src/share/vm/opto/chaitin.cpp

Thu, 13 Jun 2013 22:02:40 -0700

author
ccheung
date
Thu, 13 Jun 2013 22:02:40 -0700
changeset 5259
ef57c43512d6
parent 4949
8373c19be854
child 5285
693e4d04fd09
permissions
-rw-r--r--

8014431: cleanup warnings indicated by the -Wunused-value compiler option on linux
Reviewed-by: dholmes, coleenp
Contributed-by: jeremymanson@google.com, calvin.cheung@oracle.com

duke@435 1 /*
kvn@3577 2 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/compileLog.hpp"
stefank@2314 27 #include "compiler/oopMap.hpp"
stefank@2314 28 #include "memory/allocation.inline.hpp"
stefank@2314 29 #include "opto/addnode.hpp"
stefank@2314 30 #include "opto/block.hpp"
stefank@2314 31 #include "opto/callnode.hpp"
stefank@2314 32 #include "opto/cfgnode.hpp"
stefank@2314 33 #include "opto/chaitin.hpp"
stefank@2314 34 #include "opto/coalesce.hpp"
stefank@2314 35 #include "opto/connode.hpp"
stefank@2314 36 #include "opto/idealGraphPrinter.hpp"
stefank@2314 37 #include "opto/indexSet.hpp"
stefank@2314 38 #include "opto/machnode.hpp"
stefank@2314 39 #include "opto/memnode.hpp"
stefank@2314 40 #include "opto/opcodes.hpp"
stefank@2314 41 #include "opto/rootnode.hpp"
duke@435 42
duke@435 43 //=============================================================================
duke@435 44
duke@435 45 #ifndef PRODUCT
duke@435 46 void LRG::dump( ) const {
duke@435 47 ttyLocker ttyl;
duke@435 48 tty->print("%d ",num_regs());
duke@435 49 _mask.dump();
duke@435 50 if( _msize_valid ) {
duke@435 51 if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
duke@435 52 else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
duke@435 53 } else {
duke@435 54 tty->print(", #?(%d) ",_mask.Size());
duke@435 55 }
duke@435 56
duke@435 57 tty->print("EffDeg: ");
duke@435 58 if( _degree_valid ) tty->print( "%d ", _eff_degree );
duke@435 59 else tty->print("? ");
duke@435 60
never@730 61 if( is_multidef() ) {
duke@435 62 tty->print("MultiDef ");
duke@435 63 if (_defs != NULL) {
duke@435 64 tty->print("(");
duke@435 65 for (int i = 0; i < _defs->length(); i++) {
duke@435 66 tty->print("N%d ", _defs->at(i)->_idx);
duke@435 67 }
duke@435 68 tty->print(") ");
duke@435 69 }
duke@435 70 }
duke@435 71 else if( _def == 0 ) tty->print("Dead ");
duke@435 72 else tty->print("Def: N%d ",_def->_idx);
duke@435 73
duke@435 74 tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
duke@435 75 // Flags
duke@435 76 if( _is_oop ) tty->print("Oop ");
duke@435 77 if( _is_float ) tty->print("Float ");
kvn@3882 78 if( _is_vector ) tty->print("Vector ");
duke@435 79 if( _was_spilled1 ) tty->print("Spilled ");
duke@435 80 if( _was_spilled2 ) tty->print("Spilled2 ");
duke@435 81 if( _direct_conflict ) tty->print("Direct_conflict ");
duke@435 82 if( _fat_proj ) tty->print("Fat ");
duke@435 83 if( _was_lo ) tty->print("Lo ");
duke@435 84 if( _has_copy ) tty->print("Copy ");
duke@435 85 if( _at_risk ) tty->print("Risk ");
duke@435 86
duke@435 87 if( _must_spill ) tty->print("Must_spill ");
duke@435 88 if( _is_bound ) tty->print("Bound ");
duke@435 89 if( _msize_valid ) {
duke@435 90 if( _degree_valid && lo_degree() ) tty->print("Trivial ");
duke@435 91 }
duke@435 92
duke@435 93 tty->cr();
duke@435 94 }
duke@435 95 #endif
duke@435 96
duke@435 97 //------------------------------score------------------------------------------
duke@435 98 // Compute score from cost and area. Low score is best to spill.
duke@435 99 static double raw_score( double cost, double area ) {
duke@435 100 return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
duke@435 101 }
duke@435 102
duke@435 103 double LRG::score() const {
duke@435 104 // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
duke@435 105 // Bigger area lowers score, encourages spilling this live range.
duke@435 106 // Bigger cost raise score, prevents spilling this live range.
duke@435 107 // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
duke@435 108 // to turn a divide by a constant into a multiply by the reciprical).
duke@435 109 double score = raw_score( _cost, _area);
duke@435 110
duke@435 111 // Account for area. Basically, LRGs covering large areas are better
duke@435 112 // to spill because more other LRGs get freed up.
duke@435 113 if( _area == 0.0 ) // No area? Then no progress to spill
duke@435 114 return 1e35;
duke@435 115
duke@435 116 if( _was_spilled2 ) // If spilled once before, we are unlikely
duke@435 117 return score + 1e30; // to make progress again.
duke@435 118
duke@435 119 if( _cost >= _area*3.0 ) // Tiny area relative to cost
duke@435 120 return score + 1e17; // Probably no progress to spill
duke@435 121
duke@435 122 if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
duke@435 123 return score + 1e10; // Likely no progress to spill
duke@435 124
duke@435 125 return score;
duke@435 126 }
duke@435 127
duke@435 128 //------------------------------LRG_List---------------------------------------
duke@435 129 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
duke@435 130 memset( _lidxs, 0, sizeof(uint)*max );
duke@435 131 }
duke@435 132
duke@435 133 void LRG_List::extend( uint nidx, uint lidx ) {
duke@435 134 _nesting.check();
duke@435 135 if( nidx >= _max ) {
duke@435 136 uint size = 16;
duke@435 137 while( size <= nidx ) size <<=1;
duke@435 138 _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
duke@435 139 _max = size;
duke@435 140 }
duke@435 141 while( _cnt <= nidx )
duke@435 142 _lidxs[_cnt++] = 0;
duke@435 143 _lidxs[nidx] = lidx;
duke@435 144 }
duke@435 145
duke@435 146 #define NUMBUCKS 3
duke@435 147
neliasso@4949 148 // Straight out of Tarjan's union-find algorithm
neliasso@4949 149 uint LiveRangeMap::find_compress(uint lrg) {
neliasso@4949 150 uint cur = lrg;
neliasso@4949 151 uint next = _uf_map[cur];
neliasso@4949 152 while (next != cur) { // Scan chain of equivalences
neliasso@4949 153 assert( next < cur, "always union smaller");
neliasso@4949 154 cur = next; // until find a fixed-point
neliasso@4949 155 next = _uf_map[cur];
neliasso@4949 156 }
neliasso@4949 157
neliasso@4949 158 // Core of union-find algorithm: update chain of
neliasso@4949 159 // equivalences to be equal to the root.
neliasso@4949 160 while (lrg != next) {
neliasso@4949 161 uint tmp = _uf_map[lrg];
neliasso@4949 162 _uf_map.map(lrg, next);
neliasso@4949 163 lrg = tmp;
neliasso@4949 164 }
neliasso@4949 165 return lrg;
neliasso@4949 166 }
neliasso@4949 167
neliasso@4949 168 // Reset the Union-Find map to identity
neliasso@4949 169 void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
neliasso@4949 170 _max_lrg_id= max_lrg_id;
neliasso@4949 171 // Force the Union-Find mapping to be at least this large
neliasso@4949 172 _uf_map.extend(_max_lrg_id, 0);
neliasso@4949 173 // Initialize it to be the ID mapping.
neliasso@4949 174 for (uint i = 0; i < _max_lrg_id; ++i) {
neliasso@4949 175 _uf_map.map(i, i);
neliasso@4949 176 }
neliasso@4949 177 }
neliasso@4949 178
neliasso@4949 179 // Make all Nodes map directly to their final live range; no need for
neliasso@4949 180 // the Union-Find mapping after this call.
neliasso@4949 181 void LiveRangeMap::compress_uf_map_for_nodes() {
neliasso@4949 182 // For all Nodes, compress mapping
neliasso@4949 183 uint unique = _names.Size();
neliasso@4949 184 for (uint i = 0; i < unique; ++i) {
neliasso@4949 185 uint lrg = _names[i];
neliasso@4949 186 uint compressed_lrg = find(lrg);
neliasso@4949 187 if (lrg != compressed_lrg) {
neliasso@4949 188 _names.map(i, compressed_lrg);
neliasso@4949 189 }
neliasso@4949 190 }
neliasso@4949 191 }
neliasso@4949 192
neliasso@4949 193 // Like Find above, but no path compress, so bad asymptotic behavior
neliasso@4949 194 uint LiveRangeMap::find_const(uint lrg) const {
neliasso@4949 195 if (!lrg) {
neliasso@4949 196 return lrg; // Ignore the zero LRG
neliasso@4949 197 }
neliasso@4949 198
neliasso@4949 199 // Off the end? This happens during debugging dumps when you got
neliasso@4949 200 // brand new live ranges but have not told the allocator yet.
neliasso@4949 201 if (lrg >= _max_lrg_id) {
neliasso@4949 202 return lrg;
neliasso@4949 203 }
neliasso@4949 204
neliasso@4949 205 uint next = _uf_map[lrg];
neliasso@4949 206 while (next != lrg) { // Scan chain of equivalences
neliasso@4949 207 assert(next < lrg, "always union smaller");
neliasso@4949 208 lrg = next; // until find a fixed-point
neliasso@4949 209 next = _uf_map[lrg];
neliasso@4949 210 }
neliasso@4949 211 return next;
neliasso@4949 212 }
neliasso@4949 213
duke@435 214 //------------------------------Chaitin----------------------------------------
duke@435 215 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
duke@435 216 : PhaseRegAlloc(unique, cfg, matcher,
duke@435 217 #ifndef PRODUCT
duke@435 218 print_chaitin_statistics
duke@435 219 #else
duke@435 220 NULL
duke@435 221 #endif
neliasso@4949 222 )
neliasso@4949 223 , _lrg_map(unique)
neliasso@4949 224 , _live(0)
neliasso@4949 225 , _spilled_once(Thread::current()->resource_area())
neliasso@4949 226 , _spilled_twice(Thread::current()->resource_area())
neliasso@4949 227 , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
neliasso@4949 228 , _oldphi(unique)
duke@435 229 #ifndef PRODUCT
duke@435 230 , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
duke@435 231 #endif
duke@435 232 {
duke@435 233 NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
kvn@1108 234
kvn@1108 235 _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg._outer_loop_freq);
kvn@1108 236
duke@435 237 // Build a list of basic blocks, sorted by frequency
duke@435 238 _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
duke@435 239 // Experiment with sorting strategies to speed compilation
duke@435 240 double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
duke@435 241 Block **buckets[NUMBUCKS]; // Array of buckets
duke@435 242 uint buckcnt[NUMBUCKS]; // Array of bucket counters
duke@435 243 double buckval[NUMBUCKS]; // Array of bucket value cutoffs
neliasso@4949 244 for (uint i = 0; i < NUMBUCKS; i++) {
neliasso@4949 245 buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg._num_blocks);
duke@435 246 buckcnt[i] = 0;
duke@435 247 // Bump by three orders of magnitude each time
duke@435 248 cutoff *= 0.001;
duke@435 249 buckval[i] = cutoff;
neliasso@4949 250 for (uint j = 0; j < _cfg._num_blocks; j++) {
duke@435 251 buckets[i][j] = NULL;
duke@435 252 }
duke@435 253 }
duke@435 254 // Sort blocks into buckets
neliasso@4949 255 for (uint i = 0; i < _cfg._num_blocks; i++) {
neliasso@4949 256 for (uint j = 0; j < NUMBUCKS; j++) {
neliasso@4949 257 if ((j == NUMBUCKS - 1) || (_cfg._blocks[i]->_freq > buckval[j])) {
duke@435 258 // Assign block to end of list for appropriate bucket
duke@435 259 buckets[j][buckcnt[j]++] = _cfg._blocks[i];
neliasso@4949 260 break; // kick out of inner loop
duke@435 261 }
duke@435 262 }
duke@435 263 }
duke@435 264 // Dump buckets into final block array
duke@435 265 uint blkcnt = 0;
neliasso@4949 266 for (uint i = 0; i < NUMBUCKS; i++) {
neliasso@4949 267 for (uint j = 0; j < buckcnt[i]; j++) {
duke@435 268 _blks[blkcnt++] = buckets[i][j];
duke@435 269 }
duke@435 270 }
duke@435 271
duke@435 272 assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
duke@435 273 }
duke@435 274
neliasso@4949 275 //------------------------------Union------------------------------------------
neliasso@4949 276 // union 2 sets together.
neliasso@4949 277 void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
neliasso@4949 278 uint src = _lrg_map.find(src_n);
neliasso@4949 279 uint dst = _lrg_map.find(dst_n);
neliasso@4949 280 assert(src, "");
neliasso@4949 281 assert(dst, "");
neliasso@4949 282 assert(src < _lrg_map.max_lrg_id(), "oob");
neliasso@4949 283 assert(dst < _lrg_map.max_lrg_id(), "oob");
neliasso@4949 284 assert(src < dst, "always union smaller");
neliasso@4949 285 _lrg_map.uf_map(dst, src);
neliasso@4949 286 }
neliasso@4949 287
neliasso@4949 288 //------------------------------new_lrg----------------------------------------
neliasso@4949 289 void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
neliasso@4949 290 // Make the Node->LRG mapping
neliasso@4949 291 _lrg_map.extend(x->_idx,lrg);
neliasso@4949 292 // Make the Union-Find mapping an identity function
neliasso@4949 293 _lrg_map.uf_extend(lrg, lrg);
neliasso@4949 294 }
neliasso@4949 295
neliasso@4949 296
neliasso@4949 297 bool PhaseChaitin::clone_projs_shared(Block *b, uint idx, Node *con, Node *copy, uint max_lrg_id) {
neliasso@4949 298 Block *bcon = _cfg._bbs[con->_idx];
neliasso@4949 299 uint cindex = bcon->find_node(con);
neliasso@4949 300 Node *con_next = bcon->_nodes[cindex+1];
neliasso@4949 301 if (con_next->in(0) != con || !con_next->is_MachProj()) {
neliasso@4949 302 return false; // No MachProj's follow
neliasso@4949 303 }
neliasso@4949 304
neliasso@4949 305 // Copy kills after the cloned constant
neliasso@4949 306 Node *kills = con_next->clone();
neliasso@4949 307 kills->set_req(0, copy);
neliasso@4949 308 b->_nodes.insert(idx, kills);
neliasso@4949 309 _cfg._bbs.map(kills->_idx, b);
neliasso@4949 310 new_lrg(kills, max_lrg_id);
neliasso@4949 311 return true;
neliasso@4949 312 }
neliasso@4949 313
neliasso@4949 314 //------------------------------compact----------------------------------------
neliasso@4949 315 // Renumber the live ranges to compact them. Makes the IFG smaller.
neliasso@4949 316 void PhaseChaitin::compact() {
neliasso@4949 317 // Current the _uf_map contains a series of short chains which are headed
neliasso@4949 318 // by a self-cycle. All the chains run from big numbers to little numbers.
neliasso@4949 319 // The Find() call chases the chains & shortens them for the next Find call.
neliasso@4949 320 // We are going to change this structure slightly. Numbers above a moving
neliasso@4949 321 // wave 'i' are unchanged. Numbers below 'j' point directly to their
neliasso@4949 322 // compacted live range with no further chaining. There are no chains or
neliasso@4949 323 // cycles below 'i', so the Find call no longer works.
neliasso@4949 324 uint j=1;
neliasso@4949 325 uint i;
neliasso@4949 326 for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
neliasso@4949 327 uint lr = _lrg_map.uf_live_range_id(i);
neliasso@4949 328 // Ignore unallocated live ranges
neliasso@4949 329 if (!lr) {
neliasso@4949 330 continue;
neliasso@4949 331 }
neliasso@4949 332 assert(lr <= i, "");
neliasso@4949 333 _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
neliasso@4949 334 }
neliasso@4949 335 // Now change the Node->LR mapping to reflect the compacted names
neliasso@4949 336 uint unique = _lrg_map.size();
neliasso@4949 337 for (i = 0; i < unique; i++) {
neliasso@4949 338 uint lrg_id = _lrg_map.live_range_id(i);
neliasso@4949 339 _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
neliasso@4949 340 }
neliasso@4949 341
neliasso@4949 342 // Reset the Union-Find mapping
neliasso@4949 343 _lrg_map.reset_uf_map(j);
neliasso@4949 344 }
neliasso@4949 345
duke@435 346 void PhaseChaitin::Register_Allocate() {
duke@435 347
duke@435 348 // Above the OLD FP (and in registers) are the incoming arguments. Stack
duke@435 349 // slots in this area are called "arg_slots". Above the NEW FP (and in
duke@435 350 // registers) is the outgoing argument area; above that is the spill/temp
duke@435 351 // area. These are all "frame_slots". Arg_slots start at the zero
duke@435 352 // stack_slots and count up to the known arg_size. Frame_slots start at
duke@435 353 // the stack_slot #arg_size and go up. After allocation I map stack
duke@435 354 // slots to actual offsets. Stack-slots in the arg_slot area are biased
duke@435 355 // by the frame_size; stack-slots in the frame_slot area are biased by 0.
duke@435 356
duke@435 357 _trip_cnt = 0;
duke@435 358 _alternate = 0;
duke@435 359 _matcher._allocation_started = true;
duke@435 360
kvn@4019 361 ResourceArea split_arena; // Arena for Split local resources
duke@435 362 ResourceArea live_arena; // Arena for liveness & IFG info
duke@435 363 ResourceMark rm(&live_arena);
duke@435 364
duke@435 365 // Need live-ness for the IFG; need the IFG for coalescing. If the
duke@435 366 // liveness is JUST for coalescing, then I can get some mileage by renaming
duke@435 367 // all copy-related live ranges low and then using the max copy-related
duke@435 368 // live range as a cut-off for LIVE and the IFG. In other words, I can
duke@435 369 // build a subset of LIVE and IFG just for copies.
neliasso@4949 370 PhaseLive live(_cfg, _lrg_map.names(), &live_arena);
duke@435 371
duke@435 372 // Need IFG for coalescing and coloring
neliasso@4949 373 PhaseIFG ifg(&live_arena);
duke@435 374 _ifg = &ifg;
duke@435 375
duke@435 376 // Come out of SSA world to the Named world. Assign (virtual) registers to
duke@435 377 // Nodes. Use the same register for all inputs and the output of PhiNodes
duke@435 378 // - effectively ending SSA form. This requires either coalescing live
duke@435 379 // ranges or inserting copies. For the moment, we insert "virtual copies"
duke@435 380 // - we pretend there is a copy prior to each Phi in predecessor blocks.
duke@435 381 // We will attempt to coalesce such "virtual copies" before we manifest
duke@435 382 // them for real.
duke@435 383 de_ssa();
duke@435 384
kvn@1001 385 #ifdef ASSERT
kvn@1001 386 // Veify the graph before RA.
kvn@1001 387 verify(&live_arena);
kvn@1001 388 #endif
kvn@1001 389
duke@435 390 {
duke@435 391 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 392 _live = NULL; // Mark live as being not available
duke@435 393 rm.reset_to_mark(); // Reclaim working storage
duke@435 394 IndexSet::reset_memory(C, &live_arena);
neliasso@4949 395 ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
duke@435 396 gather_lrg_masks( false ); // Collect LRG masks
neliasso@4949 397 live.compute(_lrg_map.max_lrg_id()); // Compute liveness
duke@435 398 _live = &live; // Mark LIVE as being available
duke@435 399 }
duke@435 400
duke@435 401 // Base pointers are currently "used" by instructions which define new
duke@435 402 // derived pointers. This makes base pointers live up to the where the
duke@435 403 // derived pointer is made, but not beyond. Really, they need to be live
duke@435 404 // across any GC point where the derived value is live. So this code looks
duke@435 405 // at all the GC points, and "stretches" the live range of any base pointer
duke@435 406 // to the GC point.
neliasso@4949 407 if (stretch_base_pointer_live_ranges(&live_arena)) {
neliasso@4949 408 NOT_PRODUCT(Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler);)
duke@435 409 // Since some live range stretched, I need to recompute live
duke@435 410 _live = NULL;
duke@435 411 rm.reset_to_mark(); // Reclaim working storage
duke@435 412 IndexSet::reset_memory(C, &live_arena);
neliasso@4949 413 ifg.init(_lrg_map.max_lrg_id());
neliasso@4949 414 gather_lrg_masks(false);
neliasso@4949 415 live.compute(_lrg_map.max_lrg_id());
duke@435 416 _live = &live;
duke@435 417 }
duke@435 418 // Create the interference graph using virtual copies
neliasso@4949 419 build_ifg_virtual(); // Include stack slots this time
duke@435 420
duke@435 421 // Aggressive (but pessimistic) copy coalescing.
duke@435 422 // This pass works on virtual copies. Any virtual copies which are not
duke@435 423 // coalesced get manifested as actual copies
duke@435 424 {
duke@435 425 // The IFG is/was triangular. I am 'squaring it up' so Union can run
duke@435 426 // faster. Union requires a 'for all' operation which is slow on the
duke@435 427 // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
duke@435 428 // meaning I can visit all the Nodes neighbors less than a Node in time
duke@435 429 // O(# of neighbors), but I have to visit all the Nodes greater than a
duke@435 430 // given Node and search them for an instance, i.e., time O(#MaxLRG)).
duke@435 431 _ifg->SquareUp();
duke@435 432
neliasso@4949 433 PhaseAggressiveCoalesce coalesce(*this);
neliasso@4949 434 coalesce.coalesce_driver();
duke@435 435 // Insert un-coalesced copies. Visit all Phis. Where inputs to a Phi do
duke@435 436 // not match the Phi itself, insert a copy.
duke@435 437 coalesce.insert_copies(_matcher);
duke@435 438 }
duke@435 439
duke@435 440 // After aggressive coalesce, attempt a first cut at coloring.
duke@435 441 // To color, we need the IFG and for that we need LIVE.
duke@435 442 {
duke@435 443 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 444 _live = NULL;
duke@435 445 rm.reset_to_mark(); // Reclaim working storage
duke@435 446 IndexSet::reset_memory(C, &live_arena);
neliasso@4949 447 ifg.init(_lrg_map.max_lrg_id());
duke@435 448 gather_lrg_masks( true );
neliasso@4949 449 live.compute(_lrg_map.max_lrg_id());
duke@435 450 _live = &live;
duke@435 451 }
duke@435 452
duke@435 453 // Build physical interference graph
duke@435 454 uint must_spill = 0;
neliasso@4949 455 must_spill = build_ifg_physical(&live_arena);
duke@435 456 // If we have a guaranteed spill, might as well spill now
neliasso@4949 457 if (must_spill) {
neliasso@4949 458 if(!_lrg_map.max_lrg_id()) {
neliasso@4949 459 return;
neliasso@4949 460 }
duke@435 461 // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
duke@435 462 C->check_node_count(10*must_spill, "out of nodes before split");
neliasso@4949 463 if (C->failing()) {
neliasso@4949 464 return;
neliasso@4949 465 }
neliasso@4949 466
neliasso@4949 467 uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere
neliasso@4949 468 _lrg_map.set_max_lrg_id(new_max_lrg_id);
duke@435 469 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
duke@435 470 // or we failed to split
duke@435 471 C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
neliasso@4949 472 if (C->failing()) {
neliasso@4949 473 return;
neliasso@4949 474 }
duke@435 475
neliasso@4949 476 NOT_PRODUCT(C->verify_graph_edges();)
duke@435 477
duke@435 478 compact(); // Compact LRGs; return new lower max lrg
duke@435 479
duke@435 480 {
duke@435 481 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 482 _live = NULL;
duke@435 483 rm.reset_to_mark(); // Reclaim working storage
duke@435 484 IndexSet::reset_memory(C, &live_arena);
neliasso@4949 485 ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
duke@435 486 gather_lrg_masks( true ); // Collect intersect mask
neliasso@4949 487 live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
duke@435 488 _live = &live;
duke@435 489 }
neliasso@4949 490 build_ifg_physical(&live_arena);
duke@435 491 _ifg->SquareUp();
duke@435 492 _ifg->Compute_Effective_Degree();
duke@435 493 // Only do conservative coalescing if requested
neliasso@4949 494 if (OptoCoalesce) {
duke@435 495 // Conservative (and pessimistic) copy coalescing of those spills
neliasso@4949 496 PhaseConservativeCoalesce coalesce(*this);
duke@435 497 // If max live ranges greater than cutoff, don't color the stack.
duke@435 498 // This cutoff can be larger than below since it is only done once.
neliasso@4949 499 coalesce.coalesce_driver();
duke@435 500 }
neliasso@4949 501 _lrg_map.compress_uf_map_for_nodes();
duke@435 502
duke@435 503 #ifdef ASSERT
kvn@1001 504 verify(&live_arena, true);
duke@435 505 #endif
duke@435 506 } else {
duke@435 507 ifg.SquareUp();
duke@435 508 ifg.Compute_Effective_Degree();
duke@435 509 #ifdef ASSERT
duke@435 510 set_was_low();
duke@435 511 #endif
duke@435 512 }
duke@435 513
duke@435 514 // Prepare for Simplify & Select
duke@435 515 cache_lrg_info(); // Count degree of LRGs
duke@435 516
duke@435 517 // Simplify the InterFerence Graph by removing LRGs of low degree.
duke@435 518 // LRGs of low degree are trivially colorable.
duke@435 519 Simplify();
duke@435 520
duke@435 521 // Select colors by re-inserting LRGs back into the IFG in reverse order.
duke@435 522 // Return whether or not something spills.
duke@435 523 uint spills = Select( );
duke@435 524
duke@435 525 // If we spill, split and recycle the entire thing
duke@435 526 while( spills ) {
duke@435 527 if( _trip_cnt++ > 24 ) {
duke@435 528 DEBUG_ONLY( dump_for_spill_split_recycle(); )
duke@435 529 if( _trip_cnt > 27 ) {
duke@435 530 C->record_method_not_compilable("failed spill-split-recycle sanity check");
duke@435 531 return;
duke@435 532 }
duke@435 533 }
duke@435 534
neliasso@4949 535 if (!_lrg_map.max_lrg_id()) {
neliasso@4949 536 return;
neliasso@4949 537 }
neliasso@4949 538 uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere
neliasso@4949 539 _lrg_map.set_max_lrg_id(new_max_lrg_id);
duke@435 540 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
neliasso@4949 541 C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
neliasso@4949 542 if (C->failing()) {
neliasso@4949 543 return;
neliasso@4949 544 }
duke@435 545
neliasso@4949 546 compact(); // Compact LRGs; return new lower max lrg
duke@435 547
duke@435 548 // Nuke the live-ness and interference graph and LiveRanGe info
duke@435 549 {
duke@435 550 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
duke@435 551 _live = NULL;
duke@435 552 rm.reset_to_mark(); // Reclaim working storage
duke@435 553 IndexSet::reset_memory(C, &live_arena);
neliasso@4949 554 ifg.init(_lrg_map.max_lrg_id());
duke@435 555
duke@435 556 // Create LiveRanGe array.
duke@435 557 // Intersect register masks for all USEs and DEFs
neliasso@4949 558 gather_lrg_masks(true);
neliasso@4949 559 live.compute(_lrg_map.max_lrg_id());
duke@435 560 _live = &live;
duke@435 561 }
neliasso@4949 562 must_spill = build_ifg_physical(&live_arena);
duke@435 563 _ifg->SquareUp();
duke@435 564 _ifg->Compute_Effective_Degree();
duke@435 565
duke@435 566 // Only do conservative coalescing if requested
neliasso@4949 567 if (OptoCoalesce) {
duke@435 568 // Conservative (and pessimistic) copy coalescing
neliasso@4949 569 PhaseConservativeCoalesce coalesce(*this);
duke@435 570 // Check for few live ranges determines how aggressive coalesce is.
neliasso@4949 571 coalesce.coalesce_driver();
duke@435 572 }
neliasso@4949 573 _lrg_map.compress_uf_map_for_nodes();
duke@435 574 #ifdef ASSERT
kvn@1001 575 verify(&live_arena, true);
duke@435 576 #endif
duke@435 577 cache_lrg_info(); // Count degree of LRGs
duke@435 578
duke@435 579 // Simplify the InterFerence Graph by removing LRGs of low degree.
duke@435 580 // LRGs of low degree are trivially colorable.
duke@435 581 Simplify();
duke@435 582
duke@435 583 // Select colors by re-inserting LRGs back into the IFG in reverse order.
duke@435 584 // Return whether or not something spills.
neliasso@4949 585 spills = Select();
duke@435 586 }
duke@435 587
duke@435 588 // Count number of Simplify-Select trips per coloring success.
duke@435 589 _allocator_attempts += _trip_cnt + 1;
duke@435 590 _allocator_successes += 1;
duke@435 591
duke@435 592 // Peephole remove copies
duke@435 593 post_allocate_copy_removal();
duke@435 594
kvn@1001 595 #ifdef ASSERT
kvn@1001 596 // Veify the graph after RA.
kvn@1001 597 verify(&live_arena);
kvn@1001 598 #endif
kvn@1001 599
duke@435 600 // max_reg is past the largest *register* used.
duke@435 601 // Convert that to a frame_slot number.
neliasso@4949 602 if (_max_reg <= _matcher._new_SP) {
duke@435 603 _framesize = C->out_preserve_stack_slots();
neliasso@4949 604 }
neliasso@4949 605 else {
neliasso@4949 606 _framesize = _max_reg -_matcher._new_SP;
neliasso@4949 607 }
duke@435 608 assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
duke@435 609
duke@435 610 // This frame must preserve the required fp alignment
never@854 611 _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
duke@435 612 assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
duke@435 613 #ifndef PRODUCT
duke@435 614 _total_framesize += _framesize;
neliasso@4949 615 if ((int)_framesize > _max_framesize) {
duke@435 616 _max_framesize = _framesize;
neliasso@4949 617 }
duke@435 618 #endif
duke@435 619
duke@435 620 // Convert CISC spills
duke@435 621 fixup_spills();
duke@435 622
duke@435 623 // Log regalloc results
duke@435 624 CompileLog* log = Compile::current()->log();
duke@435 625 if (log != NULL) {
duke@435 626 log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
duke@435 627 }
duke@435 628
neliasso@4949 629 if (C->failing()) {
neliasso@4949 630 return;
neliasso@4949 631 }
duke@435 632
neliasso@4949 633 NOT_PRODUCT(C->verify_graph_edges();)
duke@435 634
duke@435 635 // Move important info out of the live_arena to longer lasting storage.
neliasso@4949 636 alloc_node_regs(_lrg_map.size());
neliasso@4949 637 for (uint i=0; i < _lrg_map.size(); i++) {
neliasso@4949 638 if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
neliasso@4949 639 LRG &lrg = lrgs(_lrg_map.live_range_id(i));
kvn@3882 640 if (!lrg.alive()) {
kvn@4007 641 set_bad(i);
kvn@3882 642 } else if (lrg.num_regs() == 1) {
kvn@4007 643 set1(i, lrg.reg());
kvn@4007 644 } else { // Must be a register-set
kvn@4007 645 if (!lrg._fat_proj) { // Must be aligned adjacent register set
duke@435 646 // Live ranges record the highest register in their mask.
duke@435 647 // We want the low register for the AD file writer's convenience.
kvn@4007 648 OptoReg::Name hi = lrg.reg(); // Get hi register
kvn@4007 649 OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
kvn@4007 650 // We have to use pair [lo,lo+1] even for wide vectors because
kvn@4007 651 // the rest of code generation works only with pairs. It is safe
kvn@4007 652 // since for registers encoding only 'lo' is used.
kvn@4007 653 // Second reg from pair is used in ScheduleAndBundle on SPARC where
kvn@4007 654 // vector max size is 8 which corresponds to registers pair.
kvn@4007 655 // It is also used in BuildOopMaps but oop operations are not
kvn@4007 656 // vectorized.
kvn@4007 657 set2(i, lo);
duke@435 658 } else { // Misaligned; extract 2 bits
duke@435 659 OptoReg::Name hi = lrg.reg(); // Get hi register
duke@435 660 lrg.Remove(hi); // Yank from mask
duke@435 661 int lo = lrg.mask().find_first_elem(); // Find lo
kvn@4007 662 set_pair(i, hi, lo);
duke@435 663 }
duke@435 664 }
duke@435 665 if( lrg._is_oop ) _node_oops.set(i);
duke@435 666 } else {
kvn@4007 667 set_bad(i);
duke@435 668 }
duke@435 669 }
duke@435 670
duke@435 671 // Done!
duke@435 672 _live = NULL;
duke@435 673 _ifg = NULL;
duke@435 674 C->set_indexSet_arena(NULL); // ResourceArea is at end of scope
duke@435 675 }
duke@435 676
duke@435 677 //------------------------------de_ssa-----------------------------------------
duke@435 678 void PhaseChaitin::de_ssa() {
duke@435 679 // Set initial Names for all Nodes. Most Nodes get the virtual register
duke@435 680 // number. A few get the ZERO live range number. These do not
duke@435 681 // get allocated, but instead rely on correct scheduling to ensure that
duke@435 682 // only one instance is simultaneously live at a time.
duke@435 683 uint lr_counter = 1;
duke@435 684 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 685 Block *b = _cfg._blocks[i];
duke@435 686 uint cnt = b->_nodes.size();
duke@435 687
duke@435 688 // Handle all the normal Nodes in the block
duke@435 689 for( uint j = 0; j < cnt; j++ ) {
duke@435 690 Node *n = b->_nodes[j];
duke@435 691 // Pre-color to the zero live range, or pick virtual register
duke@435 692 const RegMask &rm = n->out_RegMask();
neliasso@4949 693 _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
duke@435 694 }
duke@435 695 }
duke@435 696 // Reset the Union-Find mapping to be identity
neliasso@4949 697 _lrg_map.reset_uf_map(lr_counter);
duke@435 698 }
duke@435 699
duke@435 700
duke@435 701 //------------------------------gather_lrg_masks-------------------------------
duke@435 702 // Gather LiveRanGe information, including register masks. Modification of
duke@435 703 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
duke@435 704 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
duke@435 705
duke@435 706 // Nail down the frame pointer live range
neliasso@4949 707 uint fp_lrg = _lrg_map.live_range_id(_cfg._root->in(1)->in(TypeFunc::FramePtr));
duke@435 708 lrgs(fp_lrg)._cost += 1e12; // Cost is infinite
duke@435 709
duke@435 710 // For all blocks
duke@435 711 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 712 Block *b = _cfg._blocks[i];
duke@435 713
duke@435 714 // For all instructions
duke@435 715 for( uint j = 1; j < b->_nodes.size(); j++ ) {
duke@435 716 Node *n = b->_nodes[j];
duke@435 717 uint input_edge_start =1; // Skip control most nodes
duke@435 718 if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
duke@435 719 uint idx = n->is_Copy();
duke@435 720
duke@435 721 // Get virtual register number, same as LiveRanGe index
neliasso@4949 722 uint vreg = _lrg_map.live_range_id(n);
duke@435 723 LRG &lrg = lrgs(vreg);
duke@435 724 if( vreg ) { // No vreg means un-allocable (e.g. memory)
duke@435 725
duke@435 726 // Collect has-copy bit
duke@435 727 if( idx ) {
duke@435 728 lrg._has_copy = 1;
neliasso@4949 729 uint clidx = _lrg_map.live_range_id(n->in(idx));
duke@435 730 LRG &copy_src = lrgs(clidx);
duke@435 731 copy_src._has_copy = 1;
duke@435 732 }
duke@435 733
duke@435 734 // Check for float-vs-int live range (used in register-pressure
duke@435 735 // calculations)
duke@435 736 const Type *n_type = n->bottom_type();
kvn@3882 737 if (n_type->is_floatingpoint())
duke@435 738 lrg._is_float = 1;
duke@435 739
duke@435 740 // Check for twice prior spilling. Once prior spilling might have
duke@435 741 // spilled 'soft', 2nd prior spill should have spilled 'hard' and
duke@435 742 // further spilling is unlikely to make progress.
duke@435 743 if( _spilled_once.test(n->_idx) ) {
duke@435 744 lrg._was_spilled1 = 1;
duke@435 745 if( _spilled_twice.test(n->_idx) )
duke@435 746 lrg._was_spilled2 = 1;
duke@435 747 }
duke@435 748
duke@435 749 #ifndef PRODUCT
duke@435 750 if (trace_spilling() && lrg._def != NULL) {
duke@435 751 // collect defs for MultiDef printing
duke@435 752 if (lrg._defs == NULL) {
kvn@2040 753 lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
duke@435 754 lrg._defs->append(lrg._def);
duke@435 755 }
duke@435 756 lrg._defs->append(n);
duke@435 757 }
duke@435 758 #endif
duke@435 759
duke@435 760 // Check for a single def LRG; these can spill nicely
duke@435 761 // via rematerialization. Flag as NULL for no def found
duke@435 762 // yet, or 'n' for single def or -1 for many defs.
duke@435 763 lrg._def = lrg._def ? NodeSentinel : n;
duke@435 764
duke@435 765 // Limit result register mask to acceptable registers
duke@435 766 const RegMask &rm = n->out_RegMask();
duke@435 767 lrg.AND( rm );
duke@435 768
duke@435 769 int ireg = n->ideal_reg();
duke@435 770 assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
duke@435 771 "oops must be in Op_RegP's" );
kvn@3882 772
kvn@3882 773 // Check for vector live range (only if vector register is used).
kvn@3882 774 // On SPARC vector uses RegD which could be misaligned so it is not
kvn@3882 775 // processes as vector in RA.
kvn@3882 776 if (RegMask::is_vector(ireg))
kvn@3882 777 lrg._is_vector = 1;
kvn@3882 778 assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD,
kvn@3882 779 "vector must be in vector registers");
kvn@3882 780
kvn@3882 781 // Check for bound register masks
kvn@3882 782 const RegMask &lrgmask = lrg.mask();
kvn@3882 783 if (lrgmask.is_bound(ireg))
kvn@3882 784 lrg._is_bound = 1;
kvn@3882 785
kvn@3882 786 // Check for maximum frequency value
kvn@3882 787 if (lrg._maxfreq < b->_freq)
kvn@3882 788 lrg._maxfreq = b->_freq;
kvn@3882 789
duke@435 790 // Check for oop-iness, or long/double
duke@435 791 // Check for multi-kill projection
duke@435 792 switch( ireg ) {
duke@435 793 case MachProjNode::fat_proj:
duke@435 794 // Fat projections have size equal to number of registers killed
duke@435 795 lrg.set_num_regs(rm.Size());
duke@435 796 lrg.set_reg_pressure(lrg.num_regs());
duke@435 797 lrg._fat_proj = 1;
duke@435 798 lrg._is_bound = 1;
duke@435 799 break;
duke@435 800 case Op_RegP:
duke@435 801 #ifdef _LP64
duke@435 802 lrg.set_num_regs(2); // Size is 2 stack words
duke@435 803 #else
duke@435 804 lrg.set_num_regs(1); // Size is 1 stack word
duke@435 805 #endif
duke@435 806 // Register pressure is tracked relative to the maximum values
duke@435 807 // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
duke@435 808 // and relative to other types which compete for the same regs.
duke@435 809 //
duke@435 810 // The following table contains suggested values based on the
duke@435 811 // architectures as defined in each .ad file.
duke@435 812 // INTPRESSURE and FLOATPRESSURE may be tuned differently for
duke@435 813 // compile-speed or performance.
duke@435 814 // Note1:
duke@435 815 // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
duke@435 816 // since .ad registers are defined as high and low halves.
duke@435 817 // These reg_pressure values remain compatible with the code
duke@435 818 // in is_high_pressure() which relates get_invalid_mask_size(),
duke@435 819 // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
duke@435 820 // Note2:
duke@435 821 // SPARC -d32 has 24 registers available for integral values,
duke@435 822 // but only 10 of these are safe for 64-bit longs.
duke@435 823 // Using set_reg_pressure(2) for both int and long means
duke@435 824 // the allocator will believe it can fit 26 longs into
duke@435 825 // registers. Using 2 for longs and 1 for ints means the
duke@435 826 // allocator will attempt to put 52 integers into registers.
duke@435 827 // The settings below limit this problem to methods with
duke@435 828 // many long values which are being run on 32-bit SPARC.
duke@435 829 //
duke@435 830 // ------------------- reg_pressure --------------------
duke@435 831 // Each entry is reg_pressure_per_value,number_of_regs
duke@435 832 // RegL RegI RegFlags RegF RegD INTPRESSURE FLOATPRESSURE
duke@435 833 // IA32 2 1 1 1 1 6 6
duke@435 834 // IA64 1 1 1 1 1 50 41
duke@435 835 // SPARC 2 2 2 2 2 48 (24) 52 (26)
duke@435 836 // SPARCV9 2 2 2 2 2 48 (24) 52 (26)
duke@435 837 // AMD64 1 1 1 1 1 14 15
duke@435 838 // -----------------------------------------------------
duke@435 839 #if defined(SPARC)
duke@435 840 lrg.set_reg_pressure(2); // use for v9 as well
duke@435 841 #else
duke@435 842 lrg.set_reg_pressure(1); // normally one value per register
duke@435 843 #endif
duke@435 844 if( n_type->isa_oop_ptr() ) {
duke@435 845 lrg._is_oop = 1;
duke@435 846 }
duke@435 847 break;
duke@435 848 case Op_RegL: // Check for long or double
duke@435 849 case Op_RegD:
duke@435 850 lrg.set_num_regs(2);
duke@435 851 // Define platform specific register pressure
roland@2683 852 #if defined(SPARC) || defined(ARM)
duke@435 853 lrg.set_reg_pressure(2);
duke@435 854 #elif defined(IA32)
duke@435 855 if( ireg == Op_RegL ) {
duke@435 856 lrg.set_reg_pressure(2);
duke@435 857 } else {
duke@435 858 lrg.set_reg_pressure(1);
duke@435 859 }
duke@435 860 #else
duke@435 861 lrg.set_reg_pressure(1); // normally one value per register
duke@435 862 #endif
duke@435 863 // If this def of a double forces a mis-aligned double,
duke@435 864 // flag as '_fat_proj' - really flag as allowing misalignment
duke@435 865 // AND changes how we count interferences. A mis-aligned
duke@435 866 // double can interfere with TWO aligned pairs, or effectively
duke@435 867 // FOUR registers!
kvn@3882 868 if (rm.is_misaligned_pair()) {
duke@435 869 lrg._fat_proj = 1;
duke@435 870 lrg._is_bound = 1;
duke@435 871 }
duke@435 872 break;
duke@435 873 case Op_RegF:
duke@435 874 case Op_RegI:
coleenp@548 875 case Op_RegN:
duke@435 876 case Op_RegFlags:
duke@435 877 case 0: // not an ideal register
duke@435 878 lrg.set_num_regs(1);
duke@435 879 #ifdef SPARC
duke@435 880 lrg.set_reg_pressure(2);
duke@435 881 #else
duke@435 882 lrg.set_reg_pressure(1);
duke@435 883 #endif
duke@435 884 break;
kvn@3882 885 case Op_VecS:
kvn@3882 886 assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
kvn@3882 887 assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
kvn@3882 888 lrg.set_num_regs(RegMask::SlotsPerVecS);
kvn@3882 889 lrg.set_reg_pressure(1);
kvn@3882 890 break;
kvn@3882 891 case Op_VecD:
kvn@3882 892 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
kvn@3882 893 assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
kvn@3882 894 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
kvn@3882 895 lrg.set_num_regs(RegMask::SlotsPerVecD);
kvn@3882 896 lrg.set_reg_pressure(1);
kvn@3882 897 break;
kvn@3882 898 case Op_VecX:
kvn@3882 899 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
kvn@3882 900 assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
kvn@3882 901 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
kvn@3882 902 lrg.set_num_regs(RegMask::SlotsPerVecX);
kvn@3882 903 lrg.set_reg_pressure(1);
kvn@3882 904 break;
kvn@3882 905 case Op_VecY:
kvn@3882 906 assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
kvn@3882 907 assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
kvn@3882 908 assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
kvn@3882 909 lrg.set_num_regs(RegMask::SlotsPerVecY);
kvn@3882 910 lrg.set_reg_pressure(1);
kvn@3882 911 break;
duke@435 912 default:
duke@435 913 ShouldNotReachHere();
duke@435 914 }
duke@435 915 }
duke@435 916
duke@435 917 // Now do the same for inputs
duke@435 918 uint cnt = n->req();
duke@435 919 // Setup for CISC SPILLING
duke@435 920 uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
duke@435 921 if( UseCISCSpill && after_aggressive ) {
duke@435 922 inp = n->cisc_operand();
duke@435 923 if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
duke@435 924 // Convert operand number to edge index number
duke@435 925 inp = n->as_Mach()->operand_index(inp);
duke@435 926 }
duke@435 927 // Prepare register mask for each input
duke@435 928 for( uint k = input_edge_start; k < cnt; k++ ) {
neliasso@4949 929 uint vreg = _lrg_map.live_range_id(n->in(k));
neliasso@4949 930 if (!vreg) {
neliasso@4949 931 continue;
neliasso@4949 932 }
duke@435 933
duke@435 934 // If this instruction is CISC Spillable, add the flags
duke@435 935 // bit to its appropriate input
duke@435 936 if( UseCISCSpill && after_aggressive && inp == k ) {
duke@435 937 #ifndef PRODUCT
duke@435 938 if( TraceCISCSpill ) {
duke@435 939 tty->print(" use_cisc_RegMask: ");
duke@435 940 n->dump();
duke@435 941 }
duke@435 942 #endif
duke@435 943 n->as_Mach()->use_cisc_RegMask();
duke@435 944 }
duke@435 945
duke@435 946 LRG &lrg = lrgs(vreg);
duke@435 947 // // Testing for floating point code shape
duke@435 948 // Node *test = n->in(k);
duke@435 949 // if( test->is_Mach() ) {
duke@435 950 // MachNode *m = test->as_Mach();
duke@435 951 // int op = m->ideal_Opcode();
duke@435 952 // if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
duke@435 953 // int zzz = 1;
duke@435 954 // }
duke@435 955 // }
duke@435 956
duke@435 957 // Limit result register mask to acceptable registers.
duke@435 958 // Do not limit registers from uncommon uses before
duke@435 959 // AggressiveCoalesce. This effectively pre-virtual-splits
duke@435 960 // around uncommon uses of common defs.
duke@435 961 const RegMask &rm = n->in_RegMask(k);
duke@435 962 if( !after_aggressive &&
duke@435 963 _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
duke@435 964 // Since we are BEFORE aggressive coalesce, leave the register
duke@435 965 // mask untrimmed by the call. This encourages more coalescing.
duke@435 966 // Later, AFTER aggressive, this live range will have to spill
duke@435 967 // but the spiller handles slow-path calls very nicely.
duke@435 968 } else {
duke@435 969 lrg.AND( rm );
duke@435 970 }
kvn@3882 971
duke@435 972 // Check for bound register masks
duke@435 973 const RegMask &lrgmask = lrg.mask();
kvn@3882 974 int kreg = n->in(k)->ideal_reg();
kvn@3882 975 bool is_vect = RegMask::is_vector(kreg);
kvn@3882 976 assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
kvn@3882 977 is_vect || kreg == Op_RegD,
kvn@3882 978 "vector must be in vector registers");
kvn@3882 979 if (lrgmask.is_bound(kreg))
duke@435 980 lrg._is_bound = 1;
kvn@3882 981
duke@435 982 // If this use of a double forces a mis-aligned double,
duke@435 983 // flag as '_fat_proj' - really flag as allowing misalignment
duke@435 984 // AND changes how we count interferences. A mis-aligned
duke@435 985 // double can interfere with TWO aligned pairs, or effectively
duke@435 986 // FOUR registers!
kvn@3882 987 #ifdef ASSERT
kvn@3882 988 if (is_vect) {
kvn@3882 989 assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
kvn@3882 990 assert(!lrg._fat_proj, "sanity");
kvn@3882 991 assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
kvn@3882 992 }
kvn@3882 993 #endif
kvn@3882 994 if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
duke@435 995 lrg._fat_proj = 1;
duke@435 996 lrg._is_bound = 1;
duke@435 997 }
duke@435 998 // if the LRG is an unaligned pair, we will have to spill
duke@435 999 // so clear the LRG's register mask if it is not already spilled
kvn@3882 1000 if (!is_vect && !n->is_SpillCopy() &&
kvn@3882 1001 (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
kvn@3882 1002 lrgmask.is_misaligned_pair()) {
duke@435 1003 lrg.Clear();
duke@435 1004 }
duke@435 1005
duke@435 1006 // Check for maximum frequency value
duke@435 1007 if( lrg._maxfreq < b->_freq )
duke@435 1008 lrg._maxfreq = b->_freq;
duke@435 1009
duke@435 1010 } // End for all allocated inputs
duke@435 1011 } // end for all instructions
duke@435 1012 } // end for all blocks
duke@435 1013
duke@435 1014 // Final per-liverange setup
neliasso@4949 1015 for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
duke@435 1016 LRG &lrg = lrgs(i2);
kvn@3882 1017 assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
kvn@3882 1018 if (lrg.num_regs() > 1 && !lrg._fat_proj) {
kvn@3882 1019 lrg.clear_to_sets();
kvn@3882 1020 }
duke@435 1021 lrg.compute_set_mask_size();
kvn@3882 1022 if (lrg.not_free()) { // Handle case where we lose from the start
duke@435 1023 lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
duke@435 1024 lrg._direct_conflict = 1;
duke@435 1025 }
duke@435 1026 lrg.set_degree(0); // no neighbors in IFG yet
duke@435 1027 }
duke@435 1028 }
duke@435 1029
duke@435 1030 //------------------------------set_was_low------------------------------------
duke@435 1031 // Set the was-lo-degree bit. Conservative coalescing should not change the
duke@435 1032 // colorability of the graph. If any live range was of low-degree before
duke@435 1033 // coalescing, it should Simplify. This call sets the was-lo-degree bit.
duke@435 1034 // The bit is checked in Simplify.
duke@435 1035 void PhaseChaitin::set_was_low() {
duke@435 1036 #ifdef ASSERT
neliasso@4949 1037 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
duke@435 1038 int size = lrgs(i).num_regs();
duke@435 1039 uint old_was_lo = lrgs(i)._was_lo;
duke@435 1040 lrgs(i)._was_lo = 0;
duke@435 1041 if( lrgs(i).lo_degree() ) {
duke@435 1042 lrgs(i)._was_lo = 1; // Trivially of low degree
duke@435 1043 } else { // Else check the Brigg's assertion
duke@435 1044 // Brigg's observation is that the lo-degree neighbors of a
duke@435 1045 // hi-degree live range will not interfere with the color choices
duke@435 1046 // of said hi-degree live range. The Simplify reverse-stack-coloring
duke@435 1047 // order takes care of the details. Hence you do not have to count
duke@435 1048 // low-degree neighbors when determining if this guy colors.
duke@435 1049 int briggs_degree = 0;
duke@435 1050 IndexSet *s = _ifg->neighbors(i);
duke@435 1051 IndexSetIterator elements(s);
duke@435 1052 uint lidx;
duke@435 1053 while((lidx = elements.next()) != 0) {
duke@435 1054 if( !lrgs(lidx).lo_degree() )
duke@435 1055 briggs_degree += MAX2(size,lrgs(lidx).num_regs());
duke@435 1056 }
duke@435 1057 if( briggs_degree < lrgs(i).degrees_of_freedom() )
duke@435 1058 lrgs(i)._was_lo = 1; // Low degree via the briggs assertion
duke@435 1059 }
duke@435 1060 assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
duke@435 1061 }
duke@435 1062 #endif
duke@435 1063 }
duke@435 1064
duke@435 1065 #define REGISTER_CONSTRAINED 16
duke@435 1066
duke@435 1067 //------------------------------cache_lrg_info---------------------------------
duke@435 1068 // Compute cost/area ratio, in case we spill. Build the lo-degree list.
duke@435 1069 void PhaseChaitin::cache_lrg_info( ) {
duke@435 1070
neliasso@4949 1071 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
duke@435 1072 LRG &lrg = lrgs(i);
duke@435 1073
duke@435 1074 // Check for being of low degree: means we can be trivially colored.
duke@435 1075 // Low degree, dead or must-spill guys just get to simplify right away
duke@435 1076 if( lrg.lo_degree() ||
duke@435 1077 !lrg.alive() ||
duke@435 1078 lrg._must_spill ) {
duke@435 1079 // Split low degree list into those guys that must get a
duke@435 1080 // register and those that can go to register or stack.
duke@435 1081 // The idea is LRGs that can go register or stack color first when
duke@435 1082 // they have a good chance of getting a register. The register-only
duke@435 1083 // lo-degree live ranges always get a register.
duke@435 1084 OptoReg::Name hi_reg = lrg.mask().find_last_elem();
duke@435 1085 if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
duke@435 1086 lrg._next = _lo_stk_degree;
duke@435 1087 _lo_stk_degree = i;
duke@435 1088 } else {
duke@435 1089 lrg._next = _lo_degree;
duke@435 1090 _lo_degree = i;
duke@435 1091 }
duke@435 1092 } else { // Else high degree
duke@435 1093 lrgs(_hi_degree)._prev = i;
duke@435 1094 lrg._next = _hi_degree;
duke@435 1095 lrg._prev = 0;
duke@435 1096 _hi_degree = i;
duke@435 1097 }
duke@435 1098 }
duke@435 1099 }
duke@435 1100
duke@435 1101 //------------------------------Pre-Simplify-----------------------------------
duke@435 1102 // Simplify the IFG by removing LRGs of low degree that have NO copies
duke@435 1103 void PhaseChaitin::Pre_Simplify( ) {
duke@435 1104
duke@435 1105 // Warm up the lo-degree no-copy list
duke@435 1106 int lo_no_copy = 0;
neliasso@4949 1107 for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
neliasso@4949 1108 if ((lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
duke@435 1109 !lrgs(i).alive() ||
neliasso@4949 1110 lrgs(i)._must_spill) {
duke@435 1111 lrgs(i)._next = lo_no_copy;
duke@435 1112 lo_no_copy = i;
duke@435 1113 }
duke@435 1114 }
duke@435 1115
duke@435 1116 while( lo_no_copy ) {
duke@435 1117 uint lo = lo_no_copy;
duke@435 1118 lo_no_copy = lrgs(lo)._next;
duke@435 1119 int size = lrgs(lo).num_regs();
duke@435 1120
duke@435 1121 // Put the simplified guy on the simplified list.
duke@435 1122 lrgs(lo)._next = _simplified;
duke@435 1123 _simplified = lo;
duke@435 1124
duke@435 1125 // Yank this guy from the IFG.
duke@435 1126 IndexSet *adj = _ifg->remove_node( lo );
duke@435 1127
duke@435 1128 // If any neighbors' degrees fall below their number of
duke@435 1129 // allowed registers, then put that neighbor on the low degree
duke@435 1130 // list. Note that 'degree' can only fall and 'numregs' is
duke@435 1131 // unchanged by this action. Thus the two are equal at most once,
duke@435 1132 // so LRGs hit the lo-degree worklists at most once.
duke@435 1133 IndexSetIterator elements(adj);
duke@435 1134 uint neighbor;
duke@435 1135 while ((neighbor = elements.next()) != 0) {
duke@435 1136 LRG *n = &lrgs(neighbor);
duke@435 1137 assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
duke@435 1138
duke@435 1139 // Check for just becoming of-low-degree
duke@435 1140 if( n->just_lo_degree() && !n->_has_copy ) {
duke@435 1141 assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
duke@435 1142 // Put on lo-degree list
duke@435 1143 n->_next = lo_no_copy;
duke@435 1144 lo_no_copy = neighbor;
duke@435 1145 }
duke@435 1146 }
duke@435 1147 } // End of while lo-degree no_copy worklist not empty
duke@435 1148
duke@435 1149 // No more lo-degree no-copy live ranges to simplify
duke@435 1150 }
duke@435 1151
duke@435 1152 //------------------------------Simplify---------------------------------------
duke@435 1153 // Simplify the IFG by removing LRGs of low degree.
duke@435 1154 void PhaseChaitin::Simplify( ) {
duke@435 1155
duke@435 1156 while( 1 ) { // Repeat till simplified it all
duke@435 1157 // May want to explore simplifying lo_degree before _lo_stk_degree.
duke@435 1158 // This might result in more spills coloring into registers during
duke@435 1159 // Select().
duke@435 1160 while( _lo_degree || _lo_stk_degree ) {
duke@435 1161 // If possible, pull from lo_stk first
duke@435 1162 uint lo;
duke@435 1163 if( _lo_degree ) {
duke@435 1164 lo = _lo_degree;
duke@435 1165 _lo_degree = lrgs(lo)._next;
duke@435 1166 } else {
duke@435 1167 lo = _lo_stk_degree;
duke@435 1168 _lo_stk_degree = lrgs(lo)._next;
duke@435 1169 }
duke@435 1170
duke@435 1171 // Put the simplified guy on the simplified list.
duke@435 1172 lrgs(lo)._next = _simplified;
duke@435 1173 _simplified = lo;
duke@435 1174 // If this guy is "at risk" then mark his current neighbors
duke@435 1175 if( lrgs(lo)._at_risk ) {
duke@435 1176 IndexSetIterator elements(_ifg->neighbors(lo));
duke@435 1177 uint datum;
duke@435 1178 while ((datum = elements.next()) != 0) {
duke@435 1179 lrgs(datum)._risk_bias = lo;
duke@435 1180 }
duke@435 1181 }
duke@435 1182
duke@435 1183 // Yank this guy from the IFG.
duke@435 1184 IndexSet *adj = _ifg->remove_node( lo );
duke@435 1185
duke@435 1186 // If any neighbors' degrees fall below their number of
duke@435 1187 // allowed registers, then put that neighbor on the low degree
duke@435 1188 // list. Note that 'degree' can only fall and 'numregs' is
duke@435 1189 // unchanged by this action. Thus the two are equal at most once,
duke@435 1190 // so LRGs hit the lo-degree worklist at most once.
duke@435 1191 IndexSetIterator elements(adj);
duke@435 1192 uint neighbor;
duke@435 1193 while ((neighbor = elements.next()) != 0) {
duke@435 1194 LRG *n = &lrgs(neighbor);
duke@435 1195 #ifdef ASSERT
kvn@985 1196 if( VerifyOpto || VerifyRegisterAllocator ) {
duke@435 1197 assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
duke@435 1198 }
duke@435 1199 #endif
duke@435 1200
duke@435 1201 // Check for just becoming of-low-degree just counting registers.
duke@435 1202 // _must_spill live ranges are already on the low degree list.
duke@435 1203 if( n->just_lo_degree() && !n->_must_spill ) {
duke@435 1204 assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
duke@435 1205 // Pull from hi-degree list
duke@435 1206 uint prev = n->_prev;
duke@435 1207 uint next = n->_next;
duke@435 1208 if( prev ) lrgs(prev)._next = next;
duke@435 1209 else _hi_degree = next;
duke@435 1210 lrgs(next)._prev = prev;
duke@435 1211 n->_next = _lo_degree;
duke@435 1212 _lo_degree = neighbor;
duke@435 1213 }
duke@435 1214 }
duke@435 1215 } // End of while lo-degree/lo_stk_degree worklist not empty
duke@435 1216
duke@435 1217 // Check for got everything: is hi-degree list empty?
duke@435 1218 if( !_hi_degree ) break;
duke@435 1219
duke@435 1220 // Time to pick a potential spill guy
duke@435 1221 uint lo_score = _hi_degree;
duke@435 1222 double score = lrgs(lo_score).score();
duke@435 1223 double area = lrgs(lo_score)._area;
kvn@1443 1224 double cost = lrgs(lo_score)._cost;
kvn@1443 1225 bool bound = lrgs(lo_score)._is_bound;
duke@435 1226
duke@435 1227 // Find cheapest guy
duke@435 1228 debug_only( int lo_no_simplify=0; );
kvn@1447 1229 for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
duke@435 1230 assert( !(*_ifg->_yanked)[i], "" );
duke@435 1231 // It's just vaguely possible to move hi-degree to lo-degree without
duke@435 1232 // going through a just-lo-degree stage: If you remove a double from
duke@435 1233 // a float live range it's degree will drop by 2 and you can skip the
duke@435 1234 // just-lo-degree stage. It's very rare (shows up after 5000+ methods
duke@435 1235 // in -Xcomp of Java2Demo). So just choose this guy to simplify next.
duke@435 1236 if( lrgs(i).lo_degree() ) {
duke@435 1237 lo_score = i;
duke@435 1238 break;
duke@435 1239 }
duke@435 1240 debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
duke@435 1241 double iscore = lrgs(i).score();
duke@435 1242 double iarea = lrgs(i)._area;
kvn@1443 1243 double icost = lrgs(i)._cost;
kvn@1443 1244 bool ibound = lrgs(i)._is_bound;
duke@435 1245
duke@435 1246 // Compare cost/area of i vs cost/area of lo_score. Smaller cost/area
duke@435 1247 // wins. Ties happen because all live ranges in question have spilled
duke@435 1248 // a few times before and the spill-score adds a huge number which
duke@435 1249 // washes out the low order bits. We are choosing the lesser of 2
duke@435 1250 // evils; in this case pick largest area to spill.
kvn@1443 1251 // Ties also happen when live ranges are defined and used only inside
kvn@1443 1252 // one block. In which case their area is 0 and score set to max.
kvn@1443 1253 // In such case choose bound live range over unbound to free registers
kvn@1443 1254 // or with smaller cost to spill.
duke@435 1255 if( iscore < score ||
kvn@1443 1256 (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
kvn@1443 1257 (iscore == score && iarea == area &&
kvn@1443 1258 ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
duke@435 1259 lo_score = i;
duke@435 1260 score = iscore;
duke@435 1261 area = iarea;
kvn@1443 1262 cost = icost;
kvn@1443 1263 bound = ibound;
duke@435 1264 }
duke@435 1265 }
duke@435 1266 LRG *lo_lrg = &lrgs(lo_score);
duke@435 1267 // The live range we choose for spilling is either hi-degree, or very
duke@435 1268 // rarely it can be low-degree. If we choose a hi-degree live range
duke@435 1269 // there better not be any lo-degree choices.
duke@435 1270 assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
duke@435 1271
duke@435 1272 // Pull from hi-degree list
duke@435 1273 uint prev = lo_lrg->_prev;
duke@435 1274 uint next = lo_lrg->_next;
duke@435 1275 if( prev ) lrgs(prev)._next = next;
duke@435 1276 else _hi_degree = next;
duke@435 1277 lrgs(next)._prev = prev;
duke@435 1278 // Jam him on the lo-degree list, despite his high degree.
duke@435 1279 // Maybe he'll get a color, and maybe he'll spill.
duke@435 1280 // Only Select() will know.
duke@435 1281 lrgs(lo_score)._at_risk = true;
duke@435 1282 _lo_degree = lo_score;
duke@435 1283 lo_lrg->_next = 0;
duke@435 1284
duke@435 1285 } // End of while not simplified everything
duke@435 1286
duke@435 1287 }
duke@435 1288
kvn@4007 1289 //------------------------------is_legal_reg-----------------------------------
kvn@4007 1290 // Is 'reg' register legal for 'lrg'?
kvn@4007 1291 static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
kvn@4007 1292 if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
kvn@4007 1293 lrg.mask().Member(OptoReg::add(reg,-chunk))) {
kvn@4007 1294 // RA uses OptoReg which represent the highest element of a registers set.
kvn@4007 1295 // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
kvn@4007 1296 // in which XMMd is used by RA to represent such vectors. A double value
kvn@4007 1297 // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
kvn@4007 1298 // The register mask uses largest bits set of overlapping register sets.
kvn@4007 1299 // On x86 with AVX it uses 8 bits for each XMM registers set.
kvn@4007 1300 //
kvn@4007 1301 // The 'lrg' already has cleared-to-set register mask (done in Select()
kvn@4007 1302 // before calling choose_color()). Passing mask.Member(reg) check above
kvn@4007 1303 // indicates that the size (num_regs) of 'reg' set is less or equal to
kvn@4007 1304 // 'lrg' set size.
kvn@4007 1305 // For set size 1 any register which is member of 'lrg' mask is legal.
kvn@4007 1306 if (lrg.num_regs()==1)
kvn@4007 1307 return true;
kvn@4007 1308 // For larger sets only an aligned register with the same set size is legal.
kvn@4007 1309 int mask = lrg.num_regs()-1;
kvn@4007 1310 if ((reg&mask) == mask)
kvn@4007 1311 return true;
kvn@4007 1312 }
kvn@4007 1313 return false;
kvn@4007 1314 }
kvn@4007 1315
duke@435 1316 //------------------------------bias_color-------------------------------------
duke@435 1317 // Choose a color using the biasing heuristic
duke@435 1318 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
duke@435 1319
duke@435 1320 // Check for "at_risk" LRG's
neliasso@4949 1321 uint risk_lrg = _lrg_map.find(lrg._risk_bias);
duke@435 1322 if( risk_lrg != 0 ) {
duke@435 1323 // Walk the colored neighbors of the "at_risk" candidate
duke@435 1324 // Choose a color which is both legal and already taken by a neighbor
duke@435 1325 // of the "at_risk" candidate in order to improve the chances of the
duke@435 1326 // "at_risk" candidate of coloring
duke@435 1327 IndexSetIterator elements(_ifg->neighbors(risk_lrg));
duke@435 1328 uint datum;
duke@435 1329 while ((datum = elements.next()) != 0) {
duke@435 1330 OptoReg::Name reg = lrgs(datum).reg();
duke@435 1331 // If this LRG's register is legal for us, choose it
kvn@4007 1332 if (is_legal_reg(lrg, reg, chunk))
duke@435 1333 return reg;
duke@435 1334 }
duke@435 1335 }
duke@435 1336
neliasso@4949 1337 uint copy_lrg = _lrg_map.find(lrg._copy_bias);
duke@435 1338 if( copy_lrg != 0 ) {
duke@435 1339 // If he has a color,
duke@435 1340 if( !(*(_ifg->_yanked))[copy_lrg] ) {
duke@435 1341 OptoReg::Name reg = lrgs(copy_lrg).reg();
duke@435 1342 // And it is legal for you,
kvn@4007 1343 if (is_legal_reg(lrg, reg, chunk))
duke@435 1344 return reg;
duke@435 1345 } else if( chunk == 0 ) {
duke@435 1346 // Choose a color which is legal for him
duke@435 1347 RegMask tempmask = lrg.mask();
duke@435 1348 tempmask.AND(lrgs(copy_lrg).mask());
kvn@3882 1349 tempmask.clear_to_sets(lrg.num_regs());
kvn@3882 1350 OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
kvn@3882 1351 if (OptoReg::is_valid(reg))
duke@435 1352 return reg;
duke@435 1353 }
duke@435 1354 }
duke@435 1355
duke@435 1356 // If no bias info exists, just go with the register selection ordering
kvn@3882 1357 if (lrg._is_vector || lrg.num_regs() == 2) {
kvn@3882 1358 // Find an aligned set
kvn@3882 1359 return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
duke@435 1360 }
duke@435 1361
duke@435 1362 // CNC - Fun hack. Alternate 1st and 2nd selection. Enables post-allocate
duke@435 1363 // copy removal to remove many more copies, by preventing a just-assigned
duke@435 1364 // register from being repeatedly assigned.
duke@435 1365 OptoReg::Name reg = lrg.mask().find_first_elem();
duke@435 1366 if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
duke@435 1367 // This 'Remove; find; Insert' idiom is an expensive way to find the
duke@435 1368 // SECOND element in the mask.
duke@435 1369 lrg.Remove(reg);
duke@435 1370 OptoReg::Name reg2 = lrg.mask().find_first_elem();
duke@435 1371 lrg.Insert(reg);
duke@435 1372 if( OptoReg::is_reg(reg2))
duke@435 1373 reg = reg2;
duke@435 1374 }
duke@435 1375 return OptoReg::add( reg, chunk );
duke@435 1376 }
duke@435 1377
duke@435 1378 //------------------------------choose_color-----------------------------------
duke@435 1379 // Choose a color in the current chunk
duke@435 1380 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
duke@435 1381 assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
duke@435 1382 assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
duke@435 1383
duke@435 1384 if( lrg.num_regs() == 1 || // Common Case
duke@435 1385 !lrg._fat_proj ) // Aligned+adjacent pairs ok
duke@435 1386 // Use a heuristic to "bias" the color choice
duke@435 1387 return bias_color(lrg, chunk);
duke@435 1388
kvn@3882 1389 assert(!lrg._is_vector, "should be not vector here" );
duke@435 1390 assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
duke@435 1391
duke@435 1392 // Fat-proj case or misaligned double argument.
duke@435 1393 assert(lrg.compute_mask_size() == lrg.num_regs() ||
duke@435 1394 lrg.num_regs() == 2,"fat projs exactly color" );
duke@435 1395 assert( !chunk, "always color in 1st chunk" );
duke@435 1396 // Return the highest element in the set.
duke@435 1397 return lrg.mask().find_last_elem();
duke@435 1398 }
duke@435 1399
duke@435 1400 //------------------------------Select-----------------------------------------
duke@435 1401 // Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted
duke@435 1402 // in reverse order of removal. As long as nothing of hi-degree was yanked,
duke@435 1403 // everything going back is guaranteed a color. Select that color. If some
duke@435 1404 // hi-degree LRG cannot get a color then we record that we must spill.
duke@435 1405 uint PhaseChaitin::Select( ) {
duke@435 1406 uint spill_reg = LRG::SPILL_REG;
duke@435 1407 _max_reg = OptoReg::Name(0); // Past max register used
duke@435 1408 while( _simplified ) {
duke@435 1409 // Pull next LRG from the simplified list - in reverse order of removal
duke@435 1410 uint lidx = _simplified;
duke@435 1411 LRG *lrg = &lrgs(lidx);
duke@435 1412 _simplified = lrg->_next;
duke@435 1413
duke@435 1414
duke@435 1415 #ifndef PRODUCT
duke@435 1416 if (trace_spilling()) {
duke@435 1417 ttyLocker ttyl;
duke@435 1418 tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
duke@435 1419 lrg->degrees_of_freedom());
duke@435 1420 lrg->dump();
duke@435 1421 }
duke@435 1422 #endif
duke@435 1423
duke@435 1424 // Re-insert into the IFG
duke@435 1425 _ifg->re_insert(lidx);
duke@435 1426 if( !lrg->alive() ) continue;
duke@435 1427 // capture allstackedness flag before mask is hacked
duke@435 1428 const int is_allstack = lrg->mask().is_AllStack();
duke@435 1429
duke@435 1430 // Yeah, yeah, yeah, I know, I know. I can refactor this
duke@435 1431 // to avoid the GOTO, although the refactored code will not
duke@435 1432 // be much clearer. We arrive here IFF we have a stack-based
duke@435 1433 // live range that cannot color in the current chunk, and it
duke@435 1434 // has to move into the next free stack chunk.
duke@435 1435 int chunk = 0; // Current chunk is first chunk
duke@435 1436 retry_next_chunk:
duke@435 1437
duke@435 1438 // Remove neighbor colors
duke@435 1439 IndexSet *s = _ifg->neighbors(lidx);
duke@435 1440
duke@435 1441 debug_only(RegMask orig_mask = lrg->mask();)
duke@435 1442 IndexSetIterator elements(s);
duke@435 1443 uint neighbor;
duke@435 1444 while ((neighbor = elements.next()) != 0) {
duke@435 1445 // Note that neighbor might be a spill_reg. In this case, exclusion
duke@435 1446 // of its color will be a no-op, since the spill_reg chunk is in outer
duke@435 1447 // space. Also, if neighbor is in a different chunk, this exclusion
duke@435 1448 // will be a no-op. (Later on, if lrg runs out of possible colors in
duke@435 1449 // its chunk, a new chunk of color may be tried, in which case
duke@435 1450 // examination of neighbors is started again, at retry_next_chunk.)
duke@435 1451 LRG &nlrg = lrgs(neighbor);
duke@435 1452 OptoReg::Name nreg = nlrg.reg();
duke@435 1453 // Only subtract masks in the same chunk
duke@435 1454 if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
duke@435 1455 #ifndef PRODUCT
duke@435 1456 uint size = lrg->mask().Size();
duke@435 1457 RegMask rm = lrg->mask();
duke@435 1458 #endif
duke@435 1459 lrg->SUBTRACT(nlrg.mask());
duke@435 1460 #ifndef PRODUCT
duke@435 1461 if (trace_spilling() && lrg->mask().Size() != size) {
duke@435 1462 ttyLocker ttyl;
duke@435 1463 tty->print("L%d ", lidx);
duke@435 1464 rm.dump();
duke@435 1465 tty->print(" intersected L%d ", neighbor);
duke@435 1466 nlrg.mask().dump();
duke@435 1467 tty->print(" removed ");
duke@435 1468 rm.SUBTRACT(lrg->mask());
duke@435 1469 rm.dump();
duke@435 1470 tty->print(" leaving ");
duke@435 1471 lrg->mask().dump();
duke@435 1472 tty->cr();
duke@435 1473 }
duke@435 1474 #endif
duke@435 1475 }
duke@435 1476 }
duke@435 1477 //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
duke@435 1478 // Aligned pairs need aligned masks
kvn@3882 1479 assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
kvn@3882 1480 if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
kvn@3882 1481 lrg->clear_to_sets();
kvn@3882 1482 }
duke@435 1483
duke@435 1484 // Check if a color is available and if so pick the color
duke@435 1485 OptoReg::Name reg = choose_color( *lrg, chunk );
duke@435 1486 #ifdef SPARC
duke@435 1487 debug_only(lrg->compute_set_mask_size());
kvn@3882 1488 assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
duke@435 1489 #endif
duke@435 1490
duke@435 1491 //---------------
duke@435 1492 // If we fail to color and the AllStack flag is set, trigger
duke@435 1493 // a chunk-rollover event
duke@435 1494 if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
duke@435 1495 // Bump register mask up to next stack chunk
duke@435 1496 chunk += RegMask::CHUNK_SIZE;
duke@435 1497 lrg->Set_All();
duke@435 1498
duke@435 1499 goto retry_next_chunk;
duke@435 1500 }
duke@435 1501
duke@435 1502 //---------------
duke@435 1503 // Did we get a color?
duke@435 1504 else if( OptoReg::is_valid(reg)) {
duke@435 1505 #ifndef PRODUCT
duke@435 1506 RegMask avail_rm = lrg->mask();
duke@435 1507 #endif
duke@435 1508
duke@435 1509 // Record selected register
duke@435 1510 lrg->set_reg(reg);
duke@435 1511
duke@435 1512 if( reg >= _max_reg ) // Compute max register limit
duke@435 1513 _max_reg = OptoReg::add(reg,1);
duke@435 1514 // Fold reg back into normal space
duke@435 1515 reg = OptoReg::add(reg,-chunk);
duke@435 1516
duke@435 1517 // If the live range is not bound, then we actually had some choices
duke@435 1518 // to make. In this case, the mask has more bits in it than the colors
twisti@1040 1519 // chosen. Restrict the mask to just what was picked.
kvn@3882 1520 int n_regs = lrg->num_regs();
kvn@3882 1521 assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
kvn@3882 1522 if (n_regs == 1 || !lrg->_fat_proj) {
kvn@3882 1523 assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecY, "sanity");
duke@435 1524 lrg->Clear(); // Clear the mask
duke@435 1525 lrg->Insert(reg); // Set regmask to match selected reg
kvn@3882 1526 // For vectors and pairs, also insert the low bit of the pair
kvn@3882 1527 for (int i = 1; i < n_regs; i++)
kvn@3882 1528 lrg->Insert(OptoReg::add(reg,-i));
kvn@3882 1529 lrg->set_mask_size(n_regs);
duke@435 1530 } else { // Else fatproj
duke@435 1531 // mask must be equal to fatproj bits, by definition
duke@435 1532 }
duke@435 1533 #ifndef PRODUCT
duke@435 1534 if (trace_spilling()) {
duke@435 1535 ttyLocker ttyl;
duke@435 1536 tty->print("L%d selected ", lidx);
duke@435 1537 lrg->mask().dump();
duke@435 1538 tty->print(" from ");
duke@435 1539 avail_rm.dump();
duke@435 1540 tty->cr();
duke@435 1541 }
duke@435 1542 #endif
duke@435 1543 // Note that reg is the highest-numbered register in the newly-bound mask.
duke@435 1544 } // end color available case
duke@435 1545
duke@435 1546 //---------------
duke@435 1547 // Live range is live and no colors available
duke@435 1548 else {
duke@435 1549 assert( lrg->alive(), "" );
never@730 1550 assert( !lrg->_fat_proj || lrg->is_multidef() ||
duke@435 1551 lrg->_def->outcnt() > 0, "fat_proj cannot spill");
duke@435 1552 assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
duke@435 1553
duke@435 1554 // Assign the special spillreg register
duke@435 1555 lrg->set_reg(OptoReg::Name(spill_reg++));
duke@435 1556 // Do not empty the regmask; leave mask_size lying around
duke@435 1557 // for use during Spilling
duke@435 1558 #ifndef PRODUCT
duke@435 1559 if( trace_spilling() ) {
duke@435 1560 ttyLocker ttyl;
duke@435 1561 tty->print("L%d spilling with neighbors: ", lidx);
duke@435 1562 s->dump();
duke@435 1563 debug_only(tty->print(" original mask: "));
duke@435 1564 debug_only(orig_mask.dump());
duke@435 1565 dump_lrg(lidx);
duke@435 1566 }
duke@435 1567 #endif
duke@435 1568 } // end spill case
duke@435 1569
duke@435 1570 }
duke@435 1571
duke@435 1572 return spill_reg-LRG::SPILL_REG; // Return number of spills
duke@435 1573 }
duke@435 1574
duke@435 1575
duke@435 1576 //------------------------------copy_was_spilled-------------------------------
duke@435 1577 // Copy 'was_spilled'-edness from the source Node to the dst Node.
duke@435 1578 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
duke@435 1579 if( _spilled_once.test(src->_idx) ) {
duke@435 1580 _spilled_once.set(dst->_idx);
neliasso@4949 1581 lrgs(_lrg_map.find(dst))._was_spilled1 = 1;
duke@435 1582 if( _spilled_twice.test(src->_idx) ) {
duke@435 1583 _spilled_twice.set(dst->_idx);
neliasso@4949 1584 lrgs(_lrg_map.find(dst))._was_spilled2 = 1;
duke@435 1585 }
duke@435 1586 }
duke@435 1587 }
duke@435 1588
duke@435 1589 //------------------------------set_was_spilled--------------------------------
duke@435 1590 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
duke@435 1591 void PhaseChaitin::set_was_spilled( Node *n ) {
duke@435 1592 if( _spilled_once.test_set(n->_idx) )
duke@435 1593 _spilled_twice.set(n->_idx);
duke@435 1594 }
duke@435 1595
duke@435 1596 //------------------------------fixup_spills-----------------------------------
duke@435 1597 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
duke@435 1598 // Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are.
duke@435 1599 void PhaseChaitin::fixup_spills() {
duke@435 1600 // This function does only cisc spill work.
duke@435 1601 if( !UseCISCSpill ) return;
duke@435 1602
duke@435 1603 NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
duke@435 1604
duke@435 1605 // Grab the Frame Pointer
duke@435 1606 Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
duke@435 1607
duke@435 1608 // For all blocks
duke@435 1609 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 1610 Block *b = _cfg._blocks[i];
duke@435 1611
duke@435 1612 // For all instructions in block
duke@435 1613 uint last_inst = b->end_idx();
duke@435 1614 for( uint j = 1; j <= last_inst; j++ ) {
duke@435 1615 Node *n = b->_nodes[j];
duke@435 1616
duke@435 1617 // Dead instruction???
duke@435 1618 assert( n->outcnt() != 0 ||// Nothing dead after post alloc
duke@435 1619 C->top() == n || // Or the random TOP node
duke@435 1620 n->is_Proj(), // Or a fat-proj kill node
duke@435 1621 "No dead instructions after post-alloc" );
duke@435 1622
duke@435 1623 int inp = n->cisc_operand();
duke@435 1624 if( inp != AdlcVMDeps::Not_cisc_spillable ) {
duke@435 1625 // Convert operand number to edge index number
duke@435 1626 MachNode *mach = n->as_Mach();
duke@435 1627 inp = mach->operand_index(inp);
duke@435 1628 Node *src = n->in(inp); // Value to load or store
neliasso@4949 1629 LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
duke@435 1630 OptoReg::Name src_reg = lrg_cisc.reg();
duke@435 1631 // Doubles record the HIGH register of an adjacent pair.
duke@435 1632 src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
duke@435 1633 if( OptoReg::is_stack(src_reg) ) { // If input is on stack
duke@435 1634 // This is a CISC Spill, get stack offset and construct new node
duke@435 1635 #ifndef PRODUCT
duke@435 1636 if( TraceCISCSpill ) {
duke@435 1637 tty->print(" reg-instr: ");
duke@435 1638 n->dump();
duke@435 1639 }
duke@435 1640 #endif
duke@435 1641 int stk_offset = reg2offset(src_reg);
duke@435 1642 // Bailout if we might exceed node limit when spilling this instruction
duke@435 1643 C->check_node_count(0, "out of nodes fixing spills");
duke@435 1644 if (C->failing()) return;
duke@435 1645 // Transform node
duke@435 1646 MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
duke@435 1647 cisc->set_req(inp,fp); // Base register is frame pointer
duke@435 1648 if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
duke@435 1649 assert( cisc->oper_input_base() == 2, "Only adding one edge");
duke@435 1650 cisc->ins_req(1,src); // Requires a memory edge
duke@435 1651 }
duke@435 1652 b->_nodes.map(j,cisc); // Insert into basic block
bharadwaj@4315 1653 n->subsume_by(cisc, C); // Correct graph
duke@435 1654 //
duke@435 1655 ++_used_cisc_instructions;
duke@435 1656 #ifndef PRODUCT
duke@435 1657 if( TraceCISCSpill ) {
duke@435 1658 tty->print(" cisc-instr: ");
duke@435 1659 cisc->dump();
duke@435 1660 }
duke@435 1661 #endif
duke@435 1662 } else {
duke@435 1663 #ifndef PRODUCT
duke@435 1664 if( TraceCISCSpill ) {
duke@435 1665 tty->print(" using reg-instr: ");
duke@435 1666 n->dump();
duke@435 1667 }
duke@435 1668 #endif
duke@435 1669 ++_unused_cisc_instructions; // input can be on stack
duke@435 1670 }
duke@435 1671 }
duke@435 1672
duke@435 1673 } // End of for all instructions
duke@435 1674
duke@435 1675 } // End of for all blocks
duke@435 1676 }
duke@435 1677
duke@435 1678 //------------------------------find_base_for_derived--------------------------
duke@435 1679 // Helper to stretch above; recursively discover the base Node for a
duke@435 1680 // given derived Node. Easy for AddP-related machine nodes, but needs
duke@435 1681 // to be recursive for derived Phis.
duke@435 1682 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
duke@435 1683 // See if already computed; if so return it
duke@435 1684 if( derived_base_map[derived->_idx] )
duke@435 1685 return derived_base_map[derived->_idx];
duke@435 1686
duke@435 1687 // See if this happens to be a base.
duke@435 1688 // NOTE: we use TypePtr instead of TypeOopPtr because we can have
duke@435 1689 // pointers derived from NULL! These are always along paths that
duke@435 1690 // can't happen at run-time but the optimizer cannot deduce it so
duke@435 1691 // we have to handle it gracefully.
kvn@1164 1692 assert(!derived->bottom_type()->isa_narrowoop() ||
kvn@1164 1693 derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
duke@435 1694 const TypePtr *tj = derived->bottom_type()->isa_ptr();
duke@435 1695 // If its an OOP with a non-zero offset, then it is derived.
kvn@1164 1696 if( tj == NULL || tj->_offset == 0 ) {
duke@435 1697 derived_base_map[derived->_idx] = derived;
duke@435 1698 return derived;
duke@435 1699 }
duke@435 1700 // Derived is NULL+offset? Base is NULL!
duke@435 1701 if( derived->is_Con() ) {
kvn@1164 1702 Node *base = _matcher.mach_null();
kvn@1164 1703 assert(base != NULL, "sanity");
kvn@1164 1704 if (base->in(0) == NULL) {
kvn@1164 1705 // Initialize it once and make it shared:
kvn@1164 1706 // set control to _root and place it into Start block
kvn@1164 1707 // (where top() node is placed).
kvn@1164 1708 base->init_req(0, _cfg._root);
kvn@1164 1709 Block *startb = _cfg._bbs[C->top()->_idx];
kvn@1164 1710 startb->_nodes.insert(startb->find_node(C->top()), base );
kvn@1164 1711 _cfg._bbs.map( base->_idx, startb );
neliasso@4949 1712 assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
kvn@1164 1713 }
neliasso@4949 1714 if (_lrg_map.live_range_id(base) == 0) {
kvn@1164 1715 new_lrg(base, maxlrg++);
kvn@1164 1716 }
kvn@1164 1717 assert(base->in(0) == _cfg._root &&
kvn@1164 1718 _cfg._bbs[base->_idx] == _cfg._bbs[C->top()->_idx], "base NULL should be shared");
duke@435 1719 derived_base_map[derived->_idx] = base;
duke@435 1720 return base;
duke@435 1721 }
duke@435 1722
duke@435 1723 // Check for AddP-related opcodes
neliasso@4949 1724 if (!derived->is_Phi()) {
kvn@3971 1725 assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, err_msg_res("but is: %s", derived->Name()));
duke@435 1726 Node *base = derived->in(AddPNode::Base);
duke@435 1727 derived_base_map[derived->_idx] = base;
duke@435 1728 return base;
duke@435 1729 }
duke@435 1730
duke@435 1731 // Recursively find bases for Phis.
duke@435 1732 // First check to see if we can avoid a base Phi here.
duke@435 1733 Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
duke@435 1734 uint i;
duke@435 1735 for( i = 2; i < derived->req(); i++ )
duke@435 1736 if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
duke@435 1737 break;
duke@435 1738 // Went to the end without finding any different bases?
duke@435 1739 if( i == derived->req() ) { // No need for a base Phi here
duke@435 1740 derived_base_map[derived->_idx] = base;
duke@435 1741 return base;
duke@435 1742 }
duke@435 1743
duke@435 1744 // Now we see we need a base-Phi here to merge the bases
kvn@1164 1745 const Type *t = base->bottom_type();
kvn@4115 1746 base = new (C) PhiNode( derived->in(0), t );
kvn@1164 1747 for( i = 1; i < derived->req(); i++ ) {
duke@435 1748 base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
kvn@1164 1749 t = t->meet(base->in(i)->bottom_type());
kvn@1164 1750 }
kvn@1164 1751 base->as_Phi()->set_type(t);
duke@435 1752
duke@435 1753 // Search the current block for an existing base-Phi
duke@435 1754 Block *b = _cfg._bbs[derived->_idx];
duke@435 1755 for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
duke@435 1756 Node *phi = b->_nodes[i];
duke@435 1757 if( !phi->is_Phi() ) { // Found end of Phis with no match?
duke@435 1758 b->_nodes.insert( i, base ); // Must insert created Phi here as base
duke@435 1759 _cfg._bbs.map( base->_idx, b );
duke@435 1760 new_lrg(base,maxlrg++);
duke@435 1761 break;
duke@435 1762 }
duke@435 1763 // See if Phi matches.
duke@435 1764 uint j;
duke@435 1765 for( j = 1; j < base->req(); j++ )
duke@435 1766 if( phi->in(j) != base->in(j) &&
duke@435 1767 !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
duke@435 1768 break;
duke@435 1769 if( j == base->req() ) { // All inputs match?
duke@435 1770 base = phi; // Then use existing 'phi' and drop 'base'
duke@435 1771 break;
duke@435 1772 }
duke@435 1773 }
duke@435 1774
duke@435 1775
duke@435 1776 // Cache info for later passes
duke@435 1777 derived_base_map[derived->_idx] = base;
duke@435 1778 return base;
duke@435 1779 }
duke@435 1780
duke@435 1781
duke@435 1782 //------------------------------stretch_base_pointer_live_ranges---------------
duke@435 1783 // At each Safepoint, insert extra debug edges for each pair of derived value/
duke@435 1784 // base pointer that is live across the Safepoint for oopmap building. The
duke@435 1785 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
duke@435 1786 // required edge set.
neliasso@4949 1787 bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
duke@435 1788 int must_recompute_live = false;
neliasso@4949 1789 uint maxlrg = _lrg_map.max_lrg_id();
duke@435 1790 Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
duke@435 1791 memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
duke@435 1792
duke@435 1793 // For all blocks in RPO do...
duke@435 1794 for( uint i=0; i<_cfg._num_blocks; i++ ) {
duke@435 1795 Block *b = _cfg._blocks[i];
duke@435 1796 // Note use of deep-copy constructor. I cannot hammer the original
duke@435 1797 // liveout bits, because they are needed by the following coalesce pass.
duke@435 1798 IndexSet liveout(_live->live(b));
duke@435 1799
duke@435 1800 for( uint j = b->end_idx() + 1; j > 1; j-- ) {
duke@435 1801 Node *n = b->_nodes[j-1];
duke@435 1802
duke@435 1803 // Pre-split compares of loop-phis. Loop-phis form a cycle we would
duke@435 1804 // like to see in the same register. Compare uses the loop-phi and so
duke@435 1805 // extends its live range BUT cannot be part of the cycle. If this
duke@435 1806 // extended live range overlaps with the update of the loop-phi value
duke@435 1807 // we need both alive at the same time -- which requires at least 1
duke@435 1808 // copy. But because Intel has only 2-address registers we end up with
duke@435 1809 // at least 2 copies, one before the loop-phi update instruction and
duke@435 1810 // one after. Instead we split the input to the compare just after the
duke@435 1811 // phi.
duke@435 1812 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
duke@435 1813 Node *phi = n->in(1);
duke@435 1814 if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
duke@435 1815 Block *phi_block = _cfg._bbs[phi->_idx];
duke@435 1816 if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
duke@435 1817 const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
duke@435 1818 Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
duke@435 1819 insert_proj( phi_block, 1, spill, maxlrg++ );
duke@435 1820 n->set_req(1,spill);
duke@435 1821 must_recompute_live = true;
duke@435 1822 }
duke@435 1823 }
duke@435 1824 }
duke@435 1825
duke@435 1826 // Get value being defined
neliasso@4949 1827 uint lidx = _lrg_map.live_range_id(n);
neliasso@4949 1828 // Ignore the occasional brand-new live range
neliasso@4949 1829 if (lidx && lidx < _lrg_map.max_lrg_id()) {
duke@435 1830 // Remove from live-out set
duke@435 1831 liveout.remove(lidx);
duke@435 1832
duke@435 1833 // Copies do not define a new value and so do not interfere.
duke@435 1834 // Remove the copies source from the liveout set before interfering.
duke@435 1835 uint idx = n->is_Copy();
neliasso@4949 1836 if (idx) {
neliasso@4949 1837 liveout.remove(_lrg_map.live_range_id(n->in(idx)));
neliasso@4949 1838 }
duke@435 1839 }
duke@435 1840
duke@435 1841 // Found a safepoint?
duke@435 1842 JVMState *jvms = n->jvms();
duke@435 1843 if( jvms ) {
duke@435 1844 // Now scan for a live derived pointer
duke@435 1845 IndexSetIterator elements(&liveout);
duke@435 1846 uint neighbor;
duke@435 1847 while ((neighbor = elements.next()) != 0) {
duke@435 1848 // Find reaching DEF for base and derived values
duke@435 1849 // This works because we are still in SSA during this call.
duke@435 1850 Node *derived = lrgs(neighbor)._def;
duke@435 1851 const TypePtr *tj = derived->bottom_type()->isa_ptr();
kvn@1164 1852 assert(!derived->bottom_type()->isa_narrowoop() ||
kvn@1164 1853 derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
duke@435 1854 // If its an OOP with a non-zero offset, then it is derived.
duke@435 1855 if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
neliasso@4949 1856 Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
neliasso@4949 1857 assert(base->_idx < _lrg_map.size(), "");
duke@435 1858 // Add reaching DEFs of derived pointer and base pointer as a
duke@435 1859 // pair of inputs
neliasso@4949 1860 n->add_req(derived);
neliasso@4949 1861 n->add_req(base);
duke@435 1862
duke@435 1863 // See if the base pointer is already live to this point.
duke@435 1864 // Since I'm working on the SSA form, live-ness amounts to
duke@435 1865 // reaching def's. So if I find the base's live range then
duke@435 1866 // I know the base's def reaches here.
neliasso@4949 1867 if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
neliasso@4949 1868 !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
neliasso@4949 1869 (_lrg_map.live_range_id(base) > 0) && // not a constant
neliasso@4949 1870 _cfg._bbs[base->_idx] != b) { // base not def'd in blk)
duke@435 1871 // Base pointer is not currently live. Since I stretched
duke@435 1872 // the base pointer to here and it crosses basic-block
duke@435 1873 // boundaries, the global live info is now incorrect.
duke@435 1874 // Recompute live.
duke@435 1875 must_recompute_live = true;
duke@435 1876 } // End of if base pointer is not live to debug info
duke@435 1877 }
duke@435 1878 } // End of scan all live data for derived ptrs crossing GC point
duke@435 1879 } // End of if found a GC point
duke@435 1880
duke@435 1881 // Make all inputs live
neliasso@4949 1882 if (!n->is_Phi()) { // Phi function uses come from prior block
neliasso@4949 1883 for (uint k = 1; k < n->req(); k++) {
neliasso@4949 1884 uint lidx = _lrg_map.live_range_id(n->in(k));
neliasso@4949 1885 if (lidx < _lrg_map.max_lrg_id()) {
neliasso@4949 1886 liveout.insert(lidx);
neliasso@4949 1887 }
duke@435 1888 }
duke@435 1889 }
duke@435 1890
duke@435 1891 } // End of forall instructions in block
duke@435 1892 liveout.clear(); // Free the memory used by liveout.
duke@435 1893
duke@435 1894 } // End of forall blocks
neliasso@4949 1895 _lrg_map.set_max_lrg_id(maxlrg);
duke@435 1896
duke@435 1897 // If I created a new live range I need to recompute live
neliasso@4949 1898 if (maxlrg != _ifg->_maxlrg) {
duke@435 1899 must_recompute_live = true;
neliasso@4949 1900 }
duke@435 1901
duke@435 1902 return must_recompute_live != 0;
duke@435 1903 }
duke@435 1904
duke@435 1905
duke@435 1906 //------------------------------add_reference----------------------------------
duke@435 1907 // Extend the node to LRG mapping
neliasso@4949 1908
neliasso@4949 1909 void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
neliasso@4949 1910 _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
duke@435 1911 }
duke@435 1912
duke@435 1913 //------------------------------dump-------------------------------------------
duke@435 1914 #ifndef PRODUCT
neliasso@4949 1915 void PhaseChaitin::dump(const Node *n) const {
neliasso@4949 1916 uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
duke@435 1917 tty->print("L%d",r);
neliasso@4949 1918 if (r && n->Opcode() != Op_Phi) {
duke@435 1919 if( _node_regs ) { // Got a post-allocation copy of allocation?
duke@435 1920 tty->print("[");
duke@435 1921 OptoReg::Name second = get_reg_second(n);
duke@435 1922 if( OptoReg::is_valid(second) ) {
duke@435 1923 if( OptoReg::is_reg(second) )
duke@435 1924 tty->print("%s:",Matcher::regName[second]);
duke@435 1925 else
duke@435 1926 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
duke@435 1927 }
duke@435 1928 OptoReg::Name first = get_reg_first(n);
duke@435 1929 if( OptoReg::is_reg(first) )
duke@435 1930 tty->print("%s]",Matcher::regName[first]);
duke@435 1931 else
duke@435 1932 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
duke@435 1933 } else
duke@435 1934 n->out_RegMask().dump();
duke@435 1935 }
duke@435 1936 tty->print("/N%d\t",n->_idx);
duke@435 1937 tty->print("%s === ", n->Name());
duke@435 1938 uint k;
neliasso@4949 1939 for (k = 0; k < n->req(); k++) {
duke@435 1940 Node *m = n->in(k);
neliasso@4949 1941 if (!m) {
neliasso@4949 1942 tty->print("_ ");
neliasso@4949 1943 }
duke@435 1944 else {
neliasso@4949 1945 uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
duke@435 1946 tty->print("L%d",r);
duke@435 1947 // Data MultiNode's can have projections with no real registers.
duke@435 1948 // Don't die while dumping them.
duke@435 1949 int op = n->Opcode();
duke@435 1950 if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
duke@435 1951 if( _node_regs ) {
duke@435 1952 tty->print("[");
duke@435 1953 OptoReg::Name second = get_reg_second(n->in(k));
duke@435 1954 if( OptoReg::is_valid(second) ) {
duke@435 1955 if( OptoReg::is_reg(second) )
duke@435 1956 tty->print("%s:",Matcher::regName[second]);
duke@435 1957 else
duke@435 1958 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
duke@435 1959 reg2offset_unchecked(second));
duke@435 1960 }
duke@435 1961 OptoReg::Name first = get_reg_first(n->in(k));
duke@435 1962 if( OptoReg::is_reg(first) )
duke@435 1963 tty->print("%s]",Matcher::regName[first]);
duke@435 1964 else
duke@435 1965 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
duke@435 1966 reg2offset_unchecked(first));
duke@435 1967 } else
duke@435 1968 n->in_RegMask(k).dump();
duke@435 1969 }
duke@435 1970 tty->print("/N%d ",m->_idx);
duke@435 1971 }
duke@435 1972 }
duke@435 1973 if( k < n->len() && n->in(k) ) tty->print("| ");
duke@435 1974 for( ; k < n->len(); k++ ) {
duke@435 1975 Node *m = n->in(k);
neliasso@4949 1976 if(!m) {
neliasso@4949 1977 break;
neliasso@4949 1978 }
neliasso@4949 1979 uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
duke@435 1980 tty->print("L%d",r);
duke@435 1981 tty->print("/N%d ",m->_idx);
duke@435 1982 }
duke@435 1983 if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
duke@435 1984 else n->dump_spec(tty);
duke@435 1985 if( _spilled_once.test(n->_idx ) ) {
duke@435 1986 tty->print(" Spill_1");
duke@435 1987 if( _spilled_twice.test(n->_idx ) )
duke@435 1988 tty->print(" Spill_2");
duke@435 1989 }
duke@435 1990 tty->print("\n");
duke@435 1991 }
duke@435 1992
duke@435 1993 void PhaseChaitin::dump( const Block * b ) const {
duke@435 1994 b->dump_head( &_cfg._bbs );
duke@435 1995
duke@435 1996 // For all instructions
duke@435 1997 for( uint j = 0; j < b->_nodes.size(); j++ )
duke@435 1998 dump(b->_nodes[j]);
duke@435 1999 // Print live-out info at end of block
duke@435 2000 if( _live ) {
duke@435 2001 tty->print("Liveout: ");
duke@435 2002 IndexSet *live = _live->live(b);
duke@435 2003 IndexSetIterator elements(live);
duke@435 2004 tty->print("{");
duke@435 2005 uint i;
duke@435 2006 while ((i = elements.next()) != 0) {
neliasso@4949 2007 tty->print("L%d ", _lrg_map.find_const(i));
duke@435 2008 }
duke@435 2009 tty->print_cr("}");
duke@435 2010 }
duke@435 2011 tty->print("\n");
duke@435 2012 }
duke@435 2013
duke@435 2014 void PhaseChaitin::dump() const {
duke@435 2015 tty->print( "--- Chaitin -- argsize: %d framesize: %d ---\n",
duke@435 2016 _matcher._new_SP, _framesize );
duke@435 2017
duke@435 2018 // For all blocks
duke@435 2019 for( uint i = 0; i < _cfg._num_blocks; i++ )
duke@435 2020 dump(_cfg._blocks[i]);
duke@435 2021 // End of per-block dump
duke@435 2022 tty->print("\n");
duke@435 2023
duke@435 2024 if (!_ifg) {
duke@435 2025 tty->print("(No IFG.)\n");
duke@435 2026 return;
duke@435 2027 }
duke@435 2028
duke@435 2029 // Dump LRG array
duke@435 2030 tty->print("--- Live RanGe Array ---\n");
neliasso@4949 2031 for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
duke@435 2032 tty->print("L%d: ",i2);
neliasso@4949 2033 if (i2 < _ifg->_maxlrg) {
neliasso@4949 2034 lrgs(i2).dump();
neliasso@4949 2035 }
neliasso@4949 2036 else {
neliasso@4949 2037 tty->print_cr("new LRG");
neliasso@4949 2038 }
duke@435 2039 }
duke@435 2040 tty->print_cr("");
duke@435 2041
duke@435 2042 // Dump lo-degree list
duke@435 2043 tty->print("Lo degree: ");
duke@435 2044 for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
duke@435 2045 tty->print("L%d ",i3);
duke@435 2046 tty->print_cr("");
duke@435 2047
duke@435 2048 // Dump lo-stk-degree list
duke@435 2049 tty->print("Lo stk degree: ");
duke@435 2050 for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
duke@435 2051 tty->print("L%d ",i4);
duke@435 2052 tty->print_cr("");
duke@435 2053
duke@435 2054 // Dump lo-degree list
duke@435 2055 tty->print("Hi degree: ");
duke@435 2056 for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
duke@435 2057 tty->print("L%d ",i5);
duke@435 2058 tty->print_cr("");
duke@435 2059 }
duke@435 2060
duke@435 2061 //------------------------------dump_degree_lists------------------------------
duke@435 2062 void PhaseChaitin::dump_degree_lists() const {
duke@435 2063 // Dump lo-degree list
duke@435 2064 tty->print("Lo degree: ");
duke@435 2065 for( uint i = _lo_degree; i; i = lrgs(i)._next )
duke@435 2066 tty->print("L%d ",i);
duke@435 2067 tty->print_cr("");
duke@435 2068
duke@435 2069 // Dump lo-stk-degree list
duke@435 2070 tty->print("Lo stk degree: ");
duke@435 2071 for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
duke@435 2072 tty->print("L%d ",i2);
duke@435 2073 tty->print_cr("");
duke@435 2074
duke@435 2075 // Dump lo-degree list
duke@435 2076 tty->print("Hi degree: ");
duke@435 2077 for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
duke@435 2078 tty->print("L%d ",i3);
duke@435 2079 tty->print_cr("");
duke@435 2080 }
duke@435 2081
duke@435 2082 //------------------------------dump_simplified--------------------------------
duke@435 2083 void PhaseChaitin::dump_simplified() const {
duke@435 2084 tty->print("Simplified: ");
duke@435 2085 for( uint i = _simplified; i; i = lrgs(i)._next )
duke@435 2086 tty->print("L%d ",i);
duke@435 2087 tty->print_cr("");
duke@435 2088 }
duke@435 2089
duke@435 2090 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
duke@435 2091 if ((int)reg < 0)
duke@435 2092 sprintf(buf, "<OptoReg::%d>", (int)reg);
duke@435 2093 else if (OptoReg::is_reg(reg))
duke@435 2094 strcpy(buf, Matcher::regName[reg]);
duke@435 2095 else
duke@435 2096 sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
duke@435 2097 pc->reg2offset(reg));
duke@435 2098 return buf+strlen(buf);
duke@435 2099 }
duke@435 2100
duke@435 2101 //------------------------------dump_register----------------------------------
duke@435 2102 // Dump a register name into a buffer. Be intelligent if we get called
duke@435 2103 // before allocation is complete.
duke@435 2104 char *PhaseChaitin::dump_register( const Node *n, char *buf ) const {
duke@435 2105 if( !this ) { // Not got anything?
duke@435 2106 sprintf(buf,"N%d",n->_idx); // Then use Node index
duke@435 2107 } else if( _node_regs ) {
duke@435 2108 // Post allocation, use direct mappings, no LRG info available
duke@435 2109 print_reg( get_reg_first(n), this, buf );
duke@435 2110 } else {
neliasso@4949 2111 uint lidx = _lrg_map.find_const(n); // Grab LRG number
duke@435 2112 if( !_ifg ) {
duke@435 2113 sprintf(buf,"L%d",lidx); // No register binding yet
duke@435 2114 } else if( !lidx ) { // Special, not allocated value
duke@435 2115 strcpy(buf,"Special");
kvn@3882 2116 } else {
kvn@3882 2117 if (lrgs(lidx)._is_vector) {
kvn@3882 2118 if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
kvn@3882 2119 print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
kvn@3882 2120 else
kvn@3882 2121 sprintf(buf,"L%d",lidx); // No register binding yet
kvn@3882 2122 } else if( (lrgs(lidx).num_regs() == 1)
kvn@3882 2123 ? lrgs(lidx).mask().is_bound1()
kvn@3882 2124 : lrgs(lidx).mask().is_bound_pair() ) {
kvn@3882 2125 // Hah! We have a bound machine register
kvn@3882 2126 print_reg( lrgs(lidx).reg(), this, buf );
kvn@3882 2127 } else {
kvn@3882 2128 sprintf(buf,"L%d",lidx); // No register binding yet
kvn@3882 2129 }
duke@435 2130 }
duke@435 2131 }
duke@435 2132 return buf+strlen(buf);
duke@435 2133 }
duke@435 2134
duke@435 2135 //----------------------dump_for_spill_split_recycle--------------------------
duke@435 2136 void PhaseChaitin::dump_for_spill_split_recycle() const {
duke@435 2137 if( WizardMode && (PrintCompilation || PrintOpto) ) {
duke@435 2138 // Display which live ranges need to be split and the allocator's state
duke@435 2139 tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
neliasso@4949 2140 for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
duke@435 2141 if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
duke@435 2142 tty->print("L%d: ", bidx);
duke@435 2143 lrgs(bidx).dump();
duke@435 2144 }
duke@435 2145 }
duke@435 2146 tty->cr();
duke@435 2147 dump();
duke@435 2148 }
duke@435 2149 }
duke@435 2150
duke@435 2151 //------------------------------dump_frame------------------------------------
duke@435 2152 void PhaseChaitin::dump_frame() const {
duke@435 2153 const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
duke@435 2154 const TypeTuple *domain = C->tf()->domain();
duke@435 2155 const int argcnt = domain->cnt() - TypeFunc::Parms;
duke@435 2156
duke@435 2157 // Incoming arguments in registers dump
duke@435 2158 for( int k = 0; k < argcnt; k++ ) {
duke@435 2159 OptoReg::Name parmreg = _matcher._parm_regs[k].first();
duke@435 2160 if( OptoReg::is_reg(parmreg)) {
duke@435 2161 const char *reg_name = OptoReg::regname(parmreg);
duke@435 2162 tty->print("#r%3.3d %s", parmreg, reg_name);
duke@435 2163 parmreg = _matcher._parm_regs[k].second();
duke@435 2164 if( OptoReg::is_reg(parmreg)) {
duke@435 2165 tty->print(":%s", OptoReg::regname(parmreg));
duke@435 2166 }
duke@435 2167 tty->print(" : parm %d: ", k);
duke@435 2168 domain->field_at(k + TypeFunc::Parms)->dump();
duke@435 2169 tty->print_cr("");
duke@435 2170 }
duke@435 2171 }
duke@435 2172
duke@435 2173 // Check for un-owned padding above incoming args
duke@435 2174 OptoReg::Name reg = _matcher._new_SP;
duke@435 2175 if( reg > _matcher._in_arg_limit ) {
duke@435 2176 reg = OptoReg::add(reg, -1);
duke@435 2177 tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
duke@435 2178 }
duke@435 2179
duke@435 2180 // Incoming argument area dump
duke@435 2181 OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
duke@435 2182 while( reg > begin_in_arg ) {
duke@435 2183 reg = OptoReg::add(reg, -1);
duke@435 2184 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
duke@435 2185 int j;
duke@435 2186 for( j = 0; j < argcnt; j++) {
duke@435 2187 if( _matcher._parm_regs[j].first() == reg ||
duke@435 2188 _matcher._parm_regs[j].second() == reg ) {
duke@435 2189 tty->print("parm %d: ",j);
duke@435 2190 domain->field_at(j + TypeFunc::Parms)->dump();
duke@435 2191 tty->print_cr("");
duke@435 2192 break;
duke@435 2193 }
duke@435 2194 }
duke@435 2195 if( j >= argcnt )
duke@435 2196 tty->print_cr("HOLE, owned by SELF");
duke@435 2197 }
duke@435 2198
duke@435 2199 // Old outgoing preserve area
duke@435 2200 while( reg > _matcher._old_SP ) {
duke@435 2201 reg = OptoReg::add(reg, -1);
duke@435 2202 tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
duke@435 2203 }
duke@435 2204
duke@435 2205 // Old SP
duke@435 2206 tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
duke@435 2207 reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
duke@435 2208
duke@435 2209 // Preserve area dump
kvn@3577 2210 int fixed_slots = C->fixed_slots();
kvn@3577 2211 OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
kvn@3577 2212 OptoReg::Name return_addr = _matcher.return_addr();
kvn@3577 2213
duke@435 2214 reg = OptoReg::add(reg, -1);
kvn@3577 2215 while (OptoReg::is_stack(reg)) {
duke@435 2216 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
kvn@3577 2217 if (return_addr == reg) {
duke@435 2218 tty->print_cr("return address");
kvn@3577 2219 } else if (reg >= begin_in_preserve) {
kvn@3577 2220 // Preserved slots are present on x86
kvn@3577 2221 if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
kvn@3577 2222 tty->print_cr("saved fp register");
kvn@3577 2223 else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
kvn@3577 2224 VerifyStackAtCalls)
kvn@3577 2225 tty->print_cr("0xBADB100D +VerifyStackAtCalls");
kvn@3577 2226 else
kvn@3577 2227 tty->print_cr("in_preserve");
kvn@3577 2228 } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
duke@435 2229 tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
kvn@3577 2230 } else {
kvn@3577 2231 tty->print_cr("pad2, stack alignment");
kvn@3577 2232 }
duke@435 2233 reg = OptoReg::add(reg, -1);
duke@435 2234 }
duke@435 2235
duke@435 2236 // Spill area dump
duke@435 2237 reg = OptoReg::add(_matcher._new_SP, _framesize );
duke@435 2238 while( reg > _matcher._out_arg_limit ) {
duke@435 2239 reg = OptoReg::add(reg, -1);
duke@435 2240 tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
duke@435 2241 }
duke@435 2242
duke@435 2243 // Outgoing argument area dump
duke@435 2244 while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
duke@435 2245 reg = OptoReg::add(reg, -1);
duke@435 2246 tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
duke@435 2247 }
duke@435 2248
duke@435 2249 // Outgoing new preserve area
duke@435 2250 while( reg > _matcher._new_SP ) {
duke@435 2251 reg = OptoReg::add(reg, -1);
duke@435 2252 tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
duke@435 2253 }
duke@435 2254 tty->print_cr("#");
duke@435 2255 }
duke@435 2256
duke@435 2257 //------------------------------dump_bb----------------------------------------
duke@435 2258 void PhaseChaitin::dump_bb( uint pre_order ) const {
duke@435 2259 tty->print_cr("---dump of B%d---",pre_order);
duke@435 2260 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 2261 Block *b = _cfg._blocks[i];
duke@435 2262 if( b->_pre_order == pre_order )
duke@435 2263 dump(b);
duke@435 2264 }
duke@435 2265 }
duke@435 2266
duke@435 2267 //------------------------------dump_lrg---------------------------------------
never@2358 2268 void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
duke@435 2269 tty->print_cr("---dump of L%d---",lidx);
duke@435 2270
neliasso@4949 2271 if (_ifg) {
neliasso@4949 2272 if (lidx >= _lrg_map.max_lrg_id()) {
duke@435 2273 tty->print("Attempt to print live range index beyond max live range.\n");
duke@435 2274 return;
duke@435 2275 }
duke@435 2276 tty->print("L%d: ",lidx);
neliasso@4949 2277 if (lidx < _ifg->_maxlrg) {
neliasso@4949 2278 lrgs(lidx).dump();
neliasso@4949 2279 } else {
neliasso@4949 2280 tty->print_cr("new LRG");
neliasso@4949 2281 }
duke@435 2282 }
never@2358 2283 if( _ifg && lidx < _ifg->_maxlrg) {
never@2358 2284 tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
duke@435 2285 _ifg->neighbors(lidx)->dump();
duke@435 2286 tty->cr();
duke@435 2287 }
duke@435 2288 // For all blocks
duke@435 2289 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
duke@435 2290 Block *b = _cfg._blocks[i];
duke@435 2291 int dump_once = 0;
duke@435 2292
duke@435 2293 // For all instructions
duke@435 2294 for( uint j = 0; j < b->_nodes.size(); j++ ) {
duke@435 2295 Node *n = b->_nodes[j];
neliasso@4949 2296 if (_lrg_map.find_const(n) == lidx) {
neliasso@4949 2297 if (!dump_once++) {
duke@435 2298 tty->cr();
duke@435 2299 b->dump_head( &_cfg._bbs );
duke@435 2300 }
duke@435 2301 dump(n);
duke@435 2302 continue;
duke@435 2303 }
never@2358 2304 if (!defs_only) {
never@2358 2305 uint cnt = n->req();
never@2358 2306 for( uint k = 1; k < cnt; k++ ) {
never@2358 2307 Node *m = n->in(k);
neliasso@4949 2308 if (!m) {
neliasso@4949 2309 continue; // be robust in the dumper
neliasso@4949 2310 }
neliasso@4949 2311 if (_lrg_map.find_const(m) == lidx) {
neliasso@4949 2312 if (!dump_once++) {
never@2358 2313 tty->cr();
neliasso@4949 2314 b->dump_head(&_cfg._bbs);
never@2358 2315 }
never@2358 2316 dump(n);
duke@435 2317 }
duke@435 2318 }
duke@435 2319 }
duke@435 2320 }
duke@435 2321 } // End of per-block dump
duke@435 2322 tty->cr();
duke@435 2323 }
duke@435 2324 #endif // not PRODUCT
duke@435 2325
duke@435 2326 //------------------------------print_chaitin_statistics-------------------------------
duke@435 2327 int PhaseChaitin::_final_loads = 0;
duke@435 2328 int PhaseChaitin::_final_stores = 0;
duke@435 2329 int PhaseChaitin::_final_memoves= 0;
duke@435 2330 int PhaseChaitin::_final_copies = 0;
duke@435 2331 double PhaseChaitin::_final_load_cost = 0;
duke@435 2332 double PhaseChaitin::_final_store_cost = 0;
duke@435 2333 double PhaseChaitin::_final_memove_cost= 0;
duke@435 2334 double PhaseChaitin::_final_copy_cost = 0;
duke@435 2335 int PhaseChaitin::_conserv_coalesce = 0;
duke@435 2336 int PhaseChaitin::_conserv_coalesce_pair = 0;
duke@435 2337 int PhaseChaitin::_conserv_coalesce_trie = 0;
duke@435 2338 int PhaseChaitin::_conserv_coalesce_quad = 0;
duke@435 2339 int PhaseChaitin::_post_alloc = 0;
duke@435 2340 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
duke@435 2341 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
duke@435 2342 int PhaseChaitin::_used_cisc_instructions = 0;
duke@435 2343 int PhaseChaitin::_unused_cisc_instructions = 0;
duke@435 2344 int PhaseChaitin::_allocator_attempts = 0;
duke@435 2345 int PhaseChaitin::_allocator_successes = 0;
duke@435 2346
duke@435 2347 #ifndef PRODUCT
duke@435 2348 uint PhaseChaitin::_high_pressure = 0;
duke@435 2349 uint PhaseChaitin::_low_pressure = 0;
duke@435 2350
duke@435 2351 void PhaseChaitin::print_chaitin_statistics() {
duke@435 2352 tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
duke@435 2353 tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
duke@435 2354 tty->print_cr("Adjusted spill cost = %7.0f.",
duke@435 2355 _final_load_cost*4.0 + _final_store_cost * 2.0 +
duke@435 2356 _final_copy_cost*1.0 + _final_memove_cost*12.0);
duke@435 2357 tty->print("Conservatively coalesced %d copies, %d pairs",
duke@435 2358 _conserv_coalesce, _conserv_coalesce_pair);
duke@435 2359 if( _conserv_coalesce_trie || _conserv_coalesce_quad )
duke@435 2360 tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
duke@435 2361 tty->print_cr(", %d post alloc.", _post_alloc);
duke@435 2362 if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
duke@435 2363 tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
duke@435 2364 _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
duke@435 2365 if( _used_cisc_instructions || _unused_cisc_instructions )
duke@435 2366 tty->print_cr("Used cisc instruction %d, remained in register %d",
duke@435 2367 _used_cisc_instructions, _unused_cisc_instructions);
duke@435 2368 if( _allocator_successes != 0 )
duke@435 2369 tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
duke@435 2370 tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
duke@435 2371 }
duke@435 2372 #endif // not PRODUCT

mercurial