src/share/vm/opto/loopnode.cpp

Sat, 24 Oct 2020 16:43:47 +0800

author
aoqi
date
Sat, 24 Oct 2020 16:43:47 +0800
changeset 10015
eb7ce841ccec
parent 9931
fd44df5e3bc3
parent 9977
e649f2136368
permissions
-rw-r--r--

Merge

duke@435 1 /*
fyang@9922 2 * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "ci/ciMethodData.hpp"
stefank@2314 27 #include "compiler/compileLog.hpp"
stefank@2314 28 #include "libadt/vectset.hpp"
stefank@2314 29 #include "memory/allocation.inline.hpp"
stefank@2314 30 #include "opto/addnode.hpp"
stefank@2314 31 #include "opto/callnode.hpp"
stefank@2314 32 #include "opto/connode.hpp"
stefank@2314 33 #include "opto/divnode.hpp"
stefank@2314 34 #include "opto/idealGraphPrinter.hpp"
stefank@2314 35 #include "opto/loopnode.hpp"
stefank@2314 36 #include "opto/mulnode.hpp"
stefank@2314 37 #include "opto/rootnode.hpp"
stefank@2314 38 #include "opto/superword.hpp"
duke@435 39
duke@435 40 //=============================================================================
duke@435 41 //------------------------------is_loop_iv-------------------------------------
duke@435 42 // Determine if a node is Counted loop induction variable.
duke@435 43 // The method is declared in node.hpp.
duke@435 44 const Node* Node::is_loop_iv() const {
duke@435 45 if (this->is_Phi() && !this->as_Phi()->is_copy() &&
duke@435 46 this->as_Phi()->region()->is_CountedLoop() &&
duke@435 47 this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
duke@435 48 return this;
duke@435 49 } else {
duke@435 50 return NULL;
duke@435 51 }
duke@435 52 }
duke@435 53
duke@435 54 //=============================================================================
duke@435 55 //------------------------------dump_spec--------------------------------------
duke@435 56 // Dump special per-node info
duke@435 57 #ifndef PRODUCT
duke@435 58 void LoopNode::dump_spec(outputStream *st) const {
kvn@2665 59 if (is_inner_loop()) st->print( "inner " );
kvn@2665 60 if (is_partial_peel_loop()) st->print( "partial_peel " );
kvn@2665 61 if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
duke@435 62 }
duke@435 63 #endif
duke@435 64
kvn@2665 65 //------------------------------is_valid_counted_loop-------------------------
kvn@2665 66 bool LoopNode::is_valid_counted_loop() const {
kvn@2665 67 if (is_CountedLoop()) {
kvn@2665 68 CountedLoopNode* l = as_CountedLoop();
kvn@2665 69 CountedLoopEndNode* le = l->loopexit();
kvn@2665 70 if (le != NULL &&
kvn@2665 71 le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
kvn@2665 72 Node* phi = l->phi();
kvn@2665 73 Node* exit = le->proj_out(0 /* false */);
kvn@2665 74 if (exit != NULL && exit->Opcode() == Op_IfFalse &&
kvn@2665 75 phi != NULL && phi->is_Phi() &&
kvn@2665 76 phi->in(LoopNode::LoopBackControl) == l->incr() &&
kvn@2665 77 le->loopnode() == l && le->stride_is_con()) {
kvn@2665 78 return true;
kvn@2665 79 }
kvn@2665 80 }
kvn@2665 81 }
kvn@2665 82 return false;
kvn@2665 83 }
kvn@2665 84
duke@435 85 //------------------------------get_early_ctrl---------------------------------
duke@435 86 // Compute earliest legal control
duke@435 87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
duke@435 88 assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
duke@435 89 uint i;
duke@435 90 Node *early;
roland@4589 91 if (n->in(0) && !n->is_expensive()) {
duke@435 92 early = n->in(0);
roland@4589 93 if (!early->is_CFG()) // Might be a non-CFG multi-def
duke@435 94 early = get_ctrl(early); // So treat input as a straight data input
duke@435 95 i = 1;
duke@435 96 } else {
duke@435 97 early = get_ctrl(n->in(1));
duke@435 98 i = 2;
duke@435 99 }
duke@435 100 uint e_d = dom_depth(early);
duke@435 101 assert( early, "" );
roland@4589 102 for (; i < n->req(); i++) {
duke@435 103 Node *cin = get_ctrl(n->in(i));
duke@435 104 assert( cin, "" );
duke@435 105 // Keep deepest dominator depth
duke@435 106 uint c_d = dom_depth(cin);
roland@4589 107 if (c_d > e_d) { // Deeper guy?
duke@435 108 early = cin; // Keep deepest found so far
duke@435 109 e_d = c_d;
roland@4589 110 } else if (c_d == e_d && // Same depth?
roland@4589 111 early != cin) { // If not equal, must use slower algorithm
duke@435 112 // If same depth but not equal, one _must_ dominate the other
duke@435 113 // and we want the deeper (i.e., dominated) guy.
duke@435 114 Node *n1 = early;
duke@435 115 Node *n2 = cin;
roland@4589 116 while (1) {
duke@435 117 n1 = idom(n1); // Walk up until break cycle
duke@435 118 n2 = idom(n2);
roland@4589 119 if (n1 == cin || // Walked early up to cin
roland@4589 120 dom_depth(n2) < c_d)
duke@435 121 break; // early is deeper; keep him
roland@4589 122 if (n2 == early || // Walked cin up to early
roland@4589 123 dom_depth(n1) < c_d) {
duke@435 124 early = cin; // cin is deeper; keep him
duke@435 125 break;
duke@435 126 }
duke@435 127 }
duke@435 128 e_d = dom_depth(early); // Reset depth register cache
duke@435 129 }
duke@435 130 }
duke@435 131
duke@435 132 // Return earliest legal location
duke@435 133 assert(early == find_non_split_ctrl(early), "unexpected early control");
duke@435 134
roland@4589 135 if (n->is_expensive()) {
roland@4589 136 assert(n->in(0), "should have control input");
roland@4589 137 early = get_early_ctrl_for_expensive(n, early);
roland@4589 138 }
roland@4589 139
duke@435 140 return early;
duke@435 141 }
duke@435 142
roland@4589 143 //------------------------------get_early_ctrl_for_expensive---------------------------------
roland@4589 144 // Move node up the dominator tree as high as legal while still beneficial
roland@4589 145 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
roland@4589 146 assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
roland@4589 147 assert(OptimizeExpensiveOps, "optimization off?");
roland@4589 148
roland@4589 149 Node* ctl = n->in(0);
roland@4589 150 assert(ctl->is_CFG(), "expensive input 0 must be cfg");
roland@4589 151 uint min_dom_depth = dom_depth(earliest);
roland@4589 152 #ifdef ASSERT
roland@4589 153 if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
roland@4589 154 dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
roland@4589 155 assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
roland@4589 156 }
roland@4589 157 #endif
roland@4589 158 if (dom_depth(ctl) < min_dom_depth) {
roland@4589 159 return earliest;
roland@4589 160 }
roland@4589 161
roland@4589 162 while (1) {
roland@4589 163 Node *next = ctl;
roland@4589 164 // Moving the node out of a loop on the projection of a If
roland@4589 165 // confuses loop predication. So once we hit a Loop in a If branch
roland@4589 166 // that doesn't branch to an UNC, we stop. The code that process
roland@4589 167 // expensive nodes will notice the loop and skip over it to try to
roland@4589 168 // move the node further up.
roland@4589 169 if (ctl->is_CountedLoop() && ctl->in(1) != NULL && ctl->in(1)->in(0) != NULL && ctl->in(1)->in(0)->is_If()) {
roland@5981 170 if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
roland@4589 171 break;
roland@4589 172 }
roland@4589 173 next = idom(ctl->in(1)->in(0));
roland@4589 174 } else if (ctl->is_Proj()) {
roland@4589 175 // We only move it up along a projection if the projection is
roland@4589 176 // the single control projection for its parent: same code path,
roland@4589 177 // if it's a If with UNC or fallthrough of a call.
roland@4589 178 Node* parent_ctl = ctl->in(0);
roland@4589 179 if (parent_ctl == NULL) {
roland@4589 180 break;
roland@4589 181 } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != NULL) {
roland@4589 182 next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
roland@4589 183 } else if (parent_ctl->is_If()) {
roland@5981 184 if (!ctl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
roland@4589 185 break;
roland@4589 186 }
roland@4589 187 assert(idom(ctl) == parent_ctl, "strange");
roland@4589 188 next = idom(parent_ctl);
roland@4589 189 } else if (ctl->is_CatchProj()) {
roland@4589 190 if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
roland@4589 191 break;
roland@4589 192 }
roland@4589 193 assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
roland@4589 194 next = parent_ctl->in(0)->in(0)->in(0);
roland@4589 195 } else {
roland@4589 196 // Check if parent control has a single projection (this
roland@4589 197 // control is the only possible successor of the parent
roland@4589 198 // control). If so, we can try to move the node above the
roland@4589 199 // parent control.
roland@4589 200 int nb_ctl_proj = 0;
roland@4589 201 for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
roland@4589 202 Node *p = parent_ctl->fast_out(i);
roland@4589 203 if (p->is_Proj() && p->is_CFG()) {
roland@4589 204 nb_ctl_proj++;
roland@4589 205 if (nb_ctl_proj > 1) {
roland@4589 206 break;
roland@4589 207 }
roland@4589 208 }
roland@4589 209 }
roland@4589 210
roland@4589 211 if (nb_ctl_proj > 1) {
roland@4589 212 break;
roland@4589 213 }
roland@4589 214 assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call(), "unexpected node");
roland@4589 215 assert(idom(ctl) == parent_ctl, "strange");
roland@4589 216 next = idom(parent_ctl);
roland@4589 217 }
roland@4589 218 } else {
roland@4589 219 next = idom(ctl);
roland@4589 220 }
roland@4589 221 if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
roland@4589 222 break;
roland@4589 223 }
roland@4589 224 ctl = next;
roland@4589 225 }
roland@4589 226
roland@4589 227 if (ctl != n->in(0)) {
roland@4589 228 _igvn.hash_delete(n);
roland@4589 229 n->set_req(0, ctl);
roland@4589 230 _igvn.hash_insert(n);
roland@4589 231 }
roland@4589 232
roland@4589 233 return ctl;
roland@4589 234 }
roland@4589 235
roland@4589 236
duke@435 237 //------------------------------set_early_ctrl---------------------------------
duke@435 238 // Set earliest legal control
duke@435 239 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
duke@435 240 Node *early = get_early_ctrl(n);
duke@435 241
duke@435 242 // Record earliest legal location
duke@435 243 set_ctrl(n, early);
duke@435 244 }
duke@435 245
duke@435 246 //------------------------------set_subtree_ctrl-------------------------------
duke@435 247 // set missing _ctrl entries on new nodes
duke@435 248 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
duke@435 249 // Already set? Get out.
duke@435 250 if( _nodes[n->_idx] ) return;
duke@435 251 // Recursively set _nodes array to indicate where the Node goes
duke@435 252 uint i;
duke@435 253 for( i = 0; i < n->req(); ++i ) {
duke@435 254 Node *m = n->in(i);
duke@435 255 if( m && m != C->root() )
duke@435 256 set_subtree_ctrl( m );
duke@435 257 }
duke@435 258
duke@435 259 // Fixup self
duke@435 260 set_early_ctrl( n );
duke@435 261 }
duke@435 262
duke@435 263 //------------------------------is_counted_loop--------------------------------
kvn@2665 264 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
duke@435 265 PhaseGVN *gvn = &_igvn;
duke@435 266
duke@435 267 // Counted loop head must be a good RegionNode with only 3 not NULL
duke@435 268 // control input edges: Self, Entry, LoopBack.
kvn@6657 269 if (x->in(LoopNode::Self) == NULL || x->req() != 3 || loop->_irreducible) {
kvn@2665 270 return false;
kvn@6657 271 }
duke@435 272 Node *init_control = x->in(LoopNode::EntryControl);
duke@435 273 Node *back_control = x->in(LoopNode::LoopBackControl);
kvn@2665 274 if (init_control == NULL || back_control == NULL) // Partially dead
kvn@2665 275 return false;
duke@435 276 // Must also check for TOP when looking for a dead loop
kvn@2665 277 if (init_control->is_top() || back_control->is_top())
kvn@2665 278 return false;
duke@435 279
duke@435 280 // Allow funny placement of Safepoint
roland@8612 281 if (back_control->Opcode() == Op_SafePoint) {
roland@8612 282 if (UseCountedLoopSafepoints) {
roland@8612 283 // Leaving the safepoint on the backedge and creating a
roland@8612 284 // CountedLoop will confuse optimizations. We can't move the
roland@8612 285 // safepoint around because its jvm state wouldn't match a new
roland@8612 286 // location. Give up on that loop.
roland@8612 287 return false;
roland@8612 288 }
duke@435 289 back_control = back_control->in(TypeFunc::Control);
roland@8612 290 }
duke@435 291
duke@435 292 // Controlling test for loop
duke@435 293 Node *iftrue = back_control;
duke@435 294 uint iftrue_op = iftrue->Opcode();
kvn@2665 295 if (iftrue_op != Op_IfTrue &&
kvn@2665 296 iftrue_op != Op_IfFalse)
duke@435 297 // I have a weird back-control. Probably the loop-exit test is in
duke@435 298 // the middle of the loop and I am looking at some trailing control-flow
duke@435 299 // merge point. To fix this I would have to partially peel the loop.
kvn@2665 300 return false; // Obscure back-control
duke@435 301
duke@435 302 // Get boolean guarding loop-back test
duke@435 303 Node *iff = iftrue->in(0);
kvn@2665 304 if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
kvn@2665 305 return false;
duke@435 306 BoolNode *test = iff->in(1)->as_Bool();
duke@435 307 BoolTest::mask bt = test->_test._test;
duke@435 308 float cl_prob = iff->as_If()->_prob;
kvn@2665 309 if (iftrue_op == Op_IfFalse) {
duke@435 310 bt = BoolTest(bt).negate();
duke@435 311 cl_prob = 1.0 - cl_prob;
duke@435 312 }
duke@435 313 // Get backedge compare
duke@435 314 Node *cmp = test->in(1);
duke@435 315 int cmp_op = cmp->Opcode();
kvn@2877 316 if (cmp_op != Op_CmpI)
kvn@2665 317 return false; // Avoid pointer & float compares
duke@435 318
duke@435 319 // Find the trip-counter increment & limit. Limit must be loop invariant.
duke@435 320 Node *incr = cmp->in(1);
duke@435 321 Node *limit = cmp->in(2);
duke@435 322
duke@435 323 // ---------
duke@435 324 // need 'loop()' test to tell if limit is loop invariant
duke@435 325 // ---------
duke@435 326
kvn@2665 327 if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
kvn@2665 328 Node *tmp = incr; // Then reverse order into the CmpI
duke@435 329 incr = limit;
duke@435 330 limit = tmp;
duke@435 331 bt = BoolTest(bt).commute(); // And commute the exit test
duke@435 332 }
kvn@2665 333 if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
kvn@2665 334 return false;
kvn@2665 335 if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
kvn@2665 336 return false;
duke@435 337
kvn@2665 338 Node* phi_incr = NULL;
duke@435 339 // Trip-counter increment must be commutative & associative.
kvn@2665 340 if (incr->is_Phi()) {
kvn@2665 341 if (incr->as_Phi()->region() != x || incr->req() != 3)
kvn@2665 342 return false; // Not simple trip counter expression
kvn@2665 343 phi_incr = incr;
kvn@2665 344 incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
kvn@2665 345 if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
kvn@2665 346 return false;
duke@435 347 }
kvn@2665 348
duke@435 349 Node* trunc1 = NULL;
duke@435 350 Node* trunc2 = NULL;
duke@435 351 const TypeInt* iv_trunc_t = NULL;
duke@435 352 if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
kvn@2665 353 return false; // Funny increment opcode
duke@435 354 }
kvn@2665 355 assert(incr->Opcode() == Op_AddI, "wrong increment code");
duke@435 356
duke@435 357 // Get merge point
duke@435 358 Node *xphi = incr->in(1);
duke@435 359 Node *stride = incr->in(2);
kvn@2665 360 if (!stride->is_Con()) { // Oops, swap these
kvn@2665 361 if (!xphi->is_Con()) // Is the other guy a constant?
kvn@2665 362 return false; // Nope, unknown stride, bail out
duke@435 363 Node *tmp = xphi; // 'incr' is commutative, so ok to swap
duke@435 364 xphi = stride;
duke@435 365 stride = tmp;
duke@435 366 }
kvn@2665 367 // Stride must be constant
kvn@2665 368 int stride_con = stride->get_int();
kvn@2877 369 if (stride_con == 0)
kvn@2877 370 return false; // missed some peephole opt
kvn@2665 371
kvn@2665 372 if (!xphi->is_Phi())
kvn@2665 373 return false; // Too much math on the trip counter
kvn@2665 374 if (phi_incr != NULL && phi_incr != xphi)
kvn@2665 375 return false;
duke@435 376 PhiNode *phi = xphi->as_Phi();
duke@435 377
duke@435 378 // Phi must be of loop header; backedge must wrap to increment
kvn@2665 379 if (phi->region() != x)
kvn@2665 380 return false;
kvn@2665 381 if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
kvn@2665 382 trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
kvn@2665 383 return false;
duke@435 384 }
duke@435 385 Node *init_trip = phi->in(LoopNode::EntryControl);
duke@435 386
duke@435 387 // If iv trunc type is smaller than int, check for possible wrap.
duke@435 388 if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
duke@435 389 assert(trunc1 != NULL, "must have found some truncation");
duke@435 390
duke@435 391 // Get a better type for the phi (filtered thru if's)
duke@435 392 const TypeInt* phi_ft = filtered_type(phi);
duke@435 393
duke@435 394 // Can iv take on a value that will wrap?
duke@435 395 //
duke@435 396 // Ensure iv's limit is not within "stride" of the wrap value.
duke@435 397 //
duke@435 398 // Example for "short" type
duke@435 399 // Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
duke@435 400 // If the stride is +10, then the last value of the induction
duke@435 401 // variable before the increment (phi_ft->_hi) must be
duke@435 402 // <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
duke@435 403 // ensure no truncation occurs after the increment.
duke@435 404
duke@435 405 if (stride_con > 0) {
duke@435 406 if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
duke@435 407 iv_trunc_t->_lo > phi_ft->_lo) {
kvn@2665 408 return false; // truncation may occur
duke@435 409 }
duke@435 410 } else if (stride_con < 0) {
duke@435 411 if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
duke@435 412 iv_trunc_t->_hi < phi_ft->_hi) {
kvn@2665 413 return false; // truncation may occur
duke@435 414 }
duke@435 415 }
duke@435 416 // No possibility of wrap so truncation can be discarded
duke@435 417 // Promote iv type to Int
duke@435 418 } else {
duke@435 419 assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
duke@435 420 }
duke@435 421
kvn@2665 422 // If the condition is inverted and we will be rolling
kvn@2665 423 // through MININT to MAXINT, then bail out.
kvn@2665 424 if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
kvn@2665 425 // Odd stride
kvn@2665 426 bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
kvn@2665 427 // Count down loop rolls through MAXINT
kvn@2665 428 (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
kvn@2665 429 // Count up loop rolls through MININT
kvn@2877 430 (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0) {
kvn@2665 431 return false; // Bail out
kvn@2665 432 }
kvn@2665 433
kvn@2665 434 const TypeInt* init_t = gvn->type(init_trip)->is_int();
kvn@2665 435 const TypeInt* limit_t = gvn->type(limit)->is_int();
kvn@2665 436
kvn@2665 437 if (stride_con > 0) {
vlivanov@4157 438 jlong init_p = (jlong)init_t->_lo + stride_con;
vlivanov@4157 439 if (init_p > (jlong)max_jint || init_p > (jlong)limit_t->_hi)
kvn@2665 440 return false; // cyclic loop or this loop trips only once
kvn@2665 441 } else {
vlivanov@4157 442 jlong init_p = (jlong)init_t->_hi + stride_con;
vlivanov@4157 443 if (init_p < (jlong)min_jint || init_p < (jlong)limit_t->_lo)
kvn@2665 444 return false; // cyclic loop or this loop trips only once
kvn@2665 445 }
kvn@2665 446
iveresov@7590 447 if (phi_incr != NULL) {
iveresov@7590 448 // check if there is a possiblity of IV overflowing after the first increment
iveresov@7590 449 if (stride_con > 0) {
iveresov@7590 450 if (init_t->_hi > max_jint - stride_con) {
iveresov@7590 451 return false;
iveresov@7590 452 }
iveresov@7590 453 } else {
iveresov@7590 454 if (init_t->_lo < min_jint - stride_con) {
iveresov@7590 455 return false;
iveresov@7590 456 }
iveresov@7590 457 }
iveresov@7590 458 }
iveresov@7590 459
duke@435 460 // =================================================
duke@435 461 // ---- SUCCESS! Found A Trip-Counted Loop! -----
duke@435 462 //
kvn@2665 463 assert(x->Opcode() == Op_Loop, "regular loops only");
sla@5237 464 C->print_method(PHASE_BEFORE_CLOOPS, 3);
kvn@2877 465
kvn@4115 466 Node *hook = new (C) Node(6);
kvn@2877 467
kvn@2877 468 if (LoopLimitCheck) {
kvn@2877 469
kvn@2877 470 // ===================================================
kvn@2877 471 // Generate loop limit check to avoid integer overflow
kvn@2877 472 // in cases like next (cyclic loops):
kvn@2877 473 //
kvn@2877 474 // for (i=0; i <= max_jint; i++) {}
kvn@2877 475 // for (i=0; i < max_jint; i+=2) {}
kvn@2877 476 //
kvn@2877 477 //
kvn@2877 478 // Limit check predicate depends on the loop test:
kvn@2877 479 //
kvn@2877 480 // for(;i != limit; i++) --> limit <= (max_jint)
kvn@2877 481 // for(;i < limit; i+=stride) --> limit <= (max_jint - stride + 1)
kvn@2877 482 // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride )
kvn@2877 483 //
kvn@2877 484
kvn@2877 485 // Check if limit is excluded to do more precise int overflow check.
kvn@2877 486 bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
kvn@2877 487 int stride_m = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
kvn@2877 488
kvn@2877 489 // If compare points directly to the phi we need to adjust
kvn@2877 490 // the compare so that it points to the incr. Limit have
kvn@2877 491 // to be adjusted to keep trip count the same and the
kvn@2877 492 // adjusted limit should be checked for int overflow.
kvn@2877 493 if (phi_incr != NULL) {
kvn@2877 494 stride_m += stride_con;
kvn@2877 495 }
kvn@2877 496
kvn@2877 497 if (limit->is_Con()) {
kvn@2877 498 int limit_con = limit->get_int();
kvn@2877 499 if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
kvn@2877 500 (stride_con < 0 && limit_con < (min_jint - stride_m))) {
kvn@2877 501 // Bailout: it could be integer overflow.
kvn@2877 502 return false;
kvn@2877 503 }
kvn@2877 504 } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
kvn@2877 505 (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
kvn@2877 506 // Limit's type may satisfy the condition, for example,
kvn@2877 507 // when it is an array length.
kvn@2877 508 } else {
kvn@2877 509 // Generate loop's limit check.
kvn@2877 510 // Loop limit check predicate should be near the loop.
kvn@2877 511 ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
kvn@2877 512 if (!limit_check_proj) {
kvn@2877 513 // The limit check predicate is not generated if this method trapped here before.
kvn@2877 514 #ifdef ASSERT
kvn@2877 515 if (TraceLoopLimitCheck) {
kvn@2877 516 tty->print("missing loop limit check:");
kvn@2877 517 loop->dump_head();
kvn@2877 518 x->dump(1);
kvn@2877 519 }
kvn@2877 520 #endif
kvn@2877 521 return false;
kvn@2877 522 }
kvn@2877 523
kvn@2877 524 IfNode* check_iff = limit_check_proj->in(0)->as_If();
kvn@2877 525 Node* cmp_limit;
kvn@2877 526 Node* bol;
kvn@2877 527
kvn@2877 528 if (stride_con > 0) {
kvn@4115 529 cmp_limit = new (C) CmpINode(limit, _igvn.intcon(max_jint - stride_m));
kvn@4115 530 bol = new (C) BoolNode(cmp_limit, BoolTest::le);
kvn@2877 531 } else {
kvn@4115 532 cmp_limit = new (C) CmpINode(limit, _igvn.intcon(min_jint - stride_m));
kvn@4115 533 bol = new (C) BoolNode(cmp_limit, BoolTest::ge);
kvn@2877 534 }
kvn@2877 535 cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
kvn@2877 536 bol = _igvn.register_new_node_with_optimizer(bol);
kvn@2877 537 set_subtree_ctrl(bol);
kvn@2877 538
kvn@2877 539 // Replace condition in original predicate but preserve Opaque node
kvn@2877 540 // so that previous predicates could be found.
kvn@2877 541 assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
kvn@2877 542 check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
kvn@2877 543 Node* opq = check_iff->in(1)->in(1);
kvn@2877 544 _igvn.hash_delete(opq);
kvn@2877 545 opq->set_req(1, bol);
kvn@2877 546 // Update ctrl.
kvn@2877 547 set_ctrl(opq, check_iff->in(0));
kvn@2877 548 set_ctrl(check_iff->in(1), check_iff->in(0));
kvn@2877 549
kvn@2727 550 #ifndef PRODUCT
kvn@2877 551 // report that the loop predication has been actually performed
kvn@2877 552 // for this loop
kvn@2877 553 if (TraceLoopLimitCheck) {
kvn@2877 554 tty->print_cr("Counted Loop Limit Check generated:");
kvn@2877 555 debug_only( bol->dump(2); )
kvn@2877 556 }
kvn@2877 557 #endif
kvn@2727 558 }
kvn@2877 559
kvn@2877 560 if (phi_incr != NULL) {
kvn@2877 561 // If compare points directly to the phi we need to adjust
kvn@2877 562 // the compare so that it points to the incr. Limit have
kvn@2877 563 // to be adjusted to keep trip count the same and we
kvn@2877 564 // should avoid int overflow.
kvn@2877 565 //
kvn@2877 566 // i = init; do {} while(i++ < limit);
kvn@2877 567 // is converted to
kvn@2877 568 // i = init; do {} while(++i < limit+1);
kvn@2877 569 //
kvn@4115 570 limit = gvn->transform(new (C) AddINode(limit, stride));
kvn@2877 571 }
kvn@2877 572
kvn@2877 573 // Now we need to canonicalize loop condition.
kvn@2877 574 if (bt == BoolTest::ne) {
kvn@2877 575 assert(stride_con == 1 || stride_con == -1, "simple increment only");
kvn@2979 576 // 'ne' can be replaced with 'lt' only when init < limit.
kvn@2979 577 if (stride_con > 0 && init_t->_hi < limit_t->_lo)
kvn@2979 578 bt = BoolTest::lt;
kvn@2979 579 // 'ne' can be replaced with 'gt' only when init > limit.
kvn@2979 580 if (stride_con < 0 && init_t->_lo > limit_t->_hi)
kvn@2979 581 bt = BoolTest::gt;
kvn@2877 582 }
kvn@2877 583
kvn@2877 584 if (incl_limit) {
kvn@2877 585 // The limit check guaranties that 'limit <= (max_jint - stride)' so
kvn@2877 586 // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
kvn@2877 587 //
kvn@2877 588 Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
kvn@4115 589 limit = gvn->transform(new (C) AddINode(limit, one));
kvn@2877 590 if (bt == BoolTest::le)
kvn@2877 591 bt = BoolTest::lt;
kvn@2877 592 else if (bt == BoolTest::ge)
kvn@2877 593 bt = BoolTest::gt;
kvn@2877 594 else
kvn@2877 595 ShouldNotReachHere();
kvn@2877 596 }
kvn@2877 597 set_subtree_ctrl( limit );
kvn@2877 598
kvn@2877 599 } else { // LoopLimitCheck
kvn@2877 600
duke@435 601 // If compare points to incr, we are ok. Otherwise the compare
duke@435 602 // can directly point to the phi; in this case adjust the compare so that
twisti@1040 603 // it points to the incr by adjusting the limit.
kvn@2665 604 if (cmp->in(1) == phi || cmp->in(2) == phi)
kvn@4115 605 limit = gvn->transform(new (C) AddINode(limit,stride));
duke@435 606
duke@435 607 // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
duke@435 608 // Final value for iterator should be: trip_count * stride + init_trip.
duke@435 609 Node *one_p = gvn->intcon( 1);
duke@435 610 Node *one_m = gvn->intcon(-1);
duke@435 611
duke@435 612 Node *trip_count = NULL;
duke@435 613 switch( bt ) {
duke@435 614 case BoolTest::eq:
kvn@2665 615 ShouldNotReachHere();
duke@435 616 case BoolTest::ne: // Ahh, the case we desire
kvn@2665 617 if (stride_con == 1)
kvn@4115 618 trip_count = gvn->transform(new (C) SubINode(limit,init_trip));
kvn@2665 619 else if (stride_con == -1)
kvn@4115 620 trip_count = gvn->transform(new (C) SubINode(init_trip,limit));
duke@435 621 else
kvn@2665 622 ShouldNotReachHere();
kvn@2665 623 set_subtree_ctrl(trip_count);
duke@435 624 //_loop.map(trip_count->_idx,loop(limit));
duke@435 625 break;
duke@435 626 case BoolTest::le: // Maybe convert to '<' case
kvn@4115 627 limit = gvn->transform(new (C) AddINode(limit,one_p));
duke@435 628 set_subtree_ctrl( limit );
duke@435 629 hook->init_req(4, limit);
duke@435 630
duke@435 631 bt = BoolTest::lt;
duke@435 632 // Make the new limit be in the same loop nest as the old limit
duke@435 633 //_loop.map(limit->_idx,limit_loop);
duke@435 634 // Fall into next case
duke@435 635 case BoolTest::lt: { // Maybe convert to '!=' case
kvn@2665 636 if (stride_con < 0) // Count down loop rolls through MAXINT
kvn@2665 637 ShouldNotReachHere();
kvn@4115 638 Node *range = gvn->transform(new (C) SubINode(limit,init_trip));
duke@435 639 set_subtree_ctrl( range );
duke@435 640 hook->init_req(0, range);
duke@435 641
kvn@4115 642 Node *bias = gvn->transform(new (C) AddINode(range,stride));
duke@435 643 set_subtree_ctrl( bias );
duke@435 644 hook->init_req(1, bias);
duke@435 645
kvn@4115 646 Node *bias1 = gvn->transform(new (C) AddINode(bias,one_m));
duke@435 647 set_subtree_ctrl( bias1 );
duke@435 648 hook->init_req(2, bias1);
duke@435 649
kvn@4115 650 trip_count = gvn->transform(new (C) DivINode(0,bias1,stride));
duke@435 651 set_subtree_ctrl( trip_count );
duke@435 652 hook->init_req(3, trip_count);
duke@435 653 break;
duke@435 654 }
duke@435 655
duke@435 656 case BoolTest::ge: // Maybe convert to '>' case
kvn@4115 657 limit = gvn->transform(new (C) AddINode(limit,one_m));
duke@435 658 set_subtree_ctrl( limit );
duke@435 659 hook->init_req(4 ,limit);
duke@435 660
duke@435 661 bt = BoolTest::gt;
duke@435 662 // Make the new limit be in the same loop nest as the old limit
duke@435 663 //_loop.map(limit->_idx,limit_loop);
duke@435 664 // Fall into next case
duke@435 665 case BoolTest::gt: { // Maybe convert to '!=' case
kvn@2665 666 if (stride_con > 0) // count up loop rolls through MININT
kvn@2665 667 ShouldNotReachHere();
kvn@4115 668 Node *range = gvn->transform(new (C) SubINode(limit,init_trip));
duke@435 669 set_subtree_ctrl( range );
duke@435 670 hook->init_req(0, range);
duke@435 671
kvn@4115 672 Node *bias = gvn->transform(new (C) AddINode(range,stride));
duke@435 673 set_subtree_ctrl( bias );
duke@435 674 hook->init_req(1, bias);
duke@435 675
kvn@4115 676 Node *bias1 = gvn->transform(new (C) AddINode(bias,one_p));
duke@435 677 set_subtree_ctrl( bias1 );
duke@435 678 hook->init_req(2, bias1);
duke@435 679
kvn@4115 680 trip_count = gvn->transform(new (C) DivINode(0,bias1,stride));
duke@435 681 set_subtree_ctrl( trip_count );
duke@435 682 hook->init_req(3, trip_count);
duke@435 683 break;
duke@435 684 }
kvn@2665 685 } // switch( bt )
duke@435 686
kvn@4115 687 Node *span = gvn->transform(new (C) MulINode(trip_count,stride));
duke@435 688 set_subtree_ctrl( span );
duke@435 689 hook->init_req(5, span);
duke@435 690
kvn@4115 691 limit = gvn->transform(new (C) AddINode(span,init_trip));
duke@435 692 set_subtree_ctrl( limit );
duke@435 693
kvn@2877 694 } // LoopLimitCheck
kvn@2877 695
aeriksso@8195 696 if (!UseCountedLoopSafepoints) {
aeriksso@8195 697 // Check for SafePoint on backedge and remove
aeriksso@8195 698 Node *sfpt = x->in(LoopNode::LoopBackControl);
aeriksso@8195 699 if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
aeriksso@8195 700 lazy_replace( sfpt, iftrue );
aeriksso@8195 701 if (loop->_safepts != NULL) {
aeriksso@8195 702 loop->_safepts->yank(sfpt);
aeriksso@8195 703 }
aeriksso@8195 704 loop->_tail = iftrue;
kvn@4023 705 }
kvn@2665 706 }
kvn@2665 707
duke@435 708 // Build a canonical trip test.
duke@435 709 // Clone code, as old values may be in use.
duke@435 710 incr = incr->clone();
kvn@3135 711 incr->set_req(1,phi);
duke@435 712 incr->set_req(2,stride);
duke@435 713 incr = _igvn.register_new_node_with_optimizer(incr);
duke@435 714 set_early_ctrl( incr );
kvn@3135 715 _igvn.hash_delete(phi);
kvn@3135 716 phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
kvn@3135 717
kvn@3135 718 // If phi type is more restrictive than Int, raise to
kvn@3135 719 // Int to prevent (almost) infinite recursion in igvn
kvn@3135 720 // which can only handle integer types for constants or minint..maxint.
kvn@3135 721 if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
kvn@3135 722 Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
kvn@3135 723 nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
kvn@3135 724 nphi = _igvn.register_new_node_with_optimizer(nphi);
kvn@3135 725 set_ctrl(nphi, get_ctrl(phi));
kvn@3135 726 _igvn.replace_node(phi, nphi);
kvn@3135 727 phi = nphi->as_Phi();
kvn@3135 728 }
duke@435 729 cmp = cmp->clone();
duke@435 730 cmp->set_req(1,incr);
duke@435 731 cmp->set_req(2,limit);
duke@435 732 cmp = _igvn.register_new_node_with_optimizer(cmp);
duke@435 733 set_ctrl(cmp, iff->in(0));
duke@435 734
kvn@2665 735 test = test->clone()->as_Bool();
kvn@2665 736 (*(BoolTest*)&test->_test)._test = bt;
duke@435 737 test->set_req(1,cmp);
duke@435 738 _igvn.register_new_node_with_optimizer(test);
duke@435 739 set_ctrl(test, iff->in(0));
duke@435 740
duke@435 741 // Replace the old IfNode with a new LoopEndNode
kvn@4115 742 Node *lex = _igvn.register_new_node_with_optimizer(new (C) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
duke@435 743 IfNode *le = lex->as_If();
duke@435 744 uint dd = dom_depth(iff);
duke@435 745 set_idom(le, le->in(0), dd); // Update dominance for loop exit
duke@435 746 set_loop(le, loop);
duke@435 747
duke@435 748 // Get the loop-exit control
kvn@2665 749 Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
duke@435 750
duke@435 751 // Need to swap loop-exit and loop-back control?
kvn@2665 752 if (iftrue_op == Op_IfFalse) {
kvn@4115 753 Node *ift2=_igvn.register_new_node_with_optimizer(new (C) IfTrueNode (le));
kvn@4115 754 Node *iff2=_igvn.register_new_node_with_optimizer(new (C) IfFalseNode(le));
duke@435 755
duke@435 756 loop->_tail = back_control = ift2;
duke@435 757 set_loop(ift2, loop);
kvn@2665 758 set_loop(iff2, get_loop(iffalse));
duke@435 759
duke@435 760 // Lazy update of 'get_ctrl' mechanism.
roland@8311 761 lazy_replace(iffalse, iff2);
roland@8311 762 lazy_replace(iftrue, ift2);
duke@435 763
duke@435 764 // Swap names
kvn@2665 765 iffalse = iff2;
kvn@2665 766 iftrue = ift2;
duke@435 767 } else {
kvn@2665 768 _igvn.hash_delete(iffalse);
duke@435 769 _igvn.hash_delete(iftrue);
kvn@2665 770 iffalse->set_req_X( 0, le, &_igvn );
kvn@2665 771 iftrue ->set_req_X( 0, le, &_igvn );
duke@435 772 }
duke@435 773
kvn@2665 774 set_idom(iftrue, le, dd+1);
kvn@2665 775 set_idom(iffalse, le, dd+1);
kvn@2665 776 assert(iff->outcnt() == 0, "should be dead now");
kvn@2665 777 lazy_replace( iff, le ); // fix 'get_ctrl'
duke@435 778
duke@435 779 // Now setup a new CountedLoopNode to replace the existing LoopNode
kvn@4115 780 CountedLoopNode *l = new (C) CountedLoopNode(init_control, back_control);
kvn@2665 781 l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
duke@435 782 // The following assert is approximately true, and defines the intention
duke@435 783 // of can_be_counted_loop. It fails, however, because phase->type
duke@435 784 // is not yet initialized for this loop and its parts.
duke@435 785 //assert(l->can_be_counted_loop(this), "sanity");
duke@435 786 _igvn.register_new_node_with_optimizer(l);
duke@435 787 set_loop(l, loop);
duke@435 788 loop->_head = l;
duke@435 789 // Fix all data nodes placed at the old loop head.
duke@435 790 // Uses the lazy-update mechanism of 'get_ctrl'.
duke@435 791 lazy_replace( x, l );
duke@435 792 set_idom(l, init_control, dom_depth(x));
duke@435 793
aeriksso@8195 794 if (!UseCountedLoopSafepoints) {
aeriksso@8195 795 // Check for immediately preceding SafePoint and remove
aeriksso@8195 796 Node *sfpt2 = le->in(0);
aeriksso@8195 797 if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2)) {
aeriksso@8195 798 lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
aeriksso@8195 799 if (loop->_safepts != NULL) {
aeriksso@8195 800 loop->_safepts->yank(sfpt2);
aeriksso@8195 801 }
kvn@4023 802 }
kvn@4023 803 }
duke@435 804
duke@435 805 // Free up intermediate goo
duke@435 806 _igvn.remove_dead_node(hook);
duke@435 807
kvn@2665 808 #ifdef ASSERT
kvn@2665 809 assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
kvn@2665 810 assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
kvn@2665 811 #endif
kvn@2877 812 #ifndef PRODUCT
kvn@2877 813 if (TraceLoopOpts) {
kvn@2877 814 tty->print("Counted ");
kvn@2877 815 loop->dump_head();
kvn@2877 816 }
kvn@2877 817 #endif
kvn@2665 818
sla@5237 819 C->print_method(PHASE_AFTER_CLOOPS, 3);
duke@435 820
kvn@2665 821 return true;
duke@435 822 }
duke@435 823
kvn@2877 824 //----------------------exact_limit-------------------------------------------
kvn@2877 825 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
kvn@2877 826 assert(loop->_head->is_CountedLoop(), "");
kvn@2877 827 CountedLoopNode *cl = loop->_head->as_CountedLoop();
kvn@3048 828 assert(cl->is_valid_counted_loop(), "");
kvn@2877 829
kvn@2877 830 if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
kvn@2877 831 cl->limit()->Opcode() == Op_LoopLimit) {
kvn@2877 832 // Old code has exact limit (it could be incorrect in case of int overflow).
kvn@2877 833 // Loop limit is exact with stride == 1. And loop may already have exact limit.
kvn@2877 834 return cl->limit();
kvn@2877 835 }
kvn@2877 836 Node *limit = NULL;
kvn@2877 837 #ifdef ASSERT
kvn@2877 838 BoolTest::mask bt = cl->loopexit()->test_trip();
kvn@2877 839 assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
kvn@2877 840 #endif
kvn@2877 841 if (cl->has_exact_trip_count()) {
kvn@2877 842 // Simple case: loop has constant boundaries.
vlivanov@4157 843 // Use jlongs to avoid integer overflow.
kvn@2877 844 int stride_con = cl->stride_con();
vlivanov@4157 845 jlong init_con = cl->init_trip()->get_int();
vlivanov@4157 846 jlong limit_con = cl->limit()->get_int();
kvn@2877 847 julong trip_cnt = cl->trip_count();
vlivanov@4157 848 jlong final_con = init_con + trip_cnt*stride_con;
kvn@2877 849 int final_int = (int)final_con;
kvn@2877 850 // The final value should be in integer range since the loop
kvn@2877 851 // is counted and the limit was checked for overflow.
vlivanov@4157 852 assert(final_con == (jlong)final_int, "final value should be integer");
kvn@2877 853 limit = _igvn.intcon(final_int);
kvn@2877 854 } else {
kvn@2877 855 // Create new LoopLimit node to get exact limit (final iv value).
kvn@4115 856 limit = new (C) LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
kvn@2877 857 register_new_node(limit, cl->in(LoopNode::EntryControl));
kvn@2877 858 }
kvn@2877 859 assert(limit != NULL, "sanity");
kvn@2877 860 return limit;
kvn@2877 861 }
duke@435 862
duke@435 863 //------------------------------Ideal------------------------------------------
duke@435 864 // Return a node which is more "ideal" than the current node.
duke@435 865 // Attempt to convert into a counted-loop.
duke@435 866 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 867 if (!can_be_counted_loop(phase)) {
duke@435 868 phase->C->set_major_progress();
duke@435 869 }
duke@435 870 return RegionNode::Ideal(phase, can_reshape);
duke@435 871 }
duke@435 872
duke@435 873
duke@435 874 //=============================================================================
duke@435 875 //------------------------------Ideal------------------------------------------
duke@435 876 // Return a node which is more "ideal" than the current node.
duke@435 877 // Attempt to convert into a counted-loop.
duke@435 878 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 879 return RegionNode::Ideal(phase, can_reshape);
duke@435 880 }
duke@435 881
duke@435 882 //------------------------------dump_spec--------------------------------------
duke@435 883 // Dump special per-node info
duke@435 884 #ifndef PRODUCT
duke@435 885 void CountedLoopNode::dump_spec(outputStream *st) const {
duke@435 886 LoopNode::dump_spec(st);
kvn@2877 887 if (stride_is_con()) {
duke@435 888 st->print("stride: %d ",stride_con());
duke@435 889 }
kvn@2877 890 if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
kvn@2877 891 if (is_main_loop()) st->print("main of N%d", _idx);
kvn@2877 892 if (is_post_loop()) st->print("post of N%d", _main_idx);
duke@435 893 }
duke@435 894 #endif
duke@435 895
duke@435 896 //=============================================================================
duke@435 897 int CountedLoopEndNode::stride_con() const {
duke@435 898 return stride()->bottom_type()->is_int()->get_con();
duke@435 899 }
duke@435 900
kvn@2877 901 //=============================================================================
kvn@2877 902 //------------------------------Value-----------------------------------------
kvn@2877 903 const Type *LoopLimitNode::Value( PhaseTransform *phase ) const {
kvn@2877 904 const Type* init_t = phase->type(in(Init));
kvn@2877 905 const Type* limit_t = phase->type(in(Limit));
kvn@2877 906 const Type* stride_t = phase->type(in(Stride));
kvn@2877 907 // Either input is TOP ==> the result is TOP
kvn@2877 908 if (init_t == Type::TOP) return Type::TOP;
kvn@2877 909 if (limit_t == Type::TOP) return Type::TOP;
kvn@2877 910 if (stride_t == Type::TOP) return Type::TOP;
kvn@2877 911
kvn@2877 912 int stride_con = stride_t->is_int()->get_con();
kvn@2877 913 if (stride_con == 1)
kvn@2877 914 return NULL; // Identity
kvn@2877 915
kvn@2877 916 if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
vlivanov@4157 917 // Use jlongs to avoid integer overflow.
vlivanov@4157 918 jlong init_con = init_t->is_int()->get_con();
vlivanov@4157 919 jlong limit_con = limit_t->is_int()->get_con();
kvn@2877 920 int stride_m = stride_con - (stride_con > 0 ? 1 : -1);
vlivanov@4157 921 jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
vlivanov@4157 922 jlong final_con = init_con + stride_con*trip_count;
kvn@2877 923 int final_int = (int)final_con;
kvn@2877 924 // The final value should be in integer range since the loop
kvn@2877 925 // is counted and the limit was checked for overflow.
vlivanov@4157 926 assert(final_con == (jlong)final_int, "final value should be integer");
kvn@2877 927 return TypeInt::make(final_int);
kvn@2877 928 }
kvn@2877 929
kvn@2877 930 return bottom_type(); // TypeInt::INT
kvn@2877 931 }
kvn@2877 932
kvn@2877 933 //------------------------------Ideal------------------------------------------
kvn@2877 934 // Return a node which is more "ideal" than the current node.
kvn@2877 935 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@2877 936 if (phase->type(in(Init)) == Type::TOP ||
kvn@2877 937 phase->type(in(Limit)) == Type::TOP ||
kvn@2877 938 phase->type(in(Stride)) == Type::TOP)
kvn@2877 939 return NULL; // Dead
kvn@2877 940
kvn@2877 941 int stride_con = phase->type(in(Stride))->is_int()->get_con();
kvn@2877 942 if (stride_con == 1)
kvn@2877 943 return NULL; // Identity
kvn@2877 944
kvn@2877 945 if (in(Init)->is_Con() && in(Limit)->is_Con())
kvn@2877 946 return NULL; // Value
kvn@2877 947
kvn@2877 948 // Delay following optimizations until all loop optimizations
kvn@2877 949 // done to keep Ideal graph simple.
kvn@2877 950 if (!can_reshape || phase->C->major_progress())
kvn@2877 951 return NULL;
kvn@2877 952
kvn@2877 953 const TypeInt* init_t = phase->type(in(Init) )->is_int();
kvn@2877 954 const TypeInt* limit_t = phase->type(in(Limit))->is_int();
kvn@2877 955 int stride_p;
vlivanov@4157 956 jlong lim, ini;
kvn@2877 957 julong max;
kvn@2877 958 if (stride_con > 0) {
kvn@2877 959 stride_p = stride_con;
kvn@2877 960 lim = limit_t->_hi;
kvn@2877 961 ini = init_t->_lo;
kvn@2877 962 max = (julong)max_jint;
kvn@2877 963 } else {
kvn@2877 964 stride_p = -stride_con;
kvn@2877 965 lim = init_t->_hi;
kvn@2877 966 ini = limit_t->_lo;
kvn@2877 967 max = (julong)min_jint;
kvn@2877 968 }
kvn@2877 969 julong range = lim - ini + stride_p;
kvn@2877 970 if (range <= max) {
kvn@2877 971 // Convert to integer expression if it is not overflow.
kvn@2877 972 Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
kvn@4115 973 Node *range = phase->transform(new (phase->C) SubINode(in(Limit), in(Init)));
kvn@4115 974 Node *bias = phase->transform(new (phase->C) AddINode(range, stride_m));
kvn@4115 975 Node *trip = phase->transform(new (phase->C) DivINode(0, bias, in(Stride)));
kvn@4115 976 Node *span = phase->transform(new (phase->C) MulINode(trip, in(Stride)));
kvn@4115 977 return new (phase->C) AddINode(span, in(Init)); // exact limit
kvn@2877 978 }
kvn@2877 979
kvn@2877 980 if (is_power_of_2(stride_p) || // divisor is 2^n
kvn@2877 981 !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
kvn@2877 982 // Convert to long expression to avoid integer overflow
kvn@2877 983 // and let igvn optimizer convert this division.
kvn@2877 984 //
kvn@4115 985 Node* init = phase->transform( new (phase->C) ConvI2LNode(in(Init)));
kvn@4115 986 Node* limit = phase->transform( new (phase->C) ConvI2LNode(in(Limit)));
kvn@2877 987 Node* stride = phase->longcon(stride_con);
kvn@2877 988 Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
kvn@2877 989
kvn@4115 990 Node *range = phase->transform(new (phase->C) SubLNode(limit, init));
kvn@4115 991 Node *bias = phase->transform(new (phase->C) AddLNode(range, stride_m));
kvn@2877 992 Node *span;
kvn@2877 993 if (stride_con > 0 && is_power_of_2(stride_p)) {
kvn@2877 994 // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
kvn@2877 995 // and avoid generating rounding for division. Zero trip guard should
kvn@2877 996 // guarantee that init < limit but sometimes the guard is missing and
kvn@2877 997 // we can get situation when init > limit. Note, for the empty loop
kvn@2877 998 // optimization zero trip guard is generated explicitly which leaves
kvn@2877 999 // only RCE predicate where exact limit is used and the predicate
kvn@2877 1000 // will simply fail forcing recompilation.
kvn@2877 1001 Node* neg_stride = phase->longcon(-stride_con);
kvn@4115 1002 span = phase->transform(new (phase->C) AndLNode(bias, neg_stride));
kvn@2877 1003 } else {
kvn@4115 1004 Node *trip = phase->transform(new (phase->C) DivLNode(0, bias, stride));
kvn@4115 1005 span = phase->transform(new (phase->C) MulLNode(trip, stride));
kvn@2877 1006 }
kvn@2877 1007 // Convert back to int
kvn@4115 1008 Node *span_int = phase->transform(new (phase->C) ConvL2INode(span));
kvn@4115 1009 return new (phase->C) AddINode(span_int, in(Init)); // exact limit
kvn@2877 1010 }
kvn@2877 1011
kvn@2877 1012 return NULL; // No progress
kvn@2877 1013 }
kvn@2877 1014
kvn@2877 1015 //------------------------------Identity---------------------------------------
kvn@2877 1016 // If stride == 1 return limit node.
kvn@2877 1017 Node *LoopLimitNode::Identity( PhaseTransform *phase ) {
kvn@2877 1018 int stride_con = phase->type(in(Stride))->is_int()->get_con();
kvn@2877 1019 if (stride_con == 1 || stride_con == -1)
kvn@2877 1020 return in(Limit);
kvn@2877 1021 return this;
kvn@2877 1022 }
kvn@2877 1023
kvn@2877 1024 //=============================================================================
duke@435 1025 //----------------------match_incr_with_optional_truncation--------------------
duke@435 1026 // Match increment with optional truncation:
duke@435 1027 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
duke@435 1028 // Return NULL for failure. Success returns the increment node.
duke@435 1029 Node* CountedLoopNode::match_incr_with_optional_truncation(
duke@435 1030 Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
duke@435 1031 // Quick cutouts:
brutisso@3489 1032 if (expr == NULL || expr->req() != 3) return NULL;
duke@435 1033
duke@435 1034 Node *t1 = NULL;
duke@435 1035 Node *t2 = NULL;
duke@435 1036 const TypeInt* trunc_t = TypeInt::INT;
duke@435 1037 Node* n1 = expr;
duke@435 1038 int n1op = n1->Opcode();
duke@435 1039
duke@435 1040 // Try to strip (n1 & M) or (n1 << N >> N) from n1.
duke@435 1041 if (n1op == Op_AndI &&
duke@435 1042 n1->in(2)->is_Con() &&
duke@435 1043 n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
duke@435 1044 // %%% This check should match any mask of 2**K-1.
duke@435 1045 t1 = n1;
duke@435 1046 n1 = t1->in(1);
duke@435 1047 n1op = n1->Opcode();
duke@435 1048 trunc_t = TypeInt::CHAR;
duke@435 1049 } else if (n1op == Op_RShiftI &&
duke@435 1050 n1->in(1) != NULL &&
duke@435 1051 n1->in(1)->Opcode() == Op_LShiftI &&
duke@435 1052 n1->in(2) == n1->in(1)->in(2) &&
duke@435 1053 n1->in(2)->is_Con()) {
duke@435 1054 jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
duke@435 1055 // %%% This check should match any shift in [1..31].
duke@435 1056 if (shift == 16 || shift == 8) {
duke@435 1057 t1 = n1;
duke@435 1058 t2 = t1->in(1);
duke@435 1059 n1 = t2->in(1);
duke@435 1060 n1op = n1->Opcode();
duke@435 1061 if (shift == 16) {
duke@435 1062 trunc_t = TypeInt::SHORT;
duke@435 1063 } else if (shift == 8) {
duke@435 1064 trunc_t = TypeInt::BYTE;
duke@435 1065 }
duke@435 1066 }
duke@435 1067 }
duke@435 1068
duke@435 1069 // If (maybe after stripping) it is an AddI, we won:
duke@435 1070 if (n1op == Op_AddI) {
duke@435 1071 *trunc1 = t1;
duke@435 1072 *trunc2 = t2;
duke@435 1073 *trunc_type = trunc_t;
duke@435 1074 return n1;
duke@435 1075 }
duke@435 1076
duke@435 1077 // failed
duke@435 1078 return NULL;
duke@435 1079 }
duke@435 1080
duke@435 1081
duke@435 1082 //------------------------------filtered_type--------------------------------
duke@435 1083 // Return a type based on condition control flow
duke@435 1084 // A successful return will be a type that is restricted due
duke@435 1085 // to a series of dominating if-tests, such as:
duke@435 1086 // if (i < 10) {
duke@435 1087 // if (i > 0) {
duke@435 1088 // here: "i" type is [1..10)
duke@435 1089 // }
duke@435 1090 // }
duke@435 1091 // or a control flow merge
duke@435 1092 // if (i < 10) {
duke@435 1093 // do {
duke@435 1094 // phi( , ) -- at top of loop type is [min_int..10)
duke@435 1095 // i = ?
duke@435 1096 // } while ( i < 10)
duke@435 1097 //
duke@435 1098 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
duke@435 1099 assert(n && n->bottom_type()->is_int(), "must be int");
duke@435 1100 const TypeInt* filtered_t = NULL;
duke@435 1101 if (!n->is_Phi()) {
duke@435 1102 assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
duke@435 1103 filtered_t = filtered_type_from_dominators(n, n_ctrl);
duke@435 1104
duke@435 1105 } else {
duke@435 1106 Node* phi = n->as_Phi();
duke@435 1107 Node* region = phi->in(0);
duke@435 1108 assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
duke@435 1109 if (region && region != C->top()) {
duke@435 1110 for (uint i = 1; i < phi->req(); i++) {
duke@435 1111 Node* val = phi->in(i);
duke@435 1112 Node* use_c = region->in(i);
duke@435 1113 const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
duke@435 1114 if (val_t != NULL) {
duke@435 1115 if (filtered_t == NULL) {
duke@435 1116 filtered_t = val_t;
duke@435 1117 } else {
duke@435 1118 filtered_t = filtered_t->meet(val_t)->is_int();
duke@435 1119 }
duke@435 1120 }
duke@435 1121 }
duke@435 1122 }
duke@435 1123 }
duke@435 1124 const TypeInt* n_t = _igvn.type(n)->is_int();
duke@435 1125 if (filtered_t != NULL) {
duke@435 1126 n_t = n_t->join(filtered_t)->is_int();
duke@435 1127 }
duke@435 1128 return n_t;
duke@435 1129 }
duke@435 1130
duke@435 1131
duke@435 1132 //------------------------------filtered_type_from_dominators--------------------------------
duke@435 1133 // Return a possibly more restrictive type for val based on condition control flow of dominators
duke@435 1134 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
duke@435 1135 if (val->is_Con()) {
duke@435 1136 return val->bottom_type()->is_int();
duke@435 1137 }
duke@435 1138 uint if_limit = 10; // Max number of dominating if's visited
duke@435 1139 const TypeInt* rtn_t = NULL;
duke@435 1140
duke@435 1141 if (use_ctrl && use_ctrl != C->top()) {
duke@435 1142 Node* val_ctrl = get_ctrl(val);
duke@435 1143 uint val_dom_depth = dom_depth(val_ctrl);
duke@435 1144 Node* pred = use_ctrl;
duke@435 1145 uint if_cnt = 0;
duke@435 1146 while (if_cnt < if_limit) {
duke@435 1147 if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
duke@435 1148 if_cnt++;
never@452 1149 const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
duke@435 1150 if (if_t != NULL) {
duke@435 1151 if (rtn_t == NULL) {
duke@435 1152 rtn_t = if_t;
duke@435 1153 } else {
duke@435 1154 rtn_t = rtn_t->join(if_t)->is_int();
duke@435 1155 }
duke@435 1156 }
duke@435 1157 }
duke@435 1158 pred = idom(pred);
duke@435 1159 if (pred == NULL || pred == C->top()) {
duke@435 1160 break;
duke@435 1161 }
duke@435 1162 // Stop if going beyond definition block of val
duke@435 1163 if (dom_depth(pred) < val_dom_depth) {
duke@435 1164 break;
duke@435 1165 }
duke@435 1166 }
duke@435 1167 }
duke@435 1168 return rtn_t;
duke@435 1169 }
duke@435 1170
duke@435 1171
duke@435 1172 //------------------------------dump_spec--------------------------------------
duke@435 1173 // Dump special per-node info
duke@435 1174 #ifndef PRODUCT
duke@435 1175 void CountedLoopEndNode::dump_spec(outputStream *st) const {
duke@435 1176 if( in(TestValue)->is_Bool() ) {
duke@435 1177 BoolTest bt( test_trip()); // Added this for g++.
duke@435 1178
duke@435 1179 st->print("[");
duke@435 1180 bt.dump_on(st);
duke@435 1181 st->print("]");
duke@435 1182 }
duke@435 1183 st->print(" ");
duke@435 1184 IfNode::dump_spec(st);
duke@435 1185 }
duke@435 1186 #endif
duke@435 1187
duke@435 1188 //=============================================================================
duke@435 1189 //------------------------------is_member--------------------------------------
duke@435 1190 // Is 'l' a member of 'this'?
duke@435 1191 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
duke@435 1192 while( l->_nest > _nest ) l = l->_parent;
duke@435 1193 return l == this;
duke@435 1194 }
duke@435 1195
duke@435 1196 //------------------------------set_nest---------------------------------------
duke@435 1197 // Set loop tree nesting depth. Accumulate _has_call bits.
duke@435 1198 int IdealLoopTree::set_nest( uint depth ) {
duke@435 1199 _nest = depth;
duke@435 1200 int bits = _has_call;
duke@435 1201 if( _child ) bits |= _child->set_nest(depth+1);
duke@435 1202 if( bits ) _has_call = 1;
duke@435 1203 if( _next ) bits |= _next ->set_nest(depth );
duke@435 1204 return bits;
duke@435 1205 }
duke@435 1206
duke@435 1207 //------------------------------split_fall_in----------------------------------
duke@435 1208 // Split out multiple fall-in edges from the loop header. Move them to a
duke@435 1209 // private RegionNode before the loop. This becomes the loop landing pad.
duke@435 1210 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
duke@435 1211 PhaseIterGVN &igvn = phase->_igvn;
duke@435 1212 uint i;
duke@435 1213
duke@435 1214 // Make a new RegionNode to be the landing pad.
kvn@4115 1215 Node *landing_pad = new (phase->C) RegionNode( fall_in_cnt+1 );
duke@435 1216 phase->set_loop(landing_pad,_parent);
duke@435 1217 // Gather all the fall-in control paths into the landing pad
duke@435 1218 uint icnt = fall_in_cnt;
duke@435 1219 uint oreq = _head->req();
duke@435 1220 for( i = oreq-1; i>0; i-- )
duke@435 1221 if( !phase->is_member( this, _head->in(i) ) )
duke@435 1222 landing_pad->set_req(icnt--,_head->in(i));
duke@435 1223
duke@435 1224 // Peel off PhiNode edges as well
duke@435 1225 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
duke@435 1226 Node *oj = _head->fast_out(j);
duke@435 1227 if( oj->is_Phi() ) {
duke@435 1228 PhiNode* old_phi = oj->as_Phi();
duke@435 1229 assert( old_phi->region() == _head, "" );
duke@435 1230 igvn.hash_delete(old_phi); // Yank from hash before hacking edges
duke@435 1231 Node *p = PhiNode::make_blank(landing_pad, old_phi);
duke@435 1232 uint icnt = fall_in_cnt;
duke@435 1233 for( i = oreq-1; i>0; i-- ) {
duke@435 1234 if( !phase->is_member( this, _head->in(i) ) ) {
duke@435 1235 p->init_req(icnt--, old_phi->in(i));
duke@435 1236 // Go ahead and clean out old edges from old phi
duke@435 1237 old_phi->del_req(i);
duke@435 1238 }
duke@435 1239 }
duke@435 1240 // Search for CSE's here, because ZKM.jar does a lot of
duke@435 1241 // loop hackery and we need to be a little incremental
duke@435 1242 // with the CSE to avoid O(N^2) node blow-up.
duke@435 1243 Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
duke@435 1244 if( p2 ) { // Found CSE
duke@435 1245 p->destruct(); // Recover useless new node
duke@435 1246 p = p2; // Use old node
duke@435 1247 } else {
duke@435 1248 igvn.register_new_node_with_optimizer(p, old_phi);
duke@435 1249 }
duke@435 1250 // Make old Phi refer to new Phi.
duke@435 1251 old_phi->add_req(p);
duke@435 1252 // Check for the special case of making the old phi useless and
duke@435 1253 // disappear it. In JavaGrande I have a case where this useless
duke@435 1254 // Phi is the loop limit and prevents recognizing a CountedLoop
duke@435 1255 // which in turn prevents removing an empty loop.
duke@435 1256 Node *id_old_phi = old_phi->Identity( &igvn );
duke@435 1257 if( id_old_phi != old_phi ) { // Found a simple identity?
kvn@1976 1258 // Note that I cannot call 'replace_node' here, because
duke@435 1259 // that will yank the edge from old_phi to the Region and
duke@435 1260 // I'm mid-iteration over the Region's uses.
duke@435 1261 for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
duke@435 1262 Node* use = old_phi->last_out(i);
kvn@3847 1263 igvn.rehash_node_delayed(use);
duke@435 1264 uint uses_found = 0;
duke@435 1265 for (uint j = 0; j < use->len(); j++) {
duke@435 1266 if (use->in(j) == old_phi) {
duke@435 1267 if (j < use->req()) use->set_req (j, id_old_phi);
duke@435 1268 else use->set_prec(j, id_old_phi);
duke@435 1269 uses_found++;
duke@435 1270 }
duke@435 1271 }
duke@435 1272 i -= uses_found; // we deleted 1 or more copies of this edge
duke@435 1273 }
duke@435 1274 }
duke@435 1275 igvn._worklist.push(old_phi);
duke@435 1276 }
duke@435 1277 }
duke@435 1278 // Finally clean out the fall-in edges from the RegionNode
duke@435 1279 for( i = oreq-1; i>0; i-- ) {
duke@435 1280 if( !phase->is_member( this, _head->in(i) ) ) {
duke@435 1281 _head->del_req(i);
duke@435 1282 }
duke@435 1283 }
duke@435 1284 // Transform landing pad
duke@435 1285 igvn.register_new_node_with_optimizer(landing_pad, _head);
duke@435 1286 // Insert landing pad into the header
duke@435 1287 _head->add_req(landing_pad);
duke@435 1288 }
duke@435 1289
duke@435 1290 //------------------------------split_outer_loop-------------------------------
duke@435 1291 // Split out the outermost loop from this shared header.
duke@435 1292 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
duke@435 1293 PhaseIterGVN &igvn = phase->_igvn;
duke@435 1294
duke@435 1295 // Find index of outermost loop; it should also be my tail.
duke@435 1296 uint outer_idx = 1;
duke@435 1297 while( _head->in(outer_idx) != _tail ) outer_idx++;
duke@435 1298
duke@435 1299 // Make a LoopNode for the outermost loop.
duke@435 1300 Node *ctl = _head->in(LoopNode::EntryControl);
kvn@4115 1301 Node *outer = new (phase->C) LoopNode( ctl, _head->in(outer_idx) );
duke@435 1302 outer = igvn.register_new_node_with_optimizer(outer, _head);
duke@435 1303 phase->set_created_loop_node();
kvn@2727 1304
duke@435 1305 // Outermost loop falls into '_head' loop
kvn@3043 1306 _head->set_req(LoopNode::EntryControl, outer);
duke@435 1307 _head->del_req(outer_idx);
duke@435 1308 // Split all the Phis up between '_head' loop and 'outer' loop.
duke@435 1309 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
duke@435 1310 Node *out = _head->fast_out(j);
duke@435 1311 if( out->is_Phi() ) {
duke@435 1312 PhiNode *old_phi = out->as_Phi();
duke@435 1313 assert( old_phi->region() == _head, "" );
duke@435 1314 Node *phi = PhiNode::make_blank(outer, old_phi);
duke@435 1315 phi->init_req(LoopNode::EntryControl, old_phi->in(LoopNode::EntryControl));
duke@435 1316 phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
duke@435 1317 phi = igvn.register_new_node_with_optimizer(phi, old_phi);
duke@435 1318 // Make old Phi point to new Phi on the fall-in path
kvn@3847 1319 igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
duke@435 1320 old_phi->del_req(outer_idx);
duke@435 1321 }
duke@435 1322 }
duke@435 1323
duke@435 1324 // Use the new loop head instead of the old shared one
duke@435 1325 _head = outer;
duke@435 1326 phase->set_loop(_head, this);
duke@435 1327 }
duke@435 1328
duke@435 1329 //------------------------------fix_parent-------------------------------------
duke@435 1330 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
duke@435 1331 loop->_parent = parent;
duke@435 1332 if( loop->_child ) fix_parent( loop->_child, loop );
duke@435 1333 if( loop->_next ) fix_parent( loop->_next , parent );
duke@435 1334 }
duke@435 1335
duke@435 1336 //------------------------------estimate_path_freq-----------------------------
duke@435 1337 static float estimate_path_freq( Node *n ) {
duke@435 1338 // Try to extract some path frequency info
duke@435 1339 IfNode *iff;
duke@435 1340 for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
duke@435 1341 uint nop = n->Opcode();
duke@435 1342 if( nop == Op_SafePoint ) { // Skip any safepoint
duke@435 1343 n = n->in(0);
duke@435 1344 continue;
duke@435 1345 }
duke@435 1346 if( nop == Op_CatchProj ) { // Get count from a prior call
duke@435 1347 // Assume call does not always throw exceptions: means the call-site
duke@435 1348 // count is also the frequency of the fall-through path.
duke@435 1349 assert( n->is_CatchProj(), "" );
duke@435 1350 if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
duke@435 1351 return 0.0f; // Assume call exception path is rare
duke@435 1352 Node *call = n->in(0)->in(0)->in(0);
duke@435 1353 assert( call->is_Call(), "expect a call here" );
duke@435 1354 const JVMState *jvms = ((CallNode*)call)->jvms();
duke@435 1355 ciMethodData* methodData = jvms->method()->method_data();
duke@435 1356 if (!methodData->is_mature()) return 0.0f; // No call-site data
duke@435 1357 ciProfileData* data = methodData->bci_to_data(jvms->bci());
duke@435 1358 if ((data == NULL) || !data->is_CounterData()) {
duke@435 1359 // no call profile available, try call's control input
duke@435 1360 n = n->in(0);
duke@435 1361 continue;
duke@435 1362 }
duke@435 1363 return data->as_CounterData()->count()/FreqCountInvocations;
duke@435 1364 }
duke@435 1365 // See if there's a gating IF test
duke@435 1366 Node *n_c = n->in(0);
duke@435 1367 if( !n_c->is_If() ) break; // No estimate available
duke@435 1368 iff = n_c->as_If();
duke@435 1369 if( iff->_fcnt != COUNT_UNKNOWN ) // Have a valid count?
duke@435 1370 // Compute how much count comes on this path
duke@435 1371 return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
duke@435 1372 // Have no count info. Skip dull uncommon-trap like branches.
duke@435 1373 if( (nop == Op_IfTrue && iff->_prob < PROB_LIKELY_MAG(5)) ||
duke@435 1374 (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
duke@435 1375 break;
duke@435 1376 // Skip through never-taken branch; look for a real loop exit.
duke@435 1377 n = iff->in(0);
duke@435 1378 }
duke@435 1379 return 0.0f; // No estimate available
duke@435 1380 }
duke@435 1381
duke@435 1382 //------------------------------merge_many_backedges---------------------------
duke@435 1383 // Merge all the backedges from the shared header into a private Region.
duke@435 1384 // Feed that region as the one backedge to this loop.
duke@435 1385 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
duke@435 1386 uint i;
duke@435 1387
duke@435 1388 // Scan for the top 2 hottest backedges
duke@435 1389 float hotcnt = 0.0f;
duke@435 1390 float warmcnt = 0.0f;
duke@435 1391 uint hot_idx = 0;
duke@435 1392 // Loop starts at 2 because slot 1 is the fall-in path
duke@435 1393 for( i = 2; i < _head->req(); i++ ) {
duke@435 1394 float cnt = estimate_path_freq(_head->in(i));
duke@435 1395 if( cnt > hotcnt ) { // Grab hottest path
duke@435 1396 warmcnt = hotcnt;
duke@435 1397 hotcnt = cnt;
duke@435 1398 hot_idx = i;
duke@435 1399 } else if( cnt > warmcnt ) { // And 2nd hottest path
duke@435 1400 warmcnt = cnt;
duke@435 1401 }
duke@435 1402 }
duke@435 1403
duke@435 1404 // See if the hottest backedge is worthy of being an inner loop
duke@435 1405 // by being much hotter than the next hottest backedge.
duke@435 1406 if( hotcnt <= 0.0001 ||
duke@435 1407 hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
duke@435 1408
duke@435 1409 // Peel out the backedges into a private merge point; peel
duke@435 1410 // them all except optionally hot_idx.
duke@435 1411 PhaseIterGVN &igvn = phase->_igvn;
duke@435 1412
duke@435 1413 Node *hot_tail = NULL;
duke@435 1414 // Make a Region for the merge point
kvn@4115 1415 Node *r = new (phase->C) RegionNode(1);
duke@435 1416 for( i = 2; i < _head->req(); i++ ) {
duke@435 1417 if( i != hot_idx )
duke@435 1418 r->add_req( _head->in(i) );
duke@435 1419 else hot_tail = _head->in(i);
duke@435 1420 }
duke@435 1421 igvn.register_new_node_with_optimizer(r, _head);
duke@435 1422 // Plug region into end of loop _head, followed by hot_tail
duke@435 1423 while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
duke@435 1424 _head->set_req(2, r);
duke@435 1425 if( hot_idx ) _head->add_req(hot_tail);
duke@435 1426
duke@435 1427 // Split all the Phis up between '_head' loop and the Region 'r'
duke@435 1428 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
duke@435 1429 Node *out = _head->fast_out(j);
duke@435 1430 if( out->is_Phi() ) {
duke@435 1431 PhiNode* n = out->as_Phi();
duke@435 1432 igvn.hash_delete(n); // Delete from hash before hacking edges
duke@435 1433 Node *hot_phi = NULL;
kvn@4115 1434 Node *phi = new (phase->C) PhiNode(r, n->type(), n->adr_type());
duke@435 1435 // Check all inputs for the ones to peel out
duke@435 1436 uint j = 1;
duke@435 1437 for( uint i = 2; i < n->req(); i++ ) {
duke@435 1438 if( i != hot_idx )
duke@435 1439 phi->set_req( j++, n->in(i) );
duke@435 1440 else hot_phi = n->in(i);
duke@435 1441 }
duke@435 1442 // Register the phi but do not transform until whole place transforms
duke@435 1443 igvn.register_new_node_with_optimizer(phi, n);
duke@435 1444 // Add the merge phi to the old Phi
duke@435 1445 while( n->req() > 3 ) n->del_req( n->req()-1 );
duke@435 1446 n->set_req(2, phi);
duke@435 1447 if( hot_idx ) n->add_req(hot_phi);
duke@435 1448 }
duke@435 1449 }
duke@435 1450
duke@435 1451
duke@435 1452 // Insert a new IdealLoopTree inserted below me. Turn it into a clone
duke@435 1453 // of self loop tree. Turn self into a loop headed by _head and with
duke@435 1454 // tail being the new merge point.
duke@435 1455 IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
duke@435 1456 phase->set_loop(_tail,ilt); // Adjust tail
duke@435 1457 _tail = r; // Self's tail is new merge point
duke@435 1458 phase->set_loop(r,this);
duke@435 1459 ilt->_child = _child; // New guy has my children
duke@435 1460 _child = ilt; // Self has new guy as only child
duke@435 1461 ilt->_parent = this; // new guy has self for parent
duke@435 1462 ilt->_nest = _nest; // Same nesting depth (for now)
duke@435 1463
duke@435 1464 // Starting with 'ilt', look for child loop trees using the same shared
duke@435 1465 // header. Flatten these out; they will no longer be loops in the end.
duke@435 1466 IdealLoopTree **pilt = &_child;
duke@435 1467 while( ilt ) {
duke@435 1468 if( ilt->_head == _head ) {
duke@435 1469 uint i;
duke@435 1470 for( i = 2; i < _head->req(); i++ )
duke@435 1471 if( _head->in(i) == ilt->_tail )
duke@435 1472 break; // Still a loop
duke@435 1473 if( i == _head->req() ) { // No longer a loop
duke@435 1474 // Flatten ilt. Hang ilt's "_next" list from the end of
duke@435 1475 // ilt's '_child' list. Move the ilt's _child up to replace ilt.
duke@435 1476 IdealLoopTree **cp = &ilt->_child;
duke@435 1477 while( *cp ) cp = &(*cp)->_next; // Find end of child list
duke@435 1478 *cp = ilt->_next; // Hang next list at end of child list
duke@435 1479 *pilt = ilt->_child; // Move child up to replace ilt
duke@435 1480 ilt->_head = NULL; // Flag as a loop UNIONED into parent
duke@435 1481 ilt = ilt->_child; // Repeat using new ilt
duke@435 1482 continue; // do not advance over ilt->_child
duke@435 1483 }
duke@435 1484 assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
duke@435 1485 phase->set_loop(_head,ilt);
duke@435 1486 }
duke@435 1487 pilt = &ilt->_child; // Advance to next
duke@435 1488 ilt = *pilt;
duke@435 1489 }
duke@435 1490
duke@435 1491 if( _child ) fix_parent( _child, this );
duke@435 1492 }
duke@435 1493
duke@435 1494 //------------------------------beautify_loops---------------------------------
duke@435 1495 // Split shared headers and insert loop landing pads.
duke@435 1496 // Insert a LoopNode to replace the RegionNode.
duke@435 1497 // Return TRUE if loop tree is structurally changed.
duke@435 1498 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
duke@435 1499 bool result = false;
duke@435 1500 // Cache parts in locals for easy
duke@435 1501 PhaseIterGVN &igvn = phase->_igvn;
duke@435 1502
duke@435 1503 igvn.hash_delete(_head); // Yank from hash before hacking edges
duke@435 1504
duke@435 1505 // Check for multiple fall-in paths. Peel off a landing pad if need be.
duke@435 1506 int fall_in_cnt = 0;
duke@435 1507 for( uint i = 1; i < _head->req(); i++ )
duke@435 1508 if( !phase->is_member( this, _head->in(i) ) )
duke@435 1509 fall_in_cnt++;
duke@435 1510 assert( fall_in_cnt, "at least 1 fall-in path" );
duke@435 1511 if( fall_in_cnt > 1 ) // Need a loop landing pad to merge fall-ins
duke@435 1512 split_fall_in( phase, fall_in_cnt );
duke@435 1513
duke@435 1514 // Swap inputs to the _head and all Phis to move the fall-in edge to
duke@435 1515 // the left.
duke@435 1516 fall_in_cnt = 1;
duke@435 1517 while( phase->is_member( this, _head->in(fall_in_cnt) ) )
duke@435 1518 fall_in_cnt++;
duke@435 1519 if( fall_in_cnt > 1 ) {
duke@435 1520 // Since I am just swapping inputs I do not need to update def-use info
duke@435 1521 Node *tmp = _head->in(1);
duke@435 1522 _head->set_req( 1, _head->in(fall_in_cnt) );
duke@435 1523 _head->set_req( fall_in_cnt, tmp );
duke@435 1524 // Swap also all Phis
duke@435 1525 for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
duke@435 1526 Node* phi = _head->fast_out(i);
duke@435 1527 if( phi->is_Phi() ) {
duke@435 1528 igvn.hash_delete(phi); // Yank from hash before hacking edges
duke@435 1529 tmp = phi->in(1);
duke@435 1530 phi->set_req( 1, phi->in(fall_in_cnt) );
duke@435 1531 phi->set_req( fall_in_cnt, tmp );
duke@435 1532 }
duke@435 1533 }
duke@435 1534 }
duke@435 1535 assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
duke@435 1536 assert( phase->is_member( this, _head->in(2) ), "right edge is loop" );
duke@435 1537
duke@435 1538 // If I am a shared header (multiple backedges), peel off the many
duke@435 1539 // backedges into a private merge point and use the merge point as
duke@435 1540 // the one true backedge.
fyang@9922 1541 if (_head->req() > 3) {
kvn@2727 1542 // Merge the many backedges into a single backedge but leave
kvn@2727 1543 // the hottest backedge as separate edge for the following peel.
fyang@9922 1544 if (!_irreducible) {
fyang@9922 1545 merge_many_backedges( phase );
fyang@9922 1546 }
fyang@9922 1547
fyang@9922 1548 // When recursively beautify my children, split_fall_in can change
fyang@9922 1549 // loop tree structure when I am an irreducible loop. Then the head
fyang@9922 1550 // of my children has a req() not bigger than 3. Here we need to set
fyang@9922 1551 // result to true to catch that case in order to tell the caller to
fyang@9922 1552 // rebuild loop tree. See issue JDK-8244407 for details.
duke@435 1553 result = true;
duke@435 1554 }
duke@435 1555
kvn@2727 1556 // If I have one hot backedge, peel off myself loop.
duke@435 1557 // I better be the outermost loop.
kvn@6657 1558 if (_head->req() > 3 && !_irreducible) {
duke@435 1559 split_outer_loop( phase );
duke@435 1560 result = true;
duke@435 1561
kvn@6657 1562 } else if (!_head->is_Loop() && !_irreducible) {
duke@435 1563 // Make a new LoopNode to replace the old loop head
kvn@4115 1564 Node *l = new (phase->C) LoopNode( _head->in(1), _head->in(2) );
duke@435 1565 l = igvn.register_new_node_with_optimizer(l, _head);
duke@435 1566 phase->set_created_loop_node();
duke@435 1567 // Go ahead and replace _head
kvn@1976 1568 phase->_igvn.replace_node( _head, l );
duke@435 1569 _head = l;
duke@435 1570 phase->set_loop(_head, this);
duke@435 1571 }
duke@435 1572
duke@435 1573 // Now recursively beautify nested loops
duke@435 1574 if( _child ) result |= _child->beautify_loops( phase );
duke@435 1575 if( _next ) result |= _next ->beautify_loops( phase );
duke@435 1576 return result;
duke@435 1577 }
duke@435 1578
duke@435 1579 //------------------------------allpaths_check_safepts----------------------------
duke@435 1580 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
duke@435 1581 // encountered. Helper for check_safepts.
duke@435 1582 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
duke@435 1583 assert(stack.size() == 0, "empty stack");
duke@435 1584 stack.push(_tail);
duke@435 1585 visited.Clear();
duke@435 1586 visited.set(_tail->_idx);
duke@435 1587 while (stack.size() > 0) {
duke@435 1588 Node* n = stack.pop();
duke@435 1589 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
duke@435 1590 // Terminate this path
duke@435 1591 } else if (n->Opcode() == Op_SafePoint) {
duke@435 1592 if (_phase->get_loop(n) != this) {
duke@435 1593 if (_required_safept == NULL) _required_safept = new Node_List();
duke@435 1594 _required_safept->push(n); // save the one closest to the tail
duke@435 1595 }
duke@435 1596 // Terminate this path
duke@435 1597 } else {
duke@435 1598 uint start = n->is_Region() ? 1 : 0;
duke@435 1599 uint end = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
duke@435 1600 for (uint i = start; i < end; i++) {
duke@435 1601 Node* in = n->in(i);
duke@435 1602 assert(in->is_CFG(), "must be");
duke@435 1603 if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
duke@435 1604 stack.push(in);
duke@435 1605 }
duke@435 1606 }
duke@435 1607 }
duke@435 1608 }
duke@435 1609 }
duke@435 1610
duke@435 1611 //------------------------------check_safepts----------------------------
duke@435 1612 // Given dominators, try to find loops with calls that must always be
duke@435 1613 // executed (call dominates loop tail). These loops do not need non-call
duke@435 1614 // safepoints (ncsfpt).
duke@435 1615 //
duke@435 1616 // A complication is that a safepoint in a inner loop may be needed
duke@435 1617 // by an outer loop. In the following, the inner loop sees it has a
duke@435 1618 // call (block 3) on every path from the head (block 2) to the
duke@435 1619 // backedge (arc 3->2). So it deletes the ncsfpt (non-call safepoint)
duke@435 1620 // in block 2, _but_ this leaves the outer loop without a safepoint.
duke@435 1621 //
duke@435 1622 // entry 0
duke@435 1623 // |
duke@435 1624 // v
duke@435 1625 // outer 1,2 +->1
duke@435 1626 // | |
duke@435 1627 // | v
duke@435 1628 // | 2<---+ ncsfpt in 2
duke@435 1629 // |_/|\ |
duke@435 1630 // | v |
duke@435 1631 // inner 2,3 / 3 | call in 3
duke@435 1632 // / | |
duke@435 1633 // v +--+
duke@435 1634 // exit 4
duke@435 1635 //
duke@435 1636 //
duke@435 1637 // This method creates a list (_required_safept) of ncsfpt nodes that must
duke@435 1638 // be protected is created for each loop. When a ncsfpt maybe deleted, it
duke@435 1639 // is first looked for in the lists for the outer loops of the current loop.
duke@435 1640 //
duke@435 1641 // The insights into the problem:
duke@435 1642 // A) counted loops are okay
duke@435 1643 // B) innermost loops are okay (only an inner loop can delete
duke@435 1644 // a ncsfpt needed by an outer loop)
duke@435 1645 // C) a loop is immune from an inner loop deleting a safepoint
duke@435 1646 // if the loop has a call on the idom-path
duke@435 1647 // D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
duke@435 1648 // idom-path that is not in a nested loop
duke@435 1649 // E) otherwise, an ncsfpt on the idom-path that is nested in an inner
duke@435 1650 // loop needs to be prevented from deletion by an inner loop
duke@435 1651 //
duke@435 1652 // There are two analyses:
duke@435 1653 // 1) The first, and cheaper one, scans the loop body from
duke@435 1654 // tail to head following the idom (immediate dominator)
duke@435 1655 // chain, looking for the cases (C,D,E) above.
duke@435 1656 // Since inner loops are scanned before outer loops, there is summary
duke@435 1657 // information about inner loops. Inner loops can be skipped over
duke@435 1658 // when the tail of an inner loop is encountered.
duke@435 1659 //
duke@435 1660 // 2) The second, invoked if the first fails to find a call or ncsfpt on
duke@435 1661 // the idom path (which is rare), scans all predecessor control paths
duke@435 1662 // from the tail to the head, terminating a path when a call or sfpt
duke@435 1663 // is encountered, to find the ncsfpt's that are closest to the tail.
duke@435 1664 //
duke@435 1665 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
duke@435 1666 // Bottom up traversal
duke@435 1667 IdealLoopTree* ch = _child;
kvn@4023 1668 if (_child) _child->check_safepts(visited, stack);
kvn@4023 1669 if (_next) _next ->check_safepts(visited, stack);
duke@435 1670
duke@435 1671 if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
duke@435 1672 bool has_call = false; // call on dom-path
duke@435 1673 bool has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
duke@435 1674 Node* nonlocal_ncsfpt = NULL; // ncsfpt on dom-path at a deeper depth
duke@435 1675 // Scan the dom-path nodes from tail to head
duke@435 1676 for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
duke@435 1677 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
duke@435 1678 has_call = true;
duke@435 1679 _has_sfpt = 1; // Then no need for a safept!
duke@435 1680 break;
duke@435 1681 } else if (n->Opcode() == Op_SafePoint) {
duke@435 1682 if (_phase->get_loop(n) == this) {
duke@435 1683 has_local_ncsfpt = true;
duke@435 1684 break;
duke@435 1685 }
duke@435 1686 if (nonlocal_ncsfpt == NULL) {
duke@435 1687 nonlocal_ncsfpt = n; // save the one closest to the tail
duke@435 1688 }
duke@435 1689 } else {
duke@435 1690 IdealLoopTree* nlpt = _phase->get_loop(n);
duke@435 1691 if (this != nlpt) {
duke@435 1692 // If at an inner loop tail, see if the inner loop has already
duke@435 1693 // recorded seeing a call on the dom-path (and stop.) If not,
duke@435 1694 // jump to the head of the inner loop.
duke@435 1695 assert(is_member(nlpt), "nested loop");
duke@435 1696 Node* tail = nlpt->_tail;
duke@435 1697 if (tail->in(0)->is_If()) tail = tail->in(0);
duke@435 1698 if (n == tail) {
duke@435 1699 // If inner loop has call on dom-path, so does outer loop
duke@435 1700 if (nlpt->_has_sfpt) {
duke@435 1701 has_call = true;
duke@435 1702 _has_sfpt = 1;
duke@435 1703 break;
duke@435 1704 }
duke@435 1705 // Skip to head of inner loop
duke@435 1706 assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
duke@435 1707 n = nlpt->_head;
duke@435 1708 }
duke@435 1709 }
duke@435 1710 }
duke@435 1711 }
duke@435 1712 // Record safept's that this loop needs preserved when an
duke@435 1713 // inner loop attempts to delete it's safepoints.
duke@435 1714 if (_child != NULL && !has_call && !has_local_ncsfpt) {
duke@435 1715 if (nonlocal_ncsfpt != NULL) {
duke@435 1716 if (_required_safept == NULL) _required_safept = new Node_List();
duke@435 1717 _required_safept->push(nonlocal_ncsfpt);
duke@435 1718 } else {
duke@435 1719 // Failed to find a suitable safept on the dom-path. Now use
duke@435 1720 // an all paths walk from tail to head, looking for safepoints to preserve.
duke@435 1721 allpaths_check_safepts(visited, stack);
duke@435 1722 }
duke@435 1723 }
duke@435 1724 }
duke@435 1725 }
duke@435 1726
duke@435 1727 //---------------------------is_deleteable_safept----------------------------
duke@435 1728 // Is safept not required by an outer loop?
duke@435 1729 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
duke@435 1730 assert(sfpt->Opcode() == Op_SafePoint, "");
duke@435 1731 IdealLoopTree* lp = get_loop(sfpt)->_parent;
duke@435 1732 while (lp != NULL) {
duke@435 1733 Node_List* sfpts = lp->_required_safept;
duke@435 1734 if (sfpts != NULL) {
duke@435 1735 for (uint i = 0; i < sfpts->size(); i++) {
duke@435 1736 if (sfpt == sfpts->at(i))
duke@435 1737 return false;
duke@435 1738 }
duke@435 1739 }
duke@435 1740 lp = lp->_parent;
duke@435 1741 }
duke@435 1742 return true;
duke@435 1743 }
duke@435 1744
kvn@2665 1745 //---------------------------replace_parallel_iv-------------------------------
kvn@2665 1746 // Replace parallel induction variable (parallel to trip counter)
kvn@2665 1747 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
kvn@2665 1748 assert(loop->_head->is_CountedLoop(), "");
kvn@2665 1749 CountedLoopNode *cl = loop->_head->as_CountedLoop();
kvn@3048 1750 if (!cl->is_valid_counted_loop())
kvn@3048 1751 return; // skip malformed counted loop
kvn@2665 1752 Node *incr = cl->incr();
kvn@2665 1753 if (incr == NULL)
kvn@2665 1754 return; // Dead loop?
kvn@2665 1755 Node *init = cl->init_trip();
kvn@2665 1756 Node *phi = cl->phi();
kvn@2665 1757 int stride_con = cl->stride_con();
kvn@2665 1758
kvn@2665 1759 // Visit all children, looking for Phis
kvn@2665 1760 for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
kvn@2665 1761 Node *out = cl->out(i);
kvn@2665 1762 // Look for other phis (secondary IVs). Skip dead ones
kvn@2665 1763 if (!out->is_Phi() || out == phi || !has_node(out))
kvn@2665 1764 continue;
kvn@2665 1765 PhiNode* phi2 = out->as_Phi();
kvn@2665 1766 Node *incr2 = phi2->in( LoopNode::LoopBackControl );
kvn@2665 1767 // Look for induction variables of the form: X += constant
kvn@2665 1768 if (phi2->region() != loop->_head ||
kvn@2665 1769 incr2->req() != 3 ||
kvn@2665 1770 incr2->in(1) != phi2 ||
kvn@2665 1771 incr2 == incr ||
kvn@2665 1772 incr2->Opcode() != Op_AddI ||
kvn@2665 1773 !incr2->in(2)->is_Con())
kvn@2665 1774 continue;
kvn@2665 1775
kvn@2665 1776 // Check for parallel induction variable (parallel to trip counter)
kvn@2665 1777 // via an affine function. In particular, count-down loops with
kvn@2665 1778 // count-up array indices are common. We only RCE references off
kvn@2665 1779 // the trip-counter, so we need to convert all these to trip-counter
kvn@2665 1780 // expressions.
kvn@2665 1781 Node *init2 = phi2->in( LoopNode::EntryControl );
kvn@2665 1782 int stride_con2 = incr2->in(2)->get_int();
kvn@2665 1783
dbuck@8895 1784 // The ratio of the two strides cannot be represented as an int
dbuck@8895 1785 // if stride_con2 is min_int and stride_con is -1.
dbuck@8895 1786 if (stride_con2 == min_jint && stride_con == -1) {
dbuck@8895 1787 continue;
dbuck@8895 1788 }
dbuck@8895 1789
kvn@2665 1790 // The general case here gets a little tricky. We want to find the
kvn@2665 1791 // GCD of all possible parallel IV's and make a new IV using this
kvn@2665 1792 // GCD for the loop. Then all possible IVs are simple multiples of
kvn@2665 1793 // the GCD. In practice, this will cover very few extra loops.
kvn@2665 1794 // Instead we require 'stride_con2' to be a multiple of 'stride_con',
kvn@2665 1795 // where +/-1 is the common case, but other integer multiples are
kvn@2665 1796 // also easy to handle.
kvn@2665 1797 int ratio_con = stride_con2/stride_con;
kvn@2665 1798
kvn@2665 1799 if ((ratio_con * stride_con) == stride_con2) { // Check for exact
kvn@3135 1800 #ifndef PRODUCT
kvn@3135 1801 if (TraceLoopOpts) {
kvn@3135 1802 tty->print("Parallel IV: %d ", phi2->_idx);
kvn@3135 1803 loop->dump_head();
kvn@3135 1804 }
kvn@3135 1805 #endif
kvn@2665 1806 // Convert to using the trip counter. The parallel induction
kvn@2665 1807 // variable differs from the trip counter by a loop-invariant
kvn@2665 1808 // amount, the difference between their respective initial values.
kvn@2665 1809 // It is scaled by the 'ratio_con'.
kvn@2665 1810 Node* ratio = _igvn.intcon(ratio_con);
kvn@2665 1811 set_ctrl(ratio, C->root());
kvn@4115 1812 Node* ratio_init = new (C) MulINode(init, ratio);
kvn@3135 1813 _igvn.register_new_node_with_optimizer(ratio_init, init);
kvn@3135 1814 set_early_ctrl(ratio_init);
kvn@4115 1815 Node* diff = new (C) SubINode(init2, ratio_init);
kvn@3135 1816 _igvn.register_new_node_with_optimizer(diff, init2);
kvn@3135 1817 set_early_ctrl(diff);
kvn@4115 1818 Node* ratio_idx = new (C) MulINode(phi, ratio);
kvn@3135 1819 _igvn.register_new_node_with_optimizer(ratio_idx, phi);
kvn@3135 1820 set_ctrl(ratio_idx, cl);
kvn@4115 1821 Node* add = new (C) AddINode(ratio_idx, diff);
kvn@3135 1822 _igvn.register_new_node_with_optimizer(add);
kvn@3135 1823 set_ctrl(add, cl);
kvn@2665 1824 _igvn.replace_node( phi2, add );
kvn@2665 1825 // Sometimes an induction variable is unused
kvn@2665 1826 if (add->outcnt() == 0) {
kvn@2665 1827 _igvn.remove_dead_node(add);
kvn@2665 1828 }
kvn@2665 1829 --i; // deleted this phi; rescan starting with next position
kvn@2665 1830 continue;
kvn@2665 1831 }
kvn@2665 1832 }
kvn@2665 1833 }
kvn@2665 1834
aeriksso@8195 1835 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
aeriksso@8195 1836 Node* keep = NULL;
aeriksso@8195 1837 if (keep_one) {
vlivanov@8196 1838 // Look for a safepoint on the idom-path.
aeriksso@8195 1839 for (Node* i = tail(); i != _head; i = phase->idom(i)) {
aeriksso@8195 1840 if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
aeriksso@8195 1841 keep = i;
aeriksso@8195 1842 break; // Found one
aeriksso@8195 1843 }
aeriksso@8195 1844 }
aeriksso@8195 1845 }
aeriksso@8195 1846
vlivanov@8196 1847 // Don't remove any safepoints if it is requested to keep a single safepoint and
vlivanov@8196 1848 // no safepoint was found on idom-path. It is not safe to remove any safepoint
vlivanov@8196 1849 // in this case since there's no safepoint dominating all paths in the loop body.
vlivanov@8196 1850 bool prune = !keep_one || keep != NULL;
vlivanov@8196 1851
aeriksso@8195 1852 // Delete other safepoints in this loop.
aeriksso@8195 1853 Node_List* sfpts = _safepts;
vlivanov@8196 1854 if (prune && sfpts != NULL) {
aeriksso@8195 1855 assert(keep == NULL || keep->Opcode() == Op_SafePoint, "not safepoint");
aeriksso@8195 1856 for (uint i = 0; i < sfpts->size(); i++) {
aeriksso@8195 1857 Node* n = sfpts->at(i);
aeriksso@8195 1858 assert(phase->get_loop(n) == this, "");
aeriksso@8195 1859 if (n != keep && phase->is_deleteable_safept(n)) {
aeriksso@8195 1860 phase->lazy_replace(n, n->in(TypeFunc::Control));
aeriksso@8195 1861 }
aeriksso@8195 1862 }
aeriksso@8195 1863 }
aeriksso@8195 1864 }
aeriksso@8195 1865
duke@435 1866 //------------------------------counted_loop-----------------------------------
duke@435 1867 // Convert to counted loops where possible
duke@435 1868 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
duke@435 1869
duke@435 1870 // For grins, set the inner-loop flag here
kvn@2665 1871 if (!_child) {
kvn@2665 1872 if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
duke@435 1873 }
duke@435 1874
kvn@2665 1875 if (_head->is_CountedLoop() ||
kvn@2665 1876 phase->is_counted_loop(_head, this)) {
aeriksso@8195 1877
aeriksso@8195 1878 if (!UseCountedLoopSafepoints) {
aeriksso@8195 1879 // Indicate we do not need a safepoint here
aeriksso@8195 1880 _has_sfpt = 1;
kvn@4023 1881 }
duke@435 1882
aeriksso@8195 1883 // Remove safepoints
aeriksso@8195 1884 bool keep_one_sfpt = !(_has_call || _has_sfpt);
aeriksso@8195 1885 remove_safepoints(phase, keep_one_sfpt);
aeriksso@8195 1886
kvn@2665 1887 // Look for induction variables
kvn@2665 1888 phase->replace_parallel_iv(this);
duke@435 1889
duke@435 1890 } else if (_parent != NULL && !_irreducible) {
aeriksso@8195 1891 // Not a counted loop. Keep one safepoint.
aeriksso@8195 1892 bool keep_one_sfpt = true;
aeriksso@8195 1893 remove_safepoints(phase, keep_one_sfpt);
duke@435 1894 }
duke@435 1895
duke@435 1896 // Recursively
kvn@2665 1897 if (_child) _child->counted_loop( phase );
kvn@2665 1898 if (_next) _next ->counted_loop( phase );
duke@435 1899 }
duke@435 1900
duke@435 1901 #ifndef PRODUCT
duke@435 1902 //------------------------------dump_head--------------------------------------
duke@435 1903 // Dump 1 liner for loop header info
duke@435 1904 void IdealLoopTree::dump_head( ) const {
kvn@2665 1905 for (uint i=0; i<_nest; i++)
duke@435 1906 tty->print(" ");
duke@435 1907 tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
kvn@2665 1908 if (_irreducible) tty->print(" IRREDUCIBLE");
kvn@2877 1909 Node* entry = _head->in(LoopNode::EntryControl);
kvn@2877 1910 if (LoopLimitCheck) {
kvn@2877 1911 Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
kvn@2877 1912 if (predicate != NULL ) {
kvn@2877 1913 tty->print(" limit_check");
kvn@2877 1914 entry = entry->in(0)->in(0);
kvn@2877 1915 }
kvn@2877 1916 }
kvn@2665 1917 if (UseLoopPredicate) {
kvn@2877 1918 entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
kvn@2727 1919 if (entry != NULL) {
kvn@2665 1920 tty->print(" predicated");
kvn@2665 1921 }
kvn@2665 1922 }
kvn@2665 1923 if (_head->is_CountedLoop()) {
duke@435 1924 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 1925 tty->print(" counted");
kvn@2747 1926
kvn@2747 1927 Node* init_n = cl->init_trip();
kvn@2747 1928 if (init_n != NULL && init_n->is_Con())
kvn@2747 1929 tty->print(" [%d,", cl->init_trip()->get_int());
kvn@2747 1930 else
kvn@2747 1931 tty->print(" [int,");
kvn@2747 1932 Node* limit_n = cl->limit();
kvn@2747 1933 if (limit_n != NULL && limit_n->is_Con())
kvn@2747 1934 tty->print("%d),", cl->limit()->get_int());
kvn@2747 1935 else
kvn@2747 1936 tty->print("int),");
kvn@2747 1937 int stride_con = cl->stride_con();
kvn@2747 1938 if (stride_con > 0) tty->print("+");
kvn@2747 1939 tty->print("%d", stride_con);
kvn@2747 1940
kvn@4001 1941 tty->print(" (%d iters) ", (int)cl->profile_trip_cnt());
kvn@4001 1942
kvn@2665 1943 if (cl->is_pre_loop ()) tty->print(" pre" );
kvn@2665 1944 if (cl->is_main_loop()) tty->print(" main");
kvn@2665 1945 if (cl->is_post_loop()) tty->print(" post");
duke@435 1946 }
vlivanov@8196 1947 if (_has_call) tty->print(" has_call");
vlivanov@8196 1948 if (_has_sfpt) tty->print(" has_sfpt");
vlivanov@8196 1949 if (_rce_candidate) tty->print(" rce");
vlivanov@8196 1950 if (_safepts != NULL && _safepts->size() > 0) {
vlivanov@8196 1951 tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
vlivanov@8196 1952 }
vlivanov@8196 1953 if (_required_safept != NULL && _required_safept->size() > 0) {
vlivanov@8196 1954 tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
vlivanov@8196 1955 }
duke@435 1956 tty->cr();
duke@435 1957 }
duke@435 1958
duke@435 1959 //------------------------------dump-------------------------------------------
duke@435 1960 // Dump loops by loop tree
duke@435 1961 void IdealLoopTree::dump( ) const {
duke@435 1962 dump_head();
kvn@2665 1963 if (_child) _child->dump();
kvn@2665 1964 if (_next) _next ->dump();
duke@435 1965 }
duke@435 1966
duke@435 1967 #endif
duke@435 1968
never@802 1969 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
never@802 1970 if (loop == root) {
never@802 1971 if (loop->_child != NULL) {
never@802 1972 log->begin_head("loop_tree");
never@802 1973 log->end_head();
never@802 1974 if( loop->_child ) log_loop_tree(root, loop->_child, log);
never@802 1975 log->tail("loop_tree");
never@802 1976 assert(loop->_next == NULL, "what?");
never@802 1977 }
never@802 1978 } else {
never@802 1979 Node* head = loop->_head;
never@802 1980 log->begin_head("loop");
never@802 1981 log->print(" idx='%d' ", head->_idx);
never@802 1982 if (loop->_irreducible) log->print("irreducible='1' ");
never@802 1983 if (head->is_Loop()) {
never@802 1984 if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
never@802 1985 if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
never@802 1986 }
never@802 1987 if (head->is_CountedLoop()) {
never@802 1988 CountedLoopNode* cl = head->as_CountedLoop();
never@802 1989 if (cl->is_pre_loop()) log->print("pre_loop='%d' ", cl->main_idx());
never@802 1990 if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
never@802 1991 if (cl->is_post_loop()) log->print("post_loop='%d' ", cl->main_idx());
never@802 1992 }
never@802 1993 log->end_head();
never@802 1994 if( loop->_child ) log_loop_tree(root, loop->_child, log);
never@802 1995 log->tail("loop");
never@802 1996 if( loop->_next ) log_loop_tree(root, loop->_next, log);
never@802 1997 }
never@802 1998 }
never@802 1999
cfang@1607 2000 //---------------------collect_potentially_useful_predicates-----------------------
cfang@1607 2001 // Helper function to collect potentially useful predicates to prevent them from
cfang@1607 2002 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
cfang@1607 2003 void PhaseIdealLoop::collect_potentially_useful_predicates(
cfang@1607 2004 IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
cfang@1607 2005 if (loop->_child) { // child
cfang@1607 2006 collect_potentially_useful_predicates(loop->_child, useful_predicates);
cfang@1607 2007 }
cfang@1607 2008
cfang@1607 2009 // self (only loops that we can apply loop predication may use their predicates)
kvn@2665 2010 if (loop->_head->is_Loop() &&
kvn@2665 2011 !loop->_irreducible &&
cfang@1607 2012 !loop->tail()->is_top()) {
kvn@2665 2013 LoopNode* lpn = loop->_head->as_Loop();
cfang@1607 2014 Node* entry = lpn->in(LoopNode::EntryControl);
kvn@2877 2015 Node* predicate_proj = find_predicate(entry); // loop_limit_check first
cfang@1607 2016 if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
kvn@2665 2017 assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
cfang@1607 2018 useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
kvn@2877 2019 entry = entry->in(0)->in(0);
kvn@2877 2020 }
kvn@2877 2021 predicate_proj = find_predicate(entry); // Predicate
kvn@2877 2022 if (predicate_proj != NULL ) {
kvn@2877 2023 useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
cfang@1607 2024 }
cfang@1607 2025 }
cfang@1607 2026
kvn@2665 2027 if (loop->_next) { // sibling
cfang@1607 2028 collect_potentially_useful_predicates(loop->_next, useful_predicates);
cfang@1607 2029 }
cfang@1607 2030 }
cfang@1607 2031
cfang@1607 2032 //------------------------eliminate_useless_predicates-----------------------------
cfang@1607 2033 // Eliminate all inserted predicates if they could not be used by loop predication.
kvn@2877 2034 // Note: it will also eliminates loop limits check predicate since it also uses
kvn@2877 2035 // Opaque1 node (see Parse::add_predicate()).
cfang@1607 2036 void PhaseIdealLoop::eliminate_useless_predicates() {
kvn@2665 2037 if (C->predicate_count() == 0)
kvn@2665 2038 return; // no predicate left
cfang@1607 2039
cfang@1607 2040 Unique_Node_List useful_predicates; // to store useful predicates
cfang@1607 2041 if (C->has_loops()) {
cfang@1607 2042 collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
cfang@1607 2043 }
cfang@1607 2044
cfang@1607 2045 for (int i = C->predicate_count(); i > 0; i--) {
cfang@1607 2046 Node * n = C->predicate_opaque1_node(i-1);
cfang@1607 2047 assert(n->Opcode() == Op_Opaque1, "must be");
cfang@1607 2048 if (!useful_predicates.member(n)) { // not in the useful list
cfang@1607 2049 _igvn.replace_node(n, n->in(1));
cfang@1607 2050 }
cfang@1607 2051 }
cfang@1607 2052 }
cfang@1607 2053
roland@4589 2054 //------------------------process_expensive_nodes-----------------------------
roland@4589 2055 // Expensive nodes have their control input set to prevent the GVN
roland@4589 2056 // from commoning them and as a result forcing the resulting node to
roland@4589 2057 // be in a more frequent path. Use CFG information here, to change the
roland@4589 2058 // control inputs so that some expensive nodes can be commoned while
roland@4589 2059 // not executed more frequently.
roland@4589 2060 bool PhaseIdealLoop::process_expensive_nodes() {
roland@4589 2061 assert(OptimizeExpensiveOps, "optimization off?");
roland@4589 2062
roland@4589 2063 // Sort nodes to bring similar nodes together
roland@4589 2064 C->sort_expensive_nodes();
roland@4589 2065
roland@4589 2066 bool progress = false;
roland@4589 2067
roland@4589 2068 for (int i = 0; i < C->expensive_count(); ) {
roland@4589 2069 Node* n = C->expensive_node(i);
roland@4589 2070 int start = i;
roland@4589 2071 // Find nodes similar to n
roland@4589 2072 i++;
roland@4589 2073 for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
roland@4589 2074 int end = i;
roland@4589 2075 // And compare them two by two
roland@4589 2076 for (int j = start; j < end; j++) {
roland@4589 2077 Node* n1 = C->expensive_node(j);
roland@4589 2078 if (is_node_unreachable(n1)) {
roland@4589 2079 continue;
roland@4589 2080 }
roland@4589 2081 for (int k = j+1; k < end; k++) {
roland@4589 2082 Node* n2 = C->expensive_node(k);
roland@4589 2083 if (is_node_unreachable(n2)) {
roland@4589 2084 continue;
roland@4589 2085 }
roland@4589 2086
roland@4589 2087 assert(n1 != n2, "should be pair of nodes");
roland@4589 2088
roland@4589 2089 Node* c1 = n1->in(0);
roland@4589 2090 Node* c2 = n2->in(0);
roland@4589 2091
roland@4589 2092 Node* parent_c1 = c1;
roland@4589 2093 Node* parent_c2 = c2;
roland@4589 2094
roland@4589 2095 // The call to get_early_ctrl_for_expensive() moves the
roland@4589 2096 // expensive nodes up but stops at loops that are in a if
roland@4589 2097 // branch. See whether we can exit the loop and move above the
roland@4589 2098 // If.
roland@4589 2099 if (c1->is_Loop()) {
roland@4589 2100 parent_c1 = c1->in(1);
roland@4589 2101 }
roland@4589 2102 if (c2->is_Loop()) {
roland@4589 2103 parent_c2 = c2->in(1);
roland@4589 2104 }
roland@4589 2105
roland@4589 2106 if (parent_c1 == parent_c2) {
roland@4589 2107 _igvn._worklist.push(n1);
roland@4589 2108 _igvn._worklist.push(n2);
roland@4589 2109 continue;
roland@4589 2110 }
roland@4589 2111
roland@4589 2112 // Look for identical expensive node up the dominator chain.
roland@4589 2113 if (is_dominator(c1, c2)) {
roland@4589 2114 c2 = c1;
roland@4589 2115 } else if (is_dominator(c2, c1)) {
roland@4589 2116 c1 = c2;
roland@4589 2117 } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
roland@4589 2118 parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
roland@4589 2119 // Both branches have the same expensive node so move it up
roland@4589 2120 // before the if.
roland@4589 2121 c1 = c2 = idom(parent_c1->in(0));
roland@4589 2122 }
roland@4589 2123 // Do the actual moves
roland@4589 2124 if (n1->in(0) != c1) {
roland@4589 2125 _igvn.hash_delete(n1);
roland@4589 2126 n1->set_req(0, c1);
roland@4589 2127 _igvn.hash_insert(n1);
roland@4589 2128 _igvn._worklist.push(n1);
roland@4589 2129 progress = true;
roland@4589 2130 }
roland@4589 2131 if (n2->in(0) != c2) {
roland@4589 2132 _igvn.hash_delete(n2);
roland@4589 2133 n2->set_req(0, c2);
roland@4589 2134 _igvn.hash_insert(n2);
roland@4589 2135 _igvn._worklist.push(n2);
roland@4589 2136 progress = true;
roland@4589 2137 }
roland@4589 2138 }
roland@4589 2139 }
roland@4589 2140 }
roland@4589 2141
roland@4589 2142 return progress;
roland@4589 2143 }
roland@4589 2144
roland@4589 2145
duke@435 2146 //=============================================================================
never@1356 2147 //----------------------------build_and_optimize-------------------------------
duke@435 2148 // Create a PhaseLoop. Build the ideal Loop tree. Map each Ideal Node to
duke@435 2149 // its corresponding LoopNode. If 'optimize' is true, do some loop cleanups.
kvn@3260 2150 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
kvn@2555 2151 ResourceMark rm;
kvn@2555 2152
never@1356 2153 int old_progress = C->major_progress();
never@2685 2154 uint orig_worklist_size = _igvn._worklist.size();
never@1356 2155
duke@435 2156 // Reset major-progress flag for the driver's heuristics
duke@435 2157 C->clear_major_progress();
duke@435 2158
duke@435 2159 #ifndef PRODUCT
duke@435 2160 // Capture for later assert
duke@435 2161 uint unique = C->unique();
duke@435 2162 _loop_invokes++;
duke@435 2163 _loop_work += unique;
duke@435 2164 #endif
duke@435 2165
duke@435 2166 // True if the method has at least 1 irreducible loop
duke@435 2167 _has_irreducible_loops = false;
duke@435 2168
duke@435 2169 _created_loop_node = false;
duke@435 2170
duke@435 2171 Arena *a = Thread::current()->resource_area();
duke@435 2172 VectorSet visited(a);
duke@435 2173 // Pre-grow the mapping from Nodes to IdealLoopTrees.
duke@435 2174 _nodes.map(C->unique(), NULL);
duke@435 2175 memset(_nodes.adr(), 0, wordSize * C->unique());
duke@435 2176
duke@435 2177 // Pre-build the top-level outermost loop tree entry
duke@435 2178 _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
duke@435 2179 // Do not need a safepoint at the top level
duke@435 2180 _ltree_root->_has_sfpt = 1;
duke@435 2181
kvn@2727 2182 // Initialize Dominators.
kvn@2727 2183 // Checked in clone_loop_predicate() during beautify_loops().
kvn@2727 2184 _idom_size = 0;
kvn@2727 2185 _idom = NULL;
kvn@2727 2186 _dom_depth = NULL;
kvn@2727 2187 _dom_stk = NULL;
kvn@2727 2188
duke@435 2189 // Empty pre-order array
duke@435 2190 allocate_preorders();
duke@435 2191
duke@435 2192 // Build a loop tree on the fly. Build a mapping from CFG nodes to
duke@435 2193 // IdealLoopTree entries. Data nodes are NOT walked.
duke@435 2194 build_loop_tree();
duke@435 2195 // Check for bailout, and return
duke@435 2196 if (C->failing()) {
duke@435 2197 return;
duke@435 2198 }
duke@435 2199
duke@435 2200 // No loops after all
never@1356 2201 if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
duke@435 2202
duke@435 2203 // There should always be an outer loop containing the Root and Return nodes.
duke@435 2204 // If not, we have a degenerate empty program. Bail out in this case.
duke@435 2205 if (!has_node(C->root())) {
never@1356 2206 if (!_verify_only) {
never@1356 2207 C->clear_major_progress();
never@1356 2208 C->record_method_not_compilable("empty program detected during loop optimization");
never@1356 2209 }
duke@435 2210 return;
duke@435 2211 }
duke@435 2212
duke@435 2213 // Nothing to do, so get out
roland@4589 2214 bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only;
roland@4589 2215 bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
roland@4589 2216 if (stop_early && !do_expensive_nodes) {
duke@435 2217 _igvn.optimize(); // Cleanup NeverBranches
duke@435 2218 return;
duke@435 2219 }
duke@435 2220
duke@435 2221 // Set loop nesting depth
duke@435 2222 _ltree_root->set_nest( 0 );
duke@435 2223
duke@435 2224 // Split shared headers and insert loop landing pads.
duke@435 2225 // Do not bother doing this on the Root loop of course.
never@1356 2226 if( !_verify_me && !_verify_only && _ltree_root->_child ) {
sla@5237 2227 C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
duke@435 2228 if( _ltree_root->_child->beautify_loops( this ) ) {
duke@435 2229 // Re-build loop tree!
duke@435 2230 _ltree_root->_child = NULL;
duke@435 2231 _nodes.clear();
duke@435 2232 reallocate_preorders();
duke@435 2233 build_loop_tree();
duke@435 2234 // Check for bailout, and return
duke@435 2235 if (C->failing()) {
duke@435 2236 return;
duke@435 2237 }
duke@435 2238 // Reset loop nesting depth
duke@435 2239 _ltree_root->set_nest( 0 );
never@657 2240
sla@5237 2241 C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
duke@435 2242 }
duke@435 2243 }
duke@435 2244
duke@435 2245 // Build Dominators for elision of NULL checks & loop finding.
duke@435 2246 // Since nodes do not have a slot for immediate dominator, make
twisti@1040 2247 // a persistent side array for that info indexed on node->_idx.
duke@435 2248 _idom_size = C->unique();
duke@435 2249 _idom = NEW_RESOURCE_ARRAY( Node*, _idom_size );
duke@435 2250 _dom_depth = NEW_RESOURCE_ARRAY( uint, _idom_size );
duke@435 2251 _dom_stk = NULL; // Allocated on demand in recompute_dom_depth
duke@435 2252 memset( _dom_depth, 0, _idom_size * sizeof(uint) );
duke@435 2253
duke@435 2254 Dominators();
duke@435 2255
never@1356 2256 if (!_verify_only) {
never@1356 2257 // As a side effect, Dominators removed any unreachable CFG paths
never@1356 2258 // into RegionNodes. It doesn't do this test against Root, so
never@1356 2259 // we do it here.
never@1356 2260 for( uint i = 1; i < C->root()->req(); i++ ) {
never@1356 2261 if( !_nodes[C->root()->in(i)->_idx] ) { // Dead path into Root?
kvn@3847 2262 _igvn.delete_input_of(C->root(), i);
never@1356 2263 i--; // Rerun same iteration on compressed edges
never@1356 2264 }
duke@435 2265 }
never@1356 2266
never@1356 2267 // Given dominators, try to find inner loops with calls that must
never@1356 2268 // always be executed (call dominates loop tail). These loops do
never@1356 2269 // not need a separate safepoint.
never@1356 2270 Node_List cisstack(a);
never@1356 2271 _ltree_root->check_safepts(visited, cisstack);
duke@435 2272 }
duke@435 2273
duke@435 2274 // Walk the DATA nodes and place into loops. Find earliest control
duke@435 2275 // node. For CFG nodes, the _nodes array starts out and remains
duke@435 2276 // holding the associated IdealLoopTree pointer. For DATA nodes, the
duke@435 2277 // _nodes array holds the earliest legal controlling CFG node.
duke@435 2278
duke@435 2279 // Allocate stack with enough space to avoid frequent realloc
zmajo@8068 2280 int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
duke@435 2281 Node_Stack nstack( a, stack_size );
duke@435 2282
duke@435 2283 visited.Clear();
duke@435 2284 Node_List worklist(a);
duke@435 2285 // Don't need C->root() on worklist since
duke@435 2286 // it will be processed among C->top() inputs
duke@435 2287 worklist.push( C->top() );
duke@435 2288 visited.set( C->top()->_idx ); // Set C->top() as visited now
never@1356 2289 build_loop_early( visited, worklist, nstack );
duke@435 2290
duke@435 2291 // Given early legal placement, try finding counted loops. This placement
duke@435 2292 // is good enough to discover most loop invariants.
never@1356 2293 if( !_verify_me && !_verify_only )
duke@435 2294 _ltree_root->counted_loop( this );
duke@435 2295
duke@435 2296 // Find latest loop placement. Find ideal loop placement.
duke@435 2297 visited.Clear();
duke@435 2298 init_dom_lca_tags();
duke@435 2299 // Need C->root() on worklist when processing outs
duke@435 2300 worklist.push( C->root() );
duke@435 2301 NOT_PRODUCT( C->verify_graph_edges(); )
duke@435 2302 worklist.push( C->top() );
never@1356 2303 build_loop_late( visited, worklist, nstack );
never@1356 2304
never@1356 2305 if (_verify_only) {
never@1356 2306 // restore major progress flag
never@1356 2307 for (int i = 0; i < old_progress; i++)
never@1356 2308 C->set_major_progress();
never@1356 2309 assert(C->unique() == unique, "verification mode made Nodes? ? ?");
never@2685 2310 assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
never@1356 2311 return;
never@1356 2312 }
duke@435 2313
kvn@4868 2314 // clear out the dead code after build_loop_late
kvn@4868 2315 while (_deadlist.size()) {
kvn@4868 2316 _igvn.remove_globally_dead_node(_deadlist.pop());
kvn@4868 2317 }
kvn@4868 2318
roland@4589 2319 if (stop_early) {
roland@4589 2320 assert(do_expensive_nodes, "why are we here?");
roland@4589 2321 if (process_expensive_nodes()) {
roland@4589 2322 // If we made some progress when processing expensive nodes then
roland@4589 2323 // the IGVN may modify the graph in a way that will allow us to
roland@4589 2324 // make some more progress: we need to try processing expensive
roland@4589 2325 // nodes again.
roland@4589 2326 C->set_major_progress();
roland@4589 2327 }
roland@4589 2328 _igvn.optimize();
roland@4589 2329 return;
roland@4589 2330 }
roland@4589 2331
kvn@2727 2332 // Some parser-inserted loop predicates could never be used by loop
kvn@2727 2333 // predication or they were moved away from loop during some optimizations.
kvn@2727 2334 // For example, peeling. Eliminate them before next loop optimizations.
kvn@2877 2335 if (UseLoopPredicate || LoopLimitCheck) {
cfang@1607 2336 eliminate_useless_predicates();
cfang@1607 2337 }
cfang@1607 2338
duke@435 2339 #ifndef PRODUCT
duke@435 2340 C->verify_graph_edges();
kvn@2665 2341 if (_verify_me) { // Nested verify pass?
duke@435 2342 // Check to see if the verify mode is broken
duke@435 2343 assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
duke@435 2344 return;
duke@435 2345 }
kvn@2665 2346 if(VerifyLoopOptimizations) verify();
kvn@2665 2347 if(TraceLoopOpts && C->has_loops()) {
kvn@2665 2348 _ltree_root->dump();
kvn@2665 2349 }
duke@435 2350 #endif
duke@435 2351
kvn@3260 2352 if (skip_loop_opts) {
thartmann@8206 2353 // restore major progress flag
thartmann@8206 2354 for (int i = 0; i < old_progress; i++) {
thartmann@8206 2355 C->set_major_progress();
thartmann@8206 2356 }
thartmann@8206 2357
kvn@3260 2358 // Cleanup any modified bits
kvn@3260 2359 _igvn.optimize();
kvn@3260 2360
kvn@3260 2361 if (C->log() != NULL) {
kvn@3260 2362 log_loop_tree(_ltree_root, _ltree_root, C->log());
kvn@3260 2363 }
kvn@3260 2364 return;
kvn@3260 2365 }
kvn@3260 2366
duke@435 2367 if (ReassociateInvariants) {
duke@435 2368 // Reassociate invariants and prep for split_thru_phi
duke@435 2369 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
duke@435 2370 IdealLoopTree* lpt = iter.current();
duke@435 2371 if (!lpt->is_counted() || !lpt->is_inner()) continue;
duke@435 2372
duke@435 2373 lpt->reassociate_invariants(this);
duke@435 2374
duke@435 2375 // Because RCE opportunities can be masked by split_thru_phi,
duke@435 2376 // look for RCE candidates and inhibit split_thru_phi
duke@435 2377 // on just their loop-phi's for this pass of loop opts
cfang@1607 2378 if (SplitIfBlocks && do_split_ifs) {
duke@435 2379 if (lpt->policy_range_check(this)) {
kvn@474 2380 lpt->_rce_candidate = 1; // = true
duke@435 2381 }
duke@435 2382 }
duke@435 2383 }
duke@435 2384 }
duke@435 2385
duke@435 2386 // Check for aggressive application of split-if and other transforms
duke@435 2387 // that require basic-block info (like cloning through Phi's)
duke@435 2388 if( SplitIfBlocks && do_split_ifs ) {
duke@435 2389 visited.Clear();
duke@435 2390 split_if_with_blocks( visited, nstack );
duke@435 2391 NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
duke@435 2392 }
duke@435 2393
roland@4589 2394 if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
roland@4589 2395 C->set_major_progress();
roland@4589 2396 }
roland@4589 2397
cfang@1607 2398 // Perform loop predication before iteration splitting
kvn@2727 2399 if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
cfang@1607 2400 _ltree_root->_child->loop_predication(this);
cfang@1607 2401 }
cfang@1607 2402
never@2118 2403 if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
never@2118 2404 if (do_intrinsify_fill()) {
never@2118 2405 C->set_major_progress();
never@2118 2406 }
never@2118 2407 }
never@2118 2408
duke@435 2409 // Perform iteration-splitting on inner loops. Split iterations to avoid
duke@435 2410 // range checks or one-shot null checks.
duke@435 2411
duke@435 2412 // If split-if's didn't hack the graph too bad (no CFG changes)
duke@435 2413 // then do loop opts.
cfang@1607 2414 if (C->has_loops() && !C->major_progress()) {
duke@435 2415 memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
duke@435 2416 _ltree_root->_child->iteration_split( this, worklist );
duke@435 2417 // No verify after peeling! GCM has hoisted code out of the loop.
duke@435 2418 // After peeling, the hoisted code could sink inside the peeled area.
duke@435 2419 // The peeling code does not try to recompute the best location for
duke@435 2420 // all the code before the peeled area, so the verify pass will always
duke@435 2421 // complain about it.
duke@435 2422 }
duke@435 2423 // Do verify graph edges in any case
duke@435 2424 NOT_PRODUCT( C->verify_graph_edges(); );
duke@435 2425
cfang@1607 2426 if (!do_split_ifs) {
duke@435 2427 // We saw major progress in Split-If to get here. We forced a
duke@435 2428 // pass with unrolling and not split-if, however more split-if's
duke@435 2429 // might make progress. If the unrolling didn't make progress
duke@435 2430 // then the major-progress flag got cleared and we won't try
duke@435 2431 // another round of Split-If. In particular the ever-common
duke@435 2432 // instance-of/check-cast pattern requires at least 2 rounds of
duke@435 2433 // Split-If to clear out.
duke@435 2434 C->set_major_progress();
duke@435 2435 }
duke@435 2436
duke@435 2437 // Repeat loop optimizations if new loops were seen
duke@435 2438 if (created_loop_node()) {
duke@435 2439 C->set_major_progress();
duke@435 2440 }
duke@435 2441
kvn@2727 2442 // Keep loop predicates and perform optimizations with them
kvn@2727 2443 // until no more loop optimizations could be done.
kvn@2727 2444 // After that switch predicates off and do more loop optimizations.
kvn@2727 2445 if (!C->major_progress() && (C->predicate_count() > 0)) {
kvn@2727 2446 C->cleanup_loop_predicates(_igvn);
kvn@2727 2447 #ifndef PRODUCT
kvn@2727 2448 if (TraceLoopOpts) {
kvn@2727 2449 tty->print_cr("PredicatesOff");
kvn@2727 2450 }
kvn@2727 2451 #endif
kvn@2727 2452 C->set_major_progress();
kvn@2727 2453 }
duke@435 2454
kvn@2727 2455 // Convert scalar to superword operations at the end of all loop opts.
duke@435 2456 if (UseSuperWord && C->has_loops() && !C->major_progress()) {
duke@435 2457 // SuperWord transform
duke@435 2458 SuperWord sw(this);
duke@435 2459 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
duke@435 2460 IdealLoopTree* lpt = iter.current();
duke@435 2461 if (lpt->is_counted()) {
duke@435 2462 sw.transform_loop(lpt);
duke@435 2463 }
duke@435 2464 }
duke@435 2465 }
duke@435 2466
duke@435 2467 // Cleanup any modified bits
duke@435 2468 _igvn.optimize();
duke@435 2469
never@802 2470 // disable assert until issue with split_flow_path is resolved (6742111)
never@802 2471 // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
never@802 2472 // "shouldn't introduce irreducible loops");
never@802 2473
never@802 2474 if (C->log() != NULL) {
never@802 2475 log_loop_tree(_ltree_root, _ltree_root, C->log());
never@802 2476 }
duke@435 2477 }
duke@435 2478
duke@435 2479 #ifndef PRODUCT
duke@435 2480 //------------------------------print_statistics-------------------------------
duke@435 2481 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
duke@435 2482 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
duke@435 2483 void PhaseIdealLoop::print_statistics() {
duke@435 2484 tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
duke@435 2485 }
duke@435 2486
duke@435 2487 //------------------------------verify-----------------------------------------
duke@435 2488 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
duke@435 2489 static int fail; // debug only, so its multi-thread dont care
duke@435 2490 void PhaseIdealLoop::verify() const {
duke@435 2491 int old_progress = C->major_progress();
duke@435 2492 ResourceMark rm;
never@1356 2493 PhaseIdealLoop loop_verify( _igvn, this );
duke@435 2494 VectorSet visited(Thread::current()->resource_area());
duke@435 2495
duke@435 2496 fail = 0;
duke@435 2497 verify_compare( C->root(), &loop_verify, visited );
duke@435 2498 assert( fail == 0, "verify loops failed" );
duke@435 2499 // Verify loop structure is the same
duke@435 2500 _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
duke@435 2501 // Reset major-progress. It was cleared by creating a verify version of
duke@435 2502 // PhaseIdealLoop.
duke@435 2503 for( int i=0; i<old_progress; i++ )
duke@435 2504 C->set_major_progress();
duke@435 2505 }
duke@435 2506
duke@435 2507 //------------------------------verify_compare---------------------------------
duke@435 2508 // Make sure me and the given PhaseIdealLoop agree on key data structures
duke@435 2509 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
duke@435 2510 if( !n ) return;
duke@435 2511 if( visited.test_set( n->_idx ) ) return;
duke@435 2512 if( !_nodes[n->_idx] ) { // Unreachable
duke@435 2513 assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
duke@435 2514 return;
duke@435 2515 }
duke@435 2516
duke@435 2517 uint i;
duke@435 2518 for( i = 0; i < n->req(); i++ )
duke@435 2519 verify_compare( n->in(i), loop_verify, visited );
duke@435 2520
duke@435 2521 // Check the '_nodes' block/loop structure
duke@435 2522 i = n->_idx;
duke@435 2523 if( has_ctrl(n) ) { // We have control; verify has loop or ctrl
duke@435 2524 if( _nodes[i] != loop_verify->_nodes[i] &&
duke@435 2525 get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
duke@435 2526 tty->print("Mismatched control setting for: ");
duke@435 2527 n->dump();
duke@435 2528 if( fail++ > 10 ) return;
duke@435 2529 Node *c = get_ctrl_no_update(n);
duke@435 2530 tty->print("We have it as: ");
duke@435 2531 if( c->in(0) ) c->dump();
duke@435 2532 else tty->print_cr("N%d",c->_idx);
duke@435 2533 tty->print("Verify thinks: ");
duke@435 2534 if( loop_verify->has_ctrl(n) )
duke@435 2535 loop_verify->get_ctrl_no_update(n)->dump();
duke@435 2536 else
duke@435 2537 loop_verify->get_loop_idx(n)->dump();
duke@435 2538 tty->cr();
duke@435 2539 }
duke@435 2540 } else { // We have a loop
duke@435 2541 IdealLoopTree *us = get_loop_idx(n);
duke@435 2542 if( loop_verify->has_ctrl(n) ) {
duke@435 2543 tty->print("Mismatched loop setting for: ");
duke@435 2544 n->dump();
duke@435 2545 if( fail++ > 10 ) return;
duke@435 2546 tty->print("We have it as: ");
duke@435 2547 us->dump();
duke@435 2548 tty->print("Verify thinks: ");
duke@435 2549 loop_verify->get_ctrl_no_update(n)->dump();
duke@435 2550 tty->cr();
duke@435 2551 } else if (!C->major_progress()) {
duke@435 2552 // Loop selection can be messed up if we did a major progress
duke@435 2553 // operation, like split-if. Do not verify in that case.
duke@435 2554 IdealLoopTree *them = loop_verify->get_loop_idx(n);
duke@435 2555 if( us->_head != them->_head || us->_tail != them->_tail ) {
duke@435 2556 tty->print("Unequals loops for: ");
duke@435 2557 n->dump();
duke@435 2558 if( fail++ > 10 ) return;
duke@435 2559 tty->print("We have it as: ");
duke@435 2560 us->dump();
duke@435 2561 tty->print("Verify thinks: ");
duke@435 2562 them->dump();
duke@435 2563 tty->cr();
duke@435 2564 }
duke@435 2565 }
duke@435 2566 }
duke@435 2567
duke@435 2568 // Check for immediate dominators being equal
duke@435 2569 if( i >= _idom_size ) {
duke@435 2570 if( !n->is_CFG() ) return;
duke@435 2571 tty->print("CFG Node with no idom: ");
duke@435 2572 n->dump();
duke@435 2573 return;
duke@435 2574 }
duke@435 2575 if( !n->is_CFG() ) return;
duke@435 2576 if( n == C->root() ) return; // No IDOM here
duke@435 2577
duke@435 2578 assert(n->_idx == i, "sanity");
duke@435 2579 Node *id = idom_no_update(n);
duke@435 2580 if( id != loop_verify->idom_no_update(n) ) {
duke@435 2581 tty->print("Unequals idoms for: ");
duke@435 2582 n->dump();
duke@435 2583 if( fail++ > 10 ) return;
duke@435 2584 tty->print("We have it as: ");
duke@435 2585 id->dump();
duke@435 2586 tty->print("Verify thinks: ");
duke@435 2587 loop_verify->idom_no_update(n)->dump();
duke@435 2588 tty->cr();
duke@435 2589 }
duke@435 2590
duke@435 2591 }
duke@435 2592
duke@435 2593 //------------------------------verify_tree------------------------------------
duke@435 2594 // Verify that tree structures match. Because the CFG can change, siblings
duke@435 2595 // within the loop tree can be reordered. We attempt to deal with that by
duke@435 2596 // reordering the verify's loop tree if possible.
duke@435 2597 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
duke@435 2598 assert( _parent == parent, "Badly formed loop tree" );
duke@435 2599
duke@435 2600 // Siblings not in same order? Attempt to re-order.
duke@435 2601 if( _head != loop->_head ) {
duke@435 2602 // Find _next pointer to update
duke@435 2603 IdealLoopTree **pp = &loop->_parent->_child;
duke@435 2604 while( *pp != loop )
duke@435 2605 pp = &((*pp)->_next);
duke@435 2606 // Find proper sibling to be next
duke@435 2607 IdealLoopTree **nn = &loop->_next;
duke@435 2608 while( (*nn) && (*nn)->_head != _head )
duke@435 2609 nn = &((*nn)->_next);
duke@435 2610
duke@435 2611 // Check for no match.
duke@435 2612 if( !(*nn) ) {
duke@435 2613 // Annoyingly, irreducible loops can pick different headers
duke@435 2614 // after a major_progress operation, so the rest of the loop
duke@435 2615 // tree cannot be matched.
duke@435 2616 if (_irreducible && Compile::current()->major_progress()) return;
duke@435 2617 assert( 0, "failed to match loop tree" );
duke@435 2618 }
duke@435 2619
duke@435 2620 // Move (*nn) to (*pp)
duke@435 2621 IdealLoopTree *hit = *nn;
duke@435 2622 *nn = hit->_next;
duke@435 2623 hit->_next = loop;
duke@435 2624 *pp = loop;
duke@435 2625 loop = hit;
duke@435 2626 // Now try again to verify
duke@435 2627 }
duke@435 2628
duke@435 2629 assert( _head == loop->_head , "mismatched loop head" );
duke@435 2630 Node *tail = _tail; // Inline a non-updating version of
duke@435 2631 while( !tail->in(0) ) // the 'tail()' call.
duke@435 2632 tail = tail->in(1);
duke@435 2633 assert( tail == loop->_tail, "mismatched loop tail" );
duke@435 2634
duke@435 2635 // Counted loops that are guarded should be able to find their guards
duke@435 2636 if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
duke@435 2637 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 2638 Node *init = cl->init_trip();
duke@435 2639 Node *ctrl = cl->in(LoopNode::EntryControl);
duke@435 2640 assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
duke@435 2641 Node *iff = ctrl->in(0);
duke@435 2642 assert( iff->Opcode() == Op_If, "" );
duke@435 2643 Node *bol = iff->in(1);
duke@435 2644 assert( bol->Opcode() == Op_Bool, "" );
duke@435 2645 Node *cmp = bol->in(1);
duke@435 2646 assert( cmp->Opcode() == Op_CmpI, "" );
duke@435 2647 Node *add = cmp->in(1);
duke@435 2648 Node *opaq;
duke@435 2649 if( add->Opcode() == Op_Opaque1 ) {
duke@435 2650 opaq = add;
duke@435 2651 } else {
duke@435 2652 assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
duke@435 2653 assert( add == init, "" );
duke@435 2654 opaq = cmp->in(2);
duke@435 2655 }
duke@435 2656 assert( opaq->Opcode() == Op_Opaque1, "" );
duke@435 2657
duke@435 2658 }
duke@435 2659
duke@435 2660 if (_child != NULL) _child->verify_tree(loop->_child, this);
duke@435 2661 if (_next != NULL) _next ->verify_tree(loop->_next, parent);
duke@435 2662 // Innermost loops need to verify loop bodies,
duke@435 2663 // but only if no 'major_progress'
duke@435 2664 int fail = 0;
duke@435 2665 if (!Compile::current()->major_progress() && _child == NULL) {
duke@435 2666 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 2667 Node *n = _body.at(i);
duke@435 2668 if (n->outcnt() == 0) continue; // Ignore dead
duke@435 2669 uint j;
duke@435 2670 for( j = 0; j < loop->_body.size(); j++ )
duke@435 2671 if( loop->_body.at(j) == n )
duke@435 2672 break;
duke@435 2673 if( j == loop->_body.size() ) { // Not found in loop body
duke@435 2674 // Last ditch effort to avoid assertion: Its possible that we
duke@435 2675 // have some users (so outcnt not zero) but are still dead.
duke@435 2676 // Try to find from root.
duke@435 2677 if (Compile::current()->root()->find(n->_idx)) {
duke@435 2678 fail++;
duke@435 2679 tty->print("We have that verify does not: ");
duke@435 2680 n->dump();
duke@435 2681 }
duke@435 2682 }
duke@435 2683 }
duke@435 2684 for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
duke@435 2685 Node *n = loop->_body.at(i2);
duke@435 2686 if (n->outcnt() == 0) continue; // Ignore dead
duke@435 2687 uint j;
duke@435 2688 for( j = 0; j < _body.size(); j++ )
duke@435 2689 if( _body.at(j) == n )
duke@435 2690 break;
duke@435 2691 if( j == _body.size() ) { // Not found in loop body
duke@435 2692 // Last ditch effort to avoid assertion: Its possible that we
duke@435 2693 // have some users (so outcnt not zero) but are still dead.
duke@435 2694 // Try to find from root.
duke@435 2695 if (Compile::current()->root()->find(n->_idx)) {
duke@435 2696 fail++;
duke@435 2697 tty->print("Verify has that we do not: ");
duke@435 2698 n->dump();
duke@435 2699 }
duke@435 2700 }
duke@435 2701 }
duke@435 2702 assert( !fail, "loop body mismatch" );
duke@435 2703 }
duke@435 2704 }
duke@435 2705
duke@435 2706 #endif
duke@435 2707
duke@435 2708 //------------------------------set_idom---------------------------------------
duke@435 2709 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
duke@435 2710 uint idx = d->_idx;
duke@435 2711 if (idx >= _idom_size) {
duke@435 2712 uint newsize = _idom_size<<1;
duke@435 2713 while( idx >= newsize ) {
duke@435 2714 newsize <<= 1;
duke@435 2715 }
duke@435 2716 _idom = REALLOC_RESOURCE_ARRAY( Node*, _idom,_idom_size,newsize);
duke@435 2717 _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
duke@435 2718 memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
duke@435 2719 _idom_size = newsize;
duke@435 2720 }
duke@435 2721 _idom[idx] = n;
duke@435 2722 _dom_depth[idx] = dom_depth;
duke@435 2723 }
duke@435 2724
duke@435 2725 //------------------------------recompute_dom_depth---------------------------------------
duke@435 2726 // The dominator tree is constructed with only parent pointers.
duke@435 2727 // This recomputes the depth in the tree by first tagging all
duke@435 2728 // nodes as "no depth yet" marker. The next pass then runs up
duke@435 2729 // the dom tree from each node marked "no depth yet", and computes
duke@435 2730 // the depth on the way back down.
duke@435 2731 void PhaseIdealLoop::recompute_dom_depth() {
duke@435 2732 uint no_depth_marker = C->unique();
duke@435 2733 uint i;
duke@435 2734 // Initialize depth to "no depth yet"
duke@435 2735 for (i = 0; i < _idom_size; i++) {
duke@435 2736 if (_dom_depth[i] > 0 && _idom[i] != NULL) {
duke@435 2737 _dom_depth[i] = no_depth_marker;
duke@435 2738 }
duke@435 2739 }
duke@435 2740 if (_dom_stk == NULL) {
zmajo@8068 2741 uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
duke@435 2742 if (init_size < 10) init_size = 10;
kvn@2555 2743 _dom_stk = new GrowableArray<uint>(init_size);
duke@435 2744 }
duke@435 2745 // Compute new depth for each node.
duke@435 2746 for (i = 0; i < _idom_size; i++) {
duke@435 2747 uint j = i;
duke@435 2748 // Run up the dom tree to find a node with a depth
duke@435 2749 while (_dom_depth[j] == no_depth_marker) {
duke@435 2750 _dom_stk->push(j);
duke@435 2751 j = _idom[j]->_idx;
duke@435 2752 }
duke@435 2753 // Compute the depth on the way back down this tree branch
duke@435 2754 uint dd = _dom_depth[j] + 1;
duke@435 2755 while (_dom_stk->length() > 0) {
duke@435 2756 uint j = _dom_stk->pop();
duke@435 2757 _dom_depth[j] = dd;
duke@435 2758 dd++;
duke@435 2759 }
duke@435 2760 }
duke@435 2761 }
duke@435 2762
duke@435 2763 //------------------------------sort-------------------------------------------
duke@435 2764 // Insert 'loop' into the existing loop tree. 'innermost' is a leaf of the
duke@435 2765 // loop tree, not the root.
duke@435 2766 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
duke@435 2767 if( !innermost ) return loop; // New innermost loop
duke@435 2768
duke@435 2769 int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
duke@435 2770 assert( loop_preorder, "not yet post-walked loop" );
duke@435 2771 IdealLoopTree **pp = &innermost; // Pointer to previous next-pointer
duke@435 2772 IdealLoopTree *l = *pp; // Do I go before or after 'l'?
duke@435 2773
duke@435 2774 // Insert at start of list
duke@435 2775 while( l ) { // Insertion sort based on pre-order
duke@435 2776 if( l == loop ) return innermost; // Already on list!
duke@435 2777 int l_preorder = get_preorder(l->_head); // Cache pre-order number
duke@435 2778 assert( l_preorder, "not yet post-walked l" );
duke@435 2779 // Check header pre-order number to figure proper nesting
duke@435 2780 if( loop_preorder > l_preorder )
duke@435 2781 break; // End of insertion
duke@435 2782 // If headers tie (e.g., shared headers) check tail pre-order numbers.
duke@435 2783 // Since I split shared headers, you'd think this could not happen.
duke@435 2784 // BUT: I must first do the preorder numbering before I can discover I
duke@435 2785 // have shared headers, so the split headers all get the same preorder
duke@435 2786 // number as the RegionNode they split from.
duke@435 2787 if( loop_preorder == l_preorder &&
duke@435 2788 get_preorder(loop->_tail) < get_preorder(l->_tail) )
duke@435 2789 break; // Also check for shared headers (same pre#)
duke@435 2790 pp = &l->_parent; // Chain up list
duke@435 2791 l = *pp;
duke@435 2792 }
duke@435 2793 // Link into list
duke@435 2794 // Point predecessor to me
duke@435 2795 *pp = loop;
duke@435 2796 // Point me to successor
duke@435 2797 IdealLoopTree *p = loop->_parent;
duke@435 2798 loop->_parent = l; // Point me to successor
duke@435 2799 if( p ) sort( p, innermost ); // Insert my parents into list as well
duke@435 2800 return innermost;
duke@435 2801 }
duke@435 2802
duke@435 2803 //------------------------------build_loop_tree--------------------------------
duke@435 2804 // I use a modified Vick/Tarjan algorithm. I need pre- and a post- visit
duke@435 2805 // bits. The _nodes[] array is mapped by Node index and holds a NULL for
duke@435 2806 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
duke@435 2807 // tightest enclosing IdealLoopTree for post-walked.
duke@435 2808 //
duke@435 2809 // During my forward walk I do a short 1-layer lookahead to see if I can find
duke@435 2810 // a loop backedge with that doesn't have any work on the backedge. This
duke@435 2811 // helps me construct nested loops with shared headers better.
duke@435 2812 //
duke@435 2813 // Once I've done the forward recursion, I do the post-work. For each child
duke@435 2814 // I check to see if there is a backedge. Backedges define a loop! I
duke@435 2815 // insert an IdealLoopTree at the target of the backedge.
duke@435 2816 //
duke@435 2817 // During the post-work I also check to see if I have several children
duke@435 2818 // belonging to different loops. If so, then this Node is a decision point
duke@435 2819 // where control flow can choose to change loop nests. It is at this
duke@435 2820 // decision point where I can figure out how loops are nested. At this
duke@435 2821 // time I can properly order the different loop nests from my children.
duke@435 2822 // Note that there may not be any backedges at the decision point!
duke@435 2823 //
duke@435 2824 // Since the decision point can be far removed from the backedges, I can't
duke@435 2825 // order my loops at the time I discover them. Thus at the decision point
duke@435 2826 // I need to inspect loop header pre-order numbers to properly nest my
duke@435 2827 // loops. This means I need to sort my childrens' loops by pre-order.
duke@435 2828 // The sort is of size number-of-control-children, which generally limits
duke@435 2829 // it to size 2 (i.e., I just choose between my 2 target loops).
duke@435 2830 void PhaseIdealLoop::build_loop_tree() {
zmajo@8068 2831 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
zmajo@8068 2832 GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
duke@435 2833 Node *n = C->root();
duke@435 2834 bltstack.push(n);
duke@435 2835 int pre_order = 1;
duke@435 2836 int stack_size;
duke@435 2837
duke@435 2838 while ( ( stack_size = bltstack.length() ) != 0 ) {
duke@435 2839 n = bltstack.top(); // Leave node on stack
duke@435 2840 if ( !is_visited(n) ) {
duke@435 2841 // ---- Pre-pass Work ----
duke@435 2842 // Pre-walked but not post-walked nodes need a pre_order number.
duke@435 2843
duke@435 2844 set_preorder_visited( n, pre_order ); // set as visited
duke@435 2845
duke@435 2846 // ---- Scan over children ----
duke@435 2847 // Scan first over control projections that lead to loop headers.
duke@435 2848 // This helps us find inner-to-outer loops with shared headers better.
duke@435 2849
duke@435 2850 // Scan children's children for loop headers.
duke@435 2851 for ( int i = n->outcnt() - 1; i >= 0; --i ) {
duke@435 2852 Node* m = n->raw_out(i); // Child
duke@435 2853 if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
duke@435 2854 // Scan over children's children to find loop
duke@435 2855 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
duke@435 2856 Node* l = m->fast_out(j);
duke@435 2857 if( is_visited(l) && // Been visited?
duke@435 2858 !is_postvisited(l) && // But not post-visited
duke@435 2859 get_preorder(l) < pre_order ) { // And smaller pre-order
duke@435 2860 // Found! Scan the DFS down this path before doing other paths
duke@435 2861 bltstack.push(m);
duke@435 2862 break;
duke@435 2863 }
duke@435 2864 }
duke@435 2865 }
duke@435 2866 }
duke@435 2867 pre_order++;
duke@435 2868 }
duke@435 2869 else if ( !is_postvisited(n) ) {
duke@435 2870 // Note: build_loop_tree_impl() adds out edges on rare occasions,
duke@435 2871 // such as com.sun.rsasign.am::a.
duke@435 2872 // For non-recursive version, first, process current children.
duke@435 2873 // On next iteration, check if additional children were added.
duke@435 2874 for ( int k = n->outcnt() - 1; k >= 0; --k ) {
duke@435 2875 Node* u = n->raw_out(k);
duke@435 2876 if ( u->is_CFG() && !is_visited(u) ) {
duke@435 2877 bltstack.push(u);
duke@435 2878 }
duke@435 2879 }
duke@435 2880 if ( bltstack.length() == stack_size ) {
duke@435 2881 // There were no additional children, post visit node now
duke@435 2882 (void)bltstack.pop(); // Remove node from stack
duke@435 2883 pre_order = build_loop_tree_impl( n, pre_order );
duke@435 2884 // Check for bailout
duke@435 2885 if (C->failing()) {
duke@435 2886 return;
duke@435 2887 }
duke@435 2888 // Check to grow _preorders[] array for the case when
duke@435 2889 // build_loop_tree_impl() adds new nodes.
duke@435 2890 check_grow_preorders();
duke@435 2891 }
duke@435 2892 }
duke@435 2893 else {
duke@435 2894 (void)bltstack.pop(); // Remove post-visited node from stack
duke@435 2895 }
duke@435 2896 }
duke@435 2897 }
duke@435 2898
duke@435 2899 //------------------------------build_loop_tree_impl---------------------------
duke@435 2900 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
duke@435 2901 // ---- Post-pass Work ----
duke@435 2902 // Pre-walked but not post-walked nodes need a pre_order number.
duke@435 2903
duke@435 2904 // Tightest enclosing loop for this Node
duke@435 2905 IdealLoopTree *innermost = NULL;
duke@435 2906
duke@435 2907 // For all children, see if any edge is a backedge. If so, make a loop
duke@435 2908 // for it. Then find the tightest enclosing loop for the self Node.
duke@435 2909 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 2910 Node* m = n->fast_out(i); // Child
duke@435 2911 if( n == m ) continue; // Ignore control self-cycles
duke@435 2912 if( !m->is_CFG() ) continue;// Ignore non-CFG edges
duke@435 2913
duke@435 2914 IdealLoopTree *l; // Child's loop
duke@435 2915 if( !is_postvisited(m) ) { // Child visited but not post-visited?
duke@435 2916 // Found a backedge
duke@435 2917 assert( get_preorder(m) < pre_order, "should be backedge" );
duke@435 2918 // Check for the RootNode, which is already a LoopNode and is allowed
duke@435 2919 // to have multiple "backedges".
duke@435 2920 if( m == C->root()) { // Found the root?
duke@435 2921 l = _ltree_root; // Root is the outermost LoopNode
duke@435 2922 } else { // Else found a nested loop
duke@435 2923 // Insert a LoopNode to mark this loop.
duke@435 2924 l = new IdealLoopTree(this, m, n);
duke@435 2925 } // End of Else found a nested loop
duke@435 2926 if( !has_loop(m) ) // If 'm' does not already have a loop set
duke@435 2927 set_loop(m, l); // Set loop header to loop now
duke@435 2928
duke@435 2929 } else { // Else not a nested loop
duke@435 2930 if( !_nodes[m->_idx] ) continue; // Dead code has no loop
duke@435 2931 l = get_loop(m); // Get previously determined loop
duke@435 2932 // If successor is header of a loop (nest), move up-loop till it
duke@435 2933 // is a member of some outer enclosing loop. Since there are no
duke@435 2934 // shared headers (I've split them already) I only need to go up
duke@435 2935 // at most 1 level.
duke@435 2936 while( l && l->_head == m ) // Successor heads loop?
duke@435 2937 l = l->_parent; // Move up 1 for me
duke@435 2938 // If this loop is not properly parented, then this loop
duke@435 2939 // has no exit path out, i.e. its an infinite loop.
duke@435 2940 if( !l ) {
duke@435 2941 // Make loop "reachable" from root so the CFG is reachable. Basically
duke@435 2942 // insert a bogus loop exit that is never taken. 'm', the loop head,
duke@435 2943 // points to 'n', one (of possibly many) fall-in paths. There may be
duke@435 2944 // many backedges as well.
duke@435 2945
duke@435 2946 // Here I set the loop to be the root loop. I could have, after
duke@435 2947 // inserting a bogus loop exit, restarted the recursion and found my
duke@435 2948 // new loop exit. This would make the infinite loop a first-class
duke@435 2949 // loop and it would then get properly optimized. What's the use of
duke@435 2950 // optimizing an infinite loop?
duke@435 2951 l = _ltree_root; // Oops, found infinite loop
duke@435 2952
never@1356 2953 if (!_verify_only) {
never@1356 2954 // Insert the NeverBranch between 'm' and it's control user.
kvn@4115 2955 NeverBranchNode *iff = new (C) NeverBranchNode( m );
never@1356 2956 _igvn.register_new_node_with_optimizer(iff);
never@1356 2957 set_loop(iff, l);
kvn@4115 2958 Node *if_t = new (C) CProjNode( iff, 0 );
never@1356 2959 _igvn.register_new_node_with_optimizer(if_t);
never@1356 2960 set_loop(if_t, l);
duke@435 2961
never@1356 2962 Node* cfg = NULL; // Find the One True Control User of m
never@1356 2963 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
never@1356 2964 Node* x = m->fast_out(j);
never@1356 2965 if (x->is_CFG() && x != m && x != iff)
never@1356 2966 { cfg = x; break; }
never@1356 2967 }
never@1356 2968 assert(cfg != NULL, "must find the control user of m");
never@1356 2969 uint k = 0; // Probably cfg->in(0)
never@1356 2970 while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
never@1356 2971 cfg->set_req( k, if_t ); // Now point to NeverBranch
never@1356 2972
never@1356 2973 // Now create the never-taken loop exit
kvn@4115 2974 Node *if_f = new (C) CProjNode( iff, 1 );
never@1356 2975 _igvn.register_new_node_with_optimizer(if_f);
never@1356 2976 set_loop(if_f, l);
never@1356 2977 // Find frame ptr for Halt. Relies on the optimizer
never@1356 2978 // V-N'ing. Easier and quicker than searching through
never@1356 2979 // the program structure.
kvn@4115 2980 Node *frame = new (C) ParmNode( C->start(), TypeFunc::FramePtr );
never@1356 2981 _igvn.register_new_node_with_optimizer(frame);
never@1356 2982 // Halt & Catch Fire
kvn@4115 2983 Node *halt = new (C) HaltNode( if_f, frame );
never@1356 2984 _igvn.register_new_node_with_optimizer(halt);
never@1356 2985 set_loop(halt, l);
never@1356 2986 C->root()->add_req(halt);
duke@435 2987 }
duke@435 2988 set_loop(C->root(), _ltree_root);
duke@435 2989 }
duke@435 2990 }
duke@435 2991 // Weeny check for irreducible. This child was already visited (this
duke@435 2992 // IS the post-work phase). Is this child's loop header post-visited
duke@435 2993 // as well? If so, then I found another entry into the loop.
never@1356 2994 if (!_verify_only) {
never@1356 2995 while( is_postvisited(l->_head) ) {
never@1356 2996 // found irreducible
never@1356 2997 l->_irreducible = 1; // = true
never@1356 2998 l = l->_parent;
never@1356 2999 _has_irreducible_loops = true;
never@1356 3000 // Check for bad CFG here to prevent crash, and bailout of compile
never@1356 3001 if (l == NULL) {
never@1356 3002 C->record_method_not_compilable("unhandled CFG detected during loop optimization");
never@1356 3003 return pre_order;
never@1356 3004 }
duke@435 3005 }
kvn@6657 3006 C->set_has_irreducible_loop(_has_irreducible_loops);
duke@435 3007 }
duke@435 3008
duke@435 3009 // This Node might be a decision point for loops. It is only if
duke@435 3010 // it's children belong to several different loops. The sort call
duke@435 3011 // does a trivial amount of work if there is only 1 child or all
duke@435 3012 // children belong to the same loop. If however, the children
duke@435 3013 // belong to different loops, the sort call will properly set the
duke@435 3014 // _parent pointers to show how the loops nest.
duke@435 3015 //
duke@435 3016 // In any case, it returns the tightest enclosing loop.
duke@435 3017 innermost = sort( l, innermost );
duke@435 3018 }
duke@435 3019
duke@435 3020 // Def-use info will have some dead stuff; dead stuff will have no
duke@435 3021 // loop decided on.
duke@435 3022
duke@435 3023 // Am I a loop header? If so fix up my parent's child and next ptrs.
duke@435 3024 if( innermost && innermost->_head == n ) {
duke@435 3025 assert( get_loop(n) == innermost, "" );
duke@435 3026 IdealLoopTree *p = innermost->_parent;
duke@435 3027 IdealLoopTree *l = innermost;
duke@435 3028 while( p && l->_head == n ) {
duke@435 3029 l->_next = p->_child; // Put self on parents 'next child'
duke@435 3030 p->_child = l; // Make self as first child of parent
duke@435 3031 l = p; // Now walk up the parent chain
duke@435 3032 p = l->_parent;
duke@435 3033 }
duke@435 3034 } else {
duke@435 3035 // Note that it is possible for a LoopNode to reach here, if the
duke@435 3036 // backedge has been made unreachable (hence the LoopNode no longer
duke@435 3037 // denotes a Loop, and will eventually be removed).
duke@435 3038
duke@435 3039 // Record tightest enclosing loop for self. Mark as post-visited.
duke@435 3040 set_loop(n, innermost);
duke@435 3041 // Also record has_call flag early on
duke@435 3042 if( innermost ) {
duke@435 3043 if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
duke@435 3044 // Do not count uncommon calls
duke@435 3045 if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
duke@435 3046 Node *iff = n->in(0)->in(0);
kvn@3882 3047 // No any calls for vectorized loops.
kvn@3882 3048 if( UseSuperWord || !iff->is_If() ||
duke@435 3049 (n->in(0)->Opcode() == Op_IfFalse &&
duke@435 3050 (1.0 - iff->as_If()->_prob) >= 0.01) ||
duke@435 3051 (iff->as_If()->_prob >= 0.01) )
duke@435 3052 innermost->_has_call = 1;
duke@435 3053 }
kvn@474 3054 } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
kvn@474 3055 // Disable loop optimizations if the loop has a scalar replaceable
kvn@474 3056 // allocation. This disabling may cause a potential performance lost
kvn@474 3057 // if the allocation is not eliminated for some reason.
kvn@474 3058 innermost->_allow_optimizations = false;
kvn@474 3059 innermost->_has_call = 1; // = true
kvn@4023 3060 } else if (n->Opcode() == Op_SafePoint) {
kvn@4023 3061 // Record all safepoints in this loop.
kvn@4023 3062 if (innermost->_safepts == NULL) innermost->_safepts = new Node_List();
kvn@4023 3063 innermost->_safepts->push(n);
duke@435 3064 }
duke@435 3065 }
duke@435 3066 }
duke@435 3067
duke@435 3068 // Flag as post-visited now
duke@435 3069 set_postvisited(n);
duke@435 3070 return pre_order;
duke@435 3071 }
duke@435 3072
duke@435 3073
duke@435 3074 //------------------------------build_loop_early-------------------------------
duke@435 3075 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
duke@435 3076 // First pass computes the earliest controlling node possible. This is the
duke@435 3077 // controlling input with the deepest dominating depth.
never@1356 3078 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
duke@435 3079 while (worklist.size() != 0) {
duke@435 3080 // Use local variables nstack_top_n & nstack_top_i to cache values
duke@435 3081 // on nstack's top.
duke@435 3082 Node *nstack_top_n = worklist.pop();
duke@435 3083 uint nstack_top_i = 0;
duke@435 3084 //while_nstack_nonempty:
duke@435 3085 while (true) {
duke@435 3086 // Get parent node and next input's index from stack's top.
duke@435 3087 Node *n = nstack_top_n;
duke@435 3088 uint i = nstack_top_i;
duke@435 3089 uint cnt = n->req(); // Count of inputs
duke@435 3090 if (i == 0) { // Pre-process the node.
duke@435 3091 if( has_node(n) && // Have either loop or control already?
duke@435 3092 !has_ctrl(n) ) { // Have loop picked out already?
duke@435 3093 // During "merge_many_backedges" we fold up several nested loops
duke@435 3094 // into a single loop. This makes the members of the original
duke@435 3095 // loop bodies pointing to dead loops; they need to move up
duke@435 3096 // to the new UNION'd larger loop. I set the _head field of these
duke@435 3097 // dead loops to NULL and the _parent field points to the owning
duke@435 3098 // loop. Shades of UNION-FIND algorithm.
duke@435 3099 IdealLoopTree *ilt;
duke@435 3100 while( !(ilt = get_loop(n))->_head ) {
duke@435 3101 // Normally I would use a set_loop here. But in this one special
duke@435 3102 // case, it is legal (and expected) to change what loop a Node
duke@435 3103 // belongs to.
duke@435 3104 _nodes.map(n->_idx, (Node*)(ilt->_parent) );
duke@435 3105 }
duke@435 3106 // Remove safepoints ONLY if I've already seen I don't need one.
duke@435 3107 // (the old code here would yank a 2nd safepoint after seeing a
duke@435 3108 // first one, even though the 1st did not dominate in the loop body
duke@435 3109 // and thus could be avoided indefinitely)
never@1356 3110 if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
duke@435 3111 is_deleteable_safept(n)) {
duke@435 3112 Node *in = n->in(TypeFunc::Control);
duke@435 3113 lazy_replace(n,in); // Pull safepoint now
kvn@4023 3114 if (ilt->_safepts != NULL) {
kvn@4023 3115 ilt->_safepts->yank(n);
kvn@4023 3116 }
duke@435 3117 // Carry on with the recursion "as if" we are walking
duke@435 3118 // only the control input
duke@435 3119 if( !visited.test_set( in->_idx ) ) {
duke@435 3120 worklist.push(in); // Visit this guy later, using worklist
duke@435 3121 }
duke@435 3122 // Get next node from nstack:
duke@435 3123 // - skip n's inputs processing by setting i > cnt;
duke@435 3124 // - we also will not call set_early_ctrl(n) since
duke@435 3125 // has_node(n) == true (see the condition above).
duke@435 3126 i = cnt + 1;
duke@435 3127 }
duke@435 3128 }
duke@435 3129 } // if (i == 0)
duke@435 3130
duke@435 3131 // Visit all inputs
duke@435 3132 bool done = true; // Assume all n's inputs will be processed
duke@435 3133 while (i < cnt) {
duke@435 3134 Node *in = n->in(i);
duke@435 3135 ++i;
duke@435 3136 if (in == NULL) continue;
duke@435 3137 if (in->pinned() && !in->is_CFG())
duke@435 3138 set_ctrl(in, in->in(0));
duke@435 3139 int is_visited = visited.test_set( in->_idx );
duke@435 3140 if (!has_node(in)) { // No controlling input yet?
duke@435 3141 assert( !in->is_CFG(), "CFG Node with no controlling input?" );
duke@435 3142 assert( !is_visited, "visit only once" );
duke@435 3143 nstack.push(n, i); // Save parent node and next input's index.
duke@435 3144 nstack_top_n = in; // Process current input now.
duke@435 3145 nstack_top_i = 0;
duke@435 3146 done = false; // Not all n's inputs processed.
duke@435 3147 break; // continue while_nstack_nonempty;
duke@435 3148 } else if (!is_visited) {
duke@435 3149 // This guy has a location picked out for him, but has not yet
duke@435 3150 // been visited. Happens to all CFG nodes, for instance.
duke@435 3151 // Visit him using the worklist instead of recursion, to break
duke@435 3152 // cycles. Since he has a location already we do not need to
duke@435 3153 // find his location before proceeding with the current Node.
duke@435 3154 worklist.push(in); // Visit this guy later, using worklist
duke@435 3155 }
duke@435 3156 }
duke@435 3157 if (done) {
duke@435 3158 // All of n's inputs have been processed, complete post-processing.
duke@435 3159
twisti@1040 3160 // Compute earliest point this Node can go.
duke@435 3161 // CFG, Phi, pinned nodes already know their controlling input.
duke@435 3162 if (!has_node(n)) {
duke@435 3163 // Record earliest legal location
duke@435 3164 set_early_ctrl( n );
duke@435 3165 }
duke@435 3166 if (nstack.is_empty()) {
duke@435 3167 // Finished all nodes on stack.
duke@435 3168 // Process next node on the worklist.
duke@435 3169 break;
duke@435 3170 }
duke@435 3171 // Get saved parent node and next input's index.
duke@435 3172 nstack_top_n = nstack.node();
duke@435 3173 nstack_top_i = nstack.index();
duke@435 3174 nstack.pop();
duke@435 3175 }
duke@435 3176 } // while (true)
duke@435 3177 }
duke@435 3178 }
duke@435 3179
duke@435 3180 //------------------------------dom_lca_internal--------------------------------
duke@435 3181 // Pair-wise LCA
duke@435 3182 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
duke@435 3183 if( !n1 ) return n2; // Handle NULL original LCA
duke@435 3184 assert( n1->is_CFG(), "" );
duke@435 3185 assert( n2->is_CFG(), "" );
duke@435 3186 // find LCA of all uses
duke@435 3187 uint d1 = dom_depth(n1);
duke@435 3188 uint d2 = dom_depth(n2);
duke@435 3189 while (n1 != n2) {
duke@435 3190 if (d1 > d2) {
duke@435 3191 n1 = idom(n1);
duke@435 3192 d1 = dom_depth(n1);
duke@435 3193 } else if (d1 < d2) {
duke@435 3194 n2 = idom(n2);
duke@435 3195 d2 = dom_depth(n2);
duke@435 3196 } else {
duke@435 3197 // Here d1 == d2. Due to edits of the dominator-tree, sections
duke@435 3198 // of the tree might have the same depth. These sections have
duke@435 3199 // to be searched more carefully.
duke@435 3200
duke@435 3201 // Scan up all the n1's with equal depth, looking for n2.
duke@435 3202 Node *t1 = idom(n1);
duke@435 3203 while (dom_depth(t1) == d1) {
duke@435 3204 if (t1 == n2) return n2;
duke@435 3205 t1 = idom(t1);
duke@435 3206 }
duke@435 3207 // Scan up all the n2's with equal depth, looking for n1.
duke@435 3208 Node *t2 = idom(n2);
duke@435 3209 while (dom_depth(t2) == d2) {
duke@435 3210 if (t2 == n1) return n1;
duke@435 3211 t2 = idom(t2);
duke@435 3212 }
duke@435 3213 // Move up to a new dominator-depth value as well as up the dom-tree.
duke@435 3214 n1 = t1;
duke@435 3215 n2 = t2;
duke@435 3216 d1 = dom_depth(n1);
duke@435 3217 d2 = dom_depth(n2);
duke@435 3218 }
duke@435 3219 }
duke@435 3220 return n1;
duke@435 3221 }
duke@435 3222
duke@435 3223 //------------------------------compute_idom-----------------------------------
duke@435 3224 // Locally compute IDOM using dom_lca call. Correct only if the incoming
duke@435 3225 // IDOMs are correct.
duke@435 3226 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
duke@435 3227 assert( region->is_Region(), "" );
duke@435 3228 Node *LCA = NULL;
duke@435 3229 for( uint i = 1; i < region->req(); i++ ) {
duke@435 3230 if( region->in(i) != C->top() )
duke@435 3231 LCA = dom_lca( LCA, region->in(i) );
duke@435 3232 }
duke@435 3233 return LCA;
duke@435 3234 }
duke@435 3235
never@1356 3236 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
never@1356 3237 bool had_error = false;
never@1356 3238 #ifdef ASSERT
never@1356 3239 if (early != C->root()) {
kvn@6630 3240 // Make sure that there's a dominance path from LCA to early
kvn@6630 3241 Node* d = LCA;
kvn@6630 3242 while (d != early) {
never@1356 3243 if (d == C->root()) {
kvn@6630 3244 dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
kvn@6630 3245 tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
never@1356 3246 had_error = true;
never@1356 3247 break;
never@1356 3248 }
kvn@6630 3249 d = idom(d);
never@1356 3250 }
never@1356 3251 }
never@1356 3252 #endif
never@1356 3253 return had_error;
never@1356 3254 }
duke@435 3255
never@1356 3256
never@1356 3257 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
duke@435 3258 // Compute LCA over list of uses
never@1356 3259 bool had_error = false;
duke@435 3260 Node *LCA = NULL;
duke@435 3261 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
duke@435 3262 Node* c = n->fast_out(i);
duke@435 3263 if (_nodes[c->_idx] == NULL)
duke@435 3264 continue; // Skip the occasional dead node
duke@435 3265 if( c->is_Phi() ) { // For Phis, we must land above on the path
duke@435 3266 for( uint j=1; j<c->req(); j++ ) {// For all inputs
duke@435 3267 if( c->in(j) == n ) { // Found matching input?
duke@435 3268 Node *use = c->in(0)->in(j);
never@1356 3269 if (_verify_only && use->is_top()) continue;
duke@435 3270 LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
never@1356 3271 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
duke@435 3272 }
duke@435 3273 }
duke@435 3274 } else {
duke@435 3275 // For CFG data-users, use is in the block just prior
duke@435 3276 Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
duke@435 3277 LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
never@1356 3278 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
duke@435 3279 }
duke@435 3280 }
never@1356 3281 assert(!had_error, "bad dominance");
never@1356 3282 return LCA;
never@1356 3283 }
never@1356 3284
zmajo@9977 3285 // Check the shape of the graph at the loop entry. In some cases,
zmajo@9977 3286 // the shape of the graph does not match the shape outlined below.
zmajo@9977 3287 // That is caused by the Opaque1 node "protecting" the shape of
zmajo@9977 3288 // the graph being removed by, for example, the IGVN performed
zmajo@9977 3289 // in PhaseIdealLoop::build_and_optimize().
zmajo@9977 3290 //
zmajo@9977 3291 // After the Opaque1 node has been removed, optimizations (e.g., split-if,
zmajo@9977 3292 // loop unswitching, and IGVN, or a combination of them) can freely change
zmajo@9977 3293 // the graph's shape. As a result, the graph shape outlined below cannot
zmajo@9977 3294 // be guaranteed anymore.
zmajo@9977 3295 bool PhaseIdealLoop::is_canonical_main_loop_entry(CountedLoopNode* cl) {
zmajo@9977 3296 assert(cl->is_main_loop(), "check should be applied to main loops");
zmajo@9977 3297 Node* ctrl = cl->in(LoopNode::EntryControl);
zmajo@9977 3298 if (ctrl == NULL || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) {
zmajo@9977 3299 return false;
zmajo@9977 3300 }
zmajo@9977 3301 Node* iffm = ctrl->in(0);
zmajo@9977 3302 if (iffm == NULL || !iffm->is_If()) {
zmajo@9977 3303 return false;
zmajo@9977 3304 }
zmajo@9977 3305 Node* bolzm = iffm->in(1);
zmajo@9977 3306 if (bolzm == NULL || !bolzm->is_Bool()) {
zmajo@9977 3307 return false;
zmajo@9977 3308 }
zmajo@9977 3309 Node* cmpzm = bolzm->in(1);
zmajo@9977 3310 if (cmpzm == NULL || !cmpzm->is_Cmp()) {
zmajo@9977 3311 return false;
zmajo@9977 3312 }
zmajo@9977 3313 Node* opqzm = cmpzm->in(2);
zmajo@9977 3314 if (opqzm == NULL || opqzm->Opcode() != Op_Opaque1) {
zmajo@9977 3315 return false;
zmajo@9977 3316 }
zmajo@9977 3317 return true;
zmajo@9977 3318 }
zmajo@9977 3319
never@1356 3320 //------------------------------get_late_ctrl----------------------------------
never@1356 3321 // Compute latest legal control.
never@1356 3322 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
never@1356 3323 assert(early != NULL, "early control should not be NULL");
never@1356 3324
never@1356 3325 Node* LCA = compute_lca_of_uses(n, early);
never@1356 3326 #ifdef ASSERT
never@1356 3327 if (LCA == C->root() && LCA != early) {
never@1356 3328 // def doesn't dominate uses so print some useful debugging output
never@1356 3329 compute_lca_of_uses(n, early, true);
never@1356 3330 }
never@1356 3331 #endif
duke@435 3332
duke@435 3333 // if this is a load, check for anti-dependent stores
duke@435 3334 // We use a conservative algorithm to identify potential interfering
duke@435 3335 // instructions and for rescheduling the load. The users of the memory
duke@435 3336 // input of this load are examined. Any use which is not a load and is
duke@435 3337 // dominated by early is considered a potentially interfering store.
duke@435 3338 // This can produce false positives.
duke@435 3339 if (n->is_Load() && LCA != early) {
duke@435 3340 Node_List worklist;
duke@435 3341
duke@435 3342 Node *mem = n->in(MemNode::Memory);
duke@435 3343 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
duke@435 3344 Node* s = mem->fast_out(i);
duke@435 3345 worklist.push(s);
duke@435 3346 }
duke@435 3347 while(worklist.size() != 0 && LCA != early) {
duke@435 3348 Node* s = worklist.pop();
duke@435 3349 if (s->is_Load()) {
duke@435 3350 continue;
duke@435 3351 } else if (s->is_MergeMem()) {
duke@435 3352 for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
duke@435 3353 Node* s1 = s->fast_out(i);
duke@435 3354 worklist.push(s1);
duke@435 3355 }
duke@435 3356 } else {
duke@435 3357 Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
duke@435 3358 assert(sctrl != NULL || s->outcnt() == 0, "must have control");
duke@435 3359 if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
duke@435 3360 LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
duke@435 3361 }
duke@435 3362 }
duke@435 3363 }
duke@435 3364 }
duke@435 3365
duke@435 3366 assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
duke@435 3367 return LCA;
duke@435 3368 }
duke@435 3369
duke@435 3370 // true if CFG node d dominates CFG node n
duke@435 3371 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
duke@435 3372 if (d == n)
duke@435 3373 return true;
duke@435 3374 assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
duke@435 3375 uint dd = dom_depth(d);
duke@435 3376 while (dom_depth(n) >= dd) {
duke@435 3377 if (n == d)
duke@435 3378 return true;
duke@435 3379 n = idom(n);
duke@435 3380 }
duke@435 3381 return false;
duke@435 3382 }
duke@435 3383
duke@435 3384 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
duke@435 3385 // Pair-wise LCA with tags.
duke@435 3386 // Tag each index with the node 'tag' currently being processed
duke@435 3387 // before advancing up the dominator chain using idom().
duke@435 3388 // Later calls that find a match to 'tag' know that this path has already
duke@435 3389 // been considered in the current LCA (which is input 'n1' by convention).
duke@435 3390 // Since get_late_ctrl() is only called once for each node, the tag array
duke@435 3391 // does not need to be cleared between calls to get_late_ctrl().
duke@435 3392 // Algorithm trades a larger constant factor for better asymptotic behavior
duke@435 3393 //
duke@435 3394 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
duke@435 3395 uint d1 = dom_depth(n1);
duke@435 3396 uint d2 = dom_depth(n2);
duke@435 3397
duke@435 3398 do {
duke@435 3399 if (d1 > d2) {
duke@435 3400 // current lca is deeper than n2
duke@435 3401 _dom_lca_tags.map(n1->_idx, tag);
duke@435 3402 n1 = idom(n1);
duke@435 3403 d1 = dom_depth(n1);
duke@435 3404 } else if (d1 < d2) {
duke@435 3405 // n2 is deeper than current lca
duke@435 3406 Node *memo = _dom_lca_tags[n2->_idx];
duke@435 3407 if( memo == tag ) {
duke@435 3408 return n1; // Return the current LCA
duke@435 3409 }
duke@435 3410 _dom_lca_tags.map(n2->_idx, tag);
duke@435 3411 n2 = idom(n2);
duke@435 3412 d2 = dom_depth(n2);
duke@435 3413 } else {
duke@435 3414 // Here d1 == d2. Due to edits of the dominator-tree, sections
duke@435 3415 // of the tree might have the same depth. These sections have
duke@435 3416 // to be searched more carefully.
duke@435 3417
duke@435 3418 // Scan up all the n1's with equal depth, looking for n2.
duke@435 3419 _dom_lca_tags.map(n1->_idx, tag);
duke@435 3420 Node *t1 = idom(n1);
duke@435 3421 while (dom_depth(t1) == d1) {
duke@435 3422 if (t1 == n2) return n2;
duke@435 3423 _dom_lca_tags.map(t1->_idx, tag);
duke@435 3424 t1 = idom(t1);
duke@435 3425 }
duke@435 3426 // Scan up all the n2's with equal depth, looking for n1.
duke@435 3427 _dom_lca_tags.map(n2->_idx, tag);
duke@435 3428 Node *t2 = idom(n2);
duke@435 3429 while (dom_depth(t2) == d2) {
duke@435 3430 if (t2 == n1) return n1;
duke@435 3431 _dom_lca_tags.map(t2->_idx, tag);
duke@435 3432 t2 = idom(t2);
duke@435 3433 }
duke@435 3434 // Move up to a new dominator-depth value as well as up the dom-tree.
duke@435 3435 n1 = t1;
duke@435 3436 n2 = t2;
duke@435 3437 d1 = dom_depth(n1);
duke@435 3438 d2 = dom_depth(n2);
duke@435 3439 }
duke@435 3440 } while (n1 != n2);
duke@435 3441 return n1;
duke@435 3442 }
duke@435 3443
duke@435 3444 //------------------------------init_dom_lca_tags------------------------------
duke@435 3445 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
duke@435 3446 // Intended use does not involve any growth for the array, so it could
duke@435 3447 // be of fixed size.
duke@435 3448 void PhaseIdealLoop::init_dom_lca_tags() {
duke@435 3449 uint limit = C->unique() + 1;
duke@435 3450 _dom_lca_tags.map( limit, NULL );
duke@435 3451 #ifdef ASSERT
duke@435 3452 for( uint i = 0; i < limit; ++i ) {
duke@435 3453 assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
duke@435 3454 }
duke@435 3455 #endif // ASSERT
duke@435 3456 }
duke@435 3457
duke@435 3458 //------------------------------clear_dom_lca_tags------------------------------
duke@435 3459 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
duke@435 3460 // Intended use does not involve any growth for the array, so it could
duke@435 3461 // be of fixed size.
duke@435 3462 void PhaseIdealLoop::clear_dom_lca_tags() {
duke@435 3463 uint limit = C->unique() + 1;
duke@435 3464 _dom_lca_tags.map( limit, NULL );
duke@435 3465 _dom_lca_tags.clear();
duke@435 3466 #ifdef ASSERT
duke@435 3467 for( uint i = 0; i < limit; ++i ) {
duke@435 3468 assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
duke@435 3469 }
duke@435 3470 #endif // ASSERT
duke@435 3471 }
duke@435 3472
duke@435 3473 //------------------------------build_loop_late--------------------------------
duke@435 3474 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
duke@435 3475 // Second pass finds latest legal placement, and ideal loop placement.
never@1356 3476 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
duke@435 3477 while (worklist.size() != 0) {
duke@435 3478 Node *n = worklist.pop();
duke@435 3479 // Only visit once
duke@435 3480 if (visited.test_set(n->_idx)) continue;
duke@435 3481 uint cnt = n->outcnt();
duke@435 3482 uint i = 0;
duke@435 3483 while (true) {
duke@435 3484 assert( _nodes[n->_idx], "no dead nodes" );
duke@435 3485 // Visit all children
duke@435 3486 if (i < cnt) {
duke@435 3487 Node* use = n->raw_out(i);
duke@435 3488 ++i;
duke@435 3489 // Check for dead uses. Aggressively prune such junk. It might be
duke@435 3490 // dead in the global sense, but still have local uses so I cannot
duke@435 3491 // easily call 'remove_dead_node'.
duke@435 3492 if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
duke@435 3493 // Due to cycles, we might not hit the same fixed point in the verify
duke@435 3494 // pass as we do in the regular pass. Instead, visit such phis as
duke@435 3495 // simple uses of the loop head.
duke@435 3496 if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
duke@435 3497 if( !visited.test(use->_idx) )
duke@435 3498 worklist.push(use);
duke@435 3499 } else if( !visited.test_set(use->_idx) ) {
duke@435 3500 nstack.push(n, i); // Save parent and next use's index.
duke@435 3501 n = use; // Process all children of current use.
duke@435 3502 cnt = use->outcnt();
duke@435 3503 i = 0;
duke@435 3504 }
duke@435 3505 } else {
duke@435 3506 // Do not visit around the backedge of loops via data edges.
duke@435 3507 // push dead code onto a worklist
duke@435 3508 _deadlist.push(use);
duke@435 3509 }
duke@435 3510 } else {
duke@435 3511 // All of n's children have been processed, complete post-processing.
never@1356 3512 build_loop_late_post(n);
duke@435 3513 if (nstack.is_empty()) {
duke@435 3514 // Finished all nodes on stack.
duke@435 3515 // Process next node on the worklist.
duke@435 3516 break;
duke@435 3517 }
duke@435 3518 // Get saved parent node and next use's index. Visit the rest of uses.
duke@435 3519 n = nstack.node();
duke@435 3520 cnt = n->outcnt();
duke@435 3521 i = nstack.index();
duke@435 3522 nstack.pop();
duke@435 3523 }
duke@435 3524 }
duke@435 3525 }
duke@435 3526 }
duke@435 3527
duke@435 3528 //------------------------------build_loop_late_post---------------------------
duke@435 3529 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
duke@435 3530 // Second pass finds latest legal placement, and ideal loop placement.
never@1356 3531 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
duke@435 3532
never@1356 3533 if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
duke@435 3534 _igvn._worklist.push(n); // Maybe we'll normalize it, if no more loops.
duke@435 3535 }
duke@435 3536
kvn@6630 3537 #ifdef ASSERT
kvn@6630 3538 if (_verify_only && !n->is_CFG()) {
kvn@6630 3539 // Check def-use domination.
kvn@6630 3540 compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
kvn@6630 3541 }
kvn@6630 3542 #endif
kvn@6630 3543
duke@435 3544 // CFG and pinned nodes already handled
duke@435 3545 if( n->in(0) ) {
duke@435 3546 if( n->in(0)->is_top() ) return; // Dead?
duke@435 3547
duke@435 3548 // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
duke@435 3549 // _must_ be pinned (they have to observe their control edge of course).
duke@435 3550 // Unlike Stores (which modify an unallocable resource, the memory
duke@435 3551 // state), Mods/Loads can float around. So free them up.
duke@435 3552 bool pinned = true;
duke@435 3553 switch( n->Opcode() ) {
duke@435 3554 case Op_DivI:
duke@435 3555 case Op_DivF:
duke@435 3556 case Op_DivD:
duke@435 3557 case Op_ModI:
duke@435 3558 case Op_ModF:
duke@435 3559 case Op_ModD:
duke@435 3560 case Op_LoadB: // Same with Loads; they can sink
kvn@3882 3561 case Op_LoadUB: // during loop optimizations.
kvn@3882 3562 case Op_LoadUS:
duke@435 3563 case Op_LoadD:
duke@435 3564 case Op_LoadF:
duke@435 3565 case Op_LoadI:
duke@435 3566 case Op_LoadKlass:
kvn@728 3567 case Op_LoadNKlass:
duke@435 3568 case Op_LoadL:
duke@435 3569 case Op_LoadS:
duke@435 3570 case Op_LoadP:
kvn@728 3571 case Op_LoadN:
duke@435 3572 case Op_LoadRange:
duke@435 3573 case Op_LoadD_unaligned:
duke@435 3574 case Op_LoadL_unaligned:
duke@435 3575 case Op_StrComp: // Does a bunch of load-like effects
cfang@1116 3576 case Op_StrEquals:
cfang@1116 3577 case Op_StrIndexOf:
rasbold@604 3578 case Op_AryEq:
duke@435 3579 pinned = false;
duke@435 3580 }
duke@435 3581 if( pinned ) {
twisti@1040 3582 IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
twisti@1040 3583 if( !chosen_loop->_child ) // Inner loop?
twisti@1040 3584 chosen_loop->_body.push(n); // Collect inner loops
duke@435 3585 return;
duke@435 3586 }
duke@435 3587 } else { // No slot zero
duke@435 3588 if( n->is_CFG() ) { // CFG with no slot 0 is dead
duke@435 3589 _nodes.map(n->_idx,0); // No block setting, it's globally dead
duke@435 3590 return;
duke@435 3591 }
duke@435 3592 assert(!n->is_CFG() || n->outcnt() == 0, "");
duke@435 3593 }
duke@435 3594
duke@435 3595 // Do I have a "safe range" I can select over?
duke@435 3596 Node *early = get_ctrl(n);// Early location already computed
duke@435 3597
duke@435 3598 // Compute latest point this Node can go
duke@435 3599 Node *LCA = get_late_ctrl( n, early );
duke@435 3600 // LCA is NULL due to uses being dead
duke@435 3601 if( LCA == NULL ) {
duke@435 3602 #ifdef ASSERT
duke@435 3603 for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
duke@435 3604 assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
duke@435 3605 }
duke@435 3606 #endif
duke@435 3607 _nodes.map(n->_idx, 0); // This node is useless
duke@435 3608 _deadlist.push(n);
duke@435 3609 return;
duke@435 3610 }
duke@435 3611 assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
duke@435 3612
duke@435 3613 Node *legal = LCA; // Walk 'legal' up the IDOM chain
duke@435 3614 Node *least = legal; // Best legal position so far
duke@435 3615 while( early != legal ) { // While not at earliest legal
cfang@1607 3616 #ifdef ASSERT
cfang@1607 3617 if (legal->is_Start() && !early->is_Root()) {
cfang@1607 3618 // Bad graph. Print idom path and fail.
roland@4589 3619 dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
cfang@1607 3620 assert(false, "Bad graph detected in build_loop_late");
cfang@1607 3621 }
cfang@1607 3622 #endif
duke@435 3623 // Find least loop nesting depth
duke@435 3624 legal = idom(legal); // Bump up the IDOM tree
duke@435 3625 // Check for lower nesting depth
duke@435 3626 if( get_loop(legal)->_nest < get_loop(least)->_nest )
duke@435 3627 least = legal;
duke@435 3628 }
never@1356 3629 assert(early == legal || legal != C->root(), "bad dominance of inputs");
duke@435 3630
duke@435 3631 // Try not to place code on a loop entry projection
duke@435 3632 // which can inhibit range check elimination.
duke@435 3633 if (least != early) {
duke@435 3634 Node* ctrl_out = least->unique_ctrl_out();
duke@435 3635 if (ctrl_out && ctrl_out->is_CountedLoop() &&
duke@435 3636 least == ctrl_out->in(LoopNode::EntryControl)) {
duke@435 3637 Node* least_dom = idom(least);
duke@435 3638 if (get_loop(least_dom)->is_member(get_loop(least))) {
duke@435 3639 least = least_dom;
duke@435 3640 }
duke@435 3641 }
duke@435 3642 }
duke@435 3643
duke@435 3644 #ifdef ASSERT
duke@435 3645 // If verifying, verify that 'verify_me' has a legal location
duke@435 3646 // and choose it as our location.
never@1356 3647 if( _verify_me ) {
never@1356 3648 Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
duke@435 3649 Node *legal = LCA;
duke@435 3650 while( early != legal ) { // While not at earliest legal
duke@435 3651 if( legal == v_ctrl ) break; // Check for prior good location
duke@435 3652 legal = idom(legal) ;// Bump up the IDOM tree
duke@435 3653 }
duke@435 3654 // Check for prior good location
duke@435 3655 if( legal == v_ctrl ) least = legal; // Keep prior if found
duke@435 3656 }
duke@435 3657 #endif
duke@435 3658
duke@435 3659 // Assign discovered "here or above" point
duke@435 3660 least = find_non_split_ctrl(least);
duke@435 3661 set_ctrl(n, least);
duke@435 3662
duke@435 3663 // Collect inner loop bodies
twisti@1040 3664 IdealLoopTree *chosen_loop = get_loop(least);
twisti@1040 3665 if( !chosen_loop->_child ) // Inner loop?
twisti@1040 3666 chosen_loop->_body.push(n);// Collect inner loops
duke@435 3667 }
duke@435 3668
kvn@3408 3669 #ifdef ASSERT
roland@4589 3670 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
drchase@6680 3671 tty->print_cr("%s", msg);
kvn@3408 3672 tty->print("n: "); n->dump();
kvn@3408 3673 tty->print("early(n): "); early->dump();
kvn@3408 3674 if (n->in(0) != NULL && !n->in(0)->is_top() &&
kvn@3408 3675 n->in(0) != early && !n->in(0)->is_Root()) {
kvn@3408 3676 tty->print("n->in(0): "); n->in(0)->dump();
kvn@3408 3677 }
kvn@3408 3678 for (uint i = 1; i < n->req(); i++) {
kvn@3408 3679 Node* in1 = n->in(i);
kvn@3408 3680 if (in1 != NULL && in1 != n && !in1->is_top()) {
kvn@3408 3681 tty->print("n->in(%d): ", i); in1->dump();
kvn@3408 3682 Node* in1_early = get_ctrl(in1);
kvn@3408 3683 tty->print("early(n->in(%d)): ", i); in1_early->dump();
kvn@3408 3684 if (in1->in(0) != NULL && !in1->in(0)->is_top() &&
kvn@3408 3685 in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
kvn@3408 3686 tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
kvn@3408 3687 }
kvn@3408 3688 for (uint j = 1; j < in1->req(); j++) {
kvn@3408 3689 Node* in2 = in1->in(j);
kvn@3408 3690 if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
kvn@3408 3691 tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
kvn@3408 3692 Node* in2_early = get_ctrl(in2);
kvn@3408 3693 tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
kvn@3408 3694 if (in2->in(0) != NULL && !in2->in(0)->is_top() &&
kvn@3408 3695 in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
kvn@3408 3696 tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
kvn@3408 3697 }
kvn@3408 3698 }
kvn@3408 3699 }
kvn@3408 3700 }
kvn@3408 3701 }
kvn@3408 3702 tty->cr();
kvn@3408 3703 tty->print("LCA(n): "); LCA->dump();
kvn@3408 3704 for (uint i = 0; i < n->outcnt(); i++) {
kvn@3408 3705 Node* u1 = n->raw_out(i);
kvn@3408 3706 if (u1 == n)
kvn@3408 3707 continue;
kvn@3408 3708 tty->print("n->out(%d): ", i); u1->dump();
kvn@3408 3709 if (u1->is_CFG()) {
kvn@3408 3710 for (uint j = 0; j < u1->outcnt(); j++) {
kvn@3408 3711 Node* u2 = u1->raw_out(j);
kvn@3408 3712 if (u2 != u1 && u2 != n && u2->is_CFG()) {
kvn@3408 3713 tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
kvn@3408 3714 }
kvn@3408 3715 }
kvn@3408 3716 } else {
kvn@3408 3717 Node* u1_later = get_ctrl(u1);
kvn@3408 3718 tty->print("later(n->out(%d)): ", i); u1_later->dump();
kvn@3408 3719 if (u1->in(0) != NULL && !u1->in(0)->is_top() &&
kvn@3408 3720 u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
kvn@3408 3721 tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
kvn@3408 3722 }
kvn@3408 3723 for (uint j = 0; j < u1->outcnt(); j++) {
kvn@3408 3724 Node* u2 = u1->raw_out(j);
kvn@3408 3725 if (u2 == n || u2 == u1)
kvn@3408 3726 continue;
kvn@3408 3727 tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
kvn@3408 3728 if (!u2->is_CFG()) {
kvn@3408 3729 Node* u2_later = get_ctrl(u2);
kvn@3408 3730 tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
kvn@3408 3731 if (u2->in(0) != NULL && !u2->in(0)->is_top() &&
kvn@3408 3732 u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
kvn@3408 3733 tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
kvn@3408 3734 }
kvn@3408 3735 }
kvn@3408 3736 }
kvn@3408 3737 }
kvn@3408 3738 }
kvn@3408 3739 tty->cr();
kvn@3408 3740 int ct = 0;
kvn@3408 3741 Node *dbg_legal = LCA;
kvn@3408 3742 while(!dbg_legal->is_Start() && ct < 100) {
kvn@3408 3743 tty->print("idom[%d] ",ct); dbg_legal->dump();
kvn@3408 3744 ct++;
kvn@3408 3745 dbg_legal = idom(dbg_legal);
kvn@3408 3746 }
kvn@3408 3747 tty->cr();
kvn@3408 3748 }
kvn@3408 3749 #endif
kvn@3408 3750
duke@435 3751 #ifndef PRODUCT
duke@435 3752 //------------------------------dump-------------------------------------------
duke@435 3753 void PhaseIdealLoop::dump( ) const {
duke@435 3754 ResourceMark rm;
duke@435 3755 Arena* arena = Thread::current()->resource_area();
zmajo@8068 3756 Node_Stack stack(arena, C->live_nodes() >> 2);
duke@435 3757 Node_List rpo_list;
duke@435 3758 VectorSet visited(arena);
duke@435 3759 visited.set(C->top()->_idx);
duke@435 3760 rpo( C->root(), stack, visited, rpo_list );
duke@435 3761 // Dump root loop indexed by last element in PO order
duke@435 3762 dump( _ltree_root, rpo_list.size(), rpo_list );
duke@435 3763 }
duke@435 3764
duke@435 3765 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
never@802 3766 loop->dump_head();
duke@435 3767
duke@435 3768 // Now scan for CFG nodes in the same loop
duke@435 3769 for( uint j=idx; j > 0; j-- ) {
duke@435 3770 Node *n = rpo_list[j-1];
duke@435 3771 if( !_nodes[n->_idx] ) // Skip dead nodes
duke@435 3772 continue;
duke@435 3773 if( get_loop(n) != loop ) { // Wrong loop nest
duke@435 3774 if( get_loop(n)->_head == n && // Found nested loop?
duke@435 3775 get_loop(n)->_parent == loop )
duke@435 3776 dump(get_loop(n),rpo_list.size(),rpo_list); // Print it nested-ly
duke@435 3777 continue;
duke@435 3778 }
duke@435 3779
duke@435 3780 // Dump controlling node
duke@435 3781 for( uint x = 0; x < loop->_nest; x++ )
duke@435 3782 tty->print(" ");
duke@435 3783 tty->print("C");
duke@435 3784 if( n == C->root() ) {
duke@435 3785 n->dump();
duke@435 3786 } else {
duke@435 3787 Node* cached_idom = idom_no_update(n);
duke@435 3788 Node *computed_idom = n->in(0);
duke@435 3789 if( n->is_Region() ) {
duke@435 3790 computed_idom = compute_idom(n);
duke@435 3791 // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
duke@435 3792 // any MultiBranch ctrl node), so apply a similar transform to
duke@435 3793 // the cached idom returned from idom_no_update.
duke@435 3794 cached_idom = find_non_split_ctrl(cached_idom);
duke@435 3795 }
duke@435 3796 tty->print(" ID:%d",computed_idom->_idx);
duke@435 3797 n->dump();
duke@435 3798 if( cached_idom != computed_idom ) {
duke@435 3799 tty->print_cr("*** BROKEN IDOM! Computed as: %d, cached as: %d",
duke@435 3800 computed_idom->_idx, cached_idom->_idx);
duke@435 3801 }
duke@435 3802 }
duke@435 3803 // Dump nodes it controls
duke@435 3804 for( uint k = 0; k < _nodes.Size(); k++ ) {
duke@435 3805 // (k < C->unique() && get_ctrl(find(k)) == n)
duke@435 3806 if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
duke@435 3807 Node *m = C->root()->find(k);
duke@435 3808 if( m && m->outcnt() > 0 ) {
duke@435 3809 if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
duke@435 3810 tty->print_cr("*** BROKEN CTRL ACCESSOR! _nodes[k] is %p, ctrl is %p",
duke@435 3811 _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
duke@435 3812 }
duke@435 3813 for( uint j = 0; j < loop->_nest; j++ )
duke@435 3814 tty->print(" ");
duke@435 3815 tty->print(" ");
duke@435 3816 m->dump();
duke@435 3817 }
duke@435 3818 }
duke@435 3819 }
duke@435 3820 }
duke@435 3821 }
duke@435 3822
duke@435 3823 // Collect a R-P-O for the whole CFG.
duke@435 3824 // Result list is in post-order (scan backwards for RPO)
duke@435 3825 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
duke@435 3826 stk.push(start, 0);
duke@435 3827 visited.set(start->_idx);
duke@435 3828
duke@435 3829 while (stk.is_nonempty()) {
duke@435 3830 Node* m = stk.node();
duke@435 3831 uint idx = stk.index();
duke@435 3832 if (idx < m->outcnt()) {
duke@435 3833 stk.set_index(idx + 1);
duke@435 3834 Node* n = m->raw_out(idx);
duke@435 3835 if (n->is_CFG() && !visited.test_set(n->_idx)) {
duke@435 3836 stk.push(n, 0);
duke@435 3837 }
duke@435 3838 } else {
duke@435 3839 rpo_list.push(m);
duke@435 3840 stk.pop();
duke@435 3841 }
duke@435 3842 }
duke@435 3843 }
duke@435 3844 #endif
duke@435 3845
duke@435 3846
duke@435 3847 //=============================================================================
duke@435 3848 //------------------------------LoopTreeIterator-----------------------------------
duke@435 3849
duke@435 3850 // Advance to next loop tree using a preorder, left-to-right traversal.
duke@435 3851 void LoopTreeIterator::next() {
duke@435 3852 assert(!done(), "must not be done.");
duke@435 3853 if (_curnt->_child != NULL) {
duke@435 3854 _curnt = _curnt->_child;
duke@435 3855 } else if (_curnt->_next != NULL) {
duke@435 3856 _curnt = _curnt->_next;
duke@435 3857 } else {
duke@435 3858 while (_curnt != _root && _curnt->_next == NULL) {
duke@435 3859 _curnt = _curnt->_parent;
duke@435 3860 }
duke@435 3861 if (_curnt == _root) {
duke@435 3862 _curnt = NULL;
duke@435 3863 assert(done(), "must be done.");
duke@435 3864 } else {
duke@435 3865 assert(_curnt->_next != NULL, "must be more to do");
duke@435 3866 _curnt = _curnt->_next;
duke@435 3867 }
duke@435 3868 }
duke@435 3869 }

mercurial