src/os/solaris/vm/os_solaris.cpp

Tue, 27 Nov 2012 14:20:21 +0100

author
stefank
date
Tue, 27 Nov 2012 14:20:21 +0100
changeset 4299
f34d701e952e
parent 4261
6cb0d32b828b
child 4325
d2f8c38e543d
permissions
-rw-r--r--

8003935: Simplify the needed includes for using Thread::current()
Reviewed-by: dholmes, rbackman, coleenp

duke@435 1 /*
phh@3481 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 // no precompiled headers
stefank@2314 26 #include "classfile/classLoader.hpp"
stefank@2314 27 #include "classfile/systemDictionary.hpp"
stefank@2314 28 #include "classfile/vmSymbols.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "compiler/compileBroker.hpp"
stefank@2314 32 #include "interpreter/interpreter.hpp"
stefank@2314 33 #include "jvm_solaris.h"
stefank@2314 34 #include "memory/allocation.inline.hpp"
stefank@2314 35 #include "memory/filemap.hpp"
stefank@2314 36 #include "mutex_solaris.inline.hpp"
stefank@2314 37 #include "oops/oop.inline.hpp"
stefank@2314 38 #include "os_share_solaris.hpp"
stefank@2314 39 #include "prims/jniFastGetField.hpp"
stefank@2314 40 #include "prims/jvm.h"
stefank@2314 41 #include "prims/jvm_misc.hpp"
stefank@2314 42 #include "runtime/arguments.hpp"
stefank@2314 43 #include "runtime/extendedPC.hpp"
stefank@2314 44 #include "runtime/globals.hpp"
stefank@2314 45 #include "runtime/interfaceSupport.hpp"
stefank@2314 46 #include "runtime/java.hpp"
stefank@2314 47 #include "runtime/javaCalls.hpp"
stefank@2314 48 #include "runtime/mutexLocker.hpp"
stefank@2314 49 #include "runtime/objectMonitor.hpp"
stefank@2314 50 #include "runtime/osThread.hpp"
stefank@2314 51 #include "runtime/perfMemory.hpp"
stefank@2314 52 #include "runtime/sharedRuntime.hpp"
stefank@2314 53 #include "runtime/statSampler.hpp"
stefank@2314 54 #include "runtime/stubRoutines.hpp"
stefank@4299 55 #include "runtime/thread.inline.hpp"
stefank@2314 56 #include "runtime/threadCritical.hpp"
stefank@2314 57 #include "runtime/timer.hpp"
stefank@2314 58 #include "services/attachListener.hpp"
zgu@4193 59 #include "services/memTracker.hpp"
stefank@2314 60 #include "services/runtimeService.hpp"
zgu@2364 61 #include "utilities/decoder.hpp"
stefank@2314 62 #include "utilities/defaultStream.hpp"
stefank@2314 63 #include "utilities/events.hpp"
stefank@2314 64 #include "utilities/growableArray.hpp"
stefank@2314 65 #include "utilities/vmError.hpp"
stefank@2314 66 #ifdef TARGET_ARCH_x86
stefank@2314 67 # include "assembler_x86.inline.hpp"
stefank@2314 68 # include "nativeInst_x86.hpp"
stefank@2314 69 #endif
stefank@2314 70 #ifdef TARGET_ARCH_sparc
stefank@2314 71 # include "assembler_sparc.inline.hpp"
stefank@2314 72 # include "nativeInst_sparc.hpp"
stefank@2314 73 #endif
duke@435 74
duke@435 75 // put OS-includes here
duke@435 76 # include <dlfcn.h>
duke@435 77 # include <errno.h>
zgu@2391 78 # include <exception>
duke@435 79 # include <link.h>
duke@435 80 # include <poll.h>
duke@435 81 # include <pthread.h>
duke@435 82 # include <pwd.h>
duke@435 83 # include <schedctl.h>
duke@435 84 # include <setjmp.h>
duke@435 85 # include <signal.h>
duke@435 86 # include <stdio.h>
duke@435 87 # include <alloca.h>
duke@435 88 # include <sys/filio.h>
duke@435 89 # include <sys/ipc.h>
duke@435 90 # include <sys/lwp.h>
duke@435 91 # include <sys/machelf.h> // for elf Sym structure used by dladdr1
duke@435 92 # include <sys/mman.h>
duke@435 93 # include <sys/processor.h>
duke@435 94 # include <sys/procset.h>
duke@435 95 # include <sys/pset.h>
duke@435 96 # include <sys/resource.h>
duke@435 97 # include <sys/shm.h>
duke@435 98 # include <sys/socket.h>
duke@435 99 # include <sys/stat.h>
duke@435 100 # include <sys/systeminfo.h>
duke@435 101 # include <sys/time.h>
duke@435 102 # include <sys/times.h>
duke@435 103 # include <sys/types.h>
duke@435 104 # include <sys/wait.h>
duke@435 105 # include <sys/utsname.h>
duke@435 106 # include <thread.h>
duke@435 107 # include <unistd.h>
duke@435 108 # include <sys/priocntl.h>
duke@435 109 # include <sys/rtpriocntl.h>
duke@435 110 # include <sys/tspriocntl.h>
duke@435 111 # include <sys/iapriocntl.h>
phh@3481 112 # include <sys/fxpriocntl.h>
duke@435 113 # include <sys/loadavg.h>
duke@435 114 # include <string.h>
ikrylov@2322 115 # include <stdio.h>
duke@435 116
duke@435 117 # define _STRUCTURED_PROC 1 // this gets us the new structured proc interfaces of 5.6 & later
duke@435 118 # include <sys/procfs.h> // see comment in <sys/procfs.h>
duke@435 119
duke@435 120 #define MAX_PATH (2 * K)
duke@435 121
duke@435 122 // for timer info max values which include all bits
duke@435 123 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
duke@435 124
duke@435 125 #ifdef _GNU_SOURCE
duke@435 126 // See bug #6514594
duke@435 127 extern "C" int madvise(caddr_t, size_t, int);
phh@3481 128 extern "C" int memcntl(caddr_t addr, size_t len, int cmd, caddr_t arg,
phh@3481 129 int attr, int mask);
duke@435 130 #endif //_GNU_SOURCE
duke@435 131
duke@435 132 /*
duke@435 133 MPSS Changes Start.
duke@435 134 The JVM binary needs to be built and run on pre-Solaris 9
duke@435 135 systems, but the constants needed by MPSS are only in Solaris 9
duke@435 136 header files. They are textually replicated here to allow
duke@435 137 building on earlier systems. Once building on Solaris 8 is
duke@435 138 no longer a requirement, these #defines can be replaced by ordinary
duke@435 139 system .h inclusion.
duke@435 140
duke@435 141 In earlier versions of the JDK and Solaris, we used ISM for large pages.
duke@435 142 But ISM requires shared memory to achieve this and thus has many caveats.
duke@435 143 MPSS is a fully transparent and is a cleaner way to get large pages.
duke@435 144 Although we still require keeping ISM for backward compatiblitiy as well as
duke@435 145 giving the opportunity to use large pages on older systems it is
duke@435 146 recommended that MPSS be used for Solaris 9 and above.
duke@435 147
duke@435 148 */
duke@435 149
duke@435 150 #ifndef MC_HAT_ADVISE
duke@435 151
duke@435 152 struct memcntl_mha {
duke@435 153 uint_t mha_cmd; /* command(s) */
duke@435 154 uint_t mha_flags;
duke@435 155 size_t mha_pagesize;
duke@435 156 };
duke@435 157 #define MC_HAT_ADVISE 7 /* advise hat map size */
duke@435 158 #define MHA_MAPSIZE_VA 0x1 /* set preferred page size */
duke@435 159 #define MAP_ALIGN 0x200 /* addr specifies alignment */
duke@435 160
duke@435 161 #endif
duke@435 162 // MPSS Changes End.
duke@435 163
duke@435 164
duke@435 165 // Here are some liblgrp types from sys/lgrp_user.h to be able to
duke@435 166 // compile on older systems without this header file.
duke@435 167
duke@435 168 #ifndef MADV_ACCESS_LWP
duke@435 169 # define MADV_ACCESS_LWP 7 /* next LWP to access heavily */
duke@435 170 #endif
duke@435 171 #ifndef MADV_ACCESS_MANY
duke@435 172 # define MADV_ACCESS_MANY 8 /* many processes to access heavily */
duke@435 173 #endif
duke@435 174
iveresov@579 175 #ifndef LGRP_RSRC_CPU
iveresov@579 176 # define LGRP_RSRC_CPU 0 /* CPU resources */
iveresov@579 177 #endif
iveresov@579 178 #ifndef LGRP_RSRC_MEM
iveresov@579 179 # define LGRP_RSRC_MEM 1 /* memory resources */
iveresov@579 180 #endif
iveresov@579 181
duke@435 182 // Some more macros from sys/mman.h that are not present in Solaris 8.
duke@435 183
duke@435 184 #ifndef MAX_MEMINFO_CNT
duke@435 185 /*
duke@435 186 * info_req request type definitions for meminfo
duke@435 187 * request types starting with MEMINFO_V are used for Virtual addresses
duke@435 188 * and should not be mixed with MEMINFO_PLGRP which is targeted for Physical
duke@435 189 * addresses
duke@435 190 */
duke@435 191 # define MEMINFO_SHIFT 16
duke@435 192 # define MEMINFO_MASK (0xFF << MEMINFO_SHIFT)
duke@435 193 # define MEMINFO_VPHYSICAL (0x01 << MEMINFO_SHIFT) /* get physical addr */
duke@435 194 # define MEMINFO_VLGRP (0x02 << MEMINFO_SHIFT) /* get lgroup */
duke@435 195 # define MEMINFO_VPAGESIZE (0x03 << MEMINFO_SHIFT) /* size of phys page */
duke@435 196 # define MEMINFO_VREPLCNT (0x04 << MEMINFO_SHIFT) /* no. of replica */
duke@435 197 # define MEMINFO_VREPL (0x05 << MEMINFO_SHIFT) /* physical replica */
duke@435 198 # define MEMINFO_VREPL_LGRP (0x06 << MEMINFO_SHIFT) /* lgrp of replica */
duke@435 199 # define MEMINFO_PLGRP (0x07 << MEMINFO_SHIFT) /* lgroup for paddr */
duke@435 200
duke@435 201 /* maximum number of addresses meminfo() can process at a time */
duke@435 202 # define MAX_MEMINFO_CNT 256
duke@435 203
duke@435 204 /* maximum number of request types */
duke@435 205 # define MAX_MEMINFO_REQ 31
duke@435 206 #endif
duke@435 207
duke@435 208 // see thr_setprio(3T) for the basis of these numbers
duke@435 209 #define MinimumPriority 0
duke@435 210 #define NormalPriority 64
duke@435 211 #define MaximumPriority 127
duke@435 212
duke@435 213 // Values for ThreadPriorityPolicy == 1
phh@3481 214 int prio_policy1[CriticalPriority+1] = {
phh@3481 215 -99999, 0, 16, 32, 48, 64,
phh@3481 216 80, 96, 112, 124, 127, 127 };
duke@435 217
duke@435 218 // System parameters used internally
duke@435 219 static clock_t clock_tics_per_sec = 100;
duke@435 220
ikrylov@2322 221 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
ikrylov@2322 222 static bool enabled_extended_FILE_stdio = false;
ikrylov@2322 223
duke@435 224 // For diagnostics to print a message once. see run_periodic_checks
duke@435 225 static bool check_addr0_done = false;
duke@435 226 static sigset_t check_signal_done;
duke@435 227 static bool check_signals = true;
duke@435 228
duke@435 229 address os::Solaris::handler_start; // start pc of thr_sighndlrinfo
duke@435 230 address os::Solaris::handler_end; // end pc of thr_sighndlrinfo
duke@435 231
duke@435 232 address os::Solaris::_main_stack_base = NULL; // 4352906 workaround
duke@435 233
duke@435 234
duke@435 235 // "default" initializers for missing libc APIs
duke@435 236 extern "C" {
duke@435 237 static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
duke@435 238 static int lwp_mutex_destroy(mutex_t *mx) { return 0; }
duke@435 239
duke@435 240 static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
duke@435 241 static int lwp_cond_destroy(cond_t *cv) { return 0; }
duke@435 242 }
duke@435 243
duke@435 244 // "default" initializers for pthread-based synchronization
duke@435 245 extern "C" {
duke@435 246 static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
duke@435 247 static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
duke@435 248 }
duke@435 249
duke@435 250 // Thread Local Storage
duke@435 251 // This is common to all Solaris platforms so it is defined here,
duke@435 252 // in this common file.
duke@435 253 // The declarations are in the os_cpu threadLS*.hpp files.
duke@435 254 //
duke@435 255 // Static member initialization for TLS
duke@435 256 Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
duke@435 257
duke@435 258 #ifndef PRODUCT
duke@435 259 #define _PCT(n,d) ((100.0*(double)(n))/(double)(d))
duke@435 260
duke@435 261 int ThreadLocalStorage::_tcacheHit = 0;
duke@435 262 int ThreadLocalStorage::_tcacheMiss = 0;
duke@435 263
duke@435 264 void ThreadLocalStorage::print_statistics() {
duke@435 265 int total = _tcacheMiss+_tcacheHit;
duke@435 266 tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
duke@435 267 _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
duke@435 268 }
duke@435 269 #undef _PCT
duke@435 270 #endif // PRODUCT
duke@435 271
duke@435 272 Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
duke@435 273 int index) {
duke@435 274 Thread *thread = get_thread_slow();
duke@435 275 if (thread != NULL) {
duke@435 276 address sp = os::current_stack_pointer();
duke@435 277 guarantee(thread->_stack_base == NULL ||
duke@435 278 (sp <= thread->_stack_base &&
duke@435 279 sp >= thread->_stack_base - thread->_stack_size) ||
duke@435 280 is_error_reported(),
duke@435 281 "sp must be inside of selected thread stack");
duke@435 282
phh@2423 283 thread->set_self_raw_id(raw_id); // mark for quick retrieval
duke@435 284 _get_thread_cache[ index ] = thread;
duke@435 285 }
duke@435 286 return thread;
duke@435 287 }
duke@435 288
duke@435 289
duke@435 290 static const double all_zero[ sizeof(Thread) / sizeof(double) + 1 ] = {0};
duke@435 291 #define NO_CACHED_THREAD ((Thread*)all_zero)
duke@435 292
duke@435 293 void ThreadLocalStorage::pd_set_thread(Thread* thread) {
duke@435 294
duke@435 295 // Store the new value before updating the cache to prevent a race
duke@435 296 // between get_thread_via_cache_slowly() and this store operation.
duke@435 297 os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
duke@435 298
duke@435 299 // Update thread cache with new thread if setting on thread create,
duke@435 300 // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
duke@435 301 uintptr_t raw = pd_raw_thread_id();
duke@435 302 int ix = pd_cache_index(raw);
duke@435 303 _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
duke@435 304 }
duke@435 305
duke@435 306 void ThreadLocalStorage::pd_init() {
duke@435 307 for (int i = 0; i < _pd_cache_size; i++) {
duke@435 308 _get_thread_cache[i] = NO_CACHED_THREAD;
duke@435 309 }
duke@435 310 }
duke@435 311
duke@435 312 // Invalidate all the caches (happens to be the same as pd_init).
duke@435 313 void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
duke@435 314
duke@435 315 #undef NO_CACHED_THREAD
duke@435 316
duke@435 317 // END Thread Local Storage
duke@435 318
duke@435 319 static inline size_t adjust_stack_size(address base, size_t size) {
duke@435 320 if ((ssize_t)size < 0) {
duke@435 321 // 4759953: Compensate for ridiculous stack size.
duke@435 322 size = max_intx;
duke@435 323 }
duke@435 324 if (size > (size_t)base) {
duke@435 325 // 4812466: Make sure size doesn't allow the stack to wrap the address space.
duke@435 326 size = (size_t)base;
duke@435 327 }
duke@435 328 return size;
duke@435 329 }
duke@435 330
duke@435 331 static inline stack_t get_stack_info() {
duke@435 332 stack_t st;
duke@435 333 int retval = thr_stksegment(&st);
duke@435 334 st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
duke@435 335 assert(retval == 0, "incorrect return value from thr_stksegment");
duke@435 336 assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
duke@435 337 assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
duke@435 338 return st;
duke@435 339 }
duke@435 340
duke@435 341 address os::current_stack_base() {
duke@435 342 int r = thr_main() ;
duke@435 343 guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
duke@435 344 bool is_primordial_thread = r;
duke@435 345
duke@435 346 // Workaround 4352906, avoid calls to thr_stksegment by
duke@435 347 // thr_main after the first one (it looks like we trash
duke@435 348 // some data, causing the value for ss_sp to be incorrect).
duke@435 349 if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
duke@435 350 stack_t st = get_stack_info();
duke@435 351 if (is_primordial_thread) {
duke@435 352 // cache initial value of stack base
duke@435 353 os::Solaris::_main_stack_base = (address)st.ss_sp;
duke@435 354 }
duke@435 355 return (address)st.ss_sp;
duke@435 356 } else {
duke@435 357 guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
duke@435 358 return os::Solaris::_main_stack_base;
duke@435 359 }
duke@435 360 }
duke@435 361
duke@435 362 size_t os::current_stack_size() {
duke@435 363 size_t size;
duke@435 364
duke@435 365 int r = thr_main() ;
duke@435 366 guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
duke@435 367 if(!r) {
duke@435 368 size = get_stack_info().ss_size;
duke@435 369 } else {
duke@435 370 struct rlimit limits;
duke@435 371 getrlimit(RLIMIT_STACK, &limits);
duke@435 372 size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
duke@435 373 }
duke@435 374 // base may not be page aligned
duke@435 375 address base = current_stack_base();
duke@435 376 address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
duke@435 377 return (size_t)(base - bottom);
duke@435 378 }
duke@435 379
ysr@983 380 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
ysr@983 381 return localtime_r(clock, res);
ysr@983 382 }
ysr@983 383
duke@435 384 // interruptible infrastructure
duke@435 385
duke@435 386 // setup_interruptible saves the thread state before going into an
duke@435 387 // interruptible system call.
duke@435 388 // The saved state is used to restore the thread to
duke@435 389 // its former state whether or not an interrupt is received.
duke@435 390 // Used by classloader os::read
ikrylov@2322 391 // os::restartable_read calls skip this layer and stay in _thread_in_native
duke@435 392
duke@435 393 void os::Solaris::setup_interruptible(JavaThread* thread) {
duke@435 394
duke@435 395 JavaThreadState thread_state = thread->thread_state();
duke@435 396
duke@435 397 assert(thread_state != _thread_blocked, "Coming from the wrong thread");
duke@435 398 assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
duke@435 399 OSThread* osthread = thread->osthread();
duke@435 400 osthread->set_saved_interrupt_thread_state(thread_state);
duke@435 401 thread->frame_anchor()->make_walkable(thread);
duke@435 402 ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
duke@435 403 }
duke@435 404
duke@435 405 // Version of setup_interruptible() for threads that are already in
duke@435 406 // _thread_blocked. Used by os_sleep().
duke@435 407 void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) {
duke@435 408 thread->frame_anchor()->make_walkable(thread);
duke@435 409 }
duke@435 410
duke@435 411 JavaThread* os::Solaris::setup_interruptible() {
duke@435 412 JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
duke@435 413 setup_interruptible(thread);
duke@435 414 return thread;
duke@435 415 }
duke@435 416
duke@435 417 void os::Solaris::try_enable_extended_io() {
duke@435 418 typedef int (*enable_extended_FILE_stdio_t)(int, int);
duke@435 419
duke@435 420 if (!UseExtendedFileIO) {
duke@435 421 return;
duke@435 422 }
duke@435 423
duke@435 424 enable_extended_FILE_stdio_t enabler =
duke@435 425 (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
duke@435 426 "enable_extended_FILE_stdio");
duke@435 427 if (enabler) {
duke@435 428 enabler(-1, -1);
duke@435 429 }
duke@435 430 }
duke@435 431
duke@435 432
duke@435 433 #ifdef ASSERT
duke@435 434
duke@435 435 JavaThread* os::Solaris::setup_interruptible_native() {
duke@435 436 JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
duke@435 437 JavaThreadState thread_state = thread->thread_state();
duke@435 438 assert(thread_state == _thread_in_native, "Assumed thread_in_native");
duke@435 439 return thread;
duke@435 440 }
duke@435 441
duke@435 442 void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
duke@435 443 JavaThreadState thread_state = thread->thread_state();
duke@435 444 assert(thread_state == _thread_in_native, "Assumed thread_in_native");
duke@435 445 }
duke@435 446 #endif
duke@435 447
duke@435 448 // cleanup_interruptible reverses the effects of setup_interruptible
duke@435 449 // setup_interruptible_already_blocked() does not need any cleanup.
duke@435 450
duke@435 451 void os::Solaris::cleanup_interruptible(JavaThread* thread) {
duke@435 452 OSThread* osthread = thread->osthread();
duke@435 453
duke@435 454 ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
duke@435 455 }
duke@435 456
duke@435 457 // I/O interruption related counters called in _INTERRUPTIBLE
duke@435 458
duke@435 459 void os::Solaris::bump_interrupted_before_count() {
duke@435 460 RuntimeService::record_interrupted_before_count();
duke@435 461 }
duke@435 462
duke@435 463 void os::Solaris::bump_interrupted_during_count() {
duke@435 464 RuntimeService::record_interrupted_during_count();
duke@435 465 }
duke@435 466
duke@435 467 static int _processors_online = 0;
duke@435 468
duke@435 469 jint os::Solaris::_os_thread_limit = 0;
duke@435 470 volatile jint os::Solaris::_os_thread_count = 0;
duke@435 471
duke@435 472 julong os::available_memory() {
duke@435 473 return Solaris::available_memory();
duke@435 474 }
duke@435 475
duke@435 476 julong os::Solaris::available_memory() {
duke@435 477 return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
duke@435 478 }
duke@435 479
duke@435 480 julong os::Solaris::_physical_memory = 0;
duke@435 481
duke@435 482 julong os::physical_memory() {
duke@435 483 return Solaris::physical_memory();
duke@435 484 }
duke@435 485
duke@435 486 julong os::allocatable_physical_memory(julong size) {
duke@435 487 #ifdef _LP64
duke@435 488 return size;
duke@435 489 #else
duke@435 490 julong result = MIN2(size, (julong)3835*M);
duke@435 491 if (!is_allocatable(result)) {
duke@435 492 // Memory allocations will be aligned but the alignment
duke@435 493 // is not known at this point. Alignments will
duke@435 494 // be at most to LargePageSizeInBytes. Protect
duke@435 495 // allocations from alignments up to illegal
duke@435 496 // values. If at this point 2G is illegal.
duke@435 497 julong reasonable_size = (julong)2*G - 2 * LargePageSizeInBytes;
duke@435 498 result = MIN2(size, reasonable_size);
duke@435 499 }
duke@435 500 return result;
duke@435 501 #endif
duke@435 502 }
duke@435 503
duke@435 504 static hrtime_t first_hrtime = 0;
duke@435 505 static const hrtime_t hrtime_hz = 1000*1000*1000;
duke@435 506 const int LOCK_BUSY = 1;
duke@435 507 const int LOCK_FREE = 0;
duke@435 508 const int LOCK_INVALID = -1;
duke@435 509 static volatile hrtime_t max_hrtime = 0;
duke@435 510 static volatile int max_hrtime_lock = LOCK_FREE; // Update counter with LSB as lock-in-progress
duke@435 511
duke@435 512
duke@435 513 void os::Solaris::initialize_system_info() {
phh@1558 514 set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
duke@435 515 _processors_online = sysconf (_SC_NPROCESSORS_ONLN);
duke@435 516 _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
duke@435 517 }
duke@435 518
duke@435 519 int os::active_processor_count() {
duke@435 520 int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
duke@435 521 pid_t pid = getpid();
duke@435 522 psetid_t pset = PS_NONE;
xlu@822 523 // Are we running in a processor set or is there any processor set around?
duke@435 524 if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
xlu@822 525 uint_t pset_cpus;
xlu@822 526 // Query the number of cpus available to us.
xlu@822 527 if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
xlu@822 528 assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
xlu@822 529 _processors_online = pset_cpus;
xlu@822 530 return pset_cpus;
duke@435 531 }
duke@435 532 }
duke@435 533 // Otherwise return number of online cpus
duke@435 534 return online_cpus;
duke@435 535 }
duke@435 536
duke@435 537 static bool find_processors_in_pset(psetid_t pset,
duke@435 538 processorid_t** id_array,
duke@435 539 uint_t* id_length) {
duke@435 540 bool result = false;
duke@435 541 // Find the number of processors in the processor set.
duke@435 542 if (pset_info(pset, NULL, id_length, NULL) == 0) {
duke@435 543 // Make up an array to hold their ids.
zgu@3900 544 *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
duke@435 545 // Fill in the array with their processor ids.
duke@435 546 if (pset_info(pset, NULL, id_length, *id_array) == 0) {
duke@435 547 result = true;
duke@435 548 }
duke@435 549 }
duke@435 550 return result;
duke@435 551 }
duke@435 552
duke@435 553 // Callers of find_processors_online() must tolerate imprecise results --
duke@435 554 // the system configuration can change asynchronously because of DR
duke@435 555 // or explicit psradm operations.
duke@435 556 //
duke@435 557 // We also need to take care that the loop (below) terminates as the
duke@435 558 // number of processors online can change between the _SC_NPROCESSORS_ONLN
duke@435 559 // request and the loop that builds the list of processor ids. Unfortunately
duke@435 560 // there's no reliable way to determine the maximum valid processor id,
duke@435 561 // so we use a manifest constant, MAX_PROCESSOR_ID, instead. See p_online
duke@435 562 // man pages, which claim the processor id set is "sparse, but
duke@435 563 // not too sparse". MAX_PROCESSOR_ID is used to ensure that we eventually
duke@435 564 // exit the loop.
duke@435 565 //
duke@435 566 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
duke@435 567 // not available on S8.0.
duke@435 568
duke@435 569 static bool find_processors_online(processorid_t** id_array,
duke@435 570 uint* id_length) {
duke@435 571 const processorid_t MAX_PROCESSOR_ID = 100000 ;
duke@435 572 // Find the number of processors online.
duke@435 573 *id_length = sysconf(_SC_NPROCESSORS_ONLN);
duke@435 574 // Make up an array to hold their ids.
zgu@3900 575 *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
duke@435 576 // Processors need not be numbered consecutively.
duke@435 577 long found = 0;
duke@435 578 processorid_t next = 0;
duke@435 579 while (found < *id_length && next < MAX_PROCESSOR_ID) {
duke@435 580 processor_info_t info;
duke@435 581 if (processor_info(next, &info) == 0) {
duke@435 582 // NB, PI_NOINTR processors are effectively online ...
duke@435 583 if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
duke@435 584 (*id_array)[found] = next;
duke@435 585 found += 1;
duke@435 586 }
duke@435 587 }
duke@435 588 next += 1;
duke@435 589 }
duke@435 590 if (found < *id_length) {
duke@435 591 // The loop above didn't identify the expected number of processors.
duke@435 592 // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
duke@435 593 // and re-running the loop, above, but there's no guarantee of progress
duke@435 594 // if the system configuration is in flux. Instead, we just return what
duke@435 595 // we've got. Note that in the worst case find_processors_online() could
duke@435 596 // return an empty set. (As a fall-back in the case of the empty set we
duke@435 597 // could just return the ID of the current processor).
duke@435 598 *id_length = found ;
duke@435 599 }
duke@435 600
duke@435 601 return true;
duke@435 602 }
duke@435 603
duke@435 604 static bool assign_distribution(processorid_t* id_array,
duke@435 605 uint id_length,
duke@435 606 uint* distribution,
duke@435 607 uint distribution_length) {
duke@435 608 // We assume we can assign processorid_t's to uint's.
duke@435 609 assert(sizeof(processorid_t) == sizeof(uint),
duke@435 610 "can't convert processorid_t to uint");
duke@435 611 // Quick check to see if we won't succeed.
duke@435 612 if (id_length < distribution_length) {
duke@435 613 return false;
duke@435 614 }
duke@435 615 // Assign processor ids to the distribution.
duke@435 616 // Try to shuffle processors to distribute work across boards,
duke@435 617 // assuming 4 processors per board.
duke@435 618 const uint processors_per_board = ProcessDistributionStride;
duke@435 619 // Find the maximum processor id.
duke@435 620 processorid_t max_id = 0;
duke@435 621 for (uint m = 0; m < id_length; m += 1) {
duke@435 622 max_id = MAX2(max_id, id_array[m]);
duke@435 623 }
duke@435 624 // The next id, to limit loops.
duke@435 625 const processorid_t limit_id = max_id + 1;
duke@435 626 // Make up markers for available processors.
zgu@3900 627 bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
duke@435 628 for (uint c = 0; c < limit_id; c += 1) {
duke@435 629 available_id[c] = false;
duke@435 630 }
duke@435 631 for (uint a = 0; a < id_length; a += 1) {
duke@435 632 available_id[id_array[a]] = true;
duke@435 633 }
duke@435 634 // Step by "boards", then by "slot", copying to "assigned".
duke@435 635 // NEEDS_CLEANUP: The assignment of processors should be stateful,
duke@435 636 // remembering which processors have been assigned by
duke@435 637 // previous calls, etc., so as to distribute several
duke@435 638 // independent calls of this method. What we'd like is
duke@435 639 // It would be nice to have an API that let us ask
duke@435 640 // how many processes are bound to a processor,
duke@435 641 // but we don't have that, either.
duke@435 642 // In the short term, "board" is static so that
duke@435 643 // subsequent distributions don't all start at board 0.
duke@435 644 static uint board = 0;
duke@435 645 uint assigned = 0;
duke@435 646 // Until we've found enough processors ....
duke@435 647 while (assigned < distribution_length) {
duke@435 648 // ... find the next available processor in the board.
duke@435 649 for (uint slot = 0; slot < processors_per_board; slot += 1) {
duke@435 650 uint try_id = board * processors_per_board + slot;
duke@435 651 if ((try_id < limit_id) && (available_id[try_id] == true)) {
duke@435 652 distribution[assigned] = try_id;
duke@435 653 available_id[try_id] = false;
duke@435 654 assigned += 1;
duke@435 655 break;
duke@435 656 }
duke@435 657 }
duke@435 658 board += 1;
duke@435 659 if (board * processors_per_board + 0 >= limit_id) {
duke@435 660 board = 0;
duke@435 661 }
duke@435 662 }
duke@435 663 if (available_id != NULL) {
zgu@3900 664 FREE_C_HEAP_ARRAY(bool, available_id, mtInternal);
duke@435 665 }
duke@435 666 return true;
duke@435 667 }
duke@435 668
dcubed@3202 669 void os::set_native_thread_name(const char *name) {
dcubed@3202 670 // Not yet implemented.
dcubed@3202 671 return;
dcubed@3202 672 }
dcubed@3202 673
duke@435 674 bool os::distribute_processes(uint length, uint* distribution) {
duke@435 675 bool result = false;
duke@435 676 // Find the processor id's of all the available CPUs.
duke@435 677 processorid_t* id_array = NULL;
duke@435 678 uint id_length = 0;
duke@435 679 // There are some races between querying information and using it,
duke@435 680 // since processor sets can change dynamically.
duke@435 681 psetid_t pset = PS_NONE;
duke@435 682 // Are we running in a processor set?
duke@435 683 if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
duke@435 684 result = find_processors_in_pset(pset, &id_array, &id_length);
duke@435 685 } else {
duke@435 686 result = find_processors_online(&id_array, &id_length);
duke@435 687 }
duke@435 688 if (result == true) {
duke@435 689 if (id_length >= length) {
duke@435 690 result = assign_distribution(id_array, id_length, distribution, length);
duke@435 691 } else {
duke@435 692 result = false;
duke@435 693 }
duke@435 694 }
duke@435 695 if (id_array != NULL) {
zgu@3900 696 FREE_C_HEAP_ARRAY(processorid_t, id_array, mtInternal);
duke@435 697 }
duke@435 698 return result;
duke@435 699 }
duke@435 700
duke@435 701 bool os::bind_to_processor(uint processor_id) {
duke@435 702 // We assume that a processorid_t can be stored in a uint.
duke@435 703 assert(sizeof(uint) == sizeof(processorid_t),
duke@435 704 "can't convert uint to processorid_t");
duke@435 705 int bind_result =
duke@435 706 processor_bind(P_LWPID, // bind LWP.
duke@435 707 P_MYID, // bind current LWP.
duke@435 708 (processorid_t) processor_id, // id.
duke@435 709 NULL); // don't return old binding.
duke@435 710 return (bind_result == 0);
duke@435 711 }
duke@435 712
duke@435 713 bool os::getenv(const char* name, char* buffer, int len) {
duke@435 714 char* val = ::getenv( name );
duke@435 715 if ( val == NULL
duke@435 716 || strlen(val) + 1 > len ) {
duke@435 717 if (len > 0) buffer[0] = 0; // return a null string
duke@435 718 return false;
duke@435 719 }
duke@435 720 strcpy( buffer, val );
duke@435 721 return true;
duke@435 722 }
duke@435 723
duke@435 724
duke@435 725 // Return true if user is running as root.
duke@435 726
duke@435 727 bool os::have_special_privileges() {
duke@435 728 static bool init = false;
duke@435 729 static bool privileges = false;
duke@435 730 if (!init) {
duke@435 731 privileges = (getuid() != geteuid()) || (getgid() != getegid());
duke@435 732 init = true;
duke@435 733 }
duke@435 734 return privileges;
duke@435 735 }
duke@435 736
duke@435 737
duke@435 738 void os::init_system_properties_values() {
duke@435 739 char arch[12];
duke@435 740 sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
duke@435 741
duke@435 742 // The next steps are taken in the product version:
duke@435 743 //
duke@435 744 // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
duke@435 745 // This library should be located at:
duke@435 746 // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
duke@435 747 //
duke@435 748 // If "/jre/lib/" appears at the right place in the path, then we
duke@435 749 // assume libjvm[_g].so is installed in a JDK and we use this path.
duke@435 750 //
duke@435 751 // Otherwise exit with message: "Could not create the Java virtual machine."
duke@435 752 //
duke@435 753 // The following extra steps are taken in the debugging version:
duke@435 754 //
duke@435 755 // If "/jre/lib/" does NOT appear at the right place in the path
duke@435 756 // instead of exit check for $JAVA_HOME environment variable.
duke@435 757 //
duke@435 758 // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
duke@435 759 // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
duke@435 760 // it looks like libjvm[_g].so is installed there
duke@435 761 // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
duke@435 762 //
duke@435 763 // Otherwise exit.
duke@435 764 //
duke@435 765 // Important note: if the location of libjvm.so changes this
duke@435 766 // code needs to be changed accordingly.
duke@435 767
duke@435 768 // The next few definitions allow the code to be verbatim:
zgu@3900 769 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
zgu@3900 770 #define free(p) FREE_C_HEAP_ARRAY(char, p, mtInternal)
duke@435 771 #define getenv(n) ::getenv(n)
duke@435 772
duke@435 773 #define EXTENSIONS_DIR "/lib/ext"
duke@435 774 #define ENDORSED_DIR "/lib/endorsed"
duke@435 775 #define COMMON_DIR "/usr/jdk/packages"
duke@435 776
duke@435 777 {
duke@435 778 /* sysclasspath, java_home, dll_dir */
duke@435 779 {
duke@435 780 char *home_path;
duke@435 781 char *dll_path;
duke@435 782 char *pslash;
duke@435 783 char buf[MAXPATHLEN];
duke@435 784 os::jvm_path(buf, sizeof(buf));
duke@435 785
duke@435 786 // Found the full path to libjvm.so.
duke@435 787 // Now cut the path to <java_home>/jre if we can.
duke@435 788 *(strrchr(buf, '/')) = '\0'; /* get rid of /libjvm.so */
duke@435 789 pslash = strrchr(buf, '/');
duke@435 790 if (pslash != NULL)
duke@435 791 *pslash = '\0'; /* get rid of /{client|server|hotspot} */
duke@435 792 dll_path = malloc(strlen(buf) + 1);
duke@435 793 if (dll_path == NULL)
duke@435 794 return;
duke@435 795 strcpy(dll_path, buf);
duke@435 796 Arguments::set_dll_dir(dll_path);
duke@435 797
duke@435 798 if (pslash != NULL) {
duke@435 799 pslash = strrchr(buf, '/');
duke@435 800 if (pslash != NULL) {
duke@435 801 *pslash = '\0'; /* get rid of /<arch> */
duke@435 802 pslash = strrchr(buf, '/');
duke@435 803 if (pslash != NULL)
duke@435 804 *pslash = '\0'; /* get rid of /lib */
duke@435 805 }
duke@435 806 }
duke@435 807
duke@435 808 home_path = malloc(strlen(buf) + 1);
duke@435 809 if (home_path == NULL)
duke@435 810 return;
duke@435 811 strcpy(home_path, buf);
duke@435 812 Arguments::set_java_home(home_path);
duke@435 813
duke@435 814 if (!set_boot_path('/', ':'))
duke@435 815 return;
duke@435 816 }
duke@435 817
duke@435 818 /*
duke@435 819 * Where to look for native libraries
duke@435 820 */
duke@435 821 {
duke@435 822 // Use dlinfo() to determine the correct java.library.path.
duke@435 823 //
duke@435 824 // If we're launched by the Java launcher, and the user
duke@435 825 // does not set java.library.path explicitly on the commandline,
duke@435 826 // the Java launcher sets LD_LIBRARY_PATH for us and unsets
duke@435 827 // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64. In this case
duke@435 828 // dlinfo returns LD_LIBRARY_PATH + crle settings (including
duke@435 829 // /usr/lib), which is exactly what we want.
duke@435 830 //
duke@435 831 // If the user does set java.library.path, it completely
duke@435 832 // overwrites this setting, and always has.
duke@435 833 //
duke@435 834 // If we're not launched by the Java launcher, we may
duke@435 835 // get here with any/all of the LD_LIBRARY_PATH[_32|64]
duke@435 836 // settings. Again, dlinfo does exactly what we want.
duke@435 837
duke@435 838 Dl_serinfo _info, *info = &_info;
duke@435 839 Dl_serpath *path;
duke@435 840 char* library_path;
duke@435 841 char *common_path;
duke@435 842 int i;
duke@435 843
duke@435 844 // determine search path count and required buffer size
duke@435 845 if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
duke@435 846 vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
duke@435 847 }
duke@435 848
duke@435 849 // allocate new buffer and initialize
duke@435 850 info = (Dl_serinfo*)malloc(_info.dls_size);
duke@435 851 if (info == NULL) {
duke@435 852 vm_exit_out_of_memory(_info.dls_size,
duke@435 853 "init_system_properties_values info");
duke@435 854 }
duke@435 855 info->dls_size = _info.dls_size;
duke@435 856 info->dls_cnt = _info.dls_cnt;
duke@435 857
duke@435 858 // obtain search path information
duke@435 859 if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
duke@435 860 free(info);
duke@435 861 vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
duke@435 862 }
duke@435 863
duke@435 864 path = &info->dls_serpath[0];
duke@435 865
duke@435 866 // Note: Due to a legacy implementation, most of the library path
duke@435 867 // is set in the launcher. This was to accomodate linking restrictions
duke@435 868 // on legacy Solaris implementations (which are no longer supported).
duke@435 869 // Eventually, all the library path setting will be done here.
duke@435 870 //
duke@435 871 // However, to prevent the proliferation of improperly built native
duke@435 872 // libraries, the new path component /usr/jdk/packages is added here.
duke@435 873
duke@435 874 // Determine the actual CPU architecture.
duke@435 875 char cpu_arch[12];
duke@435 876 sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
duke@435 877 #ifdef _LP64
duke@435 878 // If we are a 64-bit vm, perform the following translations:
duke@435 879 // sparc -> sparcv9
duke@435 880 // i386 -> amd64
duke@435 881 if (strcmp(cpu_arch, "sparc") == 0)
duke@435 882 strcat(cpu_arch, "v9");
duke@435 883 else if (strcmp(cpu_arch, "i386") == 0)
duke@435 884 strcpy(cpu_arch, "amd64");
duke@435 885 #endif
duke@435 886
duke@435 887 // Construct the invariant part of ld_library_path. Note that the
duke@435 888 // space for the colon and the trailing null are provided by the
duke@435 889 // nulls included by the sizeof operator.
duke@435 890 size_t bufsize = sizeof(COMMON_DIR) + sizeof("/lib/") + strlen(cpu_arch);
duke@435 891 common_path = malloc(bufsize);
duke@435 892 if (common_path == NULL) {
duke@435 893 free(info);
duke@435 894 vm_exit_out_of_memory(bufsize,
duke@435 895 "init_system_properties_values common_path");
duke@435 896 }
duke@435 897 sprintf(common_path, COMMON_DIR "/lib/%s", cpu_arch);
duke@435 898
duke@435 899 // struct size is more than sufficient for the path components obtained
duke@435 900 // through the dlinfo() call, so only add additional space for the path
duke@435 901 // components explicitly added here.
duke@435 902 bufsize = info->dls_size + strlen(common_path);
duke@435 903 library_path = malloc(bufsize);
duke@435 904 if (library_path == NULL) {
duke@435 905 free(info);
duke@435 906 free(common_path);
duke@435 907 vm_exit_out_of_memory(bufsize,
duke@435 908 "init_system_properties_values library_path");
duke@435 909 }
duke@435 910 library_path[0] = '\0';
duke@435 911
duke@435 912 // Construct the desired Java library path from the linker's library
duke@435 913 // search path.
duke@435 914 //
duke@435 915 // For compatibility, it is optimal that we insert the additional path
duke@435 916 // components specific to the Java VM after those components specified
duke@435 917 // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
duke@435 918 // infrastructure.
duke@435 919 if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it
duke@435 920 strcpy(library_path, common_path);
duke@435 921 } else {
duke@435 922 int inserted = 0;
duke@435 923 for (i = 0; i < info->dls_cnt; i++, path++) {
duke@435 924 uint_t flags = path->dls_flags & LA_SER_MASK;
duke@435 925 if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
duke@435 926 strcat(library_path, common_path);
duke@435 927 strcat(library_path, os::path_separator());
duke@435 928 inserted = 1;
duke@435 929 }
duke@435 930 strcat(library_path, path->dls_name);
duke@435 931 strcat(library_path, os::path_separator());
duke@435 932 }
duke@435 933 // eliminate trailing path separator
duke@435 934 library_path[strlen(library_path)-1] = '\0';
duke@435 935 }
duke@435 936
duke@435 937 // happens before argument parsing - can't use a trace flag
duke@435 938 // tty->print_raw("init_system_properties_values: native lib path: ");
duke@435 939 // tty->print_raw_cr(library_path);
duke@435 940
duke@435 941 // callee copies into its own buffer
duke@435 942 Arguments::set_library_path(library_path);
duke@435 943
duke@435 944 free(common_path);
duke@435 945 free(library_path);
duke@435 946 free(info);
duke@435 947 }
duke@435 948
duke@435 949 /*
duke@435 950 * Extensions directories.
duke@435 951 *
duke@435 952 * Note that the space for the colon and the trailing null are provided
duke@435 953 * by the nulls included by the sizeof operator (so actually one byte more
duke@435 954 * than necessary is allocated).
duke@435 955 */
duke@435 956 {
duke@435 957 char *buf = (char *) malloc(strlen(Arguments::get_java_home()) +
duke@435 958 sizeof(EXTENSIONS_DIR) + sizeof(COMMON_DIR) +
duke@435 959 sizeof(EXTENSIONS_DIR));
duke@435 960 sprintf(buf, "%s" EXTENSIONS_DIR ":" COMMON_DIR EXTENSIONS_DIR,
duke@435 961 Arguments::get_java_home());
duke@435 962 Arguments::set_ext_dirs(buf);
duke@435 963 }
duke@435 964
duke@435 965 /* Endorsed standards default directory. */
duke@435 966 {
duke@435 967 char * buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
duke@435 968 sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
duke@435 969 Arguments::set_endorsed_dirs(buf);
duke@435 970 }
duke@435 971 }
duke@435 972
duke@435 973 #undef malloc
duke@435 974 #undef free
duke@435 975 #undef getenv
duke@435 976 #undef EXTENSIONS_DIR
duke@435 977 #undef ENDORSED_DIR
duke@435 978 #undef COMMON_DIR
duke@435 979
duke@435 980 }
duke@435 981
duke@435 982 void os::breakpoint() {
duke@435 983 BREAKPOINT;
duke@435 984 }
duke@435 985
duke@435 986 bool os::obsolete_option(const JavaVMOption *option)
duke@435 987 {
duke@435 988 if (!strncmp(option->optionString, "-Xt", 3)) {
duke@435 989 return true;
duke@435 990 } else if (!strncmp(option->optionString, "-Xtm", 4)) {
duke@435 991 return true;
duke@435 992 } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
duke@435 993 return true;
duke@435 994 } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
duke@435 995 return true;
duke@435 996 }
duke@435 997 return false;
duke@435 998 }
duke@435 999
duke@435 1000 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
duke@435 1001 address stackStart = (address)thread->stack_base();
duke@435 1002 address stackEnd = (address)(stackStart - (address)thread->stack_size());
duke@435 1003 if (sp < stackStart && sp >= stackEnd ) return true;
duke@435 1004 return false;
duke@435 1005 }
duke@435 1006
duke@435 1007 extern "C" void breakpoint() {
duke@435 1008 // use debugger to set breakpoint here
duke@435 1009 }
duke@435 1010
duke@435 1011 static thread_t main_thread;
duke@435 1012
duke@435 1013 // Thread start routine for all new Java threads
duke@435 1014 extern "C" void* java_start(void* thread_addr) {
duke@435 1015 // Try to randomize the cache line index of hot stack frames.
duke@435 1016 // This helps when threads of the same stack traces evict each other's
duke@435 1017 // cache lines. The threads can be either from the same JVM instance, or
duke@435 1018 // from different JVM instances. The benefit is especially true for
duke@435 1019 // processors with hyperthreading technology.
duke@435 1020 static int counter = 0;
duke@435 1021 int pid = os::current_process_id();
duke@435 1022 alloca(((pid ^ counter++) & 7) * 128);
duke@435 1023
duke@435 1024 int prio;
duke@435 1025 Thread* thread = (Thread*)thread_addr;
duke@435 1026 OSThread* osthr = thread->osthread();
duke@435 1027
duke@435 1028 osthr->set_lwp_id( _lwp_self() ); // Store lwp in case we are bound
duke@435 1029 thread->_schedctl = (void *) schedctl_init () ;
duke@435 1030
duke@435 1031 if (UseNUMA) {
duke@435 1032 int lgrp_id = os::numa_get_group_id();
duke@435 1033 if (lgrp_id != -1) {
duke@435 1034 thread->set_lgrp_id(lgrp_id);
duke@435 1035 }
duke@435 1036 }
duke@435 1037
duke@435 1038 // If the creator called set priority before we started,
phh@3481 1039 // we need to call set_native_priority now that we have an lwp.
phh@3481 1040 // We used to get the priority from thr_getprio (we called
phh@3481 1041 // thr_setprio way back in create_thread) and pass it to
phh@3481 1042 // set_native_priority, but Solaris scales the priority
phh@3481 1043 // in java_to_os_priority, so when we read it back here,
phh@3481 1044 // we pass trash to set_native_priority instead of what's
phh@3481 1045 // in java_to_os_priority. So we save the native priority
phh@3481 1046 // in the osThread and recall it here.
phh@3481 1047
duke@435 1048 if ( osthr->thread_id() != -1 ) {
duke@435 1049 if ( UseThreadPriorities ) {
phh@3481 1050 int prio = osthr->native_priority();
duke@435 1051 if (ThreadPriorityVerbose) {
phh@3481 1052 tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
phh@3481 1053 INTPTR_FORMAT ", setting priority: %d\n",
phh@3481 1054 osthr->thread_id(), osthr->lwp_id(), prio);
duke@435 1055 }
duke@435 1056 os::set_native_priority(thread, prio);
duke@435 1057 }
duke@435 1058 } else if (ThreadPriorityVerbose) {
duke@435 1059 warning("Can't set priority in _start routine, thread id hasn't been set\n");
duke@435 1060 }
duke@435 1061
duke@435 1062 assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
duke@435 1063
duke@435 1064 // initialize signal mask for this thread
duke@435 1065 os::Solaris::hotspot_sigmask(thread);
duke@435 1066
duke@435 1067 thread->run();
duke@435 1068
duke@435 1069 // One less thread is executing
duke@435 1070 // When the VMThread gets here, the main thread may have already exited
duke@435 1071 // which frees the CodeHeap containing the Atomic::dec code
duke@435 1072 if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
duke@435 1073 Atomic::dec(&os::Solaris::_os_thread_count);
duke@435 1074 }
duke@435 1075
duke@435 1076 if (UseDetachedThreads) {
duke@435 1077 thr_exit(NULL);
duke@435 1078 ShouldNotReachHere();
duke@435 1079 }
duke@435 1080 return NULL;
duke@435 1081 }
duke@435 1082
duke@435 1083 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
duke@435 1084 // Allocate the OSThread object
duke@435 1085 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 1086 if (osthread == NULL) return NULL;
duke@435 1087
duke@435 1088 // Store info on the Solaris thread into the OSThread
duke@435 1089 osthread->set_thread_id(thread_id);
duke@435 1090 osthread->set_lwp_id(_lwp_self());
duke@435 1091 thread->_schedctl = (void *) schedctl_init () ;
duke@435 1092
duke@435 1093 if (UseNUMA) {
duke@435 1094 int lgrp_id = os::numa_get_group_id();
duke@435 1095 if (lgrp_id != -1) {
duke@435 1096 thread->set_lgrp_id(lgrp_id);
duke@435 1097 }
duke@435 1098 }
duke@435 1099
duke@435 1100 if ( ThreadPriorityVerbose ) {
duke@435 1101 tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
duke@435 1102 osthread->thread_id(), osthread->lwp_id() );
duke@435 1103 }
duke@435 1104
duke@435 1105 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 1106 osthread->set_state(INITIALIZED);
duke@435 1107
duke@435 1108 return osthread;
duke@435 1109 }
duke@435 1110
duke@435 1111 void os::Solaris::hotspot_sigmask(Thread* thread) {
duke@435 1112
duke@435 1113 //Save caller's signal mask
duke@435 1114 sigset_t sigmask;
duke@435 1115 thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
duke@435 1116 OSThread *osthread = thread->osthread();
duke@435 1117 osthread->set_caller_sigmask(sigmask);
duke@435 1118
duke@435 1119 thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
duke@435 1120 if (!ReduceSignalUsage) {
duke@435 1121 if (thread->is_VM_thread()) {
duke@435 1122 // Only the VM thread handles BREAK_SIGNAL ...
duke@435 1123 thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
duke@435 1124 } else {
duke@435 1125 // ... all other threads block BREAK_SIGNAL
duke@435 1126 assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
duke@435 1127 thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
duke@435 1128 }
duke@435 1129 }
duke@435 1130 }
duke@435 1131
duke@435 1132 bool os::create_attached_thread(JavaThread* thread) {
duke@435 1133 #ifdef ASSERT
duke@435 1134 thread->verify_not_published();
duke@435 1135 #endif
duke@435 1136 OSThread* osthread = create_os_thread(thread, thr_self());
duke@435 1137 if (osthread == NULL) {
duke@435 1138 return false;
duke@435 1139 }
duke@435 1140
duke@435 1141 // Initial thread state is RUNNABLE
duke@435 1142 osthread->set_state(RUNNABLE);
duke@435 1143 thread->set_osthread(osthread);
duke@435 1144
duke@435 1145 // initialize signal mask for this thread
duke@435 1146 // and save the caller's signal mask
duke@435 1147 os::Solaris::hotspot_sigmask(thread);
duke@435 1148
duke@435 1149 return true;
duke@435 1150 }
duke@435 1151
duke@435 1152 bool os::create_main_thread(JavaThread* thread) {
duke@435 1153 #ifdef ASSERT
duke@435 1154 thread->verify_not_published();
duke@435 1155 #endif
duke@435 1156 if (_starting_thread == NULL) {
duke@435 1157 _starting_thread = create_os_thread(thread, main_thread);
duke@435 1158 if (_starting_thread == NULL) {
duke@435 1159 return false;
duke@435 1160 }
duke@435 1161 }
duke@435 1162
duke@435 1163 // The primodial thread is runnable from the start
duke@435 1164 _starting_thread->set_state(RUNNABLE);
duke@435 1165
duke@435 1166 thread->set_osthread(_starting_thread);
duke@435 1167
duke@435 1168 // initialize signal mask for this thread
duke@435 1169 // and save the caller's signal mask
duke@435 1170 os::Solaris::hotspot_sigmask(thread);
duke@435 1171
duke@435 1172 return true;
duke@435 1173 }
duke@435 1174
duke@435 1175 // _T2_libthread is true if we believe we are running with the newer
duke@435 1176 // SunSoft lwp/libthread.so (2.8 patch, 2.9 default)
duke@435 1177 bool os::Solaris::_T2_libthread = false;
duke@435 1178
duke@435 1179 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
duke@435 1180 // Allocate the OSThread object
duke@435 1181 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 1182 if (osthread == NULL) {
duke@435 1183 return false;
duke@435 1184 }
duke@435 1185
duke@435 1186 if ( ThreadPriorityVerbose ) {
duke@435 1187 char *thrtyp;
duke@435 1188 switch ( thr_type ) {
duke@435 1189 case vm_thread:
duke@435 1190 thrtyp = (char *)"vm";
duke@435 1191 break;
duke@435 1192 case cgc_thread:
duke@435 1193 thrtyp = (char *)"cgc";
duke@435 1194 break;
duke@435 1195 case pgc_thread:
duke@435 1196 thrtyp = (char *)"pgc";
duke@435 1197 break;
duke@435 1198 case java_thread:
duke@435 1199 thrtyp = (char *)"java";
duke@435 1200 break;
duke@435 1201 case compiler_thread:
duke@435 1202 thrtyp = (char *)"compiler";
duke@435 1203 break;
duke@435 1204 case watcher_thread:
duke@435 1205 thrtyp = (char *)"watcher";
duke@435 1206 break;
duke@435 1207 default:
duke@435 1208 thrtyp = (char *)"unknown";
duke@435 1209 break;
duke@435 1210 }
duke@435 1211 tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
duke@435 1212 }
duke@435 1213
duke@435 1214 // Calculate stack size if it's not specified by caller.
duke@435 1215 if (stack_size == 0) {
duke@435 1216 // The default stack size 1M (2M for LP64).
duke@435 1217 stack_size = (BytesPerWord >> 2) * K * K;
duke@435 1218
duke@435 1219 switch (thr_type) {
duke@435 1220 case os::java_thread:
duke@435 1221 // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
duke@435 1222 if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
duke@435 1223 break;
duke@435 1224 case os::compiler_thread:
duke@435 1225 if (CompilerThreadStackSize > 0) {
duke@435 1226 stack_size = (size_t)(CompilerThreadStackSize * K);
duke@435 1227 break;
duke@435 1228 } // else fall through:
duke@435 1229 // use VMThreadStackSize if CompilerThreadStackSize is not defined
duke@435 1230 case os::vm_thread:
duke@435 1231 case os::pgc_thread:
duke@435 1232 case os::cgc_thread:
duke@435 1233 case os::watcher_thread:
duke@435 1234 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
duke@435 1235 break;
duke@435 1236 }
duke@435 1237 }
duke@435 1238 stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
duke@435 1239
duke@435 1240 // Initial state is ALLOCATED but not INITIALIZED
duke@435 1241 osthread->set_state(ALLOCATED);
duke@435 1242
duke@435 1243 if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
duke@435 1244 // We got lots of threads. Check if we still have some address space left.
duke@435 1245 // Need to be at least 5Mb of unreserved address space. We do check by
duke@435 1246 // trying to reserve some.
duke@435 1247 const size_t VirtualMemoryBangSize = 20*K*K;
duke@435 1248 char* mem = os::reserve_memory(VirtualMemoryBangSize);
duke@435 1249 if (mem == NULL) {
duke@435 1250 delete osthread;
duke@435 1251 return false;
duke@435 1252 } else {
duke@435 1253 // Release the memory again
duke@435 1254 os::release_memory(mem, VirtualMemoryBangSize);
duke@435 1255 }
duke@435 1256 }
duke@435 1257
duke@435 1258 // Setup osthread because the child thread may need it.
duke@435 1259 thread->set_osthread(osthread);
duke@435 1260
duke@435 1261 // Create the Solaris thread
duke@435 1262 // explicit THR_BOUND for T2_libthread case in case
duke@435 1263 // that assumption is not accurate, but our alternate signal stack
duke@435 1264 // handling is based on it which must have bound threads
duke@435 1265 thread_t tid = 0;
duke@435 1266 long flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED
duke@435 1267 | ((UseBoundThreads || os::Solaris::T2_libthread() ||
duke@435 1268 (thr_type == vm_thread) ||
duke@435 1269 (thr_type == cgc_thread) ||
duke@435 1270 (thr_type == pgc_thread) ||
duke@435 1271 (thr_type == compiler_thread && BackgroundCompilation)) ?
duke@435 1272 THR_BOUND : 0);
duke@435 1273 int status;
duke@435 1274
duke@435 1275 // 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs.
duke@435 1276 //
duke@435 1277 // On multiprocessors systems, libthread sometimes under-provisions our
duke@435 1278 // process with LWPs. On a 30-way systems, for instance, we could have
duke@435 1279 // 50 user-level threads in ready state and only 2 or 3 LWPs assigned
duke@435 1280 // to our process. This can result in under utilization of PEs.
duke@435 1281 // I suspect the problem is related to libthread's LWP
duke@435 1282 // pool management and to the kernel's SIGBLOCKING "last LWP parked"
duke@435 1283 // upcall policy.
duke@435 1284 //
duke@435 1285 // The following code is palliative -- it attempts to ensure that our
duke@435 1286 // process has sufficient LWPs to take advantage of multiple PEs.
duke@435 1287 // Proper long-term cures include using user-level threads bound to LWPs
duke@435 1288 // (THR_BOUND) or using LWP-based synchronization. Note that there is a
duke@435 1289 // slight timing window with respect to sampling _os_thread_count, but
duke@435 1290 // the race is benign. Also, we should periodically recompute
duke@435 1291 // _processors_online as the min of SC_NPROCESSORS_ONLN and the
duke@435 1292 // the number of PEs in our partition. You might be tempted to use
duke@435 1293 // THR_NEW_LWP here, but I'd recommend against it as that could
duke@435 1294 // result in undesirable growth of the libthread's LWP pool.
duke@435 1295 // The fix below isn't sufficient; for instance, it doesn't take into count
duke@435 1296 // LWPs parked on IO. It does, however, help certain CPU-bound benchmarks.
duke@435 1297 //
duke@435 1298 // Some pathologies this scheme doesn't handle:
duke@435 1299 // * Threads can block, releasing the LWPs. The LWPs can age out.
duke@435 1300 // When a large number of threads become ready again there aren't
duke@435 1301 // enough LWPs available to service them. This can occur when the
duke@435 1302 // number of ready threads oscillates.
duke@435 1303 // * LWPs/Threads park on IO, thus taking the LWP out of circulation.
duke@435 1304 //
duke@435 1305 // Finally, we should call thr_setconcurrency() periodically to refresh
duke@435 1306 // the LWP pool and thwart the LWP age-out mechanism.
duke@435 1307 // The "+3" term provides a little slop -- we want to slightly overprovision.
duke@435 1308
duke@435 1309 if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) {
duke@435 1310 if (!(flags & THR_BOUND)) {
duke@435 1311 thr_setconcurrency (os::Solaris::_os_thread_count); // avoid starvation
duke@435 1312 }
duke@435 1313 }
duke@435 1314 // Although this doesn't hurt, we should warn of undefined behavior
duke@435 1315 // when using unbound T1 threads with schedctl(). This should never
duke@435 1316 // happen, as the compiler and VM threads are always created bound
duke@435 1317 DEBUG_ONLY(
duke@435 1318 if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) &&
duke@435 1319 (!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) &&
duke@435 1320 ((thr_type == vm_thread) || (thr_type == cgc_thread) ||
duke@435 1321 (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) {
duke@435 1322 warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound");
duke@435 1323 }
duke@435 1324 );
duke@435 1325
duke@435 1326
duke@435 1327 // Mark that we don't have an lwp or thread id yet.
duke@435 1328 // In case we attempt to set the priority before the thread starts.
duke@435 1329 osthread->set_lwp_id(-1);
duke@435 1330 osthread->set_thread_id(-1);
duke@435 1331
duke@435 1332 status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
duke@435 1333 if (status != 0) {
duke@435 1334 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 1335 perror("os::create_thread");
duke@435 1336 }
duke@435 1337 thread->set_osthread(NULL);
duke@435 1338 // Need to clean up stuff we've allocated so far
duke@435 1339 delete osthread;
duke@435 1340 return false;
duke@435 1341 }
duke@435 1342
duke@435 1343 Atomic::inc(&os::Solaris::_os_thread_count);
duke@435 1344
duke@435 1345 // Store info on the Solaris thread into the OSThread
duke@435 1346 osthread->set_thread_id(tid);
duke@435 1347
duke@435 1348 // Remember that we created this thread so we can set priority on it
duke@435 1349 osthread->set_vm_created();
duke@435 1350
phh@3481 1351 // Set the default thread priority. If using bound threads, setting
phh@3481 1352 // lwp priority will be delayed until thread start.
phh@3481 1353 set_native_priority(thread,
phh@3481 1354 DefaultThreadPriority == -1 ?
duke@435 1355 java_to_os_priority[NormPriority] :
duke@435 1356 DefaultThreadPriority);
duke@435 1357
duke@435 1358 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 1359 osthread->set_state(INITIALIZED);
duke@435 1360
duke@435 1361 // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
duke@435 1362 return true;
duke@435 1363 }
duke@435 1364
duke@435 1365 /* defined for >= Solaris 10. This allows builds on earlier versions
duke@435 1366 * of Solaris to take advantage of the newly reserved Solaris JVM signals
duke@435 1367 * With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
duke@435 1368 * and -XX:+UseAltSigs does nothing since these should have no conflict
duke@435 1369 */
duke@435 1370 #if !defined(SIGJVM1)
duke@435 1371 #define SIGJVM1 39
duke@435 1372 #define SIGJVM2 40
duke@435 1373 #endif
duke@435 1374
duke@435 1375 debug_only(static bool signal_sets_initialized = false);
duke@435 1376 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
duke@435 1377 int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
duke@435 1378 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
duke@435 1379
duke@435 1380 bool os::Solaris::is_sig_ignored(int sig) {
duke@435 1381 struct sigaction oact;
duke@435 1382 sigaction(sig, (struct sigaction*)NULL, &oact);
duke@435 1383 void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
duke@435 1384 : CAST_FROM_FN_PTR(void*, oact.sa_handler);
duke@435 1385 if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
duke@435 1386 return true;
duke@435 1387 else
duke@435 1388 return false;
duke@435 1389 }
duke@435 1390
duke@435 1391 // Note: SIGRTMIN is a macro that calls sysconf() so it will
duke@435 1392 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
duke@435 1393 static bool isJVM1available() {
duke@435 1394 return SIGJVM1 < SIGRTMIN;
duke@435 1395 }
duke@435 1396
duke@435 1397 void os::Solaris::signal_sets_init() {
duke@435 1398 // Should also have an assertion stating we are still single-threaded.
duke@435 1399 assert(!signal_sets_initialized, "Already initialized");
duke@435 1400 // Fill in signals that are necessarily unblocked for all threads in
duke@435 1401 // the VM. Currently, we unblock the following signals:
duke@435 1402 // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
duke@435 1403 // by -Xrs (=ReduceSignalUsage));
duke@435 1404 // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
duke@435 1405 // other threads. The "ReduceSignalUsage" boolean tells us not to alter
duke@435 1406 // the dispositions or masks wrt these signals.
duke@435 1407 // Programs embedding the VM that want to use the above signals for their
duke@435 1408 // own purposes must, at this time, use the "-Xrs" option to prevent
duke@435 1409 // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
duke@435 1410 // (See bug 4345157, and other related bugs).
duke@435 1411 // In reality, though, unblocking these signals is really a nop, since
duke@435 1412 // these signals are not blocked by default.
duke@435 1413 sigemptyset(&unblocked_sigs);
duke@435 1414 sigemptyset(&allowdebug_blocked_sigs);
duke@435 1415 sigaddset(&unblocked_sigs, SIGILL);
duke@435 1416 sigaddset(&unblocked_sigs, SIGSEGV);
duke@435 1417 sigaddset(&unblocked_sigs, SIGBUS);
duke@435 1418 sigaddset(&unblocked_sigs, SIGFPE);
duke@435 1419
duke@435 1420 if (isJVM1available) {
duke@435 1421 os::Solaris::set_SIGinterrupt(SIGJVM1);
duke@435 1422 os::Solaris::set_SIGasync(SIGJVM2);
duke@435 1423 } else if (UseAltSigs) {
duke@435 1424 os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
duke@435 1425 os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
duke@435 1426 } else {
duke@435 1427 os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
duke@435 1428 os::Solaris::set_SIGasync(ASYNC_SIGNAL);
duke@435 1429 }
duke@435 1430
duke@435 1431 sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
duke@435 1432 sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
duke@435 1433
duke@435 1434 if (!ReduceSignalUsage) {
duke@435 1435 if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
duke@435 1436 sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 1437 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 1438 }
duke@435 1439 if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
duke@435 1440 sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 1441 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 1442 }
duke@435 1443 if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
duke@435 1444 sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 1445 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 1446 }
duke@435 1447 }
duke@435 1448 // Fill in signals that are blocked by all but the VM thread.
duke@435 1449 sigemptyset(&vm_sigs);
duke@435 1450 if (!ReduceSignalUsage)
duke@435 1451 sigaddset(&vm_sigs, BREAK_SIGNAL);
duke@435 1452 debug_only(signal_sets_initialized = true);
duke@435 1453
duke@435 1454 // For diagnostics only used in run_periodic_checks
duke@435 1455 sigemptyset(&check_signal_done);
duke@435 1456 }
duke@435 1457
duke@435 1458 // These are signals that are unblocked while a thread is running Java.
duke@435 1459 // (For some reason, they get blocked by default.)
duke@435 1460 sigset_t* os::Solaris::unblocked_signals() {
duke@435 1461 assert(signal_sets_initialized, "Not initialized");
duke@435 1462 return &unblocked_sigs;
duke@435 1463 }
duke@435 1464
duke@435 1465 // These are the signals that are blocked while a (non-VM) thread is
duke@435 1466 // running Java. Only the VM thread handles these signals.
duke@435 1467 sigset_t* os::Solaris::vm_signals() {
duke@435 1468 assert(signal_sets_initialized, "Not initialized");
duke@435 1469 return &vm_sigs;
duke@435 1470 }
duke@435 1471
duke@435 1472 // These are signals that are blocked during cond_wait to allow debugger in
duke@435 1473 sigset_t* os::Solaris::allowdebug_blocked_signals() {
duke@435 1474 assert(signal_sets_initialized, "Not initialized");
duke@435 1475 return &allowdebug_blocked_sigs;
duke@435 1476 }
duke@435 1477
zgu@2391 1478
zgu@2391 1479 void _handle_uncaught_cxx_exception() {
zgu@2391 1480 VMError err("An uncaught C++ exception");
zgu@2391 1481 err.report_and_die();
zgu@2391 1482 }
zgu@2391 1483
zgu@2391 1484
duke@435 1485 // First crack at OS-specific initialization, from inside the new thread.
zgu@4079 1486 void os::initialize_thread(Thread* thr) {
duke@435 1487 int r = thr_main() ;
duke@435 1488 guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
duke@435 1489 if (r) {
zgu@4079 1490 JavaThread* jt = (JavaThread *)thr;
duke@435 1491 assert(jt != NULL,"Sanity check");
duke@435 1492 size_t stack_size;
duke@435 1493 address base = jt->stack_base();
duke@435 1494 if (Arguments::created_by_java_launcher()) {
duke@435 1495 // Use 2MB to allow for Solaris 7 64 bit mode.
duke@435 1496 stack_size = JavaThread::stack_size_at_create() == 0
duke@435 1497 ? 2048*K : JavaThread::stack_size_at_create();
duke@435 1498
duke@435 1499 // There are rare cases when we may have already used more than
duke@435 1500 // the basic stack size allotment before this method is invoked.
duke@435 1501 // Attempt to allow for a normally sized java_stack.
duke@435 1502 size_t current_stack_offset = (size_t)(base - (address)&stack_size);
duke@435 1503 stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
duke@435 1504 } else {
duke@435 1505 // 6269555: If we were not created by a Java launcher, i.e. if we are
duke@435 1506 // running embedded in a native application, treat the primordial thread
duke@435 1507 // as much like a native attached thread as possible. This means using
duke@435 1508 // the current stack size from thr_stksegment(), unless it is too large
duke@435 1509 // to reliably setup guard pages. A reasonable max size is 8MB.
duke@435 1510 size_t current_size = current_stack_size();
duke@435 1511 // This should never happen, but just in case....
duke@435 1512 if (current_size == 0) current_size = 2 * K * K;
duke@435 1513 stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
duke@435 1514 }
duke@435 1515 address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
duke@435 1516 stack_size = (size_t)(base - bottom);
duke@435 1517
duke@435 1518 assert(stack_size > 0, "Stack size calculation problem");
duke@435 1519
duke@435 1520 if (stack_size > jt->stack_size()) {
duke@435 1521 NOT_PRODUCT(
duke@435 1522 struct rlimit limits;
duke@435 1523 getrlimit(RLIMIT_STACK, &limits);
duke@435 1524 size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
duke@435 1525 assert(size >= jt->stack_size(), "Stack size problem in main thread");
duke@435 1526 )
duke@435 1527 tty->print_cr(
duke@435 1528 "Stack size of %d Kb exceeds current limit of %d Kb.\n"
duke@435 1529 "(Stack sizes are rounded up to a multiple of the system page size.)\n"
duke@435 1530 "See limit(1) to increase the stack size limit.",
duke@435 1531 stack_size / K, jt->stack_size() / K);
duke@435 1532 vm_exit(1);
duke@435 1533 }
duke@435 1534 assert(jt->stack_size() >= stack_size,
duke@435 1535 "Attempt to map more stack than was allocated");
duke@435 1536 jt->set_stack_size(stack_size);
duke@435 1537 }
duke@435 1538
duke@435 1539 // 5/22/01: Right now alternate signal stacks do not handle
duke@435 1540 // throwing stack overflow exceptions, see bug 4463178
duke@435 1541 // Until a fix is found for this, T2 will NOT imply alternate signal
duke@435 1542 // stacks.
duke@435 1543 // If using T2 libthread threads, install an alternate signal stack.
duke@435 1544 // Because alternate stacks associate with LWPs on Solaris,
duke@435 1545 // see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads
duke@435 1546 // we prefer to explicitly stack bang.
duke@435 1547 // If not using T2 libthread, but using UseBoundThreads any threads
duke@435 1548 // (primordial thread, jni_attachCurrentThread) we do not create,
duke@435 1549 // probably are not bound, therefore they can not have an alternate
duke@435 1550 // signal stack. Since our stack banging code is generated and
duke@435 1551 // is shared across threads, all threads must be bound to allow
duke@435 1552 // using alternate signal stacks. The alternative is to interpose
duke@435 1553 // on _lwp_create to associate an alt sig stack with each LWP,
duke@435 1554 // and this could be a problem when the JVM is embedded.
duke@435 1555 // We would prefer to use alternate signal stacks with T2
duke@435 1556 // Since there is currently no accurate way to detect T2
duke@435 1557 // we do not. Assuming T2 when running T1 causes sig 11s or assertions
duke@435 1558 // on installing alternate signal stacks
duke@435 1559
duke@435 1560
duke@435 1561 // 05/09/03: removed alternate signal stack support for Solaris
duke@435 1562 // The alternate signal stack mechanism is no longer needed to
duke@435 1563 // handle stack overflow. This is now handled by allocating
duke@435 1564 // guard pages (red zone) and stackbanging.
duke@435 1565 // Initially the alternate signal stack mechanism was removed because
duke@435 1566 // it did not work with T1 llibthread. Alternate
duke@435 1567 // signal stacks MUST have all threads bound to lwps. Applications
duke@435 1568 // can create their own threads and attach them without their being
duke@435 1569 // bound under T1. This is frequently the case for the primordial thread.
duke@435 1570 // If we were ever to reenable this mechanism we would need to
duke@435 1571 // use the dynamic check for T2 libthread.
duke@435 1572
duke@435 1573 os::Solaris::init_thread_fpu_state();
zgu@2391 1574 std::set_terminate(_handle_uncaught_cxx_exception);
duke@435 1575 }
duke@435 1576
duke@435 1577
duke@435 1578
duke@435 1579 // Free Solaris resources related to the OSThread
duke@435 1580 void os::free_thread(OSThread* osthread) {
duke@435 1581 assert(osthread != NULL, "os::free_thread but osthread not set");
duke@435 1582
duke@435 1583
duke@435 1584 // We are told to free resources of the argument thread,
duke@435 1585 // but we can only really operate on the current thread.
duke@435 1586 // The main thread must take the VMThread down synchronously
duke@435 1587 // before the main thread exits and frees up CodeHeap
duke@435 1588 guarantee((Thread::current()->osthread() == osthread
duke@435 1589 || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
duke@435 1590 if (Thread::current()->osthread() == osthread) {
duke@435 1591 // Restore caller's signal mask
duke@435 1592 sigset_t sigmask = osthread->caller_sigmask();
duke@435 1593 thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
duke@435 1594 }
duke@435 1595 delete osthread;
duke@435 1596 }
duke@435 1597
duke@435 1598 void os::pd_start_thread(Thread* thread) {
duke@435 1599 int status = thr_continue(thread->osthread()->thread_id());
duke@435 1600 assert_status(status == 0, status, "thr_continue failed");
duke@435 1601 }
duke@435 1602
duke@435 1603
duke@435 1604 intx os::current_thread_id() {
duke@435 1605 return (intx)thr_self();
duke@435 1606 }
duke@435 1607
duke@435 1608 static pid_t _initial_pid = 0;
duke@435 1609
duke@435 1610 int os::current_process_id() {
duke@435 1611 return (int)(_initial_pid ? _initial_pid : getpid());
duke@435 1612 }
duke@435 1613
duke@435 1614 int os::allocate_thread_local_storage() {
duke@435 1615 // %%% in Win32 this allocates a memory segment pointed to by a
duke@435 1616 // register. Dan Stein can implement a similar feature in
duke@435 1617 // Solaris. Alternatively, the VM can do the same thing
duke@435 1618 // explicitly: malloc some storage and keep the pointer in a
duke@435 1619 // register (which is part of the thread's context) (or keep it
duke@435 1620 // in TLS).
duke@435 1621 // %%% In current versions of Solaris, thr_self and TSD can
duke@435 1622 // be accessed via short sequences of displaced indirections.
duke@435 1623 // The value of thr_self is available as %g7(36).
duke@435 1624 // The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
duke@435 1625 // assuming that the current thread already has a value bound to k.
duke@435 1626 // It may be worth experimenting with such access patterns,
duke@435 1627 // and later having the parameters formally exported from a Solaris
duke@435 1628 // interface. I think, however, that it will be faster to
duke@435 1629 // maintain the invariant that %g2 always contains the
duke@435 1630 // JavaThread in Java code, and have stubs simply
duke@435 1631 // treat %g2 as a caller-save register, preserving it in a %lN.
duke@435 1632 thread_key_t tk;
duke@435 1633 if (thr_keycreate( &tk, NULL ) )
jcoomes@1845 1634 fatal(err_msg("os::allocate_thread_local_storage: thr_keycreate failed "
jcoomes@1845 1635 "(%s)", strerror(errno)));
duke@435 1636 return int(tk);
duke@435 1637 }
duke@435 1638
duke@435 1639 void os::free_thread_local_storage(int index) {
duke@435 1640 // %%% don't think we need anything here
duke@435 1641 // if ( pthread_key_delete((pthread_key_t) tk) )
duke@435 1642 // fatal("os::free_thread_local_storage: pthread_key_delete failed");
duke@435 1643 }
duke@435 1644
duke@435 1645 #define SMALLINT 32 // libthread allocate for tsd_common is a version specific
duke@435 1646 // small number - point is NO swap space available
duke@435 1647 void os::thread_local_storage_at_put(int index, void* value) {
duke@435 1648 // %%% this is used only in threadLocalStorage.cpp
duke@435 1649 if (thr_setspecific((thread_key_t)index, value)) {
duke@435 1650 if (errno == ENOMEM) {
duke@435 1651 vm_exit_out_of_memory(SMALLINT, "thr_setspecific: out of swap space");
duke@435 1652 } else {
jcoomes@1845 1653 fatal(err_msg("os::thread_local_storage_at_put: thr_setspecific failed "
jcoomes@1845 1654 "(%s)", strerror(errno)));
duke@435 1655 }
duke@435 1656 } else {
duke@435 1657 ThreadLocalStorage::set_thread_in_slot ((Thread *) value) ;
duke@435 1658 }
duke@435 1659 }
duke@435 1660
duke@435 1661 // This function could be called before TLS is initialized, for example, when
duke@435 1662 // VM receives an async signal or when VM causes a fatal error during
duke@435 1663 // initialization. Return NULL if thr_getspecific() fails.
duke@435 1664 void* os::thread_local_storage_at(int index) {
duke@435 1665 // %%% this is used only in threadLocalStorage.cpp
duke@435 1666 void* r = NULL;
duke@435 1667 return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
duke@435 1668 }
duke@435 1669
duke@435 1670
duke@435 1671 // gethrtime can move backwards if read from one cpu and then a different cpu
duke@435 1672 // getTimeNanos is guaranteed to not move backward on Solaris
duke@435 1673 // local spinloop created as faster for a CAS on an int than
duke@435 1674 // a CAS on a 64bit jlong. Also Atomic::cmpxchg for jlong is not
duke@435 1675 // supported on sparc v8 or pre supports_cx8 intel boxes.
duke@435 1676 // oldgetTimeNanos for systems which do not support CAS on 64bit jlong
duke@435 1677 // i.e. sparc v8 and pre supports_cx8 (i486) intel boxes
duke@435 1678 inline hrtime_t oldgetTimeNanos() {
duke@435 1679 int gotlock = LOCK_INVALID;
duke@435 1680 hrtime_t newtime = gethrtime();
duke@435 1681
duke@435 1682 for (;;) {
duke@435 1683 // grab lock for max_hrtime
duke@435 1684 int curlock = max_hrtime_lock;
duke@435 1685 if (curlock & LOCK_BUSY) continue;
duke@435 1686 if (gotlock = Atomic::cmpxchg(LOCK_BUSY, &max_hrtime_lock, LOCK_FREE) != LOCK_FREE) continue;
duke@435 1687 if (newtime > max_hrtime) {
duke@435 1688 max_hrtime = newtime;
duke@435 1689 } else {
duke@435 1690 newtime = max_hrtime;
duke@435 1691 }
duke@435 1692 // release lock
duke@435 1693 max_hrtime_lock = LOCK_FREE;
duke@435 1694 return newtime;
duke@435 1695 }
duke@435 1696 }
duke@435 1697 // gethrtime can move backwards if read from one cpu and then a different cpu
duke@435 1698 // getTimeNanos is guaranteed to not move backward on Solaris
duke@435 1699 inline hrtime_t getTimeNanos() {
duke@435 1700 if (VM_Version::supports_cx8()) {
xlu@934 1701 const hrtime_t now = gethrtime();
kvn@1329 1702 // Use atomic long load since 32-bit x86 uses 2 registers to keep long.
kvn@1329 1703 const hrtime_t prev = Atomic::load((volatile jlong*)&max_hrtime);
xlu@934 1704 if (now <= prev) return prev; // same or retrograde time;
xlu@934 1705 const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
xlu@934 1706 assert(obsv >= prev, "invariant"); // Monotonicity
xlu@934 1707 // If the CAS succeeded then we're done and return "now".
xlu@934 1708 // If the CAS failed and the observed value "obs" is >= now then
xlu@934 1709 // we should return "obs". If the CAS failed and now > obs > prv then
xlu@934 1710 // some other thread raced this thread and installed a new value, in which case
xlu@934 1711 // we could either (a) retry the entire operation, (b) retry trying to install now
xlu@934 1712 // or (c) just return obs. We use (c). No loop is required although in some cases
xlu@934 1713 // we might discard a higher "now" value in deference to a slightly lower but freshly
xlu@934 1714 // installed obs value. That's entirely benign -- it admits no new orderings compared
xlu@934 1715 // to (a) or (b) -- and greatly reduces coherence traffic.
xlu@934 1716 // We might also condition (c) on the magnitude of the delta between obs and now.
xlu@934 1717 // Avoiding excessive CAS operations to hot RW locations is critical.
xlu@934 1718 // See http://blogs.sun.com/dave/entry/cas_and_cache_trivia_invalidate
xlu@934 1719 return (prev == obsv) ? now : obsv ;
duke@435 1720 } else {
duke@435 1721 return oldgetTimeNanos();
duke@435 1722 }
duke@435 1723 }
duke@435 1724
duke@435 1725 // Time since start-up in seconds to a fine granularity.
duke@435 1726 // Used by VMSelfDestructTimer and the MemProfiler.
duke@435 1727 double os::elapsedTime() {
duke@435 1728 return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
duke@435 1729 }
duke@435 1730
duke@435 1731 jlong os::elapsed_counter() {
duke@435 1732 return (jlong)(getTimeNanos() - first_hrtime);
duke@435 1733 }
duke@435 1734
duke@435 1735 jlong os::elapsed_frequency() {
duke@435 1736 return hrtime_hz;
duke@435 1737 }
duke@435 1738
duke@435 1739 // Return the real, user, and system times in seconds from an
duke@435 1740 // arbitrary fixed point in the past.
duke@435 1741 bool os::getTimesSecs(double* process_real_time,
duke@435 1742 double* process_user_time,
duke@435 1743 double* process_system_time) {
duke@435 1744 struct tms ticks;
duke@435 1745 clock_t real_ticks = times(&ticks);
duke@435 1746
duke@435 1747 if (real_ticks == (clock_t) (-1)) {
duke@435 1748 return false;
duke@435 1749 } else {
duke@435 1750 double ticks_per_second = (double) clock_tics_per_sec;
duke@435 1751 *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
duke@435 1752 *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
duke@435 1753 // For consistency return the real time from getTimeNanos()
duke@435 1754 // converted to seconds.
duke@435 1755 *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
duke@435 1756
duke@435 1757 return true;
duke@435 1758 }
duke@435 1759 }
duke@435 1760
ysr@777 1761 bool os::supports_vtime() { return true; }
ysr@777 1762
ysr@777 1763 bool os::enable_vtime() {
ikrylov@2322 1764 int fd = ::open("/proc/self/ctl", O_WRONLY);
ysr@777 1765 if (fd == -1)
ysr@777 1766 return false;
ysr@777 1767
ysr@777 1768 long cmd[] = { PCSET, PR_MSACCT };
ikrylov@2322 1769 int res = ::write(fd, cmd, sizeof(long) * 2);
ikrylov@2322 1770 ::close(fd);
ysr@777 1771 if (res != sizeof(long) * 2)
ysr@777 1772 return false;
ysr@777 1773
ysr@777 1774 return true;
ysr@777 1775 }
ysr@777 1776
ysr@777 1777 bool os::vtime_enabled() {
ikrylov@2322 1778 int fd = ::open("/proc/self/status", O_RDONLY);
ysr@777 1779 if (fd == -1)
ysr@777 1780 return false;
ysr@777 1781
ysr@777 1782 pstatus_t status;
ikrylov@2322 1783 int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
ikrylov@2322 1784 ::close(fd);
ysr@777 1785 if (res != sizeof(pstatus_t))
ysr@777 1786 return false;
ysr@777 1787
ysr@777 1788 return status.pr_flags & PR_MSACCT;
ysr@777 1789 }
ysr@777 1790
ysr@777 1791 double os::elapsedVTime() {
ysr@777 1792 return (double)gethrvtime() / (double)hrtime_hz;
ysr@777 1793 }
ysr@777 1794
duke@435 1795 // Used internally for comparisons only
duke@435 1796 // getTimeMillis guaranteed to not move backwards on Solaris
duke@435 1797 jlong getTimeMillis() {
duke@435 1798 jlong nanotime = getTimeNanos();
johnc@3339 1799 return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
duke@435 1800 }
duke@435 1801
sbohne@496 1802 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
sbohne@496 1803 jlong os::javaTimeMillis() {
duke@435 1804 timeval t;
duke@435 1805 if (gettimeofday( &t, NULL) == -1)
jcoomes@1845 1806 fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno)));
duke@435 1807 return jlong(t.tv_sec) * 1000 + jlong(t.tv_usec) / 1000;
duke@435 1808 }
duke@435 1809
duke@435 1810 jlong os::javaTimeNanos() {
duke@435 1811 return (jlong)getTimeNanos();
duke@435 1812 }
duke@435 1813
duke@435 1814 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
duke@435 1815 info_ptr->max_value = ALL_64_BITS; // gethrtime() uses all 64 bits
duke@435 1816 info_ptr->may_skip_backward = false; // not subject to resetting or drifting
duke@435 1817 info_ptr->may_skip_forward = false; // not subject to resetting or drifting
duke@435 1818 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
duke@435 1819 }
duke@435 1820
duke@435 1821 char * os::local_time_string(char *buf, size_t buflen) {
duke@435 1822 struct tm t;
duke@435 1823 time_t long_time;
duke@435 1824 time(&long_time);
duke@435 1825 localtime_r(&long_time, &t);
duke@435 1826 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
duke@435 1827 t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
duke@435 1828 t.tm_hour, t.tm_min, t.tm_sec);
duke@435 1829 return buf;
duke@435 1830 }
duke@435 1831
duke@435 1832 // Note: os::shutdown() might be called very early during initialization, or
duke@435 1833 // called from signal handler. Before adding something to os::shutdown(), make
duke@435 1834 // sure it is async-safe and can handle partially initialized VM.
duke@435 1835 void os::shutdown() {
duke@435 1836
duke@435 1837 // allow PerfMemory to attempt cleanup of any persistent resources
duke@435 1838 perfMemory_exit();
duke@435 1839
duke@435 1840 // needs to remove object in file system
duke@435 1841 AttachListener::abort();
duke@435 1842
duke@435 1843 // flush buffered output, finish log files
duke@435 1844 ostream_abort();
duke@435 1845
duke@435 1846 // Check for abort hook
duke@435 1847 abort_hook_t abort_hook = Arguments::abort_hook();
duke@435 1848 if (abort_hook != NULL) {
duke@435 1849 abort_hook();
duke@435 1850 }
duke@435 1851 }
duke@435 1852
duke@435 1853 // Note: os::abort() might be called very early during initialization, or
duke@435 1854 // called from signal handler. Before adding something to os::abort(), make
duke@435 1855 // sure it is async-safe and can handle partially initialized VM.
duke@435 1856 void os::abort(bool dump_core) {
duke@435 1857 os::shutdown();
duke@435 1858 if (dump_core) {
duke@435 1859 #ifndef PRODUCT
duke@435 1860 fdStream out(defaultStream::output_fd());
duke@435 1861 out.print_raw("Current thread is ");
duke@435 1862 char buf[16];
duke@435 1863 jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
duke@435 1864 out.print_raw_cr(buf);
duke@435 1865 out.print_raw_cr("Dumping core ...");
duke@435 1866 #endif
duke@435 1867 ::abort(); // dump core (for debugging)
duke@435 1868 }
duke@435 1869
duke@435 1870 ::exit(1);
duke@435 1871 }
duke@435 1872
duke@435 1873 // Die immediately, no exit hook, no abort hook, no cleanup.
duke@435 1874 void os::die() {
duke@435 1875 _exit(-1);
duke@435 1876 }
duke@435 1877
duke@435 1878 // unused
duke@435 1879 void os::set_error_file(const char *logfile) {}
duke@435 1880
duke@435 1881 // DLL functions
duke@435 1882
duke@435 1883 const char* os::dll_file_extension() { return ".so"; }
duke@435 1884
coleenp@2450 1885 // This must be hard coded because it's the system's temporary
coleenp@2450 1886 // directory not the java application's temp directory, ala java.io.tmpdir.
coleenp@2450 1887 const char* os::get_temp_directory() { return "/tmp"; }
duke@435 1888
phh@1126 1889 static bool file_exists(const char* filename) {
phh@1126 1890 struct stat statbuf;
phh@1126 1891 if (filename == NULL || strlen(filename) == 0) {
phh@1126 1892 return false;
phh@1126 1893 }
phh@1126 1894 return os::stat(filename, &statbuf) == 0;
phh@1126 1895 }
phh@1126 1896
bpittore@4261 1897 bool os::dll_build_name(char* buffer, size_t buflen,
phh@1126 1898 const char* pname, const char* fname) {
bpittore@4261 1899 bool retval = false;
kamg@677 1900 const size_t pnamelen = pname ? strlen(pname) : 0;
kamg@677 1901
bpittore@4261 1902 // Return error on buffer overflow.
kamg@677 1903 if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
bpittore@4261 1904 return retval;
kamg@677 1905 }
kamg@677 1906
kamg@677 1907 if (pnamelen == 0) {
phh@1126 1908 snprintf(buffer, buflen, "lib%s.so", fname);
bpittore@4261 1909 retval = true;
phh@1126 1910 } else if (strchr(pname, *os::path_separator()) != NULL) {
phh@1126 1911 int n;
phh@1126 1912 char** pelements = split_path(pname, &n);
phh@1126 1913 for (int i = 0 ; i < n ; i++) {
phh@1126 1914 // really shouldn't be NULL but what the heck, check can't hurt
phh@1126 1915 if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
phh@1126 1916 continue; // skip the empty path values
phh@1126 1917 }
phh@1126 1918 snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
phh@1126 1919 if (file_exists(buffer)) {
bpittore@4261 1920 retval = true;
phh@1126 1921 break;
phh@1126 1922 }
phh@1126 1923 }
phh@1126 1924 // release the storage
phh@1126 1925 for (int i = 0 ; i < n ; i++) {
phh@1126 1926 if (pelements[i] != NULL) {
zgu@3900 1927 FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
phh@1126 1928 }
phh@1126 1929 }
phh@1126 1930 if (pelements != NULL) {
zgu@3900 1931 FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
phh@1126 1932 }
kamg@677 1933 } else {
phh@1126 1934 snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
bpittore@4261 1935 retval = true;
bpittore@4261 1936 }
bpittore@4261 1937 return retval;
kamg@677 1938 }
kamg@677 1939
duke@435 1940 const char* os::get_current_directory(char *buf, int buflen) {
duke@435 1941 return getcwd(buf, buflen);
duke@435 1942 }
duke@435 1943
duke@435 1944 // check if addr is inside libjvm[_g].so
duke@435 1945 bool os::address_is_in_vm(address addr) {
duke@435 1946 static address libjvm_base_addr;
duke@435 1947 Dl_info dlinfo;
duke@435 1948
duke@435 1949 if (libjvm_base_addr == NULL) {
duke@435 1950 dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
duke@435 1951 libjvm_base_addr = (address)dlinfo.dli_fbase;
duke@435 1952 assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
duke@435 1953 }
duke@435 1954
duke@435 1955 if (dladdr((void *)addr, &dlinfo)) {
duke@435 1956 if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
duke@435 1957 }
duke@435 1958
duke@435 1959 return false;
duke@435 1960 }
duke@435 1961
duke@435 1962 typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int);
duke@435 1963 static dladdr1_func_type dladdr1_func = NULL;
duke@435 1964
duke@435 1965 bool os::dll_address_to_function_name(address addr, char *buf,
duke@435 1966 int buflen, int * offset) {
duke@435 1967 Dl_info dlinfo;
duke@435 1968
duke@435 1969 // dladdr1_func was initialized in os::init()
duke@435 1970 if (dladdr1_func){
duke@435 1971 // yes, we have dladdr1
duke@435 1972
duke@435 1973 // Support for dladdr1 is checked at runtime; it may be
duke@435 1974 // available even if the vm is built on a machine that does
duke@435 1975 // not have dladdr1 support. Make sure there is a value for
duke@435 1976 // RTLD_DL_SYMENT.
duke@435 1977 #ifndef RTLD_DL_SYMENT
duke@435 1978 #define RTLD_DL_SYMENT 1
duke@435 1979 #endif
never@2566 1980 #ifdef _LP64
never@2566 1981 Elf64_Sym * info;
never@2566 1982 #else
never@2566 1983 Elf32_Sym * info;
never@2566 1984 #endif
duke@435 1985 if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
duke@435 1986 RTLD_DL_SYMENT)) {
zgu@2364 1987 if ((char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
zgu@2364 1988 if (buf != NULL) {
zgu@2364 1989 if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
zgu@2364 1990 jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
zgu@2364 1991 }
zgu@2364 1992 if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
zgu@2364 1993 return true;
zgu@2364 1994 }
duke@435 1995 }
zgu@2364 1996 if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
zgu@2364 1997 if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
zgu@3430 1998 buf, buflen, offset, dlinfo.dli_fname)) {
zgu@2364 1999 return true;
zgu@2364 2000 }
zgu@2364 2001 }
zgu@2364 2002 if (buf != NULL) buf[0] = '\0';
zgu@2364 2003 if (offset != NULL) *offset = -1;
zgu@2364 2004 return false;
duke@435 2005 } else {
duke@435 2006 // no, only dladdr is available
zgu@2364 2007 if (dladdr((void *)addr, &dlinfo)) {
zgu@2364 2008 if (buf != NULL) {
zgu@2364 2009 if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
zgu@2364 2010 jio_snprintf(buf, buflen, dlinfo.dli_sname);
zgu@2364 2011 }
zgu@2364 2012 if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
zgu@2364 2013 return true;
zgu@2364 2014 } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
zgu@2364 2015 if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
zgu@3430 2016 buf, buflen, offset, dlinfo.dli_fname)) {
duke@435 2017 return true;
zgu@2364 2018 }
duke@435 2019 }
zgu@2364 2020 if (buf != NULL) buf[0] = '\0';
zgu@2364 2021 if (offset != NULL) *offset = -1;
zgu@2364 2022 return false;
duke@435 2023 }
duke@435 2024 }
duke@435 2025
duke@435 2026 bool os::dll_address_to_library_name(address addr, char* buf,
duke@435 2027 int buflen, int* offset) {
duke@435 2028 Dl_info dlinfo;
duke@435 2029
duke@435 2030 if (dladdr((void*)addr, &dlinfo)){
duke@435 2031 if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
duke@435 2032 if (offset) *offset = addr - (address)dlinfo.dli_fbase;
duke@435 2033 return true;
duke@435 2034 } else {
duke@435 2035 if (buf) buf[0] = '\0';
duke@435 2036 if (offset) *offset = -1;
duke@435 2037 return false;
duke@435 2038 }
duke@435 2039 }
duke@435 2040
duke@435 2041 // Prints the names and full paths of all opened dynamic libraries
duke@435 2042 // for current process
duke@435 2043 void os::print_dll_info(outputStream * st) {
duke@435 2044 Dl_info dli;
duke@435 2045 void *handle;
duke@435 2046 Link_map *map;
duke@435 2047 Link_map *p;
duke@435 2048
duke@435 2049 st->print_cr("Dynamic libraries:"); st->flush();
duke@435 2050
duke@435 2051 if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
duke@435 2052 st->print_cr("Error: Cannot print dynamic libraries.");
duke@435 2053 return;
duke@435 2054 }
duke@435 2055 handle = dlopen(dli.dli_fname, RTLD_LAZY);
duke@435 2056 if (handle == NULL) {
duke@435 2057 st->print_cr("Error: Cannot print dynamic libraries.");
duke@435 2058 return;
duke@435 2059 }
duke@435 2060 dlinfo(handle, RTLD_DI_LINKMAP, &map);
duke@435 2061 if (map == NULL) {
duke@435 2062 st->print_cr("Error: Cannot print dynamic libraries.");
duke@435 2063 return;
duke@435 2064 }
duke@435 2065
duke@435 2066 while (map->l_prev != NULL)
duke@435 2067 map = map->l_prev;
duke@435 2068
duke@435 2069 while (map != NULL) {
duke@435 2070 st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
duke@435 2071 map = map->l_next;
duke@435 2072 }
duke@435 2073
duke@435 2074 dlclose(handle);
duke@435 2075 }
duke@435 2076
duke@435 2077 // Loads .dll/.so and
duke@435 2078 // in case of error it checks if .dll/.so was built for the
duke@435 2079 // same architecture as Hotspot is running on
duke@435 2080
duke@435 2081 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
duke@435 2082 {
duke@435 2083 void * result= ::dlopen(filename, RTLD_LAZY);
duke@435 2084 if (result != NULL) {
duke@435 2085 // Successful loading
duke@435 2086 return result;
duke@435 2087 }
duke@435 2088
duke@435 2089 Elf32_Ehdr elf_head;
duke@435 2090
duke@435 2091 // Read system error message into ebuf
duke@435 2092 // It may or may not be overwritten below
duke@435 2093 ::strncpy(ebuf, ::dlerror(), ebuflen-1);
duke@435 2094 ebuf[ebuflen-1]='\0';
duke@435 2095 int diag_msg_max_length=ebuflen-strlen(ebuf);
duke@435 2096 char* diag_msg_buf=ebuf+strlen(ebuf);
duke@435 2097
duke@435 2098 if (diag_msg_max_length==0) {
duke@435 2099 // No more space in ebuf for additional diagnostics message
duke@435 2100 return NULL;
duke@435 2101 }
duke@435 2102
duke@435 2103
duke@435 2104 int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
duke@435 2105
duke@435 2106 if (file_descriptor < 0) {
duke@435 2107 // Can't open library, report dlerror() message
duke@435 2108 return NULL;
duke@435 2109 }
duke@435 2110
duke@435 2111 bool failed_to_read_elf_head=
duke@435 2112 (sizeof(elf_head)!=
duke@435 2113 (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
duke@435 2114
duke@435 2115 ::close(file_descriptor);
duke@435 2116 if (failed_to_read_elf_head) {
duke@435 2117 // file i/o error - report dlerror() msg
duke@435 2118 return NULL;
duke@435 2119 }
duke@435 2120
duke@435 2121 typedef struct {
duke@435 2122 Elf32_Half code; // Actual value as defined in elf.h
duke@435 2123 Elf32_Half compat_class; // Compatibility of archs at VM's sense
duke@435 2124 char elf_class; // 32 or 64 bit
duke@435 2125 char endianess; // MSB or LSB
duke@435 2126 char* name; // String representation
duke@435 2127 } arch_t;
duke@435 2128
duke@435 2129 static const arch_t arch_array[]={
duke@435 2130 {EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 2131 {EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 2132 {EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
duke@435 2133 {EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
duke@435 2134 {EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 2135 {EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 2136 {EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
duke@435 2137 {EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
bobv@2036 2138 {EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
bobv@2036 2139 {EM_ARM, EM_ARM, ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
duke@435 2140 };
duke@435 2141
duke@435 2142 #if (defined IA32)
duke@435 2143 static Elf32_Half running_arch_code=EM_386;
duke@435 2144 #elif (defined AMD64)
duke@435 2145 static Elf32_Half running_arch_code=EM_X86_64;
duke@435 2146 #elif (defined IA64)
duke@435 2147 static Elf32_Half running_arch_code=EM_IA_64;
duke@435 2148 #elif (defined __sparc) && (defined _LP64)
duke@435 2149 static Elf32_Half running_arch_code=EM_SPARCV9;
duke@435 2150 #elif (defined __sparc) && (!defined _LP64)
duke@435 2151 static Elf32_Half running_arch_code=EM_SPARC;
duke@435 2152 #elif (defined __powerpc64__)
duke@435 2153 static Elf32_Half running_arch_code=EM_PPC64;
duke@435 2154 #elif (defined __powerpc__)
duke@435 2155 static Elf32_Half running_arch_code=EM_PPC;
bobv@2036 2156 #elif (defined ARM)
bobv@2036 2157 static Elf32_Half running_arch_code=EM_ARM;
duke@435 2158 #else
duke@435 2159 #error Method os::dll_load requires that one of following is defined:\
bobv@2036 2160 IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
duke@435 2161 #endif
duke@435 2162
duke@435 2163 // Identify compatability class for VM's architecture and library's architecture
duke@435 2164 // Obtain string descriptions for architectures
duke@435 2165
duke@435 2166 arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
duke@435 2167 int running_arch_index=-1;
duke@435 2168
duke@435 2169 for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
duke@435 2170 if (running_arch_code == arch_array[i].code) {
duke@435 2171 running_arch_index = i;
duke@435 2172 }
duke@435 2173 if (lib_arch.code == arch_array[i].code) {
duke@435 2174 lib_arch.compat_class = arch_array[i].compat_class;
duke@435 2175 lib_arch.name = arch_array[i].name;
duke@435 2176 }
duke@435 2177 }
duke@435 2178
duke@435 2179 assert(running_arch_index != -1,
duke@435 2180 "Didn't find running architecture code (running_arch_code) in arch_array");
duke@435 2181 if (running_arch_index == -1) {
duke@435 2182 // Even though running architecture detection failed
duke@435 2183 // we may still continue with reporting dlerror() message
duke@435 2184 return NULL;
duke@435 2185 }
duke@435 2186
duke@435 2187 if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
duke@435 2188 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
duke@435 2189 return NULL;
duke@435 2190 }
duke@435 2191
duke@435 2192 if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
duke@435 2193 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
duke@435 2194 return NULL;
duke@435 2195 }
duke@435 2196
duke@435 2197 if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
duke@435 2198 if ( lib_arch.name!=NULL ) {
duke@435 2199 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 2200 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
duke@435 2201 lib_arch.name, arch_array[running_arch_index].name);
duke@435 2202 } else {
duke@435 2203 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 2204 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
duke@435 2205 lib_arch.code,
duke@435 2206 arch_array[running_arch_index].name);
duke@435 2207 }
duke@435 2208 }
duke@435 2209
duke@435 2210 return NULL;
duke@435 2211 }
duke@435 2212
kamg@677 2213 void* os::dll_lookup(void* handle, const char* name) {
kamg@677 2214 return dlsym(handle, name);
kamg@677 2215 }
duke@435 2216
ikrylov@2322 2217 int os::stat(const char *path, struct stat *sbuf) {
ikrylov@2322 2218 char pathbuf[MAX_PATH];
ikrylov@2322 2219 if (strlen(path) > MAX_PATH - 1) {
ikrylov@2322 2220 errno = ENAMETOOLONG;
ikrylov@2322 2221 return -1;
ikrylov@2322 2222 }
ikrylov@2322 2223 os::native_path(strcpy(pathbuf, path));
ikrylov@2322 2224 return ::stat(pathbuf, sbuf);
ikrylov@2322 2225 }
ikrylov@2322 2226
ikrylov@2322 2227 static bool _print_ascii_file(const char* filename, outputStream* st) {
ikrylov@2322 2228 int fd = ::open(filename, O_RDONLY);
duke@435 2229 if (fd == -1) {
duke@435 2230 return false;
duke@435 2231 }
duke@435 2232
duke@435 2233 char buf[32];
duke@435 2234 int bytes;
ikrylov@2322 2235 while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
duke@435 2236 st->print_raw(buf, bytes);
duke@435 2237 }
duke@435 2238
ikrylov@2322 2239 ::close(fd);
duke@435 2240
duke@435 2241 return true;
duke@435 2242 }
duke@435 2243
nloodin@3783 2244 void os::print_os_info_brief(outputStream* st) {
nloodin@3783 2245 os::Solaris::print_distro_info(st);
nloodin@3783 2246
nloodin@3783 2247 os::Posix::print_uname_info(st);
nloodin@3783 2248
nloodin@3783 2249 os::Solaris::print_libversion_info(st);
nloodin@3783 2250 }
nloodin@3783 2251
duke@435 2252 void os::print_os_info(outputStream* st) {
duke@435 2253 st->print("OS:");
duke@435 2254
nloodin@3783 2255 os::Solaris::print_distro_info(st);
nloodin@3783 2256
nloodin@3783 2257 os::Posix::print_uname_info(st);
nloodin@3783 2258
nloodin@3783 2259 os::Solaris::print_libversion_info(st);
nloodin@3783 2260
nloodin@3783 2261 os::Posix::print_rlimit_info(st);
nloodin@3783 2262
nloodin@3783 2263 os::Posix::print_load_average(st);
nloodin@3783 2264 }
nloodin@3783 2265
nloodin@3783 2266 void os::Solaris::print_distro_info(outputStream* st) {
duke@435 2267 if (!_print_ascii_file("/etc/release", st)) {
nloodin@3783 2268 st->print("Solaris");
nloodin@3783 2269 }
nloodin@3783 2270 st->cr();
nloodin@3783 2271 }
nloodin@3783 2272
nloodin@3783 2273 void os::Solaris::print_libversion_info(outputStream* st) {
nloodin@3783 2274 if (os::Solaris::T2_libthread()) {
nloodin@3783 2275 st->print(" (T2 libthread)");
nloodin@3783 2276 }
nloodin@3783 2277 else {
nloodin@3783 2278 st->print(" (T1 libthread)");
duke@435 2279 }
duke@435 2280 st->cr();
nloodin@3783 2281 }
duke@435 2282
duke@435 2283 static bool check_addr0(outputStream* st) {
duke@435 2284 jboolean status = false;
ikrylov@2322 2285 int fd = ::open("/proc/self/map",O_RDONLY);
duke@435 2286 if (fd >= 0) {
duke@435 2287 prmap_t p;
ikrylov@2322 2288 while(::read(fd, &p, sizeof(p)) > 0) {
duke@435 2289 if (p.pr_vaddr == 0x0) {
duke@435 2290 st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
duke@435 2291 st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
duke@435 2292 st->print("Access:");
duke@435 2293 st->print("%s",(p.pr_mflags & MA_READ) ? "r" : "-");
duke@435 2294 st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
duke@435 2295 st->print("%s",(p.pr_mflags & MA_EXEC) ? "x" : "-");
duke@435 2296 st->cr();
duke@435 2297 status = true;
duke@435 2298 }
ikrylov@2322 2299 ::close(fd);
duke@435 2300 }
duke@435 2301 }
duke@435 2302 return status;
duke@435 2303 }
duke@435 2304
jcoomes@2997 2305 void os::pd_print_cpu_info(outputStream* st) {
jcoomes@2997 2306 // Nothing to do for now.
jcoomes@2997 2307 }
jcoomes@2997 2308
duke@435 2309 void os::print_memory_info(outputStream* st) {
duke@435 2310 st->print("Memory:");
duke@435 2311 st->print(" %dk page", os::vm_page_size()>>10);
duke@435 2312 st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
duke@435 2313 st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
duke@435 2314 st->cr();
duke@435 2315 (void) check_addr0(st);
duke@435 2316 }
duke@435 2317
duke@435 2318 // Taken from /usr/include/sys/machsig.h Supposed to be architecture specific
duke@435 2319 // but they're the same for all the solaris architectures that we support.
duke@435 2320 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
duke@435 2321 "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
duke@435 2322 "ILL_COPROC", "ILL_BADSTK" };
duke@435 2323
duke@435 2324 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
duke@435 2325 "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
duke@435 2326 "FPE_FLTINV", "FPE_FLTSUB" };
duke@435 2327
duke@435 2328 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
duke@435 2329
duke@435 2330 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
duke@435 2331
duke@435 2332 void os::print_siginfo(outputStream* st, void* siginfo) {
duke@435 2333 st->print("siginfo:");
duke@435 2334
duke@435 2335 const int buflen = 100;
duke@435 2336 char buf[buflen];
duke@435 2337 siginfo_t *si = (siginfo_t*)siginfo;
duke@435 2338 st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
duke@435 2339 char *err = strerror(si->si_errno);
duke@435 2340 if (si->si_errno != 0 && err != NULL) {
duke@435 2341 st->print("si_errno=%s", err);
duke@435 2342 } else {
duke@435 2343 st->print("si_errno=%d", si->si_errno);
duke@435 2344 }
duke@435 2345 const int c = si->si_code;
duke@435 2346 assert(c > 0, "unexpected si_code");
duke@435 2347 switch (si->si_signo) {
duke@435 2348 case SIGILL:
duke@435 2349 st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
duke@435 2350 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2351 break;
duke@435 2352 case SIGFPE:
duke@435 2353 st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
duke@435 2354 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2355 break;
duke@435 2356 case SIGSEGV:
duke@435 2357 st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
duke@435 2358 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2359 break;
duke@435 2360 case SIGBUS:
duke@435 2361 st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
duke@435 2362 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2363 break;
duke@435 2364 default:
duke@435 2365 st->print(", si_code=%d", si->si_code);
duke@435 2366 // no si_addr
duke@435 2367 }
duke@435 2368
duke@435 2369 if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
duke@435 2370 UseSharedSpaces) {
duke@435 2371 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 2372 if (mapinfo->is_in_shared_space(si->si_addr)) {
duke@435 2373 st->print("\n\nError accessing class data sharing archive." \
duke@435 2374 " Mapped file inaccessible during execution, " \
duke@435 2375 " possible disk/network problem.");
duke@435 2376 }
duke@435 2377 }
duke@435 2378 st->cr();
duke@435 2379 }
duke@435 2380
duke@435 2381 // Moved from whole group, because we need them here for diagnostic
duke@435 2382 // prints.
duke@435 2383 #define OLDMAXSIGNUM 32
duke@435 2384 static int Maxsignum = 0;
duke@435 2385 static int *ourSigFlags = NULL;
duke@435 2386
duke@435 2387 extern "C" void sigINTRHandler(int, siginfo_t*, void*);
duke@435 2388
duke@435 2389 int os::Solaris::get_our_sigflags(int sig) {
duke@435 2390 assert(ourSigFlags!=NULL, "signal data structure not initialized");
duke@435 2391 assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
duke@435 2392 return ourSigFlags[sig];
duke@435 2393 }
duke@435 2394
duke@435 2395 void os::Solaris::set_our_sigflags(int sig, int flags) {
duke@435 2396 assert(ourSigFlags!=NULL, "signal data structure not initialized");
duke@435 2397 assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
duke@435 2398 ourSigFlags[sig] = flags;
duke@435 2399 }
duke@435 2400
duke@435 2401
duke@435 2402 static const char* get_signal_handler_name(address handler,
duke@435 2403 char* buf, int buflen) {
duke@435 2404 int offset;
duke@435 2405 bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
duke@435 2406 if (found) {
duke@435 2407 // skip directory names
duke@435 2408 const char *p1, *p2;
duke@435 2409 p1 = buf;
duke@435 2410 size_t len = strlen(os::file_separator());
duke@435 2411 while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
duke@435 2412 jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
duke@435 2413 } else {
duke@435 2414 jio_snprintf(buf, buflen, PTR_FORMAT, handler);
duke@435 2415 }
duke@435 2416 return buf;
duke@435 2417 }
duke@435 2418
duke@435 2419 static void print_signal_handler(outputStream* st, int sig,
duke@435 2420 char* buf, size_t buflen) {
duke@435 2421 struct sigaction sa;
duke@435 2422
duke@435 2423 sigaction(sig, NULL, &sa);
duke@435 2424
duke@435 2425 st->print("%s: ", os::exception_name(sig, buf, buflen));
duke@435 2426
duke@435 2427 address handler = (sa.sa_flags & SA_SIGINFO)
duke@435 2428 ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
duke@435 2429 : CAST_FROM_FN_PTR(address, sa.sa_handler);
duke@435 2430
duke@435 2431 if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
duke@435 2432 st->print("SIG_DFL");
duke@435 2433 } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
duke@435 2434 st->print("SIG_IGN");
duke@435 2435 } else {
duke@435 2436 st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
duke@435 2437 }
duke@435 2438
duke@435 2439 st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
duke@435 2440
duke@435 2441 address rh = VMError::get_resetted_sighandler(sig);
duke@435 2442 // May be, handler was resetted by VMError?
duke@435 2443 if(rh != NULL) {
duke@435 2444 handler = rh;
duke@435 2445 sa.sa_flags = VMError::get_resetted_sigflags(sig);
duke@435 2446 }
duke@435 2447
duke@435 2448 st->print(", sa_flags=" PTR32_FORMAT, sa.sa_flags);
duke@435 2449
duke@435 2450 // Check: is it our handler?
duke@435 2451 if(handler == CAST_FROM_FN_PTR(address, signalHandler) ||
duke@435 2452 handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
duke@435 2453 // It is our signal handler
duke@435 2454 // check for flags
duke@435 2455 if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
duke@435 2456 st->print(
duke@435 2457 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
duke@435 2458 os::Solaris::get_our_sigflags(sig));
duke@435 2459 }
duke@435 2460 }
duke@435 2461 st->cr();
duke@435 2462 }
duke@435 2463
duke@435 2464 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
duke@435 2465 st->print_cr("Signal Handlers:");
duke@435 2466 print_signal_handler(st, SIGSEGV, buf, buflen);
duke@435 2467 print_signal_handler(st, SIGBUS , buf, buflen);
duke@435 2468 print_signal_handler(st, SIGFPE , buf, buflen);
duke@435 2469 print_signal_handler(st, SIGPIPE, buf, buflen);
duke@435 2470 print_signal_handler(st, SIGXFSZ, buf, buflen);
duke@435 2471 print_signal_handler(st, SIGILL , buf, buflen);
duke@435 2472 print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
duke@435 2473 print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
duke@435 2474 print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
duke@435 2475 print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
duke@435 2476 print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
duke@435 2477 print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
duke@435 2478 print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
duke@435 2479 print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
duke@435 2480 }
duke@435 2481
duke@435 2482 static char saved_jvm_path[MAXPATHLEN] = { 0 };
duke@435 2483
duke@435 2484 // Find the full path to the current module, libjvm.so or libjvm_g.so
duke@435 2485 void os::jvm_path(char *buf, jint buflen) {
duke@435 2486 // Error checking.
duke@435 2487 if (buflen < MAXPATHLEN) {
duke@435 2488 assert(false, "must use a large-enough buffer");
duke@435 2489 buf[0] = '\0';
duke@435 2490 return;
duke@435 2491 }
duke@435 2492 // Lazy resolve the path to current module.
duke@435 2493 if (saved_jvm_path[0] != 0) {
duke@435 2494 strcpy(buf, saved_jvm_path);
duke@435 2495 return;
duke@435 2496 }
duke@435 2497
duke@435 2498 Dl_info dlinfo;
duke@435 2499 int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
duke@435 2500 assert(ret != 0, "cannot locate libjvm");
duke@435 2501 realpath((char *)dlinfo.dli_fname, buf);
duke@435 2502
sla@2584 2503 if (Arguments::created_by_gamma_launcher()) {
duke@435 2504 // Support for the gamma launcher. Typical value for buf is
duke@435 2505 // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so". If "/jre/lib/" appears at
duke@435 2506 // the right place in the string, then assume we are installed in a JDK and
duke@435 2507 // we're done. Otherwise, check for a JAVA_HOME environment variable and fix
duke@435 2508 // up the path so it looks like libjvm.so is installed there (append a
duke@435 2509 // fake suffix hotspot/libjvm.so).
duke@435 2510 const char *p = buf + strlen(buf) - 1;
duke@435 2511 for (int count = 0; p > buf && count < 5; ++count) {
duke@435 2512 for (--p; p > buf && *p != '/'; --p)
duke@435 2513 /* empty */ ;
duke@435 2514 }
duke@435 2515
duke@435 2516 if (strncmp(p, "/jre/lib/", 9) != 0) {
duke@435 2517 // Look for JAVA_HOME in the environment.
duke@435 2518 char* java_home_var = ::getenv("JAVA_HOME");
duke@435 2519 if (java_home_var != NULL && java_home_var[0] != 0) {
duke@435 2520 char cpu_arch[12];
mchung@1997 2521 char* jrelib_p;
mchung@1997 2522 int len;
duke@435 2523 sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
duke@435 2524 #ifdef _LP64
duke@435 2525 // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
duke@435 2526 if (strcmp(cpu_arch, "sparc") == 0) {
duke@435 2527 strcat(cpu_arch, "v9");
duke@435 2528 } else if (strcmp(cpu_arch, "i386") == 0) {
duke@435 2529 strcpy(cpu_arch, "amd64");
duke@435 2530 }
duke@435 2531 #endif
duke@435 2532 // Check the current module name "libjvm.so" or "libjvm_g.so".
duke@435 2533 p = strrchr(buf, '/');
duke@435 2534 assert(strstr(p, "/libjvm") == p, "invalid library name");
duke@435 2535 p = strstr(p, "_g") ? "_g" : "";
duke@435 2536
duke@435 2537 realpath(java_home_var, buf);
mchung@1997 2538 // determine if this is a legacy image or modules image
mchung@1997 2539 // modules image doesn't have "jre" subdirectory
mchung@1997 2540 len = strlen(buf);
mchung@1997 2541 jrelib_p = buf + len;
mchung@1997 2542 snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
mchung@1997 2543 if (0 != access(buf, F_OK)) {
mchung@1997 2544 snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
mchung@1997 2545 }
mchung@1997 2546
duke@435 2547 if (0 == access(buf, F_OK)) {
duke@435 2548 // Use current module name "libjvm[_g].so" instead of
duke@435 2549 // "libjvm"debug_only("_g")".so" since for fastdebug version
duke@435 2550 // we should have "libjvm.so" but debug_only("_g") adds "_g"!
mchung@1997 2551 len = strlen(buf);
mchung@1997 2552 snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
duke@435 2553 } else {
duke@435 2554 // Go back to path of .so
duke@435 2555 realpath((char *)dlinfo.dli_fname, buf);
duke@435 2556 }
duke@435 2557 }
duke@435 2558 }
duke@435 2559 }
duke@435 2560
duke@435 2561 strcpy(saved_jvm_path, buf);
duke@435 2562 }
duke@435 2563
duke@435 2564
duke@435 2565 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
duke@435 2566 // no prefix required, not even "_"
duke@435 2567 }
duke@435 2568
duke@435 2569
duke@435 2570 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
duke@435 2571 // no suffix required
duke@435 2572 }
duke@435 2573
ikrylov@2322 2574 // This method is a copy of JDK's sysGetLastErrorString
ikrylov@2322 2575 // from src/solaris/hpi/src/system_md.c
ikrylov@2322 2576
ikrylov@2322 2577 size_t os::lasterror(char *buf, size_t len) {
ikrylov@2322 2578
ikrylov@2322 2579 if (errno == 0) return 0;
ikrylov@2322 2580
ikrylov@2322 2581 const char *s = ::strerror(errno);
ikrylov@2322 2582 size_t n = ::strlen(s);
ikrylov@2322 2583 if (n >= len) {
ikrylov@2322 2584 n = len - 1;
ikrylov@2322 2585 }
ikrylov@2322 2586 ::strncpy(buf, s, n);
ikrylov@2322 2587 buf[n] = '\0';
ikrylov@2322 2588 return n;
ikrylov@2322 2589 }
ikrylov@2322 2590
duke@435 2591
duke@435 2592 // sun.misc.Signal
duke@435 2593
duke@435 2594 extern "C" {
duke@435 2595 static void UserHandler(int sig, void *siginfo, void *context) {
duke@435 2596 // Ctrl-C is pressed during error reporting, likely because the error
duke@435 2597 // handler fails to abort. Let VM die immediately.
duke@435 2598 if (sig == SIGINT && is_error_reported()) {
duke@435 2599 os::die();
duke@435 2600 }
duke@435 2601
duke@435 2602 os::signal_notify(sig);
duke@435 2603 // We do not need to reinstate the signal handler each time...
duke@435 2604 }
duke@435 2605 }
duke@435 2606
duke@435 2607 void* os::user_handler() {
duke@435 2608 return CAST_FROM_FN_PTR(void*, UserHandler);
duke@435 2609 }
duke@435 2610
duke@435 2611 extern "C" {
duke@435 2612 typedef void (*sa_handler_t)(int);
duke@435 2613 typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
duke@435 2614 }
duke@435 2615
duke@435 2616 void* os::signal(int signal_number, void* handler) {
duke@435 2617 struct sigaction sigAct, oldSigAct;
duke@435 2618 sigfillset(&(sigAct.sa_mask));
duke@435 2619 sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
duke@435 2620 sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
duke@435 2621
duke@435 2622 if (sigaction(signal_number, &sigAct, &oldSigAct))
duke@435 2623 // -1 means registration failed
duke@435 2624 return (void *)-1;
duke@435 2625
duke@435 2626 return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
duke@435 2627 }
duke@435 2628
duke@435 2629 void os::signal_raise(int signal_number) {
duke@435 2630 raise(signal_number);
duke@435 2631 }
duke@435 2632
duke@435 2633 /*
duke@435 2634 * The following code is moved from os.cpp for making this
duke@435 2635 * code platform specific, which it is by its very nature.
duke@435 2636 */
duke@435 2637
duke@435 2638 // a counter for each possible signal value
duke@435 2639 static int Sigexit = 0;
duke@435 2640 static int Maxlibjsigsigs;
duke@435 2641 static jint *pending_signals = NULL;
duke@435 2642 static int *preinstalled_sigs = NULL;
duke@435 2643 static struct sigaction *chainedsigactions = NULL;
duke@435 2644 static sema_t sig_sem;
duke@435 2645 typedef int (*version_getting_t)();
duke@435 2646 version_getting_t os::Solaris::get_libjsig_version = NULL;
duke@435 2647 static int libjsigversion = NULL;
duke@435 2648
duke@435 2649 int os::sigexitnum_pd() {
duke@435 2650 assert(Sigexit > 0, "signal memory not yet initialized");
duke@435 2651 return Sigexit;
duke@435 2652 }
duke@435 2653
duke@435 2654 void os::Solaris::init_signal_mem() {
duke@435 2655 // Initialize signal structures
duke@435 2656 Maxsignum = SIGRTMAX;
duke@435 2657 Sigexit = Maxsignum+1;
duke@435 2658 assert(Maxsignum >0, "Unable to obtain max signal number");
duke@435 2659
duke@435 2660 Maxlibjsigsigs = Maxsignum;
duke@435 2661
duke@435 2662 // pending_signals has one int per signal
duke@435 2663 // The additional signal is for SIGEXIT - exit signal to signal_thread
zgu@3900 2664 pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
duke@435 2665 memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
duke@435 2666
duke@435 2667 if (UseSignalChaining) {
duke@435 2668 chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
zgu@3900 2669 * (Maxsignum + 1), mtInternal);
duke@435 2670 memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
zgu@3900 2671 preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
duke@435 2672 memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
duke@435 2673 }
zgu@3900 2674 ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ), mtInternal);
duke@435 2675 memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
duke@435 2676 }
duke@435 2677
duke@435 2678 void os::signal_init_pd() {
duke@435 2679 int ret;
duke@435 2680
duke@435 2681 ret = ::sema_init(&sig_sem, 0, NULL, NULL);
duke@435 2682 assert(ret == 0, "sema_init() failed");
duke@435 2683 }
duke@435 2684
duke@435 2685 void os::signal_notify(int signal_number) {
duke@435 2686 int ret;
duke@435 2687
duke@435 2688 Atomic::inc(&pending_signals[signal_number]);
duke@435 2689 ret = ::sema_post(&sig_sem);
duke@435 2690 assert(ret == 0, "sema_post() failed");
duke@435 2691 }
duke@435 2692
duke@435 2693 static int check_pending_signals(bool wait_for_signal) {
duke@435 2694 int ret;
duke@435 2695 while (true) {
duke@435 2696 for (int i = 0; i < Sigexit + 1; i++) {
duke@435 2697 jint n = pending_signals[i];
duke@435 2698 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
duke@435 2699 return i;
duke@435 2700 }
duke@435 2701 }
duke@435 2702 if (!wait_for_signal) {
duke@435 2703 return -1;
duke@435 2704 }
duke@435 2705 JavaThread *thread = JavaThread::current();
duke@435 2706 ThreadBlockInVM tbivm(thread);
duke@435 2707
duke@435 2708 bool threadIsSuspended;
duke@435 2709 do {
duke@435 2710 thread->set_suspend_equivalent();
duke@435 2711 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 2712 while((ret = ::sema_wait(&sig_sem)) == EINTR)
duke@435 2713 ;
duke@435 2714 assert(ret == 0, "sema_wait() failed");
duke@435 2715
duke@435 2716 // were we externally suspended while we were waiting?
duke@435 2717 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
duke@435 2718 if (threadIsSuspended) {
duke@435 2719 //
duke@435 2720 // The semaphore has been incremented, but while we were waiting
duke@435 2721 // another thread suspended us. We don't want to continue running
duke@435 2722 // while suspended because that would surprise the thread that
duke@435 2723 // suspended us.
duke@435 2724 //
duke@435 2725 ret = ::sema_post(&sig_sem);
duke@435 2726 assert(ret == 0, "sema_post() failed");
duke@435 2727
duke@435 2728 thread->java_suspend_self();
duke@435 2729 }
duke@435 2730 } while (threadIsSuspended);
duke@435 2731 }
duke@435 2732 }
duke@435 2733
duke@435 2734 int os::signal_lookup() {
duke@435 2735 return check_pending_signals(false);
duke@435 2736 }
duke@435 2737
duke@435 2738 int os::signal_wait() {
duke@435 2739 return check_pending_signals(true);
duke@435 2740 }
duke@435 2741
duke@435 2742 ////////////////////////////////////////////////////////////////////////////////
duke@435 2743 // Virtual Memory
duke@435 2744
duke@435 2745 static int page_size = -1;
duke@435 2746
duke@435 2747 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later. init_2() will
duke@435 2748 // clear this var if support is not available.
duke@435 2749 static bool has_map_align = true;
duke@435 2750
duke@435 2751 int os::vm_page_size() {
duke@435 2752 assert(page_size != -1, "must call os::init");
duke@435 2753 return page_size;
duke@435 2754 }
duke@435 2755
duke@435 2756 // Solaris allocates memory by pages.
duke@435 2757 int os::vm_allocation_granularity() {
duke@435 2758 assert(page_size != -1, "must call os::init");
duke@435 2759 return page_size;
duke@435 2760 }
duke@435 2761
zgu@3900 2762 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
coleenp@1091 2763 int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
duke@435 2764 size_t size = bytes;
iveresov@3085 2765 char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
iveresov@3085 2766 if (res != NULL) {
iveresov@3085 2767 if (UseNUMAInterleaving) {
iveresov@3085 2768 numa_make_global(addr, bytes);
iveresov@3085 2769 }
iveresov@3085 2770 return true;
iveresov@3085 2771 }
iveresov@3085 2772 return false;
coleenp@1091 2773 }
coleenp@1091 2774
zgu@3900 2775 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
coleenp@1091 2776 bool exec) {
coleenp@1091 2777 if (commit_memory(addr, bytes, exec)) {
duke@435 2778 if (UseMPSS && alignment_hint > (size_t)vm_page_size()) {
duke@435 2779 // If the large page size has been set and the VM
duke@435 2780 // is using large pages, use the large page size
duke@435 2781 // if it is smaller than the alignment hint. This is
duke@435 2782 // a case where the VM wants to use a larger alignment size
duke@435 2783 // for its own reasons but still want to use large pages
duke@435 2784 // (which is what matters to setting the mpss range.
duke@435 2785 size_t page_size = 0;
duke@435 2786 if (large_page_size() < alignment_hint) {
duke@435 2787 assert(UseLargePages, "Expected to be here for large page use only");
duke@435 2788 page_size = large_page_size();
duke@435 2789 } else {
duke@435 2790 // If the alignment hint is less than the large page
duke@435 2791 // size, the VM wants a particular alignment (thus the hint)
duke@435 2792 // for internal reasons. Try to set the mpss range using
duke@435 2793 // the alignment_hint.
duke@435 2794 page_size = alignment_hint;
duke@435 2795 }
duke@435 2796 // Since this is a hint, ignore any failures.
duke@435 2797 (void)Solaris::set_mpss_range(addr, bytes, page_size);
duke@435 2798 }
duke@435 2799 return true;
duke@435 2800 }
duke@435 2801 return false;
duke@435 2802 }
duke@435 2803
duke@435 2804 // Uncommit the pages in a specified region.
zgu@3900 2805 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
duke@435 2806 if (madvise(addr, bytes, MADV_FREE) < 0) {
duke@435 2807 debug_only(warning("MADV_FREE failed."));
duke@435 2808 return;
duke@435 2809 }
duke@435 2810 }
duke@435 2811
zgu@3900 2812 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2813 return os::commit_memory(addr, size);
coleenp@1755 2814 }
coleenp@1755 2815
coleenp@1755 2816 bool os::remove_stack_guard_pages(char* addr, size_t size) {
coleenp@1755 2817 return os::uncommit_memory(addr, size);
coleenp@1755 2818 }
coleenp@1755 2819
duke@435 2820 // Change the page size in a given range.
zgu@3900 2821 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
duke@435 2822 assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
duke@435 2823 assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
iveresov@2824 2824 if (UseLargePages && UseMPSS) {
iveresov@2824 2825 Solaris::set_mpss_range(addr, bytes, alignment_hint);
iveresov@2824 2826 }
duke@435 2827 }
duke@435 2828
duke@435 2829 // Tell the OS to make the range local to the first-touching LWP
iveresov@576 2830 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
duke@435 2831 assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
duke@435 2832 if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
duke@435 2833 debug_only(warning("MADV_ACCESS_LWP failed."));
duke@435 2834 }
duke@435 2835 }
duke@435 2836
duke@435 2837 // Tell the OS that this range would be accessed from different LWPs.
duke@435 2838 void os::numa_make_global(char *addr, size_t bytes) {
duke@435 2839 assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
duke@435 2840 if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
duke@435 2841 debug_only(warning("MADV_ACCESS_MANY failed."));
duke@435 2842 }
duke@435 2843 }
duke@435 2844
duke@435 2845 // Get the number of the locality groups.
duke@435 2846 size_t os::numa_get_groups_num() {
duke@435 2847 size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
duke@435 2848 return n != -1 ? n : 1;
duke@435 2849 }
duke@435 2850
duke@435 2851 // Get a list of leaf locality groups. A leaf lgroup is group that
duke@435 2852 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
duke@435 2853 // board. An LWP is assigned to one of these groups upon creation.
duke@435 2854 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
duke@435 2855 if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
duke@435 2856 ids[0] = 0;
duke@435 2857 return 1;
duke@435 2858 }
duke@435 2859 int result_size = 0, top = 1, bottom = 0, cur = 0;
duke@435 2860 for (int k = 0; k < size; k++) {
duke@435 2861 int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
duke@435 2862 (Solaris::lgrp_id_t*)&ids[top], size - top);
duke@435 2863 if (r == -1) {
duke@435 2864 ids[0] = 0;
duke@435 2865 return 1;
duke@435 2866 }
duke@435 2867 if (!r) {
iveresov@579 2868 // That's a leaf node.
duke@435 2869 assert (bottom <= cur, "Sanity check");
iveresov@579 2870 // Check if the node has memory
iveresov@579 2871 if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
iveresov@579 2872 NULL, 0, LGRP_RSRC_MEM) > 0) {
iveresov@579 2873 ids[bottom++] = ids[cur];
iveresov@579 2874 }
duke@435 2875 }
duke@435 2876 top += r;
duke@435 2877 cur++;
duke@435 2878 }
iveresov@703 2879 if (bottom == 0) {
iveresov@703 2880 // Handle a situation, when the OS reports no memory available.
iveresov@703 2881 // Assume UMA architecture.
iveresov@703 2882 ids[0] = 0;
iveresov@703 2883 return 1;
iveresov@703 2884 }
duke@435 2885 return bottom;
duke@435 2886 }
duke@435 2887
ysr@777 2888 // Detect the topology change. Typically happens during CPU plugging-unplugging.
duke@435 2889 bool os::numa_topology_changed() {
duke@435 2890 int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
duke@435 2891 if (is_stale != -1 && is_stale) {
duke@435 2892 Solaris::lgrp_fini(Solaris::lgrp_cookie());
duke@435 2893 Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
duke@435 2894 assert(c != 0, "Failure to initialize LGRP API");
duke@435 2895 Solaris::set_lgrp_cookie(c);
duke@435 2896 return true;
duke@435 2897 }
duke@435 2898 return false;
duke@435 2899 }
duke@435 2900
duke@435 2901 // Get the group id of the current LWP.
duke@435 2902 int os::numa_get_group_id() {
iveresov@579 2903 int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
duke@435 2904 if (lgrp_id == -1) {
duke@435 2905 return 0;
duke@435 2906 }
iveresov@579 2907 const int size = os::numa_get_groups_num();
iveresov@579 2908 int *ids = (int*)alloca(size * sizeof(int));
iveresov@579 2909
iveresov@579 2910 // Get the ids of all lgroups with memory; r is the count.
iveresov@579 2911 int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
iveresov@579 2912 (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
iveresov@579 2913 if (r <= 0) {
iveresov@579 2914 return 0;
iveresov@579 2915 }
iveresov@579 2916 return ids[os::random() % r];
duke@435 2917 }
duke@435 2918
duke@435 2919 // Request information about the page.
duke@435 2920 bool os::get_page_info(char *start, page_info* info) {
duke@435 2921 const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
duke@435 2922 uint64_t addr = (uintptr_t)start;
duke@435 2923 uint64_t outdata[2];
duke@435 2924 uint_t validity = 0;
duke@435 2925
duke@435 2926 if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
duke@435 2927 return false;
duke@435 2928 }
duke@435 2929
duke@435 2930 info->size = 0;
duke@435 2931 info->lgrp_id = -1;
duke@435 2932
duke@435 2933 if ((validity & 1) != 0) {
duke@435 2934 if ((validity & 2) != 0) {
duke@435 2935 info->lgrp_id = outdata[0];
duke@435 2936 }
duke@435 2937 if ((validity & 4) != 0) {
duke@435 2938 info->size = outdata[1];
duke@435 2939 }
duke@435 2940 return true;
duke@435 2941 }
duke@435 2942 return false;
duke@435 2943 }
duke@435 2944
duke@435 2945 // Scan the pages from start to end until a page different than
duke@435 2946 // the one described in the info parameter is encountered.
duke@435 2947 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
duke@435 2948 const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
duke@435 2949 const size_t types = sizeof(info_types) / sizeof(info_types[0]);
duke@435 2950 uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT];
duke@435 2951 uint_t validity[MAX_MEMINFO_CNT];
duke@435 2952
duke@435 2953 size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
duke@435 2954 uint64_t p = (uint64_t)start;
duke@435 2955 while (p < (uint64_t)end) {
duke@435 2956 addrs[0] = p;
duke@435 2957 size_t addrs_count = 1;
duke@435 2958 while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] < (uint64_t)end) {
duke@435 2959 addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
duke@435 2960 addrs_count++;
duke@435 2961 }
duke@435 2962
duke@435 2963 if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
duke@435 2964 return NULL;
duke@435 2965 }
duke@435 2966
duke@435 2967 size_t i = 0;
duke@435 2968 for (; i < addrs_count; i++) {
duke@435 2969 if ((validity[i] & 1) != 0) {
duke@435 2970 if ((validity[i] & 4) != 0) {
duke@435 2971 if (outdata[types * i + 1] != page_expected->size) {
duke@435 2972 break;
duke@435 2973 }
duke@435 2974 } else
duke@435 2975 if (page_expected->size != 0) {
duke@435 2976 break;
duke@435 2977 }
duke@435 2978
duke@435 2979 if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
duke@435 2980 if (outdata[types * i] != page_expected->lgrp_id) {
duke@435 2981 break;
duke@435 2982 }
duke@435 2983 }
duke@435 2984 } else {
duke@435 2985 return NULL;
duke@435 2986 }
duke@435 2987 }
duke@435 2988
duke@435 2989 if (i != addrs_count) {
duke@435 2990 if ((validity[i] & 2) != 0) {
duke@435 2991 page_found->lgrp_id = outdata[types * i];
duke@435 2992 } else {
duke@435 2993 page_found->lgrp_id = -1;
duke@435 2994 }
duke@435 2995 if ((validity[i] & 4) != 0) {
duke@435 2996 page_found->size = outdata[types * i + 1];
duke@435 2997 } else {
duke@435 2998 page_found->size = 0;
duke@435 2999 }
duke@435 3000 return (char*)addrs[i];
duke@435 3001 }
duke@435 3002
duke@435 3003 p = addrs[addrs_count - 1] + page_size;
duke@435 3004 }
duke@435 3005 return end;
duke@435 3006 }
duke@435 3007
zgu@3900 3008 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
duke@435 3009 size_t size = bytes;
duke@435 3010 // Map uncommitted pages PROT_NONE so we fail early if we touch an
duke@435 3011 // uncommitted page. Otherwise, the read/write might succeed if we
duke@435 3012 // have enough swap space to back the physical page.
duke@435 3013 return
duke@435 3014 NULL != Solaris::mmap_chunk(addr, size,
duke@435 3015 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
duke@435 3016 PROT_NONE);
duke@435 3017 }
duke@435 3018
duke@435 3019 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
duke@435 3020 char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
duke@435 3021
duke@435 3022 if (b == MAP_FAILED) {
duke@435 3023 return NULL;
duke@435 3024 }
duke@435 3025 return b;
duke@435 3026 }
duke@435 3027
sbohne@495 3028 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes, size_t alignment_hint, bool fixed) {
sbohne@495 3029 char* addr = requested_addr;
sbohne@495 3030 int flags = MAP_PRIVATE | MAP_NORESERVE;
sbohne@495 3031
sbohne@495 3032 assert(!(fixed && (alignment_hint > 0)), "alignment hint meaningless with fixed mmap");
sbohne@495 3033
sbohne@495 3034 if (fixed) {
sbohne@495 3035 flags |= MAP_FIXED;
sbohne@495 3036 } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
duke@435 3037 flags |= MAP_ALIGN;
duke@435 3038 addr = (char*) alignment_hint;
duke@435 3039 }
duke@435 3040
duke@435 3041 // Map uncommitted pages PROT_NONE so we fail early if we touch an
duke@435 3042 // uncommitted page. Otherwise, the read/write might succeed if we
duke@435 3043 // have enough swap space to back the physical page.
sbohne@495 3044 return mmap_chunk(addr, bytes, flags, PROT_NONE);
sbohne@495 3045 }
sbohne@495 3046
zgu@3900 3047 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
sbohne@495 3048 char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint, (requested_addr != NULL));
duke@435 3049
duke@435 3050 guarantee(requested_addr == NULL || requested_addr == addr,
duke@435 3051 "OS failed to return requested mmap address.");
duke@435 3052 return addr;
duke@435 3053 }
duke@435 3054
duke@435 3055 // Reserve memory at an arbitrary address, only if that area is
duke@435 3056 // available (and not reserved for something else).
duke@435 3057
zgu@3900 3058 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
duke@435 3059 const int max_tries = 10;
duke@435 3060 char* base[max_tries];
duke@435 3061 size_t size[max_tries];
duke@435 3062
duke@435 3063 // Solaris adds a gap between mmap'ed regions. The size of the gap
duke@435 3064 // is dependent on the requested size and the MMU. Our initial gap
duke@435 3065 // value here is just a guess and will be corrected later.
duke@435 3066 bool had_top_overlap = false;
duke@435 3067 bool have_adjusted_gap = false;
duke@435 3068 size_t gap = 0x400000;
duke@435 3069
duke@435 3070 // Assert only that the size is a multiple of the page size, since
duke@435 3071 // that's all that mmap requires, and since that's all we really know
duke@435 3072 // about at this low abstraction level. If we need higher alignment,
duke@435 3073 // we can either pass an alignment to this method or verify alignment
duke@435 3074 // in one of the methods further up the call chain. See bug 5044738.
duke@435 3075 assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
duke@435 3076
sbohne@495 3077 // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
sbohne@495 3078 // Give it a try, if the kernel honors the hint we can return immediately.
sbohne@495 3079 char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
zgu@4193 3080
sbohne@495 3081 volatile int err = errno;
sbohne@495 3082 if (addr == requested_addr) {
sbohne@495 3083 return addr;
sbohne@495 3084 } else if (addr != NULL) {
zgu@4193 3085 pd_unmap_memory(addr, bytes);
sbohne@495 3086 }
sbohne@495 3087
sbohne@495 3088 if (PrintMiscellaneous && Verbose) {
sbohne@495 3089 char buf[256];
sbohne@495 3090 buf[0] = '\0';
sbohne@495 3091 if (addr == NULL) {
sbohne@495 3092 jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
sbohne@495 3093 }
kvn@2403 3094 warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
sbohne@495 3095 PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
sbohne@495 3096 "%s", bytes, requested_addr, addr, buf);
sbohne@495 3097 }
sbohne@495 3098
sbohne@495 3099 // Address hint method didn't work. Fall back to the old method.
sbohne@495 3100 // In theory, once SNV becomes our oldest supported platform, this
sbohne@495 3101 // code will no longer be needed.
sbohne@495 3102 //
duke@435 3103 // Repeatedly allocate blocks until the block is allocated at the
duke@435 3104 // right spot. Give up after max_tries.
duke@435 3105 int i;
duke@435 3106 for (i = 0; i < max_tries; ++i) {
duke@435 3107 base[i] = reserve_memory(bytes);
duke@435 3108
duke@435 3109 if (base[i] != NULL) {
duke@435 3110 // Is this the block we wanted?
duke@435 3111 if (base[i] == requested_addr) {
duke@435 3112 size[i] = bytes;
duke@435 3113 break;
duke@435 3114 }
duke@435 3115
duke@435 3116 // check that the gap value is right
duke@435 3117 if (had_top_overlap && !have_adjusted_gap) {
duke@435 3118 size_t actual_gap = base[i-1] - base[i] - bytes;
duke@435 3119 if (gap != actual_gap) {
duke@435 3120 // adjust the gap value and retry the last 2 allocations
duke@435 3121 assert(i > 0, "gap adjustment code problem");
duke@435 3122 have_adjusted_gap = true; // adjust the gap only once, just in case
duke@435 3123 gap = actual_gap;
duke@435 3124 if (PrintMiscellaneous && Verbose) {
duke@435 3125 warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
duke@435 3126 }
duke@435 3127 unmap_memory(base[i], bytes);
duke@435 3128 unmap_memory(base[i-1], size[i-1]);
duke@435 3129 i-=2;
duke@435 3130 continue;
duke@435 3131 }
duke@435 3132 }
duke@435 3133
duke@435 3134 // Does this overlap the block we wanted? Give back the overlapped
duke@435 3135 // parts and try again.
duke@435 3136 //
duke@435 3137 // There is still a bug in this code: if top_overlap == bytes,
duke@435 3138 // the overlap is offset from requested region by the value of gap.
duke@435 3139 // In this case giving back the overlapped part will not work,
duke@435 3140 // because we'll give back the entire block at base[i] and
duke@435 3141 // therefore the subsequent allocation will not generate a new gap.
duke@435 3142 // This could be fixed with a new algorithm that used larger
duke@435 3143 // or variable size chunks to find the requested region -
duke@435 3144 // but such a change would introduce additional complications.
duke@435 3145 // It's rare enough that the planets align for this bug,
duke@435 3146 // so we'll just wait for a fix for 6204603/5003415 which
duke@435 3147 // will provide a mmap flag to allow us to avoid this business.
duke@435 3148
duke@435 3149 size_t top_overlap = requested_addr + (bytes + gap) - base[i];
duke@435 3150 if (top_overlap >= 0 && top_overlap < bytes) {
duke@435 3151 had_top_overlap = true;
duke@435 3152 unmap_memory(base[i], top_overlap);
duke@435 3153 base[i] += top_overlap;
duke@435 3154 size[i] = bytes - top_overlap;
duke@435 3155 } else {
duke@435 3156 size_t bottom_overlap = base[i] + bytes - requested_addr;
duke@435 3157 if (bottom_overlap >= 0 && bottom_overlap < bytes) {
duke@435 3158 if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
duke@435 3159 warning("attempt_reserve_memory_at: possible alignment bug");
duke@435 3160 }
duke@435 3161 unmap_memory(requested_addr, bottom_overlap);
duke@435 3162 size[i] = bytes - bottom_overlap;
duke@435 3163 } else {
duke@435 3164 size[i] = bytes;
duke@435 3165 }
duke@435 3166 }
duke@435 3167 }
duke@435 3168 }
duke@435 3169
duke@435 3170 // Give back the unused reserved pieces.
duke@435 3171
duke@435 3172 for (int j = 0; j < i; ++j) {
duke@435 3173 if (base[j] != NULL) {
duke@435 3174 unmap_memory(base[j], size[j]);
duke@435 3175 }
duke@435 3176 }
duke@435 3177
duke@435 3178 return (i < max_tries) ? requested_addr : NULL;
duke@435 3179 }
duke@435 3180
zgu@3900 3181 bool os::pd_release_memory(char* addr, size_t bytes) {
duke@435 3182 size_t size = bytes;
duke@435 3183 return munmap(addr, size) == 0;
duke@435 3184 }
duke@435 3185
duke@435 3186 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
duke@435 3187 assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
duke@435 3188 "addr must be page aligned");
duke@435 3189 int retVal = mprotect(addr, bytes, prot);
duke@435 3190 return retVal == 0;
duke@435 3191 }
duke@435 3192
coleenp@672 3193 // Protect memory (Used to pass readonly pages through
duke@435 3194 // JNI GetArray<type>Elements with empty arrays.)
coleenp@912 3195 // Also, used for serialization page and for compressed oops null pointer
coleenp@912 3196 // checking.
coleenp@672 3197 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
coleenp@672 3198 bool is_committed) {
coleenp@672 3199 unsigned int p = 0;
coleenp@672 3200 switch (prot) {
coleenp@672 3201 case MEM_PROT_NONE: p = PROT_NONE; break;
coleenp@672 3202 case MEM_PROT_READ: p = PROT_READ; break;
coleenp@672 3203 case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break;
coleenp@672 3204 case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
coleenp@672 3205 default:
coleenp@672 3206 ShouldNotReachHere();
coleenp@672 3207 }
coleenp@672 3208 // is_committed is unused.
coleenp@672 3209 return solaris_mprotect(addr, bytes, p);
duke@435 3210 }
duke@435 3211
duke@435 3212 // guard_memory and unguard_memory only happens within stack guard pages.
duke@435 3213 // Since ISM pertains only to the heap, guard and unguard memory should not
duke@435 3214 /// happen with an ISM region.
duke@435 3215 bool os::guard_memory(char* addr, size_t bytes) {
duke@435 3216 return solaris_mprotect(addr, bytes, PROT_NONE);
duke@435 3217 }
duke@435 3218
duke@435 3219 bool os::unguard_memory(char* addr, size_t bytes) {
coleenp@912 3220 return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
duke@435 3221 }
duke@435 3222
duke@435 3223 // Large page support
duke@435 3224
duke@435 3225 // UseLargePages is the master flag to enable/disable large page memory.
duke@435 3226 // UseMPSS and UseISM are supported for compatibility reasons. Their combined
duke@435 3227 // effects can be described in the following table:
duke@435 3228 //
duke@435 3229 // UseLargePages UseMPSS UseISM
duke@435 3230 // false * * => UseLargePages is the master switch, turning
duke@435 3231 // it off will turn off both UseMPSS and
duke@435 3232 // UseISM. VM will not use large page memory
duke@435 3233 // regardless the settings of UseMPSS/UseISM.
duke@435 3234 // true false false => Unless future Solaris provides other
duke@435 3235 // mechanism to use large page memory, this
duke@435 3236 // combination is equivalent to -UseLargePages,
duke@435 3237 // VM will not use large page memory
duke@435 3238 // true true false => JVM will use MPSS for large page memory.
duke@435 3239 // This is the default behavior.
duke@435 3240 // true false true => JVM will use ISM for large page memory.
duke@435 3241 // true true true => JVM will use ISM if it is available.
duke@435 3242 // Otherwise, JVM will fall back to MPSS.
duke@435 3243 // Becaues ISM is now available on all
duke@435 3244 // supported Solaris versions, this combination
duke@435 3245 // is equivalent to +UseISM -UseMPSS.
duke@435 3246
duke@435 3247 static size_t _large_page_size = 0;
duke@435 3248
duke@435 3249 bool os::Solaris::ism_sanity_check(bool warn, size_t * page_size) {
duke@435 3250 // x86 uses either 2M or 4M page, depending on whether PAE (Physical Address
duke@435 3251 // Extensions) mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. Sparc
duke@435 3252 // can support multiple page sizes.
duke@435 3253
duke@435 3254 // Don't bother to probe page size because getpagesizes() comes with MPSS.
duke@435 3255 // ISM is only recommended on old Solaris where there is no MPSS support.
duke@435 3256 // Simply choose a conservative value as default.
duke@435 3257 *page_size = LargePageSizeInBytes ? LargePageSizeInBytes :
bobv@2036 3258 SPARC_ONLY(4 * M) IA32_ONLY(4 * M) AMD64_ONLY(2 * M)
bobv@2036 3259 ARM_ONLY(2 * M);
duke@435 3260
duke@435 3261 // ISM is available on all supported Solaris versions
duke@435 3262 return true;
duke@435 3263 }
duke@435 3264
duke@435 3265 // Insertion sort for small arrays (descending order).
duke@435 3266 static void insertion_sort_descending(size_t* array, int len) {
duke@435 3267 for (int i = 0; i < len; i++) {
duke@435 3268 size_t val = array[i];
duke@435 3269 for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
duke@435 3270 size_t tmp = array[key];
duke@435 3271 array[key] = array[key - 1];
duke@435 3272 array[key - 1] = tmp;
duke@435 3273 }
duke@435 3274 }
duke@435 3275 }
duke@435 3276
duke@435 3277 bool os::Solaris::mpss_sanity_check(bool warn, size_t * page_size) {
duke@435 3278 const unsigned int usable_count = VM_Version::page_size_count();
duke@435 3279 if (usable_count == 1) {
duke@435 3280 return false;
duke@435 3281 }
duke@435 3282
jcoomes@3057 3283 // Find the right getpagesizes interface. When solaris 11 is the minimum
jcoomes@3057 3284 // build platform, getpagesizes() (without the '2') can be called directly.
jcoomes@3057 3285 typedef int (*gps_t)(size_t[], int);
jcoomes@3057 3286 gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
jcoomes@3057 3287 if (gps_func == NULL) {
jcoomes@3057 3288 gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
jcoomes@3057 3289 if (gps_func == NULL) {
jcoomes@3057 3290 if (warn) {
jcoomes@3057 3291 warning("MPSS is not supported by the operating system.");
jcoomes@3057 3292 }
jcoomes@3057 3293 return false;
jcoomes@3057 3294 }
jcoomes@3057 3295 }
jcoomes@3057 3296
duke@435 3297 // Fill the array of page sizes.
jcoomes@3057 3298 int n = (*gps_func)(_page_sizes, page_sizes_max);
duke@435 3299 assert(n > 0, "Solaris bug?");
jcoomes@3057 3300
duke@435 3301 if (n == page_sizes_max) {
duke@435 3302 // Add a sentinel value (necessary only if the array was completely filled
duke@435 3303 // since it is static (zeroed at initialization)).
duke@435 3304 _page_sizes[--n] = 0;
duke@435 3305 DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
duke@435 3306 }
duke@435 3307 assert(_page_sizes[n] == 0, "missing sentinel");
jcoomes@3057 3308 trace_page_sizes("available page sizes", _page_sizes, n);
duke@435 3309
duke@435 3310 if (n == 1) return false; // Only one page size available.
duke@435 3311
duke@435 3312 // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
duke@435 3313 // select up to usable_count elements. First sort the array, find the first
duke@435 3314 // acceptable value, then copy the usable sizes to the top of the array and
duke@435 3315 // trim the rest. Make sure to include the default page size :-).
duke@435 3316 //
duke@435 3317 // A better policy could get rid of the 4M limit by taking the sizes of the
duke@435 3318 // important VM memory regions (java heap and possibly the code cache) into
duke@435 3319 // account.
duke@435 3320 insertion_sort_descending(_page_sizes, n);
duke@435 3321 const size_t size_limit =
duke@435 3322 FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
duke@435 3323 int beg;
duke@435 3324 for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ;
duke@435 3325 const int end = MIN2((int)usable_count, n) - 1;
duke@435 3326 for (int cur = 0; cur < end; ++cur, ++beg) {
duke@435 3327 _page_sizes[cur] = _page_sizes[beg];
duke@435 3328 }
duke@435 3329 _page_sizes[end] = vm_page_size();
duke@435 3330 _page_sizes[end + 1] = 0;
duke@435 3331
duke@435 3332 if (_page_sizes[end] > _page_sizes[end - 1]) {
duke@435 3333 // Default page size is not the smallest; sort again.
duke@435 3334 insertion_sort_descending(_page_sizes, end + 1);
duke@435 3335 }
duke@435 3336 *page_size = _page_sizes[0];
duke@435 3337
jcoomes@3057 3338 trace_page_sizes("usable page sizes", _page_sizes, end + 1);
duke@435 3339 return true;
duke@435 3340 }
duke@435 3341
iveresov@2850 3342 void os::large_page_init() {
duke@435 3343 if (!UseLargePages) {
duke@435 3344 UseISM = false;
duke@435 3345 UseMPSS = false;
iveresov@2850 3346 return;
duke@435 3347 }
duke@435 3348
duke@435 3349 // print a warning if any large page related flag is specified on command line
duke@435 3350 bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 3351 !FLAG_IS_DEFAULT(UseISM) ||
duke@435 3352 !FLAG_IS_DEFAULT(UseMPSS) ||
duke@435 3353 !FLAG_IS_DEFAULT(LargePageSizeInBytes);
duke@435 3354 UseISM = UseISM &&
duke@435 3355 Solaris::ism_sanity_check(warn_on_failure, &_large_page_size);
duke@435 3356 if (UseISM) {
duke@435 3357 // ISM disables MPSS to be compatible with old JDK behavior
duke@435 3358 UseMPSS = false;
jcoomes@514 3359 _page_sizes[0] = _large_page_size;
jcoomes@514 3360 _page_sizes[1] = vm_page_size();
duke@435 3361 }
duke@435 3362
duke@435 3363 UseMPSS = UseMPSS &&
duke@435 3364 Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
duke@435 3365
duke@435 3366 UseLargePages = UseISM || UseMPSS;
duke@435 3367 }
duke@435 3368
duke@435 3369 bool os::Solaris::set_mpss_range(caddr_t start, size_t bytes, size_t align) {
duke@435 3370 // Signal to OS that we want large pages for addresses
duke@435 3371 // from addr, addr + bytes
duke@435 3372 struct memcntl_mha mpss_struct;
duke@435 3373 mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
duke@435 3374 mpss_struct.mha_pagesize = align;
duke@435 3375 mpss_struct.mha_flags = 0;
duke@435 3376 if (memcntl(start, bytes, MC_HAT_ADVISE,
duke@435 3377 (caddr_t) &mpss_struct, 0, 0) < 0) {
duke@435 3378 debug_only(warning("Attempt to use MPSS failed."));
duke@435 3379 return false;
duke@435 3380 }
duke@435 3381 return true;
duke@435 3382 }
duke@435 3383
iveresov@3085 3384 char* os::reserve_memory_special(size_t size, char* addr, bool exec) {
coleenp@1091 3385 // "exec" is passed in but not used. Creating the shared image for
coleenp@1091 3386 // the code cache doesn't have an SHM_X executable permission to check.
duke@435 3387 assert(UseLargePages && UseISM, "only for ISM large pages");
duke@435 3388
duke@435 3389 char* retAddr = NULL;
duke@435 3390 int shmid;
duke@435 3391 key_t ismKey;
duke@435 3392
duke@435 3393 bool warn_on_failure = UseISM &&
duke@435 3394 (!FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 3395 !FLAG_IS_DEFAULT(UseISM) ||
duke@435 3396 !FLAG_IS_DEFAULT(LargePageSizeInBytes)
duke@435 3397 );
duke@435 3398 char msg[128];
duke@435 3399
duke@435 3400 ismKey = IPC_PRIVATE;
duke@435 3401
duke@435 3402 // Create a large shared memory region to attach to based on size.
duke@435 3403 // Currently, size is the total size of the heap
duke@435 3404 shmid = shmget(ismKey, size, SHM_R | SHM_W | IPC_CREAT);
duke@435 3405 if (shmid == -1){
duke@435 3406 if (warn_on_failure) {
duke@435 3407 jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
duke@435 3408 warning(msg);
duke@435 3409 }
duke@435 3410 return NULL;
duke@435 3411 }
duke@435 3412
duke@435 3413 // Attach to the region
duke@435 3414 retAddr = (char *) shmat(shmid, 0, SHM_SHARE_MMU | SHM_R | SHM_W);
duke@435 3415 int err = errno;
duke@435 3416
duke@435 3417 // Remove shmid. If shmat() is successful, the actual shared memory segment
duke@435 3418 // will be deleted when it's detached by shmdt() or when the process
duke@435 3419 // terminates. If shmat() is not successful this will remove the shared
duke@435 3420 // segment immediately.
duke@435 3421 shmctl(shmid, IPC_RMID, NULL);
duke@435 3422
duke@435 3423 if (retAddr == (char *) -1) {
duke@435 3424 if (warn_on_failure) {
duke@435 3425 jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
duke@435 3426 warning(msg);
duke@435 3427 }
duke@435 3428 return NULL;
duke@435 3429 }
iveresov@3085 3430 if ((retAddr != NULL) && UseNUMAInterleaving) {
iveresov@3085 3431 numa_make_global(retAddr, size);
iveresov@3085 3432 }
duke@435 3433 return retAddr;
duke@435 3434 }
duke@435 3435
duke@435 3436 bool os::release_memory_special(char* base, size_t bytes) {
duke@435 3437 // detaching the SHM segment will also delete it, see reserve_memory_special()
duke@435 3438 int rslt = shmdt(base);
duke@435 3439 return rslt == 0;
duke@435 3440 }
duke@435 3441
duke@435 3442 size_t os::large_page_size() {
duke@435 3443 return _large_page_size;
duke@435 3444 }
duke@435 3445
duke@435 3446 // MPSS allows application to commit large page memory on demand; with ISM
duke@435 3447 // the entire memory region must be allocated as shared memory.
duke@435 3448 bool os::can_commit_large_page_memory() {
duke@435 3449 return UseISM ? false : true;
duke@435 3450 }
duke@435 3451
jcoomes@514 3452 bool os::can_execute_large_page_memory() {
jcoomes@514 3453 return UseISM ? false : true;
jcoomes@514 3454 }
jcoomes@514 3455
duke@435 3456 static int os_sleep(jlong millis, bool interruptible) {
duke@435 3457 const jlong limit = INT_MAX;
duke@435 3458 jlong prevtime;
duke@435 3459 int res;
duke@435 3460
duke@435 3461 while (millis > limit) {
duke@435 3462 if ((res = os_sleep(limit, interruptible)) != OS_OK)
duke@435 3463 return res;
duke@435 3464 millis -= limit;
duke@435 3465 }
duke@435 3466
duke@435 3467 // Restart interrupted polls with new parameters until the proper delay
duke@435 3468 // has been completed.
duke@435 3469
duke@435 3470 prevtime = getTimeMillis();
duke@435 3471
duke@435 3472 while (millis > 0) {
duke@435 3473 jlong newtime;
duke@435 3474
duke@435 3475 if (!interruptible) {
duke@435 3476 // Following assert fails for os::yield_all:
duke@435 3477 // assert(!thread->is_Java_thread(), "must not be java thread");
duke@435 3478 res = poll(NULL, 0, millis);
duke@435 3479 } else {
duke@435 3480 JavaThread *jt = JavaThread::current();
duke@435 3481
duke@435 3482 INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt,
duke@435 3483 os::Solaris::clear_interrupted);
duke@435 3484 }
duke@435 3485
duke@435 3486 // INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for
duke@435 3487 // thread.Interrupt.
duke@435 3488
zgu@2309 3489 // See c/r 6751923. Poll can return 0 before time
zgu@2309 3490 // has elapsed if time is set via clock_settime (as NTP does).
zgu@2309 3491 // res == 0 if poll timed out (see man poll RETURN VALUES)
zgu@2309 3492 // using the logic below checks that we really did
zgu@2309 3493 // sleep at least "millis" if not we'll sleep again.
zgu@2309 3494 if( ( res == 0 ) || ((res == OS_ERR) && (errno == EINTR))) {
duke@435 3495 newtime = getTimeMillis();
duke@435 3496 assert(newtime >= prevtime, "time moving backwards");
duke@435 3497 /* Doing prevtime and newtime in microseconds doesn't help precision,
duke@435 3498 and trying to round up to avoid lost milliseconds can result in a
duke@435 3499 too-short delay. */
duke@435 3500 millis -= newtime - prevtime;
duke@435 3501 if(millis <= 0)
duke@435 3502 return OS_OK;
duke@435 3503 prevtime = newtime;
duke@435 3504 } else
duke@435 3505 return res;
duke@435 3506 }
duke@435 3507
duke@435 3508 return OS_OK;
duke@435 3509 }
duke@435 3510
duke@435 3511 // Read calls from inside the vm need to perform state transitions
duke@435 3512 size_t os::read(int fd, void *buf, unsigned int nBytes) {
duke@435 3513 INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
duke@435 3514 }
duke@435 3515
ikrylov@2322 3516 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
ikrylov@2322 3517 INTERRUPTIBLE_RETURN_INT(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
ikrylov@2322 3518 }
ikrylov@2322 3519
duke@435 3520 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
duke@435 3521 assert(thread == Thread::current(), "thread consistency check");
duke@435 3522
duke@435 3523 // TODO-FIXME: this should be removed.
duke@435 3524 // On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock
duke@435 3525 // situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate
duke@435 3526 // a SIGWAITING signal which would enable the threads library to create a new lwp for the starving
duke@435 3527 // thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel
duke@435 3528 // is fooled into believing that the system is making progress. In the code below we block the
duke@435 3529 // the watcher thread while safepoint is in progress so that it would not appear as though the
duke@435 3530 // system is making progress.
duke@435 3531 if (!Solaris::T2_libthread() &&
duke@435 3532 thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) {
duke@435 3533 // We now try to acquire the threads lock. Since this lock is held by the VM thread during
duke@435 3534 // the entire safepoint, the watcher thread will line up here during the safepoint.
duke@435 3535 Threads_lock->lock_without_safepoint_check();
duke@435 3536 Threads_lock->unlock();
duke@435 3537 }
duke@435 3538
duke@435 3539 if (thread->is_Java_thread()) {
duke@435 3540 // This is a JavaThread so we honor the _thread_blocked protocol
duke@435 3541 // even for sleeps of 0 milliseconds. This was originally done
duke@435 3542 // as a workaround for bug 4338139. However, now we also do it
duke@435 3543 // to honor the suspend-equivalent protocol.
duke@435 3544
duke@435 3545 JavaThread *jt = (JavaThread *) thread;
duke@435 3546 ThreadBlockInVM tbivm(jt);
duke@435 3547
duke@435 3548 jt->set_suspend_equivalent();
duke@435 3549 // cleared by handle_special_suspend_equivalent_condition() or
duke@435 3550 // java_suspend_self() via check_and_wait_while_suspended()
duke@435 3551
duke@435 3552 int ret_code;
duke@435 3553 if (millis <= 0) {
duke@435 3554 thr_yield();
duke@435 3555 ret_code = 0;
duke@435 3556 } else {
duke@435 3557 // The original sleep() implementation did not create an
duke@435 3558 // OSThreadWaitState helper for sleeps of 0 milliseconds.
duke@435 3559 // I'm preserving that decision for now.
duke@435 3560 OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
duke@435 3561
duke@435 3562 ret_code = os_sleep(millis, interruptible);
duke@435 3563 }
duke@435 3564
duke@435 3565 // were we externally suspended while we were waiting?
duke@435 3566 jt->check_and_wait_while_suspended();
duke@435 3567
duke@435 3568 return ret_code;
duke@435 3569 }
duke@435 3570
duke@435 3571 // non-JavaThread from this point on:
duke@435 3572
duke@435 3573 if (millis <= 0) {
duke@435 3574 thr_yield();
duke@435 3575 return 0;
duke@435 3576 }
duke@435 3577
duke@435 3578 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 3579
duke@435 3580 return os_sleep(millis, interruptible);
duke@435 3581 }
duke@435 3582
duke@435 3583 int os::naked_sleep() {
duke@435 3584 // %% make the sleep time an integer flag. for now use 1 millisec.
duke@435 3585 return os_sleep(1, false);
duke@435 3586 }
duke@435 3587
duke@435 3588 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
duke@435 3589 void os::infinite_sleep() {
duke@435 3590 while (true) { // sleep forever ...
duke@435 3591 ::sleep(100); // ... 100 seconds at a time
duke@435 3592 }
duke@435 3593 }
duke@435 3594
duke@435 3595 // Used to convert frequent JVM_Yield() to nops
duke@435 3596 bool os::dont_yield() {
duke@435 3597 if (DontYieldALot) {
duke@435 3598 static hrtime_t last_time = 0;
duke@435 3599 hrtime_t diff = getTimeNanos() - last_time;
duke@435 3600
duke@435 3601 if (diff < DontYieldALotInterval * 1000000)
duke@435 3602 return true;
duke@435 3603
duke@435 3604 last_time += diff;
duke@435 3605
duke@435 3606 return false;
duke@435 3607 }
duke@435 3608 else {
duke@435 3609 return false;
duke@435 3610 }
duke@435 3611 }
duke@435 3612
duke@435 3613 // Caveat: Solaris os::yield() causes a thread-state transition whereas
duke@435 3614 // the linux and win32 implementations do not. This should be checked.
duke@435 3615
duke@435 3616 void os::yield() {
duke@435 3617 // Yields to all threads with same or greater priority
duke@435 3618 os::sleep(Thread::current(), 0, false);
duke@435 3619 }
duke@435 3620
duke@435 3621 // Note that yield semantics are defined by the scheduling class to which
duke@435 3622 // the thread currently belongs. Typically, yield will _not yield to
duke@435 3623 // other equal or higher priority threads that reside on the dispatch queues
duke@435 3624 // of other CPUs.
duke@435 3625
duke@435 3626 os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
duke@435 3627
duke@435 3628
duke@435 3629 // On Solaris we found that yield_all doesn't always yield to all other threads.
duke@435 3630 // There have been cases where there is a thread ready to execute but it doesn't
duke@435 3631 // get an lwp as the VM thread continues to spin with sleeps of 1 millisecond.
duke@435 3632 // The 1 millisecond wait doesn't seem long enough for the kernel to issue a
duke@435 3633 // SIGWAITING signal which will cause a new lwp to be created. So we count the
duke@435 3634 // number of times yield_all is called in the one loop and increase the sleep
duke@435 3635 // time after 8 attempts. If this fails too we increase the concurrency level
duke@435 3636 // so that the starving thread would get an lwp
duke@435 3637
duke@435 3638 void os::yield_all(int attempts) {
duke@435 3639 // Yields to all threads, including threads with lower priorities
duke@435 3640 if (attempts == 0) {
duke@435 3641 os::sleep(Thread::current(), 1, false);
duke@435 3642 } else {
duke@435 3643 int iterations = attempts % 30;
duke@435 3644 if (iterations == 0 && !os::Solaris::T2_libthread()) {
duke@435 3645 // thr_setconcurrency and _getconcurrency make sense only under T1.
duke@435 3646 int noofLWPS = thr_getconcurrency();
duke@435 3647 if (noofLWPS < (Threads::number_of_threads() + 2)) {
duke@435 3648 thr_setconcurrency(thr_getconcurrency() + 1);
duke@435 3649 }
duke@435 3650 } else if (iterations < 25) {
duke@435 3651 os::sleep(Thread::current(), 1, false);
duke@435 3652 } else {
duke@435 3653 os::sleep(Thread::current(), 10, false);
duke@435 3654 }
duke@435 3655 }
duke@435 3656 }
duke@435 3657
duke@435 3658 // Called from the tight loops to possibly influence time-sharing heuristics
duke@435 3659 void os::loop_breaker(int attempts) {
duke@435 3660 os::yield_all(attempts);
duke@435 3661 }
duke@435 3662
duke@435 3663
duke@435 3664 // Interface for setting lwp priorities. If we are using T2 libthread,
duke@435 3665 // which forces the use of BoundThreads or we manually set UseBoundThreads,
duke@435 3666 // all of our threads will be assigned to real lwp's. Using the thr_setprio
duke@435 3667 // function is meaningless in this mode so we must adjust the real lwp's priority
duke@435 3668 // The routines below implement the getting and setting of lwp priorities.
duke@435 3669 //
duke@435 3670 // Note: There are three priority scales used on Solaris. Java priotities
duke@435 3671 // which range from 1 to 10, libthread "thr_setprio" scale which range
duke@435 3672 // from 0 to 127, and the current scheduling class of the process we
duke@435 3673 // are running in. This is typically from -60 to +60.
duke@435 3674 // The setting of the lwp priorities in done after a call to thr_setprio
duke@435 3675 // so Java priorities are mapped to libthread priorities and we map from
duke@435 3676 // the latter to lwp priorities. We don't keep priorities stored in
duke@435 3677 // Java priorities since some of our worker threads want to set priorities
duke@435 3678 // higher than all Java threads.
duke@435 3679 //
duke@435 3680 // For related information:
duke@435 3681 // (1) man -s 2 priocntl
duke@435 3682 // (2) man -s 4 priocntl
duke@435 3683 // (3) man dispadmin
duke@435 3684 // = librt.so
duke@435 3685 // = libthread/common/rtsched.c - thrp_setlwpprio().
duke@435 3686 // = ps -cL <pid> ... to validate priority.
duke@435 3687 // = sched_get_priority_min and _max
duke@435 3688 // pthread_create
duke@435 3689 // sched_setparam
duke@435 3690 // pthread_setschedparam
duke@435 3691 //
duke@435 3692 // Assumptions:
duke@435 3693 // + We assume that all threads in the process belong to the same
duke@435 3694 // scheduling class. IE. an homogenous process.
duke@435 3695 // + Must be root or in IA group to change change "interactive" attribute.
duke@435 3696 // Priocntl() will fail silently. The only indication of failure is when
duke@435 3697 // we read-back the value and notice that it hasn't changed.
duke@435 3698 // + Interactive threads enter the runq at the head, non-interactive at the tail.
duke@435 3699 // + For RT, change timeslice as well. Invariant:
duke@435 3700 // constant "priority integral"
duke@435 3701 // Konst == TimeSlice * (60-Priority)
duke@435 3702 // Given a priority, compute appropriate timeslice.
duke@435 3703 // + Higher numerical values have higher priority.
duke@435 3704
duke@435 3705 // sched class attributes
duke@435 3706 typedef struct {
duke@435 3707 int schedPolicy; // classID
duke@435 3708 int maxPrio;
duke@435 3709 int minPrio;
duke@435 3710 } SchedInfo;
duke@435 3711
duke@435 3712
phh@3481 3713 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
duke@435 3714
duke@435 3715 #ifdef ASSERT
duke@435 3716 static int ReadBackValidate = 1;
duke@435 3717 #endif
duke@435 3718 static int myClass = 0;
duke@435 3719 static int myMin = 0;
duke@435 3720 static int myMax = 0;
duke@435 3721 static int myCur = 0;
duke@435 3722 static bool priocntl_enable = false;
duke@435 3723
phh@3481 3724 static const int criticalPrio = 60; // FX/60 is critical thread class/priority on T4
phh@3481 3725 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
duke@435 3726
duke@435 3727 // Call the version of priocntl suitable for all supported versions
duke@435 3728 // of Solaris. We need to call through this wrapper so that we can
duke@435 3729 // build on Solaris 9 and run on Solaris 8, 9 and 10.
duke@435 3730 //
duke@435 3731 // This code should be removed if we ever stop supporting Solaris 8
duke@435 3732 // and earlier releases.
duke@435 3733
duke@435 3734 static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
duke@435 3735 typedef long (*priocntl_type)(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
duke@435 3736 static priocntl_type priocntl_ptr = priocntl_stub;
duke@435 3737
duke@435 3738 // Stub to set the value of the real pointer, and then call the real
duke@435 3739 // function.
duke@435 3740
duke@435 3741 static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg) {
duke@435 3742 // Try Solaris 8- name only.
duke@435 3743 priocntl_type tmp = (priocntl_type)dlsym(RTLD_DEFAULT, "__priocntl");
duke@435 3744 guarantee(tmp != NULL, "priocntl function not found.");
duke@435 3745 priocntl_ptr = tmp;
duke@435 3746 return (*priocntl_ptr)(PC_VERSION, idtype, id, cmd, arg);
duke@435 3747 }
duke@435 3748
duke@435 3749
duke@435 3750 // lwp_priocntl_init
duke@435 3751 //
duke@435 3752 // Try to determine the priority scale for our process.
duke@435 3753 //
duke@435 3754 // Return errno or 0 if OK.
duke@435 3755 //
duke@435 3756 static
duke@435 3757 int lwp_priocntl_init ()
duke@435 3758 {
duke@435 3759 int rslt;
duke@435 3760 pcinfo_t ClassInfo;
duke@435 3761 pcparms_t ParmInfo;
duke@435 3762 int i;
duke@435 3763
duke@435 3764 if (!UseThreadPriorities) return 0;
duke@435 3765
duke@435 3766 // We are using Bound threads, we need to determine our priority ranges
duke@435 3767 if (os::Solaris::T2_libthread() || UseBoundThreads) {
duke@435 3768 // If ThreadPriorityPolicy is 1, switch tables
duke@435 3769 if (ThreadPriorityPolicy == 1) {
phh@3481 3770 for (i = 0 ; i < CriticalPriority+1; i++)
duke@435 3771 os::java_to_os_priority[i] = prio_policy1[i];
duke@435 3772 }
phh@3481 3773 if (UseCriticalJavaThreadPriority) {
phh@3481 3774 // MaxPriority always maps to the FX scheduling class and criticalPrio.
phh@3481 3775 // See set_native_priority() and set_lwp_class_and_priority().
phh@3481 3776 // Save original MaxPriority mapping in case attempt to
phh@3481 3777 // use critical priority fails.
phh@3481 3778 java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
phh@3481 3779 // Set negative to distinguish from other priorities
phh@3481 3780 os::java_to_os_priority[MaxPriority] = -criticalPrio;
phh@3481 3781 }
duke@435 3782 }
duke@435 3783 // Not using Bound Threads, set to ThreadPolicy 1
duke@435 3784 else {
phh@3481 3785 for ( i = 0 ; i < CriticalPriority+1; i++ ) {
duke@435 3786 os::java_to_os_priority[i] = prio_policy1[i];
duke@435 3787 }
duke@435 3788 return 0;
duke@435 3789 }
duke@435 3790
duke@435 3791 // Get IDs for a set of well-known scheduling classes.
duke@435 3792 // TODO-FIXME: GETCLINFO returns the current # of classes in the
duke@435 3793 // the system. We should have a loop that iterates over the
duke@435 3794 // classID values, which are known to be "small" integers.
duke@435 3795
duke@435 3796 strcpy(ClassInfo.pc_clname, "TS");
duke@435 3797 ClassInfo.pc_cid = -1;
duke@435 3798 rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
duke@435 3799 if (rslt < 0) return errno;
duke@435 3800 assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
duke@435 3801 tsLimits.schedPolicy = ClassInfo.pc_cid;
duke@435 3802 tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
duke@435 3803 tsLimits.minPrio = -tsLimits.maxPrio;
duke@435 3804
duke@435 3805 strcpy(ClassInfo.pc_clname, "IA");
duke@435 3806 ClassInfo.pc_cid = -1;
duke@435 3807 rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
duke@435 3808 if (rslt < 0) return errno;
duke@435 3809 assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
duke@435 3810 iaLimits.schedPolicy = ClassInfo.pc_cid;
duke@435 3811 iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
duke@435 3812 iaLimits.minPrio = -iaLimits.maxPrio;
duke@435 3813
duke@435 3814 strcpy(ClassInfo.pc_clname, "RT");
duke@435 3815 ClassInfo.pc_cid = -1;
duke@435 3816 rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
duke@435 3817 if (rslt < 0) return errno;
duke@435 3818 assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
duke@435 3819 rtLimits.schedPolicy = ClassInfo.pc_cid;
duke@435 3820 rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
duke@435 3821 rtLimits.minPrio = 0;
duke@435 3822
phh@3481 3823 strcpy(ClassInfo.pc_clname, "FX");
phh@3481 3824 ClassInfo.pc_cid = -1;
phh@3481 3825 rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
phh@3481 3826 if (rslt < 0) return errno;
phh@3481 3827 assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
phh@3481 3828 fxLimits.schedPolicy = ClassInfo.pc_cid;
phh@3481 3829 fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
phh@3481 3830 fxLimits.minPrio = 0;
duke@435 3831
duke@435 3832 // Query our "current" scheduling class.
phh@3481 3833 // This will normally be IA, TS or, rarely, FX or RT.
phh@3481 3834 memset(&ParmInfo, 0, sizeof(ParmInfo));
duke@435 3835 ParmInfo.pc_cid = PC_CLNULL;
phh@3481 3836 rslt = (*priocntl_ptr) (PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
phh@3481 3837 if (rslt < 0) return errno;
duke@435 3838 myClass = ParmInfo.pc_cid;
duke@435 3839
duke@435 3840 // We now know our scheduling classId, get specific information
phh@3481 3841 // about the class.
duke@435 3842 ClassInfo.pc_cid = myClass;
duke@435 3843 ClassInfo.pc_clname[0] = 0;
phh@3481 3844 rslt = (*priocntl_ptr) (PC_VERSION, (idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
phh@3481 3845 if (rslt < 0) return errno;
phh@3481 3846
phh@3481 3847 if (ThreadPriorityVerbose) {
phh@3481 3848 tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
phh@3481 3849 }
duke@435 3850
duke@435 3851 memset(&ParmInfo, 0, sizeof(pcparms_t));
duke@435 3852 ParmInfo.pc_cid = PC_CLNULL;
duke@435 3853 rslt = (*priocntl_ptr)(PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
duke@435 3854 if (rslt < 0) return errno;
duke@435 3855
duke@435 3856 if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
duke@435 3857 myMin = rtLimits.minPrio;
duke@435 3858 myMax = rtLimits.maxPrio;
duke@435 3859 } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
duke@435 3860 iaparms_t *iaInfo = (iaparms_t*)ParmInfo.pc_clparms;
duke@435 3861 myMin = iaLimits.minPrio;
duke@435 3862 myMax = iaLimits.maxPrio;
duke@435 3863 myMax = MIN2(myMax, (int)iaInfo->ia_uprilim); // clamp - restrict
duke@435 3864 } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
duke@435 3865 tsparms_t *tsInfo = (tsparms_t*)ParmInfo.pc_clparms;
duke@435 3866 myMin = tsLimits.minPrio;
duke@435 3867 myMax = tsLimits.maxPrio;
duke@435 3868 myMax = MIN2(myMax, (int)tsInfo->ts_uprilim); // clamp - restrict
phh@3481 3869 } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
phh@3481 3870 fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
phh@3481 3871 myMin = fxLimits.minPrio;
phh@3481 3872 myMax = fxLimits.maxPrio;
phh@3481 3873 myMax = MIN2(myMax, (int)fxInfo->fx_uprilim); // clamp - restrict
duke@435 3874 } else {
duke@435 3875 // No clue - punt
duke@435 3876 if (ThreadPriorityVerbose)
duke@435 3877 tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname);
duke@435 3878 return EINVAL; // no clue, punt
duke@435 3879 }
duke@435 3880
phh@3481 3881 if (ThreadPriorityVerbose) {
phh@3481 3882 tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax);
phh@3481 3883 }
duke@435 3884
duke@435 3885 priocntl_enable = true; // Enable changing priorities
duke@435 3886 return 0;
duke@435 3887 }
duke@435 3888
duke@435 3889 #define IAPRI(x) ((iaparms_t *)((x).pc_clparms))
duke@435 3890 #define RTPRI(x) ((rtparms_t *)((x).pc_clparms))
duke@435 3891 #define TSPRI(x) ((tsparms_t *)((x).pc_clparms))
phh@3481 3892 #define FXPRI(x) ((fxparms_t *)((x).pc_clparms))
duke@435 3893
duke@435 3894
duke@435 3895 // scale_to_lwp_priority
duke@435 3896 //
duke@435 3897 // Convert from the libthread "thr_setprio" scale to our current
duke@435 3898 // lwp scheduling class scale.
duke@435 3899 //
duke@435 3900 static
duke@435 3901 int scale_to_lwp_priority (int rMin, int rMax, int x)
duke@435 3902 {
duke@435 3903 int v;
duke@435 3904
duke@435 3905 if (x == 127) return rMax; // avoid round-down
duke@435 3906 v = (((x*(rMax-rMin)))/128)+rMin;
duke@435 3907 return v;
duke@435 3908 }
duke@435 3909
duke@435 3910
phh@3481 3911 // set_lwp_class_and_priority
duke@435 3912 //
phh@3481 3913 // Set the class and priority of the lwp. This call should only
phh@3481 3914 // be made when using bound threads (T2 threads are bound by default).
duke@435 3915 //
phh@3481 3916 int set_lwp_class_and_priority(int ThreadID, int lwpid,
phh@3481 3917 int newPrio, int new_class, bool scale) {
duke@435 3918 int rslt;
duke@435 3919 int Actual, Expected, prv;
duke@435 3920 pcparms_t ParmInfo; // for GET-SET
duke@435 3921 #ifdef ASSERT
duke@435 3922 pcparms_t ReadBack; // for readback
duke@435 3923 #endif
duke@435 3924
duke@435 3925 // Set priority via PC_GETPARMS, update, PC_SETPARMS
duke@435 3926 // Query current values.
duke@435 3927 // TODO: accelerate this by eliminating the PC_GETPARMS call.
duke@435 3928 // Cache "pcparms_t" in global ParmCache.
duke@435 3929 // TODO: elide set-to-same-value
duke@435 3930
duke@435 3931 // If something went wrong on init, don't change priorities.
duke@435 3932 if ( !priocntl_enable ) {
duke@435 3933 if (ThreadPriorityVerbose)
duke@435 3934 tty->print_cr("Trying to set priority but init failed, ignoring");
duke@435 3935 return EINVAL;
duke@435 3936 }
duke@435 3937
duke@435 3938 // If lwp hasn't started yet, just return
duke@435 3939 // the _start routine will call us again.
duke@435 3940 if ( lwpid <= 0 ) {
duke@435 3941 if (ThreadPriorityVerbose) {
phh@3481 3942 tty->print_cr ("deferring the set_lwp_class_and_priority of thread "
phh@3481 3943 INTPTR_FORMAT " to %d, lwpid not set",
duke@435 3944 ThreadID, newPrio);
duke@435 3945 }
duke@435 3946 return 0;
duke@435 3947 }
duke@435 3948
duke@435 3949 if (ThreadPriorityVerbose) {
phh@3481 3950 tty->print_cr ("set_lwp_class_and_priority("
phh@3481 3951 INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
duke@435 3952 ThreadID, lwpid, newPrio);
duke@435 3953 }
duke@435 3954
duke@435 3955 memset(&ParmInfo, 0, sizeof(pcparms_t));
duke@435 3956 ParmInfo.pc_cid = PC_CLNULL;
duke@435 3957 rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
duke@435 3958 if (rslt < 0) return errno;
duke@435 3959
phh@3481 3960 int cur_class = ParmInfo.pc_cid;
phh@3481 3961 ParmInfo.pc_cid = (id_t)new_class;
phh@3481 3962
phh@3481 3963 if (new_class == rtLimits.schedPolicy) {
duke@435 3964 rtparms_t *rtInfo = (rtparms_t*)ParmInfo.pc_clparms;
phh@3481 3965 rtInfo->rt_pri = scale ? scale_to_lwp_priority(rtLimits.minPrio,
phh@3481 3966 rtLimits.maxPrio, newPrio)
phh@3481 3967 : newPrio;
duke@435 3968 rtInfo->rt_tqsecs = RT_NOCHANGE;
duke@435 3969 rtInfo->rt_tqnsecs = RT_NOCHANGE;
duke@435 3970 if (ThreadPriorityVerbose) {
duke@435 3971 tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
duke@435 3972 }
phh@3481 3973 } else if (new_class == iaLimits.schedPolicy) {
phh@3481 3974 iaparms_t* iaInfo = (iaparms_t*)ParmInfo.pc_clparms;
phh@3481 3975 int maxClamped = MIN2(iaLimits.maxPrio,
phh@3481 3976 cur_class == new_class
phh@3481 3977 ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
phh@3481 3978 iaInfo->ia_upri = scale ? scale_to_lwp_priority(iaLimits.minPrio,
phh@3481 3979 maxClamped, newPrio)
phh@3481 3980 : newPrio;
phh@3481 3981 iaInfo->ia_uprilim = cur_class == new_class
phh@3481 3982 ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
duke@435 3983 iaInfo->ia_mode = IA_NOCHANGE;
duke@435 3984 if (ThreadPriorityVerbose) {
phh@3481 3985 tty->print_cr("IA: [%d...%d] %d->%d\n",
phh@3481 3986 iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
duke@435 3987 }
phh@3481 3988 } else if (new_class == tsLimits.schedPolicy) {
phh@3481 3989 tsparms_t* tsInfo = (tsparms_t*)ParmInfo.pc_clparms;
phh@3481 3990 int maxClamped = MIN2(tsLimits.maxPrio,
phh@3481 3991 cur_class == new_class
phh@3481 3992 ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
phh@3481 3993 tsInfo->ts_upri = scale ? scale_to_lwp_priority(tsLimits.minPrio,
phh@3481 3994 maxClamped, newPrio)
phh@3481 3995 : newPrio;
phh@3481 3996 tsInfo->ts_uprilim = cur_class == new_class
phh@3481 3997 ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
duke@435 3998 if (ThreadPriorityVerbose) {
phh@3481 3999 tty->print_cr("TS: [%d...%d] %d->%d\n",
phh@3481 4000 tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
duke@435 4001 }
phh@3481 4002 } else if (new_class == fxLimits.schedPolicy) {
phh@3481 4003 fxparms_t* fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
phh@3481 4004 int maxClamped = MIN2(fxLimits.maxPrio,
phh@3481 4005 cur_class == new_class
phh@3481 4006 ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
phh@3481 4007 fxInfo->fx_upri = scale ? scale_to_lwp_priority(fxLimits.minPrio,
phh@3481 4008 maxClamped, newPrio)
phh@3481 4009 : newPrio;
phh@3481 4010 fxInfo->fx_uprilim = cur_class == new_class
phh@3481 4011 ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
phh@3481 4012 fxInfo->fx_tqsecs = FX_NOCHANGE;
phh@3481 4013 fxInfo->fx_tqnsecs = FX_NOCHANGE;
phh@3481 4014 if (ThreadPriorityVerbose) {
phh@3481 4015 tty->print_cr("FX: [%d...%d] %d->%d\n",
phh@3481 4016 fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
phh@3481 4017 }
duke@435 4018 } else {
phh@3481 4019 if (ThreadPriorityVerbose) {
phh@3481 4020 tty->print_cr("Unknown new scheduling class %d\n", new_class);
duke@435 4021 }
phh@3481 4022 return EINVAL; // no clue, punt
duke@435 4023 }
duke@435 4024
duke@435 4025 rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
duke@435 4026 if (ThreadPriorityVerbose && rslt) {
duke@435 4027 tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
duke@435 4028 }
duke@435 4029 if (rslt < 0) return errno;
duke@435 4030
duke@435 4031 #ifdef ASSERT
duke@435 4032 // Sanity check: read back what we just attempted to set.
duke@435 4033 // In theory it could have changed in the interim ...
duke@435 4034 //
duke@435 4035 // The priocntl system call is tricky.
duke@435 4036 // Sometimes it'll validate the priority value argument and
duke@435 4037 // return EINVAL if unhappy. At other times it fails silently.
duke@435 4038 // Readbacks are prudent.
duke@435 4039
duke@435 4040 if (!ReadBackValidate) return 0;
duke@435 4041
duke@435 4042 memset(&ReadBack, 0, sizeof(pcparms_t));
duke@435 4043 ReadBack.pc_cid = PC_CLNULL;
duke@435 4044 rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
duke@435 4045 assert(rslt >= 0, "priocntl failed");
duke@435 4046 Actual = Expected = 0xBAD;
duke@435 4047 assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
duke@435 4048 if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
duke@435 4049 Actual = RTPRI(ReadBack)->rt_pri;
duke@435 4050 Expected = RTPRI(ParmInfo)->rt_pri;
duke@435 4051 } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
duke@435 4052 Actual = IAPRI(ReadBack)->ia_upri;
duke@435 4053 Expected = IAPRI(ParmInfo)->ia_upri;
duke@435 4054 } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
duke@435 4055 Actual = TSPRI(ReadBack)->ts_upri;
duke@435 4056 Expected = TSPRI(ParmInfo)->ts_upri;
phh@3481 4057 } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
phh@3481 4058 Actual = FXPRI(ReadBack)->fx_upri;
phh@3481 4059 Expected = FXPRI(ParmInfo)->fx_upri;
duke@435 4060 } else {
phh@3481 4061 if (ThreadPriorityVerbose) {
phh@3481 4062 tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
phh@3481 4063 ParmInfo.pc_cid);
duke@435 4064 }
duke@435 4065 }
duke@435 4066
duke@435 4067 if (Actual != Expected) {
phh@3481 4068 if (ThreadPriorityVerbose) {
phh@3481 4069 tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
phh@3481 4070 lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
duke@435 4071 }
duke@435 4072 }
duke@435 4073 #endif
duke@435 4074
duke@435 4075 return 0;
duke@435 4076 }
duke@435 4077
duke@435 4078 // Solaris only gives access to 128 real priorities at a time,
duke@435 4079 // so we expand Java's ten to fill this range. This would be better
duke@435 4080 // if we dynamically adjusted relative priorities.
duke@435 4081 //
duke@435 4082 // The ThreadPriorityPolicy option allows us to select 2 different
duke@435 4083 // priority scales.
duke@435 4084 //
duke@435 4085 // ThreadPriorityPolicy=0
duke@435 4086 // Since the Solaris' default priority is MaximumPriority, we do not
duke@435 4087 // set a priority lower than Max unless a priority lower than
duke@435 4088 // NormPriority is requested.
duke@435 4089 //
duke@435 4090 // ThreadPriorityPolicy=1
duke@435 4091 // This mode causes the priority table to get filled with
duke@435 4092 // linear values. NormPriority get's mapped to 50% of the
duke@435 4093 // Maximum priority an so on. This will cause VM threads
duke@435 4094 // to get unfair treatment against other Solaris processes
duke@435 4095 // which do not explicitly alter their thread priorities.
duke@435 4096 //
duke@435 4097
phh@3481 4098 int os::java_to_os_priority[CriticalPriority + 1] = {
duke@435 4099 -99999, // 0 Entry should never be used
duke@435 4100
duke@435 4101 0, // 1 MinPriority
duke@435 4102 32, // 2
duke@435 4103 64, // 3
duke@435 4104
duke@435 4105 96, // 4
duke@435 4106 127, // 5 NormPriority
duke@435 4107 127, // 6
duke@435 4108
duke@435 4109 127, // 7
duke@435 4110 127, // 8
duke@435 4111 127, // 9 NearMaxPriority
duke@435 4112
phh@3481 4113 127, // 10 MaxPriority
phh@3481 4114
phh@3481 4115 -criticalPrio // 11 CriticalPriority
duke@435 4116 };
duke@435 4117
duke@435 4118 OSReturn os::set_native_priority(Thread* thread, int newpri) {
phh@3481 4119 OSThread* osthread = thread->osthread();
phh@3481 4120
phh@3481 4121 // Save requested priority in case the thread hasn't been started
phh@3481 4122 osthread->set_native_priority(newpri);
phh@3481 4123
phh@3481 4124 // Check for critical priority request
phh@3481 4125 bool fxcritical = false;
phh@3481 4126 if (newpri == -criticalPrio) {
phh@3481 4127 fxcritical = true;
phh@3481 4128 newpri = criticalPrio;
phh@3481 4129 }
phh@3481 4130
duke@435 4131 assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
phh@3481 4132 if (!UseThreadPriorities) return OS_OK;
phh@3481 4133
phh@3481 4134 int status = 0;
phh@3481 4135
phh@3481 4136 if (!fxcritical) {
phh@3481 4137 // Use thr_setprio only if we have a priority that thr_setprio understands
phh@3481 4138 status = thr_setprio(thread->osthread()->thread_id(), newpri);
phh@3481 4139 }
phh@3481 4140
phh@3481 4141 if (os::Solaris::T2_libthread() ||
phh@3481 4142 (UseBoundThreads && osthread->is_vm_created())) {
phh@3481 4143 int lwp_status =
phh@3481 4144 set_lwp_class_and_priority(osthread->thread_id(),
phh@3481 4145 osthread->lwp_id(),
phh@3481 4146 newpri,
phh@3481 4147 fxcritical ? fxLimits.schedPolicy : myClass,
phh@3481 4148 !fxcritical);
phh@3481 4149 if (lwp_status != 0 && fxcritical) {
phh@3481 4150 // Try again, this time without changing the scheduling class
phh@3481 4151 newpri = java_MaxPriority_to_os_priority;
phh@3481 4152 lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
phh@3481 4153 osthread->lwp_id(),
phh@3481 4154 newpri, myClass, false);
phh@3481 4155 }
phh@3481 4156 status |= lwp_status;
phh@3481 4157 }
duke@435 4158 return (status == 0) ? OS_OK : OS_ERR;
duke@435 4159 }
duke@435 4160
duke@435 4161
duke@435 4162 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
duke@435 4163 int p;
duke@435 4164 if ( !UseThreadPriorities ) {
duke@435 4165 *priority_ptr = NormalPriority;
duke@435 4166 return OS_OK;
duke@435 4167 }
duke@435 4168 int status = thr_getprio(thread->osthread()->thread_id(), &p);
duke@435 4169 if (status != 0) {
duke@435 4170 return OS_ERR;
duke@435 4171 }
duke@435 4172 *priority_ptr = p;
duke@435 4173 return OS_OK;
duke@435 4174 }
duke@435 4175
duke@435 4176
duke@435 4177 // Hint to the underlying OS that a task switch would not be good.
duke@435 4178 // Void return because it's a hint and can fail.
duke@435 4179 void os::hint_no_preempt() {
duke@435 4180 schedctl_start(schedctl_init());
duke@435 4181 }
duke@435 4182
duke@435 4183 void os::interrupt(Thread* thread) {
duke@435 4184 assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
duke@435 4185
duke@435 4186 OSThread* osthread = thread->osthread();
duke@435 4187
duke@435 4188 int isInterrupted = osthread->interrupted();
duke@435 4189 if (!isInterrupted) {
duke@435 4190 osthread->set_interrupted(true);
duke@435 4191 OrderAccess::fence();
duke@435 4192 // os::sleep() is implemented with either poll (NULL,0,timeout) or
duke@435 4193 // by parking on _SleepEvent. If the former, thr_kill will unwedge
duke@435 4194 // the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper.
duke@435 4195 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 4196 if (slp != NULL) slp->unpark() ;
duke@435 4197 }
duke@435 4198
duke@435 4199 // For JSR166: unpark after setting status but before thr_kill -dl
duke@435 4200 if (thread->is_Java_thread()) {
duke@435 4201 ((JavaThread*)thread)->parker()->unpark();
duke@435 4202 }
duke@435 4203
duke@435 4204 // Handle interruptible wait() ...
duke@435 4205 ParkEvent * const ev = thread->_ParkEvent ;
duke@435 4206 if (ev != NULL) ev->unpark() ;
duke@435 4207
duke@435 4208 // When events are used everywhere for os::sleep, then this thr_kill
duke@435 4209 // will only be needed if UseVMInterruptibleIO is true.
duke@435 4210
duke@435 4211 if (!isInterrupted) {
duke@435 4212 int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt());
duke@435 4213 assert_status(status == 0, status, "thr_kill");
duke@435 4214
duke@435 4215 // Bump thread interruption counter
duke@435 4216 RuntimeService::record_thread_interrupt_signaled_count();
duke@435 4217 }
duke@435 4218 }
duke@435 4219
duke@435 4220
duke@435 4221 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
duke@435 4222 assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
duke@435 4223
duke@435 4224 OSThread* osthread = thread->osthread();
duke@435 4225
duke@435 4226 bool res = osthread->interrupted();
duke@435 4227
duke@435 4228 // NOTE that since there is no "lock" around these two operations,
duke@435 4229 // there is the possibility that the interrupted flag will be
duke@435 4230 // "false" but that the interrupt event will be set. This is
duke@435 4231 // intentional. The effect of this is that Object.wait() will appear
duke@435 4232 // to have a spurious wakeup, which is not harmful, and the
duke@435 4233 // possibility is so rare that it is not worth the added complexity
duke@435 4234 // to add yet another lock. It has also been recommended not to put
duke@435 4235 // the interrupted flag into the os::Solaris::Event structure,
duke@435 4236 // because it hides the issue.
duke@435 4237 if (res && clear_interrupted) {
duke@435 4238 osthread->set_interrupted(false);
duke@435 4239 }
duke@435 4240 return res;
duke@435 4241 }
duke@435 4242
duke@435 4243
duke@435 4244 void os::print_statistics() {
duke@435 4245 }
duke@435 4246
duke@435 4247 int os::message_box(const char* title, const char* message) {
duke@435 4248 int i;
duke@435 4249 fdStream err(defaultStream::error_fd());
duke@435 4250 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 4251 err.cr();
duke@435 4252 err.print_raw_cr(title);
duke@435 4253 for (i = 0; i < 78; i++) err.print_raw("-");
duke@435 4254 err.cr();
duke@435 4255 err.print_raw_cr(message);
duke@435 4256 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 4257 err.cr();
duke@435 4258
duke@435 4259 char buf[16];
duke@435 4260 // Prevent process from exiting upon "read error" without consuming all CPU
duke@435 4261 while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
duke@435 4262
duke@435 4263 return buf[0] == 'y' || buf[0] == 'Y';
duke@435 4264 }
duke@435 4265
duke@435 4266 // A lightweight implementation that does not suspend the target thread and
duke@435 4267 // thus returns only a hint. Used for profiling only!
duke@435 4268 ExtendedPC os::get_thread_pc(Thread* thread) {
duke@435 4269 // Make sure that it is called by the watcher and the Threads lock is owned.
duke@435 4270 assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
duke@435 4271 // For now, is only used to profile the VM Thread
duke@435 4272 assert(thread->is_VM_thread(), "Can only be called for VMThread");
duke@435 4273 ExtendedPC epc;
duke@435 4274
duke@435 4275 GetThreadPC_Callback cb(ProfileVM_lock);
duke@435 4276 OSThread *osthread = thread->osthread();
duke@435 4277 const int time_to_wait = 400; // 400ms wait for initial response
duke@435 4278 int status = cb.interrupt(thread, time_to_wait);
duke@435 4279
duke@435 4280 if (cb.is_done() ) {
duke@435 4281 epc = cb.addr();
duke@435 4282 } else {
duke@435 4283 DEBUG_ONLY(tty->print_cr("Failed to get pc for thread: %d got %d status",
duke@435 4284 osthread->thread_id(), status););
duke@435 4285 // epc is already NULL
duke@435 4286 }
duke@435 4287 return epc;
duke@435 4288 }
duke@435 4289
duke@435 4290
duke@435 4291 // This does not do anything on Solaris. This is basically a hook for being
duke@435 4292 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
duke@435 4293 void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
duke@435 4294 f(value, method, args, thread);
duke@435 4295 }
duke@435 4296
duke@435 4297 // This routine may be used by user applications as a "hook" to catch signals.
duke@435 4298 // The user-defined signal handler must pass unrecognized signals to this
duke@435 4299 // routine, and if it returns true (non-zero), then the signal handler must
duke@435 4300 // return immediately. If the flag "abort_if_unrecognized" is true, then this
duke@435 4301 // routine will never retun false (zero), but instead will execute a VM panic
duke@435 4302 // routine kill the process.
duke@435 4303 //
duke@435 4304 // If this routine returns false, it is OK to call it again. This allows
duke@435 4305 // the user-defined signal handler to perform checks either before or after
duke@435 4306 // the VM performs its own checks. Naturally, the user code would be making
duke@435 4307 // a serious error if it tried to handle an exception (such as a null check
duke@435 4308 // or breakpoint) that the VM was generating for its own correct operation.
duke@435 4309 //
duke@435 4310 // This routine may recognize any of the following kinds of signals:
duke@435 4311 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
duke@435 4312 // os::Solaris::SIGasync
duke@435 4313 // It should be consulted by handlers for any of those signals.
duke@435 4314 // It explicitly does not recognize os::Solaris::SIGinterrupt
duke@435 4315 //
duke@435 4316 // The caller of this routine must pass in the three arguments supplied
duke@435 4317 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
duke@435 4318 // field of the structure passed to sigaction(). This routine assumes that
duke@435 4319 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
duke@435 4320 //
duke@435 4321 // Note that the VM will print warnings if it detects conflicting signal
duke@435 4322 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
duke@435 4323 //
coleenp@2507 4324 extern "C" JNIEXPORT int
coleenp@2507 4325 JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext,
coleenp@2507 4326 int abort_if_unrecognized);
duke@435 4327
duke@435 4328
duke@435 4329 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
duke@435 4330 JVM_handle_solaris_signal(sig, info, ucVoid, true);
duke@435 4331 }
duke@435 4332
duke@435 4333 /* Do not delete - if guarantee is ever removed, a signal handler (even empty)
duke@435 4334 is needed to provoke threads blocked on IO to return an EINTR
duke@435 4335 Note: this explicitly does NOT call JVM_handle_solaris_signal and
duke@435 4336 does NOT participate in signal chaining due to requirement for
duke@435 4337 NOT setting SA_RESTART to make EINTR work. */
duke@435 4338 extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
duke@435 4339 if (UseSignalChaining) {
duke@435 4340 struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
duke@435 4341 if (actp && actp->sa_handler) {
duke@435 4342 vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
duke@435 4343 }
duke@435 4344 }
duke@435 4345 }
duke@435 4346
duke@435 4347 // This boolean allows users to forward their own non-matching signals
duke@435 4348 // to JVM_handle_solaris_signal, harmlessly.
duke@435 4349 bool os::Solaris::signal_handlers_are_installed = false;
duke@435 4350
duke@435 4351 // For signal-chaining
duke@435 4352 bool os::Solaris::libjsig_is_loaded = false;
duke@435 4353 typedef struct sigaction *(*get_signal_t)(int);
duke@435 4354 get_signal_t os::Solaris::get_signal_action = NULL;
duke@435 4355
duke@435 4356 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
duke@435 4357 struct sigaction *actp = NULL;
duke@435 4358
duke@435 4359 if ((libjsig_is_loaded) && (sig <= Maxlibjsigsigs)) {
duke@435 4360 // Retrieve the old signal handler from libjsig
duke@435 4361 actp = (*get_signal_action)(sig);
duke@435 4362 }
duke@435 4363 if (actp == NULL) {
duke@435 4364 // Retrieve the preinstalled signal handler from jvm
duke@435 4365 actp = get_preinstalled_handler(sig);
duke@435 4366 }
duke@435 4367
duke@435 4368 return actp;
duke@435 4369 }
duke@435 4370
duke@435 4371 static bool call_chained_handler(struct sigaction *actp, int sig,
duke@435 4372 siginfo_t *siginfo, void *context) {
duke@435 4373 // Call the old signal handler
duke@435 4374 if (actp->sa_handler == SIG_DFL) {
duke@435 4375 // It's more reasonable to let jvm treat it as an unexpected exception
duke@435 4376 // instead of taking the default action.
duke@435 4377 return false;
duke@435 4378 } else if (actp->sa_handler != SIG_IGN) {
duke@435 4379 if ((actp->sa_flags & SA_NODEFER) == 0) {
duke@435 4380 // automaticlly block the signal
duke@435 4381 sigaddset(&(actp->sa_mask), sig);
duke@435 4382 }
duke@435 4383
duke@435 4384 sa_handler_t hand;
duke@435 4385 sa_sigaction_t sa;
duke@435 4386 bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
duke@435 4387 // retrieve the chained handler
duke@435 4388 if (siginfo_flag_set) {
duke@435 4389 sa = actp->sa_sigaction;
duke@435 4390 } else {
duke@435 4391 hand = actp->sa_handler;
duke@435 4392 }
duke@435 4393
duke@435 4394 if ((actp->sa_flags & SA_RESETHAND) != 0) {
duke@435 4395 actp->sa_handler = SIG_DFL;
duke@435 4396 }
duke@435 4397
duke@435 4398 // try to honor the signal mask
duke@435 4399 sigset_t oset;
duke@435 4400 thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
duke@435 4401
duke@435 4402 // call into the chained handler
duke@435 4403 if (siginfo_flag_set) {
duke@435 4404 (*sa)(sig, siginfo, context);
duke@435 4405 } else {
duke@435 4406 (*hand)(sig);
duke@435 4407 }
duke@435 4408
duke@435 4409 // restore the signal mask
duke@435 4410 thr_sigsetmask(SIG_SETMASK, &oset, 0);
duke@435 4411 }
duke@435 4412 // Tell jvm's signal handler the signal is taken care of.
duke@435 4413 return true;
duke@435 4414 }
duke@435 4415
duke@435 4416 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
duke@435 4417 bool chained = false;
duke@435 4418 // signal-chaining
duke@435 4419 if (UseSignalChaining) {
duke@435 4420 struct sigaction *actp = get_chained_signal_action(sig);
duke@435 4421 if (actp != NULL) {
duke@435 4422 chained = call_chained_handler(actp, sig, siginfo, context);
duke@435 4423 }
duke@435 4424 }
duke@435 4425 return chained;
duke@435 4426 }
duke@435 4427
duke@435 4428 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
duke@435 4429 assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
duke@435 4430 if (preinstalled_sigs[sig] != 0) {
duke@435 4431 return &chainedsigactions[sig];
duke@435 4432 }
duke@435 4433 return NULL;
duke@435 4434 }
duke@435 4435
duke@435 4436 void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
duke@435 4437
duke@435 4438 assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
duke@435 4439 assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
duke@435 4440 chainedsigactions[sig] = oldAct;
duke@435 4441 preinstalled_sigs[sig] = 1;
duke@435 4442 }
duke@435 4443
duke@435 4444 void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) {
duke@435 4445 // Check for overwrite.
duke@435 4446 struct sigaction oldAct;
duke@435 4447 sigaction(sig, (struct sigaction*)NULL, &oldAct);
duke@435 4448 void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 4449 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 4450 if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
duke@435 4451 oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
duke@435 4452 oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
duke@435 4453 if (AllowUserSignalHandlers || !set_installed) {
duke@435 4454 // Do not overwrite; user takes responsibility to forward to us.
duke@435 4455 return;
duke@435 4456 } else if (UseSignalChaining) {
duke@435 4457 if (oktochain) {
duke@435 4458 // save the old handler in jvm
duke@435 4459 save_preinstalled_handler(sig, oldAct);
duke@435 4460 } else {
duke@435 4461 vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
duke@435 4462 }
duke@435 4463 // libjsig also interposes the sigaction() call below and saves the
duke@435 4464 // old sigaction on it own.
duke@435 4465 } else {
jcoomes@1845 4466 fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
jcoomes@1845 4467 "%#lx for signal %d.", (long)oldhand, sig));
duke@435 4468 }
duke@435 4469 }
duke@435 4470
duke@435 4471 struct sigaction sigAct;
duke@435 4472 sigfillset(&(sigAct.sa_mask));
duke@435 4473 sigAct.sa_handler = SIG_DFL;
duke@435 4474
duke@435 4475 sigAct.sa_sigaction = signalHandler;
duke@435 4476 // Handle SIGSEGV on alternate signal stack if
duke@435 4477 // not using stack banging
duke@435 4478 if (!UseStackBanging && sig == SIGSEGV) {
duke@435 4479 sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
duke@435 4480 // Interruptible i/o requires SA_RESTART cleared so EINTR
duke@435 4481 // is returned instead of restarting system calls
duke@435 4482 } else if (sig == os::Solaris::SIGinterrupt()) {
duke@435 4483 sigemptyset(&sigAct.sa_mask);
duke@435 4484 sigAct.sa_handler = NULL;
duke@435 4485 sigAct.sa_flags = SA_SIGINFO;
duke@435 4486 sigAct.sa_sigaction = sigINTRHandler;
duke@435 4487 } else {
duke@435 4488 sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
duke@435 4489 }
duke@435 4490 os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
duke@435 4491
duke@435 4492 sigaction(sig, &sigAct, &oldAct);
duke@435 4493
duke@435 4494 void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 4495 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 4496 assert(oldhand2 == oldhand, "no concurrent signal handler installation");
duke@435 4497 }
duke@435 4498
duke@435 4499
duke@435 4500 #define DO_SIGNAL_CHECK(sig) \
duke@435 4501 if (!sigismember(&check_signal_done, sig)) \
duke@435 4502 os::Solaris::check_signal_handler(sig)
duke@435 4503
duke@435 4504 // This method is a periodic task to check for misbehaving JNI applications
duke@435 4505 // under CheckJNI, we can add any periodic checks here
duke@435 4506
duke@435 4507 void os::run_periodic_checks() {
duke@435 4508 // A big source of grief is hijacking virt. addr 0x0 on Solaris,
duke@435 4509 // thereby preventing a NULL checks.
duke@435 4510 if(!check_addr0_done) check_addr0_done = check_addr0(tty);
duke@435 4511
duke@435 4512 if (check_signals == false) return;
duke@435 4513
duke@435 4514 // SEGV and BUS if overridden could potentially prevent
duke@435 4515 // generation of hs*.log in the event of a crash, debugging
duke@435 4516 // such a case can be very challenging, so we absolutely
duke@435 4517 // check for the following for a good measure:
duke@435 4518 DO_SIGNAL_CHECK(SIGSEGV);
duke@435 4519 DO_SIGNAL_CHECK(SIGILL);
duke@435 4520 DO_SIGNAL_CHECK(SIGFPE);
duke@435 4521 DO_SIGNAL_CHECK(SIGBUS);
duke@435 4522 DO_SIGNAL_CHECK(SIGPIPE);
duke@435 4523 DO_SIGNAL_CHECK(SIGXFSZ);
duke@435 4524
duke@435 4525 // ReduceSignalUsage allows the user to override these handlers
duke@435 4526 // see comments at the very top and jvm_solaris.h
duke@435 4527 if (!ReduceSignalUsage) {
duke@435 4528 DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
duke@435 4529 DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
duke@435 4530 DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
duke@435 4531 DO_SIGNAL_CHECK(BREAK_SIGNAL);
duke@435 4532 }
duke@435 4533
duke@435 4534 // See comments above for using JVM1/JVM2 and UseAltSigs
duke@435 4535 DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
duke@435 4536 DO_SIGNAL_CHECK(os::Solaris::SIGasync());
duke@435 4537
duke@435 4538 }
duke@435 4539
duke@435 4540 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
duke@435 4541
duke@435 4542 static os_sigaction_t os_sigaction = NULL;
duke@435 4543
duke@435 4544 void os::Solaris::check_signal_handler(int sig) {
duke@435 4545 char buf[O_BUFLEN];
duke@435 4546 address jvmHandler = NULL;
duke@435 4547
duke@435 4548 struct sigaction act;
duke@435 4549 if (os_sigaction == NULL) {
duke@435 4550 // only trust the default sigaction, in case it has been interposed
duke@435 4551 os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
duke@435 4552 if (os_sigaction == NULL) return;
duke@435 4553 }
duke@435 4554
duke@435 4555 os_sigaction(sig, (struct sigaction*)NULL, &act);
duke@435 4556
duke@435 4557 address thisHandler = (act.sa_flags & SA_SIGINFO)
duke@435 4558 ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
duke@435 4559 : CAST_FROM_FN_PTR(address, act.sa_handler) ;
duke@435 4560
duke@435 4561
duke@435 4562 switch(sig) {
duke@435 4563 case SIGSEGV:
duke@435 4564 case SIGBUS:
duke@435 4565 case SIGFPE:
duke@435 4566 case SIGPIPE:
duke@435 4567 case SIGXFSZ:
duke@435 4568 case SIGILL:
duke@435 4569 jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
duke@435 4570 break;
duke@435 4571
duke@435 4572 case SHUTDOWN1_SIGNAL:
duke@435 4573 case SHUTDOWN2_SIGNAL:
duke@435 4574 case SHUTDOWN3_SIGNAL:
duke@435 4575 case BREAK_SIGNAL:
duke@435 4576 jvmHandler = (address)user_handler();
duke@435 4577 break;
duke@435 4578
duke@435 4579 default:
duke@435 4580 int intrsig = os::Solaris::SIGinterrupt();
duke@435 4581 int asynsig = os::Solaris::SIGasync();
duke@435 4582
duke@435 4583 if (sig == intrsig) {
duke@435 4584 jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
duke@435 4585 } else if (sig == asynsig) {
duke@435 4586 jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
duke@435 4587 } else {
duke@435 4588 return;
duke@435 4589 }
duke@435 4590 break;
duke@435 4591 }
duke@435 4592
duke@435 4593
duke@435 4594 if (thisHandler != jvmHandler) {
duke@435 4595 tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
duke@435 4596 tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
duke@435 4597 tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
duke@435 4598 // No need to check this sig any longer
duke@435 4599 sigaddset(&check_signal_done, sig);
duke@435 4600 } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
duke@435 4601 tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
duke@435 4602 tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
duke@435 4603 tty->print_cr(" found:" PTR32_FORMAT, act.sa_flags);
duke@435 4604 // No need to check this sig any longer
duke@435 4605 sigaddset(&check_signal_done, sig);
duke@435 4606 }
duke@435 4607
duke@435 4608 // Print all the signal handler state
duke@435 4609 if (sigismember(&check_signal_done, sig)) {
duke@435 4610 print_signal_handlers(tty, buf, O_BUFLEN);
duke@435 4611 }
duke@435 4612
duke@435 4613 }
duke@435 4614
duke@435 4615 void os::Solaris::install_signal_handlers() {
duke@435 4616 bool libjsigdone = false;
duke@435 4617 signal_handlers_are_installed = true;
duke@435 4618
duke@435 4619 // signal-chaining
duke@435 4620 typedef void (*signal_setting_t)();
duke@435 4621 signal_setting_t begin_signal_setting = NULL;
duke@435 4622 signal_setting_t end_signal_setting = NULL;
duke@435 4623 begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 4624 dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
duke@435 4625 if (begin_signal_setting != NULL) {
duke@435 4626 end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 4627 dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
duke@435 4628 get_signal_action = CAST_TO_FN_PTR(get_signal_t,
duke@435 4629 dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
duke@435 4630 get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
duke@435 4631 dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
duke@435 4632 libjsig_is_loaded = true;
duke@435 4633 if (os::Solaris::get_libjsig_version != NULL) {
duke@435 4634 libjsigversion = (*os::Solaris::get_libjsig_version)();
duke@435 4635 }
duke@435 4636 assert(UseSignalChaining, "should enable signal-chaining");
duke@435 4637 }
duke@435 4638 if (libjsig_is_loaded) {
duke@435 4639 // Tell libjsig jvm is setting signal handlers
duke@435 4640 (*begin_signal_setting)();
duke@435 4641 }
duke@435 4642
duke@435 4643 set_signal_handler(SIGSEGV, true, true);
duke@435 4644 set_signal_handler(SIGPIPE, true, true);
duke@435 4645 set_signal_handler(SIGXFSZ, true, true);
duke@435 4646 set_signal_handler(SIGBUS, true, true);
duke@435 4647 set_signal_handler(SIGILL, true, true);
duke@435 4648 set_signal_handler(SIGFPE, true, true);
duke@435 4649
duke@435 4650
duke@435 4651 if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
duke@435 4652
duke@435 4653 // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
duke@435 4654 // can not register overridable signals which might be > 32
duke@435 4655 if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
duke@435 4656 // Tell libjsig jvm has finished setting signal handlers
duke@435 4657 (*end_signal_setting)();
duke@435 4658 libjsigdone = true;
duke@435 4659 }
duke@435 4660 }
duke@435 4661
duke@435 4662 // Never ok to chain our SIGinterrupt
duke@435 4663 set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
duke@435 4664 set_signal_handler(os::Solaris::SIGasync(), true, true);
duke@435 4665
duke@435 4666 if (libjsig_is_loaded && !libjsigdone) {
duke@435 4667 // Tell libjsig jvm finishes setting signal handlers
duke@435 4668 (*end_signal_setting)();
duke@435 4669 }
duke@435 4670
duke@435 4671 // We don't activate signal checker if libjsig is in place, we trust ourselves
kevinw@3152 4672 // and if UserSignalHandler is installed all bets are off.
kevinw@3152 4673 // Log that signal checking is off only if -verbose:jni is specified.
duke@435 4674 if (CheckJNICalls) {
duke@435 4675 if (libjsig_is_loaded) {
kevinw@3152 4676 if (PrintJNIResolving) {
kevinw@3152 4677 tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
kevinw@3152 4678 }
duke@435 4679 check_signals = false;
duke@435 4680 }
duke@435 4681 if (AllowUserSignalHandlers) {
kevinw@3152 4682 if (PrintJNIResolving) {
kevinw@3152 4683 tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
kevinw@3152 4684 }
duke@435 4685 check_signals = false;
duke@435 4686 }
duke@435 4687 }
duke@435 4688 }
duke@435 4689
duke@435 4690
duke@435 4691 void report_error(const char* file_name, int line_no, const char* title, const char* format, ...);
duke@435 4692
duke@435 4693 const char * signames[] = {
duke@435 4694 "SIG0",
duke@435 4695 "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
duke@435 4696 "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
duke@435 4697 "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
duke@435 4698 "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
duke@435 4699 "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
duke@435 4700 "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
duke@435 4701 "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
duke@435 4702 "SIGCANCEL", "SIGLOST"
duke@435 4703 };
duke@435 4704
duke@435 4705 const char* os::exception_name(int exception_code, char* buf, size_t size) {
duke@435 4706 if (0 < exception_code && exception_code <= SIGRTMAX) {
duke@435 4707 // signal
duke@435 4708 if (exception_code < sizeof(signames)/sizeof(const char*)) {
duke@435 4709 jio_snprintf(buf, size, "%s", signames[exception_code]);
duke@435 4710 } else {
duke@435 4711 jio_snprintf(buf, size, "SIG%d", exception_code);
duke@435 4712 }
duke@435 4713 return buf;
duke@435 4714 } else {
duke@435 4715 return NULL;
duke@435 4716 }
duke@435 4717 }
duke@435 4718
duke@435 4719 // (Static) wrappers for the new libthread API
duke@435 4720 int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate;
duke@435 4721 int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate;
duke@435 4722 int_fnP_thread_t_i os::Solaris::_thr_setmutator;
duke@435 4723 int_fnP_thread_t os::Solaris::_thr_suspend_mutator;
duke@435 4724 int_fnP_thread_t os::Solaris::_thr_continue_mutator;
duke@435 4725
twisti@1076 4726 // (Static) wrapper for getisax(2) call.
twisti@1076 4727 os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
twisti@1076 4728
duke@435 4729 // (Static) wrappers for the liblgrp API
duke@435 4730 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
duke@435 4731 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
duke@435 4732 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
duke@435 4733 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
duke@435 4734 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
iveresov@579 4735 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
duke@435 4736 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
duke@435 4737 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
duke@435 4738 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
duke@435 4739
duke@435 4740 // (Static) wrapper for meminfo() call.
duke@435 4741 os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
duke@435 4742
twisti@1076 4743 static address resolve_symbol_lazy(const char* name) {
twisti@1076 4744 address addr = (address) dlsym(RTLD_DEFAULT, name);
duke@435 4745 if(addr == NULL) {
duke@435 4746 // RTLD_DEFAULT was not defined on some early versions of 2.5.1
duke@435 4747 addr = (address) dlsym(RTLD_NEXT, name);
twisti@1076 4748 }
twisti@1076 4749 return addr;
twisti@1076 4750 }
twisti@1076 4751
twisti@1076 4752 static address resolve_symbol(const char* name) {
twisti@1076 4753 address addr = resolve_symbol_lazy(name);
twisti@1076 4754 if(addr == NULL) {
twisti@1076 4755 fatal(dlerror());
duke@435 4756 }
duke@435 4757 return addr;
duke@435 4758 }
duke@435 4759
duke@435 4760
duke@435 4761
duke@435 4762 // isT2_libthread()
duke@435 4763 //
duke@435 4764 // Routine to determine if we are currently using the new T2 libthread.
duke@435 4765 //
duke@435 4766 // We determine if we are using T2 by reading /proc/self/lstatus and
duke@435 4767 // looking for a thread with the ASLWP bit set. If we find this status
duke@435 4768 // bit set, we must assume that we are NOT using T2. The T2 team
duke@435 4769 // has approved this algorithm.
duke@435 4770 //
duke@435 4771 // We need to determine if we are running with the new T2 libthread
duke@435 4772 // since setting native thread priorities is handled differently
duke@435 4773 // when using this library. All threads created using T2 are bound
duke@435 4774 // threads. Calling thr_setprio is meaningless in this case.
duke@435 4775 //
duke@435 4776 bool isT2_libthread() {
duke@435 4777 static prheader_t * lwpArray = NULL;
duke@435 4778 static int lwpSize = 0;
duke@435 4779 static int lwpFile = -1;
duke@435 4780 lwpstatus_t * that;
duke@435 4781 char lwpName [128];
duke@435 4782 bool isT2 = false;
duke@435 4783
duke@435 4784 #define ADR(x) ((uintptr_t)(x))
duke@435 4785 #define LWPINDEX(ary,ix) ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1))))
duke@435 4786
ikrylov@2322 4787 lwpFile = ::open("/proc/self/lstatus", O_RDONLY, 0);
xlu@524 4788 if (lwpFile < 0) {
xlu@524 4789 if (ThreadPriorityVerbose) warning ("Couldn't open /proc/self/lstatus\n");
xlu@524 4790 return false;
xlu@524 4791 }
duke@435 4792 lwpSize = 16*1024;
duke@435 4793 for (;;) {
ikrylov@2322 4794 ::lseek64 (lwpFile, 0, SEEK_SET);
zgu@3900 4795 lwpArray = (prheader_t *)NEW_C_HEAP_ARRAY(char, lwpSize, mtInternal);
ikrylov@2322 4796 if (::read(lwpFile, lwpArray, lwpSize) < 0) {
xlu@524 4797 if (ThreadPriorityVerbose) warning("Error reading /proc/self/lstatus\n");
duke@435 4798 break;
duke@435 4799 }
xlu@524 4800 if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) {
xlu@524 4801 // We got a good snapshot - now iterate over the list.
xlu@524 4802 int aslwpcount = 0;
xlu@524 4803 for (int i = 0; i < lwpArray->pr_nent; i++ ) {
xlu@524 4804 that = LWPINDEX(lwpArray,i);
xlu@524 4805 if (that->pr_flags & PR_ASLWP) {
xlu@524 4806 aslwpcount++;
xlu@524 4807 }
xlu@524 4808 }
xlu@524 4809 if (aslwpcount == 0) isT2 = true;
xlu@524 4810 break;
xlu@524 4811 }
duke@435 4812 lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize;
zgu@3900 4813 FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal); // retry.
zgu@3900 4814 }
zgu@3900 4815
zgu@3900 4816 FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal);
ikrylov@2322 4817 ::close (lwpFile);
xlu@524 4818 if (ThreadPriorityVerbose) {
xlu@524 4819 if (isT2) tty->print_cr("We are running with a T2 libthread\n");
duke@435 4820 else tty->print_cr("We are not running with a T2 libthread\n");
duke@435 4821 }
xlu@524 4822 return isT2;
duke@435 4823 }
duke@435 4824
duke@435 4825
duke@435 4826 void os::Solaris::libthread_init() {
duke@435 4827 address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
duke@435 4828
duke@435 4829 // Determine if we are running with the new T2 libthread
duke@435 4830 os::Solaris::set_T2_libthread(isT2_libthread());
duke@435 4831
duke@435 4832 lwp_priocntl_init();
duke@435 4833
duke@435 4834 // RTLD_DEFAULT was not defined on some early versions of 5.5.1
duke@435 4835 if(func == NULL) {
duke@435 4836 func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
duke@435 4837 // Guarantee that this VM is running on an new enough OS (5.6 or
duke@435 4838 // later) that it will have a new enough libthread.so.
duke@435 4839 guarantee(func != NULL, "libthread.so is too old.");
duke@435 4840 }
duke@435 4841
duke@435 4842 // Initialize the new libthread getstate API wrappers
duke@435 4843 func = resolve_symbol("thr_getstate");
duke@435 4844 os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func));
duke@435 4845
duke@435 4846 func = resolve_symbol("thr_setstate");
duke@435 4847 os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func));
duke@435 4848
duke@435 4849 func = resolve_symbol("thr_setmutator");
duke@435 4850 os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func));
duke@435 4851
duke@435 4852 func = resolve_symbol("thr_suspend_mutator");
duke@435 4853 os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
duke@435 4854
duke@435 4855 func = resolve_symbol("thr_continue_mutator");
duke@435 4856 os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
duke@435 4857
duke@435 4858 int size;
duke@435 4859 void (*handler_info_func)(address *, int *);
duke@435 4860 handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
duke@435 4861 handler_info_func(&handler_start, &size);
duke@435 4862 handler_end = handler_start + size;
duke@435 4863 }
duke@435 4864
duke@435 4865
duke@435 4866 int_fnP_mutex_tP os::Solaris::_mutex_lock;
duke@435 4867 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
duke@435 4868 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
duke@435 4869 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
duke@435 4870 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
duke@435 4871 int os::Solaris::_mutex_scope = USYNC_THREAD;
duke@435 4872
duke@435 4873 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
duke@435 4874 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
duke@435 4875 int_fnP_cond_tP os::Solaris::_cond_signal;
duke@435 4876 int_fnP_cond_tP os::Solaris::_cond_broadcast;
duke@435 4877 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
duke@435 4878 int_fnP_cond_tP os::Solaris::_cond_destroy;
duke@435 4879 int os::Solaris::_cond_scope = USYNC_THREAD;
duke@435 4880
duke@435 4881 void os::Solaris::synchronization_init() {
duke@435 4882 if(UseLWPSynchronization) {
duke@435 4883 os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
duke@435 4884 os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
duke@435 4885 os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
duke@435 4886 os::Solaris::set_mutex_init(lwp_mutex_init);
duke@435 4887 os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
duke@435 4888 os::Solaris::set_mutex_scope(USYNC_THREAD);
duke@435 4889
duke@435 4890 os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
duke@435 4891 os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
duke@435 4892 os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
duke@435 4893 os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
duke@435 4894 os::Solaris::set_cond_init(lwp_cond_init);
duke@435 4895 os::Solaris::set_cond_destroy(lwp_cond_destroy);
duke@435 4896 os::Solaris::set_cond_scope(USYNC_THREAD);
duke@435 4897 }
duke@435 4898 else {
duke@435 4899 os::Solaris::set_mutex_scope(USYNC_THREAD);
duke@435 4900 os::Solaris::set_cond_scope(USYNC_THREAD);
duke@435 4901
duke@435 4902 if(UsePthreads) {
duke@435 4903 os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
duke@435 4904 os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
duke@435 4905 os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
duke@435 4906 os::Solaris::set_mutex_init(pthread_mutex_default_init);
duke@435 4907 os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
duke@435 4908
duke@435 4909 os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
duke@435 4910 os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
duke@435 4911 os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
duke@435 4912 os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
duke@435 4913 os::Solaris::set_cond_init(pthread_cond_default_init);
duke@435 4914 os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
duke@435 4915 }
duke@435 4916 else {
duke@435 4917 os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
duke@435 4918 os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
duke@435 4919 os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
duke@435 4920 os::Solaris::set_mutex_init(::mutex_init);
duke@435 4921 os::Solaris::set_mutex_destroy(::mutex_destroy);
duke@435 4922
duke@435 4923 os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
duke@435 4924 os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
duke@435 4925 os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
duke@435 4926 os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
duke@435 4927 os::Solaris::set_cond_init(::cond_init);
duke@435 4928 os::Solaris::set_cond_destroy(::cond_destroy);
duke@435 4929 }
duke@435 4930 }
duke@435 4931 }
duke@435 4932
iveresov@897 4933 bool os::Solaris::liblgrp_init() {
iveresov@702 4934 void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
duke@435 4935 if (handle != NULL) {
duke@435 4936 os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
duke@435 4937 os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
duke@435 4938 os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
duke@435 4939 os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
duke@435 4940 os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
iveresov@579 4941 os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
duke@435 4942 os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
duke@435 4943 os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
duke@435 4944 dlsym(handle, "lgrp_cookie_stale")));
duke@435 4945
duke@435 4946 lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
duke@435 4947 set_lgrp_cookie(c);
iveresov@897 4948 return true;
iveresov@897 4949 }
iveresov@897 4950 return false;
duke@435 4951 }
duke@435 4952
duke@435 4953 void os::Solaris::misc_sym_init() {
twisti@1076 4954 address func;
twisti@1076 4955
twisti@1076 4956 // getisax
twisti@1076 4957 func = resolve_symbol_lazy("getisax");
twisti@1076 4958 if (func != NULL) {
twisti@1076 4959 os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
twisti@1076 4960 }
twisti@1076 4961
twisti@1076 4962 // meminfo
twisti@1076 4963 func = resolve_symbol_lazy("meminfo");
duke@435 4964 if (func != NULL) {
duke@435 4965 os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
duke@435 4966 }
duke@435 4967 }
duke@435 4968
twisti@1076 4969 uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
twisti@1076 4970 assert(_getisax != NULL, "_getisax not set");
twisti@1076 4971 return _getisax(array, n);
twisti@1076 4972 }
twisti@1076 4973
duke@435 4974 // Symbol doesn't exist in Solaris 8 pset.h
duke@435 4975 #ifndef PS_MYID
duke@435 4976 #define PS_MYID -3
duke@435 4977 #endif
duke@435 4978
duke@435 4979 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
duke@435 4980 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
duke@435 4981 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
duke@435 4982
duke@435 4983 void init_pset_getloadavg_ptr(void) {
duke@435 4984 pset_getloadavg_ptr =
duke@435 4985 (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
duke@435 4986 if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
duke@435 4987 warning("pset_getloadavg function not found");
duke@435 4988 }
duke@435 4989 }
duke@435 4990
duke@435 4991 int os::Solaris::_dev_zero_fd = -1;
duke@435 4992
duke@435 4993 // this is called _before_ the global arguments have been parsed
duke@435 4994 void os::init(void) {
duke@435 4995 _initial_pid = getpid();
duke@435 4996
duke@435 4997 max_hrtime = first_hrtime = gethrtime();
duke@435 4998
duke@435 4999 init_random(1234567);
duke@435 5000
duke@435 5001 page_size = sysconf(_SC_PAGESIZE);
duke@435 5002 if (page_size == -1)
jcoomes@1845 5003 fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)",
jcoomes@1845 5004 strerror(errno)));
duke@435 5005 init_page_sizes((size_t) page_size);
duke@435 5006
duke@435 5007 Solaris::initialize_system_info();
duke@435 5008
twisti@1076 5009 // Initialize misc. symbols as soon as possible, so we can use them
twisti@1076 5010 // if we need them.
twisti@1076 5011 Solaris::misc_sym_init();
twisti@1076 5012
ikrylov@2322 5013 int fd = ::open("/dev/zero", O_RDWR);
duke@435 5014 if (fd < 0) {
jcoomes@1845 5015 fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno)));
duke@435 5016 } else {
duke@435 5017 Solaris::set_dev_zero_fd(fd);
duke@435 5018
duke@435 5019 // Close on exec, child won't inherit.
duke@435 5020 fcntl(fd, F_SETFD, FD_CLOEXEC);
duke@435 5021 }
duke@435 5022
duke@435 5023 clock_tics_per_sec = CLK_TCK;
duke@435 5024
duke@435 5025 // check if dladdr1() exists; dladdr1 can provide more information than
duke@435 5026 // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
duke@435 5027 // and is available on linker patches for 5.7 and 5.8.
duke@435 5028 // libdl.so must have been loaded, this call is just an entry lookup
duke@435 5029 void * hdl = dlopen("libdl.so", RTLD_NOW);
duke@435 5030 if (hdl)
duke@435 5031 dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
duke@435 5032
duke@435 5033 // (Solaris only) this switches to calls that actually do locking.
duke@435 5034 ThreadCritical::initialize();
duke@435 5035
duke@435 5036 main_thread = thr_self();
duke@435 5037
duke@435 5038 // Constant minimum stack size allowed. It must be at least
duke@435 5039 // the minimum of what the OS supports (thr_min_stack()), and
duke@435 5040 // enough to allow the thread to get to user bytecode execution.
duke@435 5041 Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
duke@435 5042 // If the pagesize of the VM is greater than 8K determine the appropriate
duke@435 5043 // number of initial guard pages. The user can change this with the
duke@435 5044 // command line arguments, if needed.
duke@435 5045 if (vm_page_size() > 8*K) {
duke@435 5046 StackYellowPages = 1;
duke@435 5047 StackRedPages = 1;
duke@435 5048 StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
duke@435 5049 }
duke@435 5050 }
duke@435 5051
duke@435 5052 // To install functions for atexit system call
duke@435 5053 extern "C" {
duke@435 5054 static void perfMemory_exit_helper() {
duke@435 5055 perfMemory_exit();
duke@435 5056 }
duke@435 5057 }
duke@435 5058
duke@435 5059 // this is called _after_ the global arguments have been parsed
duke@435 5060 jint os::init_2(void) {
duke@435 5061 // try to enable extended file IO ASAP, see 6431278
duke@435 5062 os::Solaris::try_enable_extended_io();
duke@435 5063
duke@435 5064 // Allocate a single page and mark it as readable for safepoint polling. Also
duke@435 5065 // use this first mmap call to check support for MAP_ALIGN.
duke@435 5066 address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
duke@435 5067 page_size,
duke@435 5068 MAP_PRIVATE | MAP_ALIGN,
duke@435 5069 PROT_READ);
duke@435 5070 if (polling_page == NULL) {
duke@435 5071 has_map_align = false;
duke@435 5072 polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
duke@435 5073 PROT_READ);
duke@435 5074 }
duke@435 5075
duke@435 5076 os::set_polling_page(polling_page);
duke@435 5077
duke@435 5078 #ifndef PRODUCT
duke@435 5079 if( Verbose && PrintMiscellaneous )
duke@435 5080 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
duke@435 5081 #endif
duke@435 5082
duke@435 5083 if (!UseMembar) {
duke@435 5084 address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE );
duke@435 5085 guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
duke@435 5086 os::set_memory_serialize_page( mem_serialize_page );
duke@435 5087
duke@435 5088 #ifndef PRODUCT
duke@435 5089 if(Verbose && PrintMiscellaneous)
duke@435 5090 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
duke@435 5091 #endif
duke@435 5092 }
duke@435 5093
iveresov@2850 5094 os::large_page_init();
duke@435 5095
duke@435 5096 // Check minimum allowable stack size for thread creation and to initialize
duke@435 5097 // the java system classes, including StackOverflowError - depends on page
duke@435 5098 // size. Add a page for compiler2 recursion in main thread.
coleenp@2222 5099 // Add in 2*BytesPerWord times page size to account for VM stack during
duke@435 5100 // class initialization depending on 32 or 64 bit VM.
coleenp@2222 5101 os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
coleenp@2222 5102 (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
coleenp@2222 5103 2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
duke@435 5104
duke@435 5105 size_t threadStackSizeInBytes = ThreadStackSize * K;
duke@435 5106 if (threadStackSizeInBytes != 0 &&
coleenp@2222 5107 threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
duke@435 5108 tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
coleenp@2222 5109 os::Solaris::min_stack_allowed/K);
duke@435 5110 return JNI_ERR;
duke@435 5111 }
duke@435 5112
duke@435 5113 // For 64kbps there will be a 64kb page size, which makes
duke@435 5114 // the usable default stack size quite a bit less. Increase the
duke@435 5115 // stack for 64kb (or any > than 8kb) pages, this increases
duke@435 5116 // virtual memory fragmentation (since we're not creating the
duke@435 5117 // stack on a power of 2 boundary. The real fix for this
duke@435 5118 // should be to fix the guard page mechanism.
duke@435 5119
duke@435 5120 if (vm_page_size() > 8*K) {
duke@435 5121 threadStackSizeInBytes = (threadStackSizeInBytes != 0)
duke@435 5122 ? threadStackSizeInBytes +
duke@435 5123 ((StackYellowPages + StackRedPages) * vm_page_size())
duke@435 5124 : 0;
duke@435 5125 ThreadStackSize = threadStackSizeInBytes/K;
duke@435 5126 }
duke@435 5127
duke@435 5128 // Make the stack size a multiple of the page size so that
duke@435 5129 // the yellow/red zones can be guarded.
duke@435 5130 JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
duke@435 5131 vm_page_size()));
duke@435 5132
duke@435 5133 Solaris::libthread_init();
iveresov@897 5134
duke@435 5135 if (UseNUMA) {
iveresov@897 5136 if (!Solaris::liblgrp_init()) {
iveresov@897 5137 UseNUMA = false;
iveresov@897 5138 } else {
iveresov@897 5139 size_t lgrp_limit = os::numa_get_groups_num();
zgu@3900 5140 int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
iveresov@897 5141 size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
zgu@3900 5142 FREE_C_HEAP_ARRAY(int, lgrp_ids, mtInternal);
iveresov@897 5143 if (lgrp_num < 2) {
iveresov@897 5144 // There's only one locality group, disable NUMA.
iveresov@897 5145 UseNUMA = false;
iveresov@897 5146 }
iveresov@897 5147 }
iveresov@2824 5148 // ISM is not compatible with the NUMA allocator - it always allocates
iveresov@2824 5149 // pages round-robin across the lgroups.
iveresov@2824 5150 if (UseNUMA && UseLargePages && UseISM) {
iveresov@2824 5151 if (!FLAG_IS_DEFAULT(UseNUMA)) {
iveresov@2824 5152 if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseISM)) {
iveresov@2824 5153 UseLargePages = false;
iveresov@2824 5154 } else {
iveresov@2824 5155 warning("UseNUMA is not compatible with ISM large pages, disabling NUMA allocator");
iveresov@2824 5156 UseNUMA = false;
iveresov@2824 5157 }
iveresov@2824 5158 } else {
iveresov@2824 5159 UseNUMA = false;
iveresov@2824 5160 }
iveresov@2824 5161 }
iveresov@897 5162 if (!UseNUMA && ForceNUMA) {
iveresov@897 5163 UseNUMA = true;
iveresov@897 5164 }
iveresov@897 5165 }
iveresov@897 5166
duke@435 5167 Solaris::signal_sets_init();
duke@435 5168 Solaris::init_signal_mem();
duke@435 5169 Solaris::install_signal_handlers();
duke@435 5170
duke@435 5171 if (libjsigversion < JSIG_VERSION_1_4_1) {
duke@435 5172 Maxlibjsigsigs = OLDMAXSIGNUM;
duke@435 5173 }
duke@435 5174
duke@435 5175 // initialize synchronization primitives to use either thread or
duke@435 5176 // lwp synchronization (controlled by UseLWPSynchronization)
duke@435 5177 Solaris::synchronization_init();
duke@435 5178
duke@435 5179 if (MaxFDLimit) {
duke@435 5180 // set the number of file descriptors to max. print out error
duke@435 5181 // if getrlimit/setrlimit fails but continue regardless.
duke@435 5182 struct rlimit nbr_files;
duke@435 5183 int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 5184 if (status != 0) {
duke@435 5185 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 5186 perror("os::init_2 getrlimit failed");
duke@435 5187 } else {
duke@435 5188 nbr_files.rlim_cur = nbr_files.rlim_max;
duke@435 5189 status = setrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 5190 if (status != 0) {
duke@435 5191 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 5192 perror("os::init_2 setrlimit failed");
duke@435 5193 }
duke@435 5194 }
duke@435 5195 }
duke@435 5196
duke@435 5197 // Calculate theoretical max. size of Threads to guard gainst
duke@435 5198 // artifical out-of-memory situations, where all available address-
duke@435 5199 // space has been reserved by thread stacks. Default stack size is 1Mb.
duke@435 5200 size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
duke@435 5201 JavaThread::stack_size_at_create() : (1*K*K);
duke@435 5202 assert(pre_thread_stack_size != 0, "Must have a stack");
duke@435 5203 // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
duke@435 5204 // we should start doing Virtual Memory banging. Currently when the threads will
duke@435 5205 // have used all but 200Mb of space.
duke@435 5206 size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
duke@435 5207 Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
duke@435 5208
duke@435 5209 // at-exit methods are called in the reverse order of their registration.
duke@435 5210 // In Solaris 7 and earlier, atexit functions are called on return from
duke@435 5211 // main or as a result of a call to exit(3C). There can be only 32 of
duke@435 5212 // these functions registered and atexit() does not set errno. In Solaris
duke@435 5213 // 8 and later, there is no limit to the number of functions registered
duke@435 5214 // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
duke@435 5215 // functions are called upon dlclose(3DL) in addition to return from main
duke@435 5216 // and exit(3C).
duke@435 5217
duke@435 5218 if (PerfAllowAtExitRegistration) {
duke@435 5219 // only register atexit functions if PerfAllowAtExitRegistration is set.
duke@435 5220 // atexit functions can be delayed until process exit time, which
duke@435 5221 // can be problematic for embedded VM situations. Embedded VMs should
duke@435 5222 // call DestroyJavaVM() to assure that VM resources are released.
duke@435 5223
duke@435 5224 // note: perfMemory_exit_helper atexit function may be removed in
duke@435 5225 // the future if the appropriate cleanup code can be added to the
duke@435 5226 // VM_Exit VMOperation's doit method.
duke@435 5227 if (atexit(perfMemory_exit_helper) != 0) {
duke@435 5228 warning("os::init2 atexit(perfMemory_exit_helper) failed");
duke@435 5229 }
duke@435 5230 }
duke@435 5231
duke@435 5232 // Init pset_loadavg function pointer
duke@435 5233 init_pset_getloadavg_ptr();
duke@435 5234
duke@435 5235 return JNI_OK;
duke@435 5236 }
duke@435 5237
bobv@2036 5238 void os::init_3(void) {
bobv@2036 5239 return;
bobv@2036 5240 }
duke@435 5241
duke@435 5242 // Mark the polling page as unreadable
duke@435 5243 void os::make_polling_page_unreadable(void) {
duke@435 5244 if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 )
duke@435 5245 fatal("Could not disable polling page");
duke@435 5246 };
duke@435 5247
duke@435 5248 // Mark the polling page as readable
duke@435 5249 void os::make_polling_page_readable(void) {
duke@435 5250 if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 )
duke@435 5251 fatal("Could not enable polling page");
duke@435 5252 };
duke@435 5253
duke@435 5254 // OS interface.
duke@435 5255
duke@435 5256 bool os::check_heap(bool force) { return true; }
duke@435 5257
duke@435 5258 typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr);
duke@435 5259 static vsnprintf_t sol_vsnprintf = NULL;
duke@435 5260
duke@435 5261 int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) {
duke@435 5262 if (!sol_vsnprintf) {
duke@435 5263 //search for the named symbol in the objects that were loaded after libjvm
duke@435 5264 void* where = RTLD_NEXT;
duke@435 5265 if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
duke@435 5266 sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
duke@435 5267 if (!sol_vsnprintf){
duke@435 5268 //search for the named symbol in the objects that were loaded before libjvm
duke@435 5269 where = RTLD_DEFAULT;
duke@435 5270 if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
duke@435 5271 sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
duke@435 5272 assert(sol_vsnprintf != NULL, "vsnprintf not found");
duke@435 5273 }
duke@435 5274 }
duke@435 5275 return (*sol_vsnprintf)(buf, count, fmt, argptr);
duke@435 5276 }
duke@435 5277
duke@435 5278
duke@435 5279 // Is a (classpath) directory empty?
duke@435 5280 bool os::dir_is_empty(const char* path) {
duke@435 5281 DIR *dir = NULL;
duke@435 5282 struct dirent *ptr;
duke@435 5283
duke@435 5284 dir = opendir(path);
duke@435 5285 if (dir == NULL) return true;
duke@435 5286
duke@435 5287 /* Scan the directory */
duke@435 5288 bool result = true;
duke@435 5289 char buf[sizeof(struct dirent) + MAX_PATH];
duke@435 5290 struct dirent *dbuf = (struct dirent *) buf;
duke@435 5291 while (result && (ptr = readdir(dir, dbuf)) != NULL) {
duke@435 5292 if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
duke@435 5293 result = false;
duke@435 5294 }
duke@435 5295 }
duke@435 5296 closedir(dir);
duke@435 5297 return result;
duke@435 5298 }
duke@435 5299
ikrylov@2322 5300 // This code originates from JDK's sysOpen and open64_w
ikrylov@2322 5301 // from src/solaris/hpi/src/system_md.c
ikrylov@2322 5302
ikrylov@2322 5303 #ifndef O_DELETE
ikrylov@2322 5304 #define O_DELETE 0x10000
ikrylov@2322 5305 #endif
ikrylov@2322 5306
ikrylov@2322 5307 // Open a file. Unlink the file immediately after open returns
ikrylov@2322 5308 // if the specified oflag has the O_DELETE flag set.
ikrylov@2322 5309 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
ikrylov@2322 5310
ikrylov@2322 5311 int os::open(const char *path, int oflag, int mode) {
ikrylov@2322 5312 if (strlen(path) > MAX_PATH - 1) {
ikrylov@2322 5313 errno = ENAMETOOLONG;
ikrylov@2322 5314 return -1;
ikrylov@2322 5315 }
ikrylov@2322 5316 int fd;
ikrylov@2322 5317 int o_delete = (oflag & O_DELETE);
ikrylov@2322 5318 oflag = oflag & ~O_DELETE;
ikrylov@2322 5319
alanb@2420 5320 fd = ::open64(path, oflag, mode);
ikrylov@2322 5321 if (fd == -1) return -1;
ikrylov@2322 5322
ikrylov@2322 5323 //If the open succeeded, the file might still be a directory
ikrylov@2322 5324 {
ikrylov@2322 5325 struct stat64 buf64;
ikrylov@2322 5326 int ret = ::fstat64(fd, &buf64);
ikrylov@2322 5327 int st_mode = buf64.st_mode;
ikrylov@2322 5328
ikrylov@2322 5329 if (ret != -1) {
ikrylov@2322 5330 if ((st_mode & S_IFMT) == S_IFDIR) {
ikrylov@2322 5331 errno = EISDIR;
ikrylov@2322 5332 ::close(fd);
ikrylov@2322 5333 return -1;
ikrylov@2322 5334 }
ikrylov@2322 5335 } else {
ikrylov@2322 5336 ::close(fd);
ikrylov@2322 5337 return -1;
ikrylov@2322 5338 }
ikrylov@2322 5339 }
ikrylov@2322 5340 /*
ikrylov@2322 5341 * 32-bit Solaris systems suffer from:
ikrylov@2322 5342 *
ikrylov@2322 5343 * - an historical default soft limit of 256 per-process file
ikrylov@2322 5344 * descriptors that is too low for many Java programs.
ikrylov@2322 5345 *
ikrylov@2322 5346 * - a design flaw where file descriptors created using stdio
ikrylov@2322 5347 * fopen must be less than 256, _even_ when the first limit above
ikrylov@2322 5348 * has been raised. This can cause calls to fopen (but not calls to
ikrylov@2322 5349 * open, for example) to fail mysteriously, perhaps in 3rd party
ikrylov@2322 5350 * native code (although the JDK itself uses fopen). One can hardly
ikrylov@2322 5351 * criticize them for using this most standard of all functions.
ikrylov@2322 5352 *
ikrylov@2322 5353 * We attempt to make everything work anyways by:
ikrylov@2322 5354 *
ikrylov@2322 5355 * - raising the soft limit on per-process file descriptors beyond
ikrylov@2322 5356 * 256
ikrylov@2322 5357 *
ikrylov@2322 5358 * - As of Solaris 10u4, we can request that Solaris raise the 256
ikrylov@2322 5359 * stdio fopen limit by calling function enable_extended_FILE_stdio.
ikrylov@2322 5360 * This is done in init_2 and recorded in enabled_extended_FILE_stdio
ikrylov@2322 5361 *
ikrylov@2322 5362 * - If we are stuck on an old (pre 10u4) Solaris system, we can
ikrylov@2322 5363 * workaround the bug by remapping non-stdio file descriptors below
ikrylov@2322 5364 * 256 to ones beyond 256, which is done below.
ikrylov@2322 5365 *
ikrylov@2322 5366 * See:
ikrylov@2322 5367 * 1085341: 32-bit stdio routines should support file descriptors >255
ikrylov@2322 5368 * 6533291: Work around 32-bit Solaris stdio limit of 256 open files
ikrylov@2322 5369 * 6431278: Netbeans crash on 32 bit Solaris: need to call
ikrylov@2322 5370 * enable_extended_FILE_stdio() in VM initialisation
ikrylov@2322 5371 * Giri Mandalika's blog
ikrylov@2322 5372 * http://technopark02.blogspot.com/2005_05_01_archive.html
ikrylov@2322 5373 */
ikrylov@2322 5374 #ifndef _LP64
ikrylov@2322 5375 if ((!enabled_extended_FILE_stdio) && fd < 256) {
ikrylov@2322 5376 int newfd = ::fcntl(fd, F_DUPFD, 256);
ikrylov@2322 5377 if (newfd != -1) {
ikrylov@2322 5378 ::close(fd);
ikrylov@2322 5379 fd = newfd;
ikrylov@2322 5380 }
ikrylov@2322 5381 }
ikrylov@2322 5382 #endif // 32-bit Solaris
ikrylov@2322 5383 /*
ikrylov@2322 5384 * All file descriptors that are opened in the JVM and not
ikrylov@2322 5385 * specifically destined for a subprocess should have the
ikrylov@2322 5386 * close-on-exec flag set. If we don't set it, then careless 3rd
ikrylov@2322 5387 * party native code might fork and exec without closing all
ikrylov@2322 5388 * appropriate file descriptors (e.g. as we do in closeDescriptors in
ikrylov@2322 5389 * UNIXProcess.c), and this in turn might:
ikrylov@2322 5390 *
ikrylov@2322 5391 * - cause end-of-file to fail to be detected on some file
ikrylov@2322 5392 * descriptors, resulting in mysterious hangs, or
ikrylov@2322 5393 *
ikrylov@2322 5394 * - might cause an fopen in the subprocess to fail on a system
ikrylov@2322 5395 * suffering from bug 1085341.
ikrylov@2322 5396 *
ikrylov@2322 5397 * (Yes, the default setting of the close-on-exec flag is a Unix
ikrylov@2322 5398 * design flaw)
ikrylov@2322 5399 *
ikrylov@2322 5400 * See:
ikrylov@2322 5401 * 1085341: 32-bit stdio routines should support file descriptors >255
ikrylov@2322 5402 * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
ikrylov@2322 5403 * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
ikrylov@2322 5404 */
ikrylov@2322 5405 #ifdef FD_CLOEXEC
ikrylov@2322 5406 {
ikrylov@2322 5407 int flags = ::fcntl(fd, F_GETFD);
ikrylov@2322 5408 if (flags != -1)
ikrylov@2322 5409 ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
ikrylov@2322 5410 }
ikrylov@2322 5411 #endif
ikrylov@2322 5412
ikrylov@2322 5413 if (o_delete != 0) {
ikrylov@2322 5414 ::unlink(path);
ikrylov@2322 5415 }
ikrylov@2322 5416 return fd;
ikrylov@2322 5417 }
ikrylov@2322 5418
duke@435 5419 // create binary file, rewriting existing file if required
duke@435 5420 int os::create_binary_file(const char* path, bool rewrite_existing) {
duke@435 5421 int oflags = O_WRONLY | O_CREAT;
duke@435 5422 if (!rewrite_existing) {
duke@435 5423 oflags |= O_EXCL;
duke@435 5424 }
duke@435 5425 return ::open64(path, oflags, S_IREAD | S_IWRITE);
duke@435 5426 }
duke@435 5427
duke@435 5428 // return current position of file pointer
duke@435 5429 jlong os::current_file_offset(int fd) {
duke@435 5430 return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
duke@435 5431 }
duke@435 5432
duke@435 5433 // move file pointer to the specified offset
duke@435 5434 jlong os::seek_to_file_offset(int fd, jlong offset) {
duke@435 5435 return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
duke@435 5436 }
duke@435 5437
ikrylov@2322 5438 jlong os::lseek(int fd, jlong offset, int whence) {
ikrylov@2322 5439 return (jlong) ::lseek64(fd, offset, whence);
ikrylov@2322 5440 }
ikrylov@2322 5441
ikrylov@2322 5442 char * os::native_path(char *path) {
ikrylov@2322 5443 return path;
ikrylov@2322 5444 }
ikrylov@2322 5445
ikrylov@2322 5446 int os::ftruncate(int fd, jlong length) {
ikrylov@2322 5447 return ::ftruncate64(fd, length);
ikrylov@2322 5448 }
ikrylov@2322 5449
ikrylov@2322 5450 int os::fsync(int fd) {
ikrylov@2322 5451 RESTARTABLE_RETURN_INT(::fsync(fd));
ikrylov@2322 5452 }
ikrylov@2322 5453
ikrylov@2322 5454 int os::available(int fd, jlong *bytes) {
ikrylov@2322 5455 jlong cur, end;
ikrylov@2322 5456 int mode;
ikrylov@2322 5457 struct stat64 buf64;
ikrylov@2322 5458
ikrylov@2322 5459 if (::fstat64(fd, &buf64) >= 0) {
ikrylov@2322 5460 mode = buf64.st_mode;
ikrylov@2322 5461 if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
ikrylov@2322 5462 /*
ikrylov@2322 5463 * XXX: is the following call interruptible? If so, this might
ikrylov@2322 5464 * need to go through the INTERRUPT_IO() wrapper as for other
ikrylov@2322 5465 * blocking, interruptible calls in this file.
ikrylov@2322 5466 */
ikrylov@2322 5467 int n,ioctl_return;
ikrylov@2322 5468
ikrylov@2322 5469 INTERRUPTIBLE(::ioctl(fd, FIONREAD, &n),ioctl_return,os::Solaris::clear_interrupted);
ikrylov@2322 5470 if (ioctl_return>= 0) {
ikrylov@2322 5471 *bytes = n;
ikrylov@2322 5472 return 1;
ikrylov@2322 5473 }
ikrylov@2322 5474 }
ikrylov@2322 5475 }
ikrylov@2322 5476 if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
ikrylov@2322 5477 return 0;
ikrylov@2322 5478 } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
ikrylov@2322 5479 return 0;
ikrylov@2322 5480 } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
ikrylov@2322 5481 return 0;
ikrylov@2322 5482 }
ikrylov@2322 5483 *bytes = end - cur;
ikrylov@2322 5484 return 1;
ikrylov@2322 5485 }
ikrylov@2322 5486
duke@435 5487 // Map a block of memory.
zgu@3900 5488 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
duke@435 5489 char *addr, size_t bytes, bool read_only,
duke@435 5490 bool allow_exec) {
duke@435 5491 int prot;
duke@435 5492 int flags;
duke@435 5493
duke@435 5494 if (read_only) {
duke@435 5495 prot = PROT_READ;
duke@435 5496 flags = MAP_SHARED;
duke@435 5497 } else {
duke@435 5498 prot = PROT_READ | PROT_WRITE;
duke@435 5499 flags = MAP_PRIVATE;
duke@435 5500 }
duke@435 5501
duke@435 5502 if (allow_exec) {
duke@435 5503 prot |= PROT_EXEC;
duke@435 5504 }
duke@435 5505
duke@435 5506 if (addr != NULL) {
duke@435 5507 flags |= MAP_FIXED;
duke@435 5508 }
duke@435 5509
duke@435 5510 char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
duke@435 5511 fd, file_offset);
duke@435 5512 if (mapped_address == MAP_FAILED) {
duke@435 5513 return NULL;
duke@435 5514 }
duke@435 5515 return mapped_address;
duke@435 5516 }
duke@435 5517
duke@435 5518
duke@435 5519 // Remap a block of memory.
zgu@3900 5520 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
duke@435 5521 char *addr, size_t bytes, bool read_only,
duke@435 5522 bool allow_exec) {
duke@435 5523 // same as map_memory() on this OS
duke@435 5524 return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
duke@435 5525 allow_exec);
duke@435 5526 }
duke@435 5527
duke@435 5528
duke@435 5529 // Unmap a block of memory.
zgu@3900 5530 bool os::pd_unmap_memory(char* addr, size_t bytes) {
duke@435 5531 return munmap(addr, bytes) == 0;
duke@435 5532 }
duke@435 5533
duke@435 5534 void os::pause() {
duke@435 5535 char filename[MAX_PATH];
duke@435 5536 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
duke@435 5537 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
duke@435 5538 } else {
duke@435 5539 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
duke@435 5540 }
duke@435 5541
duke@435 5542 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
duke@435 5543 if (fd != -1) {
duke@435 5544 struct stat buf;
ikrylov@2322 5545 ::close(fd);
duke@435 5546 while (::stat(filename, &buf) == 0) {
duke@435 5547 (void)::poll(NULL, 0, 100);
duke@435 5548 }
duke@435 5549 } else {
duke@435 5550 jio_fprintf(stderr,
duke@435 5551 "Could not open pause file '%s', continuing immediately.\n", filename);
duke@435 5552 }
duke@435 5553 }
duke@435 5554
duke@435 5555 #ifndef PRODUCT
duke@435 5556 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
duke@435 5557 // Turn this on if you need to trace synch operations.
duke@435 5558 // Set RECORD_SYNCH_LIMIT to a large-enough value,
duke@435 5559 // and call record_synch_enable and record_synch_disable
duke@435 5560 // around the computation of interest.
duke@435 5561
duke@435 5562 void record_synch(char* name, bool returning); // defined below
duke@435 5563
duke@435 5564 class RecordSynch {
duke@435 5565 char* _name;
duke@435 5566 public:
duke@435 5567 RecordSynch(char* name) :_name(name)
duke@435 5568 { record_synch(_name, false); }
duke@435 5569 ~RecordSynch() { record_synch(_name, true); }
duke@435 5570 };
duke@435 5571
duke@435 5572 #define CHECK_SYNCH_OP(ret, name, params, args, inner) \
duke@435 5573 extern "C" ret name params { \
duke@435 5574 typedef ret name##_t params; \
duke@435 5575 static name##_t* implem = NULL; \
duke@435 5576 static int callcount = 0; \
duke@435 5577 if (implem == NULL) { \
duke@435 5578 implem = (name##_t*) dlsym(RTLD_NEXT, #name); \
duke@435 5579 if (implem == NULL) fatal(dlerror()); \
duke@435 5580 } \
duke@435 5581 ++callcount; \
duke@435 5582 RecordSynch _rs(#name); \
duke@435 5583 inner; \
duke@435 5584 return implem args; \
duke@435 5585 }
duke@435 5586 // in dbx, examine callcounts this way:
duke@435 5587 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
duke@435 5588
duke@435 5589 #define CHECK_POINTER_OK(p) \
coleenp@4037 5590 (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
duke@435 5591 #define CHECK_MU \
duke@435 5592 if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
duke@435 5593 #define CHECK_CV \
duke@435 5594 if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
duke@435 5595 #define CHECK_P(p) \
duke@435 5596 if (!CHECK_POINTER_OK(p)) fatal(false, "Pointer must be in C heap only.");
duke@435 5597
duke@435 5598 #define CHECK_MUTEX(mutex_op) \
duke@435 5599 CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
duke@435 5600
duke@435 5601 CHECK_MUTEX( mutex_lock)
duke@435 5602 CHECK_MUTEX( _mutex_lock)
duke@435 5603 CHECK_MUTEX( mutex_unlock)
duke@435 5604 CHECK_MUTEX(_mutex_unlock)
duke@435 5605 CHECK_MUTEX( mutex_trylock)
duke@435 5606 CHECK_MUTEX(_mutex_trylock)
duke@435 5607
duke@435 5608 #define CHECK_COND(cond_op) \
duke@435 5609 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV);
duke@435 5610
duke@435 5611 CHECK_COND( cond_wait);
duke@435 5612 CHECK_COND(_cond_wait);
duke@435 5613 CHECK_COND(_cond_wait_cancel);
duke@435 5614
duke@435 5615 #define CHECK_COND2(cond_op) \
duke@435 5616 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV);
duke@435 5617
duke@435 5618 CHECK_COND2( cond_timedwait);
duke@435 5619 CHECK_COND2(_cond_timedwait);
duke@435 5620 CHECK_COND2(_cond_timedwait_cancel);
duke@435 5621
duke@435 5622 // do the _lwp_* versions too
duke@435 5623 #define mutex_t lwp_mutex_t
duke@435 5624 #define cond_t lwp_cond_t
duke@435 5625 CHECK_MUTEX( _lwp_mutex_lock)
duke@435 5626 CHECK_MUTEX( _lwp_mutex_unlock)
duke@435 5627 CHECK_MUTEX( _lwp_mutex_trylock)
duke@435 5628 CHECK_MUTEX( __lwp_mutex_lock)
duke@435 5629 CHECK_MUTEX( __lwp_mutex_unlock)
duke@435 5630 CHECK_MUTEX( __lwp_mutex_trylock)
duke@435 5631 CHECK_MUTEX(___lwp_mutex_lock)
duke@435 5632 CHECK_MUTEX(___lwp_mutex_unlock)
duke@435 5633
duke@435 5634 CHECK_COND( _lwp_cond_wait);
duke@435 5635 CHECK_COND( __lwp_cond_wait);
duke@435 5636 CHECK_COND(___lwp_cond_wait);
duke@435 5637
duke@435 5638 CHECK_COND2( _lwp_cond_timedwait);
duke@435 5639 CHECK_COND2( __lwp_cond_timedwait);
duke@435 5640 #undef mutex_t
duke@435 5641 #undef cond_t
duke@435 5642
duke@435 5643 CHECK_SYNCH_OP(int, _lwp_suspend2, (int lwp, int *n), (lwp, n), 0);
duke@435 5644 CHECK_SYNCH_OP(int,__lwp_suspend2, (int lwp, int *n), (lwp, n), 0);
duke@435 5645 CHECK_SYNCH_OP(int, _lwp_kill, (int lwp, int n), (lwp, n), 0);
duke@435 5646 CHECK_SYNCH_OP(int,__lwp_kill, (int lwp, int n), (lwp, n), 0);
duke@435 5647 CHECK_SYNCH_OP(int, _lwp_sema_wait, (lwp_sema_t* p), (p), CHECK_P(p));
duke@435 5648 CHECK_SYNCH_OP(int,__lwp_sema_wait, (lwp_sema_t* p), (p), CHECK_P(p));
duke@435 5649 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv), (cv), CHECK_CV);
duke@435 5650 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv), (cv), CHECK_CV);
duke@435 5651
duke@435 5652
duke@435 5653 // recording machinery:
duke@435 5654
duke@435 5655 enum { RECORD_SYNCH_LIMIT = 200 };
duke@435 5656 char* record_synch_name[RECORD_SYNCH_LIMIT];
duke@435 5657 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
duke@435 5658 bool record_synch_returning[RECORD_SYNCH_LIMIT];
duke@435 5659 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
duke@435 5660 int record_synch_count = 0;
duke@435 5661 bool record_synch_enabled = false;
duke@435 5662
duke@435 5663 // in dbx, examine recorded data this way:
duke@435 5664 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
duke@435 5665
duke@435 5666 void record_synch(char* name, bool returning) {
duke@435 5667 if (record_synch_enabled) {
duke@435 5668 if (record_synch_count < RECORD_SYNCH_LIMIT) {
duke@435 5669 record_synch_name[record_synch_count] = name;
duke@435 5670 record_synch_returning[record_synch_count] = returning;
duke@435 5671 record_synch_thread[record_synch_count] = thr_self();
duke@435 5672 record_synch_arg0ptr[record_synch_count] = &name;
duke@435 5673 record_synch_count++;
duke@435 5674 }
duke@435 5675 // put more checking code here:
duke@435 5676 // ...
duke@435 5677 }
duke@435 5678 }
duke@435 5679
duke@435 5680 void record_synch_enable() {
duke@435 5681 // start collecting trace data, if not already doing so
duke@435 5682 if (!record_synch_enabled) record_synch_count = 0;
duke@435 5683 record_synch_enabled = true;
duke@435 5684 }
duke@435 5685
duke@435 5686 void record_synch_disable() {
duke@435 5687 // stop collecting trace data
duke@435 5688 record_synch_enabled = false;
duke@435 5689 }
duke@435 5690
duke@435 5691 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
duke@435 5692 #endif // PRODUCT
duke@435 5693
duke@435 5694 const intptr_t thr_time_off = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
duke@435 5695 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
duke@435 5696 (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
duke@435 5697
duke@435 5698
duke@435 5699 // JVMTI & JVM monitoring and management support
duke@435 5700 // The thread_cpu_time() and current_thread_cpu_time() are only
duke@435 5701 // supported if is_thread_cpu_time_supported() returns true.
duke@435 5702 // They are not supported on Solaris T1.
duke@435 5703
duke@435 5704 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
duke@435 5705 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
duke@435 5706 // of a thread.
duke@435 5707 //
duke@435 5708 // current_thread_cpu_time() and thread_cpu_time(Thread *)
duke@435 5709 // returns the fast estimate available on the platform.
duke@435 5710
duke@435 5711 // hrtime_t gethrvtime() return value includes
duke@435 5712 // user time but does not include system time
duke@435 5713 jlong os::current_thread_cpu_time() {
duke@435 5714 return (jlong) gethrvtime();
duke@435 5715 }
duke@435 5716
duke@435 5717 jlong os::thread_cpu_time(Thread *thread) {
duke@435 5718 // return user level CPU time only to be consistent with
duke@435 5719 // what current_thread_cpu_time returns.
duke@435 5720 // thread_cpu_time_info() must be changed if this changes
duke@435 5721 return os::thread_cpu_time(thread, false /* user time only */);
duke@435 5722 }
duke@435 5723
duke@435 5724 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
duke@435 5725 if (user_sys_cpu_time) {
duke@435 5726 return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
duke@435 5727 } else {
duke@435 5728 return os::current_thread_cpu_time();
duke@435 5729 }
duke@435 5730 }
duke@435 5731
duke@435 5732 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 5733 char proc_name[64];
duke@435 5734 int count;
duke@435 5735 prusage_t prusage;
duke@435 5736 jlong lwp_time;
duke@435 5737 int fd;
duke@435 5738
duke@435 5739 sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
duke@435 5740 getpid(),
duke@435 5741 thread->osthread()->lwp_id());
ikrylov@2322 5742 fd = ::open(proc_name, O_RDONLY);
duke@435 5743 if ( fd == -1 ) return -1;
duke@435 5744
duke@435 5745 do {
ikrylov@2322 5746 count = ::pread(fd,
duke@435 5747 (void *)&prusage.pr_utime,
duke@435 5748 thr_time_size,
duke@435 5749 thr_time_off);
duke@435 5750 } while (count < 0 && errno == EINTR);
ikrylov@2322 5751 ::close(fd);
duke@435 5752 if ( count < 0 ) return -1;
duke@435 5753
duke@435 5754 if (user_sys_cpu_time) {
duke@435 5755 // user + system CPU time
duke@435 5756 lwp_time = (((jlong)prusage.pr_stime.tv_sec +
duke@435 5757 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
duke@435 5758 (jlong)prusage.pr_stime.tv_nsec +
duke@435 5759 (jlong)prusage.pr_utime.tv_nsec;
duke@435 5760 } else {
duke@435 5761 // user level CPU time only
duke@435 5762 lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
duke@435 5763 (jlong)prusage.pr_utime.tv_nsec;
duke@435 5764 }
duke@435 5765
duke@435 5766 return(lwp_time);
duke@435 5767 }
duke@435 5768
duke@435 5769 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 5770 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 5771 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 5772 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 5773 info_ptr->kind = JVMTI_TIMER_USER_CPU; // only user time is returned
duke@435 5774 }
duke@435 5775
duke@435 5776 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 5777 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 5778 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 5779 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 5780 info_ptr->kind = JVMTI_TIMER_USER_CPU; // only user time is returned
duke@435 5781 }
duke@435 5782
duke@435 5783 bool os::is_thread_cpu_time_supported() {
duke@435 5784 if ( os::Solaris::T2_libthread() || UseBoundThreads ) {
duke@435 5785 return true;
duke@435 5786 } else {
duke@435 5787 return false;
duke@435 5788 }
duke@435 5789 }
duke@435 5790
duke@435 5791 // System loadavg support. Returns -1 if load average cannot be obtained.
duke@435 5792 // Return the load average for our processor set if the primitive exists
duke@435 5793 // (Solaris 9 and later). Otherwise just return system wide loadavg.
duke@435 5794 int os::loadavg(double loadavg[], int nelem) {
duke@435 5795 if (pset_getloadavg_ptr != NULL) {
duke@435 5796 return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
duke@435 5797 } else {
duke@435 5798 return ::getloadavg(loadavg, nelem);
duke@435 5799 }
duke@435 5800 }
duke@435 5801
duke@435 5802 //---------------------------------------------------------------------------------
duke@435 5803
duke@435 5804 static address same_page(address x, address y) {
duke@435 5805 intptr_t page_bits = -os::vm_page_size();
duke@435 5806 if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
duke@435 5807 return x;
duke@435 5808 else if (x > y)
duke@435 5809 return (address)(intptr_t(y) | ~page_bits) + 1;
duke@435 5810 else
duke@435 5811 return (address)(intptr_t(y) & page_bits);
duke@435 5812 }
duke@435 5813
bobv@2036 5814 bool os::find(address addr, outputStream* st) {
duke@435 5815 Dl_info dlinfo;
duke@435 5816 memset(&dlinfo, 0, sizeof(dlinfo));
duke@435 5817 if (dladdr(addr, &dlinfo)) {
duke@435 5818 #ifdef _LP64
bobv@2036 5819 st->print("0x%016lx: ", addr);
duke@435 5820 #else
bobv@2036 5821 st->print("0x%08x: ", addr);
duke@435 5822 #endif
duke@435 5823 if (dlinfo.dli_sname != NULL)
bobv@2036 5824 st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
duke@435 5825 else if (dlinfo.dli_fname)
bobv@2036 5826 st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
duke@435 5827 else
bobv@2036 5828 st->print("<absolute address>");
bobv@2036 5829 if (dlinfo.dli_fname) st->print(" in %s", dlinfo.dli_fname);
duke@435 5830 #ifdef _LP64
bobv@2036 5831 if (dlinfo.dli_fbase) st->print(" at 0x%016lx", dlinfo.dli_fbase);
duke@435 5832 #else
bobv@2036 5833 if (dlinfo.dli_fbase) st->print(" at 0x%08x", dlinfo.dli_fbase);
duke@435 5834 #endif
bobv@2036 5835 st->cr();
duke@435 5836
duke@435 5837 if (Verbose) {
duke@435 5838 // decode some bytes around the PC
duke@435 5839 address begin = same_page(addr-40, addr);
duke@435 5840 address end = same_page(addr+40, addr);
duke@435 5841 address lowest = (address) dlinfo.dli_sname;
duke@435 5842 if (!lowest) lowest = (address) dlinfo.dli_fbase;
duke@435 5843 if (begin < lowest) begin = lowest;
duke@435 5844 Dl_info dlinfo2;
duke@435 5845 if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
duke@435 5846 && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
duke@435 5847 end = (address) dlinfo2.dli_saddr;
bobv@2036 5848 Disassembler::decode(begin, end, st);
duke@435 5849 }
duke@435 5850 return true;
duke@435 5851 }
duke@435 5852 return false;
duke@435 5853 }
duke@435 5854
duke@435 5855 // Following function has been added to support HotSparc's libjvm.so running
duke@435 5856 // under Solaris production JDK 1.2.2 / 1.3.0. These came from
duke@435 5857 // src/solaris/hpi/native_threads in the EVM codebase.
duke@435 5858 //
duke@435 5859 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
duke@435 5860 // libraries and should thus be removed. We will leave it behind for a while
duke@435 5861 // until we no longer want to able to run on top of 1.3.0 Solaris production
duke@435 5862 // JDK. See 4341971.
duke@435 5863
duke@435 5864 #define STACK_SLACK 0x800
duke@435 5865
duke@435 5866 extern "C" {
duke@435 5867 intptr_t sysThreadAvailableStackWithSlack() {
duke@435 5868 stack_t st;
duke@435 5869 intptr_t retval, stack_top;
duke@435 5870 retval = thr_stksegment(&st);
duke@435 5871 assert(retval == 0, "incorrect return value from thr_stksegment");
duke@435 5872 assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
duke@435 5873 assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
duke@435 5874 stack_top=(intptr_t)st.ss_sp-st.ss_size;
duke@435 5875 return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
duke@435 5876 }
duke@435 5877 }
duke@435 5878
duke@435 5879 // ObjectMonitor park-unpark infrastructure ...
duke@435 5880 //
duke@435 5881 // We implement Solaris and Linux PlatformEvents with the
duke@435 5882 // obvious condvar-mutex-flag triple.
duke@435 5883 // Another alternative that works quite well is pipes:
duke@435 5884 // Each PlatformEvent consists of a pipe-pair.
duke@435 5885 // The thread associated with the PlatformEvent
duke@435 5886 // calls park(), which reads from the input end of the pipe.
duke@435 5887 // Unpark() writes into the other end of the pipe.
duke@435 5888 // The write-side of the pipe must be set NDELAY.
duke@435 5889 // Unfortunately pipes consume a large # of handles.
duke@435 5890 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
duke@435 5891 // Using pipes for the 1st few threads might be workable, however.
duke@435 5892 //
duke@435 5893 // park() is permitted to return spuriously.
duke@435 5894 // Callers of park() should wrap the call to park() in
duke@435 5895 // an appropriate loop. A litmus test for the correct
duke@435 5896 // usage of park is the following: if park() were modified
duke@435 5897 // to immediately return 0 your code should still work,
duke@435 5898 // albeit degenerating to a spin loop.
duke@435 5899 //
duke@435 5900 // An interesting optimization for park() is to use a trylock()
duke@435 5901 // to attempt to acquire the mutex. If the trylock() fails
duke@435 5902 // then we know that a concurrent unpark() operation is in-progress.
duke@435 5903 // in that case the park() code could simply set _count to 0
duke@435 5904 // and return immediately. The subsequent park() operation *might*
duke@435 5905 // return immediately. That's harmless as the caller of park() is
duke@435 5906 // expected to loop. By using trylock() we will have avoided a
duke@435 5907 // avoided a context switch caused by contention on the per-thread mutex.
duke@435 5908 //
duke@435 5909 // TODO-FIXME:
duke@435 5910 // 1. Reconcile Doug's JSR166 j.u.c park-unpark with the
duke@435 5911 // objectmonitor implementation.
duke@435 5912 // 2. Collapse the JSR166 parker event, and the
duke@435 5913 // objectmonitor ParkEvent into a single "Event" construct.
duke@435 5914 // 3. In park() and unpark() add:
duke@435 5915 // assert (Thread::current() == AssociatedWith).
duke@435 5916 // 4. add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
duke@435 5917 // 1-out-of-N park() operations will return immediately.
duke@435 5918 //
duke@435 5919 // _Event transitions in park()
duke@435 5920 // -1 => -1 : illegal
duke@435 5921 // 1 => 0 : pass - return immediately
duke@435 5922 // 0 => -1 : block
duke@435 5923 //
duke@435 5924 // _Event serves as a restricted-range semaphore.
duke@435 5925 //
duke@435 5926 // Another possible encoding of _Event would be with
duke@435 5927 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
duke@435 5928 //
duke@435 5929 // TODO-FIXME: add DTRACE probes for:
duke@435 5930 // 1. Tx parks
duke@435 5931 // 2. Ty unparks Tx
duke@435 5932 // 3. Tx resumes from park
duke@435 5933
duke@435 5934
duke@435 5935 // value determined through experimentation
duke@435 5936 #define ROUNDINGFIX 11
duke@435 5937
duke@435 5938 // utility to compute the abstime argument to timedwait.
duke@435 5939 // TODO-FIXME: switch from compute_abstime() to unpackTime().
duke@435 5940
duke@435 5941 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
duke@435 5942 // millis is the relative timeout time
duke@435 5943 // abstime will be the absolute timeout time
duke@435 5944 if (millis < 0) millis = 0;
duke@435 5945 struct timeval now;
duke@435 5946 int status = gettimeofday(&now, NULL);
duke@435 5947 assert(status == 0, "gettimeofday");
duke@435 5948 jlong seconds = millis / 1000;
duke@435 5949 jlong max_wait_period;
duke@435 5950
duke@435 5951 if (UseLWPSynchronization) {
duke@435 5952 // forward port of fix for 4275818 (not sleeping long enough)
duke@435 5953 // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
duke@435 5954 // _lwp_cond_timedwait() used a round_down algorithm rather
duke@435 5955 // than a round_up. For millis less than our roundfactor
duke@435 5956 // it rounded down to 0 which doesn't meet the spec.
duke@435 5957 // For millis > roundfactor we may return a bit sooner, but
duke@435 5958 // since we can not accurately identify the patch level and
duke@435 5959 // this has already been fixed in Solaris 9 and 8 we will
duke@435 5960 // leave it alone rather than always rounding down.
duke@435 5961
duke@435 5962 if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
duke@435 5963 // It appears that when we go directly through Solaris _lwp_cond_timedwait()
duke@435 5964 // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
duke@435 5965 max_wait_period = 21000000;
duke@435 5966 } else {
duke@435 5967 max_wait_period = 50000000;
duke@435 5968 }
duke@435 5969 millis %= 1000;
duke@435 5970 if (seconds > max_wait_period) { // see man cond_timedwait(3T)
duke@435 5971 seconds = max_wait_period;
duke@435 5972 }
duke@435 5973 abstime->tv_sec = now.tv_sec + seconds;
duke@435 5974 long usec = now.tv_usec + millis * 1000;
duke@435 5975 if (usec >= 1000000) {
duke@435 5976 abstime->tv_sec += 1;
duke@435 5977 usec -= 1000000;
duke@435 5978 }
duke@435 5979 abstime->tv_nsec = usec * 1000;
duke@435 5980 return abstime;
duke@435 5981 }
duke@435 5982
duke@435 5983 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
duke@435 5984 // Conceptually TryPark() should be equivalent to park(0).
duke@435 5985
duke@435 5986 int os::PlatformEvent::TryPark() {
duke@435 5987 for (;;) {
duke@435 5988 const int v = _Event ;
duke@435 5989 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 5990 if (Atomic::cmpxchg (0, &_Event, v) == v) return v ;
duke@435 5991 }
duke@435 5992 }
duke@435 5993
duke@435 5994 void os::PlatformEvent::park() { // AKA: down()
duke@435 5995 // Invariant: Only the thread associated with the Event/PlatformEvent
duke@435 5996 // may call park().
duke@435 5997 int v ;
duke@435 5998 for (;;) {
duke@435 5999 v = _Event ;
duke@435 6000 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 6001 }
duke@435 6002 guarantee (v >= 0, "invariant") ;
duke@435 6003 if (v == 0) {
duke@435 6004 // Do this the hard way by blocking ...
duke@435 6005 // See http://monaco.sfbay/detail.jsf?cr=5094058.
duke@435 6006 // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
duke@435 6007 // Only for SPARC >= V8PlusA
duke@435 6008 #if defined(__sparc) && defined(COMPILER2)
duke@435 6009 if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
duke@435 6010 #endif
duke@435 6011 int status = os::Solaris::mutex_lock(_mutex);
duke@435 6012 assert_status(status == 0, status, "mutex_lock");
duke@435 6013 guarantee (_nParked == 0, "invariant") ;
duke@435 6014 ++ _nParked ;
duke@435 6015 while (_Event < 0) {
duke@435 6016 // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
duke@435 6017 // Treat this the same as if the wait was interrupted
duke@435 6018 // With usr/lib/lwp going to kernel, always handle ETIME
duke@435 6019 status = os::Solaris::cond_wait(_cond, _mutex);
duke@435 6020 if (status == ETIME) status = EINTR ;
duke@435 6021 assert_status(status == 0 || status == EINTR, status, "cond_wait");
duke@435 6022 }
duke@435 6023 -- _nParked ;
duke@435 6024 _Event = 0 ;
duke@435 6025 status = os::Solaris::mutex_unlock(_mutex);
duke@435 6026 assert_status(status == 0, status, "mutex_unlock");
duke@435 6027 }
duke@435 6028 }
duke@435 6029
duke@435 6030 int os::PlatformEvent::park(jlong millis) {
duke@435 6031 guarantee (_nParked == 0, "invariant") ;
duke@435 6032 int v ;
duke@435 6033 for (;;) {
duke@435 6034 v = _Event ;
duke@435 6035 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 6036 }
duke@435 6037 guarantee (v >= 0, "invariant") ;
duke@435 6038 if (v != 0) return OS_OK ;
duke@435 6039
duke@435 6040 int ret = OS_TIMEOUT;
duke@435 6041 timestruc_t abst;
duke@435 6042 compute_abstime (&abst, millis);
duke@435 6043
duke@435 6044 // See http://monaco.sfbay/detail.jsf?cr=5094058.
duke@435 6045 // For Solaris SPARC set fprs.FEF=0 prior to parking.
duke@435 6046 // Only for SPARC >= V8PlusA
duke@435 6047 #if defined(__sparc) && defined(COMPILER2)
duke@435 6048 if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
duke@435 6049 #endif
duke@435 6050 int status = os::Solaris::mutex_lock(_mutex);
duke@435 6051 assert_status(status == 0, status, "mutex_lock");
duke@435 6052 guarantee (_nParked == 0, "invariant") ;
duke@435 6053 ++ _nParked ;
duke@435 6054 while (_Event < 0) {
duke@435 6055 int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
duke@435 6056 assert_status(status == 0 || status == EINTR ||
duke@435 6057 status == ETIME || status == ETIMEDOUT,
duke@435 6058 status, "cond_timedwait");
duke@435 6059 if (!FilterSpuriousWakeups) break ; // previous semantics
duke@435 6060 if (status == ETIME || status == ETIMEDOUT) break ;
duke@435 6061 // We consume and ignore EINTR and spurious wakeups.
duke@435 6062 }
duke@435 6063 -- _nParked ;
duke@435 6064 if (_Event >= 0) ret = OS_OK ;
duke@435 6065 _Event = 0 ;
duke@435 6066 status = os::Solaris::mutex_unlock(_mutex);
duke@435 6067 assert_status(status == 0, status, "mutex_unlock");
duke@435 6068 return ret;
duke@435 6069 }
duke@435 6070
duke@435 6071 void os::PlatformEvent::unpark() {
duke@435 6072 int v, AnyWaiters;
duke@435 6073
duke@435 6074 // Increment _Event.
duke@435 6075 // Another acceptable implementation would be to simply swap 1
duke@435 6076 // into _Event:
duke@435 6077 // if (Swap (&_Event, 1) < 0) {
duke@435 6078 // mutex_lock (_mutex) ; AnyWaiters = nParked; mutex_unlock (_mutex) ;
duke@435 6079 // if (AnyWaiters) cond_signal (_cond) ;
duke@435 6080 // }
duke@435 6081
duke@435 6082 for (;;) {
duke@435 6083 v = _Event ;
duke@435 6084 if (v > 0) {
duke@435 6085 // The LD of _Event could have reordered or be satisfied
duke@435 6086 // by a read-aside from this processor's write buffer.
duke@435 6087 // To avoid problems execute a barrier and then
duke@435 6088 // ratify the value. A degenerate CAS() would also work.
duke@435 6089 // Viz., CAS (v+0, &_Event, v) == v).
duke@435 6090 OrderAccess::fence() ;
duke@435 6091 if (_Event == v) return ;
duke@435 6092 continue ;
duke@435 6093 }
duke@435 6094 if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
duke@435 6095 }
duke@435 6096
duke@435 6097 // If the thread associated with the event was parked, wake it.
duke@435 6098 if (v < 0) {
duke@435 6099 int status ;
duke@435 6100 // Wait for the thread assoc with the PlatformEvent to vacate.
duke@435 6101 status = os::Solaris::mutex_lock(_mutex);
duke@435 6102 assert_status(status == 0, status, "mutex_lock");
duke@435 6103 AnyWaiters = _nParked ;
duke@435 6104 status = os::Solaris::mutex_unlock(_mutex);
duke@435 6105 assert_status(status == 0, status, "mutex_unlock");
duke@435 6106 guarantee (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
duke@435 6107 if (AnyWaiters != 0) {
duke@435 6108 // We intentional signal *after* dropping the lock
duke@435 6109 // to avoid a common class of futile wakeups.
duke@435 6110 status = os::Solaris::cond_signal(_cond);
duke@435 6111 assert_status(status == 0, status, "cond_signal");
duke@435 6112 }
duke@435 6113 }
duke@435 6114 }
duke@435 6115
duke@435 6116 // JSR166
duke@435 6117 // -------------------------------------------------------
duke@435 6118
duke@435 6119 /*
duke@435 6120 * The solaris and linux implementations of park/unpark are fairly
duke@435 6121 * conservative for now, but can be improved. They currently use a
duke@435 6122 * mutex/condvar pair, plus _counter.
duke@435 6123 * Park decrements _counter if > 0, else does a condvar wait. Unpark
duke@435 6124 * sets count to 1 and signals condvar. Only one thread ever waits
duke@435 6125 * on the condvar. Contention seen when trying to park implies that someone
duke@435 6126 * is unparking you, so don't wait. And spurious returns are fine, so there
duke@435 6127 * is no need to track notifications.
duke@435 6128 */
duke@435 6129
duke@435 6130 #define MAX_SECS 100000000
duke@435 6131 /*
duke@435 6132 * This code is common to linux and solaris and will be moved to a
duke@435 6133 * common place in dolphin.
duke@435 6134 *
duke@435 6135 * The passed in time value is either a relative time in nanoseconds
duke@435 6136 * or an absolute time in milliseconds. Either way it has to be unpacked
duke@435 6137 * into suitable seconds and nanoseconds components and stored in the
duke@435 6138 * given timespec structure.
duke@435 6139 * Given time is a 64-bit value and the time_t used in the timespec is only
duke@435 6140 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
duke@435 6141 * overflow if times way in the future are given. Further on Solaris versions
duke@435 6142 * prior to 10 there is a restriction (see cond_timedwait) that the specified
duke@435 6143 * number of seconds, in abstime, is less than current_time + 100,000,000.
duke@435 6144 * As it will be 28 years before "now + 100000000" will overflow we can
duke@435 6145 * ignore overflow and just impose a hard-limit on seconds using the value
duke@435 6146 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
duke@435 6147 * years from "now".
duke@435 6148 */
duke@435 6149 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
duke@435 6150 assert (time > 0, "convertTime");
duke@435 6151
duke@435 6152 struct timeval now;
duke@435 6153 int status = gettimeofday(&now, NULL);
duke@435 6154 assert(status == 0, "gettimeofday");
duke@435 6155
duke@435 6156 time_t max_secs = now.tv_sec + MAX_SECS;
duke@435 6157
duke@435 6158 if (isAbsolute) {
duke@435 6159 jlong secs = time / 1000;
duke@435 6160 if (secs > max_secs) {
duke@435 6161 absTime->tv_sec = max_secs;
duke@435 6162 }
duke@435 6163 else {
duke@435 6164 absTime->tv_sec = secs;
duke@435 6165 }
duke@435 6166 absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
duke@435 6167 }
duke@435 6168 else {
duke@435 6169 jlong secs = time / NANOSECS_PER_SEC;
duke@435 6170 if (secs >= MAX_SECS) {
duke@435 6171 absTime->tv_sec = max_secs;
duke@435 6172 absTime->tv_nsec = 0;
duke@435 6173 }
duke@435 6174 else {
duke@435 6175 absTime->tv_sec = now.tv_sec + secs;
duke@435 6176 absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
duke@435 6177 if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
duke@435 6178 absTime->tv_nsec -= NANOSECS_PER_SEC;
duke@435 6179 ++absTime->tv_sec; // note: this must be <= max_secs
duke@435 6180 }
duke@435 6181 }
duke@435 6182 }
duke@435 6183 assert(absTime->tv_sec >= 0, "tv_sec < 0");
duke@435 6184 assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
duke@435 6185 assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
duke@435 6186 assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
duke@435 6187 }
duke@435 6188
duke@435 6189 void Parker::park(bool isAbsolute, jlong time) {
duke@435 6190
duke@435 6191 // Optional fast-path check:
duke@435 6192 // Return immediately if a permit is available.
duke@435 6193 if (_counter > 0) {
duke@435 6194 _counter = 0 ;
dholmes@1552 6195 OrderAccess::fence();
duke@435 6196 return ;
duke@435 6197 }
duke@435 6198
duke@435 6199 // Optional fast-exit: Check interrupt before trying to wait
duke@435 6200 Thread* thread = Thread::current();
duke@435 6201 assert(thread->is_Java_thread(), "Must be JavaThread");
duke@435 6202 JavaThread *jt = (JavaThread *)thread;
duke@435 6203 if (Thread::is_interrupted(thread, false)) {
duke@435 6204 return;
duke@435 6205 }
duke@435 6206
duke@435 6207 // First, demultiplex/decode time arguments
duke@435 6208 timespec absTime;
acorn@2220 6209 if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
duke@435 6210 return;
duke@435 6211 }
duke@435 6212 if (time > 0) {
duke@435 6213 // Warning: this code might be exposed to the old Solaris time
duke@435 6214 // round-down bugs. Grep "roundingFix" for details.
duke@435 6215 unpackTime(&absTime, isAbsolute, time);
duke@435 6216 }
duke@435 6217
duke@435 6218 // Enter safepoint region
duke@435 6219 // Beware of deadlocks such as 6317397.
duke@435 6220 // The per-thread Parker:: _mutex is a classic leaf-lock.
duke@435 6221 // In particular a thread must never block on the Threads_lock while
duke@435 6222 // holding the Parker:: mutex. If safepoints are pending both the
duke@435 6223 // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
duke@435 6224 ThreadBlockInVM tbivm(jt);
duke@435 6225
duke@435 6226 // Don't wait if cannot get lock since interference arises from
duke@435 6227 // unblocking. Also. check interrupt before trying wait
duke@435 6228 if (Thread::is_interrupted(thread, false) ||
duke@435 6229 os::Solaris::mutex_trylock(_mutex) != 0) {
duke@435 6230 return;
duke@435 6231 }
duke@435 6232
duke@435 6233 int status ;
duke@435 6234
duke@435 6235 if (_counter > 0) { // no wait needed
duke@435 6236 _counter = 0;
duke@435 6237 status = os::Solaris::mutex_unlock(_mutex);
duke@435 6238 assert (status == 0, "invariant") ;
dholmes@1552 6239 OrderAccess::fence();
duke@435 6240 return;
duke@435 6241 }
duke@435 6242
duke@435 6243 #ifdef ASSERT
duke@435 6244 // Don't catch signals while blocked; let the running threads have the signals.
duke@435 6245 // (This allows a debugger to break into the running thread.)
duke@435 6246 sigset_t oldsigs;
duke@435 6247 sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
duke@435 6248 thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
duke@435 6249 #endif
duke@435 6250
duke@435 6251 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 6252 jt->set_suspend_equivalent();
duke@435 6253 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 6254
duke@435 6255 // Do this the hard way by blocking ...
duke@435 6256 // See http://monaco.sfbay/detail.jsf?cr=5094058.
duke@435 6257 // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
duke@435 6258 // Only for SPARC >= V8PlusA
duke@435 6259 #if defined(__sparc) && defined(COMPILER2)
duke@435 6260 if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
duke@435 6261 #endif
duke@435 6262
duke@435 6263 if (time == 0) {
duke@435 6264 status = os::Solaris::cond_wait (_cond, _mutex) ;
duke@435 6265 } else {
duke@435 6266 status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
duke@435 6267 }
duke@435 6268 // Note that an untimed cond_wait() can sometimes return ETIME on older
duke@435 6269 // versions of the Solaris.
duke@435 6270 assert_status(status == 0 || status == EINTR ||
duke@435 6271 status == ETIME || status == ETIMEDOUT,
duke@435 6272 status, "cond_timedwait");
duke@435 6273
duke@435 6274 #ifdef ASSERT
duke@435 6275 thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
duke@435 6276 #endif
duke@435 6277 _counter = 0 ;
duke@435 6278 status = os::Solaris::mutex_unlock(_mutex);
duke@435 6279 assert_status(status == 0, status, "mutex_unlock") ;
duke@435 6280
duke@435 6281 // If externally suspended while waiting, re-suspend
duke@435 6282 if (jt->handle_special_suspend_equivalent_condition()) {
duke@435 6283 jt->java_suspend_self();
duke@435 6284 }
dholmes@1552 6285 OrderAccess::fence();
duke@435 6286 }
duke@435 6287
duke@435 6288 void Parker::unpark() {
duke@435 6289 int s, status ;
duke@435 6290 status = os::Solaris::mutex_lock (_mutex) ;
duke@435 6291 assert (status == 0, "invariant") ;
duke@435 6292 s = _counter;
duke@435 6293 _counter = 1;
duke@435 6294 status = os::Solaris::mutex_unlock (_mutex) ;
duke@435 6295 assert (status == 0, "invariant") ;
duke@435 6296
duke@435 6297 if (s < 1) {
duke@435 6298 status = os::Solaris::cond_signal (_cond) ;
duke@435 6299 assert (status == 0, "invariant") ;
duke@435 6300 }
duke@435 6301 }
duke@435 6302
duke@435 6303 extern char** environ;
duke@435 6304
duke@435 6305 // Run the specified command in a separate process. Return its exit value,
duke@435 6306 // or -1 on failure (e.g. can't fork a new process).
duke@435 6307 // Unlike system(), this function can be called from signal handler. It
duke@435 6308 // doesn't block SIGINT et al.
duke@435 6309 int os::fork_and_exec(char* cmd) {
duke@435 6310 char * argv[4];
duke@435 6311 argv[0] = (char *)"sh";
duke@435 6312 argv[1] = (char *)"-c";
duke@435 6313 argv[2] = cmd;
duke@435 6314 argv[3] = NULL;
duke@435 6315
duke@435 6316 // fork is async-safe, fork1 is not so can't use in signal handler
duke@435 6317 pid_t pid;
duke@435 6318 Thread* t = ThreadLocalStorage::get_thread_slow();
duke@435 6319 if (t != NULL && t->is_inside_signal_handler()) {
duke@435 6320 pid = fork();
duke@435 6321 } else {
duke@435 6322 pid = fork1();
duke@435 6323 }
duke@435 6324
duke@435 6325 if (pid < 0) {
duke@435 6326 // fork failed
duke@435 6327 warning("fork failed: %s", strerror(errno));
duke@435 6328 return -1;
duke@435 6329
duke@435 6330 } else if (pid == 0) {
duke@435 6331 // child process
duke@435 6332
duke@435 6333 // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
duke@435 6334 execve("/usr/bin/sh", argv, environ);
duke@435 6335
duke@435 6336 // execve failed
duke@435 6337 _exit(-1);
duke@435 6338
duke@435 6339 } else {
duke@435 6340 // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
duke@435 6341 // care about the actual exit code, for now.
duke@435 6342
duke@435 6343 int status;
duke@435 6344
duke@435 6345 // Wait for the child process to exit. This returns immediately if
duke@435 6346 // the child has already exited. */
duke@435 6347 while (waitpid(pid, &status, 0) < 0) {
duke@435 6348 switch (errno) {
duke@435 6349 case ECHILD: return 0;
duke@435 6350 case EINTR: break;
duke@435 6351 default: return -1;
duke@435 6352 }
duke@435 6353 }
duke@435 6354
duke@435 6355 if (WIFEXITED(status)) {
duke@435 6356 // The child exited normally; get its exit code.
duke@435 6357 return WEXITSTATUS(status);
duke@435 6358 } else if (WIFSIGNALED(status)) {
duke@435 6359 // The child exited because of a signal
duke@435 6360 // The best value to return is 0x80 + signal number,
duke@435 6361 // because that is what all Unix shells do, and because
duke@435 6362 // it allows callers to distinguish between process exit and
duke@435 6363 // process death by signal.
duke@435 6364 return 0x80 + WTERMSIG(status);
duke@435 6365 } else {
duke@435 6366 // Unknown exit code; pass it through
duke@435 6367 return status;
duke@435 6368 }
duke@435 6369 }
duke@435 6370 }
bobv@2036 6371
bobv@2036 6372 // is_headless_jre()
bobv@2036 6373 //
dholmes@3281 6374 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
bobv@2036 6375 // in order to report if we are running in a headless jre
bobv@2036 6376 //
dholmes@3281 6377 // Since JDK8 xawt/libmawt.so was moved into the same directory
dholmes@3281 6378 // as libawt.so, and renamed libawt_xawt.so
dholmes@3281 6379 //
bobv@2036 6380 bool os::is_headless_jre() {
bobv@2036 6381 struct stat statbuf;
bobv@2036 6382 char buf[MAXPATHLEN];
bobv@2036 6383 char libmawtpath[MAXPATHLEN];
bobv@2036 6384 const char *xawtstr = "/xawt/libmawt.so";
dholmes@3281 6385 const char *new_xawtstr = "/libawt_xawt.so";
bobv@2036 6386 char *p;
bobv@2036 6387
bobv@2036 6388 // Get path to libjvm.so
bobv@2036 6389 os::jvm_path(buf, sizeof(buf));
bobv@2036 6390
bobv@2036 6391 // Get rid of libjvm.so
bobv@2036 6392 p = strrchr(buf, '/');
bobv@2036 6393 if (p == NULL) return false;
bobv@2036 6394 else *p = '\0';
bobv@2036 6395
bobv@2036 6396 // Get rid of client or server
bobv@2036 6397 p = strrchr(buf, '/');
bobv@2036 6398 if (p == NULL) return false;
bobv@2036 6399 else *p = '\0';
bobv@2036 6400
bobv@2036 6401 // check xawt/libmawt.so
bobv@2036 6402 strcpy(libmawtpath, buf);
bobv@2036 6403 strcat(libmawtpath, xawtstr);
bobv@2036 6404 if (::stat(libmawtpath, &statbuf) == 0) return false;
bobv@2036 6405
dholmes@3281 6406 // check libawt_xawt.so
bobv@2036 6407 strcpy(libmawtpath, buf);
dholmes@3281 6408 strcat(libmawtpath, new_xawtstr);
bobv@2036 6409 if (::stat(libmawtpath, &statbuf) == 0) return false;
bobv@2036 6410
bobv@2036 6411 return true;
bobv@2036 6412 }
bobv@2036 6413
ikrylov@2322 6414 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
ikrylov@2322 6415 INTERRUPTIBLE_RETURN_INT(::write(fd, buf, nBytes), os::Solaris::clear_interrupted);
ikrylov@2322 6416 }
ikrylov@2322 6417
ikrylov@2322 6418 int os::close(int fd) {
ikrylov@2322 6419 RESTARTABLE_RETURN_INT(::close(fd));
ikrylov@2322 6420 }
ikrylov@2322 6421
ikrylov@2322 6422 int os::socket_close(int fd) {
ikrylov@2322 6423 RESTARTABLE_RETURN_INT(::close(fd));
ikrylov@2322 6424 }
ikrylov@2322 6425
phh@3344 6426 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
phh@3344 6427 INTERRUPTIBLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
phh@3344 6428 }
phh@3344 6429
phh@3344 6430 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
phh@3344 6431 INTERRUPTIBLE_RETURN_INT((int)::send(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
phh@3344 6432 }
phh@3344 6433
phh@3344 6434 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
phh@3344 6435 RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
ikrylov@2322 6436 }
ikrylov@2322 6437
ikrylov@2322 6438 // As both poll and select can be interrupted by signals, we have to be
ikrylov@2322 6439 // prepared to restart the system call after updating the timeout, unless
ikrylov@2322 6440 // a poll() is done with timeout == -1, in which case we repeat with this
ikrylov@2322 6441 // "wait forever" value.
ikrylov@2322 6442
ikrylov@2322 6443 int os::timeout(int fd, long timeout) {
ikrylov@2322 6444 int res;
ikrylov@2322 6445 struct timeval t;
ikrylov@2322 6446 julong prevtime, newtime;
ikrylov@2322 6447 static const char* aNull = 0;
ikrylov@2322 6448 struct pollfd pfd;
ikrylov@2322 6449 pfd.fd = fd;
ikrylov@2322 6450 pfd.events = POLLIN;
ikrylov@2322 6451
ikrylov@2322 6452 gettimeofday(&t, &aNull);
ikrylov@2322 6453 prevtime = ((julong)t.tv_sec * 1000) + t.tv_usec / 1000;
ikrylov@2322 6454
ikrylov@2322 6455 for(;;) {
ikrylov@2322 6456 INTERRUPTIBLE_NORESTART(::poll(&pfd, 1, timeout), res, os::Solaris::clear_interrupted);
ikrylov@2322 6457 if(res == OS_ERR && errno == EINTR) {
ikrylov@2322 6458 if(timeout != -1) {
ikrylov@2322 6459 gettimeofday(&t, &aNull);
ikrylov@2322 6460 newtime = ((julong)t.tv_sec * 1000) + t.tv_usec /1000;
ikrylov@2322 6461 timeout -= newtime - prevtime;
ikrylov@2322 6462 if(timeout <= 0)
ikrylov@2322 6463 return OS_OK;
ikrylov@2322 6464 prevtime = newtime;
ikrylov@2322 6465 }
ikrylov@2322 6466 } else return res;
ikrylov@2322 6467 }
ikrylov@2322 6468 }
ikrylov@2322 6469
phh@3344 6470 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
ikrylov@2322 6471 int _result;
phh@3344 6472 INTERRUPTIBLE_NORESTART(::connect(fd, him, len), _result,\
ikrylov@2322 6473 os::Solaris::clear_interrupted);
ikrylov@2322 6474
ikrylov@2322 6475 // Depending on when thread interruption is reset, _result could be
ikrylov@2322 6476 // one of two values when errno == EINTR
ikrylov@2322 6477
ikrylov@2322 6478 if (((_result == OS_INTRPT) || (_result == OS_ERR))
phh@3344 6479 && (errno == EINTR)) {
ikrylov@2322 6480 /* restarting a connect() changes its errno semantics */
phh@3344 6481 INTERRUPTIBLE(::connect(fd, him, len), _result,\
phh@3344 6482 os::Solaris::clear_interrupted);
ikrylov@2322 6483 /* undo these changes */
ikrylov@2322 6484 if (_result == OS_ERR) {
ikrylov@2322 6485 if (errno == EALREADY) {
ikrylov@2322 6486 errno = EINPROGRESS; /* fall through */
ikrylov@2322 6487 } else if (errno == EISCONN) {
ikrylov@2322 6488 errno = 0;
ikrylov@2322 6489 return OS_OK;
ikrylov@2322 6490 }
ikrylov@2322 6491 }
ikrylov@2322 6492 }
ikrylov@2322 6493 return _result;
ikrylov@2322 6494 }
ikrylov@2322 6495
phh@3344 6496 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
phh@3344 6497 if (fd < 0) {
phh@3344 6498 return OS_ERR;
phh@3344 6499 }
phh@3344 6500 INTERRUPTIBLE_RETURN_INT((int)::accept(fd, him, len),\
phh@3344 6501 os::Solaris::clear_interrupted);
phh@3344 6502 }
phh@3344 6503
phh@3344 6504 int os::recvfrom(int fd, char* buf, size_t nBytes, uint flags,
phh@3344 6505 sockaddr* from, socklen_t* fromlen) {
phh@3344 6506 INTERRUPTIBLE_RETURN_INT((int)::recvfrom(fd, buf, nBytes, flags, from, fromlen),\
phh@3344 6507 os::Solaris::clear_interrupted);
phh@3344 6508 }
phh@3344 6509
phh@3344 6510 int os::sendto(int fd, char* buf, size_t len, uint flags,
phh@3344 6511 struct sockaddr* to, socklen_t tolen) {
phh@3344 6512 INTERRUPTIBLE_RETURN_INT((int)::sendto(fd, buf, len, flags, to, tolen),\
phh@3344 6513 os::Solaris::clear_interrupted);
ikrylov@2322 6514 }
ikrylov@2322 6515
ikrylov@2322 6516 int os::socket_available(int fd, jint *pbytes) {
phh@3344 6517 if (fd < 0) {
phh@3344 6518 return OS_OK;
phh@3344 6519 }
phh@3344 6520 int ret;
phh@3344 6521 RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
phh@3344 6522 // note: ioctl can return 0 when successful, JVM_SocketAvailable
phh@3344 6523 // is expected to return 0 on failure and 1 on success to the jdk.
phh@3344 6524 return (ret == OS_ERR) ? 0 : 1;
phh@3344 6525 }
phh@3344 6526
phh@3344 6527 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
ikrylov@2322 6528 INTERRUPTIBLE_RETURN_INT_NORESTART(::bind(fd, him, len),\
phh@3344 6529 os::Solaris::clear_interrupted);
phh@3344 6530 }
mikael@3903 6531
mikael@3903 6532 // Get the default path to the core file
mikael@3903 6533 // Returns the length of the string
mikael@3903 6534 int os::get_core_path(char* buffer, size_t bufferSize) {
mikael@3903 6535 const char* p = get_current_directory(buffer, bufferSize);
mikael@3903 6536
mikael@3903 6537 if (p == NULL) {
mikael@3903 6538 assert(p != NULL, "failed to get current directory");
mikael@3903 6539 return 0;
mikael@3903 6540 }
mikael@3903 6541
mikael@3903 6542 return strlen(buffer);
mikael@3903 6543 }

mercurial