2756   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2758   // Fill in the signature array, for the calling-convention call.
  2759   int total_args_passed = method->size_of_parameters();
  2761   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2762   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2764   // The signature we are going to use for the trap that dtrace will see
  2765   // java/lang/String is converted. We drop "this" and any other object
  2766   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2767   // is converted to a two-slot long, which is why we double the allocation).
  2768   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2769   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2771   int i=0;
  2772   int total_strings = 0;
  2773   int first_arg_to_pass = 0;
  2774   int total_c_args = 0;
  2776   // Skip the receiver as dtrace doesn't want to see it
  2777   if( !method->is_static() ) {
  2778     in_sig_bt[i++] = T_OBJECT;
  2779     first_arg_to_pass = 1;
  2782   SignatureStream ss(method->signature());
  2783   for ( ; !ss.at_return_type(); ss.next()) {
  2784     BasicType bt = ss.type();
  2785     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2786     out_sig_bt[total_c_args++] = bt;
  2787     if( bt == T_OBJECT) {
  2788       Symbol* s = ss.as_symbol_or_null();
  2789       if (s == vmSymbols::java_lang_String()) {
  2790         total_strings++;
  2791         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2792       } else if (s == vmSymbols::java_lang_Boolean() ||
  2793                  s == vmSymbols::java_lang_Byte()) {
  2794         out_sig_bt[total_c_args-1] = T_BYTE;
  2795       } else if (s == vmSymbols::java_lang_Character() ||
  2796                  s == vmSymbols::java_lang_Short()) {
  2797         out_sig_bt[total_c_args-1] = T_SHORT;
  2798       } else if (s == vmSymbols::java_lang_Integer() ||
  2799                  s == vmSymbols::java_lang_Float()) {
  2800         out_sig_bt[total_c_args-1] = T_INT;
  2801       } else if (s == vmSymbols::java_lang_Long() ||
  2802                  s == vmSymbols::java_lang_Double()) {
  2803         out_sig_bt[total_c_args-1] = T_LONG;
  2804         out_sig_bt[total_c_args++] = T_VOID;
  2806     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2807       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2808       // We convert double to long
  2809       out_sig_bt[total_c_args-1] = T_LONG;
  2810       out_sig_bt[total_c_args++] = T_VOID;
  2811     } else if ( bt == T_FLOAT) {
  2812       // We convert float to int
  2813       out_sig_bt[total_c_args-1] = T_INT;
  2817   assert(i==total_args_passed, "validly parsed signature");
  2819   // Now get the compiled-Java layout as input arguments
  2820   int comp_args_on_stack;
  2821   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2822       in_sig_bt, in_regs, total_args_passed, false);
  2824   // We have received a description of where all the java arg are located
  2825   // on entry to the wrapper. We need to convert these args to where
  2826   // the a  native (non-jni) function would expect them. To figure out
  2827   // where they go we convert the java signature to a C signature and remove
  2828   // T_VOID for any long/double we might have received.
  2831   // Now figure out where the args must be stored and how much stack space
  2832   // they require (neglecting out_preserve_stack_slots but space for storing
  2833   // the 1st six register arguments). It's weird see int_stk_helper.
  2834   //
  2835   int out_arg_slots;
  2836   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
  2838   // Calculate the total number of stack slots we will need.
  2840   // First count the abi requirement plus all of the outgoing args
  2841   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2843   // Plus a temp for possible converion of float/double/long register args
  2845   int conversion_temp = stack_slots;
  2846   stack_slots += 2;
  2849   // Now space for the string(s) we must convert
  2851   int string_locs = stack_slots;
  2852   stack_slots += total_strings *
  2853                    (max_dtrace_string_size / VMRegImpl::stack_slot_size);
  2855   // Ok The space we have allocated will look like:
  2856   //
  2857   //
  2858   // FP-> |                     |
  2859   //      |---------------------|
  2860   //      | string[n]           |
  2861   //      |---------------------| <- string_locs[n]
  2862   //      | string[n-1]         |
  2863   //      |---------------------| <- string_locs[n-1]
  2864   //      | ...                 |
  2865   //      | ...                 |
  2866   //      |---------------------| <- string_locs[1]
  2867   //      | string[0]           |
  2868   //      |---------------------| <- string_locs[0]
  2869   //      | temp                |
  2870   //      |---------------------| <- conversion_temp
  2871   //      | outbound memory     |
  2872   //      | based arguments     |
  2873   //      |                     |
  2874   //      |---------------------|
  2875   //      |                     |
  2876   // SP-> | out_preserved_slots |
  2877   //
  2878   //
  2880   // Now compute actual number of stack words we need rounding to make
  2881   // stack properly aligned.
  2882   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  2884   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2886   intptr_t start = (intptr_t)__ pc();
  2888   // First thing make an ic check to see if we should even be here
  2891     Label L;
  2892     const Register temp_reg = G3_scratch;
  2893     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  2894     __ verify_oop(O0);
  2895     __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
  2896     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
  2898     __ jump_to(ic_miss, temp_reg);
  2899     __ delayed()->nop();
  2900     __ align(CodeEntryAlignment);
  2901     __ bind(L);
  2904   int vep_offset = ((intptr_t)__ pc()) - start;
  2907   // The instruction at the verified entry point must be 5 bytes or longer
  2908   // because it can be patched on the fly by make_non_entrant. The stack bang
  2909   // instruction fits that requirement.
  2911   // Generate stack overflow check before creating frame
  2912   __ generate_stack_overflow_check(stack_size);
  2914   assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
  2915          "valid size for make_non_entrant");
  2917   // Generate a new frame for the wrapper.
  2918   __ save(SP, -stack_size, SP);
  2920   // Frame is now completed as far a size and linkage.
  2922   int frame_complete = ((intptr_t)__ pc()) - start;
  2924 #ifdef ASSERT
  2925   bool reg_destroyed[RegisterImpl::number_of_registers];
  2926   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2927   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2928     reg_destroyed[r] = false;
  2930   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  2931     freg_destroyed[f] = false;
  2934 #endif /* ASSERT */
  2936   VMRegPair zero;
  2937   const Register g0 = G0; // without this we get a compiler warning (why??)
  2938   zero.set2(g0->as_VMReg());
  2940   int c_arg, j_arg;
  2942   Register conversion_off = noreg;
  2944   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2945        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2947     VMRegPair src = in_regs[j_arg];
  2948     VMRegPair dst = out_regs[c_arg];
  2950 #ifdef ASSERT
  2951     if (src.first()->is_Register()) {
  2952       assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
  2953     } else if (src.first()->is_FloatRegister()) {
  2954       assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
  2955                                                FloatRegisterImpl::S)], "ack!");
  2957     if (dst.first()->is_Register()) {
  2958       reg_destroyed[dst.first()->as_Register()->encoding()] = true;
  2959     } else if (dst.first()->is_FloatRegister()) {
  2960       freg_destroyed[dst.first()->as_FloatRegister()->encoding(
  2961                                                  FloatRegisterImpl::S)] = true;
  2963 #endif /* ASSERT */
  2965     switch (in_sig_bt[j_arg]) {
  2966       case T_ARRAY:
  2967       case T_OBJECT:
  2969           if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
  2970               out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2971             // need to unbox a one-slot value
  2972             Register in_reg = L0;
  2973             Register tmp = L2;
  2974             if ( src.first()->is_reg() ) {
  2975               in_reg = src.first()->as_Register();
  2976             } else {
  2977               assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
  2978                      "must be");
  2979               __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
  2981             // If the final destination is an acceptable register
  2982             if ( dst.first()->is_reg() ) {
  2983               if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
  2984                 tmp = dst.first()->as_Register();
  2988             Label skipUnbox;
  2989             if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
  2990               __ mov(G0, tmp->successor());
  2992             __ br_null(in_reg, true, Assembler::pn, skipUnbox);
  2993             __ delayed()->mov(G0, tmp);
  2995             BasicType bt = out_sig_bt[c_arg];
  2996             int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2997             switch (bt) {
  2998                 case T_BYTE:
  2999                   __ ldub(in_reg, box_offset, tmp); break;
  3000                 case T_SHORT:
  3001                   __ lduh(in_reg, box_offset, tmp); break;
  3002                 case T_INT:
  3003                   __ ld(in_reg, box_offset, tmp); break;
  3004                 case T_LONG:
  3005                   __ ld_long(in_reg, box_offset, tmp); break;
  3006                 default: ShouldNotReachHere();
  3009             __ bind(skipUnbox);
  3010             // If tmp wasn't final destination copy to final destination
  3011             if (tmp == L2) {
  3012               VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
  3013               if (out_sig_bt[c_arg] == T_LONG) {
  3014                 long_move(masm, tmp_as_VM, dst);
  3015               } else {
  3016                 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
  3019             if (out_sig_bt[c_arg] == T_LONG) {
  3020               assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3021               ++c_arg; // move over the T_VOID to keep the loop indices in sync
  3023           } else if (out_sig_bt[c_arg] == T_ADDRESS) {
  3024             Register s =
  3025                 src.first()->is_reg() ? src.first()->as_Register() : L2;
  3026             Register d =
  3027                 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  3029             // We store the oop now so that the conversion pass can reach
  3030             // while in the inner frame. This will be the only store if
  3031             // the oop is NULL.
  3032             if (s != L2) {
  3033               // src is register
  3034               if (d != L2) {
  3035                 // dst is register
  3036                 __ mov(s, d);
  3037               } else {
  3038                 assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3039                           STACK_BIAS), "must be");
  3040                 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
  3042             } else {
  3043                 // src not a register
  3044                 assert(Assembler::is_simm13(reg2offset(src.first()) +
  3045                            STACK_BIAS), "must be");
  3046                 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
  3047                 if (d == L2) {
  3048                   assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3049                              STACK_BIAS), "must be");
  3050                   __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
  3053           } else if (out_sig_bt[c_arg] != T_VOID) {
  3054             // Convert the arg to NULL
  3055             if (dst.first()->is_reg()) {
  3056               __ mov(G0, dst.first()->as_Register());
  3057             } else {
  3058               assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3059                          STACK_BIAS), "must be");
  3060               __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
  3064         break;
  3065       case T_VOID:
  3066         break;
  3068       case T_FLOAT:
  3069         if (src.first()->is_stack()) {
  3070           // Stack to stack/reg is simple
  3071           move32_64(masm, src, dst);
  3072         } else {
  3073           if (dst.first()->is_reg()) {
  3074             // freg -> reg
  3075             int off =
  3076               STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3077             Register d = dst.first()->as_Register();
  3078             if (Assembler::is_simm13(off)) {
  3079               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3080                      SP, off);
  3081               __ ld(SP, off, d);
  3082             } else {
  3083               if (conversion_off == noreg) {
  3084                 __ set(off, L6);
  3085                 conversion_off = L6;
  3087               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3088                      SP, conversion_off);
  3089               __ ld(SP, conversion_off , d);
  3091           } else {
  3092             // freg -> mem
  3093             int off = STACK_BIAS + reg2offset(dst.first());
  3094             if (Assembler::is_simm13(off)) {
  3095               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3096                      SP, off);
  3097             } else {
  3098               if (conversion_off == noreg) {
  3099                 __ set(off, L6);
  3100                 conversion_off = L6;
  3102               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3103                      SP, conversion_off);
  3107         break;
  3109       case T_DOUBLE:
  3110         assert( j_arg + 1 < total_args_passed &&
  3111                 in_sig_bt[j_arg + 1] == T_VOID &&
  3112                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  3113         if (src.first()->is_stack()) {
  3114           // Stack to stack/reg is simple
  3115           long_move(masm, src, dst);
  3116         } else {
  3117           Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  3119           // Destination could be an odd reg on 32bit in which case
  3120           // we can't load direct to the destination.
  3122           if (!d->is_even() && wordSize == 4) {
  3123             d = L2;
  3125           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3126           if (Assembler::is_simm13(off)) {
  3127             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  3128                    SP, off);
  3129             __ ld_long(SP, off, d);
  3130           } else {
  3131             if (conversion_off == noreg) {
  3132               __ set(off, L6);
  3133               conversion_off = L6;
  3135             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  3136                    SP, conversion_off);
  3137             __ ld_long(SP, conversion_off, d);
  3139           if (d == L2) {
  3140             long_move(masm, reg64_to_VMRegPair(L2), dst);
  3143         break;
  3145       case T_LONG :
  3146         // 32bit can't do a split move of something like g1 -> O0, O1
  3147         // so use a memory temp
  3148         if (src.is_single_phys_reg() && wordSize == 4) {
  3149           Register tmp = L2;
  3150           if (dst.first()->is_reg() &&
  3151               (wordSize == 8 || dst.first()->as_Register()->is_even())) {
  3152             tmp = dst.first()->as_Register();
  3155           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3156           if (Assembler::is_simm13(off)) {
  3157             __ stx(src.first()->as_Register(), SP, off);
  3158             __ ld_long(SP, off, tmp);
  3159           } else {
  3160             if (conversion_off == noreg) {
  3161               __ set(off, L6);
  3162               conversion_off = L6;
  3164             __ stx(src.first()->as_Register(), SP, conversion_off);
  3165             __ ld_long(SP, conversion_off, tmp);
  3168           if (tmp == L2) {
  3169             long_move(masm, reg64_to_VMRegPair(L2), dst);
  3171         } else {
  3172           long_move(masm, src, dst);
  3174         break;
  3176       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  3178       default:
  3179         move32_64(masm, src, dst);
  3184   // If we have any strings we must store any register based arg to the stack
  3185   // This includes any still live xmm registers too.
  3187   if (total_strings > 0 ) {
  3189     // protect all the arg registers
  3190     __ save_frame(0);
  3191     __ mov(G2_thread, L7_thread_cache);
  3192     const Register L2_string_off = L2;
  3194     // Get first string offset
  3195     __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
  3197     for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
  3198       if (out_sig_bt[c_arg] == T_ADDRESS) {
  3200         VMRegPair dst = out_regs[c_arg];
  3201         const Register d = dst.first()->is_reg() ?
  3202             dst.first()->as_Register()->after_save() : noreg;
  3204         // It's a string the oop and it was already copied to the out arg
  3205         // position
  3206         if (d != noreg) {
  3207           __ mov(d, O0);
  3208         } else {
  3209           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  3210                  "must be");
  3211           __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
  3213         Label skip;
  3215         __ br_null(O0, false, Assembler::pn, skip);
  3216         __ delayed()->add(FP, L2_string_off, O1);
  3218         if (d != noreg) {
  3219           __ mov(O1, d);
  3220         } else {
  3221           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  3222                  "must be");
  3223           __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
  3226         __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
  3227                 relocInfo::runtime_call_type);
  3228         __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
  3230         __ bind(skip);
  3235     __ mov(L7_thread_cache, G2_thread);
  3236     __ restore();
  3241   // Ok now we are done. Need to place the nop that dtrace wants in order to
  3242   // patch in the trap
  3244   int patch_offset = ((intptr_t)__ pc()) - start;
  3246   __ nop();
  3249   // Return
  3251   __ ret();
  3252   __ delayed()->restore();
  3254   __ flush();
  3256   nmethod *nm = nmethod::new_dtrace_nmethod(
  3257       method, masm->code(), vep_offset, patch_offset, frame_complete,
  3258       stack_slots / VMRegImpl::slots_per_word);
  3259   return nm;
  3263 #endif // HAVE_DTRACE_H
  3265 // this function returns the adjust size (in number of words) to a c2i adapter
  3266 // activation for use during deoptimization
  3267 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
  3268   assert(callee_locals >= callee_parameters,
  3269           "test and remove; got more parms than locals");
  3270   if (callee_locals < callee_parameters)
  3271     return 0;                   // No adjustment for negative locals
  3272   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  3273   return round_to(diff, WordsPerLong);
  3276 // "Top of Stack" slots that may be unused by the calling convention but must
  3277 // otherwise be preserved.
  3278 // On Intel these are not necessary and the value can be zero.
  3279 // On Sparc this describes the words reserved for storing a register window
  3280 // when an interrupt occurs.
  3281 uint SharedRuntime::out_preserve_stack_slots() {
  3282   return frame::register_save_words * VMRegImpl::slots_per_word;
  3285 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
  3286 //
  3287 // Common out the new frame generation for deopt and uncommon trap
  3288 //
  3289   Register        G3pcs              = G3_scratch; // Array of new pcs (input)
  3290   Register        Oreturn0           = O0;
  3291   Register        Oreturn1           = O1;
  3292   Register        O2UnrollBlock      = O2;
  3293   Register        O3array            = O3;         // Array of frame sizes (input)
  3294   Register        O4array_size       = O4;         // number of frames (input)
  3295   Register        O7frame_size       = O7;         // number of frames (input)
  3297   __ ld_ptr(O3array, 0, O7frame_size);
  3298   __ sub(G0, O7frame_size, O7frame_size);
  3299   __ save(SP, O7frame_size, SP);
  3300   __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
  3302   #ifdef ASSERT
  3303   // make sure that the frames are aligned properly
  3304 #ifndef _LP64
  3305   __ btst(wordSize*2-1, SP);
  3306   __ breakpoint_trap(Assembler::notZero, Assembler::ptr_cc);
  3307 #endif
  3308   #endif
  3310   // Deopt needs to pass some extra live values from frame to frame
  3312   if (deopt) {
  3313     __ mov(Oreturn0->after_save(), Oreturn0);
  3314     __ mov(Oreturn1->after_save(), Oreturn1);
  3317   __ mov(O4array_size->after_save(), O4array_size);
  3318   __ sub(O4array_size, 1, O4array_size);
  3319   __ mov(O3array->after_save(), O3array);
  3320   __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
  3321   __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
  3323   #ifdef ASSERT
  3324   // trash registers to show a clear pattern in backtraces
  3325   __ set(0xDEAD0000, I0);
  3326   __ add(I0,  2, I1);
  3327   __ add(I0,  4, I2);
  3328   __ add(I0,  6, I3);
  3329   __ add(I0,  8, I4);
  3330   // Don't touch I5 could have valuable savedSP
  3331   __ set(0xDEADBEEF, L0);
  3332   __ mov(L0, L1);
  3333   __ mov(L0, L2);
  3334   __ mov(L0, L3);
  3335   __ mov(L0, L4);
  3336   __ mov(L0, L5);
  3338   // trash the return value as there is nothing to return yet
  3339   __ set(0xDEAD0001, O7);
  3340   #endif
  3342   __ mov(SP, O5_savedSP);
  3346 static void make_new_frames(MacroAssembler* masm, bool deopt) {
  3347   //
  3348   // loop through the UnrollBlock info and create new frames
  3349   //
  3350   Register        G3pcs              = G3_scratch;
  3351   Register        Oreturn0           = O0;
  3352   Register        Oreturn1           = O1;
  3353   Register        O2UnrollBlock      = O2;
  3354   Register        O3array            = O3;
  3355   Register        O4array_size       = O4;
  3356   Label           loop;
  3358 #ifdef ASSERT
  3359   // Compilers generate code that bang the stack by as much as the
  3360   // interpreter would need. So this stack banging should never
  3361   // trigger a fault. Verify that it does not on non product builds.
  3362   if (UseStackBanging) {
  3363     // Get total frame size for interpreted frames
  3364     __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
  3365     __ bang_stack_size(O4, O3, G3_scratch);
  3367 #endif
  3369   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
  3370   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
  3371   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
  3373   // Adjust old interpreter frame to make space for new frame's extra java locals
  3374   //
  3375   // We capture the original sp for the transition frame only because it is needed in
  3376   // order to properly calculate interpreter_sp_adjustment. Even though in real life
  3377   // every interpreter frame captures a savedSP it is only needed at the transition
  3378   // (fortunately). If we had to have it correct everywhere then we would need to
  3379   // be told the sp_adjustment for each frame we create. If the frame size array
  3380   // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
  3381   // for each frame we create and keep up the illusion every where.
  3382   //
  3384   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
  3385   __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
  3386   __ sub(SP, O7, SP);
  3388 #ifdef ASSERT
  3389   // make sure that there is at least one entry in the array
  3390   __ tst(O4array_size);
  3391   __ breakpoint_trap(Assembler::zero, Assembler::icc);
  3392 #endif
  3394   // Now push the new interpreter frames
  3395   __ bind(loop);
  3397   // allocate a new frame, filling the registers
  3399   gen_new_frame(masm, deopt);        // allocate an interpreter frame
  3401   __ cmp_zero_and_br(Assembler::notZero, O4array_size, loop);
  3402   __ delayed()->add(O3array, wordSize, O3array);
  3403   __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
  3407 //------------------------------generate_deopt_blob----------------------------
  3408 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3409 // instead.
  3410 void SharedRuntime::generate_deopt_blob() {
  3411   // allocate space for the code
  3412   ResourceMark rm;
  3413   // setup code generation tools
  3414   int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
  3415 #ifdef ASSERT
  3416   if (UseStackBanging) {
  3417     pad += StackShadowPages*16 + 32;
  3419 #endif
  3420 #ifdef _LP64
  3421   CodeBuffer buffer("deopt_blob", 2100+pad, 512);
  3422 #else
  3423   // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
  3424   // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
  3425   CodeBuffer buffer("deopt_blob", 1600+pad, 512);
  3426 #endif /* _LP64 */
  3427   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3428   FloatRegister   Freturn0           = F0;
  3429   Register        Greturn1           = G1;
  3430   Register        Oreturn0           = O0;
  3431   Register        Oreturn1           = O1;
  3432   Register        O2UnrollBlock      = O2;
  3433   Register        L0deopt_mode       = L0;
  3434   Register        G4deopt_mode       = G4_scratch;
  3435   int             frame_size_words;
  3436   Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
  3437 #if !defined(_LP64) && defined(COMPILER2)
  3438   Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
  3439 #endif
  3440   Label           cont;
  3442   OopMapSet *oop_maps = new OopMapSet();
  3444   //
  3445   // This is the entry point for code which is returning to a de-optimized
  3446   // frame.
  3447   // The steps taken by this frame are as follows:
  3448   //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
  3449   //     and all potentially live registers (at a pollpoint many registers can be live).
  3450   //
  3451   //   - call the C routine: Deoptimization::fetch_unroll_info (this function
  3452   //     returns information about the number and size of interpreter frames
  3453   //     which are equivalent to the frame which is being deoptimized)
  3454   //   - deallocate the unpack frame, restoring only results values. Other
  3455   //     volatile registers will now be captured in the vframeArray as needed.
  3456   //   - deallocate the deoptimization frame
  3457   //   - in a loop using the information returned in the previous step
  3458   //     push new interpreter frames (take care to propagate the return
  3459   //     values through each new frame pushed)
  3460   //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
  3461   //   - call the C routine: Deoptimization::unpack_frames (this function
  3462   //     lays out values on the interpreter frame which was just created)
  3463   //   - deallocate the dummy unpack_frame
  3464   //   - ensure that all the return values are correctly set and then do
  3465   //     a return to the interpreter entry point
  3466   //
  3467   // Refer to the following methods for more information:
  3468   //   - Deoptimization::fetch_unroll_info
  3469   //   - Deoptimization::unpack_frames
  3471   OopMap* map = NULL;
  3473   int start = __ offset();
  3475   // restore G2, the trampoline destroyed it
  3476   __ get_thread();
  3478   // On entry we have been called by the deoptimized nmethod with a call that
  3479   // replaced the original call (or safepoint polling location) so the deoptimizing
  3480   // pc is now in O7. Return values are still in the expected places
  3482   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3483   __ ba(cont);
  3484   __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
  3486   int exception_offset = __ offset() - start;
  3488   // restore G2, the trampoline destroyed it
  3489   __ get_thread();
  3491   // On entry we have been jumped to by the exception handler (or exception_blob
  3492   // for server).  O0 contains the exception oop and O7 contains the original
  3493   // exception pc.  So if we push a frame here it will look to the
  3494   // stack walking code (fetch_unroll_info) just like a normal call so
  3495   // state will be extracted normally.
  3497   // save exception oop in JavaThread and fall through into the
  3498   // exception_in_tls case since they are handled in same way except
  3499   // for where the pending exception is kept.
  3500   __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
  3502   //
  3503   // Vanilla deoptimization with an exception pending in exception_oop
  3504   //
  3505   int exception_in_tls_offset = __ offset() - start;
  3507   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3508   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3510   // Restore G2_thread
  3511   __ get_thread();
  3513 #ifdef ASSERT
  3515     // verify that there is really an exception oop in exception_oop
  3516     Label has_exception;
  3517     __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
  3518     __ br_notnull_short(Oexception, Assembler::pt, has_exception);
  3519     __ stop("no exception in thread");
  3520     __ bind(has_exception);
  3522     // verify that there is no pending exception
  3523     Label no_pending_exception;
  3524     Address exception_addr(G2_thread, Thread::pending_exception_offset());
  3525     __ ld_ptr(exception_addr, Oexception);
  3526     __ br_null_short(Oexception, Assembler::pt, no_pending_exception);
  3527     __ stop("must not have pending exception here");
  3528     __ bind(no_pending_exception);
  3530 #endif
  3532   __ ba(cont);
  3533   __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
  3535   //
  3536   // Reexecute entry, similar to c2 uncommon trap
  3537   //
  3538   int reexecute_offset = __ offset() - start;
  3540   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3541   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3543   __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
  3545   __ bind(cont);
  3547   __ set_last_Java_frame(SP, noreg);
  3549   // do the call by hand so we can get the oopmap
  3551   __ mov(G2_thread, L7_thread_cache);
  3552   __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
  3553   __ delayed()->mov(G2_thread, O0);
  3555   // Set an oopmap for the call site this describes all our saved volatile registers
  3557   oop_maps->add_gc_map( __ offset()-start, map);
  3559   __ mov(L7_thread_cache, G2_thread);
  3561   __ reset_last_Java_frame();
  3563   // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
  3564   // so this move will survive
  3566   __ mov(L0deopt_mode, G4deopt_mode);
  3568   __ mov(O0, O2UnrollBlock->after_save());
  3570   RegisterSaver::restore_result_registers(masm);
  3572   Label noException;
  3573   __ cmp_and_br_short(G4deopt_mode, Deoptimization::Unpack_exception, Assembler::notEqual, Assembler::pt, noException);
  3575   // Move the pending exception from exception_oop to Oexception so
  3576   // the pending exception will be picked up the interpreter.
  3577   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
  3578   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
  3579   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
  3580   __ bind(noException);
  3582   // deallocate the deoptimization frame taking care to preserve the return values
  3583   __ mov(Oreturn0,     Oreturn0->after_save());
  3584   __ mov(Oreturn1,     Oreturn1->after_save());
  3585   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3586   __ restore();
  3588   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3590   make_new_frames(masm, true);
  3592   // push a dummy "unpack_frame" taking care of float return values and
  3593   // call Deoptimization::unpack_frames to have the unpacker layout
  3594   // information in the interpreter frames just created and then return
  3595   // to the interpreter entry point
  3596   __ save(SP, -frame_size_words*wordSize, SP);
  3597   __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
  3598 #if !defined(_LP64)
  3599 #if defined(COMPILER2)
  3600   // 32-bit 1-register longs return longs in G1
  3601   __ stx(Greturn1, saved_Greturn1_addr);
  3602 #endif
  3603   __ set_last_Java_frame(SP, noreg);
  3604   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
  3605 #else
  3606   // LP64 uses g4 in set_last_Java_frame
  3607   __ mov(G4deopt_mode, O1);
  3608   __ set_last_Java_frame(SP, G0);
  3609   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
  3610 #endif
  3611   __ reset_last_Java_frame();
  3612   __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
  3614 #if !defined(_LP64) && defined(COMPILER2)
  3615   // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
  3616   // I0/I1 if the return value is long.
  3617   Label not_long;
  3618   __ cmp_and_br_short(O0,T_LONG, Assembler::notEqual, Assembler::pt, not_long);
  3619   __ ldd(saved_Greturn1_addr,I0);
  3620   __ bind(not_long);
  3621 #endif
  3622   __ ret();
  3623   __ delayed()->restore();
  3625   masm->flush();
  3626   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
  3627   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3630 #ifdef COMPILER2
  3632 //------------------------------generate_uncommon_trap_blob--------------------
  3633 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3634 // instead.
  3635 void SharedRuntime::generate_uncommon_trap_blob() {
  3636   // allocate space for the code
  3637   ResourceMark rm;
  3638   // setup code generation tools
  3639   int pad = VerifyThread ? 512 : 0;
  3640 #ifdef ASSERT
  3641   if (UseStackBanging) {
  3642     pad += StackShadowPages*16 + 32;
  3644 #endif
  3645 #ifdef _LP64
  3646   CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
  3647 #else
  3648   // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
  3649   // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
  3650   CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
  3651 #endif
  3652   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3653   Register        O2UnrollBlock      = O2;
  3654   Register        O2klass_index      = O2;
  3656   //
  3657   // This is the entry point for all traps the compiler takes when it thinks
  3658   // it cannot handle further execution of compilation code. The frame is
  3659   // deoptimized in these cases and converted into interpreter frames for
  3660   // execution
  3661   // The steps taken by this frame are as follows:
  3662   //   - push a fake "unpack_frame"
  3663   //   - call the C routine Deoptimization::uncommon_trap (this function
  3664   //     packs the current compiled frame into vframe arrays and returns
  3665   //     information about the number and size of interpreter frames which
  3666   //     are equivalent to the frame which is being deoptimized)
  3667   //   - deallocate the "unpack_frame"
  3668   //   - deallocate the deoptimization frame
  3669   //   - in a loop using the information returned in the previous step
  3670   //     push interpreter frames;
  3671   //   - create a dummy "unpack_frame"
  3672   //   - call the C routine: Deoptimization::unpack_frames (this function
  3673   //     lays out values on the interpreter frame which was just created)
  3674   //   - deallocate the dummy unpack_frame
  3675   //   - return to the interpreter entry point
  3676   //
  3677   //  Refer to the following methods for more information:
  3678   //   - Deoptimization::uncommon_trap
  3679   //   - Deoptimization::unpack_frame
  3681   // the unloaded class index is in O0 (first parameter to this blob)
  3683   // push a dummy "unpack_frame"
  3684   // and call Deoptimization::uncommon_trap to pack the compiled frame into
  3685   // vframe array and return the UnrollBlock information
  3686   __ save_frame(0);
  3687   __ set_last_Java_frame(SP, noreg);
  3688   __ mov(I0, O2klass_index);
  3689   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
  3690   __ reset_last_Java_frame();
  3691   __ mov(O0, O2UnrollBlock->after_save());
  3692   __ restore();
  3694   // deallocate the deoptimized frame taking care to preserve the return values
  3695   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3696   __ restore();
  3698   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3700   make_new_frames(masm, false);
  3702   // push a dummy "unpack_frame" taking care of float return values and
  3703   // call Deoptimization::unpack_frames to have the unpacker layout
  3704   // information in the interpreter frames just created and then return
  3705   // to the interpreter entry point
  3706   __ save_frame(0);
  3707   __ set_last_Java_frame(SP, noreg);
  3708   __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
  3709   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
  3710   __ reset_last_Java_frame();
  3711   __ ret();
  3712   __ delayed()->restore();
  3714   masm->flush();
  3715   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
  3718 #endif // COMPILER2
  3720 //------------------------------generate_handler_blob-------------------
  3721 //
  3722 // Generate a special Compile2Runtime blob that saves all registers, and sets
  3723 // up an OopMap.
  3724 //
  3725 // This blob is jumped to (via a breakpoint and the signal handler) from a
  3726 // safepoint in compiled code.  On entry to this blob, O7 contains the
  3727 // address in the original nmethod at which we should resume normal execution.
  3728 // Thus, this blob looks like a subroutine which must preserve lots of
  3729 // registers and return normally.  Note that O7 is never register-allocated,
  3730 // so it is guaranteed to be free here.
  3731 //
  3733 // The hardest part of what this blob must do is to save the 64-bit %o
  3734 // registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
  3735 // an interrupt will chop off their heads.  Making space in the caller's frame
  3736 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
  3737 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
  3738 // SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
  3739 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
  3740 // Tricky, tricky, tricky...
  3742 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
  3743   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3745   // allocate space for the code
  3746   ResourceMark rm;
  3747   // setup code generation tools
  3748   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  3749   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  3750   // even larger with TraceJumps
  3751   int pad = TraceJumps ? 512 : 0;
  3752   CodeBuffer buffer("handler_blob", 1600 + pad, 512);
  3753   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3754   int             frame_size_words;
  3755   OopMapSet *oop_maps = new OopMapSet();
  3756   OopMap* map = NULL;
  3758   int start = __ offset();
  3760   bool cause_return = (poll_type == POLL_AT_RETURN);
  3761   // If this causes a return before the processing, then do a "restore"
  3762   if (cause_return) {
  3763     __ restore();
  3764   } else {
  3765     // Make it look like we were called via the poll
  3766     // so that frame constructor always sees a valid return address
  3767     __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
  3768     __ sub(O7, frame::pc_return_offset, O7);
  3771   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3773   // setup last_Java_sp (blows G4)
  3774   __ set_last_Java_frame(SP, noreg);
  3776   // call into the runtime to handle illegal instructions exception
  3777   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  3778   __ mov(G2_thread, O0);
  3779   __ save_thread(L7_thread_cache);
  3780   __ call(call_ptr);
  3781   __ delayed()->nop();
  3783   // Set an oopmap for the call site.
  3784   // We need this not only for callee-saved registers, but also for volatile
  3785   // registers that the compiler might be keeping live across a safepoint.
  3787   oop_maps->add_gc_map( __ offset() - start, map);
  3789   __ restore_thread(L7_thread_cache);
  3790   // clear last_Java_sp
  3791   __ reset_last_Java_frame();
  3793   // Check for exceptions
  3794   Label pending;
  3796   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  3797   __ br_notnull_short(O1, Assembler::pn, pending);
  3799   RegisterSaver::restore_live_registers(masm);
  3801   // We are back the the original state on entry and ready to go.
  3803   __ retl();
  3804   __ delayed()->nop();
  3806   // Pending exception after the safepoint
  3808   __ bind(pending);
  3810   RegisterSaver::restore_live_registers(masm);
  3812   // We are back the the original state on entry.
  3814   // Tail-call forward_exception_entry, with the issuing PC in O7,
  3815   // so it looks like the original nmethod called forward_exception_entry.
  3816   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  3817   __ JMP(O0, 0);
  3818   __ delayed()->nop();
  3820   // -------------
  3821   // make sure all code is generated
  3822   masm->flush();
  3824   // return exception blob
  3825   return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
  3828 //
  3829 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3830 //
  3831 // Generate a stub that calls into vm to find out the proper destination
  3832 // of a java call. All the argument registers are live at this point
  3833 // but since this is generic code we don't know what they are and the caller
  3834 // must do any gc of the args.
  3835 //
  3836 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3837   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3839   // allocate space for the code
  3840   ResourceMark rm;
  3841   // setup code generation tools
  3842   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  3843   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  3844   // even larger with TraceJumps
  3845   int pad = TraceJumps ? 512 : 0;
  3846   CodeBuffer buffer(name, 1600 + pad, 512);
  3847   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3848   int             frame_size_words;
  3849   OopMapSet *oop_maps = new OopMapSet();
  3850   OopMap* map = NULL;
  3852   int start = __ offset();
  3854   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3856   int frame_complete = __ offset();
  3858   // setup last_Java_sp (blows G4)
  3859   __ set_last_Java_frame(SP, noreg);
  3861   // call into the runtime to handle illegal instructions exception
  3862   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  3863   __ mov(G2_thread, O0);
  3864   __ save_thread(L7_thread_cache);
  3865   __ call(destination, relocInfo::runtime_call_type);
  3866   __ delayed()->nop();
  3868   // O0 contains the address we are going to jump to assuming no exception got installed
  3870   // Set an oopmap for the call site.
  3871   // We need this not only for callee-saved registers, but also for volatile
  3872   // registers that the compiler might be keeping live across a safepoint.
  3874   oop_maps->add_gc_map( __ offset() - start, map);
  3876   __ restore_thread(L7_thread_cache);
  3877   // clear last_Java_sp
  3878   __ reset_last_Java_frame();
  3880   // Check for exceptions
  3881   Label pending;
  3883   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  3884   __ br_notnull_short(O1, Assembler::pn, pending);
  3886   // get the returned Method*
  3888   __ get_vm_result_2(G5_method);
  3889   __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
  3891   // O0 is where we want to jump, overwrite G3 which is saved and scratch
  3893   __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
  3895   RegisterSaver::restore_live_registers(masm);
  3897   // We are back the the original state on entry and ready to go.
  3899   __ JMP(G3, 0);
  3900   __ delayed()->nop();
  3902   // Pending exception after the safepoint
  3904   __ bind(pending);
  3906   RegisterSaver::restore_live_registers(masm);
  3908   // We are back the the original state on entry.
  3910   // Tail-call forward_exception_entry, with the issuing PC in O7,
  3911   // so it looks like the original nmethod called forward_exception_entry.
  3912   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  3913   __ JMP(O0, 0);
  3914   __ delayed()->nop();
  3916   // -------------
  3917   // make sure all code is generated
  3918   masm->flush();
  3920   // return the  blob
  3921   // frame_size_words or bytes??
  3922   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);

mercurial