src/os/solaris/vm/os_solaris.cpp

Wed, 25 Mar 2009 14:19:20 -0400

author
coleenp
date
Wed, 25 Mar 2009 14:19:20 -0400
changeset 1091
6bdd6923ba16
parent 1082
bd441136a5ce
child 1126
956304450e80
permissions
-rw-r--r--

6541756: Reduce executable C-heap
Summary: Add executable parameters to reserve_memory and commit_memory to reduce executable memory to only the Code Heap.
Reviewed-by: xlu, kvn, acorn

duke@435 1 /*
twisti@1076 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // do not include precompiled header file
duke@435 26 # include "incls/_os_solaris.cpp.incl"
duke@435 27
duke@435 28 // put OS-includes here
duke@435 29 # include <dlfcn.h>
duke@435 30 # include <errno.h>
duke@435 31 # include <link.h>
duke@435 32 # include <poll.h>
duke@435 33 # include <pthread.h>
duke@435 34 # include <pwd.h>
duke@435 35 # include <schedctl.h>
duke@435 36 # include <setjmp.h>
duke@435 37 # include <signal.h>
duke@435 38 # include <stdio.h>
duke@435 39 # include <alloca.h>
duke@435 40 # include <sys/filio.h>
duke@435 41 # include <sys/ipc.h>
duke@435 42 # include <sys/lwp.h>
duke@435 43 # include <sys/machelf.h> // for elf Sym structure used by dladdr1
duke@435 44 # include <sys/mman.h>
duke@435 45 # include <sys/processor.h>
duke@435 46 # include <sys/procset.h>
duke@435 47 # include <sys/pset.h>
duke@435 48 # include <sys/resource.h>
duke@435 49 # include <sys/shm.h>
duke@435 50 # include <sys/socket.h>
duke@435 51 # include <sys/stat.h>
duke@435 52 # include <sys/systeminfo.h>
duke@435 53 # include <sys/time.h>
duke@435 54 # include <sys/times.h>
duke@435 55 # include <sys/types.h>
duke@435 56 # include <sys/wait.h>
duke@435 57 # include <sys/utsname.h>
duke@435 58 # include <thread.h>
duke@435 59 # include <unistd.h>
duke@435 60 # include <sys/priocntl.h>
duke@435 61 # include <sys/rtpriocntl.h>
duke@435 62 # include <sys/tspriocntl.h>
duke@435 63 # include <sys/iapriocntl.h>
duke@435 64 # include <sys/loadavg.h>
duke@435 65 # include <string.h>
duke@435 66
duke@435 67 # define _STRUCTURED_PROC 1 // this gets us the new structured proc interfaces of 5.6 & later
duke@435 68 # include <sys/procfs.h> // see comment in <sys/procfs.h>
duke@435 69
duke@435 70 #define MAX_PATH (2 * K)
duke@435 71
duke@435 72 // for timer info max values which include all bits
duke@435 73 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
duke@435 74
duke@435 75 #ifdef _GNU_SOURCE
duke@435 76 // See bug #6514594
duke@435 77 extern "C" int madvise(caddr_t, size_t, int);
duke@435 78 extern "C" int memcntl(caddr_t addr, size_t len, int cmd, caddr_t arg,
duke@435 79 int attr, int mask);
duke@435 80 #endif //_GNU_SOURCE
duke@435 81
duke@435 82 /*
duke@435 83 MPSS Changes Start.
duke@435 84 The JVM binary needs to be built and run on pre-Solaris 9
duke@435 85 systems, but the constants needed by MPSS are only in Solaris 9
duke@435 86 header files. They are textually replicated here to allow
duke@435 87 building on earlier systems. Once building on Solaris 8 is
duke@435 88 no longer a requirement, these #defines can be replaced by ordinary
duke@435 89 system .h inclusion.
duke@435 90
duke@435 91 In earlier versions of the JDK and Solaris, we used ISM for large pages.
duke@435 92 But ISM requires shared memory to achieve this and thus has many caveats.
duke@435 93 MPSS is a fully transparent and is a cleaner way to get large pages.
duke@435 94 Although we still require keeping ISM for backward compatiblitiy as well as
duke@435 95 giving the opportunity to use large pages on older systems it is
duke@435 96 recommended that MPSS be used for Solaris 9 and above.
duke@435 97
duke@435 98 */
duke@435 99
duke@435 100 #ifndef MC_HAT_ADVISE
duke@435 101
duke@435 102 struct memcntl_mha {
duke@435 103 uint_t mha_cmd; /* command(s) */
duke@435 104 uint_t mha_flags;
duke@435 105 size_t mha_pagesize;
duke@435 106 };
duke@435 107 #define MC_HAT_ADVISE 7 /* advise hat map size */
duke@435 108 #define MHA_MAPSIZE_VA 0x1 /* set preferred page size */
duke@435 109 #define MAP_ALIGN 0x200 /* addr specifies alignment */
duke@435 110
duke@435 111 #endif
duke@435 112 // MPSS Changes End.
duke@435 113
duke@435 114
duke@435 115 // Here are some liblgrp types from sys/lgrp_user.h to be able to
duke@435 116 // compile on older systems without this header file.
duke@435 117
duke@435 118 #ifndef MADV_ACCESS_LWP
duke@435 119 # define MADV_ACCESS_LWP 7 /* next LWP to access heavily */
duke@435 120 #endif
duke@435 121 #ifndef MADV_ACCESS_MANY
duke@435 122 # define MADV_ACCESS_MANY 8 /* many processes to access heavily */
duke@435 123 #endif
duke@435 124
iveresov@579 125 #ifndef LGRP_RSRC_CPU
iveresov@579 126 # define LGRP_RSRC_CPU 0 /* CPU resources */
iveresov@579 127 #endif
iveresov@579 128 #ifndef LGRP_RSRC_MEM
iveresov@579 129 # define LGRP_RSRC_MEM 1 /* memory resources */
iveresov@579 130 #endif
iveresov@579 131
duke@435 132 // Some more macros from sys/mman.h that are not present in Solaris 8.
duke@435 133
duke@435 134 #ifndef MAX_MEMINFO_CNT
duke@435 135 /*
duke@435 136 * info_req request type definitions for meminfo
duke@435 137 * request types starting with MEMINFO_V are used for Virtual addresses
duke@435 138 * and should not be mixed with MEMINFO_PLGRP which is targeted for Physical
duke@435 139 * addresses
duke@435 140 */
duke@435 141 # define MEMINFO_SHIFT 16
duke@435 142 # define MEMINFO_MASK (0xFF << MEMINFO_SHIFT)
duke@435 143 # define MEMINFO_VPHYSICAL (0x01 << MEMINFO_SHIFT) /* get physical addr */
duke@435 144 # define MEMINFO_VLGRP (0x02 << MEMINFO_SHIFT) /* get lgroup */
duke@435 145 # define MEMINFO_VPAGESIZE (0x03 << MEMINFO_SHIFT) /* size of phys page */
duke@435 146 # define MEMINFO_VREPLCNT (0x04 << MEMINFO_SHIFT) /* no. of replica */
duke@435 147 # define MEMINFO_VREPL (0x05 << MEMINFO_SHIFT) /* physical replica */
duke@435 148 # define MEMINFO_VREPL_LGRP (0x06 << MEMINFO_SHIFT) /* lgrp of replica */
duke@435 149 # define MEMINFO_PLGRP (0x07 << MEMINFO_SHIFT) /* lgroup for paddr */
duke@435 150
duke@435 151 /* maximum number of addresses meminfo() can process at a time */
duke@435 152 # define MAX_MEMINFO_CNT 256
duke@435 153
duke@435 154 /* maximum number of request types */
duke@435 155 # define MAX_MEMINFO_REQ 31
duke@435 156 #endif
duke@435 157
duke@435 158 // see thr_setprio(3T) for the basis of these numbers
duke@435 159 #define MinimumPriority 0
duke@435 160 #define NormalPriority 64
duke@435 161 #define MaximumPriority 127
duke@435 162
duke@435 163 // Values for ThreadPriorityPolicy == 1
duke@435 164 int prio_policy1[MaxPriority+1] = { -99999, 0, 16, 32, 48, 64,
duke@435 165 80, 96, 112, 124, 127 };
duke@435 166
duke@435 167 // System parameters used internally
duke@435 168 static clock_t clock_tics_per_sec = 100;
duke@435 169
duke@435 170 // For diagnostics to print a message once. see run_periodic_checks
duke@435 171 static bool check_addr0_done = false;
duke@435 172 static sigset_t check_signal_done;
duke@435 173 static bool check_signals = true;
duke@435 174
duke@435 175 address os::Solaris::handler_start; // start pc of thr_sighndlrinfo
duke@435 176 address os::Solaris::handler_end; // end pc of thr_sighndlrinfo
duke@435 177
duke@435 178 address os::Solaris::_main_stack_base = NULL; // 4352906 workaround
duke@435 179
duke@435 180
duke@435 181 // "default" initializers for missing libc APIs
duke@435 182 extern "C" {
duke@435 183 static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
duke@435 184 static int lwp_mutex_destroy(mutex_t *mx) { return 0; }
duke@435 185
duke@435 186 static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
duke@435 187 static int lwp_cond_destroy(cond_t *cv) { return 0; }
duke@435 188 }
duke@435 189
duke@435 190 // "default" initializers for pthread-based synchronization
duke@435 191 extern "C" {
duke@435 192 static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
duke@435 193 static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
duke@435 194 }
duke@435 195
duke@435 196 // Thread Local Storage
duke@435 197 // This is common to all Solaris platforms so it is defined here,
duke@435 198 // in this common file.
duke@435 199 // The declarations are in the os_cpu threadLS*.hpp files.
duke@435 200 //
duke@435 201 // Static member initialization for TLS
duke@435 202 Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
duke@435 203
duke@435 204 #ifndef PRODUCT
duke@435 205 #define _PCT(n,d) ((100.0*(double)(n))/(double)(d))
duke@435 206
duke@435 207 int ThreadLocalStorage::_tcacheHit = 0;
duke@435 208 int ThreadLocalStorage::_tcacheMiss = 0;
duke@435 209
duke@435 210 void ThreadLocalStorage::print_statistics() {
duke@435 211 int total = _tcacheMiss+_tcacheHit;
duke@435 212 tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
duke@435 213 _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
duke@435 214 }
duke@435 215 #undef _PCT
duke@435 216 #endif // PRODUCT
duke@435 217
duke@435 218 Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
duke@435 219 int index) {
duke@435 220 Thread *thread = get_thread_slow();
duke@435 221 if (thread != NULL) {
duke@435 222 address sp = os::current_stack_pointer();
duke@435 223 guarantee(thread->_stack_base == NULL ||
duke@435 224 (sp <= thread->_stack_base &&
duke@435 225 sp >= thread->_stack_base - thread->_stack_size) ||
duke@435 226 is_error_reported(),
duke@435 227 "sp must be inside of selected thread stack");
duke@435 228
duke@435 229 thread->_self_raw_id = raw_id; // mark for quick retrieval
duke@435 230 _get_thread_cache[ index ] = thread;
duke@435 231 }
duke@435 232 return thread;
duke@435 233 }
duke@435 234
duke@435 235
duke@435 236 static const double all_zero[ sizeof(Thread) / sizeof(double) + 1 ] = {0};
duke@435 237 #define NO_CACHED_THREAD ((Thread*)all_zero)
duke@435 238
duke@435 239 void ThreadLocalStorage::pd_set_thread(Thread* thread) {
duke@435 240
duke@435 241 // Store the new value before updating the cache to prevent a race
duke@435 242 // between get_thread_via_cache_slowly() and this store operation.
duke@435 243 os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
duke@435 244
duke@435 245 // Update thread cache with new thread if setting on thread create,
duke@435 246 // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
duke@435 247 uintptr_t raw = pd_raw_thread_id();
duke@435 248 int ix = pd_cache_index(raw);
duke@435 249 _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
duke@435 250 }
duke@435 251
duke@435 252 void ThreadLocalStorage::pd_init() {
duke@435 253 for (int i = 0; i < _pd_cache_size; i++) {
duke@435 254 _get_thread_cache[i] = NO_CACHED_THREAD;
duke@435 255 }
duke@435 256 }
duke@435 257
duke@435 258 // Invalidate all the caches (happens to be the same as pd_init).
duke@435 259 void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
duke@435 260
duke@435 261 #undef NO_CACHED_THREAD
duke@435 262
duke@435 263 // END Thread Local Storage
duke@435 264
duke@435 265 static inline size_t adjust_stack_size(address base, size_t size) {
duke@435 266 if ((ssize_t)size < 0) {
duke@435 267 // 4759953: Compensate for ridiculous stack size.
duke@435 268 size = max_intx;
duke@435 269 }
duke@435 270 if (size > (size_t)base) {
duke@435 271 // 4812466: Make sure size doesn't allow the stack to wrap the address space.
duke@435 272 size = (size_t)base;
duke@435 273 }
duke@435 274 return size;
duke@435 275 }
duke@435 276
duke@435 277 static inline stack_t get_stack_info() {
duke@435 278 stack_t st;
duke@435 279 int retval = thr_stksegment(&st);
duke@435 280 st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
duke@435 281 assert(retval == 0, "incorrect return value from thr_stksegment");
duke@435 282 assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
duke@435 283 assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
duke@435 284 return st;
duke@435 285 }
duke@435 286
duke@435 287 address os::current_stack_base() {
duke@435 288 int r = thr_main() ;
duke@435 289 guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
duke@435 290 bool is_primordial_thread = r;
duke@435 291
duke@435 292 // Workaround 4352906, avoid calls to thr_stksegment by
duke@435 293 // thr_main after the first one (it looks like we trash
duke@435 294 // some data, causing the value for ss_sp to be incorrect).
duke@435 295 if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
duke@435 296 stack_t st = get_stack_info();
duke@435 297 if (is_primordial_thread) {
duke@435 298 // cache initial value of stack base
duke@435 299 os::Solaris::_main_stack_base = (address)st.ss_sp;
duke@435 300 }
duke@435 301 return (address)st.ss_sp;
duke@435 302 } else {
duke@435 303 guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
duke@435 304 return os::Solaris::_main_stack_base;
duke@435 305 }
duke@435 306 }
duke@435 307
duke@435 308 size_t os::current_stack_size() {
duke@435 309 size_t size;
duke@435 310
duke@435 311 int r = thr_main() ;
duke@435 312 guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
duke@435 313 if(!r) {
duke@435 314 size = get_stack_info().ss_size;
duke@435 315 } else {
duke@435 316 struct rlimit limits;
duke@435 317 getrlimit(RLIMIT_STACK, &limits);
duke@435 318 size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
duke@435 319 }
duke@435 320 // base may not be page aligned
duke@435 321 address base = current_stack_base();
duke@435 322 address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
duke@435 323 return (size_t)(base - bottom);
duke@435 324 }
duke@435 325
ysr@983 326 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
ysr@983 327 return localtime_r(clock, res);
ysr@983 328 }
ysr@983 329
duke@435 330 // interruptible infrastructure
duke@435 331
duke@435 332 // setup_interruptible saves the thread state before going into an
duke@435 333 // interruptible system call.
duke@435 334 // The saved state is used to restore the thread to
duke@435 335 // its former state whether or not an interrupt is received.
duke@435 336 // Used by classloader os::read
duke@435 337 // hpi calls skip this layer and stay in _thread_in_native
duke@435 338
duke@435 339 void os::Solaris::setup_interruptible(JavaThread* thread) {
duke@435 340
duke@435 341 JavaThreadState thread_state = thread->thread_state();
duke@435 342
duke@435 343 assert(thread_state != _thread_blocked, "Coming from the wrong thread");
duke@435 344 assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
duke@435 345 OSThread* osthread = thread->osthread();
duke@435 346 osthread->set_saved_interrupt_thread_state(thread_state);
duke@435 347 thread->frame_anchor()->make_walkable(thread);
duke@435 348 ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
duke@435 349 }
duke@435 350
duke@435 351 // Version of setup_interruptible() for threads that are already in
duke@435 352 // _thread_blocked. Used by os_sleep().
duke@435 353 void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) {
duke@435 354 thread->frame_anchor()->make_walkable(thread);
duke@435 355 }
duke@435 356
duke@435 357 JavaThread* os::Solaris::setup_interruptible() {
duke@435 358 JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
duke@435 359 setup_interruptible(thread);
duke@435 360 return thread;
duke@435 361 }
duke@435 362
duke@435 363 void os::Solaris::try_enable_extended_io() {
duke@435 364 typedef int (*enable_extended_FILE_stdio_t)(int, int);
duke@435 365
duke@435 366 if (!UseExtendedFileIO) {
duke@435 367 return;
duke@435 368 }
duke@435 369
duke@435 370 enable_extended_FILE_stdio_t enabler =
duke@435 371 (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
duke@435 372 "enable_extended_FILE_stdio");
duke@435 373 if (enabler) {
duke@435 374 enabler(-1, -1);
duke@435 375 }
duke@435 376 }
duke@435 377
duke@435 378
duke@435 379 #ifdef ASSERT
duke@435 380
duke@435 381 JavaThread* os::Solaris::setup_interruptible_native() {
duke@435 382 JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
duke@435 383 JavaThreadState thread_state = thread->thread_state();
duke@435 384 assert(thread_state == _thread_in_native, "Assumed thread_in_native");
duke@435 385 return thread;
duke@435 386 }
duke@435 387
duke@435 388 void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
duke@435 389 JavaThreadState thread_state = thread->thread_state();
duke@435 390 assert(thread_state == _thread_in_native, "Assumed thread_in_native");
duke@435 391 }
duke@435 392 #endif
duke@435 393
duke@435 394 // cleanup_interruptible reverses the effects of setup_interruptible
duke@435 395 // setup_interruptible_already_blocked() does not need any cleanup.
duke@435 396
duke@435 397 void os::Solaris::cleanup_interruptible(JavaThread* thread) {
duke@435 398 OSThread* osthread = thread->osthread();
duke@435 399
duke@435 400 ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
duke@435 401 }
duke@435 402
duke@435 403 // I/O interruption related counters called in _INTERRUPTIBLE
duke@435 404
duke@435 405 void os::Solaris::bump_interrupted_before_count() {
duke@435 406 RuntimeService::record_interrupted_before_count();
duke@435 407 }
duke@435 408
duke@435 409 void os::Solaris::bump_interrupted_during_count() {
duke@435 410 RuntimeService::record_interrupted_during_count();
duke@435 411 }
duke@435 412
duke@435 413 static int _processors_online = 0;
duke@435 414
duke@435 415 jint os::Solaris::_os_thread_limit = 0;
duke@435 416 volatile jint os::Solaris::_os_thread_count = 0;
duke@435 417
duke@435 418 julong os::available_memory() {
duke@435 419 return Solaris::available_memory();
duke@435 420 }
duke@435 421
duke@435 422 julong os::Solaris::available_memory() {
duke@435 423 return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
duke@435 424 }
duke@435 425
duke@435 426 julong os::Solaris::_physical_memory = 0;
duke@435 427
duke@435 428 julong os::physical_memory() {
duke@435 429 return Solaris::physical_memory();
duke@435 430 }
duke@435 431
duke@435 432 julong os::allocatable_physical_memory(julong size) {
duke@435 433 #ifdef _LP64
duke@435 434 return size;
duke@435 435 #else
duke@435 436 julong result = MIN2(size, (julong)3835*M);
duke@435 437 if (!is_allocatable(result)) {
duke@435 438 // Memory allocations will be aligned but the alignment
duke@435 439 // is not known at this point. Alignments will
duke@435 440 // be at most to LargePageSizeInBytes. Protect
duke@435 441 // allocations from alignments up to illegal
duke@435 442 // values. If at this point 2G is illegal.
duke@435 443 julong reasonable_size = (julong)2*G - 2 * LargePageSizeInBytes;
duke@435 444 result = MIN2(size, reasonable_size);
duke@435 445 }
duke@435 446 return result;
duke@435 447 #endif
duke@435 448 }
duke@435 449
duke@435 450 static hrtime_t first_hrtime = 0;
duke@435 451 static const hrtime_t hrtime_hz = 1000*1000*1000;
duke@435 452 const int LOCK_BUSY = 1;
duke@435 453 const int LOCK_FREE = 0;
duke@435 454 const int LOCK_INVALID = -1;
duke@435 455 static volatile hrtime_t max_hrtime = 0;
duke@435 456 static volatile int max_hrtime_lock = LOCK_FREE; // Update counter with LSB as lock-in-progress
duke@435 457
duke@435 458
duke@435 459 void os::Solaris::initialize_system_info() {
duke@435 460 _processor_count = sysconf(_SC_NPROCESSORS_CONF);
duke@435 461 _processors_online = sysconf (_SC_NPROCESSORS_ONLN);
duke@435 462 _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
duke@435 463 }
duke@435 464
duke@435 465 int os::active_processor_count() {
duke@435 466 int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
duke@435 467 pid_t pid = getpid();
duke@435 468 psetid_t pset = PS_NONE;
xlu@822 469 // Are we running in a processor set or is there any processor set around?
duke@435 470 if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
xlu@822 471 uint_t pset_cpus;
xlu@822 472 // Query the number of cpus available to us.
xlu@822 473 if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
xlu@822 474 assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
xlu@822 475 _processors_online = pset_cpus;
xlu@822 476 return pset_cpus;
duke@435 477 }
duke@435 478 }
duke@435 479 // Otherwise return number of online cpus
duke@435 480 return online_cpus;
duke@435 481 }
duke@435 482
duke@435 483 static bool find_processors_in_pset(psetid_t pset,
duke@435 484 processorid_t** id_array,
duke@435 485 uint_t* id_length) {
duke@435 486 bool result = false;
duke@435 487 // Find the number of processors in the processor set.
duke@435 488 if (pset_info(pset, NULL, id_length, NULL) == 0) {
duke@435 489 // Make up an array to hold their ids.
duke@435 490 *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length);
duke@435 491 // Fill in the array with their processor ids.
duke@435 492 if (pset_info(pset, NULL, id_length, *id_array) == 0) {
duke@435 493 result = true;
duke@435 494 }
duke@435 495 }
duke@435 496 return result;
duke@435 497 }
duke@435 498
duke@435 499 // Callers of find_processors_online() must tolerate imprecise results --
duke@435 500 // the system configuration can change asynchronously because of DR
duke@435 501 // or explicit psradm operations.
duke@435 502 //
duke@435 503 // We also need to take care that the loop (below) terminates as the
duke@435 504 // number of processors online can change between the _SC_NPROCESSORS_ONLN
duke@435 505 // request and the loop that builds the list of processor ids. Unfortunately
duke@435 506 // there's no reliable way to determine the maximum valid processor id,
duke@435 507 // so we use a manifest constant, MAX_PROCESSOR_ID, instead. See p_online
duke@435 508 // man pages, which claim the processor id set is "sparse, but
duke@435 509 // not too sparse". MAX_PROCESSOR_ID is used to ensure that we eventually
duke@435 510 // exit the loop.
duke@435 511 //
duke@435 512 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
duke@435 513 // not available on S8.0.
duke@435 514
duke@435 515 static bool find_processors_online(processorid_t** id_array,
duke@435 516 uint* id_length) {
duke@435 517 const processorid_t MAX_PROCESSOR_ID = 100000 ;
duke@435 518 // Find the number of processors online.
duke@435 519 *id_length = sysconf(_SC_NPROCESSORS_ONLN);
duke@435 520 // Make up an array to hold their ids.
duke@435 521 *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length);
duke@435 522 // Processors need not be numbered consecutively.
duke@435 523 long found = 0;
duke@435 524 processorid_t next = 0;
duke@435 525 while (found < *id_length && next < MAX_PROCESSOR_ID) {
duke@435 526 processor_info_t info;
duke@435 527 if (processor_info(next, &info) == 0) {
duke@435 528 // NB, PI_NOINTR processors are effectively online ...
duke@435 529 if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
duke@435 530 (*id_array)[found] = next;
duke@435 531 found += 1;
duke@435 532 }
duke@435 533 }
duke@435 534 next += 1;
duke@435 535 }
duke@435 536 if (found < *id_length) {
duke@435 537 // The loop above didn't identify the expected number of processors.
duke@435 538 // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
duke@435 539 // and re-running the loop, above, but there's no guarantee of progress
duke@435 540 // if the system configuration is in flux. Instead, we just return what
duke@435 541 // we've got. Note that in the worst case find_processors_online() could
duke@435 542 // return an empty set. (As a fall-back in the case of the empty set we
duke@435 543 // could just return the ID of the current processor).
duke@435 544 *id_length = found ;
duke@435 545 }
duke@435 546
duke@435 547 return true;
duke@435 548 }
duke@435 549
duke@435 550 static bool assign_distribution(processorid_t* id_array,
duke@435 551 uint id_length,
duke@435 552 uint* distribution,
duke@435 553 uint distribution_length) {
duke@435 554 // We assume we can assign processorid_t's to uint's.
duke@435 555 assert(sizeof(processorid_t) == sizeof(uint),
duke@435 556 "can't convert processorid_t to uint");
duke@435 557 // Quick check to see if we won't succeed.
duke@435 558 if (id_length < distribution_length) {
duke@435 559 return false;
duke@435 560 }
duke@435 561 // Assign processor ids to the distribution.
duke@435 562 // Try to shuffle processors to distribute work across boards,
duke@435 563 // assuming 4 processors per board.
duke@435 564 const uint processors_per_board = ProcessDistributionStride;
duke@435 565 // Find the maximum processor id.
duke@435 566 processorid_t max_id = 0;
duke@435 567 for (uint m = 0; m < id_length; m += 1) {
duke@435 568 max_id = MAX2(max_id, id_array[m]);
duke@435 569 }
duke@435 570 // The next id, to limit loops.
duke@435 571 const processorid_t limit_id = max_id + 1;
duke@435 572 // Make up markers for available processors.
duke@435 573 bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id);
duke@435 574 for (uint c = 0; c < limit_id; c += 1) {
duke@435 575 available_id[c] = false;
duke@435 576 }
duke@435 577 for (uint a = 0; a < id_length; a += 1) {
duke@435 578 available_id[id_array[a]] = true;
duke@435 579 }
duke@435 580 // Step by "boards", then by "slot", copying to "assigned".
duke@435 581 // NEEDS_CLEANUP: The assignment of processors should be stateful,
duke@435 582 // remembering which processors have been assigned by
duke@435 583 // previous calls, etc., so as to distribute several
duke@435 584 // independent calls of this method. What we'd like is
duke@435 585 // It would be nice to have an API that let us ask
duke@435 586 // how many processes are bound to a processor,
duke@435 587 // but we don't have that, either.
duke@435 588 // In the short term, "board" is static so that
duke@435 589 // subsequent distributions don't all start at board 0.
duke@435 590 static uint board = 0;
duke@435 591 uint assigned = 0;
duke@435 592 // Until we've found enough processors ....
duke@435 593 while (assigned < distribution_length) {
duke@435 594 // ... find the next available processor in the board.
duke@435 595 for (uint slot = 0; slot < processors_per_board; slot += 1) {
duke@435 596 uint try_id = board * processors_per_board + slot;
duke@435 597 if ((try_id < limit_id) && (available_id[try_id] == true)) {
duke@435 598 distribution[assigned] = try_id;
duke@435 599 available_id[try_id] = false;
duke@435 600 assigned += 1;
duke@435 601 break;
duke@435 602 }
duke@435 603 }
duke@435 604 board += 1;
duke@435 605 if (board * processors_per_board + 0 >= limit_id) {
duke@435 606 board = 0;
duke@435 607 }
duke@435 608 }
duke@435 609 if (available_id != NULL) {
duke@435 610 FREE_C_HEAP_ARRAY(bool, available_id);
duke@435 611 }
duke@435 612 return true;
duke@435 613 }
duke@435 614
duke@435 615 bool os::distribute_processes(uint length, uint* distribution) {
duke@435 616 bool result = false;
duke@435 617 // Find the processor id's of all the available CPUs.
duke@435 618 processorid_t* id_array = NULL;
duke@435 619 uint id_length = 0;
duke@435 620 // There are some races between querying information and using it,
duke@435 621 // since processor sets can change dynamically.
duke@435 622 psetid_t pset = PS_NONE;
duke@435 623 // Are we running in a processor set?
duke@435 624 if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
duke@435 625 result = find_processors_in_pset(pset, &id_array, &id_length);
duke@435 626 } else {
duke@435 627 result = find_processors_online(&id_array, &id_length);
duke@435 628 }
duke@435 629 if (result == true) {
duke@435 630 if (id_length >= length) {
duke@435 631 result = assign_distribution(id_array, id_length, distribution, length);
duke@435 632 } else {
duke@435 633 result = false;
duke@435 634 }
duke@435 635 }
duke@435 636 if (id_array != NULL) {
duke@435 637 FREE_C_HEAP_ARRAY(processorid_t, id_array);
duke@435 638 }
duke@435 639 return result;
duke@435 640 }
duke@435 641
duke@435 642 bool os::bind_to_processor(uint processor_id) {
duke@435 643 // We assume that a processorid_t can be stored in a uint.
duke@435 644 assert(sizeof(uint) == sizeof(processorid_t),
duke@435 645 "can't convert uint to processorid_t");
duke@435 646 int bind_result =
duke@435 647 processor_bind(P_LWPID, // bind LWP.
duke@435 648 P_MYID, // bind current LWP.
duke@435 649 (processorid_t) processor_id, // id.
duke@435 650 NULL); // don't return old binding.
duke@435 651 return (bind_result == 0);
duke@435 652 }
duke@435 653
duke@435 654 bool os::getenv(const char* name, char* buffer, int len) {
duke@435 655 char* val = ::getenv( name );
duke@435 656 if ( val == NULL
duke@435 657 || strlen(val) + 1 > len ) {
duke@435 658 if (len > 0) buffer[0] = 0; // return a null string
duke@435 659 return false;
duke@435 660 }
duke@435 661 strcpy( buffer, val );
duke@435 662 return true;
duke@435 663 }
duke@435 664
duke@435 665
duke@435 666 // Return true if user is running as root.
duke@435 667
duke@435 668 bool os::have_special_privileges() {
duke@435 669 static bool init = false;
duke@435 670 static bool privileges = false;
duke@435 671 if (!init) {
duke@435 672 privileges = (getuid() != geteuid()) || (getgid() != getegid());
duke@435 673 init = true;
duke@435 674 }
duke@435 675 return privileges;
duke@435 676 }
duke@435 677
duke@435 678
duke@435 679 static char* get_property(char* name, char* buffer, int buffer_size) {
duke@435 680 if (os::getenv(name, buffer, buffer_size)) {
duke@435 681 return buffer;
duke@435 682 }
duke@435 683 static char empty[] = "";
duke@435 684 return empty;
duke@435 685 }
duke@435 686
duke@435 687
duke@435 688 void os::init_system_properties_values() {
duke@435 689 char arch[12];
duke@435 690 sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
duke@435 691
duke@435 692 // The next steps are taken in the product version:
duke@435 693 //
duke@435 694 // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
duke@435 695 // This library should be located at:
duke@435 696 // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
duke@435 697 //
duke@435 698 // If "/jre/lib/" appears at the right place in the path, then we
duke@435 699 // assume libjvm[_g].so is installed in a JDK and we use this path.
duke@435 700 //
duke@435 701 // Otherwise exit with message: "Could not create the Java virtual machine."
duke@435 702 //
duke@435 703 // The following extra steps are taken in the debugging version:
duke@435 704 //
duke@435 705 // If "/jre/lib/" does NOT appear at the right place in the path
duke@435 706 // instead of exit check for $JAVA_HOME environment variable.
duke@435 707 //
duke@435 708 // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
duke@435 709 // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
duke@435 710 // it looks like libjvm[_g].so is installed there
duke@435 711 // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
duke@435 712 //
duke@435 713 // Otherwise exit.
duke@435 714 //
duke@435 715 // Important note: if the location of libjvm.so changes this
duke@435 716 // code needs to be changed accordingly.
duke@435 717
duke@435 718 // The next few definitions allow the code to be verbatim:
duke@435 719 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
duke@435 720 #define free(p) FREE_C_HEAP_ARRAY(char, p)
duke@435 721 #define getenv(n) ::getenv(n)
duke@435 722
duke@435 723 #define EXTENSIONS_DIR "/lib/ext"
duke@435 724 #define ENDORSED_DIR "/lib/endorsed"
duke@435 725 #define COMMON_DIR "/usr/jdk/packages"
duke@435 726
duke@435 727 {
duke@435 728 /* sysclasspath, java_home, dll_dir */
duke@435 729 {
duke@435 730 char *home_path;
duke@435 731 char *dll_path;
duke@435 732 char *pslash;
duke@435 733 char buf[MAXPATHLEN];
duke@435 734 os::jvm_path(buf, sizeof(buf));
duke@435 735
duke@435 736 // Found the full path to libjvm.so.
duke@435 737 // Now cut the path to <java_home>/jre if we can.
duke@435 738 *(strrchr(buf, '/')) = '\0'; /* get rid of /libjvm.so */
duke@435 739 pslash = strrchr(buf, '/');
duke@435 740 if (pslash != NULL)
duke@435 741 *pslash = '\0'; /* get rid of /{client|server|hotspot} */
duke@435 742 dll_path = malloc(strlen(buf) + 1);
duke@435 743 if (dll_path == NULL)
duke@435 744 return;
duke@435 745 strcpy(dll_path, buf);
duke@435 746 Arguments::set_dll_dir(dll_path);
duke@435 747
duke@435 748 if (pslash != NULL) {
duke@435 749 pslash = strrchr(buf, '/');
duke@435 750 if (pslash != NULL) {
duke@435 751 *pslash = '\0'; /* get rid of /<arch> */
duke@435 752 pslash = strrchr(buf, '/');
duke@435 753 if (pslash != NULL)
duke@435 754 *pslash = '\0'; /* get rid of /lib */
duke@435 755 }
duke@435 756 }
duke@435 757
duke@435 758 home_path = malloc(strlen(buf) + 1);
duke@435 759 if (home_path == NULL)
duke@435 760 return;
duke@435 761 strcpy(home_path, buf);
duke@435 762 Arguments::set_java_home(home_path);
duke@435 763
duke@435 764 if (!set_boot_path('/', ':'))
duke@435 765 return;
duke@435 766 }
duke@435 767
duke@435 768 /*
duke@435 769 * Where to look for native libraries
duke@435 770 */
duke@435 771 {
duke@435 772 // Use dlinfo() to determine the correct java.library.path.
duke@435 773 //
duke@435 774 // If we're launched by the Java launcher, and the user
duke@435 775 // does not set java.library.path explicitly on the commandline,
duke@435 776 // the Java launcher sets LD_LIBRARY_PATH for us and unsets
duke@435 777 // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64. In this case
duke@435 778 // dlinfo returns LD_LIBRARY_PATH + crle settings (including
duke@435 779 // /usr/lib), which is exactly what we want.
duke@435 780 //
duke@435 781 // If the user does set java.library.path, it completely
duke@435 782 // overwrites this setting, and always has.
duke@435 783 //
duke@435 784 // If we're not launched by the Java launcher, we may
duke@435 785 // get here with any/all of the LD_LIBRARY_PATH[_32|64]
duke@435 786 // settings. Again, dlinfo does exactly what we want.
duke@435 787
duke@435 788 Dl_serinfo _info, *info = &_info;
duke@435 789 Dl_serpath *path;
duke@435 790 char* library_path;
duke@435 791 char *common_path;
duke@435 792 int i;
duke@435 793
duke@435 794 // determine search path count and required buffer size
duke@435 795 if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
duke@435 796 vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
duke@435 797 }
duke@435 798
duke@435 799 // allocate new buffer and initialize
duke@435 800 info = (Dl_serinfo*)malloc(_info.dls_size);
duke@435 801 if (info == NULL) {
duke@435 802 vm_exit_out_of_memory(_info.dls_size,
duke@435 803 "init_system_properties_values info");
duke@435 804 }
duke@435 805 info->dls_size = _info.dls_size;
duke@435 806 info->dls_cnt = _info.dls_cnt;
duke@435 807
duke@435 808 // obtain search path information
duke@435 809 if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
duke@435 810 free(info);
duke@435 811 vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
duke@435 812 }
duke@435 813
duke@435 814 path = &info->dls_serpath[0];
duke@435 815
duke@435 816 // Note: Due to a legacy implementation, most of the library path
duke@435 817 // is set in the launcher. This was to accomodate linking restrictions
duke@435 818 // on legacy Solaris implementations (which are no longer supported).
duke@435 819 // Eventually, all the library path setting will be done here.
duke@435 820 //
duke@435 821 // However, to prevent the proliferation of improperly built native
duke@435 822 // libraries, the new path component /usr/jdk/packages is added here.
duke@435 823
duke@435 824 // Determine the actual CPU architecture.
duke@435 825 char cpu_arch[12];
duke@435 826 sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
duke@435 827 #ifdef _LP64
duke@435 828 // If we are a 64-bit vm, perform the following translations:
duke@435 829 // sparc -> sparcv9
duke@435 830 // i386 -> amd64
duke@435 831 if (strcmp(cpu_arch, "sparc") == 0)
duke@435 832 strcat(cpu_arch, "v9");
duke@435 833 else if (strcmp(cpu_arch, "i386") == 0)
duke@435 834 strcpy(cpu_arch, "amd64");
duke@435 835 #endif
duke@435 836
duke@435 837 // Construct the invariant part of ld_library_path. Note that the
duke@435 838 // space for the colon and the trailing null are provided by the
duke@435 839 // nulls included by the sizeof operator.
duke@435 840 size_t bufsize = sizeof(COMMON_DIR) + sizeof("/lib/") + strlen(cpu_arch);
duke@435 841 common_path = malloc(bufsize);
duke@435 842 if (common_path == NULL) {
duke@435 843 free(info);
duke@435 844 vm_exit_out_of_memory(bufsize,
duke@435 845 "init_system_properties_values common_path");
duke@435 846 }
duke@435 847 sprintf(common_path, COMMON_DIR "/lib/%s", cpu_arch);
duke@435 848
duke@435 849 // struct size is more than sufficient for the path components obtained
duke@435 850 // through the dlinfo() call, so only add additional space for the path
duke@435 851 // components explicitly added here.
duke@435 852 bufsize = info->dls_size + strlen(common_path);
duke@435 853 library_path = malloc(bufsize);
duke@435 854 if (library_path == NULL) {
duke@435 855 free(info);
duke@435 856 free(common_path);
duke@435 857 vm_exit_out_of_memory(bufsize,
duke@435 858 "init_system_properties_values library_path");
duke@435 859 }
duke@435 860 library_path[0] = '\0';
duke@435 861
duke@435 862 // Construct the desired Java library path from the linker's library
duke@435 863 // search path.
duke@435 864 //
duke@435 865 // For compatibility, it is optimal that we insert the additional path
duke@435 866 // components specific to the Java VM after those components specified
duke@435 867 // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
duke@435 868 // infrastructure.
duke@435 869 if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it
duke@435 870 strcpy(library_path, common_path);
duke@435 871 } else {
duke@435 872 int inserted = 0;
duke@435 873 for (i = 0; i < info->dls_cnt; i++, path++) {
duke@435 874 uint_t flags = path->dls_flags & LA_SER_MASK;
duke@435 875 if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
duke@435 876 strcat(library_path, common_path);
duke@435 877 strcat(library_path, os::path_separator());
duke@435 878 inserted = 1;
duke@435 879 }
duke@435 880 strcat(library_path, path->dls_name);
duke@435 881 strcat(library_path, os::path_separator());
duke@435 882 }
duke@435 883 // eliminate trailing path separator
duke@435 884 library_path[strlen(library_path)-1] = '\0';
duke@435 885 }
duke@435 886
duke@435 887 // happens before argument parsing - can't use a trace flag
duke@435 888 // tty->print_raw("init_system_properties_values: native lib path: ");
duke@435 889 // tty->print_raw_cr(library_path);
duke@435 890
duke@435 891 // callee copies into its own buffer
duke@435 892 Arguments::set_library_path(library_path);
duke@435 893
duke@435 894 free(common_path);
duke@435 895 free(library_path);
duke@435 896 free(info);
duke@435 897 }
duke@435 898
duke@435 899 /*
duke@435 900 * Extensions directories.
duke@435 901 *
duke@435 902 * Note that the space for the colon and the trailing null are provided
duke@435 903 * by the nulls included by the sizeof operator (so actually one byte more
duke@435 904 * than necessary is allocated).
duke@435 905 */
duke@435 906 {
duke@435 907 char *buf = (char *) malloc(strlen(Arguments::get_java_home()) +
duke@435 908 sizeof(EXTENSIONS_DIR) + sizeof(COMMON_DIR) +
duke@435 909 sizeof(EXTENSIONS_DIR));
duke@435 910 sprintf(buf, "%s" EXTENSIONS_DIR ":" COMMON_DIR EXTENSIONS_DIR,
duke@435 911 Arguments::get_java_home());
duke@435 912 Arguments::set_ext_dirs(buf);
duke@435 913 }
duke@435 914
duke@435 915 /* Endorsed standards default directory. */
duke@435 916 {
duke@435 917 char * buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
duke@435 918 sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
duke@435 919 Arguments::set_endorsed_dirs(buf);
duke@435 920 }
duke@435 921 }
duke@435 922
duke@435 923 #undef malloc
duke@435 924 #undef free
duke@435 925 #undef getenv
duke@435 926 #undef EXTENSIONS_DIR
duke@435 927 #undef ENDORSED_DIR
duke@435 928 #undef COMMON_DIR
duke@435 929
duke@435 930 }
duke@435 931
duke@435 932 void os::breakpoint() {
duke@435 933 BREAKPOINT;
duke@435 934 }
duke@435 935
duke@435 936 bool os::obsolete_option(const JavaVMOption *option)
duke@435 937 {
duke@435 938 if (!strncmp(option->optionString, "-Xt", 3)) {
duke@435 939 return true;
duke@435 940 } else if (!strncmp(option->optionString, "-Xtm", 4)) {
duke@435 941 return true;
duke@435 942 } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
duke@435 943 return true;
duke@435 944 } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
duke@435 945 return true;
duke@435 946 }
duke@435 947 return false;
duke@435 948 }
duke@435 949
duke@435 950 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
duke@435 951 address stackStart = (address)thread->stack_base();
duke@435 952 address stackEnd = (address)(stackStart - (address)thread->stack_size());
duke@435 953 if (sp < stackStart && sp >= stackEnd ) return true;
duke@435 954 return false;
duke@435 955 }
duke@435 956
duke@435 957 extern "C" void breakpoint() {
duke@435 958 // use debugger to set breakpoint here
duke@435 959 }
duke@435 960
duke@435 961 // Returns an estimate of the current stack pointer. Result must be guaranteed to
duke@435 962 // point into the calling threads stack, and be no lower than the current stack
duke@435 963 // pointer.
duke@435 964 address os::current_stack_pointer() {
duke@435 965 volatile int dummy;
duke@435 966 address sp = (address)&dummy + 8; // %%%% need to confirm if this is right
duke@435 967 return sp;
duke@435 968 }
duke@435 969
duke@435 970 static thread_t main_thread;
duke@435 971
duke@435 972 // Thread start routine for all new Java threads
duke@435 973 extern "C" void* java_start(void* thread_addr) {
duke@435 974 // Try to randomize the cache line index of hot stack frames.
duke@435 975 // This helps when threads of the same stack traces evict each other's
duke@435 976 // cache lines. The threads can be either from the same JVM instance, or
duke@435 977 // from different JVM instances. The benefit is especially true for
duke@435 978 // processors with hyperthreading technology.
duke@435 979 static int counter = 0;
duke@435 980 int pid = os::current_process_id();
duke@435 981 alloca(((pid ^ counter++) & 7) * 128);
duke@435 982
duke@435 983 int prio;
duke@435 984 Thread* thread = (Thread*)thread_addr;
duke@435 985 OSThread* osthr = thread->osthread();
duke@435 986
duke@435 987 osthr->set_lwp_id( _lwp_self() ); // Store lwp in case we are bound
duke@435 988 thread->_schedctl = (void *) schedctl_init () ;
duke@435 989
duke@435 990 if (UseNUMA) {
duke@435 991 int lgrp_id = os::numa_get_group_id();
duke@435 992 if (lgrp_id != -1) {
duke@435 993 thread->set_lgrp_id(lgrp_id);
duke@435 994 }
duke@435 995 }
duke@435 996
duke@435 997 // If the creator called set priority before we started,
duke@435 998 // we need to call set priority now that we have an lwp.
duke@435 999 // Get the priority from libthread and set the priority
duke@435 1000 // for the new Solaris lwp.
duke@435 1001 if ( osthr->thread_id() != -1 ) {
duke@435 1002 if ( UseThreadPriorities ) {
duke@435 1003 thr_getprio(osthr->thread_id(), &prio);
duke@435 1004 if (ThreadPriorityVerbose) {
duke@435 1005 tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT ", setting priority: %d\n",
duke@435 1006 osthr->thread_id(), osthr->lwp_id(), prio );
duke@435 1007 }
duke@435 1008 os::set_native_priority(thread, prio);
duke@435 1009 }
duke@435 1010 } else if (ThreadPriorityVerbose) {
duke@435 1011 warning("Can't set priority in _start routine, thread id hasn't been set\n");
duke@435 1012 }
duke@435 1013
duke@435 1014 assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
duke@435 1015
duke@435 1016 // initialize signal mask for this thread
duke@435 1017 os::Solaris::hotspot_sigmask(thread);
duke@435 1018
duke@435 1019 thread->run();
duke@435 1020
duke@435 1021 // One less thread is executing
duke@435 1022 // When the VMThread gets here, the main thread may have already exited
duke@435 1023 // which frees the CodeHeap containing the Atomic::dec code
duke@435 1024 if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
duke@435 1025 Atomic::dec(&os::Solaris::_os_thread_count);
duke@435 1026 }
duke@435 1027
duke@435 1028 if (UseDetachedThreads) {
duke@435 1029 thr_exit(NULL);
duke@435 1030 ShouldNotReachHere();
duke@435 1031 }
duke@435 1032 return NULL;
duke@435 1033 }
duke@435 1034
duke@435 1035 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
duke@435 1036 // Allocate the OSThread object
duke@435 1037 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 1038 if (osthread == NULL) return NULL;
duke@435 1039
duke@435 1040 // Store info on the Solaris thread into the OSThread
duke@435 1041 osthread->set_thread_id(thread_id);
duke@435 1042 osthread->set_lwp_id(_lwp_self());
duke@435 1043 thread->_schedctl = (void *) schedctl_init () ;
duke@435 1044
duke@435 1045 if (UseNUMA) {
duke@435 1046 int lgrp_id = os::numa_get_group_id();
duke@435 1047 if (lgrp_id != -1) {
duke@435 1048 thread->set_lgrp_id(lgrp_id);
duke@435 1049 }
duke@435 1050 }
duke@435 1051
duke@435 1052 if ( ThreadPriorityVerbose ) {
duke@435 1053 tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
duke@435 1054 osthread->thread_id(), osthread->lwp_id() );
duke@435 1055 }
duke@435 1056
duke@435 1057 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 1058 osthread->set_state(INITIALIZED);
duke@435 1059
duke@435 1060 return osthread;
duke@435 1061 }
duke@435 1062
duke@435 1063 void os::Solaris::hotspot_sigmask(Thread* thread) {
duke@435 1064
duke@435 1065 //Save caller's signal mask
duke@435 1066 sigset_t sigmask;
duke@435 1067 thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
duke@435 1068 OSThread *osthread = thread->osthread();
duke@435 1069 osthread->set_caller_sigmask(sigmask);
duke@435 1070
duke@435 1071 thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
duke@435 1072 if (!ReduceSignalUsage) {
duke@435 1073 if (thread->is_VM_thread()) {
duke@435 1074 // Only the VM thread handles BREAK_SIGNAL ...
duke@435 1075 thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
duke@435 1076 } else {
duke@435 1077 // ... all other threads block BREAK_SIGNAL
duke@435 1078 assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
duke@435 1079 thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
duke@435 1080 }
duke@435 1081 }
duke@435 1082 }
duke@435 1083
duke@435 1084 bool os::create_attached_thread(JavaThread* thread) {
duke@435 1085 #ifdef ASSERT
duke@435 1086 thread->verify_not_published();
duke@435 1087 #endif
duke@435 1088 OSThread* osthread = create_os_thread(thread, thr_self());
duke@435 1089 if (osthread == NULL) {
duke@435 1090 return false;
duke@435 1091 }
duke@435 1092
duke@435 1093 // Initial thread state is RUNNABLE
duke@435 1094 osthread->set_state(RUNNABLE);
duke@435 1095 thread->set_osthread(osthread);
duke@435 1096
duke@435 1097 // initialize signal mask for this thread
duke@435 1098 // and save the caller's signal mask
duke@435 1099 os::Solaris::hotspot_sigmask(thread);
duke@435 1100
duke@435 1101 return true;
duke@435 1102 }
duke@435 1103
duke@435 1104 bool os::create_main_thread(JavaThread* thread) {
duke@435 1105 #ifdef ASSERT
duke@435 1106 thread->verify_not_published();
duke@435 1107 #endif
duke@435 1108 if (_starting_thread == NULL) {
duke@435 1109 _starting_thread = create_os_thread(thread, main_thread);
duke@435 1110 if (_starting_thread == NULL) {
duke@435 1111 return false;
duke@435 1112 }
duke@435 1113 }
duke@435 1114
duke@435 1115 // The primodial thread is runnable from the start
duke@435 1116 _starting_thread->set_state(RUNNABLE);
duke@435 1117
duke@435 1118 thread->set_osthread(_starting_thread);
duke@435 1119
duke@435 1120 // initialize signal mask for this thread
duke@435 1121 // and save the caller's signal mask
duke@435 1122 os::Solaris::hotspot_sigmask(thread);
duke@435 1123
duke@435 1124 return true;
duke@435 1125 }
duke@435 1126
duke@435 1127 // _T2_libthread is true if we believe we are running with the newer
duke@435 1128 // SunSoft lwp/libthread.so (2.8 patch, 2.9 default)
duke@435 1129 bool os::Solaris::_T2_libthread = false;
duke@435 1130
duke@435 1131 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
duke@435 1132 // Allocate the OSThread object
duke@435 1133 OSThread* osthread = new OSThread(NULL, NULL);
duke@435 1134 if (osthread == NULL) {
duke@435 1135 return false;
duke@435 1136 }
duke@435 1137
duke@435 1138 if ( ThreadPriorityVerbose ) {
duke@435 1139 char *thrtyp;
duke@435 1140 switch ( thr_type ) {
duke@435 1141 case vm_thread:
duke@435 1142 thrtyp = (char *)"vm";
duke@435 1143 break;
duke@435 1144 case cgc_thread:
duke@435 1145 thrtyp = (char *)"cgc";
duke@435 1146 break;
duke@435 1147 case pgc_thread:
duke@435 1148 thrtyp = (char *)"pgc";
duke@435 1149 break;
duke@435 1150 case java_thread:
duke@435 1151 thrtyp = (char *)"java";
duke@435 1152 break;
duke@435 1153 case compiler_thread:
duke@435 1154 thrtyp = (char *)"compiler";
duke@435 1155 break;
duke@435 1156 case watcher_thread:
duke@435 1157 thrtyp = (char *)"watcher";
duke@435 1158 break;
duke@435 1159 default:
duke@435 1160 thrtyp = (char *)"unknown";
duke@435 1161 break;
duke@435 1162 }
duke@435 1163 tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
duke@435 1164 }
duke@435 1165
duke@435 1166 // Calculate stack size if it's not specified by caller.
duke@435 1167 if (stack_size == 0) {
duke@435 1168 // The default stack size 1M (2M for LP64).
duke@435 1169 stack_size = (BytesPerWord >> 2) * K * K;
duke@435 1170
duke@435 1171 switch (thr_type) {
duke@435 1172 case os::java_thread:
duke@435 1173 // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
duke@435 1174 if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
duke@435 1175 break;
duke@435 1176 case os::compiler_thread:
duke@435 1177 if (CompilerThreadStackSize > 0) {
duke@435 1178 stack_size = (size_t)(CompilerThreadStackSize * K);
duke@435 1179 break;
duke@435 1180 } // else fall through:
duke@435 1181 // use VMThreadStackSize if CompilerThreadStackSize is not defined
duke@435 1182 case os::vm_thread:
duke@435 1183 case os::pgc_thread:
duke@435 1184 case os::cgc_thread:
duke@435 1185 case os::watcher_thread:
duke@435 1186 if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
duke@435 1187 break;
duke@435 1188 }
duke@435 1189 }
duke@435 1190 stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
duke@435 1191
duke@435 1192 // Initial state is ALLOCATED but not INITIALIZED
duke@435 1193 osthread->set_state(ALLOCATED);
duke@435 1194
duke@435 1195 if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
duke@435 1196 // We got lots of threads. Check if we still have some address space left.
duke@435 1197 // Need to be at least 5Mb of unreserved address space. We do check by
duke@435 1198 // trying to reserve some.
duke@435 1199 const size_t VirtualMemoryBangSize = 20*K*K;
duke@435 1200 char* mem = os::reserve_memory(VirtualMemoryBangSize);
duke@435 1201 if (mem == NULL) {
duke@435 1202 delete osthread;
duke@435 1203 return false;
duke@435 1204 } else {
duke@435 1205 // Release the memory again
duke@435 1206 os::release_memory(mem, VirtualMemoryBangSize);
duke@435 1207 }
duke@435 1208 }
duke@435 1209
duke@435 1210 // Setup osthread because the child thread may need it.
duke@435 1211 thread->set_osthread(osthread);
duke@435 1212
duke@435 1213 // Create the Solaris thread
duke@435 1214 // explicit THR_BOUND for T2_libthread case in case
duke@435 1215 // that assumption is not accurate, but our alternate signal stack
duke@435 1216 // handling is based on it which must have bound threads
duke@435 1217 thread_t tid = 0;
duke@435 1218 long flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED
duke@435 1219 | ((UseBoundThreads || os::Solaris::T2_libthread() ||
duke@435 1220 (thr_type == vm_thread) ||
duke@435 1221 (thr_type == cgc_thread) ||
duke@435 1222 (thr_type == pgc_thread) ||
duke@435 1223 (thr_type == compiler_thread && BackgroundCompilation)) ?
duke@435 1224 THR_BOUND : 0);
duke@435 1225 int status;
duke@435 1226
duke@435 1227 // 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs.
duke@435 1228 //
duke@435 1229 // On multiprocessors systems, libthread sometimes under-provisions our
duke@435 1230 // process with LWPs. On a 30-way systems, for instance, we could have
duke@435 1231 // 50 user-level threads in ready state and only 2 or 3 LWPs assigned
duke@435 1232 // to our process. This can result in under utilization of PEs.
duke@435 1233 // I suspect the problem is related to libthread's LWP
duke@435 1234 // pool management and to the kernel's SIGBLOCKING "last LWP parked"
duke@435 1235 // upcall policy.
duke@435 1236 //
duke@435 1237 // The following code is palliative -- it attempts to ensure that our
duke@435 1238 // process has sufficient LWPs to take advantage of multiple PEs.
duke@435 1239 // Proper long-term cures include using user-level threads bound to LWPs
duke@435 1240 // (THR_BOUND) or using LWP-based synchronization. Note that there is a
duke@435 1241 // slight timing window with respect to sampling _os_thread_count, but
duke@435 1242 // the race is benign. Also, we should periodically recompute
duke@435 1243 // _processors_online as the min of SC_NPROCESSORS_ONLN and the
duke@435 1244 // the number of PEs in our partition. You might be tempted to use
duke@435 1245 // THR_NEW_LWP here, but I'd recommend against it as that could
duke@435 1246 // result in undesirable growth of the libthread's LWP pool.
duke@435 1247 // The fix below isn't sufficient; for instance, it doesn't take into count
duke@435 1248 // LWPs parked on IO. It does, however, help certain CPU-bound benchmarks.
duke@435 1249 //
duke@435 1250 // Some pathologies this scheme doesn't handle:
duke@435 1251 // * Threads can block, releasing the LWPs. The LWPs can age out.
duke@435 1252 // When a large number of threads become ready again there aren't
duke@435 1253 // enough LWPs available to service them. This can occur when the
duke@435 1254 // number of ready threads oscillates.
duke@435 1255 // * LWPs/Threads park on IO, thus taking the LWP out of circulation.
duke@435 1256 //
duke@435 1257 // Finally, we should call thr_setconcurrency() periodically to refresh
duke@435 1258 // the LWP pool and thwart the LWP age-out mechanism.
duke@435 1259 // The "+3" term provides a little slop -- we want to slightly overprovision.
duke@435 1260
duke@435 1261 if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) {
duke@435 1262 if (!(flags & THR_BOUND)) {
duke@435 1263 thr_setconcurrency (os::Solaris::_os_thread_count); // avoid starvation
duke@435 1264 }
duke@435 1265 }
duke@435 1266 // Although this doesn't hurt, we should warn of undefined behavior
duke@435 1267 // when using unbound T1 threads with schedctl(). This should never
duke@435 1268 // happen, as the compiler and VM threads are always created bound
duke@435 1269 DEBUG_ONLY(
duke@435 1270 if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) &&
duke@435 1271 (!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) &&
duke@435 1272 ((thr_type == vm_thread) || (thr_type == cgc_thread) ||
duke@435 1273 (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) {
duke@435 1274 warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound");
duke@435 1275 }
duke@435 1276 );
duke@435 1277
duke@435 1278
duke@435 1279 // Mark that we don't have an lwp or thread id yet.
duke@435 1280 // In case we attempt to set the priority before the thread starts.
duke@435 1281 osthread->set_lwp_id(-1);
duke@435 1282 osthread->set_thread_id(-1);
duke@435 1283
duke@435 1284 status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
duke@435 1285 if (status != 0) {
duke@435 1286 if (PrintMiscellaneous && (Verbose || WizardMode)) {
duke@435 1287 perror("os::create_thread");
duke@435 1288 }
duke@435 1289 thread->set_osthread(NULL);
duke@435 1290 // Need to clean up stuff we've allocated so far
duke@435 1291 delete osthread;
duke@435 1292 return false;
duke@435 1293 }
duke@435 1294
duke@435 1295 Atomic::inc(&os::Solaris::_os_thread_count);
duke@435 1296
duke@435 1297 // Store info on the Solaris thread into the OSThread
duke@435 1298 osthread->set_thread_id(tid);
duke@435 1299
duke@435 1300 // Remember that we created this thread so we can set priority on it
duke@435 1301 osthread->set_vm_created();
duke@435 1302
duke@435 1303 // Set the default thread priority otherwise use NormalPriority
duke@435 1304
duke@435 1305 if ( UseThreadPriorities ) {
duke@435 1306 thr_setprio(tid, (DefaultThreadPriority == -1) ?
duke@435 1307 java_to_os_priority[NormPriority] :
duke@435 1308 DefaultThreadPriority);
duke@435 1309 }
duke@435 1310
duke@435 1311 // Initial thread state is INITIALIZED, not SUSPENDED
duke@435 1312 osthread->set_state(INITIALIZED);
duke@435 1313
duke@435 1314 // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
duke@435 1315 return true;
duke@435 1316 }
duke@435 1317
duke@435 1318 /* defined for >= Solaris 10. This allows builds on earlier versions
duke@435 1319 * of Solaris to take advantage of the newly reserved Solaris JVM signals
duke@435 1320 * With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
duke@435 1321 * and -XX:+UseAltSigs does nothing since these should have no conflict
duke@435 1322 */
duke@435 1323 #if !defined(SIGJVM1)
duke@435 1324 #define SIGJVM1 39
duke@435 1325 #define SIGJVM2 40
duke@435 1326 #endif
duke@435 1327
duke@435 1328 debug_only(static bool signal_sets_initialized = false);
duke@435 1329 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
duke@435 1330 int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
duke@435 1331 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
duke@435 1332
duke@435 1333 bool os::Solaris::is_sig_ignored(int sig) {
duke@435 1334 struct sigaction oact;
duke@435 1335 sigaction(sig, (struct sigaction*)NULL, &oact);
duke@435 1336 void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
duke@435 1337 : CAST_FROM_FN_PTR(void*, oact.sa_handler);
duke@435 1338 if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
duke@435 1339 return true;
duke@435 1340 else
duke@435 1341 return false;
duke@435 1342 }
duke@435 1343
duke@435 1344 // Note: SIGRTMIN is a macro that calls sysconf() so it will
duke@435 1345 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
duke@435 1346 static bool isJVM1available() {
duke@435 1347 return SIGJVM1 < SIGRTMIN;
duke@435 1348 }
duke@435 1349
duke@435 1350 void os::Solaris::signal_sets_init() {
duke@435 1351 // Should also have an assertion stating we are still single-threaded.
duke@435 1352 assert(!signal_sets_initialized, "Already initialized");
duke@435 1353 // Fill in signals that are necessarily unblocked for all threads in
duke@435 1354 // the VM. Currently, we unblock the following signals:
duke@435 1355 // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
duke@435 1356 // by -Xrs (=ReduceSignalUsage));
duke@435 1357 // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
duke@435 1358 // other threads. The "ReduceSignalUsage" boolean tells us not to alter
duke@435 1359 // the dispositions or masks wrt these signals.
duke@435 1360 // Programs embedding the VM that want to use the above signals for their
duke@435 1361 // own purposes must, at this time, use the "-Xrs" option to prevent
duke@435 1362 // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
duke@435 1363 // (See bug 4345157, and other related bugs).
duke@435 1364 // In reality, though, unblocking these signals is really a nop, since
duke@435 1365 // these signals are not blocked by default.
duke@435 1366 sigemptyset(&unblocked_sigs);
duke@435 1367 sigemptyset(&allowdebug_blocked_sigs);
duke@435 1368 sigaddset(&unblocked_sigs, SIGILL);
duke@435 1369 sigaddset(&unblocked_sigs, SIGSEGV);
duke@435 1370 sigaddset(&unblocked_sigs, SIGBUS);
duke@435 1371 sigaddset(&unblocked_sigs, SIGFPE);
duke@435 1372
duke@435 1373 if (isJVM1available) {
duke@435 1374 os::Solaris::set_SIGinterrupt(SIGJVM1);
duke@435 1375 os::Solaris::set_SIGasync(SIGJVM2);
duke@435 1376 } else if (UseAltSigs) {
duke@435 1377 os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
duke@435 1378 os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
duke@435 1379 } else {
duke@435 1380 os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
duke@435 1381 os::Solaris::set_SIGasync(ASYNC_SIGNAL);
duke@435 1382 }
duke@435 1383
duke@435 1384 sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
duke@435 1385 sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
duke@435 1386
duke@435 1387 if (!ReduceSignalUsage) {
duke@435 1388 if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
duke@435 1389 sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 1390 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
duke@435 1391 }
duke@435 1392 if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
duke@435 1393 sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 1394 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
duke@435 1395 }
duke@435 1396 if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
duke@435 1397 sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 1398 sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
duke@435 1399 }
duke@435 1400 }
duke@435 1401 // Fill in signals that are blocked by all but the VM thread.
duke@435 1402 sigemptyset(&vm_sigs);
duke@435 1403 if (!ReduceSignalUsage)
duke@435 1404 sigaddset(&vm_sigs, BREAK_SIGNAL);
duke@435 1405 debug_only(signal_sets_initialized = true);
duke@435 1406
duke@435 1407 // For diagnostics only used in run_periodic_checks
duke@435 1408 sigemptyset(&check_signal_done);
duke@435 1409 }
duke@435 1410
duke@435 1411 // These are signals that are unblocked while a thread is running Java.
duke@435 1412 // (For some reason, they get blocked by default.)
duke@435 1413 sigset_t* os::Solaris::unblocked_signals() {
duke@435 1414 assert(signal_sets_initialized, "Not initialized");
duke@435 1415 return &unblocked_sigs;
duke@435 1416 }
duke@435 1417
duke@435 1418 // These are the signals that are blocked while a (non-VM) thread is
duke@435 1419 // running Java. Only the VM thread handles these signals.
duke@435 1420 sigset_t* os::Solaris::vm_signals() {
duke@435 1421 assert(signal_sets_initialized, "Not initialized");
duke@435 1422 return &vm_sigs;
duke@435 1423 }
duke@435 1424
duke@435 1425 // These are signals that are blocked during cond_wait to allow debugger in
duke@435 1426 sigset_t* os::Solaris::allowdebug_blocked_signals() {
duke@435 1427 assert(signal_sets_initialized, "Not initialized");
duke@435 1428 return &allowdebug_blocked_sigs;
duke@435 1429 }
duke@435 1430
duke@435 1431 // First crack at OS-specific initialization, from inside the new thread.
duke@435 1432 void os::initialize_thread() {
duke@435 1433 int r = thr_main() ;
duke@435 1434 guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
duke@435 1435 if (r) {
duke@435 1436 JavaThread* jt = (JavaThread *)Thread::current();
duke@435 1437 assert(jt != NULL,"Sanity check");
duke@435 1438 size_t stack_size;
duke@435 1439 address base = jt->stack_base();
duke@435 1440 if (Arguments::created_by_java_launcher()) {
duke@435 1441 // Use 2MB to allow for Solaris 7 64 bit mode.
duke@435 1442 stack_size = JavaThread::stack_size_at_create() == 0
duke@435 1443 ? 2048*K : JavaThread::stack_size_at_create();
duke@435 1444
duke@435 1445 // There are rare cases when we may have already used more than
duke@435 1446 // the basic stack size allotment before this method is invoked.
duke@435 1447 // Attempt to allow for a normally sized java_stack.
duke@435 1448 size_t current_stack_offset = (size_t)(base - (address)&stack_size);
duke@435 1449 stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
duke@435 1450 } else {
duke@435 1451 // 6269555: If we were not created by a Java launcher, i.e. if we are
duke@435 1452 // running embedded in a native application, treat the primordial thread
duke@435 1453 // as much like a native attached thread as possible. This means using
duke@435 1454 // the current stack size from thr_stksegment(), unless it is too large
duke@435 1455 // to reliably setup guard pages. A reasonable max size is 8MB.
duke@435 1456 size_t current_size = current_stack_size();
duke@435 1457 // This should never happen, but just in case....
duke@435 1458 if (current_size == 0) current_size = 2 * K * K;
duke@435 1459 stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
duke@435 1460 }
duke@435 1461 address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
duke@435 1462 stack_size = (size_t)(base - bottom);
duke@435 1463
duke@435 1464 assert(stack_size > 0, "Stack size calculation problem");
duke@435 1465
duke@435 1466 if (stack_size > jt->stack_size()) {
duke@435 1467 NOT_PRODUCT(
duke@435 1468 struct rlimit limits;
duke@435 1469 getrlimit(RLIMIT_STACK, &limits);
duke@435 1470 size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
duke@435 1471 assert(size >= jt->stack_size(), "Stack size problem in main thread");
duke@435 1472 )
duke@435 1473 tty->print_cr(
duke@435 1474 "Stack size of %d Kb exceeds current limit of %d Kb.\n"
duke@435 1475 "(Stack sizes are rounded up to a multiple of the system page size.)\n"
duke@435 1476 "See limit(1) to increase the stack size limit.",
duke@435 1477 stack_size / K, jt->stack_size() / K);
duke@435 1478 vm_exit(1);
duke@435 1479 }
duke@435 1480 assert(jt->stack_size() >= stack_size,
duke@435 1481 "Attempt to map more stack than was allocated");
duke@435 1482 jt->set_stack_size(stack_size);
duke@435 1483 }
duke@435 1484
duke@435 1485 // 5/22/01: Right now alternate signal stacks do not handle
duke@435 1486 // throwing stack overflow exceptions, see bug 4463178
duke@435 1487 // Until a fix is found for this, T2 will NOT imply alternate signal
duke@435 1488 // stacks.
duke@435 1489 // If using T2 libthread threads, install an alternate signal stack.
duke@435 1490 // Because alternate stacks associate with LWPs on Solaris,
duke@435 1491 // see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads
duke@435 1492 // we prefer to explicitly stack bang.
duke@435 1493 // If not using T2 libthread, but using UseBoundThreads any threads
duke@435 1494 // (primordial thread, jni_attachCurrentThread) we do not create,
duke@435 1495 // probably are not bound, therefore they can not have an alternate
duke@435 1496 // signal stack. Since our stack banging code is generated and
duke@435 1497 // is shared across threads, all threads must be bound to allow
duke@435 1498 // using alternate signal stacks. The alternative is to interpose
duke@435 1499 // on _lwp_create to associate an alt sig stack with each LWP,
duke@435 1500 // and this could be a problem when the JVM is embedded.
duke@435 1501 // We would prefer to use alternate signal stacks with T2
duke@435 1502 // Since there is currently no accurate way to detect T2
duke@435 1503 // we do not. Assuming T2 when running T1 causes sig 11s or assertions
duke@435 1504 // on installing alternate signal stacks
duke@435 1505
duke@435 1506
duke@435 1507 // 05/09/03: removed alternate signal stack support for Solaris
duke@435 1508 // The alternate signal stack mechanism is no longer needed to
duke@435 1509 // handle stack overflow. This is now handled by allocating
duke@435 1510 // guard pages (red zone) and stackbanging.
duke@435 1511 // Initially the alternate signal stack mechanism was removed because
duke@435 1512 // it did not work with T1 llibthread. Alternate
duke@435 1513 // signal stacks MUST have all threads bound to lwps. Applications
duke@435 1514 // can create their own threads and attach them without their being
duke@435 1515 // bound under T1. This is frequently the case for the primordial thread.
duke@435 1516 // If we were ever to reenable this mechanism we would need to
duke@435 1517 // use the dynamic check for T2 libthread.
duke@435 1518
duke@435 1519 os::Solaris::init_thread_fpu_state();
duke@435 1520 }
duke@435 1521
duke@435 1522
duke@435 1523
duke@435 1524 // Free Solaris resources related to the OSThread
duke@435 1525 void os::free_thread(OSThread* osthread) {
duke@435 1526 assert(osthread != NULL, "os::free_thread but osthread not set");
duke@435 1527
duke@435 1528
duke@435 1529 // We are told to free resources of the argument thread,
duke@435 1530 // but we can only really operate on the current thread.
duke@435 1531 // The main thread must take the VMThread down synchronously
duke@435 1532 // before the main thread exits and frees up CodeHeap
duke@435 1533 guarantee((Thread::current()->osthread() == osthread
duke@435 1534 || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
duke@435 1535 if (Thread::current()->osthread() == osthread) {
duke@435 1536 // Restore caller's signal mask
duke@435 1537 sigset_t sigmask = osthread->caller_sigmask();
duke@435 1538 thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
duke@435 1539 }
duke@435 1540 delete osthread;
duke@435 1541 }
duke@435 1542
duke@435 1543 void os::pd_start_thread(Thread* thread) {
duke@435 1544 int status = thr_continue(thread->osthread()->thread_id());
duke@435 1545 assert_status(status == 0, status, "thr_continue failed");
duke@435 1546 }
duke@435 1547
duke@435 1548
duke@435 1549 intx os::current_thread_id() {
duke@435 1550 return (intx)thr_self();
duke@435 1551 }
duke@435 1552
duke@435 1553 static pid_t _initial_pid = 0;
duke@435 1554
duke@435 1555 int os::current_process_id() {
duke@435 1556 return (int)(_initial_pid ? _initial_pid : getpid());
duke@435 1557 }
duke@435 1558
duke@435 1559 int os::allocate_thread_local_storage() {
duke@435 1560 // %%% in Win32 this allocates a memory segment pointed to by a
duke@435 1561 // register. Dan Stein can implement a similar feature in
duke@435 1562 // Solaris. Alternatively, the VM can do the same thing
duke@435 1563 // explicitly: malloc some storage and keep the pointer in a
duke@435 1564 // register (which is part of the thread's context) (or keep it
duke@435 1565 // in TLS).
duke@435 1566 // %%% In current versions of Solaris, thr_self and TSD can
duke@435 1567 // be accessed via short sequences of displaced indirections.
duke@435 1568 // The value of thr_self is available as %g7(36).
duke@435 1569 // The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
duke@435 1570 // assuming that the current thread already has a value bound to k.
duke@435 1571 // It may be worth experimenting with such access patterns,
duke@435 1572 // and later having the parameters formally exported from a Solaris
duke@435 1573 // interface. I think, however, that it will be faster to
duke@435 1574 // maintain the invariant that %g2 always contains the
duke@435 1575 // JavaThread in Java code, and have stubs simply
duke@435 1576 // treat %g2 as a caller-save register, preserving it in a %lN.
duke@435 1577 thread_key_t tk;
duke@435 1578 if (thr_keycreate( &tk, NULL ) )
duke@435 1579 fatal1("os::allocate_thread_local_storage: thr_keycreate failed (%s)", strerror(errno));
duke@435 1580 return int(tk);
duke@435 1581 }
duke@435 1582
duke@435 1583 void os::free_thread_local_storage(int index) {
duke@435 1584 // %%% don't think we need anything here
duke@435 1585 // if ( pthread_key_delete((pthread_key_t) tk) )
duke@435 1586 // fatal("os::free_thread_local_storage: pthread_key_delete failed");
duke@435 1587 }
duke@435 1588
duke@435 1589 #define SMALLINT 32 // libthread allocate for tsd_common is a version specific
duke@435 1590 // small number - point is NO swap space available
duke@435 1591 void os::thread_local_storage_at_put(int index, void* value) {
duke@435 1592 // %%% this is used only in threadLocalStorage.cpp
duke@435 1593 if (thr_setspecific((thread_key_t)index, value)) {
duke@435 1594 if (errno == ENOMEM) {
duke@435 1595 vm_exit_out_of_memory(SMALLINT, "thr_setspecific: out of swap space");
duke@435 1596 } else {
duke@435 1597 fatal1("os::thread_local_storage_at_put: thr_setspecific failed (%s)", strerror(errno));
duke@435 1598 }
duke@435 1599 } else {
duke@435 1600 ThreadLocalStorage::set_thread_in_slot ((Thread *) value) ;
duke@435 1601 }
duke@435 1602 }
duke@435 1603
duke@435 1604 // This function could be called before TLS is initialized, for example, when
duke@435 1605 // VM receives an async signal or when VM causes a fatal error during
duke@435 1606 // initialization. Return NULL if thr_getspecific() fails.
duke@435 1607 void* os::thread_local_storage_at(int index) {
duke@435 1608 // %%% this is used only in threadLocalStorage.cpp
duke@435 1609 void* r = NULL;
duke@435 1610 return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
duke@435 1611 }
duke@435 1612
duke@435 1613
duke@435 1614 const int NANOSECS_PER_MILLISECS = 1000000;
duke@435 1615 // gethrtime can move backwards if read from one cpu and then a different cpu
duke@435 1616 // getTimeNanos is guaranteed to not move backward on Solaris
duke@435 1617 // local spinloop created as faster for a CAS on an int than
duke@435 1618 // a CAS on a 64bit jlong. Also Atomic::cmpxchg for jlong is not
duke@435 1619 // supported on sparc v8 or pre supports_cx8 intel boxes.
duke@435 1620 // oldgetTimeNanos for systems which do not support CAS on 64bit jlong
duke@435 1621 // i.e. sparc v8 and pre supports_cx8 (i486) intel boxes
duke@435 1622 inline hrtime_t oldgetTimeNanos() {
duke@435 1623 int gotlock = LOCK_INVALID;
duke@435 1624 hrtime_t newtime = gethrtime();
duke@435 1625
duke@435 1626 for (;;) {
duke@435 1627 // grab lock for max_hrtime
duke@435 1628 int curlock = max_hrtime_lock;
duke@435 1629 if (curlock & LOCK_BUSY) continue;
duke@435 1630 if (gotlock = Atomic::cmpxchg(LOCK_BUSY, &max_hrtime_lock, LOCK_FREE) != LOCK_FREE) continue;
duke@435 1631 if (newtime > max_hrtime) {
duke@435 1632 max_hrtime = newtime;
duke@435 1633 } else {
duke@435 1634 newtime = max_hrtime;
duke@435 1635 }
duke@435 1636 // release lock
duke@435 1637 max_hrtime_lock = LOCK_FREE;
duke@435 1638 return newtime;
duke@435 1639 }
duke@435 1640 }
duke@435 1641 // gethrtime can move backwards if read from one cpu and then a different cpu
duke@435 1642 // getTimeNanos is guaranteed to not move backward on Solaris
duke@435 1643 inline hrtime_t getTimeNanos() {
duke@435 1644 if (VM_Version::supports_cx8()) {
xlu@934 1645 const hrtime_t now = gethrtime();
xlu@934 1646 const hrtime_t prev = max_hrtime;
xlu@934 1647 if (now <= prev) return prev; // same or retrograde time;
xlu@934 1648 const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
xlu@934 1649 assert(obsv >= prev, "invariant"); // Monotonicity
xlu@934 1650 // If the CAS succeeded then we're done and return "now".
xlu@934 1651 // If the CAS failed and the observed value "obs" is >= now then
xlu@934 1652 // we should return "obs". If the CAS failed and now > obs > prv then
xlu@934 1653 // some other thread raced this thread and installed a new value, in which case
xlu@934 1654 // we could either (a) retry the entire operation, (b) retry trying to install now
xlu@934 1655 // or (c) just return obs. We use (c). No loop is required although in some cases
xlu@934 1656 // we might discard a higher "now" value in deference to a slightly lower but freshly
xlu@934 1657 // installed obs value. That's entirely benign -- it admits no new orderings compared
xlu@934 1658 // to (a) or (b) -- and greatly reduces coherence traffic.
xlu@934 1659 // We might also condition (c) on the magnitude of the delta between obs and now.
xlu@934 1660 // Avoiding excessive CAS operations to hot RW locations is critical.
xlu@934 1661 // See http://blogs.sun.com/dave/entry/cas_and_cache_trivia_invalidate
xlu@934 1662 return (prev == obsv) ? now : obsv ;
duke@435 1663 } else {
duke@435 1664 return oldgetTimeNanos();
duke@435 1665 }
duke@435 1666 }
duke@435 1667
duke@435 1668 // Time since start-up in seconds to a fine granularity.
duke@435 1669 // Used by VMSelfDestructTimer and the MemProfiler.
duke@435 1670 double os::elapsedTime() {
duke@435 1671 return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
duke@435 1672 }
duke@435 1673
duke@435 1674 jlong os::elapsed_counter() {
duke@435 1675 return (jlong)(getTimeNanos() - first_hrtime);
duke@435 1676 }
duke@435 1677
duke@435 1678 jlong os::elapsed_frequency() {
duke@435 1679 return hrtime_hz;
duke@435 1680 }
duke@435 1681
duke@435 1682 // Return the real, user, and system times in seconds from an
duke@435 1683 // arbitrary fixed point in the past.
duke@435 1684 bool os::getTimesSecs(double* process_real_time,
duke@435 1685 double* process_user_time,
duke@435 1686 double* process_system_time) {
duke@435 1687 struct tms ticks;
duke@435 1688 clock_t real_ticks = times(&ticks);
duke@435 1689
duke@435 1690 if (real_ticks == (clock_t) (-1)) {
duke@435 1691 return false;
duke@435 1692 } else {
duke@435 1693 double ticks_per_second = (double) clock_tics_per_sec;
duke@435 1694 *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
duke@435 1695 *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
duke@435 1696 // For consistency return the real time from getTimeNanos()
duke@435 1697 // converted to seconds.
duke@435 1698 *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
duke@435 1699
duke@435 1700 return true;
duke@435 1701 }
duke@435 1702 }
duke@435 1703
ysr@777 1704 bool os::supports_vtime() { return true; }
ysr@777 1705
ysr@777 1706 bool os::enable_vtime() {
ysr@777 1707 int fd = open("/proc/self/ctl", O_WRONLY);
ysr@777 1708 if (fd == -1)
ysr@777 1709 return false;
ysr@777 1710
ysr@777 1711 long cmd[] = { PCSET, PR_MSACCT };
ysr@777 1712 int res = write(fd, cmd, sizeof(long) * 2);
ysr@777 1713 close(fd);
ysr@777 1714 if (res != sizeof(long) * 2)
ysr@777 1715 return false;
ysr@777 1716
ysr@777 1717 return true;
ysr@777 1718 }
ysr@777 1719
ysr@777 1720 bool os::vtime_enabled() {
ysr@777 1721 int fd = open("/proc/self/status", O_RDONLY);
ysr@777 1722 if (fd == -1)
ysr@777 1723 return false;
ysr@777 1724
ysr@777 1725 pstatus_t status;
ysr@777 1726 int res = read(fd, (void*) &status, sizeof(pstatus_t));
ysr@777 1727 close(fd);
ysr@777 1728 if (res != sizeof(pstatus_t))
ysr@777 1729 return false;
ysr@777 1730
ysr@777 1731 return status.pr_flags & PR_MSACCT;
ysr@777 1732 }
ysr@777 1733
ysr@777 1734 double os::elapsedVTime() {
ysr@777 1735 return (double)gethrvtime() / (double)hrtime_hz;
ysr@777 1736 }
ysr@777 1737
duke@435 1738 // Used internally for comparisons only
duke@435 1739 // getTimeMillis guaranteed to not move backwards on Solaris
duke@435 1740 jlong getTimeMillis() {
duke@435 1741 jlong nanotime = getTimeNanos();
duke@435 1742 return (jlong)(nanotime / NANOSECS_PER_MILLISECS);
duke@435 1743 }
duke@435 1744
sbohne@496 1745 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
sbohne@496 1746 jlong os::javaTimeMillis() {
duke@435 1747 timeval t;
duke@435 1748 if (gettimeofday( &t, NULL) == -1)
sbohne@496 1749 fatal1("os::javaTimeMillis: gettimeofday (%s)", strerror(errno));
duke@435 1750 return jlong(t.tv_sec) * 1000 + jlong(t.tv_usec) / 1000;
duke@435 1751 }
duke@435 1752
duke@435 1753 jlong os::javaTimeNanos() {
duke@435 1754 return (jlong)getTimeNanos();
duke@435 1755 }
duke@435 1756
duke@435 1757 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
duke@435 1758 info_ptr->max_value = ALL_64_BITS; // gethrtime() uses all 64 bits
duke@435 1759 info_ptr->may_skip_backward = false; // not subject to resetting or drifting
duke@435 1760 info_ptr->may_skip_forward = false; // not subject to resetting or drifting
duke@435 1761 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
duke@435 1762 }
duke@435 1763
duke@435 1764 char * os::local_time_string(char *buf, size_t buflen) {
duke@435 1765 struct tm t;
duke@435 1766 time_t long_time;
duke@435 1767 time(&long_time);
duke@435 1768 localtime_r(&long_time, &t);
duke@435 1769 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
duke@435 1770 t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
duke@435 1771 t.tm_hour, t.tm_min, t.tm_sec);
duke@435 1772 return buf;
duke@435 1773 }
duke@435 1774
duke@435 1775 // Note: os::shutdown() might be called very early during initialization, or
duke@435 1776 // called from signal handler. Before adding something to os::shutdown(), make
duke@435 1777 // sure it is async-safe and can handle partially initialized VM.
duke@435 1778 void os::shutdown() {
duke@435 1779
duke@435 1780 // allow PerfMemory to attempt cleanup of any persistent resources
duke@435 1781 perfMemory_exit();
duke@435 1782
duke@435 1783 // needs to remove object in file system
duke@435 1784 AttachListener::abort();
duke@435 1785
duke@435 1786 // flush buffered output, finish log files
duke@435 1787 ostream_abort();
duke@435 1788
duke@435 1789 // Check for abort hook
duke@435 1790 abort_hook_t abort_hook = Arguments::abort_hook();
duke@435 1791 if (abort_hook != NULL) {
duke@435 1792 abort_hook();
duke@435 1793 }
duke@435 1794 }
duke@435 1795
duke@435 1796 // Note: os::abort() might be called very early during initialization, or
duke@435 1797 // called from signal handler. Before adding something to os::abort(), make
duke@435 1798 // sure it is async-safe and can handle partially initialized VM.
duke@435 1799 void os::abort(bool dump_core) {
duke@435 1800 os::shutdown();
duke@435 1801 if (dump_core) {
duke@435 1802 #ifndef PRODUCT
duke@435 1803 fdStream out(defaultStream::output_fd());
duke@435 1804 out.print_raw("Current thread is ");
duke@435 1805 char buf[16];
duke@435 1806 jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
duke@435 1807 out.print_raw_cr(buf);
duke@435 1808 out.print_raw_cr("Dumping core ...");
duke@435 1809 #endif
duke@435 1810 ::abort(); // dump core (for debugging)
duke@435 1811 }
duke@435 1812
duke@435 1813 ::exit(1);
duke@435 1814 }
duke@435 1815
duke@435 1816 // Die immediately, no exit hook, no abort hook, no cleanup.
duke@435 1817 void os::die() {
duke@435 1818 _exit(-1);
duke@435 1819 }
duke@435 1820
duke@435 1821 // unused
duke@435 1822 void os::set_error_file(const char *logfile) {}
duke@435 1823
duke@435 1824 // DLL functions
duke@435 1825
duke@435 1826 const char* os::dll_file_extension() { return ".so"; }
duke@435 1827
duke@435 1828 const char* os::get_temp_directory() { return "/tmp/"; }
duke@435 1829
kamg@677 1830 void os::dll_build_name(
kamg@677 1831 char* buffer, size_t buflen, const char* pname, const char* fname) {
kamg@677 1832 // copied from libhpi
kamg@677 1833 const size_t pnamelen = pname ? strlen(pname) : 0;
kamg@677 1834
kamg@677 1835 /* Quietly truncate on buffer overflow. Should be an error. */
kamg@677 1836 if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
kamg@677 1837 *buffer = '\0';
kamg@677 1838 return;
kamg@677 1839 }
kamg@677 1840
kamg@677 1841 if (pnamelen == 0) {
kamg@677 1842 sprintf(buffer, "lib%s.so", fname);
kamg@677 1843 } else {
kamg@677 1844 sprintf(buffer, "%s/lib%s.so", pname, fname);
kamg@677 1845 }
kamg@677 1846 }
kamg@677 1847
duke@435 1848 const char* os::get_current_directory(char *buf, int buflen) {
duke@435 1849 return getcwd(buf, buflen);
duke@435 1850 }
duke@435 1851
duke@435 1852 // check if addr is inside libjvm[_g].so
duke@435 1853 bool os::address_is_in_vm(address addr) {
duke@435 1854 static address libjvm_base_addr;
duke@435 1855 Dl_info dlinfo;
duke@435 1856
duke@435 1857 if (libjvm_base_addr == NULL) {
duke@435 1858 dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
duke@435 1859 libjvm_base_addr = (address)dlinfo.dli_fbase;
duke@435 1860 assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
duke@435 1861 }
duke@435 1862
duke@435 1863 if (dladdr((void *)addr, &dlinfo)) {
duke@435 1864 if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
duke@435 1865 }
duke@435 1866
duke@435 1867 return false;
duke@435 1868 }
duke@435 1869
duke@435 1870 typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int);
duke@435 1871 static dladdr1_func_type dladdr1_func = NULL;
duke@435 1872
duke@435 1873 bool os::dll_address_to_function_name(address addr, char *buf,
duke@435 1874 int buflen, int * offset) {
duke@435 1875 Dl_info dlinfo;
duke@435 1876
duke@435 1877 // dladdr1_func was initialized in os::init()
duke@435 1878 if (dladdr1_func){
duke@435 1879 // yes, we have dladdr1
duke@435 1880
duke@435 1881 // Support for dladdr1 is checked at runtime; it may be
duke@435 1882 // available even if the vm is built on a machine that does
duke@435 1883 // not have dladdr1 support. Make sure there is a value for
duke@435 1884 // RTLD_DL_SYMENT.
duke@435 1885 #ifndef RTLD_DL_SYMENT
duke@435 1886 #define RTLD_DL_SYMENT 1
duke@435 1887 #endif
duke@435 1888 Sym * info;
duke@435 1889 if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
duke@435 1890 RTLD_DL_SYMENT)) {
duke@435 1891 if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
duke@435 1892 if (offset) *offset = addr - (address)dlinfo.dli_saddr;
duke@435 1893
duke@435 1894 // check if the returned symbol really covers addr
duke@435 1895 return ((char *)dlinfo.dli_saddr + info->st_size > (char *)addr);
duke@435 1896 } else {
duke@435 1897 if (buf) buf[0] = '\0';
duke@435 1898 if (offset) *offset = -1;
duke@435 1899 return false;
duke@435 1900 }
duke@435 1901 } else {
duke@435 1902 // no, only dladdr is available
duke@435 1903 if(dladdr((void *)addr, &dlinfo)) {
duke@435 1904 if (buf) jio_snprintf(buf, buflen, dlinfo.dli_sname);
duke@435 1905 if (offset) *offset = addr - (address)dlinfo.dli_saddr;
duke@435 1906 return true;
duke@435 1907 } else {
duke@435 1908 if (buf) buf[0] = '\0';
duke@435 1909 if (offset) *offset = -1;
duke@435 1910 return false;
duke@435 1911 }
duke@435 1912 }
duke@435 1913 }
duke@435 1914
duke@435 1915 bool os::dll_address_to_library_name(address addr, char* buf,
duke@435 1916 int buflen, int* offset) {
duke@435 1917 Dl_info dlinfo;
duke@435 1918
duke@435 1919 if (dladdr((void*)addr, &dlinfo)){
duke@435 1920 if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
duke@435 1921 if (offset) *offset = addr - (address)dlinfo.dli_fbase;
duke@435 1922 return true;
duke@435 1923 } else {
duke@435 1924 if (buf) buf[0] = '\0';
duke@435 1925 if (offset) *offset = -1;
duke@435 1926 return false;
duke@435 1927 }
duke@435 1928 }
duke@435 1929
duke@435 1930 // Prints the names and full paths of all opened dynamic libraries
duke@435 1931 // for current process
duke@435 1932 void os::print_dll_info(outputStream * st) {
duke@435 1933 Dl_info dli;
duke@435 1934 void *handle;
duke@435 1935 Link_map *map;
duke@435 1936 Link_map *p;
duke@435 1937
duke@435 1938 st->print_cr("Dynamic libraries:"); st->flush();
duke@435 1939
duke@435 1940 if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
duke@435 1941 st->print_cr("Error: Cannot print dynamic libraries.");
duke@435 1942 return;
duke@435 1943 }
duke@435 1944 handle = dlopen(dli.dli_fname, RTLD_LAZY);
duke@435 1945 if (handle == NULL) {
duke@435 1946 st->print_cr("Error: Cannot print dynamic libraries.");
duke@435 1947 return;
duke@435 1948 }
duke@435 1949 dlinfo(handle, RTLD_DI_LINKMAP, &map);
duke@435 1950 if (map == NULL) {
duke@435 1951 st->print_cr("Error: Cannot print dynamic libraries.");
duke@435 1952 return;
duke@435 1953 }
duke@435 1954
duke@435 1955 while (map->l_prev != NULL)
duke@435 1956 map = map->l_prev;
duke@435 1957
duke@435 1958 while (map != NULL) {
duke@435 1959 st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
duke@435 1960 map = map->l_next;
duke@435 1961 }
duke@435 1962
duke@435 1963 dlclose(handle);
duke@435 1964 }
duke@435 1965
duke@435 1966 // Loads .dll/.so and
duke@435 1967 // in case of error it checks if .dll/.so was built for the
duke@435 1968 // same architecture as Hotspot is running on
duke@435 1969
duke@435 1970 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
duke@435 1971 {
duke@435 1972 void * result= ::dlopen(filename, RTLD_LAZY);
duke@435 1973 if (result != NULL) {
duke@435 1974 // Successful loading
duke@435 1975 return result;
duke@435 1976 }
duke@435 1977
duke@435 1978 Elf32_Ehdr elf_head;
duke@435 1979
duke@435 1980 // Read system error message into ebuf
duke@435 1981 // It may or may not be overwritten below
duke@435 1982 ::strncpy(ebuf, ::dlerror(), ebuflen-1);
duke@435 1983 ebuf[ebuflen-1]='\0';
duke@435 1984 int diag_msg_max_length=ebuflen-strlen(ebuf);
duke@435 1985 char* diag_msg_buf=ebuf+strlen(ebuf);
duke@435 1986
duke@435 1987 if (diag_msg_max_length==0) {
duke@435 1988 // No more space in ebuf for additional diagnostics message
duke@435 1989 return NULL;
duke@435 1990 }
duke@435 1991
duke@435 1992
duke@435 1993 int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
duke@435 1994
duke@435 1995 if (file_descriptor < 0) {
duke@435 1996 // Can't open library, report dlerror() message
duke@435 1997 return NULL;
duke@435 1998 }
duke@435 1999
duke@435 2000 bool failed_to_read_elf_head=
duke@435 2001 (sizeof(elf_head)!=
duke@435 2002 (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
duke@435 2003
duke@435 2004 ::close(file_descriptor);
duke@435 2005 if (failed_to_read_elf_head) {
duke@435 2006 // file i/o error - report dlerror() msg
duke@435 2007 return NULL;
duke@435 2008 }
duke@435 2009
duke@435 2010 typedef struct {
duke@435 2011 Elf32_Half code; // Actual value as defined in elf.h
duke@435 2012 Elf32_Half compat_class; // Compatibility of archs at VM's sense
duke@435 2013 char elf_class; // 32 or 64 bit
duke@435 2014 char endianess; // MSB or LSB
duke@435 2015 char* name; // String representation
duke@435 2016 } arch_t;
duke@435 2017
duke@435 2018 static const arch_t arch_array[]={
duke@435 2019 {EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 2020 {EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
duke@435 2021 {EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
duke@435 2022 {EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
duke@435 2023 {EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 2024 {EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
duke@435 2025 {EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
duke@435 2026 {EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
duke@435 2027 {EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"}
duke@435 2028 };
duke@435 2029
duke@435 2030 #if (defined IA32)
duke@435 2031 static Elf32_Half running_arch_code=EM_386;
duke@435 2032 #elif (defined AMD64)
duke@435 2033 static Elf32_Half running_arch_code=EM_X86_64;
duke@435 2034 #elif (defined IA64)
duke@435 2035 static Elf32_Half running_arch_code=EM_IA_64;
duke@435 2036 #elif (defined __sparc) && (defined _LP64)
duke@435 2037 static Elf32_Half running_arch_code=EM_SPARCV9;
duke@435 2038 #elif (defined __sparc) && (!defined _LP64)
duke@435 2039 static Elf32_Half running_arch_code=EM_SPARC;
duke@435 2040 #elif (defined __powerpc64__)
duke@435 2041 static Elf32_Half running_arch_code=EM_PPC64;
duke@435 2042 #elif (defined __powerpc__)
duke@435 2043 static Elf32_Half running_arch_code=EM_PPC;
duke@435 2044 #else
duke@435 2045 #error Method os::dll_load requires that one of following is defined:\
duke@435 2046 IA32, AMD64, IA64, __sparc, __powerpc__
duke@435 2047 #endif
duke@435 2048
duke@435 2049 // Identify compatability class for VM's architecture and library's architecture
duke@435 2050 // Obtain string descriptions for architectures
duke@435 2051
duke@435 2052 arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
duke@435 2053 int running_arch_index=-1;
duke@435 2054
duke@435 2055 for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
duke@435 2056 if (running_arch_code == arch_array[i].code) {
duke@435 2057 running_arch_index = i;
duke@435 2058 }
duke@435 2059 if (lib_arch.code == arch_array[i].code) {
duke@435 2060 lib_arch.compat_class = arch_array[i].compat_class;
duke@435 2061 lib_arch.name = arch_array[i].name;
duke@435 2062 }
duke@435 2063 }
duke@435 2064
duke@435 2065 assert(running_arch_index != -1,
duke@435 2066 "Didn't find running architecture code (running_arch_code) in arch_array");
duke@435 2067 if (running_arch_index == -1) {
duke@435 2068 // Even though running architecture detection failed
duke@435 2069 // we may still continue with reporting dlerror() message
duke@435 2070 return NULL;
duke@435 2071 }
duke@435 2072
duke@435 2073 if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
duke@435 2074 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
duke@435 2075 return NULL;
duke@435 2076 }
duke@435 2077
duke@435 2078 if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
duke@435 2079 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
duke@435 2080 return NULL;
duke@435 2081 }
duke@435 2082
duke@435 2083 if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
duke@435 2084 if ( lib_arch.name!=NULL ) {
duke@435 2085 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 2086 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
duke@435 2087 lib_arch.name, arch_array[running_arch_index].name);
duke@435 2088 } else {
duke@435 2089 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
duke@435 2090 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
duke@435 2091 lib_arch.code,
duke@435 2092 arch_array[running_arch_index].name);
duke@435 2093 }
duke@435 2094 }
duke@435 2095
duke@435 2096 return NULL;
duke@435 2097 }
duke@435 2098
kamg@677 2099 void* os::dll_lookup(void* handle, const char* name) {
kamg@677 2100 return dlsym(handle, name);
kamg@677 2101 }
duke@435 2102
duke@435 2103
duke@435 2104 bool _print_ascii_file(const char* filename, outputStream* st) {
duke@435 2105 int fd = open(filename, O_RDONLY);
duke@435 2106 if (fd == -1) {
duke@435 2107 return false;
duke@435 2108 }
duke@435 2109
duke@435 2110 char buf[32];
duke@435 2111 int bytes;
duke@435 2112 while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
duke@435 2113 st->print_raw(buf, bytes);
duke@435 2114 }
duke@435 2115
duke@435 2116 close(fd);
duke@435 2117
duke@435 2118 return true;
duke@435 2119 }
duke@435 2120
duke@435 2121 void os::print_os_info(outputStream* st) {
duke@435 2122 st->print("OS:");
duke@435 2123
duke@435 2124 if (!_print_ascii_file("/etc/release", st)) {
duke@435 2125 st->print("Solaris");
duke@435 2126 }
duke@435 2127 st->cr();
duke@435 2128
duke@435 2129 // kernel
duke@435 2130 st->print("uname:");
duke@435 2131 struct utsname name;
duke@435 2132 uname(&name);
duke@435 2133 st->print(name.sysname); st->print(" ");
duke@435 2134 st->print(name.release); st->print(" ");
duke@435 2135 st->print(name.version); st->print(" ");
duke@435 2136 st->print(name.machine);
duke@435 2137
duke@435 2138 // libthread
duke@435 2139 if (os::Solaris::T2_libthread()) st->print(" (T2 libthread)");
duke@435 2140 else st->print(" (T1 libthread)");
duke@435 2141 st->cr();
duke@435 2142
duke@435 2143 // rlimit
duke@435 2144 st->print("rlimit:");
duke@435 2145 struct rlimit rlim;
duke@435 2146
duke@435 2147 st->print(" STACK ");
duke@435 2148 getrlimit(RLIMIT_STACK, &rlim);
duke@435 2149 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2150 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 2151
duke@435 2152 st->print(", CORE ");
duke@435 2153 getrlimit(RLIMIT_CORE, &rlim);
duke@435 2154 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2155 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 2156
duke@435 2157 st->print(", NOFILE ");
duke@435 2158 getrlimit(RLIMIT_NOFILE, &rlim);
duke@435 2159 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2160 else st->print("%d", rlim.rlim_cur);
duke@435 2161
duke@435 2162 st->print(", AS ");
duke@435 2163 getrlimit(RLIMIT_AS, &rlim);
duke@435 2164 if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
duke@435 2165 else st->print("%uk", rlim.rlim_cur >> 10);
duke@435 2166 st->cr();
duke@435 2167
duke@435 2168 // load average
duke@435 2169 st->print("load average:");
duke@435 2170 double loadavg[3];
duke@435 2171 os::loadavg(loadavg, 3);
duke@435 2172 st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
duke@435 2173 st->cr();
duke@435 2174 }
duke@435 2175
duke@435 2176
duke@435 2177 static bool check_addr0(outputStream* st) {
duke@435 2178 jboolean status = false;
duke@435 2179 int fd = open("/proc/self/map",O_RDONLY);
duke@435 2180 if (fd >= 0) {
duke@435 2181 prmap_t p;
duke@435 2182 while(read(fd, &p, sizeof(p)) > 0) {
duke@435 2183 if (p.pr_vaddr == 0x0) {
duke@435 2184 st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
duke@435 2185 st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
duke@435 2186 st->print("Access:");
duke@435 2187 st->print("%s",(p.pr_mflags & MA_READ) ? "r" : "-");
duke@435 2188 st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
duke@435 2189 st->print("%s",(p.pr_mflags & MA_EXEC) ? "x" : "-");
duke@435 2190 st->cr();
duke@435 2191 status = true;
duke@435 2192 }
duke@435 2193 close(fd);
duke@435 2194 }
duke@435 2195 }
duke@435 2196 return status;
duke@435 2197 }
duke@435 2198
duke@435 2199 void os::print_memory_info(outputStream* st) {
duke@435 2200 st->print("Memory:");
duke@435 2201 st->print(" %dk page", os::vm_page_size()>>10);
duke@435 2202 st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
duke@435 2203 st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
duke@435 2204 st->cr();
duke@435 2205 (void) check_addr0(st);
duke@435 2206 }
duke@435 2207
duke@435 2208 // Taken from /usr/include/sys/machsig.h Supposed to be architecture specific
duke@435 2209 // but they're the same for all the solaris architectures that we support.
duke@435 2210 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
duke@435 2211 "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
duke@435 2212 "ILL_COPROC", "ILL_BADSTK" };
duke@435 2213
duke@435 2214 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
duke@435 2215 "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
duke@435 2216 "FPE_FLTINV", "FPE_FLTSUB" };
duke@435 2217
duke@435 2218 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
duke@435 2219
duke@435 2220 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
duke@435 2221
duke@435 2222 void os::print_siginfo(outputStream* st, void* siginfo) {
duke@435 2223 st->print("siginfo:");
duke@435 2224
duke@435 2225 const int buflen = 100;
duke@435 2226 char buf[buflen];
duke@435 2227 siginfo_t *si = (siginfo_t*)siginfo;
duke@435 2228 st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
duke@435 2229 char *err = strerror(si->si_errno);
duke@435 2230 if (si->si_errno != 0 && err != NULL) {
duke@435 2231 st->print("si_errno=%s", err);
duke@435 2232 } else {
duke@435 2233 st->print("si_errno=%d", si->si_errno);
duke@435 2234 }
duke@435 2235 const int c = si->si_code;
duke@435 2236 assert(c > 0, "unexpected si_code");
duke@435 2237 switch (si->si_signo) {
duke@435 2238 case SIGILL:
duke@435 2239 st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
duke@435 2240 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2241 break;
duke@435 2242 case SIGFPE:
duke@435 2243 st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
duke@435 2244 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2245 break;
duke@435 2246 case SIGSEGV:
duke@435 2247 st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
duke@435 2248 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2249 break;
duke@435 2250 case SIGBUS:
duke@435 2251 st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
duke@435 2252 st->print(", si_addr=" PTR_FORMAT, si->si_addr);
duke@435 2253 break;
duke@435 2254 default:
duke@435 2255 st->print(", si_code=%d", si->si_code);
duke@435 2256 // no si_addr
duke@435 2257 }
duke@435 2258
duke@435 2259 if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
duke@435 2260 UseSharedSpaces) {
duke@435 2261 FileMapInfo* mapinfo = FileMapInfo::current_info();
duke@435 2262 if (mapinfo->is_in_shared_space(si->si_addr)) {
duke@435 2263 st->print("\n\nError accessing class data sharing archive." \
duke@435 2264 " Mapped file inaccessible during execution, " \
duke@435 2265 " possible disk/network problem.");
duke@435 2266 }
duke@435 2267 }
duke@435 2268 st->cr();
duke@435 2269 }
duke@435 2270
duke@435 2271 // Moved from whole group, because we need them here for diagnostic
duke@435 2272 // prints.
duke@435 2273 #define OLDMAXSIGNUM 32
duke@435 2274 static int Maxsignum = 0;
duke@435 2275 static int *ourSigFlags = NULL;
duke@435 2276
duke@435 2277 extern "C" void sigINTRHandler(int, siginfo_t*, void*);
duke@435 2278
duke@435 2279 int os::Solaris::get_our_sigflags(int sig) {
duke@435 2280 assert(ourSigFlags!=NULL, "signal data structure not initialized");
duke@435 2281 assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
duke@435 2282 return ourSigFlags[sig];
duke@435 2283 }
duke@435 2284
duke@435 2285 void os::Solaris::set_our_sigflags(int sig, int flags) {
duke@435 2286 assert(ourSigFlags!=NULL, "signal data structure not initialized");
duke@435 2287 assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
duke@435 2288 ourSigFlags[sig] = flags;
duke@435 2289 }
duke@435 2290
duke@435 2291
duke@435 2292 static const char* get_signal_handler_name(address handler,
duke@435 2293 char* buf, int buflen) {
duke@435 2294 int offset;
duke@435 2295 bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
duke@435 2296 if (found) {
duke@435 2297 // skip directory names
duke@435 2298 const char *p1, *p2;
duke@435 2299 p1 = buf;
duke@435 2300 size_t len = strlen(os::file_separator());
duke@435 2301 while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
duke@435 2302 jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
duke@435 2303 } else {
duke@435 2304 jio_snprintf(buf, buflen, PTR_FORMAT, handler);
duke@435 2305 }
duke@435 2306 return buf;
duke@435 2307 }
duke@435 2308
duke@435 2309 static void print_signal_handler(outputStream* st, int sig,
duke@435 2310 char* buf, size_t buflen) {
duke@435 2311 struct sigaction sa;
duke@435 2312
duke@435 2313 sigaction(sig, NULL, &sa);
duke@435 2314
duke@435 2315 st->print("%s: ", os::exception_name(sig, buf, buflen));
duke@435 2316
duke@435 2317 address handler = (sa.sa_flags & SA_SIGINFO)
duke@435 2318 ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
duke@435 2319 : CAST_FROM_FN_PTR(address, sa.sa_handler);
duke@435 2320
duke@435 2321 if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
duke@435 2322 st->print("SIG_DFL");
duke@435 2323 } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
duke@435 2324 st->print("SIG_IGN");
duke@435 2325 } else {
duke@435 2326 st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
duke@435 2327 }
duke@435 2328
duke@435 2329 st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
duke@435 2330
duke@435 2331 address rh = VMError::get_resetted_sighandler(sig);
duke@435 2332 // May be, handler was resetted by VMError?
duke@435 2333 if(rh != NULL) {
duke@435 2334 handler = rh;
duke@435 2335 sa.sa_flags = VMError::get_resetted_sigflags(sig);
duke@435 2336 }
duke@435 2337
duke@435 2338 st->print(", sa_flags=" PTR32_FORMAT, sa.sa_flags);
duke@435 2339
duke@435 2340 // Check: is it our handler?
duke@435 2341 if(handler == CAST_FROM_FN_PTR(address, signalHandler) ||
duke@435 2342 handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
duke@435 2343 // It is our signal handler
duke@435 2344 // check for flags
duke@435 2345 if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
duke@435 2346 st->print(
duke@435 2347 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
duke@435 2348 os::Solaris::get_our_sigflags(sig));
duke@435 2349 }
duke@435 2350 }
duke@435 2351 st->cr();
duke@435 2352 }
duke@435 2353
duke@435 2354 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
duke@435 2355 st->print_cr("Signal Handlers:");
duke@435 2356 print_signal_handler(st, SIGSEGV, buf, buflen);
duke@435 2357 print_signal_handler(st, SIGBUS , buf, buflen);
duke@435 2358 print_signal_handler(st, SIGFPE , buf, buflen);
duke@435 2359 print_signal_handler(st, SIGPIPE, buf, buflen);
duke@435 2360 print_signal_handler(st, SIGXFSZ, buf, buflen);
duke@435 2361 print_signal_handler(st, SIGILL , buf, buflen);
duke@435 2362 print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
duke@435 2363 print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
duke@435 2364 print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
duke@435 2365 print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
duke@435 2366 print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
duke@435 2367 print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
duke@435 2368 print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
duke@435 2369 print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
duke@435 2370 }
duke@435 2371
duke@435 2372 static char saved_jvm_path[MAXPATHLEN] = { 0 };
duke@435 2373
duke@435 2374 // Find the full path to the current module, libjvm.so or libjvm_g.so
duke@435 2375 void os::jvm_path(char *buf, jint buflen) {
duke@435 2376 // Error checking.
duke@435 2377 if (buflen < MAXPATHLEN) {
duke@435 2378 assert(false, "must use a large-enough buffer");
duke@435 2379 buf[0] = '\0';
duke@435 2380 return;
duke@435 2381 }
duke@435 2382 // Lazy resolve the path to current module.
duke@435 2383 if (saved_jvm_path[0] != 0) {
duke@435 2384 strcpy(buf, saved_jvm_path);
duke@435 2385 return;
duke@435 2386 }
duke@435 2387
duke@435 2388 Dl_info dlinfo;
duke@435 2389 int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
duke@435 2390 assert(ret != 0, "cannot locate libjvm");
duke@435 2391 realpath((char *)dlinfo.dli_fname, buf);
duke@435 2392
duke@435 2393 if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
duke@435 2394 // Support for the gamma launcher. Typical value for buf is
duke@435 2395 // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so". If "/jre/lib/" appears at
duke@435 2396 // the right place in the string, then assume we are installed in a JDK and
duke@435 2397 // we're done. Otherwise, check for a JAVA_HOME environment variable and fix
duke@435 2398 // up the path so it looks like libjvm.so is installed there (append a
duke@435 2399 // fake suffix hotspot/libjvm.so).
duke@435 2400 const char *p = buf + strlen(buf) - 1;
duke@435 2401 for (int count = 0; p > buf && count < 5; ++count) {
duke@435 2402 for (--p; p > buf && *p != '/'; --p)
duke@435 2403 /* empty */ ;
duke@435 2404 }
duke@435 2405
duke@435 2406 if (strncmp(p, "/jre/lib/", 9) != 0) {
duke@435 2407 // Look for JAVA_HOME in the environment.
duke@435 2408 char* java_home_var = ::getenv("JAVA_HOME");
duke@435 2409 if (java_home_var != NULL && java_home_var[0] != 0) {
duke@435 2410 char cpu_arch[12];
duke@435 2411 sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
duke@435 2412 #ifdef _LP64
duke@435 2413 // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
duke@435 2414 if (strcmp(cpu_arch, "sparc") == 0) {
duke@435 2415 strcat(cpu_arch, "v9");
duke@435 2416 } else if (strcmp(cpu_arch, "i386") == 0) {
duke@435 2417 strcpy(cpu_arch, "amd64");
duke@435 2418 }
duke@435 2419 #endif
duke@435 2420 // Check the current module name "libjvm.so" or "libjvm_g.so".
duke@435 2421 p = strrchr(buf, '/');
duke@435 2422 assert(strstr(p, "/libjvm") == p, "invalid library name");
duke@435 2423 p = strstr(p, "_g") ? "_g" : "";
duke@435 2424
duke@435 2425 realpath(java_home_var, buf);
duke@435 2426 sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
duke@435 2427 if (0 == access(buf, F_OK)) {
duke@435 2428 // Use current module name "libjvm[_g].so" instead of
duke@435 2429 // "libjvm"debug_only("_g")".so" since for fastdebug version
duke@435 2430 // we should have "libjvm.so" but debug_only("_g") adds "_g"!
duke@435 2431 // It is used when we are choosing the HPI library's name
duke@435 2432 // "libhpi[_g].so" in hpi::initialize_get_interface().
duke@435 2433 sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
duke@435 2434 } else {
duke@435 2435 // Go back to path of .so
duke@435 2436 realpath((char *)dlinfo.dli_fname, buf);
duke@435 2437 }
duke@435 2438 }
duke@435 2439 }
duke@435 2440 }
duke@435 2441
duke@435 2442 strcpy(saved_jvm_path, buf);
duke@435 2443 }
duke@435 2444
duke@435 2445
duke@435 2446 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
duke@435 2447 // no prefix required, not even "_"
duke@435 2448 }
duke@435 2449
duke@435 2450
duke@435 2451 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
duke@435 2452 // no suffix required
duke@435 2453 }
duke@435 2454
duke@435 2455
duke@435 2456 // sun.misc.Signal
duke@435 2457
duke@435 2458 extern "C" {
duke@435 2459 static void UserHandler(int sig, void *siginfo, void *context) {
duke@435 2460 // Ctrl-C is pressed during error reporting, likely because the error
duke@435 2461 // handler fails to abort. Let VM die immediately.
duke@435 2462 if (sig == SIGINT && is_error_reported()) {
duke@435 2463 os::die();
duke@435 2464 }
duke@435 2465
duke@435 2466 os::signal_notify(sig);
duke@435 2467 // We do not need to reinstate the signal handler each time...
duke@435 2468 }
duke@435 2469 }
duke@435 2470
duke@435 2471 void* os::user_handler() {
duke@435 2472 return CAST_FROM_FN_PTR(void*, UserHandler);
duke@435 2473 }
duke@435 2474
duke@435 2475 extern "C" {
duke@435 2476 typedef void (*sa_handler_t)(int);
duke@435 2477 typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
duke@435 2478 }
duke@435 2479
duke@435 2480 void* os::signal(int signal_number, void* handler) {
duke@435 2481 struct sigaction sigAct, oldSigAct;
duke@435 2482 sigfillset(&(sigAct.sa_mask));
duke@435 2483 sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
duke@435 2484 sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
duke@435 2485
duke@435 2486 if (sigaction(signal_number, &sigAct, &oldSigAct))
duke@435 2487 // -1 means registration failed
duke@435 2488 return (void *)-1;
duke@435 2489
duke@435 2490 return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
duke@435 2491 }
duke@435 2492
duke@435 2493 void os::signal_raise(int signal_number) {
duke@435 2494 raise(signal_number);
duke@435 2495 }
duke@435 2496
duke@435 2497 /*
duke@435 2498 * The following code is moved from os.cpp for making this
duke@435 2499 * code platform specific, which it is by its very nature.
duke@435 2500 */
duke@435 2501
duke@435 2502 // a counter for each possible signal value
duke@435 2503 static int Sigexit = 0;
duke@435 2504 static int Maxlibjsigsigs;
duke@435 2505 static jint *pending_signals = NULL;
duke@435 2506 static int *preinstalled_sigs = NULL;
duke@435 2507 static struct sigaction *chainedsigactions = NULL;
duke@435 2508 static sema_t sig_sem;
duke@435 2509 typedef int (*version_getting_t)();
duke@435 2510 version_getting_t os::Solaris::get_libjsig_version = NULL;
duke@435 2511 static int libjsigversion = NULL;
duke@435 2512
duke@435 2513 int os::sigexitnum_pd() {
duke@435 2514 assert(Sigexit > 0, "signal memory not yet initialized");
duke@435 2515 return Sigexit;
duke@435 2516 }
duke@435 2517
duke@435 2518 void os::Solaris::init_signal_mem() {
duke@435 2519 // Initialize signal structures
duke@435 2520 Maxsignum = SIGRTMAX;
duke@435 2521 Sigexit = Maxsignum+1;
duke@435 2522 assert(Maxsignum >0, "Unable to obtain max signal number");
duke@435 2523
duke@435 2524 Maxlibjsigsigs = Maxsignum;
duke@435 2525
duke@435 2526 // pending_signals has one int per signal
duke@435 2527 // The additional signal is for SIGEXIT - exit signal to signal_thread
duke@435 2528 pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1));
duke@435 2529 memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
duke@435 2530
duke@435 2531 if (UseSignalChaining) {
duke@435 2532 chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
duke@435 2533 * (Maxsignum + 1));
duke@435 2534 memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
duke@435 2535 preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1));
duke@435 2536 memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
duke@435 2537 }
duke@435 2538 ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ));
duke@435 2539 memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
duke@435 2540 }
duke@435 2541
duke@435 2542 void os::signal_init_pd() {
duke@435 2543 int ret;
duke@435 2544
duke@435 2545 ret = ::sema_init(&sig_sem, 0, NULL, NULL);
duke@435 2546 assert(ret == 0, "sema_init() failed");
duke@435 2547 }
duke@435 2548
duke@435 2549 void os::signal_notify(int signal_number) {
duke@435 2550 int ret;
duke@435 2551
duke@435 2552 Atomic::inc(&pending_signals[signal_number]);
duke@435 2553 ret = ::sema_post(&sig_sem);
duke@435 2554 assert(ret == 0, "sema_post() failed");
duke@435 2555 }
duke@435 2556
duke@435 2557 static int check_pending_signals(bool wait_for_signal) {
duke@435 2558 int ret;
duke@435 2559 while (true) {
duke@435 2560 for (int i = 0; i < Sigexit + 1; i++) {
duke@435 2561 jint n = pending_signals[i];
duke@435 2562 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
duke@435 2563 return i;
duke@435 2564 }
duke@435 2565 }
duke@435 2566 if (!wait_for_signal) {
duke@435 2567 return -1;
duke@435 2568 }
duke@435 2569 JavaThread *thread = JavaThread::current();
duke@435 2570 ThreadBlockInVM tbivm(thread);
duke@435 2571
duke@435 2572 bool threadIsSuspended;
duke@435 2573 do {
duke@435 2574 thread->set_suspend_equivalent();
duke@435 2575 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 2576 while((ret = ::sema_wait(&sig_sem)) == EINTR)
duke@435 2577 ;
duke@435 2578 assert(ret == 0, "sema_wait() failed");
duke@435 2579
duke@435 2580 // were we externally suspended while we were waiting?
duke@435 2581 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
duke@435 2582 if (threadIsSuspended) {
duke@435 2583 //
duke@435 2584 // The semaphore has been incremented, but while we were waiting
duke@435 2585 // another thread suspended us. We don't want to continue running
duke@435 2586 // while suspended because that would surprise the thread that
duke@435 2587 // suspended us.
duke@435 2588 //
duke@435 2589 ret = ::sema_post(&sig_sem);
duke@435 2590 assert(ret == 0, "sema_post() failed");
duke@435 2591
duke@435 2592 thread->java_suspend_self();
duke@435 2593 }
duke@435 2594 } while (threadIsSuspended);
duke@435 2595 }
duke@435 2596 }
duke@435 2597
duke@435 2598 int os::signal_lookup() {
duke@435 2599 return check_pending_signals(false);
duke@435 2600 }
duke@435 2601
duke@435 2602 int os::signal_wait() {
duke@435 2603 return check_pending_signals(true);
duke@435 2604 }
duke@435 2605
duke@435 2606 ////////////////////////////////////////////////////////////////////////////////
duke@435 2607 // Virtual Memory
duke@435 2608
duke@435 2609 static int page_size = -1;
duke@435 2610
duke@435 2611 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later. init_2() will
duke@435 2612 // clear this var if support is not available.
duke@435 2613 static bool has_map_align = true;
duke@435 2614
duke@435 2615 int os::vm_page_size() {
duke@435 2616 assert(page_size != -1, "must call os::init");
duke@435 2617 return page_size;
duke@435 2618 }
duke@435 2619
duke@435 2620 // Solaris allocates memory by pages.
duke@435 2621 int os::vm_allocation_granularity() {
duke@435 2622 assert(page_size != -1, "must call os::init");
duke@435 2623 return page_size;
duke@435 2624 }
duke@435 2625
coleenp@1091 2626 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
coleenp@1091 2627 int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
duke@435 2628 size_t size = bytes;
duke@435 2629 return
coleenp@1091 2630 NULL != Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
coleenp@1091 2631 }
coleenp@1091 2632
coleenp@1091 2633 bool os::commit_memory(char* addr, size_t bytes, size_t alignment_hint,
coleenp@1091 2634 bool exec) {
coleenp@1091 2635 if (commit_memory(addr, bytes, exec)) {
duke@435 2636 if (UseMPSS && alignment_hint > (size_t)vm_page_size()) {
duke@435 2637 // If the large page size has been set and the VM
duke@435 2638 // is using large pages, use the large page size
duke@435 2639 // if it is smaller than the alignment hint. This is
duke@435 2640 // a case where the VM wants to use a larger alignment size
duke@435 2641 // for its own reasons but still want to use large pages
duke@435 2642 // (which is what matters to setting the mpss range.
duke@435 2643 size_t page_size = 0;
duke@435 2644 if (large_page_size() < alignment_hint) {
duke@435 2645 assert(UseLargePages, "Expected to be here for large page use only");
duke@435 2646 page_size = large_page_size();
duke@435 2647 } else {
duke@435 2648 // If the alignment hint is less than the large page
duke@435 2649 // size, the VM wants a particular alignment (thus the hint)
duke@435 2650 // for internal reasons. Try to set the mpss range using
duke@435 2651 // the alignment_hint.
duke@435 2652 page_size = alignment_hint;
duke@435 2653 }
duke@435 2654 // Since this is a hint, ignore any failures.
duke@435 2655 (void)Solaris::set_mpss_range(addr, bytes, page_size);
duke@435 2656 }
duke@435 2657 return true;
duke@435 2658 }
duke@435 2659 return false;
duke@435 2660 }
duke@435 2661
duke@435 2662 // Uncommit the pages in a specified region.
duke@435 2663 void os::free_memory(char* addr, size_t bytes) {
duke@435 2664 if (madvise(addr, bytes, MADV_FREE) < 0) {
duke@435 2665 debug_only(warning("MADV_FREE failed."));
duke@435 2666 return;
duke@435 2667 }
duke@435 2668 }
duke@435 2669
duke@435 2670 // Change the page size in a given range.
duke@435 2671 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
duke@435 2672 assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
duke@435 2673 assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
duke@435 2674 Solaris::set_mpss_range(addr, bytes, alignment_hint);
duke@435 2675 }
duke@435 2676
duke@435 2677 // Tell the OS to make the range local to the first-touching LWP
iveresov@576 2678 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
duke@435 2679 assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
duke@435 2680 if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
duke@435 2681 debug_only(warning("MADV_ACCESS_LWP failed."));
duke@435 2682 }
duke@435 2683 }
duke@435 2684
duke@435 2685 // Tell the OS that this range would be accessed from different LWPs.
duke@435 2686 void os::numa_make_global(char *addr, size_t bytes) {
duke@435 2687 assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
duke@435 2688 if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
duke@435 2689 debug_only(warning("MADV_ACCESS_MANY failed."));
duke@435 2690 }
duke@435 2691 }
duke@435 2692
duke@435 2693 // Get the number of the locality groups.
duke@435 2694 size_t os::numa_get_groups_num() {
duke@435 2695 size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
duke@435 2696 return n != -1 ? n : 1;
duke@435 2697 }
duke@435 2698
duke@435 2699 // Get a list of leaf locality groups. A leaf lgroup is group that
duke@435 2700 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
duke@435 2701 // board. An LWP is assigned to one of these groups upon creation.
duke@435 2702 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
duke@435 2703 if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
duke@435 2704 ids[0] = 0;
duke@435 2705 return 1;
duke@435 2706 }
duke@435 2707 int result_size = 0, top = 1, bottom = 0, cur = 0;
duke@435 2708 for (int k = 0; k < size; k++) {
duke@435 2709 int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
duke@435 2710 (Solaris::lgrp_id_t*)&ids[top], size - top);
duke@435 2711 if (r == -1) {
duke@435 2712 ids[0] = 0;
duke@435 2713 return 1;
duke@435 2714 }
duke@435 2715 if (!r) {
iveresov@579 2716 // That's a leaf node.
duke@435 2717 assert (bottom <= cur, "Sanity check");
iveresov@579 2718 // Check if the node has memory
iveresov@579 2719 if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
iveresov@579 2720 NULL, 0, LGRP_RSRC_MEM) > 0) {
iveresov@579 2721 ids[bottom++] = ids[cur];
iveresov@579 2722 }
duke@435 2723 }
duke@435 2724 top += r;
duke@435 2725 cur++;
duke@435 2726 }
iveresov@703 2727 if (bottom == 0) {
iveresov@703 2728 // Handle a situation, when the OS reports no memory available.
iveresov@703 2729 // Assume UMA architecture.
iveresov@703 2730 ids[0] = 0;
iveresov@703 2731 return 1;
iveresov@703 2732 }
duke@435 2733 return bottom;
duke@435 2734 }
duke@435 2735
ysr@777 2736 // Detect the topology change. Typically happens during CPU plugging-unplugging.
duke@435 2737 bool os::numa_topology_changed() {
duke@435 2738 int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
duke@435 2739 if (is_stale != -1 && is_stale) {
duke@435 2740 Solaris::lgrp_fini(Solaris::lgrp_cookie());
duke@435 2741 Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
duke@435 2742 assert(c != 0, "Failure to initialize LGRP API");
duke@435 2743 Solaris::set_lgrp_cookie(c);
duke@435 2744 return true;
duke@435 2745 }
duke@435 2746 return false;
duke@435 2747 }
duke@435 2748
duke@435 2749 // Get the group id of the current LWP.
duke@435 2750 int os::numa_get_group_id() {
iveresov@579 2751 int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
duke@435 2752 if (lgrp_id == -1) {
duke@435 2753 return 0;
duke@435 2754 }
iveresov@579 2755 const int size = os::numa_get_groups_num();
iveresov@579 2756 int *ids = (int*)alloca(size * sizeof(int));
iveresov@579 2757
iveresov@579 2758 // Get the ids of all lgroups with memory; r is the count.
iveresov@579 2759 int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
iveresov@579 2760 (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
iveresov@579 2761 if (r <= 0) {
iveresov@579 2762 return 0;
iveresov@579 2763 }
iveresov@579 2764 return ids[os::random() % r];
duke@435 2765 }
duke@435 2766
duke@435 2767 // Request information about the page.
duke@435 2768 bool os::get_page_info(char *start, page_info* info) {
duke@435 2769 const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
duke@435 2770 uint64_t addr = (uintptr_t)start;
duke@435 2771 uint64_t outdata[2];
duke@435 2772 uint_t validity = 0;
duke@435 2773
duke@435 2774 if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
duke@435 2775 return false;
duke@435 2776 }
duke@435 2777
duke@435 2778 info->size = 0;
duke@435 2779 info->lgrp_id = -1;
duke@435 2780
duke@435 2781 if ((validity & 1) != 0) {
duke@435 2782 if ((validity & 2) != 0) {
duke@435 2783 info->lgrp_id = outdata[0];
duke@435 2784 }
duke@435 2785 if ((validity & 4) != 0) {
duke@435 2786 info->size = outdata[1];
duke@435 2787 }
duke@435 2788 return true;
duke@435 2789 }
duke@435 2790 return false;
duke@435 2791 }
duke@435 2792
duke@435 2793 // Scan the pages from start to end until a page different than
duke@435 2794 // the one described in the info parameter is encountered.
duke@435 2795 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
duke@435 2796 const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
duke@435 2797 const size_t types = sizeof(info_types) / sizeof(info_types[0]);
duke@435 2798 uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT];
duke@435 2799 uint_t validity[MAX_MEMINFO_CNT];
duke@435 2800
duke@435 2801 size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
duke@435 2802 uint64_t p = (uint64_t)start;
duke@435 2803 while (p < (uint64_t)end) {
duke@435 2804 addrs[0] = p;
duke@435 2805 size_t addrs_count = 1;
duke@435 2806 while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] < (uint64_t)end) {
duke@435 2807 addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
duke@435 2808 addrs_count++;
duke@435 2809 }
duke@435 2810
duke@435 2811 if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
duke@435 2812 return NULL;
duke@435 2813 }
duke@435 2814
duke@435 2815 size_t i = 0;
duke@435 2816 for (; i < addrs_count; i++) {
duke@435 2817 if ((validity[i] & 1) != 0) {
duke@435 2818 if ((validity[i] & 4) != 0) {
duke@435 2819 if (outdata[types * i + 1] != page_expected->size) {
duke@435 2820 break;
duke@435 2821 }
duke@435 2822 } else
duke@435 2823 if (page_expected->size != 0) {
duke@435 2824 break;
duke@435 2825 }
duke@435 2826
duke@435 2827 if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
duke@435 2828 if (outdata[types * i] != page_expected->lgrp_id) {
duke@435 2829 break;
duke@435 2830 }
duke@435 2831 }
duke@435 2832 } else {
duke@435 2833 return NULL;
duke@435 2834 }
duke@435 2835 }
duke@435 2836
duke@435 2837 if (i != addrs_count) {
duke@435 2838 if ((validity[i] & 2) != 0) {
duke@435 2839 page_found->lgrp_id = outdata[types * i];
duke@435 2840 } else {
duke@435 2841 page_found->lgrp_id = -1;
duke@435 2842 }
duke@435 2843 if ((validity[i] & 4) != 0) {
duke@435 2844 page_found->size = outdata[types * i + 1];
duke@435 2845 } else {
duke@435 2846 page_found->size = 0;
duke@435 2847 }
duke@435 2848 return (char*)addrs[i];
duke@435 2849 }
duke@435 2850
duke@435 2851 p = addrs[addrs_count - 1] + page_size;
duke@435 2852 }
duke@435 2853 return end;
duke@435 2854 }
duke@435 2855
duke@435 2856 bool os::uncommit_memory(char* addr, size_t bytes) {
duke@435 2857 size_t size = bytes;
duke@435 2858 // Map uncommitted pages PROT_NONE so we fail early if we touch an
duke@435 2859 // uncommitted page. Otherwise, the read/write might succeed if we
duke@435 2860 // have enough swap space to back the physical page.
duke@435 2861 return
duke@435 2862 NULL != Solaris::mmap_chunk(addr, size,
duke@435 2863 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
duke@435 2864 PROT_NONE);
duke@435 2865 }
duke@435 2866
duke@435 2867 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
duke@435 2868 char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
duke@435 2869
duke@435 2870 if (b == MAP_FAILED) {
duke@435 2871 return NULL;
duke@435 2872 }
duke@435 2873 return b;
duke@435 2874 }
duke@435 2875
sbohne@495 2876 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes, size_t alignment_hint, bool fixed) {
sbohne@495 2877 char* addr = requested_addr;
sbohne@495 2878 int flags = MAP_PRIVATE | MAP_NORESERVE;
sbohne@495 2879
sbohne@495 2880 assert(!(fixed && (alignment_hint > 0)), "alignment hint meaningless with fixed mmap");
sbohne@495 2881
sbohne@495 2882 if (fixed) {
sbohne@495 2883 flags |= MAP_FIXED;
sbohne@495 2884 } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
duke@435 2885 flags |= MAP_ALIGN;
duke@435 2886 addr = (char*) alignment_hint;
duke@435 2887 }
duke@435 2888
duke@435 2889 // Map uncommitted pages PROT_NONE so we fail early if we touch an
duke@435 2890 // uncommitted page. Otherwise, the read/write might succeed if we
duke@435 2891 // have enough swap space to back the physical page.
sbohne@495 2892 return mmap_chunk(addr, bytes, flags, PROT_NONE);
sbohne@495 2893 }
sbohne@495 2894
sbohne@495 2895 char* os::reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
sbohne@495 2896 char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint, (requested_addr != NULL));
duke@435 2897
duke@435 2898 guarantee(requested_addr == NULL || requested_addr == addr,
duke@435 2899 "OS failed to return requested mmap address.");
duke@435 2900 return addr;
duke@435 2901 }
duke@435 2902
duke@435 2903 // Reserve memory at an arbitrary address, only if that area is
duke@435 2904 // available (and not reserved for something else).
duke@435 2905
duke@435 2906 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
duke@435 2907 const int max_tries = 10;
duke@435 2908 char* base[max_tries];
duke@435 2909 size_t size[max_tries];
duke@435 2910
duke@435 2911 // Solaris adds a gap between mmap'ed regions. The size of the gap
duke@435 2912 // is dependent on the requested size and the MMU. Our initial gap
duke@435 2913 // value here is just a guess and will be corrected later.
duke@435 2914 bool had_top_overlap = false;
duke@435 2915 bool have_adjusted_gap = false;
duke@435 2916 size_t gap = 0x400000;
duke@435 2917
duke@435 2918 // Assert only that the size is a multiple of the page size, since
duke@435 2919 // that's all that mmap requires, and since that's all we really know
duke@435 2920 // about at this low abstraction level. If we need higher alignment,
duke@435 2921 // we can either pass an alignment to this method or verify alignment
duke@435 2922 // in one of the methods further up the call chain. See bug 5044738.
duke@435 2923 assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
duke@435 2924
sbohne@495 2925 // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
sbohne@495 2926 // Give it a try, if the kernel honors the hint we can return immediately.
sbohne@495 2927 char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
sbohne@495 2928 volatile int err = errno;
sbohne@495 2929 if (addr == requested_addr) {
sbohne@495 2930 return addr;
sbohne@495 2931 } else if (addr != NULL) {
sbohne@495 2932 unmap_memory(addr, bytes);
sbohne@495 2933 }
sbohne@495 2934
sbohne@495 2935 if (PrintMiscellaneous && Verbose) {
sbohne@495 2936 char buf[256];
sbohne@495 2937 buf[0] = '\0';
sbohne@495 2938 if (addr == NULL) {
sbohne@495 2939 jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
sbohne@495 2940 }
sbohne@495 2941 warning("attempt_reserve_memory_at: couldn't reserve %d bytes at "
sbohne@495 2942 PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
sbohne@495 2943 "%s", bytes, requested_addr, addr, buf);
sbohne@495 2944 }
sbohne@495 2945
sbohne@495 2946 // Address hint method didn't work. Fall back to the old method.
sbohne@495 2947 // In theory, once SNV becomes our oldest supported platform, this
sbohne@495 2948 // code will no longer be needed.
sbohne@495 2949 //
duke@435 2950 // Repeatedly allocate blocks until the block is allocated at the
duke@435 2951 // right spot. Give up after max_tries.
duke@435 2952 int i;
duke@435 2953 for (i = 0; i < max_tries; ++i) {
duke@435 2954 base[i] = reserve_memory(bytes);
duke@435 2955
duke@435 2956 if (base[i] != NULL) {
duke@435 2957 // Is this the block we wanted?
duke@435 2958 if (base[i] == requested_addr) {
duke@435 2959 size[i] = bytes;
duke@435 2960 break;
duke@435 2961 }
duke@435 2962
duke@435 2963 // check that the gap value is right
duke@435 2964 if (had_top_overlap && !have_adjusted_gap) {
duke@435 2965 size_t actual_gap = base[i-1] - base[i] - bytes;
duke@435 2966 if (gap != actual_gap) {
duke@435 2967 // adjust the gap value and retry the last 2 allocations
duke@435 2968 assert(i > 0, "gap adjustment code problem");
duke@435 2969 have_adjusted_gap = true; // adjust the gap only once, just in case
duke@435 2970 gap = actual_gap;
duke@435 2971 if (PrintMiscellaneous && Verbose) {
duke@435 2972 warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
duke@435 2973 }
duke@435 2974 unmap_memory(base[i], bytes);
duke@435 2975 unmap_memory(base[i-1], size[i-1]);
duke@435 2976 i-=2;
duke@435 2977 continue;
duke@435 2978 }
duke@435 2979 }
duke@435 2980
duke@435 2981 // Does this overlap the block we wanted? Give back the overlapped
duke@435 2982 // parts and try again.
duke@435 2983 //
duke@435 2984 // There is still a bug in this code: if top_overlap == bytes,
duke@435 2985 // the overlap is offset from requested region by the value of gap.
duke@435 2986 // In this case giving back the overlapped part will not work,
duke@435 2987 // because we'll give back the entire block at base[i] and
duke@435 2988 // therefore the subsequent allocation will not generate a new gap.
duke@435 2989 // This could be fixed with a new algorithm that used larger
duke@435 2990 // or variable size chunks to find the requested region -
duke@435 2991 // but such a change would introduce additional complications.
duke@435 2992 // It's rare enough that the planets align for this bug,
duke@435 2993 // so we'll just wait for a fix for 6204603/5003415 which
duke@435 2994 // will provide a mmap flag to allow us to avoid this business.
duke@435 2995
duke@435 2996 size_t top_overlap = requested_addr + (bytes + gap) - base[i];
duke@435 2997 if (top_overlap >= 0 && top_overlap < bytes) {
duke@435 2998 had_top_overlap = true;
duke@435 2999 unmap_memory(base[i], top_overlap);
duke@435 3000 base[i] += top_overlap;
duke@435 3001 size[i] = bytes - top_overlap;
duke@435 3002 } else {
duke@435 3003 size_t bottom_overlap = base[i] + bytes - requested_addr;
duke@435 3004 if (bottom_overlap >= 0 && bottom_overlap < bytes) {
duke@435 3005 if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
duke@435 3006 warning("attempt_reserve_memory_at: possible alignment bug");
duke@435 3007 }
duke@435 3008 unmap_memory(requested_addr, bottom_overlap);
duke@435 3009 size[i] = bytes - bottom_overlap;
duke@435 3010 } else {
duke@435 3011 size[i] = bytes;
duke@435 3012 }
duke@435 3013 }
duke@435 3014 }
duke@435 3015 }
duke@435 3016
duke@435 3017 // Give back the unused reserved pieces.
duke@435 3018
duke@435 3019 for (int j = 0; j < i; ++j) {
duke@435 3020 if (base[j] != NULL) {
duke@435 3021 unmap_memory(base[j], size[j]);
duke@435 3022 }
duke@435 3023 }
duke@435 3024
duke@435 3025 return (i < max_tries) ? requested_addr : NULL;
duke@435 3026 }
duke@435 3027
duke@435 3028 bool os::release_memory(char* addr, size_t bytes) {
duke@435 3029 size_t size = bytes;
duke@435 3030 return munmap(addr, size) == 0;
duke@435 3031 }
duke@435 3032
duke@435 3033 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
duke@435 3034 assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
duke@435 3035 "addr must be page aligned");
duke@435 3036 int retVal = mprotect(addr, bytes, prot);
duke@435 3037 return retVal == 0;
duke@435 3038 }
duke@435 3039
coleenp@672 3040 // Protect memory (Used to pass readonly pages through
duke@435 3041 // JNI GetArray<type>Elements with empty arrays.)
coleenp@912 3042 // Also, used for serialization page and for compressed oops null pointer
coleenp@912 3043 // checking.
coleenp@672 3044 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
coleenp@672 3045 bool is_committed) {
coleenp@672 3046 unsigned int p = 0;
coleenp@672 3047 switch (prot) {
coleenp@672 3048 case MEM_PROT_NONE: p = PROT_NONE; break;
coleenp@672 3049 case MEM_PROT_READ: p = PROT_READ; break;
coleenp@672 3050 case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break;
coleenp@672 3051 case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
coleenp@672 3052 default:
coleenp@672 3053 ShouldNotReachHere();
coleenp@672 3054 }
coleenp@672 3055 // is_committed is unused.
coleenp@672 3056 return solaris_mprotect(addr, bytes, p);
duke@435 3057 }
duke@435 3058
duke@435 3059 // guard_memory and unguard_memory only happens within stack guard pages.
duke@435 3060 // Since ISM pertains only to the heap, guard and unguard memory should not
duke@435 3061 /// happen with an ISM region.
duke@435 3062 bool os::guard_memory(char* addr, size_t bytes) {
duke@435 3063 return solaris_mprotect(addr, bytes, PROT_NONE);
duke@435 3064 }
duke@435 3065
duke@435 3066 bool os::unguard_memory(char* addr, size_t bytes) {
coleenp@912 3067 return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
duke@435 3068 }
duke@435 3069
duke@435 3070 // Large page support
duke@435 3071
duke@435 3072 // UseLargePages is the master flag to enable/disable large page memory.
duke@435 3073 // UseMPSS and UseISM are supported for compatibility reasons. Their combined
duke@435 3074 // effects can be described in the following table:
duke@435 3075 //
duke@435 3076 // UseLargePages UseMPSS UseISM
duke@435 3077 // false * * => UseLargePages is the master switch, turning
duke@435 3078 // it off will turn off both UseMPSS and
duke@435 3079 // UseISM. VM will not use large page memory
duke@435 3080 // regardless the settings of UseMPSS/UseISM.
duke@435 3081 // true false false => Unless future Solaris provides other
duke@435 3082 // mechanism to use large page memory, this
duke@435 3083 // combination is equivalent to -UseLargePages,
duke@435 3084 // VM will not use large page memory
duke@435 3085 // true true false => JVM will use MPSS for large page memory.
duke@435 3086 // This is the default behavior.
duke@435 3087 // true false true => JVM will use ISM for large page memory.
duke@435 3088 // true true true => JVM will use ISM if it is available.
duke@435 3089 // Otherwise, JVM will fall back to MPSS.
duke@435 3090 // Becaues ISM is now available on all
duke@435 3091 // supported Solaris versions, this combination
duke@435 3092 // is equivalent to +UseISM -UseMPSS.
duke@435 3093
duke@435 3094 typedef int (*getpagesizes_func_type) (size_t[], int);
duke@435 3095 static size_t _large_page_size = 0;
duke@435 3096
duke@435 3097 bool os::Solaris::ism_sanity_check(bool warn, size_t * page_size) {
duke@435 3098 // x86 uses either 2M or 4M page, depending on whether PAE (Physical Address
duke@435 3099 // Extensions) mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. Sparc
duke@435 3100 // can support multiple page sizes.
duke@435 3101
duke@435 3102 // Don't bother to probe page size because getpagesizes() comes with MPSS.
duke@435 3103 // ISM is only recommended on old Solaris where there is no MPSS support.
duke@435 3104 // Simply choose a conservative value as default.
duke@435 3105 *page_size = LargePageSizeInBytes ? LargePageSizeInBytes :
duke@435 3106 SPARC_ONLY(4 * M) IA32_ONLY(4 * M) AMD64_ONLY(2 * M);
duke@435 3107
duke@435 3108 // ISM is available on all supported Solaris versions
duke@435 3109 return true;
duke@435 3110 }
duke@435 3111
duke@435 3112 // Insertion sort for small arrays (descending order).
duke@435 3113 static void insertion_sort_descending(size_t* array, int len) {
duke@435 3114 for (int i = 0; i < len; i++) {
duke@435 3115 size_t val = array[i];
duke@435 3116 for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
duke@435 3117 size_t tmp = array[key];
duke@435 3118 array[key] = array[key - 1];
duke@435 3119 array[key - 1] = tmp;
duke@435 3120 }
duke@435 3121 }
duke@435 3122 }
duke@435 3123
duke@435 3124 bool os::Solaris::mpss_sanity_check(bool warn, size_t * page_size) {
duke@435 3125 getpagesizes_func_type getpagesizes_func =
duke@435 3126 CAST_TO_FN_PTR(getpagesizes_func_type, dlsym(RTLD_DEFAULT, "getpagesizes"));
duke@435 3127 if (getpagesizes_func == NULL) {
duke@435 3128 if (warn) {
duke@435 3129 warning("MPSS is not supported by the operating system.");
duke@435 3130 }
duke@435 3131 return false;
duke@435 3132 }
duke@435 3133
duke@435 3134 const unsigned int usable_count = VM_Version::page_size_count();
duke@435 3135 if (usable_count == 1) {
duke@435 3136 return false;
duke@435 3137 }
duke@435 3138
duke@435 3139 // Fill the array of page sizes.
duke@435 3140 int n = getpagesizes_func(_page_sizes, page_sizes_max);
duke@435 3141 assert(n > 0, "Solaris bug?");
duke@435 3142 if (n == page_sizes_max) {
duke@435 3143 // Add a sentinel value (necessary only if the array was completely filled
duke@435 3144 // since it is static (zeroed at initialization)).
duke@435 3145 _page_sizes[--n] = 0;
duke@435 3146 DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
duke@435 3147 }
duke@435 3148 assert(_page_sizes[n] == 0, "missing sentinel");
duke@435 3149
duke@435 3150 if (n == 1) return false; // Only one page size available.
duke@435 3151
duke@435 3152 // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
duke@435 3153 // select up to usable_count elements. First sort the array, find the first
duke@435 3154 // acceptable value, then copy the usable sizes to the top of the array and
duke@435 3155 // trim the rest. Make sure to include the default page size :-).
duke@435 3156 //
duke@435 3157 // A better policy could get rid of the 4M limit by taking the sizes of the
duke@435 3158 // important VM memory regions (java heap and possibly the code cache) into
duke@435 3159 // account.
duke@435 3160 insertion_sort_descending(_page_sizes, n);
duke@435 3161 const size_t size_limit =
duke@435 3162 FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
duke@435 3163 int beg;
duke@435 3164 for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ;
duke@435 3165 const int end = MIN2((int)usable_count, n) - 1;
duke@435 3166 for (int cur = 0; cur < end; ++cur, ++beg) {
duke@435 3167 _page_sizes[cur] = _page_sizes[beg];
duke@435 3168 }
duke@435 3169 _page_sizes[end] = vm_page_size();
duke@435 3170 _page_sizes[end + 1] = 0;
duke@435 3171
duke@435 3172 if (_page_sizes[end] > _page_sizes[end - 1]) {
duke@435 3173 // Default page size is not the smallest; sort again.
duke@435 3174 insertion_sort_descending(_page_sizes, end + 1);
duke@435 3175 }
duke@435 3176 *page_size = _page_sizes[0];
duke@435 3177
duke@435 3178 return true;
duke@435 3179 }
duke@435 3180
duke@435 3181 bool os::large_page_init() {
duke@435 3182 if (!UseLargePages) {
duke@435 3183 UseISM = false;
duke@435 3184 UseMPSS = false;
duke@435 3185 return false;
duke@435 3186 }
duke@435 3187
duke@435 3188 // print a warning if any large page related flag is specified on command line
duke@435 3189 bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 3190 !FLAG_IS_DEFAULT(UseISM) ||
duke@435 3191 !FLAG_IS_DEFAULT(UseMPSS) ||
duke@435 3192 !FLAG_IS_DEFAULT(LargePageSizeInBytes);
duke@435 3193 UseISM = UseISM &&
duke@435 3194 Solaris::ism_sanity_check(warn_on_failure, &_large_page_size);
duke@435 3195 if (UseISM) {
duke@435 3196 // ISM disables MPSS to be compatible with old JDK behavior
duke@435 3197 UseMPSS = false;
jcoomes@514 3198 _page_sizes[0] = _large_page_size;
jcoomes@514 3199 _page_sizes[1] = vm_page_size();
duke@435 3200 }
duke@435 3201
duke@435 3202 UseMPSS = UseMPSS &&
duke@435 3203 Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
duke@435 3204
duke@435 3205 UseLargePages = UseISM || UseMPSS;
duke@435 3206 return UseLargePages;
duke@435 3207 }
duke@435 3208
duke@435 3209 bool os::Solaris::set_mpss_range(caddr_t start, size_t bytes, size_t align) {
duke@435 3210 // Signal to OS that we want large pages for addresses
duke@435 3211 // from addr, addr + bytes
duke@435 3212 struct memcntl_mha mpss_struct;
duke@435 3213 mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
duke@435 3214 mpss_struct.mha_pagesize = align;
duke@435 3215 mpss_struct.mha_flags = 0;
duke@435 3216 if (memcntl(start, bytes, MC_HAT_ADVISE,
duke@435 3217 (caddr_t) &mpss_struct, 0, 0) < 0) {
duke@435 3218 debug_only(warning("Attempt to use MPSS failed."));
duke@435 3219 return false;
duke@435 3220 }
duke@435 3221 return true;
duke@435 3222 }
duke@435 3223
coleenp@1091 3224 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
coleenp@1091 3225 // "exec" is passed in but not used. Creating the shared image for
coleenp@1091 3226 // the code cache doesn't have an SHM_X executable permission to check.
duke@435 3227 assert(UseLargePages && UseISM, "only for ISM large pages");
duke@435 3228
duke@435 3229 size_t size = bytes;
duke@435 3230 char* retAddr = NULL;
duke@435 3231 int shmid;
duke@435 3232 key_t ismKey;
duke@435 3233
duke@435 3234 bool warn_on_failure = UseISM &&
duke@435 3235 (!FLAG_IS_DEFAULT(UseLargePages) ||
duke@435 3236 !FLAG_IS_DEFAULT(UseISM) ||
duke@435 3237 !FLAG_IS_DEFAULT(LargePageSizeInBytes)
duke@435 3238 );
duke@435 3239 char msg[128];
duke@435 3240
duke@435 3241 ismKey = IPC_PRIVATE;
duke@435 3242
duke@435 3243 // Create a large shared memory region to attach to based on size.
duke@435 3244 // Currently, size is the total size of the heap
duke@435 3245 shmid = shmget(ismKey, size, SHM_R | SHM_W | IPC_CREAT);
duke@435 3246 if (shmid == -1){
duke@435 3247 if (warn_on_failure) {
duke@435 3248 jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
duke@435 3249 warning(msg);
duke@435 3250 }
duke@435 3251 return NULL;
duke@435 3252 }
duke@435 3253
duke@435 3254 // Attach to the region
duke@435 3255 retAddr = (char *) shmat(shmid, 0, SHM_SHARE_MMU | SHM_R | SHM_W);
duke@435 3256 int err = errno;
duke@435 3257
duke@435 3258 // Remove shmid. If shmat() is successful, the actual shared memory segment
duke@435 3259 // will be deleted when it's detached by shmdt() or when the process
duke@435 3260 // terminates. If shmat() is not successful this will remove the shared
duke@435 3261 // segment immediately.
duke@435 3262 shmctl(shmid, IPC_RMID, NULL);
duke@435 3263
duke@435 3264 if (retAddr == (char *) -1) {
duke@435 3265 if (warn_on_failure) {
duke@435 3266 jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
duke@435 3267 warning(msg);
duke@435 3268 }
duke@435 3269 return NULL;
duke@435 3270 }
duke@435 3271
duke@435 3272 return retAddr;
duke@435 3273 }
duke@435 3274
duke@435 3275 bool os::release_memory_special(char* base, size_t bytes) {
duke@435 3276 // detaching the SHM segment will also delete it, see reserve_memory_special()
duke@435 3277 int rslt = shmdt(base);
duke@435 3278 return rslt == 0;
duke@435 3279 }
duke@435 3280
duke@435 3281 size_t os::large_page_size() {
duke@435 3282 return _large_page_size;
duke@435 3283 }
duke@435 3284
duke@435 3285 // MPSS allows application to commit large page memory on demand; with ISM
duke@435 3286 // the entire memory region must be allocated as shared memory.
duke@435 3287 bool os::can_commit_large_page_memory() {
duke@435 3288 return UseISM ? false : true;
duke@435 3289 }
duke@435 3290
jcoomes@514 3291 bool os::can_execute_large_page_memory() {
jcoomes@514 3292 return UseISM ? false : true;
jcoomes@514 3293 }
jcoomes@514 3294
duke@435 3295 static int os_sleep(jlong millis, bool interruptible) {
duke@435 3296 const jlong limit = INT_MAX;
duke@435 3297 jlong prevtime;
duke@435 3298 int res;
duke@435 3299
duke@435 3300 while (millis > limit) {
duke@435 3301 if ((res = os_sleep(limit, interruptible)) != OS_OK)
duke@435 3302 return res;
duke@435 3303 millis -= limit;
duke@435 3304 }
duke@435 3305
duke@435 3306 // Restart interrupted polls with new parameters until the proper delay
duke@435 3307 // has been completed.
duke@435 3308
duke@435 3309 prevtime = getTimeMillis();
duke@435 3310
duke@435 3311 while (millis > 0) {
duke@435 3312 jlong newtime;
duke@435 3313
duke@435 3314 if (!interruptible) {
duke@435 3315 // Following assert fails for os::yield_all:
duke@435 3316 // assert(!thread->is_Java_thread(), "must not be java thread");
duke@435 3317 res = poll(NULL, 0, millis);
duke@435 3318 } else {
duke@435 3319 JavaThread *jt = JavaThread::current();
duke@435 3320
duke@435 3321 INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt,
duke@435 3322 os::Solaris::clear_interrupted);
duke@435 3323 }
duke@435 3324
duke@435 3325 // INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for
duke@435 3326 // thread.Interrupt.
duke@435 3327
duke@435 3328 if((res == OS_ERR) && (errno == EINTR)) {
duke@435 3329 newtime = getTimeMillis();
duke@435 3330 assert(newtime >= prevtime, "time moving backwards");
duke@435 3331 /* Doing prevtime and newtime in microseconds doesn't help precision,
duke@435 3332 and trying to round up to avoid lost milliseconds can result in a
duke@435 3333 too-short delay. */
duke@435 3334 millis -= newtime - prevtime;
duke@435 3335 if(millis <= 0)
duke@435 3336 return OS_OK;
duke@435 3337 prevtime = newtime;
duke@435 3338 } else
duke@435 3339 return res;
duke@435 3340 }
duke@435 3341
duke@435 3342 return OS_OK;
duke@435 3343 }
duke@435 3344
duke@435 3345 // Read calls from inside the vm need to perform state transitions
duke@435 3346 size_t os::read(int fd, void *buf, unsigned int nBytes) {
duke@435 3347 INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
duke@435 3348 }
duke@435 3349
duke@435 3350 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
duke@435 3351 assert(thread == Thread::current(), "thread consistency check");
duke@435 3352
duke@435 3353 // TODO-FIXME: this should be removed.
duke@435 3354 // On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock
duke@435 3355 // situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate
duke@435 3356 // a SIGWAITING signal which would enable the threads library to create a new lwp for the starving
duke@435 3357 // thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel
duke@435 3358 // is fooled into believing that the system is making progress. In the code below we block the
duke@435 3359 // the watcher thread while safepoint is in progress so that it would not appear as though the
duke@435 3360 // system is making progress.
duke@435 3361 if (!Solaris::T2_libthread() &&
duke@435 3362 thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) {
duke@435 3363 // We now try to acquire the threads lock. Since this lock is held by the VM thread during
duke@435 3364 // the entire safepoint, the watcher thread will line up here during the safepoint.
duke@435 3365 Threads_lock->lock_without_safepoint_check();
duke@435 3366 Threads_lock->unlock();
duke@435 3367 }
duke@435 3368
duke@435 3369 if (thread->is_Java_thread()) {
duke@435 3370 // This is a JavaThread so we honor the _thread_blocked protocol
duke@435 3371 // even for sleeps of 0 milliseconds. This was originally done
duke@435 3372 // as a workaround for bug 4338139. However, now we also do it
duke@435 3373 // to honor the suspend-equivalent protocol.
duke@435 3374
duke@435 3375 JavaThread *jt = (JavaThread *) thread;
duke@435 3376 ThreadBlockInVM tbivm(jt);
duke@435 3377
duke@435 3378 jt->set_suspend_equivalent();
duke@435 3379 // cleared by handle_special_suspend_equivalent_condition() or
duke@435 3380 // java_suspend_self() via check_and_wait_while_suspended()
duke@435 3381
duke@435 3382 int ret_code;
duke@435 3383 if (millis <= 0) {
duke@435 3384 thr_yield();
duke@435 3385 ret_code = 0;
duke@435 3386 } else {
duke@435 3387 // The original sleep() implementation did not create an
duke@435 3388 // OSThreadWaitState helper for sleeps of 0 milliseconds.
duke@435 3389 // I'm preserving that decision for now.
duke@435 3390 OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
duke@435 3391
duke@435 3392 ret_code = os_sleep(millis, interruptible);
duke@435 3393 }
duke@435 3394
duke@435 3395 // were we externally suspended while we were waiting?
duke@435 3396 jt->check_and_wait_while_suspended();
duke@435 3397
duke@435 3398 return ret_code;
duke@435 3399 }
duke@435 3400
duke@435 3401 // non-JavaThread from this point on:
duke@435 3402
duke@435 3403 if (millis <= 0) {
duke@435 3404 thr_yield();
duke@435 3405 return 0;
duke@435 3406 }
duke@435 3407
duke@435 3408 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 3409
duke@435 3410 return os_sleep(millis, interruptible);
duke@435 3411 }
duke@435 3412
duke@435 3413 int os::naked_sleep() {
duke@435 3414 // %% make the sleep time an integer flag. for now use 1 millisec.
duke@435 3415 return os_sleep(1, false);
duke@435 3416 }
duke@435 3417
duke@435 3418 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
duke@435 3419 void os::infinite_sleep() {
duke@435 3420 while (true) { // sleep forever ...
duke@435 3421 ::sleep(100); // ... 100 seconds at a time
duke@435 3422 }
duke@435 3423 }
duke@435 3424
duke@435 3425 // Used to convert frequent JVM_Yield() to nops
duke@435 3426 bool os::dont_yield() {
duke@435 3427 if (DontYieldALot) {
duke@435 3428 static hrtime_t last_time = 0;
duke@435 3429 hrtime_t diff = getTimeNanos() - last_time;
duke@435 3430
duke@435 3431 if (diff < DontYieldALotInterval * 1000000)
duke@435 3432 return true;
duke@435 3433
duke@435 3434 last_time += diff;
duke@435 3435
duke@435 3436 return false;
duke@435 3437 }
duke@435 3438 else {
duke@435 3439 return false;
duke@435 3440 }
duke@435 3441 }
duke@435 3442
duke@435 3443 // Caveat: Solaris os::yield() causes a thread-state transition whereas
duke@435 3444 // the linux and win32 implementations do not. This should be checked.
duke@435 3445
duke@435 3446 void os::yield() {
duke@435 3447 // Yields to all threads with same or greater priority
duke@435 3448 os::sleep(Thread::current(), 0, false);
duke@435 3449 }
duke@435 3450
duke@435 3451 // Note that yield semantics are defined by the scheduling class to which
duke@435 3452 // the thread currently belongs. Typically, yield will _not yield to
duke@435 3453 // other equal or higher priority threads that reside on the dispatch queues
duke@435 3454 // of other CPUs.
duke@435 3455
duke@435 3456 os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
duke@435 3457
duke@435 3458
duke@435 3459 // On Solaris we found that yield_all doesn't always yield to all other threads.
duke@435 3460 // There have been cases where there is a thread ready to execute but it doesn't
duke@435 3461 // get an lwp as the VM thread continues to spin with sleeps of 1 millisecond.
duke@435 3462 // The 1 millisecond wait doesn't seem long enough for the kernel to issue a
duke@435 3463 // SIGWAITING signal which will cause a new lwp to be created. So we count the
duke@435 3464 // number of times yield_all is called in the one loop and increase the sleep
duke@435 3465 // time after 8 attempts. If this fails too we increase the concurrency level
duke@435 3466 // so that the starving thread would get an lwp
duke@435 3467
duke@435 3468 void os::yield_all(int attempts) {
duke@435 3469 // Yields to all threads, including threads with lower priorities
duke@435 3470 if (attempts == 0) {
duke@435 3471 os::sleep(Thread::current(), 1, false);
duke@435 3472 } else {
duke@435 3473 int iterations = attempts % 30;
duke@435 3474 if (iterations == 0 && !os::Solaris::T2_libthread()) {
duke@435 3475 // thr_setconcurrency and _getconcurrency make sense only under T1.
duke@435 3476 int noofLWPS = thr_getconcurrency();
duke@435 3477 if (noofLWPS < (Threads::number_of_threads() + 2)) {
duke@435 3478 thr_setconcurrency(thr_getconcurrency() + 1);
duke@435 3479 }
duke@435 3480 } else if (iterations < 25) {
duke@435 3481 os::sleep(Thread::current(), 1, false);
duke@435 3482 } else {
duke@435 3483 os::sleep(Thread::current(), 10, false);
duke@435 3484 }
duke@435 3485 }
duke@435 3486 }
duke@435 3487
duke@435 3488 // Called from the tight loops to possibly influence time-sharing heuristics
duke@435 3489 void os::loop_breaker(int attempts) {
duke@435 3490 os::yield_all(attempts);
duke@435 3491 }
duke@435 3492
duke@435 3493
duke@435 3494 // Interface for setting lwp priorities. If we are using T2 libthread,
duke@435 3495 // which forces the use of BoundThreads or we manually set UseBoundThreads,
duke@435 3496 // all of our threads will be assigned to real lwp's. Using the thr_setprio
duke@435 3497 // function is meaningless in this mode so we must adjust the real lwp's priority
duke@435 3498 // The routines below implement the getting and setting of lwp priorities.
duke@435 3499 //
duke@435 3500 // Note: There are three priority scales used on Solaris. Java priotities
duke@435 3501 // which range from 1 to 10, libthread "thr_setprio" scale which range
duke@435 3502 // from 0 to 127, and the current scheduling class of the process we
duke@435 3503 // are running in. This is typically from -60 to +60.
duke@435 3504 // The setting of the lwp priorities in done after a call to thr_setprio
duke@435 3505 // so Java priorities are mapped to libthread priorities and we map from
duke@435 3506 // the latter to lwp priorities. We don't keep priorities stored in
duke@435 3507 // Java priorities since some of our worker threads want to set priorities
duke@435 3508 // higher than all Java threads.
duke@435 3509 //
duke@435 3510 // For related information:
duke@435 3511 // (1) man -s 2 priocntl
duke@435 3512 // (2) man -s 4 priocntl
duke@435 3513 // (3) man dispadmin
duke@435 3514 // = librt.so
duke@435 3515 // = libthread/common/rtsched.c - thrp_setlwpprio().
duke@435 3516 // = ps -cL <pid> ... to validate priority.
duke@435 3517 // = sched_get_priority_min and _max
duke@435 3518 // pthread_create
duke@435 3519 // sched_setparam
duke@435 3520 // pthread_setschedparam
duke@435 3521 //
duke@435 3522 // Assumptions:
duke@435 3523 // + We assume that all threads in the process belong to the same
duke@435 3524 // scheduling class. IE. an homogenous process.
duke@435 3525 // + Must be root or in IA group to change change "interactive" attribute.
duke@435 3526 // Priocntl() will fail silently. The only indication of failure is when
duke@435 3527 // we read-back the value and notice that it hasn't changed.
duke@435 3528 // + Interactive threads enter the runq at the head, non-interactive at the tail.
duke@435 3529 // + For RT, change timeslice as well. Invariant:
duke@435 3530 // constant "priority integral"
duke@435 3531 // Konst == TimeSlice * (60-Priority)
duke@435 3532 // Given a priority, compute appropriate timeslice.
duke@435 3533 // + Higher numerical values have higher priority.
duke@435 3534
duke@435 3535 // sched class attributes
duke@435 3536 typedef struct {
duke@435 3537 int schedPolicy; // classID
duke@435 3538 int maxPrio;
duke@435 3539 int minPrio;
duke@435 3540 } SchedInfo;
duke@435 3541
duke@435 3542
duke@435 3543 static SchedInfo tsLimits, iaLimits, rtLimits;
duke@435 3544
duke@435 3545 #ifdef ASSERT
duke@435 3546 static int ReadBackValidate = 1;
duke@435 3547 #endif
duke@435 3548 static int myClass = 0;
duke@435 3549 static int myMin = 0;
duke@435 3550 static int myMax = 0;
duke@435 3551 static int myCur = 0;
duke@435 3552 static bool priocntl_enable = false;
duke@435 3553
duke@435 3554
duke@435 3555 // Call the version of priocntl suitable for all supported versions
duke@435 3556 // of Solaris. We need to call through this wrapper so that we can
duke@435 3557 // build on Solaris 9 and run on Solaris 8, 9 and 10.
duke@435 3558 //
duke@435 3559 // This code should be removed if we ever stop supporting Solaris 8
duke@435 3560 // and earlier releases.
duke@435 3561
duke@435 3562 static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
duke@435 3563 typedef long (*priocntl_type)(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
duke@435 3564 static priocntl_type priocntl_ptr = priocntl_stub;
duke@435 3565
duke@435 3566 // Stub to set the value of the real pointer, and then call the real
duke@435 3567 // function.
duke@435 3568
duke@435 3569 static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg) {
duke@435 3570 // Try Solaris 8- name only.
duke@435 3571 priocntl_type tmp = (priocntl_type)dlsym(RTLD_DEFAULT, "__priocntl");
duke@435 3572 guarantee(tmp != NULL, "priocntl function not found.");
duke@435 3573 priocntl_ptr = tmp;
duke@435 3574 return (*priocntl_ptr)(PC_VERSION, idtype, id, cmd, arg);
duke@435 3575 }
duke@435 3576
duke@435 3577
duke@435 3578 // lwp_priocntl_init
duke@435 3579 //
duke@435 3580 // Try to determine the priority scale for our process.
duke@435 3581 //
duke@435 3582 // Return errno or 0 if OK.
duke@435 3583 //
duke@435 3584 static
duke@435 3585 int lwp_priocntl_init ()
duke@435 3586 {
duke@435 3587 int rslt;
duke@435 3588 pcinfo_t ClassInfo;
duke@435 3589 pcparms_t ParmInfo;
duke@435 3590 int i;
duke@435 3591
duke@435 3592 if (!UseThreadPriorities) return 0;
duke@435 3593
duke@435 3594 // We are using Bound threads, we need to determine our priority ranges
duke@435 3595 if (os::Solaris::T2_libthread() || UseBoundThreads) {
duke@435 3596 // If ThreadPriorityPolicy is 1, switch tables
duke@435 3597 if (ThreadPriorityPolicy == 1) {
duke@435 3598 for (i = 0 ; i < MaxPriority+1; i++)
duke@435 3599 os::java_to_os_priority[i] = prio_policy1[i];
duke@435 3600 }
duke@435 3601 }
duke@435 3602 // Not using Bound Threads, set to ThreadPolicy 1
duke@435 3603 else {
duke@435 3604 for ( i = 0 ; i < MaxPriority+1; i++ ) {
duke@435 3605 os::java_to_os_priority[i] = prio_policy1[i];
duke@435 3606 }
duke@435 3607 return 0;
duke@435 3608 }
duke@435 3609
duke@435 3610
duke@435 3611 // Get IDs for a set of well-known scheduling classes.
duke@435 3612 // TODO-FIXME: GETCLINFO returns the current # of classes in the
duke@435 3613 // the system. We should have a loop that iterates over the
duke@435 3614 // classID values, which are known to be "small" integers.
duke@435 3615
duke@435 3616 strcpy(ClassInfo.pc_clname, "TS");
duke@435 3617 ClassInfo.pc_cid = -1;
duke@435 3618 rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
duke@435 3619 if (rslt < 0) return errno;
duke@435 3620 assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
duke@435 3621 tsLimits.schedPolicy = ClassInfo.pc_cid;
duke@435 3622 tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
duke@435 3623 tsLimits.minPrio = -tsLimits.maxPrio;
duke@435 3624
duke@435 3625 strcpy(ClassInfo.pc_clname, "IA");
duke@435 3626 ClassInfo.pc_cid = -1;
duke@435 3627 rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
duke@435 3628 if (rslt < 0) return errno;
duke@435 3629 assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
duke@435 3630 iaLimits.schedPolicy = ClassInfo.pc_cid;
duke@435 3631 iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
duke@435 3632 iaLimits.minPrio = -iaLimits.maxPrio;
duke@435 3633
duke@435 3634 strcpy(ClassInfo.pc_clname, "RT");
duke@435 3635 ClassInfo.pc_cid = -1;
duke@435 3636 rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
duke@435 3637 if (rslt < 0) return errno;
duke@435 3638 assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
duke@435 3639 rtLimits.schedPolicy = ClassInfo.pc_cid;
duke@435 3640 rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
duke@435 3641 rtLimits.minPrio = 0;
duke@435 3642
duke@435 3643
duke@435 3644 // Query our "current" scheduling class.
duke@435 3645 // This will normally be IA,TS or, rarely, RT.
duke@435 3646 memset (&ParmInfo, 0, sizeof(ParmInfo));
duke@435 3647 ParmInfo.pc_cid = PC_CLNULL;
duke@435 3648 rslt = (*priocntl_ptr) (PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo );
duke@435 3649 if ( rslt < 0 ) return errno;
duke@435 3650 myClass = ParmInfo.pc_cid;
duke@435 3651
duke@435 3652 // We now know our scheduling classId, get specific information
duke@435 3653 // the class.
duke@435 3654 ClassInfo.pc_cid = myClass;
duke@435 3655 ClassInfo.pc_clname[0] = 0;
duke@435 3656 rslt = (*priocntl_ptr) (PC_VERSION, (idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo );
duke@435 3657 if ( rslt < 0 ) return errno;
duke@435 3658
duke@435 3659 if (ThreadPriorityVerbose)
duke@435 3660 tty->print_cr ("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
duke@435 3661
duke@435 3662 memset(&ParmInfo, 0, sizeof(pcparms_t));
duke@435 3663 ParmInfo.pc_cid = PC_CLNULL;
duke@435 3664 rslt = (*priocntl_ptr)(PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
duke@435 3665 if (rslt < 0) return errno;
duke@435 3666
duke@435 3667 if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
duke@435 3668 myMin = rtLimits.minPrio;
duke@435 3669 myMax = rtLimits.maxPrio;
duke@435 3670 } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
duke@435 3671 iaparms_t *iaInfo = (iaparms_t*)ParmInfo.pc_clparms;
duke@435 3672 myMin = iaLimits.minPrio;
duke@435 3673 myMax = iaLimits.maxPrio;
duke@435 3674 myMax = MIN2(myMax, (int)iaInfo->ia_uprilim); // clamp - restrict
duke@435 3675 } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
duke@435 3676 tsparms_t *tsInfo = (tsparms_t*)ParmInfo.pc_clparms;
duke@435 3677 myMin = tsLimits.minPrio;
duke@435 3678 myMax = tsLimits.maxPrio;
duke@435 3679 myMax = MIN2(myMax, (int)tsInfo->ts_uprilim); // clamp - restrict
duke@435 3680 } else {
duke@435 3681 // No clue - punt
duke@435 3682 if (ThreadPriorityVerbose)
duke@435 3683 tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname);
duke@435 3684 return EINVAL; // no clue, punt
duke@435 3685 }
duke@435 3686
duke@435 3687 if (ThreadPriorityVerbose)
duke@435 3688 tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax);
duke@435 3689
duke@435 3690 priocntl_enable = true; // Enable changing priorities
duke@435 3691 return 0;
duke@435 3692 }
duke@435 3693
duke@435 3694 #define IAPRI(x) ((iaparms_t *)((x).pc_clparms))
duke@435 3695 #define RTPRI(x) ((rtparms_t *)((x).pc_clparms))
duke@435 3696 #define TSPRI(x) ((tsparms_t *)((x).pc_clparms))
duke@435 3697
duke@435 3698
duke@435 3699 // scale_to_lwp_priority
duke@435 3700 //
duke@435 3701 // Convert from the libthread "thr_setprio" scale to our current
duke@435 3702 // lwp scheduling class scale.
duke@435 3703 //
duke@435 3704 static
duke@435 3705 int scale_to_lwp_priority (int rMin, int rMax, int x)
duke@435 3706 {
duke@435 3707 int v;
duke@435 3708
duke@435 3709 if (x == 127) return rMax; // avoid round-down
duke@435 3710 v = (((x*(rMax-rMin)))/128)+rMin;
duke@435 3711 return v;
duke@435 3712 }
duke@435 3713
duke@435 3714
duke@435 3715 // set_lwp_priority
duke@435 3716 //
duke@435 3717 // Set the priority of the lwp. This call should only be made
duke@435 3718 // when using bound threads (T2 threads are bound by default).
duke@435 3719 //
duke@435 3720 int set_lwp_priority (int ThreadID, int lwpid, int newPrio )
duke@435 3721 {
duke@435 3722 int rslt;
duke@435 3723 int Actual, Expected, prv;
duke@435 3724 pcparms_t ParmInfo; // for GET-SET
duke@435 3725 #ifdef ASSERT
duke@435 3726 pcparms_t ReadBack; // for readback
duke@435 3727 #endif
duke@435 3728
duke@435 3729 // Set priority via PC_GETPARMS, update, PC_SETPARMS
duke@435 3730 // Query current values.
duke@435 3731 // TODO: accelerate this by eliminating the PC_GETPARMS call.
duke@435 3732 // Cache "pcparms_t" in global ParmCache.
duke@435 3733 // TODO: elide set-to-same-value
duke@435 3734
duke@435 3735 // If something went wrong on init, don't change priorities.
duke@435 3736 if ( !priocntl_enable ) {
duke@435 3737 if (ThreadPriorityVerbose)
duke@435 3738 tty->print_cr("Trying to set priority but init failed, ignoring");
duke@435 3739 return EINVAL;
duke@435 3740 }
duke@435 3741
duke@435 3742
duke@435 3743 // If lwp hasn't started yet, just return
duke@435 3744 // the _start routine will call us again.
duke@435 3745 if ( lwpid <= 0 ) {
duke@435 3746 if (ThreadPriorityVerbose) {
duke@435 3747 tty->print_cr ("deferring the set_lwp_priority of thread " INTPTR_FORMAT " to %d, lwpid not set",
duke@435 3748 ThreadID, newPrio);
duke@435 3749 }
duke@435 3750 return 0;
duke@435 3751 }
duke@435 3752
duke@435 3753 if (ThreadPriorityVerbose) {
duke@435 3754 tty->print_cr ("set_lwp_priority(" INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
duke@435 3755 ThreadID, lwpid, newPrio);
duke@435 3756 }
duke@435 3757
duke@435 3758 memset(&ParmInfo, 0, sizeof(pcparms_t));
duke@435 3759 ParmInfo.pc_cid = PC_CLNULL;
duke@435 3760 rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
duke@435 3761 if (rslt < 0) return errno;
duke@435 3762
duke@435 3763 if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
duke@435 3764 rtparms_t *rtInfo = (rtparms_t*)ParmInfo.pc_clparms;
duke@435 3765 rtInfo->rt_pri = scale_to_lwp_priority (rtLimits.minPrio, rtLimits.maxPrio, newPrio);
duke@435 3766 rtInfo->rt_tqsecs = RT_NOCHANGE;
duke@435 3767 rtInfo->rt_tqnsecs = RT_NOCHANGE;
duke@435 3768 if (ThreadPriorityVerbose) {
duke@435 3769 tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
duke@435 3770 }
duke@435 3771 } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
duke@435 3772 iaparms_t *iaInfo = (iaparms_t*)ParmInfo.pc_clparms;
duke@435 3773 int maxClamped = MIN2(iaLimits.maxPrio, (int)iaInfo->ia_uprilim);
duke@435 3774 iaInfo->ia_upri = scale_to_lwp_priority(iaLimits.minPrio, maxClamped, newPrio);
duke@435 3775 iaInfo->ia_uprilim = IA_NOCHANGE;
duke@435 3776 iaInfo->ia_mode = IA_NOCHANGE;
duke@435 3777 if (ThreadPriorityVerbose) {
duke@435 3778 tty->print_cr ("IA: [%d...%d] %d->%d\n",
duke@435 3779 iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
duke@435 3780 }
duke@435 3781 } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
duke@435 3782 tsparms_t *tsInfo = (tsparms_t*)ParmInfo.pc_clparms;
duke@435 3783 int maxClamped = MIN2(tsLimits.maxPrio, (int)tsInfo->ts_uprilim);
duke@435 3784 prv = tsInfo->ts_upri;
duke@435 3785 tsInfo->ts_upri = scale_to_lwp_priority(tsLimits.minPrio, maxClamped, newPrio);
duke@435 3786 tsInfo->ts_uprilim = IA_NOCHANGE;
duke@435 3787 if (ThreadPriorityVerbose) {
duke@435 3788 tty->print_cr ("TS: %d [%d...%d] %d->%d\n",
duke@435 3789 prv, tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
duke@435 3790 }
duke@435 3791 if (prv == tsInfo->ts_upri) return 0;
duke@435 3792 } else {
duke@435 3793 if ( ThreadPriorityVerbose ) {
duke@435 3794 tty->print_cr ("Unknown scheduling class\n");
duke@435 3795 }
duke@435 3796 return EINVAL; // no clue, punt
duke@435 3797 }
duke@435 3798
duke@435 3799 rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
duke@435 3800 if (ThreadPriorityVerbose && rslt) {
duke@435 3801 tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
duke@435 3802 }
duke@435 3803 if (rslt < 0) return errno;
duke@435 3804
duke@435 3805 #ifdef ASSERT
duke@435 3806 // Sanity check: read back what we just attempted to set.
duke@435 3807 // In theory it could have changed in the interim ...
duke@435 3808 //
duke@435 3809 // The priocntl system call is tricky.
duke@435 3810 // Sometimes it'll validate the priority value argument and
duke@435 3811 // return EINVAL if unhappy. At other times it fails silently.
duke@435 3812 // Readbacks are prudent.
duke@435 3813
duke@435 3814 if (!ReadBackValidate) return 0;
duke@435 3815
duke@435 3816 memset(&ReadBack, 0, sizeof(pcparms_t));
duke@435 3817 ReadBack.pc_cid = PC_CLNULL;
duke@435 3818 rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
duke@435 3819 assert(rslt >= 0, "priocntl failed");
duke@435 3820 Actual = Expected = 0xBAD;
duke@435 3821 assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
duke@435 3822 if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
duke@435 3823 Actual = RTPRI(ReadBack)->rt_pri;
duke@435 3824 Expected = RTPRI(ParmInfo)->rt_pri;
duke@435 3825 } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
duke@435 3826 Actual = IAPRI(ReadBack)->ia_upri;
duke@435 3827 Expected = IAPRI(ParmInfo)->ia_upri;
duke@435 3828 } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
duke@435 3829 Actual = TSPRI(ReadBack)->ts_upri;
duke@435 3830 Expected = TSPRI(ParmInfo)->ts_upri;
duke@435 3831 } else {
duke@435 3832 if ( ThreadPriorityVerbose ) {
duke@435 3833 tty->print_cr("set_lwp_priority: unexpected class in readback: %d\n", ParmInfo.pc_cid);
duke@435 3834 }
duke@435 3835 }
duke@435 3836
duke@435 3837 if (Actual != Expected) {
duke@435 3838 if ( ThreadPriorityVerbose ) {
duke@435 3839 tty->print_cr ("set_lwp_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
duke@435 3840 lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
duke@435 3841 }
duke@435 3842 }
duke@435 3843 #endif
duke@435 3844
duke@435 3845 return 0;
duke@435 3846 }
duke@435 3847
duke@435 3848
duke@435 3849
duke@435 3850 // Solaris only gives access to 128 real priorities at a time,
duke@435 3851 // so we expand Java's ten to fill this range. This would be better
duke@435 3852 // if we dynamically adjusted relative priorities.
duke@435 3853 //
duke@435 3854 // The ThreadPriorityPolicy option allows us to select 2 different
duke@435 3855 // priority scales.
duke@435 3856 //
duke@435 3857 // ThreadPriorityPolicy=0
duke@435 3858 // Since the Solaris' default priority is MaximumPriority, we do not
duke@435 3859 // set a priority lower than Max unless a priority lower than
duke@435 3860 // NormPriority is requested.
duke@435 3861 //
duke@435 3862 // ThreadPriorityPolicy=1
duke@435 3863 // This mode causes the priority table to get filled with
duke@435 3864 // linear values. NormPriority get's mapped to 50% of the
duke@435 3865 // Maximum priority an so on. This will cause VM threads
duke@435 3866 // to get unfair treatment against other Solaris processes
duke@435 3867 // which do not explicitly alter their thread priorities.
duke@435 3868 //
duke@435 3869
duke@435 3870
duke@435 3871 int os::java_to_os_priority[MaxPriority + 1] = {
duke@435 3872 -99999, // 0 Entry should never be used
duke@435 3873
duke@435 3874 0, // 1 MinPriority
duke@435 3875 32, // 2
duke@435 3876 64, // 3
duke@435 3877
duke@435 3878 96, // 4
duke@435 3879 127, // 5 NormPriority
duke@435 3880 127, // 6
duke@435 3881
duke@435 3882 127, // 7
duke@435 3883 127, // 8
duke@435 3884 127, // 9 NearMaxPriority
duke@435 3885
duke@435 3886 127 // 10 MaxPriority
duke@435 3887 };
duke@435 3888
duke@435 3889
duke@435 3890 OSReturn os::set_native_priority(Thread* thread, int newpri) {
duke@435 3891 assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
duke@435 3892 if ( !UseThreadPriorities ) return OS_OK;
duke@435 3893 int status = thr_setprio(thread->osthread()->thread_id(), newpri);
duke@435 3894 if ( os::Solaris::T2_libthread() || (UseBoundThreads && thread->osthread()->is_vm_created()) )
duke@435 3895 status |= (set_lwp_priority (thread->osthread()->thread_id(),
duke@435 3896 thread->osthread()->lwp_id(), newpri ));
duke@435 3897 return (status == 0) ? OS_OK : OS_ERR;
duke@435 3898 }
duke@435 3899
duke@435 3900
duke@435 3901 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
duke@435 3902 int p;
duke@435 3903 if ( !UseThreadPriorities ) {
duke@435 3904 *priority_ptr = NormalPriority;
duke@435 3905 return OS_OK;
duke@435 3906 }
duke@435 3907 int status = thr_getprio(thread->osthread()->thread_id(), &p);
duke@435 3908 if (status != 0) {
duke@435 3909 return OS_ERR;
duke@435 3910 }
duke@435 3911 *priority_ptr = p;
duke@435 3912 return OS_OK;
duke@435 3913 }
duke@435 3914
duke@435 3915
duke@435 3916 // Hint to the underlying OS that a task switch would not be good.
duke@435 3917 // Void return because it's a hint and can fail.
duke@435 3918 void os::hint_no_preempt() {
duke@435 3919 schedctl_start(schedctl_init());
duke@435 3920 }
duke@435 3921
duke@435 3922 void os::interrupt(Thread* thread) {
duke@435 3923 assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
duke@435 3924
duke@435 3925 OSThread* osthread = thread->osthread();
duke@435 3926
duke@435 3927 int isInterrupted = osthread->interrupted();
duke@435 3928 if (!isInterrupted) {
duke@435 3929 osthread->set_interrupted(true);
duke@435 3930 OrderAccess::fence();
duke@435 3931 // os::sleep() is implemented with either poll (NULL,0,timeout) or
duke@435 3932 // by parking on _SleepEvent. If the former, thr_kill will unwedge
duke@435 3933 // the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper.
duke@435 3934 ParkEvent * const slp = thread->_SleepEvent ;
duke@435 3935 if (slp != NULL) slp->unpark() ;
duke@435 3936 }
duke@435 3937
duke@435 3938 // For JSR166: unpark after setting status but before thr_kill -dl
duke@435 3939 if (thread->is_Java_thread()) {
duke@435 3940 ((JavaThread*)thread)->parker()->unpark();
duke@435 3941 }
duke@435 3942
duke@435 3943 // Handle interruptible wait() ...
duke@435 3944 ParkEvent * const ev = thread->_ParkEvent ;
duke@435 3945 if (ev != NULL) ev->unpark() ;
duke@435 3946
duke@435 3947 // When events are used everywhere for os::sleep, then this thr_kill
duke@435 3948 // will only be needed if UseVMInterruptibleIO is true.
duke@435 3949
duke@435 3950 if (!isInterrupted) {
duke@435 3951 int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt());
duke@435 3952 assert_status(status == 0, status, "thr_kill");
duke@435 3953
duke@435 3954 // Bump thread interruption counter
duke@435 3955 RuntimeService::record_thread_interrupt_signaled_count();
duke@435 3956 }
duke@435 3957 }
duke@435 3958
duke@435 3959
duke@435 3960 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
duke@435 3961 assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
duke@435 3962
duke@435 3963 OSThread* osthread = thread->osthread();
duke@435 3964
duke@435 3965 bool res = osthread->interrupted();
duke@435 3966
duke@435 3967 // NOTE that since there is no "lock" around these two operations,
duke@435 3968 // there is the possibility that the interrupted flag will be
duke@435 3969 // "false" but that the interrupt event will be set. This is
duke@435 3970 // intentional. The effect of this is that Object.wait() will appear
duke@435 3971 // to have a spurious wakeup, which is not harmful, and the
duke@435 3972 // possibility is so rare that it is not worth the added complexity
duke@435 3973 // to add yet another lock. It has also been recommended not to put
duke@435 3974 // the interrupted flag into the os::Solaris::Event structure,
duke@435 3975 // because it hides the issue.
duke@435 3976 if (res && clear_interrupted) {
duke@435 3977 osthread->set_interrupted(false);
duke@435 3978 }
duke@435 3979 return res;
duke@435 3980 }
duke@435 3981
duke@435 3982
duke@435 3983 void os::print_statistics() {
duke@435 3984 }
duke@435 3985
duke@435 3986 int os::message_box(const char* title, const char* message) {
duke@435 3987 int i;
duke@435 3988 fdStream err(defaultStream::error_fd());
duke@435 3989 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 3990 err.cr();
duke@435 3991 err.print_raw_cr(title);
duke@435 3992 for (i = 0; i < 78; i++) err.print_raw("-");
duke@435 3993 err.cr();
duke@435 3994 err.print_raw_cr(message);
duke@435 3995 for (i = 0; i < 78; i++) err.print_raw("=");
duke@435 3996 err.cr();
duke@435 3997
duke@435 3998 char buf[16];
duke@435 3999 // Prevent process from exiting upon "read error" without consuming all CPU
duke@435 4000 while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
duke@435 4001
duke@435 4002 return buf[0] == 'y' || buf[0] == 'Y';
duke@435 4003 }
duke@435 4004
duke@435 4005 // A lightweight implementation that does not suspend the target thread and
duke@435 4006 // thus returns only a hint. Used for profiling only!
duke@435 4007 ExtendedPC os::get_thread_pc(Thread* thread) {
duke@435 4008 // Make sure that it is called by the watcher and the Threads lock is owned.
duke@435 4009 assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
duke@435 4010 // For now, is only used to profile the VM Thread
duke@435 4011 assert(thread->is_VM_thread(), "Can only be called for VMThread");
duke@435 4012 ExtendedPC epc;
duke@435 4013
duke@435 4014 GetThreadPC_Callback cb(ProfileVM_lock);
duke@435 4015 OSThread *osthread = thread->osthread();
duke@435 4016 const int time_to_wait = 400; // 400ms wait for initial response
duke@435 4017 int status = cb.interrupt(thread, time_to_wait);
duke@435 4018
duke@435 4019 if (cb.is_done() ) {
duke@435 4020 epc = cb.addr();
duke@435 4021 } else {
duke@435 4022 DEBUG_ONLY(tty->print_cr("Failed to get pc for thread: %d got %d status",
duke@435 4023 osthread->thread_id(), status););
duke@435 4024 // epc is already NULL
duke@435 4025 }
duke@435 4026 return epc;
duke@435 4027 }
duke@435 4028
duke@435 4029
duke@435 4030 // This does not do anything on Solaris. This is basically a hook for being
duke@435 4031 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
duke@435 4032 void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
duke@435 4033 f(value, method, args, thread);
duke@435 4034 }
duke@435 4035
duke@435 4036 // This routine may be used by user applications as a "hook" to catch signals.
duke@435 4037 // The user-defined signal handler must pass unrecognized signals to this
duke@435 4038 // routine, and if it returns true (non-zero), then the signal handler must
duke@435 4039 // return immediately. If the flag "abort_if_unrecognized" is true, then this
duke@435 4040 // routine will never retun false (zero), but instead will execute a VM panic
duke@435 4041 // routine kill the process.
duke@435 4042 //
duke@435 4043 // If this routine returns false, it is OK to call it again. This allows
duke@435 4044 // the user-defined signal handler to perform checks either before or after
duke@435 4045 // the VM performs its own checks. Naturally, the user code would be making
duke@435 4046 // a serious error if it tried to handle an exception (such as a null check
duke@435 4047 // or breakpoint) that the VM was generating for its own correct operation.
duke@435 4048 //
duke@435 4049 // This routine may recognize any of the following kinds of signals:
duke@435 4050 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
duke@435 4051 // os::Solaris::SIGasync
duke@435 4052 // It should be consulted by handlers for any of those signals.
duke@435 4053 // It explicitly does not recognize os::Solaris::SIGinterrupt
duke@435 4054 //
duke@435 4055 // The caller of this routine must pass in the three arguments supplied
duke@435 4056 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
duke@435 4057 // field of the structure passed to sigaction(). This routine assumes that
duke@435 4058 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
duke@435 4059 //
duke@435 4060 // Note that the VM will print warnings if it detects conflicting signal
duke@435 4061 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
duke@435 4062 //
duke@435 4063 extern "C" int JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
duke@435 4064
duke@435 4065
duke@435 4066 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
duke@435 4067 JVM_handle_solaris_signal(sig, info, ucVoid, true);
duke@435 4068 }
duke@435 4069
duke@435 4070 /* Do not delete - if guarantee is ever removed, a signal handler (even empty)
duke@435 4071 is needed to provoke threads blocked on IO to return an EINTR
duke@435 4072 Note: this explicitly does NOT call JVM_handle_solaris_signal and
duke@435 4073 does NOT participate in signal chaining due to requirement for
duke@435 4074 NOT setting SA_RESTART to make EINTR work. */
duke@435 4075 extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
duke@435 4076 if (UseSignalChaining) {
duke@435 4077 struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
duke@435 4078 if (actp && actp->sa_handler) {
duke@435 4079 vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
duke@435 4080 }
duke@435 4081 }
duke@435 4082 }
duke@435 4083
duke@435 4084 // This boolean allows users to forward their own non-matching signals
duke@435 4085 // to JVM_handle_solaris_signal, harmlessly.
duke@435 4086 bool os::Solaris::signal_handlers_are_installed = false;
duke@435 4087
duke@435 4088 // For signal-chaining
duke@435 4089 bool os::Solaris::libjsig_is_loaded = false;
duke@435 4090 typedef struct sigaction *(*get_signal_t)(int);
duke@435 4091 get_signal_t os::Solaris::get_signal_action = NULL;
duke@435 4092
duke@435 4093 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
duke@435 4094 struct sigaction *actp = NULL;
duke@435 4095
duke@435 4096 if ((libjsig_is_loaded) && (sig <= Maxlibjsigsigs)) {
duke@435 4097 // Retrieve the old signal handler from libjsig
duke@435 4098 actp = (*get_signal_action)(sig);
duke@435 4099 }
duke@435 4100 if (actp == NULL) {
duke@435 4101 // Retrieve the preinstalled signal handler from jvm
duke@435 4102 actp = get_preinstalled_handler(sig);
duke@435 4103 }
duke@435 4104
duke@435 4105 return actp;
duke@435 4106 }
duke@435 4107
duke@435 4108 static bool call_chained_handler(struct sigaction *actp, int sig,
duke@435 4109 siginfo_t *siginfo, void *context) {
duke@435 4110 // Call the old signal handler
duke@435 4111 if (actp->sa_handler == SIG_DFL) {
duke@435 4112 // It's more reasonable to let jvm treat it as an unexpected exception
duke@435 4113 // instead of taking the default action.
duke@435 4114 return false;
duke@435 4115 } else if (actp->sa_handler != SIG_IGN) {
duke@435 4116 if ((actp->sa_flags & SA_NODEFER) == 0) {
duke@435 4117 // automaticlly block the signal
duke@435 4118 sigaddset(&(actp->sa_mask), sig);
duke@435 4119 }
duke@435 4120
duke@435 4121 sa_handler_t hand;
duke@435 4122 sa_sigaction_t sa;
duke@435 4123 bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
duke@435 4124 // retrieve the chained handler
duke@435 4125 if (siginfo_flag_set) {
duke@435 4126 sa = actp->sa_sigaction;
duke@435 4127 } else {
duke@435 4128 hand = actp->sa_handler;
duke@435 4129 }
duke@435 4130
duke@435 4131 if ((actp->sa_flags & SA_RESETHAND) != 0) {
duke@435 4132 actp->sa_handler = SIG_DFL;
duke@435 4133 }
duke@435 4134
duke@435 4135 // try to honor the signal mask
duke@435 4136 sigset_t oset;
duke@435 4137 thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
duke@435 4138
duke@435 4139 // call into the chained handler
duke@435 4140 if (siginfo_flag_set) {
duke@435 4141 (*sa)(sig, siginfo, context);
duke@435 4142 } else {
duke@435 4143 (*hand)(sig);
duke@435 4144 }
duke@435 4145
duke@435 4146 // restore the signal mask
duke@435 4147 thr_sigsetmask(SIG_SETMASK, &oset, 0);
duke@435 4148 }
duke@435 4149 // Tell jvm's signal handler the signal is taken care of.
duke@435 4150 return true;
duke@435 4151 }
duke@435 4152
duke@435 4153 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
duke@435 4154 bool chained = false;
duke@435 4155 // signal-chaining
duke@435 4156 if (UseSignalChaining) {
duke@435 4157 struct sigaction *actp = get_chained_signal_action(sig);
duke@435 4158 if (actp != NULL) {
duke@435 4159 chained = call_chained_handler(actp, sig, siginfo, context);
duke@435 4160 }
duke@435 4161 }
duke@435 4162 return chained;
duke@435 4163 }
duke@435 4164
duke@435 4165 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
duke@435 4166 assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
duke@435 4167 if (preinstalled_sigs[sig] != 0) {
duke@435 4168 return &chainedsigactions[sig];
duke@435 4169 }
duke@435 4170 return NULL;
duke@435 4171 }
duke@435 4172
duke@435 4173 void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
duke@435 4174
duke@435 4175 assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
duke@435 4176 assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
duke@435 4177 chainedsigactions[sig] = oldAct;
duke@435 4178 preinstalled_sigs[sig] = 1;
duke@435 4179 }
duke@435 4180
duke@435 4181 void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) {
duke@435 4182 // Check for overwrite.
duke@435 4183 struct sigaction oldAct;
duke@435 4184 sigaction(sig, (struct sigaction*)NULL, &oldAct);
duke@435 4185 void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 4186 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 4187 if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
duke@435 4188 oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
duke@435 4189 oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
duke@435 4190 if (AllowUserSignalHandlers || !set_installed) {
duke@435 4191 // Do not overwrite; user takes responsibility to forward to us.
duke@435 4192 return;
duke@435 4193 } else if (UseSignalChaining) {
duke@435 4194 if (oktochain) {
duke@435 4195 // save the old handler in jvm
duke@435 4196 save_preinstalled_handler(sig, oldAct);
duke@435 4197 } else {
duke@435 4198 vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
duke@435 4199 }
duke@435 4200 // libjsig also interposes the sigaction() call below and saves the
duke@435 4201 // old sigaction on it own.
duke@435 4202 } else {
duke@435 4203 fatal2("Encountered unexpected pre-existing sigaction handler %#lx for signal %d.", (long)oldhand, sig);
duke@435 4204 }
duke@435 4205 }
duke@435 4206
duke@435 4207 struct sigaction sigAct;
duke@435 4208 sigfillset(&(sigAct.sa_mask));
duke@435 4209 sigAct.sa_handler = SIG_DFL;
duke@435 4210
duke@435 4211 sigAct.sa_sigaction = signalHandler;
duke@435 4212 // Handle SIGSEGV on alternate signal stack if
duke@435 4213 // not using stack banging
duke@435 4214 if (!UseStackBanging && sig == SIGSEGV) {
duke@435 4215 sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
duke@435 4216 // Interruptible i/o requires SA_RESTART cleared so EINTR
duke@435 4217 // is returned instead of restarting system calls
duke@435 4218 } else if (sig == os::Solaris::SIGinterrupt()) {
duke@435 4219 sigemptyset(&sigAct.sa_mask);
duke@435 4220 sigAct.sa_handler = NULL;
duke@435 4221 sigAct.sa_flags = SA_SIGINFO;
duke@435 4222 sigAct.sa_sigaction = sigINTRHandler;
duke@435 4223 } else {
duke@435 4224 sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
duke@435 4225 }
duke@435 4226 os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
duke@435 4227
duke@435 4228 sigaction(sig, &sigAct, &oldAct);
duke@435 4229
duke@435 4230 void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 4231 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
duke@435 4232 assert(oldhand2 == oldhand, "no concurrent signal handler installation");
duke@435 4233 }
duke@435 4234
duke@435 4235
duke@435 4236 #define DO_SIGNAL_CHECK(sig) \
duke@435 4237 if (!sigismember(&check_signal_done, sig)) \
duke@435 4238 os::Solaris::check_signal_handler(sig)
duke@435 4239
duke@435 4240 // This method is a periodic task to check for misbehaving JNI applications
duke@435 4241 // under CheckJNI, we can add any periodic checks here
duke@435 4242
duke@435 4243 void os::run_periodic_checks() {
duke@435 4244 // A big source of grief is hijacking virt. addr 0x0 on Solaris,
duke@435 4245 // thereby preventing a NULL checks.
duke@435 4246 if(!check_addr0_done) check_addr0_done = check_addr0(tty);
duke@435 4247
duke@435 4248 if (check_signals == false) return;
duke@435 4249
duke@435 4250 // SEGV and BUS if overridden could potentially prevent
duke@435 4251 // generation of hs*.log in the event of a crash, debugging
duke@435 4252 // such a case can be very challenging, so we absolutely
duke@435 4253 // check for the following for a good measure:
duke@435 4254 DO_SIGNAL_CHECK(SIGSEGV);
duke@435 4255 DO_SIGNAL_CHECK(SIGILL);
duke@435 4256 DO_SIGNAL_CHECK(SIGFPE);
duke@435 4257 DO_SIGNAL_CHECK(SIGBUS);
duke@435 4258 DO_SIGNAL_CHECK(SIGPIPE);
duke@435 4259 DO_SIGNAL_CHECK(SIGXFSZ);
duke@435 4260
duke@435 4261 // ReduceSignalUsage allows the user to override these handlers
duke@435 4262 // see comments at the very top and jvm_solaris.h
duke@435 4263 if (!ReduceSignalUsage) {
duke@435 4264 DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
duke@435 4265 DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
duke@435 4266 DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
duke@435 4267 DO_SIGNAL_CHECK(BREAK_SIGNAL);
duke@435 4268 }
duke@435 4269
duke@435 4270 // See comments above for using JVM1/JVM2 and UseAltSigs
duke@435 4271 DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
duke@435 4272 DO_SIGNAL_CHECK(os::Solaris::SIGasync());
duke@435 4273
duke@435 4274 }
duke@435 4275
duke@435 4276 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
duke@435 4277
duke@435 4278 static os_sigaction_t os_sigaction = NULL;
duke@435 4279
duke@435 4280 void os::Solaris::check_signal_handler(int sig) {
duke@435 4281 char buf[O_BUFLEN];
duke@435 4282 address jvmHandler = NULL;
duke@435 4283
duke@435 4284 struct sigaction act;
duke@435 4285 if (os_sigaction == NULL) {
duke@435 4286 // only trust the default sigaction, in case it has been interposed
duke@435 4287 os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
duke@435 4288 if (os_sigaction == NULL) return;
duke@435 4289 }
duke@435 4290
duke@435 4291 os_sigaction(sig, (struct sigaction*)NULL, &act);
duke@435 4292
duke@435 4293 address thisHandler = (act.sa_flags & SA_SIGINFO)
duke@435 4294 ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
duke@435 4295 : CAST_FROM_FN_PTR(address, act.sa_handler) ;
duke@435 4296
duke@435 4297
duke@435 4298 switch(sig) {
duke@435 4299 case SIGSEGV:
duke@435 4300 case SIGBUS:
duke@435 4301 case SIGFPE:
duke@435 4302 case SIGPIPE:
duke@435 4303 case SIGXFSZ:
duke@435 4304 case SIGILL:
duke@435 4305 jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
duke@435 4306 break;
duke@435 4307
duke@435 4308 case SHUTDOWN1_SIGNAL:
duke@435 4309 case SHUTDOWN2_SIGNAL:
duke@435 4310 case SHUTDOWN3_SIGNAL:
duke@435 4311 case BREAK_SIGNAL:
duke@435 4312 jvmHandler = (address)user_handler();
duke@435 4313 break;
duke@435 4314
duke@435 4315 default:
duke@435 4316 int intrsig = os::Solaris::SIGinterrupt();
duke@435 4317 int asynsig = os::Solaris::SIGasync();
duke@435 4318
duke@435 4319 if (sig == intrsig) {
duke@435 4320 jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
duke@435 4321 } else if (sig == asynsig) {
duke@435 4322 jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
duke@435 4323 } else {
duke@435 4324 return;
duke@435 4325 }
duke@435 4326 break;
duke@435 4327 }
duke@435 4328
duke@435 4329
duke@435 4330 if (thisHandler != jvmHandler) {
duke@435 4331 tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
duke@435 4332 tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
duke@435 4333 tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
duke@435 4334 // No need to check this sig any longer
duke@435 4335 sigaddset(&check_signal_done, sig);
duke@435 4336 } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
duke@435 4337 tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
duke@435 4338 tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
duke@435 4339 tty->print_cr(" found:" PTR32_FORMAT, act.sa_flags);
duke@435 4340 // No need to check this sig any longer
duke@435 4341 sigaddset(&check_signal_done, sig);
duke@435 4342 }
duke@435 4343
duke@435 4344 // Print all the signal handler state
duke@435 4345 if (sigismember(&check_signal_done, sig)) {
duke@435 4346 print_signal_handlers(tty, buf, O_BUFLEN);
duke@435 4347 }
duke@435 4348
duke@435 4349 }
duke@435 4350
duke@435 4351 void os::Solaris::install_signal_handlers() {
duke@435 4352 bool libjsigdone = false;
duke@435 4353 signal_handlers_are_installed = true;
duke@435 4354
duke@435 4355 // signal-chaining
duke@435 4356 typedef void (*signal_setting_t)();
duke@435 4357 signal_setting_t begin_signal_setting = NULL;
duke@435 4358 signal_setting_t end_signal_setting = NULL;
duke@435 4359 begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 4360 dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
duke@435 4361 if (begin_signal_setting != NULL) {
duke@435 4362 end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
duke@435 4363 dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
duke@435 4364 get_signal_action = CAST_TO_FN_PTR(get_signal_t,
duke@435 4365 dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
duke@435 4366 get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
duke@435 4367 dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
duke@435 4368 libjsig_is_loaded = true;
duke@435 4369 if (os::Solaris::get_libjsig_version != NULL) {
duke@435 4370 libjsigversion = (*os::Solaris::get_libjsig_version)();
duke@435 4371 }
duke@435 4372 assert(UseSignalChaining, "should enable signal-chaining");
duke@435 4373 }
duke@435 4374 if (libjsig_is_loaded) {
duke@435 4375 // Tell libjsig jvm is setting signal handlers
duke@435 4376 (*begin_signal_setting)();
duke@435 4377 }
duke@435 4378
duke@435 4379 set_signal_handler(SIGSEGV, true, true);
duke@435 4380 set_signal_handler(SIGPIPE, true, true);
duke@435 4381 set_signal_handler(SIGXFSZ, true, true);
duke@435 4382 set_signal_handler(SIGBUS, true, true);
duke@435 4383 set_signal_handler(SIGILL, true, true);
duke@435 4384 set_signal_handler(SIGFPE, true, true);
duke@435 4385
duke@435 4386
duke@435 4387 if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
duke@435 4388
duke@435 4389 // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
duke@435 4390 // can not register overridable signals which might be > 32
duke@435 4391 if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
duke@435 4392 // Tell libjsig jvm has finished setting signal handlers
duke@435 4393 (*end_signal_setting)();
duke@435 4394 libjsigdone = true;
duke@435 4395 }
duke@435 4396 }
duke@435 4397
duke@435 4398 // Never ok to chain our SIGinterrupt
duke@435 4399 set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
duke@435 4400 set_signal_handler(os::Solaris::SIGasync(), true, true);
duke@435 4401
duke@435 4402 if (libjsig_is_loaded && !libjsigdone) {
duke@435 4403 // Tell libjsig jvm finishes setting signal handlers
duke@435 4404 (*end_signal_setting)();
duke@435 4405 }
duke@435 4406
duke@435 4407 // We don't activate signal checker if libjsig is in place, we trust ourselves
duke@435 4408 // and if UserSignalHandler is installed all bets are off
duke@435 4409 if (CheckJNICalls) {
duke@435 4410 if (libjsig_is_loaded) {
duke@435 4411 tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
duke@435 4412 check_signals = false;
duke@435 4413 }
duke@435 4414 if (AllowUserSignalHandlers) {
duke@435 4415 tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
duke@435 4416 check_signals = false;
duke@435 4417 }
duke@435 4418 }
duke@435 4419 }
duke@435 4420
duke@435 4421
duke@435 4422 void report_error(const char* file_name, int line_no, const char* title, const char* format, ...);
duke@435 4423
duke@435 4424 const char * signames[] = {
duke@435 4425 "SIG0",
duke@435 4426 "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
duke@435 4427 "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
duke@435 4428 "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
duke@435 4429 "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
duke@435 4430 "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
duke@435 4431 "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
duke@435 4432 "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
duke@435 4433 "SIGCANCEL", "SIGLOST"
duke@435 4434 };
duke@435 4435
duke@435 4436 const char* os::exception_name(int exception_code, char* buf, size_t size) {
duke@435 4437 if (0 < exception_code && exception_code <= SIGRTMAX) {
duke@435 4438 // signal
duke@435 4439 if (exception_code < sizeof(signames)/sizeof(const char*)) {
duke@435 4440 jio_snprintf(buf, size, "%s", signames[exception_code]);
duke@435 4441 } else {
duke@435 4442 jio_snprintf(buf, size, "SIG%d", exception_code);
duke@435 4443 }
duke@435 4444 return buf;
duke@435 4445 } else {
duke@435 4446 return NULL;
duke@435 4447 }
duke@435 4448 }
duke@435 4449
duke@435 4450 // (Static) wrappers for the new libthread API
duke@435 4451 int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate;
duke@435 4452 int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate;
duke@435 4453 int_fnP_thread_t_i os::Solaris::_thr_setmutator;
duke@435 4454 int_fnP_thread_t os::Solaris::_thr_suspend_mutator;
duke@435 4455 int_fnP_thread_t os::Solaris::_thr_continue_mutator;
duke@435 4456
twisti@1076 4457 // (Static) wrapper for getisax(2) call.
twisti@1076 4458 os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
twisti@1076 4459
duke@435 4460 // (Static) wrappers for the liblgrp API
duke@435 4461 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
duke@435 4462 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
duke@435 4463 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
duke@435 4464 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
duke@435 4465 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
iveresov@579 4466 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
duke@435 4467 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
duke@435 4468 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
duke@435 4469 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
duke@435 4470
duke@435 4471 // (Static) wrapper for meminfo() call.
duke@435 4472 os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
duke@435 4473
twisti@1076 4474 static address resolve_symbol_lazy(const char* name) {
twisti@1076 4475 address addr = (address) dlsym(RTLD_DEFAULT, name);
duke@435 4476 if(addr == NULL) {
duke@435 4477 // RTLD_DEFAULT was not defined on some early versions of 2.5.1
duke@435 4478 addr = (address) dlsym(RTLD_NEXT, name);
twisti@1076 4479 }
twisti@1076 4480 return addr;
twisti@1076 4481 }
twisti@1076 4482
twisti@1076 4483 static address resolve_symbol(const char* name) {
twisti@1076 4484 address addr = resolve_symbol_lazy(name);
twisti@1076 4485 if(addr == NULL) {
twisti@1076 4486 fatal(dlerror());
duke@435 4487 }
duke@435 4488 return addr;
duke@435 4489 }
duke@435 4490
duke@435 4491
duke@435 4492
duke@435 4493 // isT2_libthread()
duke@435 4494 //
duke@435 4495 // Routine to determine if we are currently using the new T2 libthread.
duke@435 4496 //
duke@435 4497 // We determine if we are using T2 by reading /proc/self/lstatus and
duke@435 4498 // looking for a thread with the ASLWP bit set. If we find this status
duke@435 4499 // bit set, we must assume that we are NOT using T2. The T2 team
duke@435 4500 // has approved this algorithm.
duke@435 4501 //
duke@435 4502 // We need to determine if we are running with the new T2 libthread
duke@435 4503 // since setting native thread priorities is handled differently
duke@435 4504 // when using this library. All threads created using T2 are bound
duke@435 4505 // threads. Calling thr_setprio is meaningless in this case.
duke@435 4506 //
duke@435 4507 bool isT2_libthread() {
duke@435 4508 static prheader_t * lwpArray = NULL;
duke@435 4509 static int lwpSize = 0;
duke@435 4510 static int lwpFile = -1;
duke@435 4511 lwpstatus_t * that;
duke@435 4512 char lwpName [128];
duke@435 4513 bool isT2 = false;
duke@435 4514
duke@435 4515 #define ADR(x) ((uintptr_t)(x))
duke@435 4516 #define LWPINDEX(ary,ix) ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1))))
duke@435 4517
xlu@524 4518 lwpFile = open("/proc/self/lstatus", O_RDONLY, 0);
xlu@524 4519 if (lwpFile < 0) {
xlu@524 4520 if (ThreadPriorityVerbose) warning ("Couldn't open /proc/self/lstatus\n");
xlu@524 4521 return false;
xlu@524 4522 }
duke@435 4523 lwpSize = 16*1024;
duke@435 4524 for (;;) {
duke@435 4525 lseek (lwpFile, 0, SEEK_SET);
xlu@524 4526 lwpArray = (prheader_t *)NEW_C_HEAP_ARRAY(char, lwpSize);
xlu@524 4527 if (read(lwpFile, lwpArray, lwpSize) < 0) {
xlu@524 4528 if (ThreadPriorityVerbose) warning("Error reading /proc/self/lstatus\n");
duke@435 4529 break;
duke@435 4530 }
xlu@524 4531 if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) {
xlu@524 4532 // We got a good snapshot - now iterate over the list.
xlu@524 4533 int aslwpcount = 0;
xlu@524 4534 for (int i = 0; i < lwpArray->pr_nent; i++ ) {
xlu@524 4535 that = LWPINDEX(lwpArray,i);
xlu@524 4536 if (that->pr_flags & PR_ASLWP) {
xlu@524 4537 aslwpcount++;
xlu@524 4538 }
xlu@524 4539 }
xlu@524 4540 if (aslwpcount == 0) isT2 = true;
xlu@524 4541 break;
xlu@524 4542 }
duke@435 4543 lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize;
xlu@524 4544 FREE_C_HEAP_ARRAY(char, lwpArray); // retry.
xlu@524 4545 }
duke@435 4546
duke@435 4547 FREE_C_HEAP_ARRAY(char, lwpArray);
duke@435 4548 close (lwpFile);
xlu@524 4549 if (ThreadPriorityVerbose) {
xlu@524 4550 if (isT2) tty->print_cr("We are running with a T2 libthread\n");
duke@435 4551 else tty->print_cr("We are not running with a T2 libthread\n");
duke@435 4552 }
xlu@524 4553 return isT2;
duke@435 4554 }
duke@435 4555
duke@435 4556
duke@435 4557 void os::Solaris::libthread_init() {
duke@435 4558 address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
duke@435 4559
duke@435 4560 // Determine if we are running with the new T2 libthread
duke@435 4561 os::Solaris::set_T2_libthread(isT2_libthread());
duke@435 4562
duke@435 4563 lwp_priocntl_init();
duke@435 4564
duke@435 4565 // RTLD_DEFAULT was not defined on some early versions of 5.5.1
duke@435 4566 if(func == NULL) {
duke@435 4567 func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
duke@435 4568 // Guarantee that this VM is running on an new enough OS (5.6 or
duke@435 4569 // later) that it will have a new enough libthread.so.
duke@435 4570 guarantee(func != NULL, "libthread.so is too old.");
duke@435 4571 }
duke@435 4572
duke@435 4573 // Initialize the new libthread getstate API wrappers
duke@435 4574 func = resolve_symbol("thr_getstate");
duke@435 4575 os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func));
duke@435 4576
duke@435 4577 func = resolve_symbol("thr_setstate");
duke@435 4578 os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func));
duke@435 4579
duke@435 4580 func = resolve_symbol("thr_setmutator");
duke@435 4581 os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func));
duke@435 4582
duke@435 4583 func = resolve_symbol("thr_suspend_mutator");
duke@435 4584 os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
duke@435 4585
duke@435 4586 func = resolve_symbol("thr_continue_mutator");
duke@435 4587 os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
duke@435 4588
duke@435 4589 int size;
duke@435 4590 void (*handler_info_func)(address *, int *);
duke@435 4591 handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
duke@435 4592 handler_info_func(&handler_start, &size);
duke@435 4593 handler_end = handler_start + size;
duke@435 4594 }
duke@435 4595
duke@435 4596
duke@435 4597 int_fnP_mutex_tP os::Solaris::_mutex_lock;
duke@435 4598 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
duke@435 4599 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
duke@435 4600 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
duke@435 4601 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
duke@435 4602 int os::Solaris::_mutex_scope = USYNC_THREAD;
duke@435 4603
duke@435 4604 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
duke@435 4605 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
duke@435 4606 int_fnP_cond_tP os::Solaris::_cond_signal;
duke@435 4607 int_fnP_cond_tP os::Solaris::_cond_broadcast;
duke@435 4608 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
duke@435 4609 int_fnP_cond_tP os::Solaris::_cond_destroy;
duke@435 4610 int os::Solaris::_cond_scope = USYNC_THREAD;
duke@435 4611
duke@435 4612 void os::Solaris::synchronization_init() {
duke@435 4613 if(UseLWPSynchronization) {
duke@435 4614 os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
duke@435 4615 os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
duke@435 4616 os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
duke@435 4617 os::Solaris::set_mutex_init(lwp_mutex_init);
duke@435 4618 os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
duke@435 4619 os::Solaris::set_mutex_scope(USYNC_THREAD);
duke@435 4620
duke@435 4621 os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
duke@435 4622 os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
duke@435 4623 os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
duke@435 4624 os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
duke@435 4625 os::Solaris::set_cond_init(lwp_cond_init);
duke@435 4626 os::Solaris::set_cond_destroy(lwp_cond_destroy);
duke@435 4627 os::Solaris::set_cond_scope(USYNC_THREAD);
duke@435 4628 }
duke@435 4629 else {
duke@435 4630 os::Solaris::set_mutex_scope(USYNC_THREAD);
duke@435 4631 os::Solaris::set_cond_scope(USYNC_THREAD);
duke@435 4632
duke@435 4633 if(UsePthreads) {
duke@435 4634 os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
duke@435 4635 os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
duke@435 4636 os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
duke@435 4637 os::Solaris::set_mutex_init(pthread_mutex_default_init);
duke@435 4638 os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
duke@435 4639
duke@435 4640 os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
duke@435 4641 os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
duke@435 4642 os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
duke@435 4643 os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
duke@435 4644 os::Solaris::set_cond_init(pthread_cond_default_init);
duke@435 4645 os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
duke@435 4646 }
duke@435 4647 else {
duke@435 4648 os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
duke@435 4649 os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
duke@435 4650 os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
duke@435 4651 os::Solaris::set_mutex_init(::mutex_init);
duke@435 4652 os::Solaris::set_mutex_destroy(::mutex_destroy);
duke@435 4653
duke@435 4654 os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
duke@435 4655 os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
duke@435 4656 os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
duke@435 4657 os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
duke@435 4658 os::Solaris::set_cond_init(::cond_init);
duke@435 4659 os::Solaris::set_cond_destroy(::cond_destroy);
duke@435 4660 }
duke@435 4661 }
duke@435 4662 }
duke@435 4663
iveresov@897 4664 bool os::Solaris::liblgrp_init() {
iveresov@702 4665 void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
duke@435 4666 if (handle != NULL) {
duke@435 4667 os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
duke@435 4668 os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
duke@435 4669 os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
duke@435 4670 os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
duke@435 4671 os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
iveresov@579 4672 os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
duke@435 4673 os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
duke@435 4674 os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
duke@435 4675 dlsym(handle, "lgrp_cookie_stale")));
duke@435 4676
duke@435 4677 lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
duke@435 4678 set_lgrp_cookie(c);
iveresov@897 4679 return true;
iveresov@897 4680 }
iveresov@897 4681 return false;
duke@435 4682 }
duke@435 4683
duke@435 4684 void os::Solaris::misc_sym_init() {
twisti@1076 4685 address func;
twisti@1076 4686
twisti@1076 4687 // getisax
twisti@1076 4688 func = resolve_symbol_lazy("getisax");
twisti@1076 4689 if (func != NULL) {
twisti@1076 4690 os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
twisti@1076 4691 }
twisti@1076 4692
twisti@1076 4693 // meminfo
twisti@1076 4694 func = resolve_symbol_lazy("meminfo");
duke@435 4695 if (func != NULL) {
duke@435 4696 os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
duke@435 4697 }
duke@435 4698 }
duke@435 4699
twisti@1076 4700 uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
twisti@1076 4701 assert(_getisax != NULL, "_getisax not set");
twisti@1076 4702 return _getisax(array, n);
twisti@1076 4703 }
twisti@1076 4704
duke@435 4705 // Symbol doesn't exist in Solaris 8 pset.h
duke@435 4706 #ifndef PS_MYID
duke@435 4707 #define PS_MYID -3
duke@435 4708 #endif
duke@435 4709
duke@435 4710 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
duke@435 4711 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
duke@435 4712 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
duke@435 4713
duke@435 4714 void init_pset_getloadavg_ptr(void) {
duke@435 4715 pset_getloadavg_ptr =
duke@435 4716 (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
duke@435 4717 if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
duke@435 4718 warning("pset_getloadavg function not found");
duke@435 4719 }
duke@435 4720 }
duke@435 4721
duke@435 4722 int os::Solaris::_dev_zero_fd = -1;
duke@435 4723
duke@435 4724 // this is called _before_ the global arguments have been parsed
duke@435 4725 void os::init(void) {
duke@435 4726 _initial_pid = getpid();
duke@435 4727
duke@435 4728 max_hrtime = first_hrtime = gethrtime();
duke@435 4729
duke@435 4730 init_random(1234567);
duke@435 4731
duke@435 4732 page_size = sysconf(_SC_PAGESIZE);
duke@435 4733 if (page_size == -1)
duke@435 4734 fatal1("os_solaris.cpp: os::init: sysconf failed (%s)", strerror(errno));
duke@435 4735 init_page_sizes((size_t) page_size);
duke@435 4736
duke@435 4737 Solaris::initialize_system_info();
duke@435 4738
twisti@1076 4739 // Initialize misc. symbols as soon as possible, so we can use them
twisti@1076 4740 // if we need them.
twisti@1076 4741 Solaris::misc_sym_init();
twisti@1076 4742
duke@435 4743 int fd = open("/dev/zero", O_RDWR);
duke@435 4744 if (fd < 0) {
duke@435 4745 fatal1("os::init: cannot open /dev/zero (%s)", strerror(errno));
duke@435 4746 } else {
duke@435 4747 Solaris::set_dev_zero_fd(fd);
duke@435 4748
duke@435 4749 // Close on exec, child won't inherit.
duke@435 4750 fcntl(fd, F_SETFD, FD_CLOEXEC);
duke@435 4751 }
duke@435 4752
duke@435 4753 clock_tics_per_sec = CLK_TCK;
duke@435 4754
duke@435 4755 // check if dladdr1() exists; dladdr1 can provide more information than
duke@435 4756 // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
duke@435 4757 // and is available on linker patches for 5.7 and 5.8.
duke@435 4758 // libdl.so must have been loaded, this call is just an entry lookup
duke@435 4759 void * hdl = dlopen("libdl.so", RTLD_NOW);
duke@435 4760 if (hdl)
duke@435 4761 dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
duke@435 4762
duke@435 4763 // (Solaris only) this switches to calls that actually do locking.
duke@435 4764 ThreadCritical::initialize();
duke@435 4765
duke@435 4766 main_thread = thr_self();
duke@435 4767
duke@435 4768 // Constant minimum stack size allowed. It must be at least
duke@435 4769 // the minimum of what the OS supports (thr_min_stack()), and
duke@435 4770 // enough to allow the thread to get to user bytecode execution.
duke@435 4771 Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
duke@435 4772 // If the pagesize of the VM is greater than 8K determine the appropriate
duke@435 4773 // number of initial guard pages. The user can change this with the
duke@435 4774 // command line arguments, if needed.
duke@435 4775 if (vm_page_size() > 8*K) {
duke@435 4776 StackYellowPages = 1;
duke@435 4777 StackRedPages = 1;
duke@435 4778 StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
duke@435 4779 }
duke@435 4780 }
duke@435 4781
duke@435 4782 // To install functions for atexit system call
duke@435 4783 extern "C" {
duke@435 4784 static void perfMemory_exit_helper() {
duke@435 4785 perfMemory_exit();
duke@435 4786 }
duke@435 4787 }
duke@435 4788
duke@435 4789 // this is called _after_ the global arguments have been parsed
duke@435 4790 jint os::init_2(void) {
duke@435 4791 // try to enable extended file IO ASAP, see 6431278
duke@435 4792 os::Solaris::try_enable_extended_io();
duke@435 4793
duke@435 4794 // Allocate a single page and mark it as readable for safepoint polling. Also
duke@435 4795 // use this first mmap call to check support for MAP_ALIGN.
duke@435 4796 address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
duke@435 4797 page_size,
duke@435 4798 MAP_PRIVATE | MAP_ALIGN,
duke@435 4799 PROT_READ);
duke@435 4800 if (polling_page == NULL) {
duke@435 4801 has_map_align = false;
duke@435 4802 polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
duke@435 4803 PROT_READ);
duke@435 4804 }
duke@435 4805
duke@435 4806 os::set_polling_page(polling_page);
duke@435 4807
duke@435 4808 #ifndef PRODUCT
duke@435 4809 if( Verbose && PrintMiscellaneous )
duke@435 4810 tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
duke@435 4811 #endif
duke@435 4812
duke@435 4813 if (!UseMembar) {
duke@435 4814 address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE );
duke@435 4815 guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
duke@435 4816 os::set_memory_serialize_page( mem_serialize_page );
duke@435 4817
duke@435 4818 #ifndef PRODUCT
duke@435 4819 if(Verbose && PrintMiscellaneous)
duke@435 4820 tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
duke@435 4821 #endif
duke@435 4822 }
duke@435 4823
duke@435 4824 FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
duke@435 4825
duke@435 4826 // Check minimum allowable stack size for thread creation and to initialize
duke@435 4827 // the java system classes, including StackOverflowError - depends on page
duke@435 4828 // size. Add a page for compiler2 recursion in main thread.
duke@435 4829 // Add in BytesPerWord times page size to account for VM stack during
duke@435 4830 // class initialization depending on 32 or 64 bit VM.
duke@435 4831 guarantee((Solaris::min_stack_allowed >=
duke@435 4832 (StackYellowPages+StackRedPages+StackShadowPages+BytesPerWord
duke@435 4833 COMPILER2_PRESENT(+1)) * page_size),
duke@435 4834 "need to increase Solaris::min_stack_allowed on this platform");
duke@435 4835
duke@435 4836 size_t threadStackSizeInBytes = ThreadStackSize * K;
duke@435 4837 if (threadStackSizeInBytes != 0 &&
duke@435 4838 threadStackSizeInBytes < Solaris::min_stack_allowed) {
duke@435 4839 tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
duke@435 4840 Solaris::min_stack_allowed/K);
duke@435 4841 return JNI_ERR;
duke@435 4842 }
duke@435 4843
duke@435 4844 // For 64kbps there will be a 64kb page size, which makes
duke@435 4845 // the usable default stack size quite a bit less. Increase the
duke@435 4846 // stack for 64kb (or any > than 8kb) pages, this increases
duke@435 4847 // virtual memory fragmentation (since we're not creating the
duke@435 4848 // stack on a power of 2 boundary. The real fix for this
duke@435 4849 // should be to fix the guard page mechanism.
duke@435 4850
duke@435 4851 if (vm_page_size() > 8*K) {
duke@435 4852 threadStackSizeInBytes = (threadStackSizeInBytes != 0)
duke@435 4853 ? threadStackSizeInBytes +
duke@435 4854 ((StackYellowPages + StackRedPages) * vm_page_size())
duke@435 4855 : 0;
duke@435 4856 ThreadStackSize = threadStackSizeInBytes/K;
duke@435 4857 }
duke@435 4858
duke@435 4859 // Make the stack size a multiple of the page size so that
duke@435 4860 // the yellow/red zones can be guarded.
duke@435 4861 JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
duke@435 4862 vm_page_size()));
duke@435 4863
duke@435 4864 Solaris::libthread_init();
iveresov@897 4865
duke@435 4866 if (UseNUMA) {
iveresov@897 4867 if (!Solaris::liblgrp_init()) {
iveresov@897 4868 UseNUMA = false;
iveresov@897 4869 } else {
iveresov@897 4870 size_t lgrp_limit = os::numa_get_groups_num();
iveresov@897 4871 int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit);
iveresov@897 4872 size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
iveresov@897 4873 FREE_C_HEAP_ARRAY(int, lgrp_ids);
iveresov@897 4874 if (lgrp_num < 2) {
iveresov@897 4875 // There's only one locality group, disable NUMA.
iveresov@897 4876 UseNUMA = false;
iveresov@897 4877 }
iveresov@897 4878 }
iveresov@897 4879 if (!UseNUMA && ForceNUMA) {
iveresov@897 4880 UseNUMA = true;
iveresov@897 4881 }
iveresov@897 4882 }
iveresov@897 4883
duke@435 4884 Solaris::signal_sets_init();
duke@435 4885 Solaris::init_signal_mem();
duke@435 4886 Solaris::install_signal_handlers();
duke@435 4887
duke@435 4888 if (libjsigversion < JSIG_VERSION_1_4_1) {
duke@435 4889 Maxlibjsigsigs = OLDMAXSIGNUM;
duke@435 4890 }
duke@435 4891
duke@435 4892 // initialize synchronization primitives to use either thread or
duke@435 4893 // lwp synchronization (controlled by UseLWPSynchronization)
duke@435 4894 Solaris::synchronization_init();
duke@435 4895
duke@435 4896 if (MaxFDLimit) {
duke@435 4897 // set the number of file descriptors to max. print out error
duke@435 4898 // if getrlimit/setrlimit fails but continue regardless.
duke@435 4899 struct rlimit nbr_files;
duke@435 4900 int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 4901 if (status != 0) {
duke@435 4902 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 4903 perror("os::init_2 getrlimit failed");
duke@435 4904 } else {
duke@435 4905 nbr_files.rlim_cur = nbr_files.rlim_max;
duke@435 4906 status = setrlimit(RLIMIT_NOFILE, &nbr_files);
duke@435 4907 if (status != 0) {
duke@435 4908 if (PrintMiscellaneous && (Verbose || WizardMode))
duke@435 4909 perror("os::init_2 setrlimit failed");
duke@435 4910 }
duke@435 4911 }
duke@435 4912 }
duke@435 4913
duke@435 4914 // Initialize HPI.
duke@435 4915 jint hpi_result = hpi::initialize();
duke@435 4916 if (hpi_result != JNI_OK) {
duke@435 4917 tty->print_cr("There was an error trying to initialize the HPI library.");
duke@435 4918 return hpi_result;
duke@435 4919 }
duke@435 4920
duke@435 4921 // Calculate theoretical max. size of Threads to guard gainst
duke@435 4922 // artifical out-of-memory situations, where all available address-
duke@435 4923 // space has been reserved by thread stacks. Default stack size is 1Mb.
duke@435 4924 size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
duke@435 4925 JavaThread::stack_size_at_create() : (1*K*K);
duke@435 4926 assert(pre_thread_stack_size != 0, "Must have a stack");
duke@435 4927 // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
duke@435 4928 // we should start doing Virtual Memory banging. Currently when the threads will
duke@435 4929 // have used all but 200Mb of space.
duke@435 4930 size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
duke@435 4931 Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
duke@435 4932
duke@435 4933 // at-exit methods are called in the reverse order of their registration.
duke@435 4934 // In Solaris 7 and earlier, atexit functions are called on return from
duke@435 4935 // main or as a result of a call to exit(3C). There can be only 32 of
duke@435 4936 // these functions registered and atexit() does not set errno. In Solaris
duke@435 4937 // 8 and later, there is no limit to the number of functions registered
duke@435 4938 // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
duke@435 4939 // functions are called upon dlclose(3DL) in addition to return from main
duke@435 4940 // and exit(3C).
duke@435 4941
duke@435 4942 if (PerfAllowAtExitRegistration) {
duke@435 4943 // only register atexit functions if PerfAllowAtExitRegistration is set.
duke@435 4944 // atexit functions can be delayed until process exit time, which
duke@435 4945 // can be problematic for embedded VM situations. Embedded VMs should
duke@435 4946 // call DestroyJavaVM() to assure that VM resources are released.
duke@435 4947
duke@435 4948 // note: perfMemory_exit_helper atexit function may be removed in
duke@435 4949 // the future if the appropriate cleanup code can be added to the
duke@435 4950 // VM_Exit VMOperation's doit method.
duke@435 4951 if (atexit(perfMemory_exit_helper) != 0) {
duke@435 4952 warning("os::init2 atexit(perfMemory_exit_helper) failed");
duke@435 4953 }
duke@435 4954 }
duke@435 4955
duke@435 4956 // Init pset_loadavg function pointer
duke@435 4957 init_pset_getloadavg_ptr();
duke@435 4958
duke@435 4959 return JNI_OK;
duke@435 4960 }
duke@435 4961
duke@435 4962
duke@435 4963 // Mark the polling page as unreadable
duke@435 4964 void os::make_polling_page_unreadable(void) {
duke@435 4965 if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 )
duke@435 4966 fatal("Could not disable polling page");
duke@435 4967 };
duke@435 4968
duke@435 4969 // Mark the polling page as readable
duke@435 4970 void os::make_polling_page_readable(void) {
duke@435 4971 if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 )
duke@435 4972 fatal("Could not enable polling page");
duke@435 4973 };
duke@435 4974
duke@435 4975 // OS interface.
duke@435 4976
duke@435 4977 int os::stat(const char *path, struct stat *sbuf) {
duke@435 4978 char pathbuf[MAX_PATH];
duke@435 4979 if (strlen(path) > MAX_PATH - 1) {
duke@435 4980 errno = ENAMETOOLONG;
duke@435 4981 return -1;
duke@435 4982 }
duke@435 4983 hpi::native_path(strcpy(pathbuf, path));
duke@435 4984 return ::stat(pathbuf, sbuf);
duke@435 4985 }
duke@435 4986
duke@435 4987
duke@435 4988 bool os::check_heap(bool force) { return true; }
duke@435 4989
duke@435 4990 typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr);
duke@435 4991 static vsnprintf_t sol_vsnprintf = NULL;
duke@435 4992
duke@435 4993 int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) {
duke@435 4994 if (!sol_vsnprintf) {
duke@435 4995 //search for the named symbol in the objects that were loaded after libjvm
duke@435 4996 void* where = RTLD_NEXT;
duke@435 4997 if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
duke@435 4998 sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
duke@435 4999 if (!sol_vsnprintf){
duke@435 5000 //search for the named symbol in the objects that were loaded before libjvm
duke@435 5001 where = RTLD_DEFAULT;
duke@435 5002 if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
duke@435 5003 sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
duke@435 5004 assert(sol_vsnprintf != NULL, "vsnprintf not found");
duke@435 5005 }
duke@435 5006 }
duke@435 5007 return (*sol_vsnprintf)(buf, count, fmt, argptr);
duke@435 5008 }
duke@435 5009
duke@435 5010
duke@435 5011 // Is a (classpath) directory empty?
duke@435 5012 bool os::dir_is_empty(const char* path) {
duke@435 5013 DIR *dir = NULL;
duke@435 5014 struct dirent *ptr;
duke@435 5015
duke@435 5016 dir = opendir(path);
duke@435 5017 if (dir == NULL) return true;
duke@435 5018
duke@435 5019 /* Scan the directory */
duke@435 5020 bool result = true;
duke@435 5021 char buf[sizeof(struct dirent) + MAX_PATH];
duke@435 5022 struct dirent *dbuf = (struct dirent *) buf;
duke@435 5023 while (result && (ptr = readdir(dir, dbuf)) != NULL) {
duke@435 5024 if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
duke@435 5025 result = false;
duke@435 5026 }
duke@435 5027 }
duke@435 5028 closedir(dir);
duke@435 5029 return result;
duke@435 5030 }
duke@435 5031
duke@435 5032 // create binary file, rewriting existing file if required
duke@435 5033 int os::create_binary_file(const char* path, bool rewrite_existing) {
duke@435 5034 int oflags = O_WRONLY | O_CREAT;
duke@435 5035 if (!rewrite_existing) {
duke@435 5036 oflags |= O_EXCL;
duke@435 5037 }
duke@435 5038 return ::open64(path, oflags, S_IREAD | S_IWRITE);
duke@435 5039 }
duke@435 5040
duke@435 5041 // return current position of file pointer
duke@435 5042 jlong os::current_file_offset(int fd) {
duke@435 5043 return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
duke@435 5044 }
duke@435 5045
duke@435 5046 // move file pointer to the specified offset
duke@435 5047 jlong os::seek_to_file_offset(int fd, jlong offset) {
duke@435 5048 return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
duke@435 5049 }
duke@435 5050
duke@435 5051 // Map a block of memory.
duke@435 5052 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
duke@435 5053 char *addr, size_t bytes, bool read_only,
duke@435 5054 bool allow_exec) {
duke@435 5055 int prot;
duke@435 5056 int flags;
duke@435 5057
duke@435 5058 if (read_only) {
duke@435 5059 prot = PROT_READ;
duke@435 5060 flags = MAP_SHARED;
duke@435 5061 } else {
duke@435 5062 prot = PROT_READ | PROT_WRITE;
duke@435 5063 flags = MAP_PRIVATE;
duke@435 5064 }
duke@435 5065
duke@435 5066 if (allow_exec) {
duke@435 5067 prot |= PROT_EXEC;
duke@435 5068 }
duke@435 5069
duke@435 5070 if (addr != NULL) {
duke@435 5071 flags |= MAP_FIXED;
duke@435 5072 }
duke@435 5073
duke@435 5074 char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
duke@435 5075 fd, file_offset);
duke@435 5076 if (mapped_address == MAP_FAILED) {
duke@435 5077 return NULL;
duke@435 5078 }
duke@435 5079 return mapped_address;
duke@435 5080 }
duke@435 5081
duke@435 5082
duke@435 5083 // Remap a block of memory.
duke@435 5084 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
duke@435 5085 char *addr, size_t bytes, bool read_only,
duke@435 5086 bool allow_exec) {
duke@435 5087 // same as map_memory() on this OS
duke@435 5088 return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
duke@435 5089 allow_exec);
duke@435 5090 }
duke@435 5091
duke@435 5092
duke@435 5093 // Unmap a block of memory.
duke@435 5094 bool os::unmap_memory(char* addr, size_t bytes) {
duke@435 5095 return munmap(addr, bytes) == 0;
duke@435 5096 }
duke@435 5097
duke@435 5098 void os::pause() {
duke@435 5099 char filename[MAX_PATH];
duke@435 5100 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
duke@435 5101 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
duke@435 5102 } else {
duke@435 5103 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
duke@435 5104 }
duke@435 5105
duke@435 5106 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
duke@435 5107 if (fd != -1) {
duke@435 5108 struct stat buf;
duke@435 5109 close(fd);
duke@435 5110 while (::stat(filename, &buf) == 0) {
duke@435 5111 (void)::poll(NULL, 0, 100);
duke@435 5112 }
duke@435 5113 } else {
duke@435 5114 jio_fprintf(stderr,
duke@435 5115 "Could not open pause file '%s', continuing immediately.\n", filename);
duke@435 5116 }
duke@435 5117 }
duke@435 5118
duke@435 5119 #ifndef PRODUCT
duke@435 5120 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
duke@435 5121 // Turn this on if you need to trace synch operations.
duke@435 5122 // Set RECORD_SYNCH_LIMIT to a large-enough value,
duke@435 5123 // and call record_synch_enable and record_synch_disable
duke@435 5124 // around the computation of interest.
duke@435 5125
duke@435 5126 void record_synch(char* name, bool returning); // defined below
duke@435 5127
duke@435 5128 class RecordSynch {
duke@435 5129 char* _name;
duke@435 5130 public:
duke@435 5131 RecordSynch(char* name) :_name(name)
duke@435 5132 { record_synch(_name, false); }
duke@435 5133 ~RecordSynch() { record_synch(_name, true); }
duke@435 5134 };
duke@435 5135
duke@435 5136 #define CHECK_SYNCH_OP(ret, name, params, args, inner) \
duke@435 5137 extern "C" ret name params { \
duke@435 5138 typedef ret name##_t params; \
duke@435 5139 static name##_t* implem = NULL; \
duke@435 5140 static int callcount = 0; \
duke@435 5141 if (implem == NULL) { \
duke@435 5142 implem = (name##_t*) dlsym(RTLD_NEXT, #name); \
duke@435 5143 if (implem == NULL) fatal(dlerror()); \
duke@435 5144 } \
duke@435 5145 ++callcount; \
duke@435 5146 RecordSynch _rs(#name); \
duke@435 5147 inner; \
duke@435 5148 return implem args; \
duke@435 5149 }
duke@435 5150 // in dbx, examine callcounts this way:
duke@435 5151 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
duke@435 5152
duke@435 5153 #define CHECK_POINTER_OK(p) \
duke@435 5154 (Universe::perm_gen() == NULL || !Universe::is_reserved_heap((oop)(p)))
duke@435 5155 #define CHECK_MU \
duke@435 5156 if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
duke@435 5157 #define CHECK_CV \
duke@435 5158 if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
duke@435 5159 #define CHECK_P(p) \
duke@435 5160 if (!CHECK_POINTER_OK(p)) fatal(false, "Pointer must be in C heap only.");
duke@435 5161
duke@435 5162 #define CHECK_MUTEX(mutex_op) \
duke@435 5163 CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
duke@435 5164
duke@435 5165 CHECK_MUTEX( mutex_lock)
duke@435 5166 CHECK_MUTEX( _mutex_lock)
duke@435 5167 CHECK_MUTEX( mutex_unlock)
duke@435 5168 CHECK_MUTEX(_mutex_unlock)
duke@435 5169 CHECK_MUTEX( mutex_trylock)
duke@435 5170 CHECK_MUTEX(_mutex_trylock)
duke@435 5171
duke@435 5172 #define CHECK_COND(cond_op) \
duke@435 5173 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV);
duke@435 5174
duke@435 5175 CHECK_COND( cond_wait);
duke@435 5176 CHECK_COND(_cond_wait);
duke@435 5177 CHECK_COND(_cond_wait_cancel);
duke@435 5178
duke@435 5179 #define CHECK_COND2(cond_op) \
duke@435 5180 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV);
duke@435 5181
duke@435 5182 CHECK_COND2( cond_timedwait);
duke@435 5183 CHECK_COND2(_cond_timedwait);
duke@435 5184 CHECK_COND2(_cond_timedwait_cancel);
duke@435 5185
duke@435 5186 // do the _lwp_* versions too
duke@435 5187 #define mutex_t lwp_mutex_t
duke@435 5188 #define cond_t lwp_cond_t
duke@435 5189 CHECK_MUTEX( _lwp_mutex_lock)
duke@435 5190 CHECK_MUTEX( _lwp_mutex_unlock)
duke@435 5191 CHECK_MUTEX( _lwp_mutex_trylock)
duke@435 5192 CHECK_MUTEX( __lwp_mutex_lock)
duke@435 5193 CHECK_MUTEX( __lwp_mutex_unlock)
duke@435 5194 CHECK_MUTEX( __lwp_mutex_trylock)
duke@435 5195 CHECK_MUTEX(___lwp_mutex_lock)
duke@435 5196 CHECK_MUTEX(___lwp_mutex_unlock)
duke@435 5197
duke@435 5198 CHECK_COND( _lwp_cond_wait);
duke@435 5199 CHECK_COND( __lwp_cond_wait);
duke@435 5200 CHECK_COND(___lwp_cond_wait);
duke@435 5201
duke@435 5202 CHECK_COND2( _lwp_cond_timedwait);
duke@435 5203 CHECK_COND2( __lwp_cond_timedwait);
duke@435 5204 #undef mutex_t
duke@435 5205 #undef cond_t
duke@435 5206
duke@435 5207 CHECK_SYNCH_OP(int, _lwp_suspend2, (int lwp, int *n), (lwp, n), 0);
duke@435 5208 CHECK_SYNCH_OP(int,__lwp_suspend2, (int lwp, int *n), (lwp, n), 0);
duke@435 5209 CHECK_SYNCH_OP(int, _lwp_kill, (int lwp, int n), (lwp, n), 0);
duke@435 5210 CHECK_SYNCH_OP(int,__lwp_kill, (int lwp, int n), (lwp, n), 0);
duke@435 5211 CHECK_SYNCH_OP(int, _lwp_sema_wait, (lwp_sema_t* p), (p), CHECK_P(p));
duke@435 5212 CHECK_SYNCH_OP(int,__lwp_sema_wait, (lwp_sema_t* p), (p), CHECK_P(p));
duke@435 5213 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv), (cv), CHECK_CV);
duke@435 5214 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv), (cv), CHECK_CV);
duke@435 5215
duke@435 5216
duke@435 5217 // recording machinery:
duke@435 5218
duke@435 5219 enum { RECORD_SYNCH_LIMIT = 200 };
duke@435 5220 char* record_synch_name[RECORD_SYNCH_LIMIT];
duke@435 5221 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
duke@435 5222 bool record_synch_returning[RECORD_SYNCH_LIMIT];
duke@435 5223 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
duke@435 5224 int record_synch_count = 0;
duke@435 5225 bool record_synch_enabled = false;
duke@435 5226
duke@435 5227 // in dbx, examine recorded data this way:
duke@435 5228 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
duke@435 5229
duke@435 5230 void record_synch(char* name, bool returning) {
duke@435 5231 if (record_synch_enabled) {
duke@435 5232 if (record_synch_count < RECORD_SYNCH_LIMIT) {
duke@435 5233 record_synch_name[record_synch_count] = name;
duke@435 5234 record_synch_returning[record_synch_count] = returning;
duke@435 5235 record_synch_thread[record_synch_count] = thr_self();
duke@435 5236 record_synch_arg0ptr[record_synch_count] = &name;
duke@435 5237 record_synch_count++;
duke@435 5238 }
duke@435 5239 // put more checking code here:
duke@435 5240 // ...
duke@435 5241 }
duke@435 5242 }
duke@435 5243
duke@435 5244 void record_synch_enable() {
duke@435 5245 // start collecting trace data, if not already doing so
duke@435 5246 if (!record_synch_enabled) record_synch_count = 0;
duke@435 5247 record_synch_enabled = true;
duke@435 5248 }
duke@435 5249
duke@435 5250 void record_synch_disable() {
duke@435 5251 // stop collecting trace data
duke@435 5252 record_synch_enabled = false;
duke@435 5253 }
duke@435 5254
duke@435 5255 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
duke@435 5256 #endif // PRODUCT
duke@435 5257
duke@435 5258 const intptr_t thr_time_off = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
duke@435 5259 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
duke@435 5260 (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
duke@435 5261
duke@435 5262
duke@435 5263 // JVMTI & JVM monitoring and management support
duke@435 5264 // The thread_cpu_time() and current_thread_cpu_time() are only
duke@435 5265 // supported if is_thread_cpu_time_supported() returns true.
duke@435 5266 // They are not supported on Solaris T1.
duke@435 5267
duke@435 5268 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
duke@435 5269 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
duke@435 5270 // of a thread.
duke@435 5271 //
duke@435 5272 // current_thread_cpu_time() and thread_cpu_time(Thread *)
duke@435 5273 // returns the fast estimate available on the platform.
duke@435 5274
duke@435 5275 // hrtime_t gethrvtime() return value includes
duke@435 5276 // user time but does not include system time
duke@435 5277 jlong os::current_thread_cpu_time() {
duke@435 5278 return (jlong) gethrvtime();
duke@435 5279 }
duke@435 5280
duke@435 5281 jlong os::thread_cpu_time(Thread *thread) {
duke@435 5282 // return user level CPU time only to be consistent with
duke@435 5283 // what current_thread_cpu_time returns.
duke@435 5284 // thread_cpu_time_info() must be changed if this changes
duke@435 5285 return os::thread_cpu_time(thread, false /* user time only */);
duke@435 5286 }
duke@435 5287
duke@435 5288 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
duke@435 5289 if (user_sys_cpu_time) {
duke@435 5290 return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
duke@435 5291 } else {
duke@435 5292 return os::current_thread_cpu_time();
duke@435 5293 }
duke@435 5294 }
duke@435 5295
duke@435 5296 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
duke@435 5297 char proc_name[64];
duke@435 5298 int count;
duke@435 5299 prusage_t prusage;
duke@435 5300 jlong lwp_time;
duke@435 5301 int fd;
duke@435 5302
duke@435 5303 sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
duke@435 5304 getpid(),
duke@435 5305 thread->osthread()->lwp_id());
duke@435 5306 fd = open(proc_name, O_RDONLY);
duke@435 5307 if ( fd == -1 ) return -1;
duke@435 5308
duke@435 5309 do {
duke@435 5310 count = pread(fd,
duke@435 5311 (void *)&prusage.pr_utime,
duke@435 5312 thr_time_size,
duke@435 5313 thr_time_off);
duke@435 5314 } while (count < 0 && errno == EINTR);
duke@435 5315 close(fd);
duke@435 5316 if ( count < 0 ) return -1;
duke@435 5317
duke@435 5318 if (user_sys_cpu_time) {
duke@435 5319 // user + system CPU time
duke@435 5320 lwp_time = (((jlong)prusage.pr_stime.tv_sec +
duke@435 5321 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
duke@435 5322 (jlong)prusage.pr_stime.tv_nsec +
duke@435 5323 (jlong)prusage.pr_utime.tv_nsec;
duke@435 5324 } else {
duke@435 5325 // user level CPU time only
duke@435 5326 lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
duke@435 5327 (jlong)prusage.pr_utime.tv_nsec;
duke@435 5328 }
duke@435 5329
duke@435 5330 return(lwp_time);
duke@435 5331 }
duke@435 5332
duke@435 5333 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 5334 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 5335 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 5336 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 5337 info_ptr->kind = JVMTI_TIMER_USER_CPU; // only user time is returned
duke@435 5338 }
duke@435 5339
duke@435 5340 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
duke@435 5341 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
duke@435 5342 info_ptr->may_skip_backward = false; // elapsed time not wall time
duke@435 5343 info_ptr->may_skip_forward = false; // elapsed time not wall time
duke@435 5344 info_ptr->kind = JVMTI_TIMER_USER_CPU; // only user time is returned
duke@435 5345 }
duke@435 5346
duke@435 5347 bool os::is_thread_cpu_time_supported() {
duke@435 5348 if ( os::Solaris::T2_libthread() || UseBoundThreads ) {
duke@435 5349 return true;
duke@435 5350 } else {
duke@435 5351 return false;
duke@435 5352 }
duke@435 5353 }
duke@435 5354
duke@435 5355 // System loadavg support. Returns -1 if load average cannot be obtained.
duke@435 5356 // Return the load average for our processor set if the primitive exists
duke@435 5357 // (Solaris 9 and later). Otherwise just return system wide loadavg.
duke@435 5358 int os::loadavg(double loadavg[], int nelem) {
duke@435 5359 if (pset_getloadavg_ptr != NULL) {
duke@435 5360 return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
duke@435 5361 } else {
duke@435 5362 return ::getloadavg(loadavg, nelem);
duke@435 5363 }
duke@435 5364 }
duke@435 5365
duke@435 5366 //---------------------------------------------------------------------------------
duke@435 5367 #ifndef PRODUCT
duke@435 5368
duke@435 5369 static address same_page(address x, address y) {
duke@435 5370 intptr_t page_bits = -os::vm_page_size();
duke@435 5371 if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
duke@435 5372 return x;
duke@435 5373 else if (x > y)
duke@435 5374 return (address)(intptr_t(y) | ~page_bits) + 1;
duke@435 5375 else
duke@435 5376 return (address)(intptr_t(y) & page_bits);
duke@435 5377 }
duke@435 5378
duke@435 5379 bool os::find(address addr) {
duke@435 5380 Dl_info dlinfo;
duke@435 5381 memset(&dlinfo, 0, sizeof(dlinfo));
duke@435 5382 if (dladdr(addr, &dlinfo)) {
duke@435 5383 #ifdef _LP64
duke@435 5384 tty->print("0x%016lx: ", addr);
duke@435 5385 #else
duke@435 5386 tty->print("0x%08x: ", addr);
duke@435 5387 #endif
duke@435 5388 if (dlinfo.dli_sname != NULL)
duke@435 5389 tty->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
duke@435 5390 else if (dlinfo.dli_fname)
duke@435 5391 tty->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
duke@435 5392 else
duke@435 5393 tty->print("<absolute address>");
duke@435 5394 if (dlinfo.dli_fname) tty->print(" in %s", dlinfo.dli_fname);
duke@435 5395 #ifdef _LP64
duke@435 5396 if (dlinfo.dli_fbase) tty->print(" at 0x%016lx", dlinfo.dli_fbase);
duke@435 5397 #else
duke@435 5398 if (dlinfo.dli_fbase) tty->print(" at 0x%08x", dlinfo.dli_fbase);
duke@435 5399 #endif
duke@435 5400 tty->cr();
duke@435 5401
duke@435 5402 if (Verbose) {
duke@435 5403 // decode some bytes around the PC
duke@435 5404 address begin = same_page(addr-40, addr);
duke@435 5405 address end = same_page(addr+40, addr);
duke@435 5406 address lowest = (address) dlinfo.dli_sname;
duke@435 5407 if (!lowest) lowest = (address) dlinfo.dli_fbase;
duke@435 5408 if (begin < lowest) begin = lowest;
duke@435 5409 Dl_info dlinfo2;
duke@435 5410 if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
duke@435 5411 && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
duke@435 5412 end = (address) dlinfo2.dli_saddr;
duke@435 5413 Disassembler::decode(begin, end);
duke@435 5414 }
duke@435 5415 return true;
duke@435 5416 }
duke@435 5417 return false;
duke@435 5418 }
duke@435 5419
duke@435 5420 #endif
duke@435 5421
duke@435 5422
duke@435 5423 // Following function has been added to support HotSparc's libjvm.so running
duke@435 5424 // under Solaris production JDK 1.2.2 / 1.3.0. These came from
duke@435 5425 // src/solaris/hpi/native_threads in the EVM codebase.
duke@435 5426 //
duke@435 5427 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
duke@435 5428 // libraries and should thus be removed. We will leave it behind for a while
duke@435 5429 // until we no longer want to able to run on top of 1.3.0 Solaris production
duke@435 5430 // JDK. See 4341971.
duke@435 5431
duke@435 5432 #define STACK_SLACK 0x800
duke@435 5433
duke@435 5434 extern "C" {
duke@435 5435 intptr_t sysThreadAvailableStackWithSlack() {
duke@435 5436 stack_t st;
duke@435 5437 intptr_t retval, stack_top;
duke@435 5438 retval = thr_stksegment(&st);
duke@435 5439 assert(retval == 0, "incorrect return value from thr_stksegment");
duke@435 5440 assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
duke@435 5441 assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
duke@435 5442 stack_top=(intptr_t)st.ss_sp-st.ss_size;
duke@435 5443 return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
duke@435 5444 }
duke@435 5445 }
duke@435 5446
duke@435 5447 // Just to get the Kernel build to link on solaris for testing.
duke@435 5448
duke@435 5449 extern "C" {
duke@435 5450 class ASGCT_CallTrace;
duke@435 5451 void AsyncGetCallTrace(ASGCT_CallTrace *trace, jint depth, void* ucontext)
duke@435 5452 KERNEL_RETURN;
duke@435 5453 }
duke@435 5454
duke@435 5455
duke@435 5456 // ObjectMonitor park-unpark infrastructure ...
duke@435 5457 //
duke@435 5458 // We implement Solaris and Linux PlatformEvents with the
duke@435 5459 // obvious condvar-mutex-flag triple.
duke@435 5460 // Another alternative that works quite well is pipes:
duke@435 5461 // Each PlatformEvent consists of a pipe-pair.
duke@435 5462 // The thread associated with the PlatformEvent
duke@435 5463 // calls park(), which reads from the input end of the pipe.
duke@435 5464 // Unpark() writes into the other end of the pipe.
duke@435 5465 // The write-side of the pipe must be set NDELAY.
duke@435 5466 // Unfortunately pipes consume a large # of handles.
duke@435 5467 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
duke@435 5468 // Using pipes for the 1st few threads might be workable, however.
duke@435 5469 //
duke@435 5470 // park() is permitted to return spuriously.
duke@435 5471 // Callers of park() should wrap the call to park() in
duke@435 5472 // an appropriate loop. A litmus test for the correct
duke@435 5473 // usage of park is the following: if park() were modified
duke@435 5474 // to immediately return 0 your code should still work,
duke@435 5475 // albeit degenerating to a spin loop.
duke@435 5476 //
duke@435 5477 // An interesting optimization for park() is to use a trylock()
duke@435 5478 // to attempt to acquire the mutex. If the trylock() fails
duke@435 5479 // then we know that a concurrent unpark() operation is in-progress.
duke@435 5480 // in that case the park() code could simply set _count to 0
duke@435 5481 // and return immediately. The subsequent park() operation *might*
duke@435 5482 // return immediately. That's harmless as the caller of park() is
duke@435 5483 // expected to loop. By using trylock() we will have avoided a
duke@435 5484 // avoided a context switch caused by contention on the per-thread mutex.
duke@435 5485 //
duke@435 5486 // TODO-FIXME:
duke@435 5487 // 1. Reconcile Doug's JSR166 j.u.c park-unpark with the
duke@435 5488 // objectmonitor implementation.
duke@435 5489 // 2. Collapse the JSR166 parker event, and the
duke@435 5490 // objectmonitor ParkEvent into a single "Event" construct.
duke@435 5491 // 3. In park() and unpark() add:
duke@435 5492 // assert (Thread::current() == AssociatedWith).
duke@435 5493 // 4. add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
duke@435 5494 // 1-out-of-N park() operations will return immediately.
duke@435 5495 //
duke@435 5496 // _Event transitions in park()
duke@435 5497 // -1 => -1 : illegal
duke@435 5498 // 1 => 0 : pass - return immediately
duke@435 5499 // 0 => -1 : block
duke@435 5500 //
duke@435 5501 // _Event serves as a restricted-range semaphore.
duke@435 5502 //
duke@435 5503 // Another possible encoding of _Event would be with
duke@435 5504 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
duke@435 5505 //
duke@435 5506 // TODO-FIXME: add DTRACE probes for:
duke@435 5507 // 1. Tx parks
duke@435 5508 // 2. Ty unparks Tx
duke@435 5509 // 3. Tx resumes from park
duke@435 5510
duke@435 5511
duke@435 5512 // value determined through experimentation
duke@435 5513 #define ROUNDINGFIX 11
duke@435 5514
duke@435 5515 // utility to compute the abstime argument to timedwait.
duke@435 5516 // TODO-FIXME: switch from compute_abstime() to unpackTime().
duke@435 5517
duke@435 5518 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
duke@435 5519 // millis is the relative timeout time
duke@435 5520 // abstime will be the absolute timeout time
duke@435 5521 if (millis < 0) millis = 0;
duke@435 5522 struct timeval now;
duke@435 5523 int status = gettimeofday(&now, NULL);
duke@435 5524 assert(status == 0, "gettimeofday");
duke@435 5525 jlong seconds = millis / 1000;
duke@435 5526 jlong max_wait_period;
duke@435 5527
duke@435 5528 if (UseLWPSynchronization) {
duke@435 5529 // forward port of fix for 4275818 (not sleeping long enough)
duke@435 5530 // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
duke@435 5531 // _lwp_cond_timedwait() used a round_down algorithm rather
duke@435 5532 // than a round_up. For millis less than our roundfactor
duke@435 5533 // it rounded down to 0 which doesn't meet the spec.
duke@435 5534 // For millis > roundfactor we may return a bit sooner, but
duke@435 5535 // since we can not accurately identify the patch level and
duke@435 5536 // this has already been fixed in Solaris 9 and 8 we will
duke@435 5537 // leave it alone rather than always rounding down.
duke@435 5538
duke@435 5539 if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
duke@435 5540 // It appears that when we go directly through Solaris _lwp_cond_timedwait()
duke@435 5541 // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
duke@435 5542 max_wait_period = 21000000;
duke@435 5543 } else {
duke@435 5544 max_wait_period = 50000000;
duke@435 5545 }
duke@435 5546 millis %= 1000;
duke@435 5547 if (seconds > max_wait_period) { // see man cond_timedwait(3T)
duke@435 5548 seconds = max_wait_period;
duke@435 5549 }
duke@435 5550 abstime->tv_sec = now.tv_sec + seconds;
duke@435 5551 long usec = now.tv_usec + millis * 1000;
duke@435 5552 if (usec >= 1000000) {
duke@435 5553 abstime->tv_sec += 1;
duke@435 5554 usec -= 1000000;
duke@435 5555 }
duke@435 5556 abstime->tv_nsec = usec * 1000;
duke@435 5557 return abstime;
duke@435 5558 }
duke@435 5559
duke@435 5560 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
duke@435 5561 // Conceptually TryPark() should be equivalent to park(0).
duke@435 5562
duke@435 5563 int os::PlatformEvent::TryPark() {
duke@435 5564 for (;;) {
duke@435 5565 const int v = _Event ;
duke@435 5566 guarantee ((v == 0) || (v == 1), "invariant") ;
duke@435 5567 if (Atomic::cmpxchg (0, &_Event, v) == v) return v ;
duke@435 5568 }
duke@435 5569 }
duke@435 5570
duke@435 5571 void os::PlatformEvent::park() { // AKA: down()
duke@435 5572 // Invariant: Only the thread associated with the Event/PlatformEvent
duke@435 5573 // may call park().
duke@435 5574 int v ;
duke@435 5575 for (;;) {
duke@435 5576 v = _Event ;
duke@435 5577 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 5578 }
duke@435 5579 guarantee (v >= 0, "invariant") ;
duke@435 5580 if (v == 0) {
duke@435 5581 // Do this the hard way by blocking ...
duke@435 5582 // See http://monaco.sfbay/detail.jsf?cr=5094058.
duke@435 5583 // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
duke@435 5584 // Only for SPARC >= V8PlusA
duke@435 5585 #if defined(__sparc) && defined(COMPILER2)
duke@435 5586 if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
duke@435 5587 #endif
duke@435 5588 int status = os::Solaris::mutex_lock(_mutex);
duke@435 5589 assert_status(status == 0, status, "mutex_lock");
duke@435 5590 guarantee (_nParked == 0, "invariant") ;
duke@435 5591 ++ _nParked ;
duke@435 5592 while (_Event < 0) {
duke@435 5593 // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
duke@435 5594 // Treat this the same as if the wait was interrupted
duke@435 5595 // With usr/lib/lwp going to kernel, always handle ETIME
duke@435 5596 status = os::Solaris::cond_wait(_cond, _mutex);
duke@435 5597 if (status == ETIME) status = EINTR ;
duke@435 5598 assert_status(status == 0 || status == EINTR, status, "cond_wait");
duke@435 5599 }
duke@435 5600 -- _nParked ;
duke@435 5601 _Event = 0 ;
duke@435 5602 status = os::Solaris::mutex_unlock(_mutex);
duke@435 5603 assert_status(status == 0, status, "mutex_unlock");
duke@435 5604 }
duke@435 5605 }
duke@435 5606
duke@435 5607 int os::PlatformEvent::park(jlong millis) {
duke@435 5608 guarantee (_nParked == 0, "invariant") ;
duke@435 5609 int v ;
duke@435 5610 for (;;) {
duke@435 5611 v = _Event ;
duke@435 5612 if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
duke@435 5613 }
duke@435 5614 guarantee (v >= 0, "invariant") ;
duke@435 5615 if (v != 0) return OS_OK ;
duke@435 5616
duke@435 5617 int ret = OS_TIMEOUT;
duke@435 5618 timestruc_t abst;
duke@435 5619 compute_abstime (&abst, millis);
duke@435 5620
duke@435 5621 // See http://monaco.sfbay/detail.jsf?cr=5094058.
duke@435 5622 // For Solaris SPARC set fprs.FEF=0 prior to parking.
duke@435 5623 // Only for SPARC >= V8PlusA
duke@435 5624 #if defined(__sparc) && defined(COMPILER2)
duke@435 5625 if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
duke@435 5626 #endif
duke@435 5627 int status = os::Solaris::mutex_lock(_mutex);
duke@435 5628 assert_status(status == 0, status, "mutex_lock");
duke@435 5629 guarantee (_nParked == 0, "invariant") ;
duke@435 5630 ++ _nParked ;
duke@435 5631 while (_Event < 0) {
duke@435 5632 int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
duke@435 5633 assert_status(status == 0 || status == EINTR ||
duke@435 5634 status == ETIME || status == ETIMEDOUT,
duke@435 5635 status, "cond_timedwait");
duke@435 5636 if (!FilterSpuriousWakeups) break ; // previous semantics
duke@435 5637 if (status == ETIME || status == ETIMEDOUT) break ;
duke@435 5638 // We consume and ignore EINTR and spurious wakeups.
duke@435 5639 }
duke@435 5640 -- _nParked ;
duke@435 5641 if (_Event >= 0) ret = OS_OK ;
duke@435 5642 _Event = 0 ;
duke@435 5643 status = os::Solaris::mutex_unlock(_mutex);
duke@435 5644 assert_status(status == 0, status, "mutex_unlock");
duke@435 5645 return ret;
duke@435 5646 }
duke@435 5647
duke@435 5648 void os::PlatformEvent::unpark() {
duke@435 5649 int v, AnyWaiters;
duke@435 5650
duke@435 5651 // Increment _Event.
duke@435 5652 // Another acceptable implementation would be to simply swap 1
duke@435 5653 // into _Event:
duke@435 5654 // if (Swap (&_Event, 1) < 0) {
duke@435 5655 // mutex_lock (_mutex) ; AnyWaiters = nParked; mutex_unlock (_mutex) ;
duke@435 5656 // if (AnyWaiters) cond_signal (_cond) ;
duke@435 5657 // }
duke@435 5658
duke@435 5659 for (;;) {
duke@435 5660 v = _Event ;
duke@435 5661 if (v > 0) {
duke@435 5662 // The LD of _Event could have reordered or be satisfied
duke@435 5663 // by a read-aside from this processor's write buffer.
duke@435 5664 // To avoid problems execute a barrier and then
duke@435 5665 // ratify the value. A degenerate CAS() would also work.
duke@435 5666 // Viz., CAS (v+0, &_Event, v) == v).
duke@435 5667 OrderAccess::fence() ;
duke@435 5668 if (_Event == v) return ;
duke@435 5669 continue ;
duke@435 5670 }
duke@435 5671 if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
duke@435 5672 }
duke@435 5673
duke@435 5674 // If the thread associated with the event was parked, wake it.
duke@435 5675 if (v < 0) {
duke@435 5676 int status ;
duke@435 5677 // Wait for the thread assoc with the PlatformEvent to vacate.
duke@435 5678 status = os::Solaris::mutex_lock(_mutex);
duke@435 5679 assert_status(status == 0, status, "mutex_lock");
duke@435 5680 AnyWaiters = _nParked ;
duke@435 5681 status = os::Solaris::mutex_unlock(_mutex);
duke@435 5682 assert_status(status == 0, status, "mutex_unlock");
duke@435 5683 guarantee (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
duke@435 5684 if (AnyWaiters != 0) {
duke@435 5685 // We intentional signal *after* dropping the lock
duke@435 5686 // to avoid a common class of futile wakeups.
duke@435 5687 status = os::Solaris::cond_signal(_cond);
duke@435 5688 assert_status(status == 0, status, "cond_signal");
duke@435 5689 }
duke@435 5690 }
duke@435 5691 }
duke@435 5692
duke@435 5693 // JSR166
duke@435 5694 // -------------------------------------------------------
duke@435 5695
duke@435 5696 /*
duke@435 5697 * The solaris and linux implementations of park/unpark are fairly
duke@435 5698 * conservative for now, but can be improved. They currently use a
duke@435 5699 * mutex/condvar pair, plus _counter.
duke@435 5700 * Park decrements _counter if > 0, else does a condvar wait. Unpark
duke@435 5701 * sets count to 1 and signals condvar. Only one thread ever waits
duke@435 5702 * on the condvar. Contention seen when trying to park implies that someone
duke@435 5703 * is unparking you, so don't wait. And spurious returns are fine, so there
duke@435 5704 * is no need to track notifications.
duke@435 5705 */
duke@435 5706
duke@435 5707 #define NANOSECS_PER_SEC 1000000000
duke@435 5708 #define NANOSECS_PER_MILLISEC 1000000
duke@435 5709 #define MAX_SECS 100000000
duke@435 5710
duke@435 5711 /*
duke@435 5712 * This code is common to linux and solaris and will be moved to a
duke@435 5713 * common place in dolphin.
duke@435 5714 *
duke@435 5715 * The passed in time value is either a relative time in nanoseconds
duke@435 5716 * or an absolute time in milliseconds. Either way it has to be unpacked
duke@435 5717 * into suitable seconds and nanoseconds components and stored in the
duke@435 5718 * given timespec structure.
duke@435 5719 * Given time is a 64-bit value and the time_t used in the timespec is only
duke@435 5720 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
duke@435 5721 * overflow if times way in the future are given. Further on Solaris versions
duke@435 5722 * prior to 10 there is a restriction (see cond_timedwait) that the specified
duke@435 5723 * number of seconds, in abstime, is less than current_time + 100,000,000.
duke@435 5724 * As it will be 28 years before "now + 100000000" will overflow we can
duke@435 5725 * ignore overflow and just impose a hard-limit on seconds using the value
duke@435 5726 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
duke@435 5727 * years from "now".
duke@435 5728 */
duke@435 5729 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
duke@435 5730 assert (time > 0, "convertTime");
duke@435 5731
duke@435 5732 struct timeval now;
duke@435 5733 int status = gettimeofday(&now, NULL);
duke@435 5734 assert(status == 0, "gettimeofday");
duke@435 5735
duke@435 5736 time_t max_secs = now.tv_sec + MAX_SECS;
duke@435 5737
duke@435 5738 if (isAbsolute) {
duke@435 5739 jlong secs = time / 1000;
duke@435 5740 if (secs > max_secs) {
duke@435 5741 absTime->tv_sec = max_secs;
duke@435 5742 }
duke@435 5743 else {
duke@435 5744 absTime->tv_sec = secs;
duke@435 5745 }
duke@435 5746 absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
duke@435 5747 }
duke@435 5748 else {
duke@435 5749 jlong secs = time / NANOSECS_PER_SEC;
duke@435 5750 if (secs >= MAX_SECS) {
duke@435 5751 absTime->tv_sec = max_secs;
duke@435 5752 absTime->tv_nsec = 0;
duke@435 5753 }
duke@435 5754 else {
duke@435 5755 absTime->tv_sec = now.tv_sec + secs;
duke@435 5756 absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
duke@435 5757 if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
duke@435 5758 absTime->tv_nsec -= NANOSECS_PER_SEC;
duke@435 5759 ++absTime->tv_sec; // note: this must be <= max_secs
duke@435 5760 }
duke@435 5761 }
duke@435 5762 }
duke@435 5763 assert(absTime->tv_sec >= 0, "tv_sec < 0");
duke@435 5764 assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
duke@435 5765 assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
duke@435 5766 assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
duke@435 5767 }
duke@435 5768
duke@435 5769 void Parker::park(bool isAbsolute, jlong time) {
duke@435 5770
duke@435 5771 // Optional fast-path check:
duke@435 5772 // Return immediately if a permit is available.
duke@435 5773 if (_counter > 0) {
duke@435 5774 _counter = 0 ;
duke@435 5775 return ;
duke@435 5776 }
duke@435 5777
duke@435 5778 // Optional fast-exit: Check interrupt before trying to wait
duke@435 5779 Thread* thread = Thread::current();
duke@435 5780 assert(thread->is_Java_thread(), "Must be JavaThread");
duke@435 5781 JavaThread *jt = (JavaThread *)thread;
duke@435 5782 if (Thread::is_interrupted(thread, false)) {
duke@435 5783 return;
duke@435 5784 }
duke@435 5785
duke@435 5786 // First, demultiplex/decode time arguments
duke@435 5787 timespec absTime;
duke@435 5788 if (time < 0) { // don't wait at all
duke@435 5789 return;
duke@435 5790 }
duke@435 5791 if (time > 0) {
duke@435 5792 // Warning: this code might be exposed to the old Solaris time
duke@435 5793 // round-down bugs. Grep "roundingFix" for details.
duke@435 5794 unpackTime(&absTime, isAbsolute, time);
duke@435 5795 }
duke@435 5796
duke@435 5797 // Enter safepoint region
duke@435 5798 // Beware of deadlocks such as 6317397.
duke@435 5799 // The per-thread Parker:: _mutex is a classic leaf-lock.
duke@435 5800 // In particular a thread must never block on the Threads_lock while
duke@435 5801 // holding the Parker:: mutex. If safepoints are pending both the
duke@435 5802 // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
duke@435 5803 ThreadBlockInVM tbivm(jt);
duke@435 5804
duke@435 5805 // Don't wait if cannot get lock since interference arises from
duke@435 5806 // unblocking. Also. check interrupt before trying wait
duke@435 5807 if (Thread::is_interrupted(thread, false) ||
duke@435 5808 os::Solaris::mutex_trylock(_mutex) != 0) {
duke@435 5809 return;
duke@435 5810 }
duke@435 5811
duke@435 5812 int status ;
duke@435 5813
duke@435 5814 if (_counter > 0) { // no wait needed
duke@435 5815 _counter = 0;
duke@435 5816 status = os::Solaris::mutex_unlock(_mutex);
duke@435 5817 assert (status == 0, "invariant") ;
duke@435 5818 return;
duke@435 5819 }
duke@435 5820
duke@435 5821 #ifdef ASSERT
duke@435 5822 // Don't catch signals while blocked; let the running threads have the signals.
duke@435 5823 // (This allows a debugger to break into the running thread.)
duke@435 5824 sigset_t oldsigs;
duke@435 5825 sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
duke@435 5826 thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
duke@435 5827 #endif
duke@435 5828
duke@435 5829 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
duke@435 5830 jt->set_suspend_equivalent();
duke@435 5831 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
duke@435 5832
duke@435 5833 // Do this the hard way by blocking ...
duke@435 5834 // See http://monaco.sfbay/detail.jsf?cr=5094058.
duke@435 5835 // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
duke@435 5836 // Only for SPARC >= V8PlusA
duke@435 5837 #if defined(__sparc) && defined(COMPILER2)
duke@435 5838 if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
duke@435 5839 #endif
duke@435 5840
duke@435 5841 if (time == 0) {
duke@435 5842 status = os::Solaris::cond_wait (_cond, _mutex) ;
duke@435 5843 } else {
duke@435 5844 status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
duke@435 5845 }
duke@435 5846 // Note that an untimed cond_wait() can sometimes return ETIME on older
duke@435 5847 // versions of the Solaris.
duke@435 5848 assert_status(status == 0 || status == EINTR ||
duke@435 5849 status == ETIME || status == ETIMEDOUT,
duke@435 5850 status, "cond_timedwait");
duke@435 5851
duke@435 5852 #ifdef ASSERT
duke@435 5853 thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
duke@435 5854 #endif
duke@435 5855 _counter = 0 ;
duke@435 5856 status = os::Solaris::mutex_unlock(_mutex);
duke@435 5857 assert_status(status == 0, status, "mutex_unlock") ;
duke@435 5858
duke@435 5859 // If externally suspended while waiting, re-suspend
duke@435 5860 if (jt->handle_special_suspend_equivalent_condition()) {
duke@435 5861 jt->java_suspend_self();
duke@435 5862 }
duke@435 5863
duke@435 5864 }
duke@435 5865
duke@435 5866 void Parker::unpark() {
duke@435 5867 int s, status ;
duke@435 5868 status = os::Solaris::mutex_lock (_mutex) ;
duke@435 5869 assert (status == 0, "invariant") ;
duke@435 5870 s = _counter;
duke@435 5871 _counter = 1;
duke@435 5872 status = os::Solaris::mutex_unlock (_mutex) ;
duke@435 5873 assert (status == 0, "invariant") ;
duke@435 5874
duke@435 5875 if (s < 1) {
duke@435 5876 status = os::Solaris::cond_signal (_cond) ;
duke@435 5877 assert (status == 0, "invariant") ;
duke@435 5878 }
duke@435 5879 }
duke@435 5880
duke@435 5881 extern char** environ;
duke@435 5882
duke@435 5883 // Run the specified command in a separate process. Return its exit value,
duke@435 5884 // or -1 on failure (e.g. can't fork a new process).
duke@435 5885 // Unlike system(), this function can be called from signal handler. It
duke@435 5886 // doesn't block SIGINT et al.
duke@435 5887 int os::fork_and_exec(char* cmd) {
duke@435 5888 char * argv[4];
duke@435 5889 argv[0] = (char *)"sh";
duke@435 5890 argv[1] = (char *)"-c";
duke@435 5891 argv[2] = cmd;
duke@435 5892 argv[3] = NULL;
duke@435 5893
duke@435 5894 // fork is async-safe, fork1 is not so can't use in signal handler
duke@435 5895 pid_t pid;
duke@435 5896 Thread* t = ThreadLocalStorage::get_thread_slow();
duke@435 5897 if (t != NULL && t->is_inside_signal_handler()) {
duke@435 5898 pid = fork();
duke@435 5899 } else {
duke@435 5900 pid = fork1();
duke@435 5901 }
duke@435 5902
duke@435 5903 if (pid < 0) {
duke@435 5904 // fork failed
duke@435 5905 warning("fork failed: %s", strerror(errno));
duke@435 5906 return -1;
duke@435 5907
duke@435 5908 } else if (pid == 0) {
duke@435 5909 // child process
duke@435 5910
duke@435 5911 // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
duke@435 5912 execve("/usr/bin/sh", argv, environ);
duke@435 5913
duke@435 5914 // execve failed
duke@435 5915 _exit(-1);
duke@435 5916
duke@435 5917 } else {
duke@435 5918 // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
duke@435 5919 // care about the actual exit code, for now.
duke@435 5920
duke@435 5921 int status;
duke@435 5922
duke@435 5923 // Wait for the child process to exit. This returns immediately if
duke@435 5924 // the child has already exited. */
duke@435 5925 while (waitpid(pid, &status, 0) < 0) {
duke@435 5926 switch (errno) {
duke@435 5927 case ECHILD: return 0;
duke@435 5928 case EINTR: break;
duke@435 5929 default: return -1;
duke@435 5930 }
duke@435 5931 }
duke@435 5932
duke@435 5933 if (WIFEXITED(status)) {
duke@435 5934 // The child exited normally; get its exit code.
duke@435 5935 return WEXITSTATUS(status);
duke@435 5936 } else if (WIFSIGNALED(status)) {
duke@435 5937 // The child exited because of a signal
duke@435 5938 // The best value to return is 0x80 + signal number,
duke@435 5939 // because that is what all Unix shells do, and because
duke@435 5940 // it allows callers to distinguish between process exit and
duke@435 5941 // process death by signal.
duke@435 5942 return 0x80 + WTERMSIG(status);
duke@435 5943 } else {
duke@435 5944 // Unknown exit code; pass it through
duke@435 5945 return status;
duke@435 5946 }
duke@435 5947 }
duke@435 5948 }

mercurial