src/share/vm/memory/space.hpp

Sun, 25 Sep 2011 16:03:29 -0700

author
never
date
Sun, 25 Sep 2011 16:03:29 -0700
changeset 3156
f08d439fab8c
parent 2314
f95d63e2154a
child 3290
d06a2d7fcd5b
permissions
-rw-r--r--

7089790: integrate bsd-port changes
Reviewed-by: kvn, twisti, jrose
Contributed-by: Kurt Miller <kurt@intricatesoftware.com>, Greg Lewis <glewis@eyesbeyond.com>, Jung-uk Kim <jkim@freebsd.org>, Christos Zoulas <christos@zoulas.com>, Landon Fuller <landonf@plausible.coop>, The FreeBSD Foundation <board@freebsdfoundation.org>, Michael Franz <mvfranz@gmail.com>, Roger Hoover <rhoover@apple.com>, Alexander Strange <astrange@apple.com>

duke@435 1 /*
stefank@2314 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_MEMORY_SPACE_HPP
stefank@2314 26 #define SHARE_VM_MEMORY_SPACE_HPP
stefank@2314 27
stefank@2314 28 #include "memory/allocation.hpp"
stefank@2314 29 #include "memory/blockOffsetTable.hpp"
stefank@2314 30 #include "memory/cardTableModRefBS.hpp"
stefank@2314 31 #include "memory/iterator.hpp"
stefank@2314 32 #include "memory/memRegion.hpp"
stefank@2314 33 #include "memory/watermark.hpp"
stefank@2314 34 #include "oops/markOop.hpp"
stefank@2314 35 #include "runtime/mutexLocker.hpp"
stefank@2314 36 #include "runtime/prefetch.hpp"
stefank@2314 37 #include "utilities/workgroup.hpp"
stefank@2314 38 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 39 # include "os_linux.inline.hpp"
stefank@2314 40 #endif
stefank@2314 41 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 42 # include "os_solaris.inline.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 45 # include "os_windows.inline.hpp"
stefank@2314 46 #endif
never@3156 47 #ifdef TARGET_OS_FAMILY_bsd
never@3156 48 # include "os_bsd.inline.hpp"
never@3156 49 #endif
stefank@2314 50
duke@435 51 // A space is an abstraction for the "storage units" backing
duke@435 52 // up the generation abstraction. It includes specific
duke@435 53 // implementations for keeping track of free and used space,
duke@435 54 // for iterating over objects and free blocks, etc.
duke@435 55
duke@435 56 // Here's the Space hierarchy:
duke@435 57 //
duke@435 58 // - Space -- an asbtract base class describing a heap area
duke@435 59 // - CompactibleSpace -- a space supporting compaction
duke@435 60 // - CompactibleFreeListSpace -- (used for CMS generation)
duke@435 61 // - ContiguousSpace -- a compactible space in which all free space
duke@435 62 // is contiguous
duke@435 63 // - EdenSpace -- contiguous space used as nursery
duke@435 64 // - ConcEdenSpace -- contiguous space with a 'soft end safe' allocation
duke@435 65 // - OffsetTableContigSpace -- contiguous space with a block offset array
duke@435 66 // that allows "fast" block_start calls
duke@435 67 // - TenuredSpace -- (used for TenuredGeneration)
duke@435 68 // - ContigPermSpace -- an offset table contiguous space for perm gen
duke@435 69
duke@435 70 // Forward decls.
duke@435 71 class Space;
duke@435 72 class BlockOffsetArray;
duke@435 73 class BlockOffsetArrayContigSpace;
duke@435 74 class Generation;
duke@435 75 class CompactibleSpace;
duke@435 76 class BlockOffsetTable;
duke@435 77 class GenRemSet;
duke@435 78 class CardTableRS;
duke@435 79 class DirtyCardToOopClosure;
duke@435 80
duke@435 81 // An oop closure that is circumscribed by a filtering memory region.
coleenp@548 82 class SpaceMemRegionOopsIterClosure: public OopClosure {
coleenp@548 83 private:
coleenp@548 84 OopClosure* _cl;
coleenp@548 85 MemRegion _mr;
coleenp@548 86 protected:
coleenp@548 87 template <class T> void do_oop_work(T* p) {
coleenp@548 88 if (_mr.contains(p)) {
coleenp@548 89 _cl->do_oop(p);
duke@435 90 }
duke@435 91 }
coleenp@548 92 public:
coleenp@548 93 SpaceMemRegionOopsIterClosure(OopClosure* cl, MemRegion mr):
coleenp@548 94 _cl(cl), _mr(mr) {}
coleenp@548 95 virtual void do_oop(oop* p);
coleenp@548 96 virtual void do_oop(narrowOop* p);
duke@435 97 };
duke@435 98
duke@435 99 // A Space describes a heap area. Class Space is an abstract
duke@435 100 // base class.
duke@435 101 //
duke@435 102 // Space supports allocation, size computation and GC support is provided.
duke@435 103 //
duke@435 104 // Invariant: bottom() and end() are on page_size boundaries and
duke@435 105 // bottom() <= top() <= end()
duke@435 106 // top() is inclusive and end() is exclusive.
duke@435 107
duke@435 108 class Space: public CHeapObj {
duke@435 109 friend class VMStructs;
duke@435 110 protected:
duke@435 111 HeapWord* _bottom;
duke@435 112 HeapWord* _end;
duke@435 113
duke@435 114 // Used in support of save_marks()
duke@435 115 HeapWord* _saved_mark_word;
duke@435 116
duke@435 117 MemRegionClosure* _preconsumptionDirtyCardClosure;
duke@435 118
duke@435 119 // A sequential tasks done structure. This supports
duke@435 120 // parallel GC, where we have threads dynamically
duke@435 121 // claiming sub-tasks from a larger parallel task.
duke@435 122 SequentialSubTasksDone _par_seq_tasks;
duke@435 123
duke@435 124 Space():
duke@435 125 _bottom(NULL), _end(NULL), _preconsumptionDirtyCardClosure(NULL) { }
duke@435 126
duke@435 127 public:
duke@435 128 // Accessors
duke@435 129 HeapWord* bottom() const { return _bottom; }
duke@435 130 HeapWord* end() const { return _end; }
duke@435 131 virtual void set_bottom(HeapWord* value) { _bottom = value; }
duke@435 132 virtual void set_end(HeapWord* value) { _end = value; }
duke@435 133
ysr@777 134 virtual HeapWord* saved_mark_word() const { return _saved_mark_word; }
ysr@1280 135
duke@435 136 void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
duke@435 137
duke@435 138 MemRegionClosure* preconsumptionDirtyCardClosure() const {
duke@435 139 return _preconsumptionDirtyCardClosure;
duke@435 140 }
duke@435 141 void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) {
duke@435 142 _preconsumptionDirtyCardClosure = cl;
duke@435 143 }
duke@435 144
duke@435 145 // Returns a subregion of the space containing all the objects in
duke@435 146 // the space.
duke@435 147 virtual MemRegion used_region() const { return MemRegion(bottom(), end()); }
duke@435 148
duke@435 149 // Returns a region that is guaranteed to contain (at least) all objects
duke@435 150 // allocated at the time of the last call to "save_marks". If the space
duke@435 151 // initializes its DirtyCardToOopClosure's specifying the "contig" option
duke@435 152 // (that is, if the space is contiguous), then this region must contain only
duke@435 153 // such objects: the memregion will be from the bottom of the region to the
duke@435 154 // saved mark. Otherwise, the "obj_allocated_since_save_marks" method of
duke@435 155 // the space must distiguish between objects in the region allocated before
duke@435 156 // and after the call to save marks.
duke@435 157 virtual MemRegion used_region_at_save_marks() const {
duke@435 158 return MemRegion(bottom(), saved_mark_word());
duke@435 159 }
duke@435 160
ysr@777 161 // Initialization.
ysr@777 162 // "initialize" should be called once on a space, before it is used for
ysr@777 163 // any purpose. The "mr" arguments gives the bounds of the space, and
ysr@777 164 // the "clear_space" argument should be true unless the memory in "mr" is
ysr@777 165 // known to be zeroed.
jmasa@698 166 virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
ysr@777 167
ysr@777 168 // The "clear" method must be called on a region that may have
ysr@777 169 // had allocation performed in it, but is now to be considered empty.
jmasa@698 170 virtual void clear(bool mangle_space);
duke@435 171
duke@435 172 // For detecting GC bugs. Should only be called at GC boundaries, since
duke@435 173 // some unused space may be used as scratch space during GC's.
duke@435 174 // Default implementation does nothing. We also call this when expanding
duke@435 175 // a space to satisfy an allocation request. See bug #4668531
duke@435 176 virtual void mangle_unused_area() {}
jmasa@698 177 virtual void mangle_unused_area_complete() {}
duke@435 178 virtual void mangle_region(MemRegion mr) {}
duke@435 179
duke@435 180 // Testers
duke@435 181 bool is_empty() const { return used() == 0; }
duke@435 182 bool not_empty() const { return used() > 0; }
duke@435 183
duke@435 184 // Returns true iff the given the space contains the
duke@435 185 // given address as part of an allocated object. For
duke@435 186 // ceratin kinds of spaces, this might be a potentially
duke@435 187 // expensive operation. To prevent performance problems
duke@435 188 // on account of its inadvertent use in product jvm's,
duke@435 189 // we restrict its use to assertion checks only.
duke@435 190 virtual bool is_in(const void* p) const;
duke@435 191
duke@435 192 // Returns true iff the given reserved memory of the space contains the
duke@435 193 // given address.
duke@435 194 bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
duke@435 195
duke@435 196 // Returns true iff the given block is not allocated.
duke@435 197 virtual bool is_free_block(const HeapWord* p) const = 0;
duke@435 198
duke@435 199 // Test whether p is double-aligned
duke@435 200 static bool is_aligned(void* p) {
duke@435 201 return ((intptr_t)p & (sizeof(double)-1)) == 0;
duke@435 202 }
duke@435 203
duke@435 204 // Size computations. Sizes are in bytes.
duke@435 205 size_t capacity() const { return byte_size(bottom(), end()); }
duke@435 206 virtual size_t used() const = 0;
duke@435 207 virtual size_t free() const = 0;
duke@435 208
duke@435 209 // Iterate over all the ref-containing fields of all objects in the
duke@435 210 // space, calling "cl.do_oop" on each. Fields in objects allocated by
duke@435 211 // applications of the closure are not included in the iteration.
duke@435 212 virtual void oop_iterate(OopClosure* cl);
duke@435 213
duke@435 214 // Same as above, restricted to the intersection of a memory region and
duke@435 215 // the space. Fields in objects allocated by applications of the closure
duke@435 216 // are not included in the iteration.
duke@435 217 virtual void oop_iterate(MemRegion mr, OopClosure* cl) = 0;
duke@435 218
duke@435 219 // Iterate over all objects in the space, calling "cl.do_object" on
duke@435 220 // each. Objects allocated by applications of the closure are not
duke@435 221 // included in the iteration.
duke@435 222 virtual void object_iterate(ObjectClosure* blk) = 0;
jmasa@952 223 // Similar to object_iterate() except only iterates over
jmasa@952 224 // objects whose internal references point to objects in the space.
jmasa@952 225 virtual void safe_object_iterate(ObjectClosure* blk) = 0;
duke@435 226
duke@435 227 // Iterate over all objects that intersect with mr, calling "cl->do_object"
duke@435 228 // on each. There is an exception to this: if this closure has already
duke@435 229 // been invoked on an object, it may skip such objects in some cases. This is
duke@435 230 // Most likely to happen in an "upwards" (ascending address) iteration of
duke@435 231 // MemRegions.
duke@435 232 virtual void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
duke@435 233
duke@435 234 // Iterate over as many initialized objects in the space as possible,
duke@435 235 // calling "cl.do_object_careful" on each. Return NULL if all objects
duke@435 236 // in the space (at the start of the iteration) were iterated over.
duke@435 237 // Return an address indicating the extent of the iteration in the
duke@435 238 // event that the iteration had to return because of finding an
duke@435 239 // uninitialized object in the space, or if the closure "cl"
duke@435 240 // signalled early termination.
duke@435 241 virtual HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
duke@435 242 virtual HeapWord* object_iterate_careful_m(MemRegion mr,
duke@435 243 ObjectClosureCareful* cl);
duke@435 244
duke@435 245 // Create and return a new dirty card to oop closure. Can be
duke@435 246 // overriden to return the appropriate type of closure
duke@435 247 // depending on the type of space in which the closure will
duke@435 248 // operate. ResourceArea allocated.
duke@435 249 virtual DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
duke@435 250 CardTableModRefBS::PrecisionStyle precision,
duke@435 251 HeapWord* boundary = NULL);
duke@435 252
duke@435 253 // If "p" is in the space, returns the address of the start of the
duke@435 254 // "block" that contains "p". We say "block" instead of "object" since
duke@435 255 // some heaps may not pack objects densely; a chunk may either be an
duke@435 256 // object or a non-object. If "p" is not in the space, return NULL.
ysr@777 257 virtual HeapWord* block_start_const(const void* p) const = 0;
ysr@777 258
ysr@777 259 // The non-const version may have benevolent side effects on the data
ysr@777 260 // structure supporting these calls, possibly speeding up future calls.
ysr@777 261 // The default implementation, however, is simply to call the const
ysr@777 262 // version.
ysr@777 263 inline virtual HeapWord* block_start(const void* p);
duke@435 264
duke@435 265 // Requires "addr" to be the start of a chunk, and returns its size.
duke@435 266 // "addr + size" is required to be the start of a new chunk, or the end
duke@435 267 // of the active area of the heap.
duke@435 268 virtual size_t block_size(const HeapWord* addr) const = 0;
duke@435 269
duke@435 270 // Requires "addr" to be the start of a block, and returns "TRUE" iff
duke@435 271 // the block is an object.
duke@435 272 virtual bool block_is_obj(const HeapWord* addr) const = 0;
duke@435 273
duke@435 274 // Requires "addr" to be the start of a block, and returns "TRUE" iff
duke@435 275 // the block is an object and the object is alive.
duke@435 276 virtual bool obj_is_alive(const HeapWord* addr) const;
duke@435 277
duke@435 278 // Allocation (return NULL if full). Assumes the caller has established
duke@435 279 // mutually exclusive access to the space.
duke@435 280 virtual HeapWord* allocate(size_t word_size) = 0;
duke@435 281
duke@435 282 // Allocation (return NULL if full). Enforces mutual exclusion internally.
duke@435 283 virtual HeapWord* par_allocate(size_t word_size) = 0;
duke@435 284
duke@435 285 // Returns true if this object has been allocated since a
duke@435 286 // generation's "save_marks" call.
duke@435 287 virtual bool obj_allocated_since_save_marks(const oop obj) const = 0;
duke@435 288
duke@435 289 // Mark-sweep-compact support: all spaces can update pointers to objects
duke@435 290 // moving as a part of compaction.
duke@435 291 virtual void adjust_pointers();
duke@435 292
duke@435 293 // PrintHeapAtGC support
duke@435 294 virtual void print() const;
duke@435 295 virtual void print_on(outputStream* st) const;
duke@435 296 virtual void print_short() const;
duke@435 297 virtual void print_short_on(outputStream* st) const;
duke@435 298
duke@435 299
duke@435 300 // Accessor for parallel sequential tasks.
duke@435 301 SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
duke@435 302
duke@435 303 // IF "this" is a ContiguousSpace, return it, else return NULL.
duke@435 304 virtual ContiguousSpace* toContiguousSpace() {
duke@435 305 return NULL;
duke@435 306 }
duke@435 307
duke@435 308 // Debugging
duke@435 309 virtual void verify(bool allow_dirty) const = 0;
duke@435 310 };
duke@435 311
duke@435 312 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
duke@435 313 // OopClosure to (the addresses of) all the ref-containing fields that could
duke@435 314 // be modified by virtue of the given MemRegion being dirty. (Note that
duke@435 315 // because of the imprecise nature of the write barrier, this may iterate
duke@435 316 // over oops beyond the region.)
duke@435 317 // This base type for dirty card to oop closures handles memory regions
duke@435 318 // in non-contiguous spaces with no boundaries, and should be sub-classed
duke@435 319 // to support other space types. See ContiguousDCTOC for a sub-class
duke@435 320 // that works with ContiguousSpaces.
duke@435 321
duke@435 322 class DirtyCardToOopClosure: public MemRegionClosureRO {
duke@435 323 protected:
duke@435 324 OopClosure* _cl;
duke@435 325 Space* _sp;
duke@435 326 CardTableModRefBS::PrecisionStyle _precision;
duke@435 327 HeapWord* _boundary; // If non-NULL, process only non-NULL oops
duke@435 328 // pointing below boundary.
ysr@777 329 HeapWord* _min_done; // ObjHeadPreciseArray precision requires
duke@435 330 // a downwards traversal; this is the
duke@435 331 // lowest location already done (or,
duke@435 332 // alternatively, the lowest address that
duke@435 333 // shouldn't be done again. NULL means infinity.)
duke@435 334 NOT_PRODUCT(HeapWord* _last_bottom;)
ysr@777 335 NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
duke@435 336
duke@435 337 // Get the actual top of the area on which the closure will
duke@435 338 // operate, given where the top is assumed to be (the end of the
duke@435 339 // memory region passed to do_MemRegion) and where the object
duke@435 340 // at the top is assumed to start. For example, an object may
duke@435 341 // start at the top but actually extend past the assumed top,
duke@435 342 // in which case the top becomes the end of the object.
duke@435 343 virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
duke@435 344
duke@435 345 // Walk the given memory region from bottom to (actual) top
duke@435 346 // looking for objects and applying the oop closure (_cl) to
duke@435 347 // them. The base implementation of this treats the area as
duke@435 348 // blocks, where a block may or may not be an object. Sub-
duke@435 349 // classes should override this to provide more accurate
duke@435 350 // or possibly more efficient walking.
duke@435 351 virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
duke@435 352
duke@435 353 public:
duke@435 354 DirtyCardToOopClosure(Space* sp, OopClosure* cl,
duke@435 355 CardTableModRefBS::PrecisionStyle precision,
duke@435 356 HeapWord* boundary) :
duke@435 357 _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
duke@435 358 _min_done(NULL) {
ysr@777 359 NOT_PRODUCT(_last_bottom = NULL);
ysr@777 360 NOT_PRODUCT(_last_explicit_min_done = NULL);
duke@435 361 }
duke@435 362
duke@435 363 void do_MemRegion(MemRegion mr);
duke@435 364
duke@435 365 void set_min_done(HeapWord* min_done) {
duke@435 366 _min_done = min_done;
ysr@777 367 NOT_PRODUCT(_last_explicit_min_done = _min_done);
duke@435 368 }
duke@435 369 #ifndef PRODUCT
duke@435 370 void set_last_bottom(HeapWord* last_bottom) {
duke@435 371 _last_bottom = last_bottom;
duke@435 372 }
duke@435 373 #endif
duke@435 374 };
duke@435 375
duke@435 376 // A structure to represent a point at which objects are being copied
duke@435 377 // during compaction.
duke@435 378 class CompactPoint : public StackObj {
duke@435 379 public:
duke@435 380 Generation* gen;
duke@435 381 CompactibleSpace* space;
duke@435 382 HeapWord* threshold;
duke@435 383 CompactPoint(Generation* _gen, CompactibleSpace* _space,
duke@435 384 HeapWord* _threshold) :
duke@435 385 gen(_gen), space(_space), threshold(_threshold) {}
duke@435 386 };
duke@435 387
duke@435 388
duke@435 389 // A space that supports compaction operations. This is usually, but not
duke@435 390 // necessarily, a space that is normally contiguous. But, for example, a
duke@435 391 // free-list-based space whose normal collection is a mark-sweep without
duke@435 392 // compaction could still support compaction in full GC's.
duke@435 393
duke@435 394 class CompactibleSpace: public Space {
duke@435 395 friend class VMStructs;
duke@435 396 friend class CompactibleFreeListSpace;
duke@435 397 friend class CompactingPermGenGen;
duke@435 398 friend class CMSPermGenGen;
duke@435 399 private:
duke@435 400 HeapWord* _compaction_top;
duke@435 401 CompactibleSpace* _next_compaction_space;
duke@435 402
duke@435 403 public:
ysr@782 404 CompactibleSpace() :
ysr@782 405 _compaction_top(NULL), _next_compaction_space(NULL) {}
ysr@782 406
jmasa@698 407 virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
tonyp@791 408 virtual void clear(bool mangle_space);
duke@435 409
duke@435 410 // Used temporarily during a compaction phase to hold the value
duke@435 411 // top should have when compaction is complete.
duke@435 412 HeapWord* compaction_top() const { return _compaction_top; }
duke@435 413
duke@435 414 void set_compaction_top(HeapWord* value) {
duke@435 415 assert(value == NULL || (value >= bottom() && value <= end()),
duke@435 416 "should point inside space");
duke@435 417 _compaction_top = value;
duke@435 418 }
duke@435 419
duke@435 420 // Perform operations on the space needed after a compaction
duke@435 421 // has been performed.
duke@435 422 virtual void reset_after_compaction() {}
duke@435 423
duke@435 424 // Returns the next space (in the current generation) to be compacted in
duke@435 425 // the global compaction order. Also is used to select the next
duke@435 426 // space into which to compact.
duke@435 427
duke@435 428 virtual CompactibleSpace* next_compaction_space() const {
duke@435 429 return _next_compaction_space;
duke@435 430 }
duke@435 431
duke@435 432 void set_next_compaction_space(CompactibleSpace* csp) {
duke@435 433 _next_compaction_space = csp;
duke@435 434 }
duke@435 435
duke@435 436 // MarkSweep support phase2
duke@435 437
duke@435 438 // Start the process of compaction of the current space: compute
duke@435 439 // post-compaction addresses, and insert forwarding pointers. The fields
duke@435 440 // "cp->gen" and "cp->compaction_space" are the generation and space into
duke@435 441 // which we are currently compacting. This call updates "cp" as necessary,
duke@435 442 // and leaves the "compaction_top" of the final value of
duke@435 443 // "cp->compaction_space" up-to-date. Offset tables may be updated in
duke@435 444 // this phase as if the final copy had occurred; if so, "cp->threshold"
duke@435 445 // indicates when the next such action should be taken.
duke@435 446 virtual void prepare_for_compaction(CompactPoint* cp);
duke@435 447 // MarkSweep support phase3
duke@435 448 virtual void adjust_pointers();
duke@435 449 // MarkSweep support phase4
duke@435 450 virtual void compact();
duke@435 451
duke@435 452 // The maximum percentage of objects that can be dead in the compacted
duke@435 453 // live part of a compacted space ("deadwood" support.)
jcoomes@873 454 virtual size_t allowed_dead_ratio() const { return 0; };
duke@435 455
duke@435 456 // Some contiguous spaces may maintain some data structures that should
duke@435 457 // be updated whenever an allocation crosses a boundary. This function
duke@435 458 // returns the first such boundary.
duke@435 459 // (The default implementation returns the end of the space, so the
duke@435 460 // boundary is never crossed.)
duke@435 461 virtual HeapWord* initialize_threshold() { return end(); }
duke@435 462
duke@435 463 // "q" is an object of the given "size" that should be forwarded;
duke@435 464 // "cp" names the generation ("gen") and containing "this" (which must
duke@435 465 // also equal "cp->space"). "compact_top" is where in "this" the
duke@435 466 // next object should be forwarded to. If there is room in "this" for
duke@435 467 // the object, insert an appropriate forwarding pointer in "q".
duke@435 468 // If not, go to the next compaction space (there must
duke@435 469 // be one, since compaction must succeed -- we go to the first space of
duke@435 470 // the previous generation if necessary, updating "cp"), reset compact_top
duke@435 471 // and then forward. In either case, returns the new value of "compact_top".
duke@435 472 // If the forwarding crosses "cp->threshold", invokes the "cross_threhold"
duke@435 473 // function of the then-current compaction space, and updates "cp->threshold
duke@435 474 // accordingly".
duke@435 475 virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
duke@435 476 HeapWord* compact_top);
duke@435 477
duke@435 478 // Return a size with adjusments as required of the space.
duke@435 479 virtual size_t adjust_object_size_v(size_t size) const { return size; }
duke@435 480
duke@435 481 protected:
duke@435 482 // Used during compaction.
duke@435 483 HeapWord* _first_dead;
duke@435 484 HeapWord* _end_of_live;
duke@435 485
duke@435 486 // Minimum size of a free block.
duke@435 487 virtual size_t minimum_free_block_size() const = 0;
duke@435 488
duke@435 489 // This the function is invoked when an allocation of an object covering
duke@435 490 // "start" to "end occurs crosses the threshold; returns the next
duke@435 491 // threshold. (The default implementation does nothing.)
duke@435 492 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
duke@435 493 return end();
duke@435 494 }
duke@435 495
duke@435 496 // Requires "allowed_deadspace_words > 0", that "q" is the start of a
duke@435 497 // free block of the given "word_len", and that "q", were it an object,
duke@435 498 // would not move if forwared. If the size allows, fill the free
duke@435 499 // block with an object, to prevent excessive compaction. Returns "true"
duke@435 500 // iff the free region was made deadspace, and modifies
duke@435 501 // "allowed_deadspace_words" to reflect the number of available deadspace
duke@435 502 // words remaining after this operation.
duke@435 503 bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
duke@435 504 size_t word_len);
duke@435 505 };
duke@435 506
duke@435 507 #define SCAN_AND_FORWARD(cp,scan_limit,block_is_obj,block_size) { \
duke@435 508 /* Compute the new addresses for the live objects and store it in the mark \
duke@435 509 * Used by universe::mark_sweep_phase2() \
duke@435 510 */ \
duke@435 511 HeapWord* compact_top; /* This is where we are currently compacting to. */ \
duke@435 512 \
duke@435 513 /* We're sure to be here before any objects are compacted into this \
duke@435 514 * space, so this is a good time to initialize this: \
duke@435 515 */ \
duke@435 516 set_compaction_top(bottom()); \
duke@435 517 \
duke@435 518 if (cp->space == NULL) { \
duke@435 519 assert(cp->gen != NULL, "need a generation"); \
duke@435 520 assert(cp->threshold == NULL, "just checking"); \
duke@435 521 assert(cp->gen->first_compaction_space() == this, "just checking"); \
duke@435 522 cp->space = cp->gen->first_compaction_space(); \
duke@435 523 compact_top = cp->space->bottom(); \
duke@435 524 cp->space->set_compaction_top(compact_top); \
duke@435 525 cp->threshold = cp->space->initialize_threshold(); \
duke@435 526 } else { \
duke@435 527 compact_top = cp->space->compaction_top(); \
duke@435 528 } \
duke@435 529 \
duke@435 530 /* We allow some amount of garbage towards the bottom of the space, so \
duke@435 531 * we don't start compacting before there is a significant gain to be made.\
duke@435 532 * Occasionally, we want to ensure a full compaction, which is determined \
duke@435 533 * by the MarkSweepAlwaysCompactCount parameter. \
duke@435 534 */ \
duke@435 535 int invocations = SharedHeap::heap()->perm_gen()->stat_record()->invocations;\
duke@435 536 bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0); \
duke@435 537 \
duke@435 538 size_t allowed_deadspace = 0; \
duke@435 539 if (skip_dead) { \
jcoomes@873 540 const size_t ratio = allowed_dead_ratio(); \
duke@435 541 allowed_deadspace = (capacity() * ratio / 100) / HeapWordSize; \
duke@435 542 } \
duke@435 543 \
duke@435 544 HeapWord* q = bottom(); \
duke@435 545 HeapWord* t = scan_limit(); \
duke@435 546 \
duke@435 547 HeapWord* end_of_live= q; /* One byte beyond the last byte of the last \
duke@435 548 live object. */ \
duke@435 549 HeapWord* first_dead = end();/* The first dead object. */ \
duke@435 550 LiveRange* liveRange = NULL; /* The current live range, recorded in the \
duke@435 551 first header of preceding free area. */ \
duke@435 552 _first_dead = first_dead; \
duke@435 553 \
duke@435 554 const intx interval = PrefetchScanIntervalInBytes; \
duke@435 555 \
duke@435 556 while (q < t) { \
duke@435 557 assert(!block_is_obj(q) || \
duke@435 558 oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() || \
duke@435 559 oop(q)->mark()->has_bias_pattern(), \
duke@435 560 "these are the only valid states during a mark sweep"); \
duke@435 561 if (block_is_obj(q) && oop(q)->is_gc_marked()) { \
duke@435 562 /* prefetch beyond q */ \
duke@435 563 Prefetch::write(q, interval); \
duke@435 564 /* size_t size = oop(q)->size(); changing this for cms for perm gen */\
ysr@777 565 size_t size = block_size(q); \
duke@435 566 compact_top = cp->space->forward(oop(q), size, cp, compact_top); \
duke@435 567 q += size; \
duke@435 568 end_of_live = q; \
duke@435 569 } else { \
duke@435 570 /* run over all the contiguous dead objects */ \
duke@435 571 HeapWord* end = q; \
duke@435 572 do { \
duke@435 573 /* prefetch beyond end */ \
duke@435 574 Prefetch::write(end, interval); \
duke@435 575 end += block_size(end); \
duke@435 576 } while (end < t && (!block_is_obj(end) || !oop(end)->is_gc_marked()));\
duke@435 577 \
duke@435 578 /* see if we might want to pretend this object is alive so that \
duke@435 579 * we don't have to compact quite as often. \
duke@435 580 */ \
duke@435 581 if (allowed_deadspace > 0 && q == compact_top) { \
duke@435 582 size_t sz = pointer_delta(end, q); \
duke@435 583 if (insert_deadspace(allowed_deadspace, q, sz)) { \
duke@435 584 compact_top = cp->space->forward(oop(q), sz, cp, compact_top); \
duke@435 585 q = end; \
duke@435 586 end_of_live = end; \
duke@435 587 continue; \
duke@435 588 } \
duke@435 589 } \
duke@435 590 \
duke@435 591 /* otherwise, it really is a free region. */ \
duke@435 592 \
duke@435 593 /* for the previous LiveRange, record the end of the live objects. */ \
duke@435 594 if (liveRange) { \
duke@435 595 liveRange->set_end(q); \
duke@435 596 } \
duke@435 597 \
duke@435 598 /* record the current LiveRange object. \
duke@435 599 * liveRange->start() is overlaid on the mark word. \
duke@435 600 */ \
duke@435 601 liveRange = (LiveRange*)q; \
duke@435 602 liveRange->set_start(end); \
duke@435 603 liveRange->set_end(end); \
duke@435 604 \
duke@435 605 /* see if this is the first dead region. */ \
duke@435 606 if (q < first_dead) { \
duke@435 607 first_dead = q; \
duke@435 608 } \
duke@435 609 \
duke@435 610 /* move on to the next object */ \
duke@435 611 q = end; \
duke@435 612 } \
duke@435 613 } \
duke@435 614 \
duke@435 615 assert(q == t, "just checking"); \
duke@435 616 if (liveRange != NULL) { \
duke@435 617 liveRange->set_end(q); \
duke@435 618 } \
duke@435 619 _end_of_live = end_of_live; \
duke@435 620 if (end_of_live < first_dead) { \
duke@435 621 first_dead = end_of_live; \
duke@435 622 } \
duke@435 623 _first_dead = first_dead; \
duke@435 624 \
duke@435 625 /* save the compaction_top of the compaction space. */ \
duke@435 626 cp->space->set_compaction_top(compact_top); \
duke@435 627 }
duke@435 628
ysr@777 629 #define SCAN_AND_ADJUST_POINTERS(adjust_obj_size) { \
ysr@777 630 /* adjust all the interior pointers to point at the new locations of objects \
ysr@777 631 * Used by MarkSweep::mark_sweep_phase3() */ \
duke@435 632 \
ysr@777 633 HeapWord* q = bottom(); \
ysr@777 634 HeapWord* t = _end_of_live; /* Established by "prepare_for_compaction". */ \
duke@435 635 \
ysr@777 636 assert(_first_dead <= _end_of_live, "Stands to reason, no?"); \
duke@435 637 \
ysr@777 638 if (q < t && _first_dead > q && \
duke@435 639 !oop(q)->is_gc_marked()) { \
duke@435 640 /* we have a chunk of the space which hasn't moved and we've \
duke@435 641 * reinitialized the mark word during the previous pass, so we can't \
ysr@777 642 * use is_gc_marked for the traversal. */ \
duke@435 643 HeapWord* end = _first_dead; \
duke@435 644 \
ysr@777 645 while (q < end) { \
ysr@777 646 /* I originally tried to conjoin "block_start(q) == q" to the \
ysr@777 647 * assertion below, but that doesn't work, because you can't \
ysr@777 648 * accurately traverse previous objects to get to the current one \
ysr@777 649 * after their pointers (including pointers into permGen) have been \
ysr@777 650 * updated, until the actual compaction is done. dld, 4/00 */ \
ysr@777 651 assert(block_is_obj(q), \
ysr@777 652 "should be at block boundaries, and should be looking at objs"); \
duke@435 653 \
coleenp@548 654 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q))); \
duke@435 655 \
ysr@777 656 /* point all the oops to the new location */ \
ysr@777 657 size_t size = oop(q)->adjust_pointers(); \
ysr@777 658 size = adjust_obj_size(size); \
duke@435 659 \
coleenp@548 660 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers()); \
ysr@777 661 \
coleenp@548 662 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size)); \
ysr@777 663 \
coleenp@548 664 q += size; \
ysr@777 665 } \
duke@435 666 \
ysr@777 667 if (_first_dead == t) { \
ysr@777 668 q = t; \
ysr@777 669 } else { \
ysr@777 670 /* $$$ This is funky. Using this to read the previously written \
ysr@777 671 * LiveRange. See also use below. */ \
duke@435 672 q = (HeapWord*)oop(_first_dead)->mark()->decode_pointer(); \
ysr@777 673 } \
ysr@777 674 } \
duke@435 675 \
duke@435 676 const intx interval = PrefetchScanIntervalInBytes; \
duke@435 677 \
ysr@777 678 debug_only(HeapWord* prev_q = NULL); \
ysr@777 679 while (q < t) { \
ysr@777 680 /* prefetch beyond q */ \
duke@435 681 Prefetch::write(q, interval); \
ysr@777 682 if (oop(q)->is_gc_marked()) { \
ysr@777 683 /* q is alive */ \
coleenp@548 684 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q))); \
ysr@777 685 /* point all the oops to the new location */ \
ysr@777 686 size_t size = oop(q)->adjust_pointers(); \
ysr@777 687 size = adjust_obj_size(size); \
ysr@777 688 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers()); \
coleenp@548 689 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size)); \
ysr@777 690 debug_only(prev_q = q); \
duke@435 691 q += size; \
tonyp@791 692 } else { \
tonyp@791 693 /* q is not a live object, so its mark should point at the next \
tonyp@791 694 * live object */ \
tonyp@791 695 debug_only(prev_q = q); \
tonyp@791 696 q = (HeapWord*) oop(q)->mark()->decode_pointer(); \
tonyp@791 697 assert(q > prev_q, "we should be moving forward through memory"); \
tonyp@791 698 } \
tonyp@791 699 } \
duke@435 700 \
tonyp@791 701 assert(q == t, "just checking"); \
duke@435 702 }
duke@435 703
tonyp@791 704 #define SCAN_AND_COMPACT(obj_size) { \
duke@435 705 /* Copy all live objects to their new location \
tonyp@791 706 * Used by MarkSweep::mark_sweep_phase4() */ \
duke@435 707 \
tonyp@791 708 HeapWord* q = bottom(); \
tonyp@791 709 HeapWord* const t = _end_of_live; \
tonyp@791 710 debug_only(HeapWord* prev_q = NULL); \
duke@435 711 \
tonyp@791 712 if (q < t && _first_dead > q && \
duke@435 713 !oop(q)->is_gc_marked()) { \
tonyp@791 714 debug_only( \
coleenp@548 715 /* we have a chunk of the space which hasn't moved and we've reinitialized \
coleenp@548 716 * the mark word during the previous pass, so we can't use is_gc_marked for \
coleenp@548 717 * the traversal. */ \
tonyp@791 718 HeapWord* const end = _first_dead; \
tonyp@791 719 \
tonyp@791 720 while (q < end) { \
coleenp@548 721 size_t size = obj_size(q); \
coleenp@548 722 assert(!oop(q)->is_gc_marked(), \
coleenp@548 723 "should be unmarked (special dense prefix handling)"); \
tonyp@791 724 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size, q)); \
tonyp@791 725 debug_only(prev_q = q); \
coleenp@548 726 q += size; \
tonyp@791 727 } \
tonyp@791 728 ) /* debug_only */ \
duke@435 729 \
tonyp@791 730 if (_first_dead == t) { \
tonyp@791 731 q = t; \
tonyp@791 732 } else { \
tonyp@791 733 /* $$$ Funky */ \
tonyp@791 734 q = (HeapWord*) oop(_first_dead)->mark()->decode_pointer(); \
tonyp@791 735 } \
tonyp@791 736 } \
tonyp@791 737 \
tonyp@791 738 const intx scan_interval = PrefetchScanIntervalInBytes; \
tonyp@791 739 const intx copy_interval = PrefetchCopyIntervalInBytes; \
tonyp@791 740 while (q < t) { \
tonyp@791 741 if (!oop(q)->is_gc_marked()) { \
tonyp@791 742 /* mark is pointer to next marked oop */ \
tonyp@791 743 debug_only(prev_q = q); \
tonyp@791 744 q = (HeapWord*) oop(q)->mark()->decode_pointer(); \
tonyp@791 745 assert(q > prev_q, "we should be moving forward through memory"); \
tonyp@791 746 } else { \
tonyp@791 747 /* prefetch beyond q */ \
duke@435 748 Prefetch::read(q, scan_interval); \
duke@435 749 \
duke@435 750 /* size and destination */ \
duke@435 751 size_t size = obj_size(q); \
duke@435 752 HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee(); \
duke@435 753 \
tonyp@791 754 /* prefetch beyond compaction_top */ \
duke@435 755 Prefetch::write(compaction_top, copy_interval); \
duke@435 756 \
tonyp@791 757 /* copy object and reinit its mark */ \
coleenp@548 758 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size, \
coleenp@548 759 compaction_top)); \
tonyp@791 760 assert(q != compaction_top, "everything in this pass should be moving"); \
tonyp@791 761 Copy::aligned_conjoint_words(q, compaction_top, size); \
tonyp@791 762 oop(compaction_top)->init_mark(); \
tonyp@791 763 assert(oop(compaction_top)->klass() != NULL, "should have a class"); \
duke@435 764 \
tonyp@791 765 debug_only(prev_q = q); \
duke@435 766 q += size; \
tonyp@791 767 } \
tonyp@791 768 } \
duke@435 769 \
ysr@777 770 /* Let's remember if we were empty before we did the compaction. */ \
ysr@777 771 bool was_empty = used_region().is_empty(); \
duke@435 772 /* Reset space after compaction is complete */ \
tonyp@791 773 reset_after_compaction(); \
duke@435 774 /* We do this clear, below, since it has overloaded meanings for some */ \
duke@435 775 /* space subtypes. For example, OffsetTableContigSpace's that were */ \
duke@435 776 /* compacted into will have had their offset table thresholds updated */ \
duke@435 777 /* continuously, but those that weren't need to have their thresholds */ \
duke@435 778 /* re-initialized. Also mangles unused area for debugging. */ \
ysr@777 779 if (used_region().is_empty()) { \
tonyp@791 780 if (!was_empty) clear(SpaceDecorator::Mangle); \
duke@435 781 } else { \
duke@435 782 if (ZapUnusedHeapArea) mangle_unused_area(); \
duke@435 783 } \
duke@435 784 }
duke@435 785
jmasa@698 786 class GenSpaceMangler;
jmasa@698 787
duke@435 788 // A space in which the free area is contiguous. It therefore supports
duke@435 789 // faster allocation, and compaction.
duke@435 790 class ContiguousSpace: public CompactibleSpace {
duke@435 791 friend class OneContigSpaceCardGeneration;
duke@435 792 friend class VMStructs;
duke@435 793 protected:
duke@435 794 HeapWord* _top;
duke@435 795 HeapWord* _concurrent_iteration_safe_limit;
jmasa@698 796 // A helper for mangling the unused area of the space in debug builds.
jmasa@698 797 GenSpaceMangler* _mangler;
jmasa@698 798
jmasa@698 799 GenSpaceMangler* mangler() { return _mangler; }
duke@435 800
duke@435 801 // Allocation helpers (return NULL if full).
duke@435 802 inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
duke@435 803 inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
duke@435 804
duke@435 805 public:
jmasa@698 806 ContiguousSpace();
jmasa@698 807 ~ContiguousSpace();
jmasa@698 808
jmasa@698 809 virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
tonyp@791 810 virtual void clear(bool mangle_space);
duke@435 811
duke@435 812 // Accessors
duke@435 813 HeapWord* top() const { return _top; }
duke@435 814 void set_top(HeapWord* value) { _top = value; }
duke@435 815
ysr@777 816 virtual void set_saved_mark() { _saved_mark_word = top(); }
ysr@777 817 void reset_saved_mark() { _saved_mark_word = bottom(); }
duke@435 818
duke@435 819 WaterMark bottom_mark() { return WaterMark(this, bottom()); }
duke@435 820 WaterMark top_mark() { return WaterMark(this, top()); }
duke@435 821 WaterMark saved_mark() { return WaterMark(this, saved_mark_word()); }
duke@435 822 bool saved_mark_at_top() const { return saved_mark_word() == top(); }
duke@435 823
jmasa@698 824 // In debug mode mangle (write it with a particular bit
jmasa@698 825 // pattern) the unused part of a space.
jmasa@698 826
jmasa@698 827 // Used to save the an address in a space for later use during mangling.
jmasa@698 828 void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
jmasa@698 829 // Used to save the space's current top for later use during mangling.
jmasa@698 830 void set_top_for_allocations() PRODUCT_RETURN;
jmasa@698 831
jmasa@698 832 // Mangle regions in the space from the current top up to the
jmasa@698 833 // previously mangled part of the space.
jmasa@698 834 void mangle_unused_area() PRODUCT_RETURN;
jmasa@698 835 // Mangle [top, end)
jmasa@698 836 void mangle_unused_area_complete() PRODUCT_RETURN;
jmasa@698 837 // Mangle the given MemRegion.
jmasa@698 838 void mangle_region(MemRegion mr) PRODUCT_RETURN;
jmasa@698 839
jmasa@698 840 // Do some sparse checking on the area that should have been mangled.
jmasa@698 841 void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
jmasa@698 842 // Check the complete area that should have been mangled.
jmasa@698 843 // This code may be NULL depending on the macro DEBUG_MANGLING.
jmasa@698 844 void check_mangled_unused_area_complete() PRODUCT_RETURN;
duke@435 845
duke@435 846 // Size computations: sizes in bytes.
duke@435 847 size_t capacity() const { return byte_size(bottom(), end()); }
duke@435 848 size_t used() const { return byte_size(bottom(), top()); }
duke@435 849 size_t free() const { return byte_size(top(), end()); }
duke@435 850
duke@435 851 // Override from space.
duke@435 852 bool is_in(const void* p) const;
duke@435 853
duke@435 854 virtual bool is_free_block(const HeapWord* p) const;
duke@435 855
duke@435 856 // In a contiguous space we have a more obvious bound on what parts
duke@435 857 // contain objects.
duke@435 858 MemRegion used_region() const { return MemRegion(bottom(), top()); }
duke@435 859
duke@435 860 MemRegion used_region_at_save_marks() const {
duke@435 861 return MemRegion(bottom(), saved_mark_word());
duke@435 862 }
duke@435 863
duke@435 864 // Allocation (return NULL if full)
duke@435 865 virtual HeapWord* allocate(size_t word_size);
duke@435 866 virtual HeapWord* par_allocate(size_t word_size);
duke@435 867
duke@435 868 virtual bool obj_allocated_since_save_marks(const oop obj) const {
duke@435 869 return (HeapWord*)obj >= saved_mark_word();
duke@435 870 }
duke@435 871
duke@435 872 // Iteration
duke@435 873 void oop_iterate(OopClosure* cl);
duke@435 874 void oop_iterate(MemRegion mr, OopClosure* cl);
duke@435 875 void object_iterate(ObjectClosure* blk);
jmasa@952 876 // For contiguous spaces this method will iterate safely over objects
jmasa@952 877 // in the space (i.e., between bottom and top) when at a safepoint.
jmasa@952 878 void safe_object_iterate(ObjectClosure* blk);
duke@435 879 void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
duke@435 880 // iterates on objects up to the safe limit
duke@435 881 HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
duke@435 882 inline HeapWord* concurrent_iteration_safe_limit();
duke@435 883 // changes the safe limit, all objects from bottom() to the new
duke@435 884 // limit should be properly initialized
duke@435 885 inline void set_concurrent_iteration_safe_limit(HeapWord* new_limit);
duke@435 886
duke@435 887 #ifndef SERIALGC
duke@435 888 // In support of parallel oop_iterate.
duke@435 889 #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix) \
duke@435 890 void par_oop_iterate(MemRegion mr, OopClosureType* blk);
duke@435 891
duke@435 892 ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
duke@435 893 #undef ContigSpace_PAR_OOP_ITERATE_DECL
duke@435 894 #endif // SERIALGC
duke@435 895
duke@435 896 // Compaction support
duke@435 897 virtual void reset_after_compaction() {
duke@435 898 assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
duke@435 899 set_top(compaction_top());
duke@435 900 // set new iteration safe limit
duke@435 901 set_concurrent_iteration_safe_limit(compaction_top());
duke@435 902 }
duke@435 903 virtual size_t minimum_free_block_size() const { return 0; }
duke@435 904
duke@435 905 // Override.
duke@435 906 DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
duke@435 907 CardTableModRefBS::PrecisionStyle precision,
duke@435 908 HeapWord* boundary = NULL);
duke@435 909
duke@435 910 // Apply "blk->do_oop" to the addresses of all reference fields in objects
duke@435 911 // starting with the _saved_mark_word, which was noted during a generation's
duke@435 912 // save_marks and is required to denote the head of an object.
duke@435 913 // Fields in objects allocated by applications of the closure
duke@435 914 // *are* included in the iteration.
duke@435 915 // Updates _saved_mark_word to point to just after the last object
duke@435 916 // iterated over.
duke@435 917 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
duke@435 918 void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
duke@435 919
duke@435 920 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
duke@435 921 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
duke@435 922
duke@435 923 // Same as object_iterate, but starting from "mark", which is required
duke@435 924 // to denote the start of an object. Objects allocated by
duke@435 925 // applications of the closure *are* included in the iteration.
duke@435 926 virtual void object_iterate_from(WaterMark mark, ObjectClosure* blk);
duke@435 927
duke@435 928 // Very inefficient implementation.
ysr@777 929 virtual HeapWord* block_start_const(const void* p) const;
duke@435 930 size_t block_size(const HeapWord* p) const;
duke@435 931 // If a block is in the allocated area, it is an object.
duke@435 932 bool block_is_obj(const HeapWord* p) const { return p < top(); }
duke@435 933
duke@435 934 // Addresses for inlined allocation
duke@435 935 HeapWord** top_addr() { return &_top; }
duke@435 936 HeapWord** end_addr() { return &_end; }
duke@435 937
duke@435 938 // Overrides for more efficient compaction support.
duke@435 939 void prepare_for_compaction(CompactPoint* cp);
duke@435 940
duke@435 941 // PrintHeapAtGC support.
duke@435 942 virtual void print_on(outputStream* st) const;
duke@435 943
duke@435 944 // Checked dynamic downcasts.
duke@435 945 virtual ContiguousSpace* toContiguousSpace() {
duke@435 946 return this;
duke@435 947 }
duke@435 948
duke@435 949 // Debugging
duke@435 950 virtual void verify(bool allow_dirty) const;
duke@435 951
duke@435 952 // Used to increase collection frequency. "factor" of 0 means entire
duke@435 953 // space.
duke@435 954 void allocate_temporary_filler(int factor);
duke@435 955
duke@435 956 };
duke@435 957
duke@435 958
duke@435 959 // A dirty card to oop closure that does filtering.
duke@435 960 // It knows how to filter out objects that are outside of the _boundary.
duke@435 961 class Filtering_DCTOC : public DirtyCardToOopClosure {
duke@435 962 protected:
duke@435 963 // Override.
duke@435 964 void walk_mem_region(MemRegion mr,
duke@435 965 HeapWord* bottom, HeapWord* top);
duke@435 966
duke@435 967 // Walk the given memory region, from bottom to top, applying
duke@435 968 // the given oop closure to (possibly) all objects found. The
duke@435 969 // given oop closure may or may not be the same as the oop
duke@435 970 // closure with which this closure was created, as it may
duke@435 971 // be a filtering closure which makes use of the _boundary.
duke@435 972 // We offer two signatures, so the FilteringClosure static type is
duke@435 973 // apparent.
duke@435 974 virtual void walk_mem_region_with_cl(MemRegion mr,
duke@435 975 HeapWord* bottom, HeapWord* top,
duke@435 976 OopClosure* cl) = 0;
duke@435 977 virtual void walk_mem_region_with_cl(MemRegion mr,
duke@435 978 HeapWord* bottom, HeapWord* top,
duke@435 979 FilteringClosure* cl) = 0;
duke@435 980
duke@435 981 public:
duke@435 982 Filtering_DCTOC(Space* sp, OopClosure* cl,
duke@435 983 CardTableModRefBS::PrecisionStyle precision,
duke@435 984 HeapWord* boundary) :
duke@435 985 DirtyCardToOopClosure(sp, cl, precision, boundary) {}
duke@435 986 };
duke@435 987
duke@435 988 // A dirty card to oop closure for contiguous spaces
duke@435 989 // (ContiguousSpace and sub-classes).
duke@435 990 // It is a FilteringClosure, as defined above, and it knows:
duke@435 991 //
duke@435 992 // 1. That the actual top of any area in a memory region
duke@435 993 // contained by the space is bounded by the end of the contiguous
duke@435 994 // region of the space.
duke@435 995 // 2. That the space is really made up of objects and not just
duke@435 996 // blocks.
duke@435 997
duke@435 998 class ContiguousSpaceDCTOC : public Filtering_DCTOC {
duke@435 999 protected:
duke@435 1000 // Overrides.
duke@435 1001 HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
duke@435 1002
duke@435 1003 virtual void walk_mem_region_with_cl(MemRegion mr,
duke@435 1004 HeapWord* bottom, HeapWord* top,
duke@435 1005 OopClosure* cl);
duke@435 1006 virtual void walk_mem_region_with_cl(MemRegion mr,
duke@435 1007 HeapWord* bottom, HeapWord* top,
duke@435 1008 FilteringClosure* cl);
duke@435 1009
duke@435 1010 public:
duke@435 1011 ContiguousSpaceDCTOC(ContiguousSpace* sp, OopClosure* cl,
duke@435 1012 CardTableModRefBS::PrecisionStyle precision,
duke@435 1013 HeapWord* boundary) :
duke@435 1014 Filtering_DCTOC(sp, cl, precision, boundary)
duke@435 1015 {}
duke@435 1016 };
duke@435 1017
duke@435 1018
duke@435 1019 // Class EdenSpace describes eden-space in new generation.
duke@435 1020
duke@435 1021 class DefNewGeneration;
duke@435 1022
duke@435 1023 class EdenSpace : public ContiguousSpace {
duke@435 1024 friend class VMStructs;
duke@435 1025 private:
duke@435 1026 DefNewGeneration* _gen;
duke@435 1027
duke@435 1028 // _soft_end is used as a soft limit on allocation. As soft limits are
duke@435 1029 // reached, the slow-path allocation code can invoke other actions and then
duke@435 1030 // adjust _soft_end up to a new soft limit or to end().
duke@435 1031 HeapWord* _soft_end;
duke@435 1032
duke@435 1033 public:
ysr@782 1034 EdenSpace(DefNewGeneration* gen) :
ysr@782 1035 _gen(gen), _soft_end(NULL) {}
duke@435 1036
duke@435 1037 // Get/set just the 'soft' limit.
duke@435 1038 HeapWord* soft_end() { return _soft_end; }
duke@435 1039 HeapWord** soft_end_addr() { return &_soft_end; }
duke@435 1040 void set_soft_end(HeapWord* value) { _soft_end = value; }
duke@435 1041
duke@435 1042 // Override.
jmasa@698 1043 void clear(bool mangle_space);
duke@435 1044
duke@435 1045 // Set both the 'hard' and 'soft' limits (_end and _soft_end).
duke@435 1046 void set_end(HeapWord* value) {
duke@435 1047 set_soft_end(value);
duke@435 1048 ContiguousSpace::set_end(value);
duke@435 1049 }
duke@435 1050
duke@435 1051 // Allocation (return NULL if full)
duke@435 1052 HeapWord* allocate(size_t word_size);
duke@435 1053 HeapWord* par_allocate(size_t word_size);
duke@435 1054 };
duke@435 1055
duke@435 1056 // Class ConcEdenSpace extends EdenSpace for the sake of safe
duke@435 1057 // allocation while soft-end is being modified concurrently
duke@435 1058
duke@435 1059 class ConcEdenSpace : public EdenSpace {
duke@435 1060 public:
duke@435 1061 ConcEdenSpace(DefNewGeneration* gen) : EdenSpace(gen) { }
duke@435 1062
duke@435 1063 // Allocation (return NULL if full)
duke@435 1064 HeapWord* par_allocate(size_t word_size);
duke@435 1065 };
duke@435 1066
duke@435 1067
duke@435 1068 // A ContigSpace that Supports an efficient "block_start" operation via
duke@435 1069 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
duke@435 1070 // other spaces.) This is the abstract base class for old generation
duke@435 1071 // (tenured, perm) spaces.
duke@435 1072
duke@435 1073 class OffsetTableContigSpace: public ContiguousSpace {
duke@435 1074 friend class VMStructs;
duke@435 1075 protected:
duke@435 1076 BlockOffsetArrayContigSpace _offsets;
duke@435 1077 Mutex _par_alloc_lock;
duke@435 1078
duke@435 1079 public:
duke@435 1080 // Constructor
duke@435 1081 OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
duke@435 1082 MemRegion mr);
duke@435 1083
duke@435 1084 void set_bottom(HeapWord* value);
duke@435 1085 void set_end(HeapWord* value);
duke@435 1086
jmasa@698 1087 void clear(bool mangle_space);
duke@435 1088
ysr@777 1089 inline HeapWord* block_start_const(const void* p) const;
duke@435 1090
duke@435 1091 // Add offset table update.
duke@435 1092 virtual inline HeapWord* allocate(size_t word_size);
duke@435 1093 inline HeapWord* par_allocate(size_t word_size);
duke@435 1094
duke@435 1095 // MarkSweep support phase3
duke@435 1096 virtual HeapWord* initialize_threshold();
duke@435 1097 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
duke@435 1098
duke@435 1099 virtual void print_on(outputStream* st) const;
duke@435 1100
duke@435 1101 // Debugging
duke@435 1102 void verify(bool allow_dirty) const;
duke@435 1103
duke@435 1104 // Shared space support
duke@435 1105 void serialize_block_offset_array_offsets(SerializeOopClosure* soc);
duke@435 1106 };
duke@435 1107
duke@435 1108
duke@435 1109 // Class TenuredSpace is used by TenuredGeneration
duke@435 1110
duke@435 1111 class TenuredSpace: public OffsetTableContigSpace {
duke@435 1112 friend class VMStructs;
duke@435 1113 protected:
duke@435 1114 // Mark sweep support
jcoomes@873 1115 size_t allowed_dead_ratio() const;
duke@435 1116 public:
duke@435 1117 // Constructor
duke@435 1118 TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
duke@435 1119 MemRegion mr) :
duke@435 1120 OffsetTableContigSpace(sharedOffsetArray, mr) {}
duke@435 1121 };
duke@435 1122
duke@435 1123
duke@435 1124 // Class ContigPermSpace is used by CompactingPermGen
duke@435 1125
duke@435 1126 class ContigPermSpace: public OffsetTableContigSpace {
duke@435 1127 friend class VMStructs;
duke@435 1128 protected:
duke@435 1129 // Mark sweep support
jcoomes@873 1130 size_t allowed_dead_ratio() const;
duke@435 1131 public:
duke@435 1132 // Constructor
duke@435 1133 ContigPermSpace(BlockOffsetSharedArray* sharedOffsetArray, MemRegion mr) :
duke@435 1134 OffsetTableContigSpace(sharedOffsetArray, mr) {}
duke@435 1135 };
stefank@2314 1136
stefank@2314 1137 #endif // SHARE_VM_MEMORY_SPACE_HPP

mercurial