src/share/vm/memory/space.hpp

Mon, 23 Jun 2008 16:49:37 -0700

author
ysr
date
Mon, 23 Jun 2008 16:49:37 -0700
changeset 782
60fb9c4db4e6
parent 777
37f87013dfd8
child 791
1ee8caae33af
permissions
-rw-r--r--

6718086: CMS assert: _concurrent_iteration_safe_limit update missed
Summary: Initialize the field correctly in ContiguousSpace's constructor and initialize() methods, using the latter for the survivor spaces upon initial construction or a subsequent resizing of the young generation. Add some missing Space sub-class constructors.
Reviewed-by: apetrusenko

duke@435 1 /*
duke@435 2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // A space is an abstraction for the "storage units" backing
duke@435 26 // up the generation abstraction. It includes specific
duke@435 27 // implementations for keeping track of free and used space,
duke@435 28 // for iterating over objects and free blocks, etc.
duke@435 29
duke@435 30 // Here's the Space hierarchy:
duke@435 31 //
duke@435 32 // - Space -- an asbtract base class describing a heap area
duke@435 33 // - CompactibleSpace -- a space supporting compaction
duke@435 34 // - CompactibleFreeListSpace -- (used for CMS generation)
duke@435 35 // - ContiguousSpace -- a compactible space in which all free space
duke@435 36 // is contiguous
duke@435 37 // - EdenSpace -- contiguous space used as nursery
duke@435 38 // - ConcEdenSpace -- contiguous space with a 'soft end safe' allocation
duke@435 39 // - OffsetTableContigSpace -- contiguous space with a block offset array
duke@435 40 // that allows "fast" block_start calls
duke@435 41 // - TenuredSpace -- (used for TenuredGeneration)
duke@435 42 // - ContigPermSpace -- an offset table contiguous space for perm gen
duke@435 43
duke@435 44 // Forward decls.
duke@435 45 class Space;
duke@435 46 class BlockOffsetArray;
duke@435 47 class BlockOffsetArrayContigSpace;
duke@435 48 class Generation;
duke@435 49 class CompactibleSpace;
duke@435 50 class BlockOffsetTable;
duke@435 51 class GenRemSet;
duke@435 52 class CardTableRS;
duke@435 53 class DirtyCardToOopClosure;
duke@435 54
duke@435 55 // An oop closure that is circumscribed by a filtering memory region.
coleenp@548 56 class SpaceMemRegionOopsIterClosure: public OopClosure {
coleenp@548 57 private:
coleenp@548 58 OopClosure* _cl;
coleenp@548 59 MemRegion _mr;
coleenp@548 60 protected:
coleenp@548 61 template <class T> void do_oop_work(T* p) {
coleenp@548 62 if (_mr.contains(p)) {
coleenp@548 63 _cl->do_oop(p);
duke@435 64 }
duke@435 65 }
coleenp@548 66 public:
coleenp@548 67 SpaceMemRegionOopsIterClosure(OopClosure* cl, MemRegion mr):
coleenp@548 68 _cl(cl), _mr(mr) {}
coleenp@548 69 virtual void do_oop(oop* p);
coleenp@548 70 virtual void do_oop(narrowOop* p);
duke@435 71 };
duke@435 72
duke@435 73 // A Space describes a heap area. Class Space is an abstract
duke@435 74 // base class.
duke@435 75 //
duke@435 76 // Space supports allocation, size computation and GC support is provided.
duke@435 77 //
duke@435 78 // Invariant: bottom() and end() are on page_size boundaries and
duke@435 79 // bottom() <= top() <= end()
duke@435 80 // top() is inclusive and end() is exclusive.
duke@435 81
duke@435 82 class Space: public CHeapObj {
duke@435 83 friend class VMStructs;
duke@435 84 protected:
duke@435 85 HeapWord* _bottom;
duke@435 86 HeapWord* _end;
duke@435 87
duke@435 88 // Used in support of save_marks()
duke@435 89 HeapWord* _saved_mark_word;
duke@435 90
duke@435 91 MemRegionClosure* _preconsumptionDirtyCardClosure;
duke@435 92
duke@435 93 // A sequential tasks done structure. This supports
duke@435 94 // parallel GC, where we have threads dynamically
duke@435 95 // claiming sub-tasks from a larger parallel task.
duke@435 96 SequentialSubTasksDone _par_seq_tasks;
duke@435 97
duke@435 98 Space():
duke@435 99 _bottom(NULL), _end(NULL), _preconsumptionDirtyCardClosure(NULL) { }
duke@435 100
duke@435 101 public:
duke@435 102 // Accessors
duke@435 103 HeapWord* bottom() const { return _bottom; }
duke@435 104 HeapWord* end() const { return _end; }
duke@435 105 virtual void set_bottom(HeapWord* value) { _bottom = value; }
duke@435 106 virtual void set_end(HeapWord* value) { _end = value; }
duke@435 107
ysr@777 108 virtual HeapWord* saved_mark_word() const { return _saved_mark_word; }
duke@435 109 void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
duke@435 110
duke@435 111 MemRegionClosure* preconsumptionDirtyCardClosure() const {
duke@435 112 return _preconsumptionDirtyCardClosure;
duke@435 113 }
duke@435 114 void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) {
duke@435 115 _preconsumptionDirtyCardClosure = cl;
duke@435 116 }
duke@435 117
duke@435 118 // Returns a subregion of the space containing all the objects in
duke@435 119 // the space.
duke@435 120 virtual MemRegion used_region() const { return MemRegion(bottom(), end()); }
duke@435 121
duke@435 122 // Returns a region that is guaranteed to contain (at least) all objects
duke@435 123 // allocated at the time of the last call to "save_marks". If the space
duke@435 124 // initializes its DirtyCardToOopClosure's specifying the "contig" option
duke@435 125 // (that is, if the space is contiguous), then this region must contain only
duke@435 126 // such objects: the memregion will be from the bottom of the region to the
duke@435 127 // saved mark. Otherwise, the "obj_allocated_since_save_marks" method of
duke@435 128 // the space must distiguish between objects in the region allocated before
duke@435 129 // and after the call to save marks.
duke@435 130 virtual MemRegion used_region_at_save_marks() const {
duke@435 131 return MemRegion(bottom(), saved_mark_word());
duke@435 132 }
duke@435 133
ysr@777 134 // Initialization.
ysr@777 135 // "initialize" should be called once on a space, before it is used for
ysr@777 136 // any purpose. The "mr" arguments gives the bounds of the space, and
ysr@777 137 // the "clear_space" argument should be true unless the memory in "mr" is
ysr@777 138 // known to be zeroed.
duke@435 139 virtual void initialize(MemRegion mr, bool clear_space);
ysr@777 140
ysr@777 141 // Sets the bounds (bottom and end) of the current space to those of "mr."
ysr@777 142 void set_bounds(MemRegion mr);
ysr@777 143
ysr@777 144 // The "clear" method must be called on a region that may have
ysr@777 145 // had allocation performed in it, but is now to be considered empty.
duke@435 146 virtual void clear();
duke@435 147
duke@435 148 // For detecting GC bugs. Should only be called at GC boundaries, since
duke@435 149 // some unused space may be used as scratch space during GC's.
duke@435 150 // Default implementation does nothing. We also call this when expanding
duke@435 151 // a space to satisfy an allocation request. See bug #4668531
duke@435 152 virtual void mangle_unused_area() {}
duke@435 153 virtual void mangle_region(MemRegion mr) {}
duke@435 154
duke@435 155 // Testers
duke@435 156 bool is_empty() const { return used() == 0; }
duke@435 157 bool not_empty() const { return used() > 0; }
duke@435 158
duke@435 159 // Returns true iff the given the space contains the
duke@435 160 // given address as part of an allocated object. For
duke@435 161 // ceratin kinds of spaces, this might be a potentially
duke@435 162 // expensive operation. To prevent performance problems
duke@435 163 // on account of its inadvertent use in product jvm's,
duke@435 164 // we restrict its use to assertion checks only.
duke@435 165 virtual bool is_in(const void* p) const;
duke@435 166
duke@435 167 // Returns true iff the given reserved memory of the space contains the
duke@435 168 // given address.
duke@435 169 bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
duke@435 170
duke@435 171 // Returns true iff the given block is not allocated.
duke@435 172 virtual bool is_free_block(const HeapWord* p) const = 0;
duke@435 173
duke@435 174 // Test whether p is double-aligned
duke@435 175 static bool is_aligned(void* p) {
duke@435 176 return ((intptr_t)p & (sizeof(double)-1)) == 0;
duke@435 177 }
duke@435 178
duke@435 179 // Size computations. Sizes are in bytes.
duke@435 180 size_t capacity() const { return byte_size(bottom(), end()); }
duke@435 181 virtual size_t used() const = 0;
duke@435 182 virtual size_t free() const = 0;
duke@435 183
duke@435 184 // Iterate over all the ref-containing fields of all objects in the
duke@435 185 // space, calling "cl.do_oop" on each. Fields in objects allocated by
duke@435 186 // applications of the closure are not included in the iteration.
duke@435 187 virtual void oop_iterate(OopClosure* cl);
duke@435 188
duke@435 189 // Same as above, restricted to the intersection of a memory region and
duke@435 190 // the space. Fields in objects allocated by applications of the closure
duke@435 191 // are not included in the iteration.
duke@435 192 virtual void oop_iterate(MemRegion mr, OopClosure* cl) = 0;
duke@435 193
duke@435 194 // Iterate over all objects in the space, calling "cl.do_object" on
duke@435 195 // each. Objects allocated by applications of the closure are not
duke@435 196 // included in the iteration.
duke@435 197 virtual void object_iterate(ObjectClosure* blk) = 0;
duke@435 198
duke@435 199 // Iterate over all objects that intersect with mr, calling "cl->do_object"
duke@435 200 // on each. There is an exception to this: if this closure has already
duke@435 201 // been invoked on an object, it may skip such objects in some cases. This is
duke@435 202 // Most likely to happen in an "upwards" (ascending address) iteration of
duke@435 203 // MemRegions.
duke@435 204 virtual void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
duke@435 205
duke@435 206 // Iterate over as many initialized objects in the space as possible,
duke@435 207 // calling "cl.do_object_careful" on each. Return NULL if all objects
duke@435 208 // in the space (at the start of the iteration) were iterated over.
duke@435 209 // Return an address indicating the extent of the iteration in the
duke@435 210 // event that the iteration had to return because of finding an
duke@435 211 // uninitialized object in the space, or if the closure "cl"
duke@435 212 // signalled early termination.
duke@435 213 virtual HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
duke@435 214 virtual HeapWord* object_iterate_careful_m(MemRegion mr,
duke@435 215 ObjectClosureCareful* cl);
duke@435 216
duke@435 217 // Create and return a new dirty card to oop closure. Can be
duke@435 218 // overriden to return the appropriate type of closure
duke@435 219 // depending on the type of space in which the closure will
duke@435 220 // operate. ResourceArea allocated.
duke@435 221 virtual DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
duke@435 222 CardTableModRefBS::PrecisionStyle precision,
duke@435 223 HeapWord* boundary = NULL);
duke@435 224
duke@435 225 // If "p" is in the space, returns the address of the start of the
duke@435 226 // "block" that contains "p". We say "block" instead of "object" since
duke@435 227 // some heaps may not pack objects densely; a chunk may either be an
duke@435 228 // object or a non-object. If "p" is not in the space, return NULL.
ysr@777 229 virtual HeapWord* block_start_const(const void* p) const = 0;
ysr@777 230
ysr@777 231 // The non-const version may have benevolent side effects on the data
ysr@777 232 // structure supporting these calls, possibly speeding up future calls.
ysr@777 233 // The default implementation, however, is simply to call the const
ysr@777 234 // version.
ysr@777 235 inline virtual HeapWord* block_start(const void* p);
duke@435 236
duke@435 237 // Requires "addr" to be the start of a chunk, and returns its size.
duke@435 238 // "addr + size" is required to be the start of a new chunk, or the end
duke@435 239 // of the active area of the heap.
duke@435 240 virtual size_t block_size(const HeapWord* addr) const = 0;
duke@435 241
duke@435 242 // Requires "addr" to be the start of a block, and returns "TRUE" iff
duke@435 243 // the block is an object.
duke@435 244 virtual bool block_is_obj(const HeapWord* addr) const = 0;
duke@435 245
duke@435 246 // Requires "addr" to be the start of a block, and returns "TRUE" iff
duke@435 247 // the block is an object and the object is alive.
duke@435 248 virtual bool obj_is_alive(const HeapWord* addr) const;
duke@435 249
duke@435 250 // Allocation (return NULL if full). Assumes the caller has established
duke@435 251 // mutually exclusive access to the space.
duke@435 252 virtual HeapWord* allocate(size_t word_size) = 0;
duke@435 253
duke@435 254 // Allocation (return NULL if full). Enforces mutual exclusion internally.
duke@435 255 virtual HeapWord* par_allocate(size_t word_size) = 0;
duke@435 256
duke@435 257 // Returns true if this object has been allocated since a
duke@435 258 // generation's "save_marks" call.
duke@435 259 virtual bool obj_allocated_since_save_marks(const oop obj) const = 0;
duke@435 260
duke@435 261 // Mark-sweep-compact support: all spaces can update pointers to objects
duke@435 262 // moving as a part of compaction.
duke@435 263 virtual void adjust_pointers();
duke@435 264
duke@435 265 // PrintHeapAtGC support
duke@435 266 virtual void print() const;
duke@435 267 virtual void print_on(outputStream* st) const;
duke@435 268 virtual void print_short() const;
duke@435 269 virtual void print_short_on(outputStream* st) const;
duke@435 270
duke@435 271
duke@435 272 // Accessor for parallel sequential tasks.
duke@435 273 SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
duke@435 274
duke@435 275 // IF "this" is a ContiguousSpace, return it, else return NULL.
duke@435 276 virtual ContiguousSpace* toContiguousSpace() {
duke@435 277 return NULL;
duke@435 278 }
duke@435 279
duke@435 280 // Debugging
duke@435 281 virtual void verify(bool allow_dirty) const = 0;
duke@435 282 };
duke@435 283
duke@435 284 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
duke@435 285 // OopClosure to (the addresses of) all the ref-containing fields that could
duke@435 286 // be modified by virtue of the given MemRegion being dirty. (Note that
duke@435 287 // because of the imprecise nature of the write barrier, this may iterate
duke@435 288 // over oops beyond the region.)
duke@435 289 // This base type for dirty card to oop closures handles memory regions
duke@435 290 // in non-contiguous spaces with no boundaries, and should be sub-classed
duke@435 291 // to support other space types. See ContiguousDCTOC for a sub-class
duke@435 292 // that works with ContiguousSpaces.
duke@435 293
duke@435 294 class DirtyCardToOopClosure: public MemRegionClosureRO {
duke@435 295 protected:
duke@435 296 OopClosure* _cl;
duke@435 297 Space* _sp;
duke@435 298 CardTableModRefBS::PrecisionStyle _precision;
duke@435 299 HeapWord* _boundary; // If non-NULL, process only non-NULL oops
duke@435 300 // pointing below boundary.
ysr@777 301 HeapWord* _min_done; // ObjHeadPreciseArray precision requires
duke@435 302 // a downwards traversal; this is the
duke@435 303 // lowest location already done (or,
duke@435 304 // alternatively, the lowest address that
duke@435 305 // shouldn't be done again. NULL means infinity.)
duke@435 306 NOT_PRODUCT(HeapWord* _last_bottom;)
ysr@777 307 NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
duke@435 308
duke@435 309 // Get the actual top of the area on which the closure will
duke@435 310 // operate, given where the top is assumed to be (the end of the
duke@435 311 // memory region passed to do_MemRegion) and where the object
duke@435 312 // at the top is assumed to start. For example, an object may
duke@435 313 // start at the top but actually extend past the assumed top,
duke@435 314 // in which case the top becomes the end of the object.
duke@435 315 virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
duke@435 316
duke@435 317 // Walk the given memory region from bottom to (actual) top
duke@435 318 // looking for objects and applying the oop closure (_cl) to
duke@435 319 // them. The base implementation of this treats the area as
duke@435 320 // blocks, where a block may or may not be an object. Sub-
duke@435 321 // classes should override this to provide more accurate
duke@435 322 // or possibly more efficient walking.
duke@435 323 virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
duke@435 324
duke@435 325 public:
duke@435 326 DirtyCardToOopClosure(Space* sp, OopClosure* cl,
duke@435 327 CardTableModRefBS::PrecisionStyle precision,
duke@435 328 HeapWord* boundary) :
duke@435 329 _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
duke@435 330 _min_done(NULL) {
ysr@777 331 NOT_PRODUCT(_last_bottom = NULL);
ysr@777 332 NOT_PRODUCT(_last_explicit_min_done = NULL);
duke@435 333 }
duke@435 334
duke@435 335 void do_MemRegion(MemRegion mr);
duke@435 336
duke@435 337 void set_min_done(HeapWord* min_done) {
duke@435 338 _min_done = min_done;
ysr@777 339 NOT_PRODUCT(_last_explicit_min_done = _min_done);
duke@435 340 }
duke@435 341 #ifndef PRODUCT
duke@435 342 void set_last_bottom(HeapWord* last_bottom) {
duke@435 343 _last_bottom = last_bottom;
duke@435 344 }
duke@435 345 #endif
duke@435 346 };
duke@435 347
duke@435 348 // A structure to represent a point at which objects are being copied
duke@435 349 // during compaction.
duke@435 350 class CompactPoint : public StackObj {
duke@435 351 public:
duke@435 352 Generation* gen;
duke@435 353 CompactibleSpace* space;
duke@435 354 HeapWord* threshold;
duke@435 355 CompactPoint(Generation* _gen, CompactibleSpace* _space,
duke@435 356 HeapWord* _threshold) :
duke@435 357 gen(_gen), space(_space), threshold(_threshold) {}
duke@435 358 };
duke@435 359
duke@435 360
duke@435 361 // A space that supports compaction operations. This is usually, but not
duke@435 362 // necessarily, a space that is normally contiguous. But, for example, a
duke@435 363 // free-list-based space whose normal collection is a mark-sweep without
duke@435 364 // compaction could still support compaction in full GC's.
duke@435 365
duke@435 366 class CompactibleSpace: public Space {
duke@435 367 friend class VMStructs;
duke@435 368 friend class CompactibleFreeListSpace;
duke@435 369 friend class CompactingPermGenGen;
duke@435 370 friend class CMSPermGenGen;
duke@435 371 private:
duke@435 372 HeapWord* _compaction_top;
duke@435 373 CompactibleSpace* _next_compaction_space;
duke@435 374
duke@435 375 public:
ysr@782 376 CompactibleSpace() :
ysr@782 377 _compaction_top(NULL), _next_compaction_space(NULL) {}
ysr@782 378
duke@435 379 virtual void initialize(MemRegion mr, bool clear_space);
ysr@777 380 virtual void clear();
duke@435 381
duke@435 382 // Used temporarily during a compaction phase to hold the value
duke@435 383 // top should have when compaction is complete.
duke@435 384 HeapWord* compaction_top() const { return _compaction_top; }
duke@435 385
duke@435 386 void set_compaction_top(HeapWord* value) {
duke@435 387 assert(value == NULL || (value >= bottom() && value <= end()),
duke@435 388 "should point inside space");
duke@435 389 _compaction_top = value;
duke@435 390 }
duke@435 391
duke@435 392 // Perform operations on the space needed after a compaction
duke@435 393 // has been performed.
duke@435 394 virtual void reset_after_compaction() {}
duke@435 395
duke@435 396 // Returns the next space (in the current generation) to be compacted in
duke@435 397 // the global compaction order. Also is used to select the next
duke@435 398 // space into which to compact.
duke@435 399
duke@435 400 virtual CompactibleSpace* next_compaction_space() const {
duke@435 401 return _next_compaction_space;
duke@435 402 }
duke@435 403
duke@435 404 void set_next_compaction_space(CompactibleSpace* csp) {
duke@435 405 _next_compaction_space = csp;
duke@435 406 }
duke@435 407
duke@435 408 // MarkSweep support phase2
duke@435 409
duke@435 410 // Start the process of compaction of the current space: compute
duke@435 411 // post-compaction addresses, and insert forwarding pointers. The fields
duke@435 412 // "cp->gen" and "cp->compaction_space" are the generation and space into
duke@435 413 // which we are currently compacting. This call updates "cp" as necessary,
duke@435 414 // and leaves the "compaction_top" of the final value of
duke@435 415 // "cp->compaction_space" up-to-date. Offset tables may be updated in
duke@435 416 // this phase as if the final copy had occurred; if so, "cp->threshold"
duke@435 417 // indicates when the next such action should be taken.
duke@435 418 virtual void prepare_for_compaction(CompactPoint* cp);
duke@435 419 // MarkSweep support phase3
duke@435 420 virtual void adjust_pointers();
duke@435 421 // MarkSweep support phase4
duke@435 422 virtual void compact();
duke@435 423
duke@435 424 // The maximum percentage of objects that can be dead in the compacted
duke@435 425 // live part of a compacted space ("deadwood" support.)
duke@435 426 virtual int allowed_dead_ratio() const { return 0; };
duke@435 427
duke@435 428 // Some contiguous spaces may maintain some data structures that should
duke@435 429 // be updated whenever an allocation crosses a boundary. This function
duke@435 430 // returns the first such boundary.
duke@435 431 // (The default implementation returns the end of the space, so the
duke@435 432 // boundary is never crossed.)
duke@435 433 virtual HeapWord* initialize_threshold() { return end(); }
duke@435 434
duke@435 435 // "q" is an object of the given "size" that should be forwarded;
duke@435 436 // "cp" names the generation ("gen") and containing "this" (which must
duke@435 437 // also equal "cp->space"). "compact_top" is where in "this" the
duke@435 438 // next object should be forwarded to. If there is room in "this" for
duke@435 439 // the object, insert an appropriate forwarding pointer in "q".
duke@435 440 // If not, go to the next compaction space (there must
duke@435 441 // be one, since compaction must succeed -- we go to the first space of
duke@435 442 // the previous generation if necessary, updating "cp"), reset compact_top
duke@435 443 // and then forward. In either case, returns the new value of "compact_top".
duke@435 444 // If the forwarding crosses "cp->threshold", invokes the "cross_threhold"
duke@435 445 // function of the then-current compaction space, and updates "cp->threshold
duke@435 446 // accordingly".
duke@435 447 virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
duke@435 448 HeapWord* compact_top);
duke@435 449
duke@435 450 // Return a size with adjusments as required of the space.
duke@435 451 virtual size_t adjust_object_size_v(size_t size) const { return size; }
duke@435 452
duke@435 453 protected:
duke@435 454 // Used during compaction.
duke@435 455 HeapWord* _first_dead;
duke@435 456 HeapWord* _end_of_live;
duke@435 457
duke@435 458 // Minimum size of a free block.
duke@435 459 virtual size_t minimum_free_block_size() const = 0;
duke@435 460
duke@435 461 // This the function is invoked when an allocation of an object covering
duke@435 462 // "start" to "end occurs crosses the threshold; returns the next
duke@435 463 // threshold. (The default implementation does nothing.)
duke@435 464 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
duke@435 465 return end();
duke@435 466 }
duke@435 467
duke@435 468 // Requires "allowed_deadspace_words > 0", that "q" is the start of a
duke@435 469 // free block of the given "word_len", and that "q", were it an object,
duke@435 470 // would not move if forwared. If the size allows, fill the free
duke@435 471 // block with an object, to prevent excessive compaction. Returns "true"
duke@435 472 // iff the free region was made deadspace, and modifies
duke@435 473 // "allowed_deadspace_words" to reflect the number of available deadspace
duke@435 474 // words remaining after this operation.
duke@435 475 bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
duke@435 476 size_t word_len);
duke@435 477 };
duke@435 478
duke@435 479 #define SCAN_AND_FORWARD(cp,scan_limit,block_is_obj,block_size) { \
duke@435 480 /* Compute the new addresses for the live objects and store it in the mark \
duke@435 481 * Used by universe::mark_sweep_phase2() \
duke@435 482 */ \
duke@435 483 HeapWord* compact_top; /* This is where we are currently compacting to. */ \
duke@435 484 \
duke@435 485 /* We're sure to be here before any objects are compacted into this \
duke@435 486 * space, so this is a good time to initialize this: \
duke@435 487 */ \
duke@435 488 set_compaction_top(bottom()); \
duke@435 489 \
duke@435 490 if (cp->space == NULL) { \
duke@435 491 assert(cp->gen != NULL, "need a generation"); \
duke@435 492 assert(cp->threshold == NULL, "just checking"); \
duke@435 493 assert(cp->gen->first_compaction_space() == this, "just checking"); \
duke@435 494 cp->space = cp->gen->first_compaction_space(); \
duke@435 495 compact_top = cp->space->bottom(); \
duke@435 496 cp->space->set_compaction_top(compact_top); \
duke@435 497 cp->threshold = cp->space->initialize_threshold(); \
duke@435 498 } else { \
duke@435 499 compact_top = cp->space->compaction_top(); \
duke@435 500 } \
duke@435 501 \
duke@435 502 /* We allow some amount of garbage towards the bottom of the space, so \
duke@435 503 * we don't start compacting before there is a significant gain to be made.\
duke@435 504 * Occasionally, we want to ensure a full compaction, which is determined \
duke@435 505 * by the MarkSweepAlwaysCompactCount parameter. \
duke@435 506 */ \
duke@435 507 int invocations = SharedHeap::heap()->perm_gen()->stat_record()->invocations;\
duke@435 508 bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0); \
duke@435 509 \
duke@435 510 size_t allowed_deadspace = 0; \
duke@435 511 if (skip_dead) { \
duke@435 512 int ratio = allowed_dead_ratio(); \
duke@435 513 allowed_deadspace = (capacity() * ratio / 100) / HeapWordSize; \
duke@435 514 } \
duke@435 515 \
duke@435 516 HeapWord* q = bottom(); \
duke@435 517 HeapWord* t = scan_limit(); \
duke@435 518 \
duke@435 519 HeapWord* end_of_live= q; /* One byte beyond the last byte of the last \
duke@435 520 live object. */ \
duke@435 521 HeapWord* first_dead = end();/* The first dead object. */ \
duke@435 522 LiveRange* liveRange = NULL; /* The current live range, recorded in the \
duke@435 523 first header of preceding free area. */ \
duke@435 524 _first_dead = first_dead; \
duke@435 525 \
duke@435 526 const intx interval = PrefetchScanIntervalInBytes; \
duke@435 527 \
duke@435 528 while (q < t) { \
duke@435 529 assert(!block_is_obj(q) || \
duke@435 530 oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() || \
duke@435 531 oop(q)->mark()->has_bias_pattern(), \
duke@435 532 "these are the only valid states during a mark sweep"); \
duke@435 533 if (block_is_obj(q) && oop(q)->is_gc_marked()) { \
duke@435 534 /* prefetch beyond q */ \
duke@435 535 Prefetch::write(q, interval); \
duke@435 536 /* size_t size = oop(q)->size(); changing this for cms for perm gen */\
ysr@777 537 size_t size = block_size(q); \
duke@435 538 compact_top = cp->space->forward(oop(q), size, cp, compact_top); \
duke@435 539 q += size; \
duke@435 540 end_of_live = q; \
duke@435 541 } else { \
duke@435 542 /* run over all the contiguous dead objects */ \
duke@435 543 HeapWord* end = q; \
duke@435 544 do { \
duke@435 545 /* prefetch beyond end */ \
duke@435 546 Prefetch::write(end, interval); \
duke@435 547 end += block_size(end); \
duke@435 548 } while (end < t && (!block_is_obj(end) || !oop(end)->is_gc_marked()));\
duke@435 549 \
duke@435 550 /* see if we might want to pretend this object is alive so that \
duke@435 551 * we don't have to compact quite as often. \
duke@435 552 */ \
duke@435 553 if (allowed_deadspace > 0 && q == compact_top) { \
duke@435 554 size_t sz = pointer_delta(end, q); \
duke@435 555 if (insert_deadspace(allowed_deadspace, q, sz)) { \
duke@435 556 compact_top = cp->space->forward(oop(q), sz, cp, compact_top); \
duke@435 557 q = end; \
duke@435 558 end_of_live = end; \
duke@435 559 continue; \
duke@435 560 } \
duke@435 561 } \
duke@435 562 \
duke@435 563 /* otherwise, it really is a free region. */ \
duke@435 564 \
duke@435 565 /* for the previous LiveRange, record the end of the live objects. */ \
duke@435 566 if (liveRange) { \
duke@435 567 liveRange->set_end(q); \
duke@435 568 } \
duke@435 569 \
duke@435 570 /* record the current LiveRange object. \
duke@435 571 * liveRange->start() is overlaid on the mark word. \
duke@435 572 */ \
duke@435 573 liveRange = (LiveRange*)q; \
duke@435 574 liveRange->set_start(end); \
duke@435 575 liveRange->set_end(end); \
duke@435 576 \
duke@435 577 /* see if this is the first dead region. */ \
duke@435 578 if (q < first_dead) { \
duke@435 579 first_dead = q; \
duke@435 580 } \
duke@435 581 \
duke@435 582 /* move on to the next object */ \
duke@435 583 q = end; \
duke@435 584 } \
duke@435 585 } \
duke@435 586 \
duke@435 587 assert(q == t, "just checking"); \
duke@435 588 if (liveRange != NULL) { \
duke@435 589 liveRange->set_end(q); \
duke@435 590 } \
duke@435 591 _end_of_live = end_of_live; \
duke@435 592 if (end_of_live < first_dead) { \
duke@435 593 first_dead = end_of_live; \
duke@435 594 } \
duke@435 595 _first_dead = first_dead; \
duke@435 596 \
duke@435 597 /* save the compaction_top of the compaction space. */ \
duke@435 598 cp->space->set_compaction_top(compact_top); \
duke@435 599 }
duke@435 600
ysr@777 601 #define SCAN_AND_ADJUST_POINTERS(adjust_obj_size) { \
ysr@777 602 /* adjust all the interior pointers to point at the new locations of objects \
ysr@777 603 * Used by MarkSweep::mark_sweep_phase3() */ \
duke@435 604 \
ysr@777 605 HeapWord* q = bottom(); \
ysr@777 606 HeapWord* t = _end_of_live; /* Established by "prepare_for_compaction". */ \
duke@435 607 \
ysr@777 608 assert(_first_dead <= _end_of_live, "Stands to reason, no?"); \
duke@435 609 \
ysr@777 610 if (q < t && _first_dead > q && \
duke@435 611 !oop(q)->is_gc_marked()) { \
duke@435 612 /* we have a chunk of the space which hasn't moved and we've \
duke@435 613 * reinitialized the mark word during the previous pass, so we can't \
ysr@777 614 * use is_gc_marked for the traversal. */ \
duke@435 615 HeapWord* end = _first_dead; \
duke@435 616 \
ysr@777 617 while (q < end) { \
ysr@777 618 /* I originally tried to conjoin "block_start(q) == q" to the \
ysr@777 619 * assertion below, but that doesn't work, because you can't \
ysr@777 620 * accurately traverse previous objects to get to the current one \
ysr@777 621 * after their pointers (including pointers into permGen) have been \
ysr@777 622 * updated, until the actual compaction is done. dld, 4/00 */ \
ysr@777 623 assert(block_is_obj(q), \
ysr@777 624 "should be at block boundaries, and should be looking at objs"); \
duke@435 625 \
coleenp@548 626 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q))); \
duke@435 627 \
ysr@777 628 /* point all the oops to the new location */ \
ysr@777 629 size_t size = oop(q)->adjust_pointers(); \
ysr@777 630 size = adjust_obj_size(size); \
duke@435 631 \
coleenp@548 632 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers()); \
ysr@777 633 \
coleenp@548 634 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size)); \
ysr@777 635 \
coleenp@548 636 q += size; \
ysr@777 637 } \
duke@435 638 \
ysr@777 639 if (_first_dead == t) { \
ysr@777 640 q = t; \
ysr@777 641 } else { \
ysr@777 642 /* $$$ This is funky. Using this to read the previously written \
ysr@777 643 * LiveRange. See also use below. */ \
duke@435 644 q = (HeapWord*)oop(_first_dead)->mark()->decode_pointer(); \
ysr@777 645 } \
ysr@777 646 } \
duke@435 647 \
duke@435 648 const intx interval = PrefetchScanIntervalInBytes; \
duke@435 649 \
ysr@777 650 debug_only(HeapWord* prev_q = NULL); \
ysr@777 651 while (q < t) { \
ysr@777 652 /* prefetch beyond q */ \
duke@435 653 Prefetch::write(q, interval); \
ysr@777 654 if (oop(q)->is_gc_marked()) { \
ysr@777 655 /* q is alive */ \
coleenp@548 656 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q))); \
ysr@777 657 /* point all the oops to the new location */ \
ysr@777 658 size_t size = oop(q)->adjust_pointers(); \
ysr@777 659 size = adjust_obj_size(size); \
ysr@777 660 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers()); \
coleenp@548 661 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size)); \
ysr@777 662 debug_only(prev_q = q); \
duke@435 663 q += size; \
coleenp@548 664 } else { \
coleenp@548 665 /* q is not a live object, so its mark should point at the next \
coleenp@548 666 * live object */ \
coleenp@548 667 debug_only(prev_q = q); \
coleenp@548 668 q = (HeapWord*) oop(q)->mark()->decode_pointer(); \
coleenp@548 669 assert(q > prev_q, "we should be moving forward through memory"); \
coleenp@548 670 } \
coleenp@548 671 } \
duke@435 672 \
coleenp@548 673 assert(q == t, "just checking"); \
duke@435 674 }
duke@435 675
coleenp@548 676 #define SCAN_AND_COMPACT(obj_size) { \
duke@435 677 /* Copy all live objects to their new location \
coleenp@548 678 * Used by MarkSweep::mark_sweep_phase4() */ \
duke@435 679 \
coleenp@548 680 HeapWord* q = bottom(); \
coleenp@548 681 HeapWord* const t = _end_of_live; \
coleenp@548 682 debug_only(HeapWord* prev_q = NULL); \
duke@435 683 \
coleenp@548 684 if (q < t && _first_dead > q && \
duke@435 685 !oop(q)->is_gc_marked()) { \
coleenp@548 686 debug_only( \
coleenp@548 687 /* we have a chunk of the space which hasn't moved and we've reinitialized \
coleenp@548 688 * the mark word during the previous pass, so we can't use is_gc_marked for \
coleenp@548 689 * the traversal. */ \
coleenp@548 690 HeapWord* const end = _first_dead; \
coleenp@548 691 \
coleenp@548 692 while (q < end) { \
coleenp@548 693 size_t size = obj_size(q); \
coleenp@548 694 assert(!oop(q)->is_gc_marked(), \
coleenp@548 695 "should be unmarked (special dense prefix handling)"); \
coleenp@548 696 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size, q)); \
coleenp@548 697 debug_only(prev_q = q); \
coleenp@548 698 q += size; \
coleenp@548 699 } \
coleenp@548 700 ) /* debug_only */ \
coleenp@548 701 \
coleenp@548 702 if (_first_dead == t) { \
coleenp@548 703 q = t; \
coleenp@548 704 } else { \
coleenp@548 705 /* $$$ Funky */ \
coleenp@548 706 q = (HeapWord*) oop(_first_dead)->mark()->decode_pointer(); \
coleenp@548 707 } \
coleenp@548 708 } \
duke@435 709 \
coleenp@548 710 const intx scan_interval = PrefetchScanIntervalInBytes; \
coleenp@548 711 const intx copy_interval = PrefetchCopyIntervalInBytes; \
coleenp@548 712 while (q < t) { \
coleenp@548 713 if (!oop(q)->is_gc_marked()) { \
coleenp@548 714 /* mark is pointer to next marked oop */ \
coleenp@548 715 debug_only(prev_q = q); \
coleenp@548 716 q = (HeapWord*) oop(q)->mark()->decode_pointer(); \
coleenp@548 717 assert(q > prev_q, "we should be moving forward through memory"); \
coleenp@548 718 } else { \
coleenp@548 719 /* prefetch beyond q */ \
duke@435 720 Prefetch::read(q, scan_interval); \
duke@435 721 \
duke@435 722 /* size and destination */ \
duke@435 723 size_t size = obj_size(q); \
duke@435 724 HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee(); \
duke@435 725 \
coleenp@548 726 /* prefetch beyond compaction_top */ \
duke@435 727 Prefetch::write(compaction_top, copy_interval); \
duke@435 728 \
coleenp@548 729 /* copy object and reinit its mark */ \
coleenp@548 730 VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size, \
coleenp@548 731 compaction_top)); \
coleenp@548 732 assert(q != compaction_top, "everything in this pass should be moving"); \
coleenp@548 733 Copy::aligned_conjoint_words(q, compaction_top, size); \
coleenp@548 734 oop(compaction_top)->init_mark(); \
coleenp@548 735 assert(oop(compaction_top)->klass() != NULL, "should have a class"); \
duke@435 736 \
coleenp@548 737 debug_only(prev_q = q); \
duke@435 738 q += size; \
coleenp@548 739 } \
coleenp@548 740 } \
duke@435 741 \
ysr@777 742 /* Let's remember if we were empty before we did the compaction. */ \
ysr@777 743 bool was_empty = used_region().is_empty(); \
duke@435 744 /* Reset space after compaction is complete */ \
coleenp@548 745 reset_after_compaction(); \
duke@435 746 /* We do this clear, below, since it has overloaded meanings for some */ \
duke@435 747 /* space subtypes. For example, OffsetTableContigSpace's that were */ \
duke@435 748 /* compacted into will have had their offset table thresholds updated */ \
duke@435 749 /* continuously, but those that weren't need to have their thresholds */ \
duke@435 750 /* re-initialized. Also mangles unused area for debugging. */ \
ysr@777 751 if (used_region().is_empty()) { \
ysr@777 752 if (!was_empty) clear(); \
duke@435 753 } else { \
duke@435 754 if (ZapUnusedHeapArea) mangle_unused_area(); \
duke@435 755 } \
duke@435 756 }
duke@435 757
duke@435 758 // A space in which the free area is contiguous. It therefore supports
duke@435 759 // faster allocation, and compaction.
duke@435 760 class ContiguousSpace: public CompactibleSpace {
duke@435 761 friend class OneContigSpaceCardGeneration;
duke@435 762 friend class VMStructs;
duke@435 763 protected:
duke@435 764 HeapWord* _top;
duke@435 765 HeapWord* _concurrent_iteration_safe_limit;
duke@435 766
duke@435 767 // Allocation helpers (return NULL if full).
duke@435 768 inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
duke@435 769 inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
duke@435 770
duke@435 771 public:
ysr@782 772 ContiguousSpace() :
ysr@782 773 _top(NULL),
ysr@782 774 _concurrent_iteration_safe_limit(NULL) {}
ysr@782 775
duke@435 776 virtual void initialize(MemRegion mr, bool clear_space);
duke@435 777
duke@435 778 // Accessors
duke@435 779 HeapWord* top() const { return _top; }
duke@435 780 void set_top(HeapWord* value) { _top = value; }
duke@435 781
ysr@777 782 virtual void set_saved_mark() { _saved_mark_word = top(); }
ysr@777 783 void reset_saved_mark() { _saved_mark_word = bottom(); }
duke@435 784
duke@435 785 virtual void clear();
duke@435 786
duke@435 787 WaterMark bottom_mark() { return WaterMark(this, bottom()); }
duke@435 788 WaterMark top_mark() { return WaterMark(this, top()); }
duke@435 789 WaterMark saved_mark() { return WaterMark(this, saved_mark_word()); }
duke@435 790 bool saved_mark_at_top() const { return saved_mark_word() == top(); }
duke@435 791
duke@435 792 void mangle_unused_area();
duke@435 793 void mangle_region(MemRegion mr);
duke@435 794
duke@435 795 // Size computations: sizes in bytes.
duke@435 796 size_t capacity() const { return byte_size(bottom(), end()); }
duke@435 797 size_t used() const { return byte_size(bottom(), top()); }
duke@435 798 size_t free() const { return byte_size(top(), end()); }
duke@435 799
duke@435 800 // Override from space.
duke@435 801 bool is_in(const void* p) const;
duke@435 802
duke@435 803 virtual bool is_free_block(const HeapWord* p) const;
duke@435 804
duke@435 805 // In a contiguous space we have a more obvious bound on what parts
duke@435 806 // contain objects.
duke@435 807 MemRegion used_region() const { return MemRegion(bottom(), top()); }
duke@435 808
duke@435 809 MemRegion used_region_at_save_marks() const {
duke@435 810 return MemRegion(bottom(), saved_mark_word());
duke@435 811 }
duke@435 812
duke@435 813 // Allocation (return NULL if full)
duke@435 814 virtual HeapWord* allocate(size_t word_size);
duke@435 815 virtual HeapWord* par_allocate(size_t word_size);
duke@435 816
duke@435 817 virtual bool obj_allocated_since_save_marks(const oop obj) const {
duke@435 818 return (HeapWord*)obj >= saved_mark_word();
duke@435 819 }
duke@435 820
duke@435 821 // Iteration
duke@435 822 void oop_iterate(OopClosure* cl);
duke@435 823 void oop_iterate(MemRegion mr, OopClosure* cl);
duke@435 824 void object_iterate(ObjectClosure* blk);
duke@435 825 void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
duke@435 826 // iterates on objects up to the safe limit
duke@435 827 HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
duke@435 828 inline HeapWord* concurrent_iteration_safe_limit();
duke@435 829 // changes the safe limit, all objects from bottom() to the new
duke@435 830 // limit should be properly initialized
duke@435 831 inline void set_concurrent_iteration_safe_limit(HeapWord* new_limit);
duke@435 832
duke@435 833 #ifndef SERIALGC
duke@435 834 // In support of parallel oop_iterate.
duke@435 835 #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix) \
duke@435 836 void par_oop_iterate(MemRegion mr, OopClosureType* blk);
duke@435 837
duke@435 838 ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
duke@435 839 #undef ContigSpace_PAR_OOP_ITERATE_DECL
duke@435 840 #endif // SERIALGC
duke@435 841
duke@435 842 // Compaction support
duke@435 843 virtual void reset_after_compaction() {
duke@435 844 assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
duke@435 845 set_top(compaction_top());
duke@435 846 // set new iteration safe limit
duke@435 847 set_concurrent_iteration_safe_limit(compaction_top());
duke@435 848 }
duke@435 849 virtual size_t minimum_free_block_size() const { return 0; }
duke@435 850
duke@435 851 // Override.
duke@435 852 DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
duke@435 853 CardTableModRefBS::PrecisionStyle precision,
duke@435 854 HeapWord* boundary = NULL);
duke@435 855
duke@435 856 // Apply "blk->do_oop" to the addresses of all reference fields in objects
duke@435 857 // starting with the _saved_mark_word, which was noted during a generation's
duke@435 858 // save_marks and is required to denote the head of an object.
duke@435 859 // Fields in objects allocated by applications of the closure
duke@435 860 // *are* included in the iteration.
duke@435 861 // Updates _saved_mark_word to point to just after the last object
duke@435 862 // iterated over.
duke@435 863 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
duke@435 864 void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
duke@435 865
duke@435 866 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
duke@435 867 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
duke@435 868
duke@435 869 // Same as object_iterate, but starting from "mark", which is required
duke@435 870 // to denote the start of an object. Objects allocated by
duke@435 871 // applications of the closure *are* included in the iteration.
duke@435 872 virtual void object_iterate_from(WaterMark mark, ObjectClosure* blk);
duke@435 873
duke@435 874 // Very inefficient implementation.
ysr@777 875 virtual HeapWord* block_start_const(const void* p) const;
duke@435 876 size_t block_size(const HeapWord* p) const;
duke@435 877 // If a block is in the allocated area, it is an object.
duke@435 878 bool block_is_obj(const HeapWord* p) const { return p < top(); }
duke@435 879
duke@435 880 // Addresses for inlined allocation
duke@435 881 HeapWord** top_addr() { return &_top; }
duke@435 882 HeapWord** end_addr() { return &_end; }
duke@435 883
duke@435 884 // Overrides for more efficient compaction support.
duke@435 885 void prepare_for_compaction(CompactPoint* cp);
duke@435 886
duke@435 887 // PrintHeapAtGC support.
duke@435 888 virtual void print_on(outputStream* st) const;
duke@435 889
duke@435 890 // Checked dynamic downcasts.
duke@435 891 virtual ContiguousSpace* toContiguousSpace() {
duke@435 892 return this;
duke@435 893 }
duke@435 894
duke@435 895 // Debugging
duke@435 896 virtual void verify(bool allow_dirty) const;
duke@435 897
duke@435 898 // Used to increase collection frequency. "factor" of 0 means entire
duke@435 899 // space.
duke@435 900 void allocate_temporary_filler(int factor);
duke@435 901
duke@435 902 };
duke@435 903
duke@435 904
duke@435 905 // A dirty card to oop closure that does filtering.
duke@435 906 // It knows how to filter out objects that are outside of the _boundary.
duke@435 907 class Filtering_DCTOC : public DirtyCardToOopClosure {
duke@435 908 protected:
duke@435 909 // Override.
duke@435 910 void walk_mem_region(MemRegion mr,
duke@435 911 HeapWord* bottom, HeapWord* top);
duke@435 912
duke@435 913 // Walk the given memory region, from bottom to top, applying
duke@435 914 // the given oop closure to (possibly) all objects found. The
duke@435 915 // given oop closure may or may not be the same as the oop
duke@435 916 // closure with which this closure was created, as it may
duke@435 917 // be a filtering closure which makes use of the _boundary.
duke@435 918 // We offer two signatures, so the FilteringClosure static type is
duke@435 919 // apparent.
duke@435 920 virtual void walk_mem_region_with_cl(MemRegion mr,
duke@435 921 HeapWord* bottom, HeapWord* top,
duke@435 922 OopClosure* cl) = 0;
duke@435 923 virtual void walk_mem_region_with_cl(MemRegion mr,
duke@435 924 HeapWord* bottom, HeapWord* top,
duke@435 925 FilteringClosure* cl) = 0;
duke@435 926
duke@435 927 public:
duke@435 928 Filtering_DCTOC(Space* sp, OopClosure* cl,
duke@435 929 CardTableModRefBS::PrecisionStyle precision,
duke@435 930 HeapWord* boundary) :
duke@435 931 DirtyCardToOopClosure(sp, cl, precision, boundary) {}
duke@435 932 };
duke@435 933
duke@435 934 // A dirty card to oop closure for contiguous spaces
duke@435 935 // (ContiguousSpace and sub-classes).
duke@435 936 // It is a FilteringClosure, as defined above, and it knows:
duke@435 937 //
duke@435 938 // 1. That the actual top of any area in a memory region
duke@435 939 // contained by the space is bounded by the end of the contiguous
duke@435 940 // region of the space.
duke@435 941 // 2. That the space is really made up of objects and not just
duke@435 942 // blocks.
duke@435 943
duke@435 944 class ContiguousSpaceDCTOC : public Filtering_DCTOC {
duke@435 945 protected:
duke@435 946 // Overrides.
duke@435 947 HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
duke@435 948
duke@435 949 virtual void walk_mem_region_with_cl(MemRegion mr,
duke@435 950 HeapWord* bottom, HeapWord* top,
duke@435 951 OopClosure* cl);
duke@435 952 virtual void walk_mem_region_with_cl(MemRegion mr,
duke@435 953 HeapWord* bottom, HeapWord* top,
duke@435 954 FilteringClosure* cl);
duke@435 955
duke@435 956 public:
duke@435 957 ContiguousSpaceDCTOC(ContiguousSpace* sp, OopClosure* cl,
duke@435 958 CardTableModRefBS::PrecisionStyle precision,
duke@435 959 HeapWord* boundary) :
duke@435 960 Filtering_DCTOC(sp, cl, precision, boundary)
duke@435 961 {}
duke@435 962 };
duke@435 963
duke@435 964
duke@435 965 // Class EdenSpace describes eden-space in new generation.
duke@435 966
duke@435 967 class DefNewGeneration;
duke@435 968
duke@435 969 class EdenSpace : public ContiguousSpace {
duke@435 970 friend class VMStructs;
duke@435 971 private:
duke@435 972 DefNewGeneration* _gen;
duke@435 973
duke@435 974 // _soft_end is used as a soft limit on allocation. As soft limits are
duke@435 975 // reached, the slow-path allocation code can invoke other actions and then
duke@435 976 // adjust _soft_end up to a new soft limit or to end().
duke@435 977 HeapWord* _soft_end;
duke@435 978
duke@435 979 public:
ysr@782 980 EdenSpace(DefNewGeneration* gen) :
ysr@782 981 _gen(gen), _soft_end(NULL) {}
duke@435 982
duke@435 983 // Get/set just the 'soft' limit.
duke@435 984 HeapWord* soft_end() { return _soft_end; }
duke@435 985 HeapWord** soft_end_addr() { return &_soft_end; }
duke@435 986 void set_soft_end(HeapWord* value) { _soft_end = value; }
duke@435 987
duke@435 988 // Override.
duke@435 989 void clear();
duke@435 990
duke@435 991 // Set both the 'hard' and 'soft' limits (_end and _soft_end).
duke@435 992 void set_end(HeapWord* value) {
duke@435 993 set_soft_end(value);
duke@435 994 ContiguousSpace::set_end(value);
duke@435 995 }
duke@435 996
duke@435 997 // Allocation (return NULL if full)
duke@435 998 HeapWord* allocate(size_t word_size);
duke@435 999 HeapWord* par_allocate(size_t word_size);
duke@435 1000 };
duke@435 1001
duke@435 1002 // Class ConcEdenSpace extends EdenSpace for the sake of safe
duke@435 1003 // allocation while soft-end is being modified concurrently
duke@435 1004
duke@435 1005 class ConcEdenSpace : public EdenSpace {
duke@435 1006 public:
duke@435 1007 ConcEdenSpace(DefNewGeneration* gen) : EdenSpace(gen) { }
duke@435 1008
duke@435 1009 // Allocation (return NULL if full)
duke@435 1010 HeapWord* par_allocate(size_t word_size);
duke@435 1011 };
duke@435 1012
duke@435 1013
duke@435 1014 // A ContigSpace that Supports an efficient "block_start" operation via
duke@435 1015 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
duke@435 1016 // other spaces.) This is the abstract base class for old generation
duke@435 1017 // (tenured, perm) spaces.
duke@435 1018
duke@435 1019 class OffsetTableContigSpace: public ContiguousSpace {
duke@435 1020 friend class VMStructs;
duke@435 1021 protected:
duke@435 1022 BlockOffsetArrayContigSpace _offsets;
duke@435 1023 Mutex _par_alloc_lock;
duke@435 1024
duke@435 1025 public:
duke@435 1026 // Constructor
duke@435 1027 OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
duke@435 1028 MemRegion mr);
duke@435 1029
duke@435 1030 void set_bottom(HeapWord* value);
duke@435 1031 void set_end(HeapWord* value);
duke@435 1032
ysr@777 1033 virtual void initialize(MemRegion mr, bool clear_space);
duke@435 1034 void clear();
duke@435 1035
ysr@777 1036 inline HeapWord* block_start_const(const void* p) const;
duke@435 1037
duke@435 1038 // Add offset table update.
duke@435 1039 virtual inline HeapWord* allocate(size_t word_size);
duke@435 1040 inline HeapWord* par_allocate(size_t word_size);
duke@435 1041
duke@435 1042 // MarkSweep support phase3
duke@435 1043 virtual HeapWord* initialize_threshold();
duke@435 1044 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
duke@435 1045
duke@435 1046 virtual void print_on(outputStream* st) const;
duke@435 1047
duke@435 1048 // Debugging
duke@435 1049 void verify(bool allow_dirty) const;
duke@435 1050
duke@435 1051 // Shared space support
duke@435 1052 void serialize_block_offset_array_offsets(SerializeOopClosure* soc);
duke@435 1053 };
duke@435 1054
duke@435 1055
duke@435 1056 // Class TenuredSpace is used by TenuredGeneration
duke@435 1057
duke@435 1058 class TenuredSpace: public OffsetTableContigSpace {
duke@435 1059 friend class VMStructs;
duke@435 1060 protected:
duke@435 1061 // Mark sweep support
duke@435 1062 int allowed_dead_ratio() const;
duke@435 1063 public:
duke@435 1064 // Constructor
duke@435 1065 TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
duke@435 1066 MemRegion mr) :
duke@435 1067 OffsetTableContigSpace(sharedOffsetArray, mr) {}
duke@435 1068 };
duke@435 1069
duke@435 1070
duke@435 1071 // Class ContigPermSpace is used by CompactingPermGen
duke@435 1072
duke@435 1073 class ContigPermSpace: public OffsetTableContigSpace {
duke@435 1074 friend class VMStructs;
duke@435 1075 protected:
duke@435 1076 // Mark sweep support
duke@435 1077 int allowed_dead_ratio() const;
duke@435 1078 public:
duke@435 1079 // Constructor
duke@435 1080 ContigPermSpace(BlockOffsetSharedArray* sharedOffsetArray, MemRegion mr) :
duke@435 1081 OffsetTableContigSpace(sharedOffsetArray, mr) {}
duke@435 1082 };

mercurial