src/share/vm/opto/loopnode.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2118
d6f45b55c972
child 2555
194c9fdee631
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

duke@435 1 /*
stefank@2314 2 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "ci/ciMethodData.hpp"
stefank@2314 27 #include "compiler/compileLog.hpp"
stefank@2314 28 #include "libadt/vectset.hpp"
stefank@2314 29 #include "memory/allocation.inline.hpp"
stefank@2314 30 #include "opto/addnode.hpp"
stefank@2314 31 #include "opto/callnode.hpp"
stefank@2314 32 #include "opto/connode.hpp"
stefank@2314 33 #include "opto/divnode.hpp"
stefank@2314 34 #include "opto/idealGraphPrinter.hpp"
stefank@2314 35 #include "opto/loopnode.hpp"
stefank@2314 36 #include "opto/mulnode.hpp"
stefank@2314 37 #include "opto/rootnode.hpp"
stefank@2314 38 #include "opto/superword.hpp"
duke@435 39
duke@435 40 //=============================================================================
duke@435 41 //------------------------------is_loop_iv-------------------------------------
duke@435 42 // Determine if a node is Counted loop induction variable.
duke@435 43 // The method is declared in node.hpp.
duke@435 44 const Node* Node::is_loop_iv() const {
duke@435 45 if (this->is_Phi() && !this->as_Phi()->is_copy() &&
duke@435 46 this->as_Phi()->region()->is_CountedLoop() &&
duke@435 47 this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
duke@435 48 return this;
duke@435 49 } else {
duke@435 50 return NULL;
duke@435 51 }
duke@435 52 }
duke@435 53
duke@435 54 //=============================================================================
duke@435 55 //------------------------------dump_spec--------------------------------------
duke@435 56 // Dump special per-node info
duke@435 57 #ifndef PRODUCT
duke@435 58 void LoopNode::dump_spec(outputStream *st) const {
duke@435 59 if( is_inner_loop () ) st->print( "inner " );
duke@435 60 if( is_partial_peel_loop () ) st->print( "partial_peel " );
duke@435 61 if( partial_peel_has_failed () ) st->print( "partial_peel_failed " );
duke@435 62 }
duke@435 63 #endif
duke@435 64
duke@435 65 //------------------------------get_early_ctrl---------------------------------
duke@435 66 // Compute earliest legal control
duke@435 67 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
duke@435 68 assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
duke@435 69 uint i;
duke@435 70 Node *early;
duke@435 71 if( n->in(0) ) {
duke@435 72 early = n->in(0);
duke@435 73 if( !early->is_CFG() ) // Might be a non-CFG multi-def
duke@435 74 early = get_ctrl(early); // So treat input as a straight data input
duke@435 75 i = 1;
duke@435 76 } else {
duke@435 77 early = get_ctrl(n->in(1));
duke@435 78 i = 2;
duke@435 79 }
duke@435 80 uint e_d = dom_depth(early);
duke@435 81 assert( early, "" );
duke@435 82 for( ; i < n->req(); i++ ) {
duke@435 83 Node *cin = get_ctrl(n->in(i));
duke@435 84 assert( cin, "" );
duke@435 85 // Keep deepest dominator depth
duke@435 86 uint c_d = dom_depth(cin);
duke@435 87 if( c_d > e_d ) { // Deeper guy?
duke@435 88 early = cin; // Keep deepest found so far
duke@435 89 e_d = c_d;
duke@435 90 } else if( c_d == e_d && // Same depth?
duke@435 91 early != cin ) { // If not equal, must use slower algorithm
duke@435 92 // If same depth but not equal, one _must_ dominate the other
duke@435 93 // and we want the deeper (i.e., dominated) guy.
duke@435 94 Node *n1 = early;
duke@435 95 Node *n2 = cin;
duke@435 96 while( 1 ) {
duke@435 97 n1 = idom(n1); // Walk up until break cycle
duke@435 98 n2 = idom(n2);
duke@435 99 if( n1 == cin || // Walked early up to cin
duke@435 100 dom_depth(n2) < c_d )
duke@435 101 break; // early is deeper; keep him
duke@435 102 if( n2 == early || // Walked cin up to early
duke@435 103 dom_depth(n1) < c_d ) {
duke@435 104 early = cin; // cin is deeper; keep him
duke@435 105 break;
duke@435 106 }
duke@435 107 }
duke@435 108 e_d = dom_depth(early); // Reset depth register cache
duke@435 109 }
duke@435 110 }
duke@435 111
duke@435 112 // Return earliest legal location
duke@435 113 assert(early == find_non_split_ctrl(early), "unexpected early control");
duke@435 114
duke@435 115 return early;
duke@435 116 }
duke@435 117
duke@435 118 //------------------------------set_early_ctrl---------------------------------
duke@435 119 // Set earliest legal control
duke@435 120 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
duke@435 121 Node *early = get_early_ctrl(n);
duke@435 122
duke@435 123 // Record earliest legal location
duke@435 124 set_ctrl(n, early);
duke@435 125 }
duke@435 126
duke@435 127 //------------------------------set_subtree_ctrl-------------------------------
duke@435 128 // set missing _ctrl entries on new nodes
duke@435 129 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
duke@435 130 // Already set? Get out.
duke@435 131 if( _nodes[n->_idx] ) return;
duke@435 132 // Recursively set _nodes array to indicate where the Node goes
duke@435 133 uint i;
duke@435 134 for( i = 0; i < n->req(); ++i ) {
duke@435 135 Node *m = n->in(i);
duke@435 136 if( m && m != C->root() )
duke@435 137 set_subtree_ctrl( m );
duke@435 138 }
duke@435 139
duke@435 140 // Fixup self
duke@435 141 set_early_ctrl( n );
duke@435 142 }
duke@435 143
duke@435 144 //------------------------------is_counted_loop--------------------------------
duke@435 145 Node *PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
duke@435 146 PhaseGVN *gvn = &_igvn;
duke@435 147
duke@435 148 // Counted loop head must be a good RegionNode with only 3 not NULL
duke@435 149 // control input edges: Self, Entry, LoopBack.
duke@435 150 if ( x->in(LoopNode::Self) == NULL || x->req() != 3 )
duke@435 151 return NULL;
duke@435 152
duke@435 153 Node *init_control = x->in(LoopNode::EntryControl);
duke@435 154 Node *back_control = x->in(LoopNode::LoopBackControl);
duke@435 155 if( init_control == NULL || back_control == NULL ) // Partially dead
duke@435 156 return NULL;
duke@435 157 // Must also check for TOP when looking for a dead loop
duke@435 158 if( init_control->is_top() || back_control->is_top() )
duke@435 159 return NULL;
duke@435 160
duke@435 161 // Allow funny placement of Safepoint
duke@435 162 if( back_control->Opcode() == Op_SafePoint )
duke@435 163 back_control = back_control->in(TypeFunc::Control);
duke@435 164
duke@435 165 // Controlling test for loop
duke@435 166 Node *iftrue = back_control;
duke@435 167 uint iftrue_op = iftrue->Opcode();
duke@435 168 if( iftrue_op != Op_IfTrue &&
duke@435 169 iftrue_op != Op_IfFalse )
duke@435 170 // I have a weird back-control. Probably the loop-exit test is in
duke@435 171 // the middle of the loop and I am looking at some trailing control-flow
duke@435 172 // merge point. To fix this I would have to partially peel the loop.
duke@435 173 return NULL; // Obscure back-control
duke@435 174
duke@435 175 // Get boolean guarding loop-back test
duke@435 176 Node *iff = iftrue->in(0);
duke@435 177 if( get_loop(iff) != loop || !iff->in(1)->is_Bool() ) return NULL;
duke@435 178 BoolNode *test = iff->in(1)->as_Bool();
duke@435 179 BoolTest::mask bt = test->_test._test;
duke@435 180 float cl_prob = iff->as_If()->_prob;
duke@435 181 if( iftrue_op == Op_IfFalse ) {
duke@435 182 bt = BoolTest(bt).negate();
duke@435 183 cl_prob = 1.0 - cl_prob;
duke@435 184 }
duke@435 185 // Get backedge compare
duke@435 186 Node *cmp = test->in(1);
duke@435 187 int cmp_op = cmp->Opcode();
duke@435 188 if( cmp_op != Op_CmpI )
duke@435 189 return NULL; // Avoid pointer & float compares
duke@435 190
duke@435 191 // Find the trip-counter increment & limit. Limit must be loop invariant.
duke@435 192 Node *incr = cmp->in(1);
duke@435 193 Node *limit = cmp->in(2);
duke@435 194
duke@435 195 // ---------
duke@435 196 // need 'loop()' test to tell if limit is loop invariant
duke@435 197 // ---------
duke@435 198
duke@435 199 if( !is_member( loop, get_ctrl(incr) ) ) { // Swapped trip counter and limit?
duke@435 200 Node *tmp = incr; // Then reverse order into the CmpI
duke@435 201 incr = limit;
duke@435 202 limit = tmp;
duke@435 203 bt = BoolTest(bt).commute(); // And commute the exit test
duke@435 204 }
duke@435 205 if( is_member( loop, get_ctrl(limit) ) ) // Limit must loop-invariant
duke@435 206 return NULL;
duke@435 207
duke@435 208 // Trip-counter increment must be commutative & associative.
duke@435 209 uint incr_op = incr->Opcode();
duke@435 210 if( incr_op == Op_Phi && incr->req() == 3 ) {
duke@435 211 incr = incr->in(2); // Assume incr is on backedge of Phi
duke@435 212 incr_op = incr->Opcode();
duke@435 213 }
duke@435 214 Node* trunc1 = NULL;
duke@435 215 Node* trunc2 = NULL;
duke@435 216 const TypeInt* iv_trunc_t = NULL;
duke@435 217 if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
duke@435 218 return NULL; // Funny increment opcode
duke@435 219 }
duke@435 220
duke@435 221 // Get merge point
duke@435 222 Node *xphi = incr->in(1);
duke@435 223 Node *stride = incr->in(2);
duke@435 224 if( !stride->is_Con() ) { // Oops, swap these
duke@435 225 if( !xphi->is_Con() ) // Is the other guy a constant?
duke@435 226 return NULL; // Nope, unknown stride, bail out
duke@435 227 Node *tmp = xphi; // 'incr' is commutative, so ok to swap
duke@435 228 xphi = stride;
duke@435 229 stride = tmp;
duke@435 230 }
duke@435 231 //if( loop(xphi) != l) return NULL;// Merge point is in inner loop??
duke@435 232 if( !xphi->is_Phi() ) return NULL; // Too much math on the trip counter
duke@435 233 PhiNode *phi = xphi->as_Phi();
duke@435 234
duke@435 235 // Stride must be constant
duke@435 236 const Type *stride_t = stride->bottom_type();
duke@435 237 int stride_con = stride_t->is_int()->get_con();
duke@435 238 assert( stride_con, "missed some peephole opt" );
duke@435 239
duke@435 240 // Phi must be of loop header; backedge must wrap to increment
duke@435 241 if( phi->region() != x ) return NULL;
duke@435 242 if( trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
duke@435 243 trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1 ) {
duke@435 244 return NULL;
duke@435 245 }
duke@435 246 Node *init_trip = phi->in(LoopNode::EntryControl);
duke@435 247 //if (!init_trip->is_Con()) return NULL; // avoid rolling over MAXINT/MININT
duke@435 248
duke@435 249 // If iv trunc type is smaller than int, check for possible wrap.
duke@435 250 if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
duke@435 251 assert(trunc1 != NULL, "must have found some truncation");
duke@435 252
duke@435 253 // Get a better type for the phi (filtered thru if's)
duke@435 254 const TypeInt* phi_ft = filtered_type(phi);
duke@435 255
duke@435 256 // Can iv take on a value that will wrap?
duke@435 257 //
duke@435 258 // Ensure iv's limit is not within "stride" of the wrap value.
duke@435 259 //
duke@435 260 // Example for "short" type
duke@435 261 // Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
duke@435 262 // If the stride is +10, then the last value of the induction
duke@435 263 // variable before the increment (phi_ft->_hi) must be
duke@435 264 // <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
duke@435 265 // ensure no truncation occurs after the increment.
duke@435 266
duke@435 267 if (stride_con > 0) {
duke@435 268 if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
duke@435 269 iv_trunc_t->_lo > phi_ft->_lo) {
duke@435 270 return NULL; // truncation may occur
duke@435 271 }
duke@435 272 } else if (stride_con < 0) {
duke@435 273 if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
duke@435 274 iv_trunc_t->_hi < phi_ft->_hi) {
duke@435 275 return NULL; // truncation may occur
duke@435 276 }
duke@435 277 }
duke@435 278 // No possibility of wrap so truncation can be discarded
duke@435 279 // Promote iv type to Int
duke@435 280 } else {
duke@435 281 assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
duke@435 282 }
duke@435 283
duke@435 284 // =================================================
duke@435 285 // ---- SUCCESS! Found A Trip-Counted Loop! -----
duke@435 286 //
duke@435 287 // Canonicalize the condition on the test. If we can exactly determine
duke@435 288 // the trip-counter exit value, then set limit to that value and use
twisti@1040 289 // a '!=' test. Otherwise use condition '<' for count-up loops and
duke@435 290 // '>' for count-down loops. If the condition is inverted and we will
duke@435 291 // be rolling through MININT to MAXINT, then bail out.
duke@435 292
duke@435 293 C->print_method("Before CountedLoop", 3);
duke@435 294
duke@435 295 // Check for SafePoint on backedge and remove
duke@435 296 Node *sfpt = x->in(LoopNode::LoopBackControl);
duke@435 297 if( sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
duke@435 298 lazy_replace( sfpt, iftrue );
duke@435 299 loop->_tail = iftrue;
duke@435 300 }
duke@435 301
duke@435 302
duke@435 303 // If compare points to incr, we are ok. Otherwise the compare
duke@435 304 // can directly point to the phi; in this case adjust the compare so that
twisti@1040 305 // it points to the incr by adjusting the limit.
duke@435 306 if( cmp->in(1) == phi || cmp->in(2) == phi )
duke@435 307 limit = gvn->transform(new (C, 3) AddINode(limit,stride));
duke@435 308
duke@435 309 // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
duke@435 310 // Final value for iterator should be: trip_count * stride + init_trip.
duke@435 311 const Type *limit_t = limit->bottom_type();
duke@435 312 const Type *init_t = init_trip->bottom_type();
duke@435 313 Node *one_p = gvn->intcon( 1);
duke@435 314 Node *one_m = gvn->intcon(-1);
duke@435 315
duke@435 316 Node *trip_count = NULL;
duke@435 317 Node *hook = new (C, 6) Node(6);
duke@435 318 switch( bt ) {
duke@435 319 case BoolTest::eq:
duke@435 320 return NULL; // Bail out, but this loop trips at most twice!
duke@435 321 case BoolTest::ne: // Ahh, the case we desire
duke@435 322 if( stride_con == 1 )
duke@435 323 trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
duke@435 324 else if( stride_con == -1 )
duke@435 325 trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
duke@435 326 else
duke@435 327 return NULL; // Odd stride; must prove we hit limit exactly
duke@435 328 set_subtree_ctrl( trip_count );
duke@435 329 //_loop.map(trip_count->_idx,loop(limit));
duke@435 330 break;
duke@435 331 case BoolTest::le: // Maybe convert to '<' case
duke@435 332 limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
duke@435 333 set_subtree_ctrl( limit );
duke@435 334 hook->init_req(4, limit);
duke@435 335
duke@435 336 bt = BoolTest::lt;
duke@435 337 // Make the new limit be in the same loop nest as the old limit
duke@435 338 //_loop.map(limit->_idx,limit_loop);
duke@435 339 // Fall into next case
duke@435 340 case BoolTest::lt: { // Maybe convert to '!=' case
duke@435 341 if( stride_con < 0 ) return NULL; // Count down loop rolls through MAXINT
duke@435 342 Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
duke@435 343 set_subtree_ctrl( range );
duke@435 344 hook->init_req(0, range);
duke@435 345
duke@435 346 Node *bias = gvn->transform(new (C, 3) AddINode(range,stride));
duke@435 347 set_subtree_ctrl( bias );
duke@435 348 hook->init_req(1, bias);
duke@435 349
duke@435 350 Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
duke@435 351 set_subtree_ctrl( bias1 );
duke@435 352 hook->init_req(2, bias1);
duke@435 353
duke@435 354 trip_count = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
duke@435 355 set_subtree_ctrl( trip_count );
duke@435 356 hook->init_req(3, trip_count);
duke@435 357 break;
duke@435 358 }
duke@435 359
duke@435 360 case BoolTest::ge: // Maybe convert to '>' case
duke@435 361 limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
duke@435 362 set_subtree_ctrl( limit );
duke@435 363 hook->init_req(4 ,limit);
duke@435 364
duke@435 365 bt = BoolTest::gt;
duke@435 366 // Make the new limit be in the same loop nest as the old limit
duke@435 367 //_loop.map(limit->_idx,limit_loop);
duke@435 368 // Fall into next case
duke@435 369 case BoolTest::gt: { // Maybe convert to '!=' case
duke@435 370 if( stride_con > 0 ) return NULL; // count up loop rolls through MININT
duke@435 371 Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
duke@435 372 set_subtree_ctrl( range );
duke@435 373 hook->init_req(0, range);
duke@435 374
duke@435 375 Node *bias = gvn->transform(new (C, 3) AddINode(range,stride));
duke@435 376 set_subtree_ctrl( bias );
duke@435 377 hook->init_req(1, bias);
duke@435 378
duke@435 379 Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
duke@435 380 set_subtree_ctrl( bias1 );
duke@435 381 hook->init_req(2, bias1);
duke@435 382
duke@435 383 trip_count = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
duke@435 384 set_subtree_ctrl( trip_count );
duke@435 385 hook->init_req(3, trip_count);
duke@435 386 break;
duke@435 387 }
duke@435 388 }
duke@435 389
duke@435 390 Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
duke@435 391 set_subtree_ctrl( span );
duke@435 392 hook->init_req(5, span);
duke@435 393
duke@435 394 limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
duke@435 395 set_subtree_ctrl( limit );
duke@435 396
duke@435 397 // Build a canonical trip test.
duke@435 398 // Clone code, as old values may be in use.
duke@435 399 incr = incr->clone();
duke@435 400 incr->set_req(1,phi);
duke@435 401 incr->set_req(2,stride);
duke@435 402 incr = _igvn.register_new_node_with_optimizer(incr);
duke@435 403 set_early_ctrl( incr );
duke@435 404 _igvn.hash_delete(phi);
duke@435 405 phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
duke@435 406
duke@435 407 // If phi type is more restrictive than Int, raise to
duke@435 408 // Int to prevent (almost) infinite recursion in igvn
duke@435 409 // which can only handle integer types for constants or minint..maxint.
duke@435 410 if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
duke@435 411 Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
duke@435 412 nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
duke@435 413 nphi = _igvn.register_new_node_with_optimizer(nphi);
duke@435 414 set_ctrl(nphi, get_ctrl(phi));
kvn@1976 415 _igvn.replace_node(phi, nphi);
duke@435 416 phi = nphi->as_Phi();
duke@435 417 }
duke@435 418 cmp = cmp->clone();
duke@435 419 cmp->set_req(1,incr);
duke@435 420 cmp->set_req(2,limit);
duke@435 421 cmp = _igvn.register_new_node_with_optimizer(cmp);
duke@435 422 set_ctrl(cmp, iff->in(0));
duke@435 423
duke@435 424 Node *tmp = test->clone();
duke@435 425 assert( tmp->is_Bool(), "" );
duke@435 426 test = (BoolNode*)tmp;
duke@435 427 (*(BoolTest*)&test->_test)._test = bt; //BoolTest::ne;
duke@435 428 test->set_req(1,cmp);
duke@435 429 _igvn.register_new_node_with_optimizer(test);
duke@435 430 set_ctrl(test, iff->in(0));
duke@435 431 // If the exit test is dead, STOP!
duke@435 432 if( test == NULL ) return NULL;
duke@435 433 _igvn.hash_delete(iff);
duke@435 434 iff->set_req_X( 1, test, &_igvn );
duke@435 435
duke@435 436 // Replace the old IfNode with a new LoopEndNode
duke@435 437 Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), iff->in(1), cl_prob, iff->as_If()->_fcnt ));
duke@435 438 IfNode *le = lex->as_If();
duke@435 439 uint dd = dom_depth(iff);
duke@435 440 set_idom(le, le->in(0), dd); // Update dominance for loop exit
duke@435 441 set_loop(le, loop);
duke@435 442
duke@435 443 // Get the loop-exit control
duke@435 444 Node *if_f = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
duke@435 445
duke@435 446 // Need to swap loop-exit and loop-back control?
duke@435 447 if( iftrue_op == Op_IfFalse ) {
duke@435 448 Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
duke@435 449 Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
duke@435 450
duke@435 451 loop->_tail = back_control = ift2;
duke@435 452 set_loop(ift2, loop);
duke@435 453 set_loop(iff2, get_loop(if_f));
duke@435 454
duke@435 455 // Lazy update of 'get_ctrl' mechanism.
duke@435 456 lazy_replace_proj( if_f , iff2 );
duke@435 457 lazy_replace_proj( iftrue, ift2 );
duke@435 458
duke@435 459 // Swap names
duke@435 460 if_f = iff2;
duke@435 461 iftrue = ift2;
duke@435 462 } else {
duke@435 463 _igvn.hash_delete(if_f );
duke@435 464 _igvn.hash_delete(iftrue);
duke@435 465 if_f ->set_req_X( 0, le, &_igvn );
duke@435 466 iftrue->set_req_X( 0, le, &_igvn );
duke@435 467 }
duke@435 468
duke@435 469 set_idom(iftrue, le, dd+1);
duke@435 470 set_idom(if_f, le, dd+1);
duke@435 471
duke@435 472 // Now setup a new CountedLoopNode to replace the existing LoopNode
duke@435 473 CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
duke@435 474 // The following assert is approximately true, and defines the intention
duke@435 475 // of can_be_counted_loop. It fails, however, because phase->type
duke@435 476 // is not yet initialized for this loop and its parts.
duke@435 477 //assert(l->can_be_counted_loop(this), "sanity");
duke@435 478 _igvn.register_new_node_with_optimizer(l);
duke@435 479 set_loop(l, loop);
duke@435 480 loop->_head = l;
duke@435 481 // Fix all data nodes placed at the old loop head.
duke@435 482 // Uses the lazy-update mechanism of 'get_ctrl'.
duke@435 483 lazy_replace( x, l );
duke@435 484 set_idom(l, init_control, dom_depth(x));
duke@435 485
twisti@1040 486 // Check for immediately preceding SafePoint and remove
duke@435 487 Node *sfpt2 = le->in(0);
duke@435 488 if( sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
duke@435 489 lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
duke@435 490
duke@435 491 // Free up intermediate goo
duke@435 492 _igvn.remove_dead_node(hook);
duke@435 493
duke@435 494 C->print_method("After CountedLoop", 3);
duke@435 495
duke@435 496 // Return trip counter
duke@435 497 return trip_count;
duke@435 498 }
duke@435 499
duke@435 500
duke@435 501 //------------------------------Ideal------------------------------------------
duke@435 502 // Return a node which is more "ideal" than the current node.
duke@435 503 // Attempt to convert into a counted-loop.
duke@435 504 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 505 if (!can_be_counted_loop(phase)) {
duke@435 506 phase->C->set_major_progress();
duke@435 507 }
duke@435 508 return RegionNode::Ideal(phase, can_reshape);
duke@435 509 }
duke@435 510
duke@435 511
duke@435 512 //=============================================================================
duke@435 513 //------------------------------Ideal------------------------------------------
duke@435 514 // Return a node which is more "ideal" than the current node.
duke@435 515 // Attempt to convert into a counted-loop.
duke@435 516 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 517 return RegionNode::Ideal(phase, can_reshape);
duke@435 518 }
duke@435 519
duke@435 520 //------------------------------dump_spec--------------------------------------
duke@435 521 // Dump special per-node info
duke@435 522 #ifndef PRODUCT
duke@435 523 void CountedLoopNode::dump_spec(outputStream *st) const {
duke@435 524 LoopNode::dump_spec(st);
duke@435 525 if( stride_is_con() ) {
duke@435 526 st->print("stride: %d ",stride_con());
duke@435 527 } else {
duke@435 528 st->print("stride: not constant ");
duke@435 529 }
duke@435 530 if( is_pre_loop () ) st->print("pre of N%d" , _main_idx );
duke@435 531 if( is_main_loop() ) st->print("main of N%d", _idx );
duke@435 532 if( is_post_loop() ) st->print("post of N%d", _main_idx );
duke@435 533 }
duke@435 534 #endif
duke@435 535
duke@435 536 //=============================================================================
duke@435 537 int CountedLoopEndNode::stride_con() const {
duke@435 538 return stride()->bottom_type()->is_int()->get_con();
duke@435 539 }
duke@435 540
duke@435 541
duke@435 542 //----------------------match_incr_with_optional_truncation--------------------
duke@435 543 // Match increment with optional truncation:
duke@435 544 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
duke@435 545 // Return NULL for failure. Success returns the increment node.
duke@435 546 Node* CountedLoopNode::match_incr_with_optional_truncation(
duke@435 547 Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
duke@435 548 // Quick cutouts:
duke@435 549 if (expr == NULL || expr->req() != 3) return false;
duke@435 550
duke@435 551 Node *t1 = NULL;
duke@435 552 Node *t2 = NULL;
duke@435 553 const TypeInt* trunc_t = TypeInt::INT;
duke@435 554 Node* n1 = expr;
duke@435 555 int n1op = n1->Opcode();
duke@435 556
duke@435 557 // Try to strip (n1 & M) or (n1 << N >> N) from n1.
duke@435 558 if (n1op == Op_AndI &&
duke@435 559 n1->in(2)->is_Con() &&
duke@435 560 n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
duke@435 561 // %%% This check should match any mask of 2**K-1.
duke@435 562 t1 = n1;
duke@435 563 n1 = t1->in(1);
duke@435 564 n1op = n1->Opcode();
duke@435 565 trunc_t = TypeInt::CHAR;
duke@435 566 } else if (n1op == Op_RShiftI &&
duke@435 567 n1->in(1) != NULL &&
duke@435 568 n1->in(1)->Opcode() == Op_LShiftI &&
duke@435 569 n1->in(2) == n1->in(1)->in(2) &&
duke@435 570 n1->in(2)->is_Con()) {
duke@435 571 jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
duke@435 572 // %%% This check should match any shift in [1..31].
duke@435 573 if (shift == 16 || shift == 8) {
duke@435 574 t1 = n1;
duke@435 575 t2 = t1->in(1);
duke@435 576 n1 = t2->in(1);
duke@435 577 n1op = n1->Opcode();
duke@435 578 if (shift == 16) {
duke@435 579 trunc_t = TypeInt::SHORT;
duke@435 580 } else if (shift == 8) {
duke@435 581 trunc_t = TypeInt::BYTE;
duke@435 582 }
duke@435 583 }
duke@435 584 }
duke@435 585
duke@435 586 // If (maybe after stripping) it is an AddI, we won:
duke@435 587 if (n1op == Op_AddI) {
duke@435 588 *trunc1 = t1;
duke@435 589 *trunc2 = t2;
duke@435 590 *trunc_type = trunc_t;
duke@435 591 return n1;
duke@435 592 }
duke@435 593
duke@435 594 // failed
duke@435 595 return NULL;
duke@435 596 }
duke@435 597
duke@435 598
duke@435 599 //------------------------------filtered_type--------------------------------
duke@435 600 // Return a type based on condition control flow
duke@435 601 // A successful return will be a type that is restricted due
duke@435 602 // to a series of dominating if-tests, such as:
duke@435 603 // if (i < 10) {
duke@435 604 // if (i > 0) {
duke@435 605 // here: "i" type is [1..10)
duke@435 606 // }
duke@435 607 // }
duke@435 608 // or a control flow merge
duke@435 609 // if (i < 10) {
duke@435 610 // do {
duke@435 611 // phi( , ) -- at top of loop type is [min_int..10)
duke@435 612 // i = ?
duke@435 613 // } while ( i < 10)
duke@435 614 //
duke@435 615 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
duke@435 616 assert(n && n->bottom_type()->is_int(), "must be int");
duke@435 617 const TypeInt* filtered_t = NULL;
duke@435 618 if (!n->is_Phi()) {
duke@435 619 assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
duke@435 620 filtered_t = filtered_type_from_dominators(n, n_ctrl);
duke@435 621
duke@435 622 } else {
duke@435 623 Node* phi = n->as_Phi();
duke@435 624 Node* region = phi->in(0);
duke@435 625 assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
duke@435 626 if (region && region != C->top()) {
duke@435 627 for (uint i = 1; i < phi->req(); i++) {
duke@435 628 Node* val = phi->in(i);
duke@435 629 Node* use_c = region->in(i);
duke@435 630 const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
duke@435 631 if (val_t != NULL) {
duke@435 632 if (filtered_t == NULL) {
duke@435 633 filtered_t = val_t;
duke@435 634 } else {
duke@435 635 filtered_t = filtered_t->meet(val_t)->is_int();
duke@435 636 }
duke@435 637 }
duke@435 638 }
duke@435 639 }
duke@435 640 }
duke@435 641 const TypeInt* n_t = _igvn.type(n)->is_int();
duke@435 642 if (filtered_t != NULL) {
duke@435 643 n_t = n_t->join(filtered_t)->is_int();
duke@435 644 }
duke@435 645 return n_t;
duke@435 646 }
duke@435 647
duke@435 648
duke@435 649 //------------------------------filtered_type_from_dominators--------------------------------
duke@435 650 // Return a possibly more restrictive type for val based on condition control flow of dominators
duke@435 651 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
duke@435 652 if (val->is_Con()) {
duke@435 653 return val->bottom_type()->is_int();
duke@435 654 }
duke@435 655 uint if_limit = 10; // Max number of dominating if's visited
duke@435 656 const TypeInt* rtn_t = NULL;
duke@435 657
duke@435 658 if (use_ctrl && use_ctrl != C->top()) {
duke@435 659 Node* val_ctrl = get_ctrl(val);
duke@435 660 uint val_dom_depth = dom_depth(val_ctrl);
duke@435 661 Node* pred = use_ctrl;
duke@435 662 uint if_cnt = 0;
duke@435 663 while (if_cnt < if_limit) {
duke@435 664 if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
duke@435 665 if_cnt++;
never@452 666 const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
duke@435 667 if (if_t != NULL) {
duke@435 668 if (rtn_t == NULL) {
duke@435 669 rtn_t = if_t;
duke@435 670 } else {
duke@435 671 rtn_t = rtn_t->join(if_t)->is_int();
duke@435 672 }
duke@435 673 }
duke@435 674 }
duke@435 675 pred = idom(pred);
duke@435 676 if (pred == NULL || pred == C->top()) {
duke@435 677 break;
duke@435 678 }
duke@435 679 // Stop if going beyond definition block of val
duke@435 680 if (dom_depth(pred) < val_dom_depth) {
duke@435 681 break;
duke@435 682 }
duke@435 683 }
duke@435 684 }
duke@435 685 return rtn_t;
duke@435 686 }
duke@435 687
duke@435 688
duke@435 689 //------------------------------dump_spec--------------------------------------
duke@435 690 // Dump special per-node info
duke@435 691 #ifndef PRODUCT
duke@435 692 void CountedLoopEndNode::dump_spec(outputStream *st) const {
duke@435 693 if( in(TestValue)->is_Bool() ) {
duke@435 694 BoolTest bt( test_trip()); // Added this for g++.
duke@435 695
duke@435 696 st->print("[");
duke@435 697 bt.dump_on(st);
duke@435 698 st->print("]");
duke@435 699 }
duke@435 700 st->print(" ");
duke@435 701 IfNode::dump_spec(st);
duke@435 702 }
duke@435 703 #endif
duke@435 704
duke@435 705 //=============================================================================
duke@435 706 //------------------------------is_member--------------------------------------
duke@435 707 // Is 'l' a member of 'this'?
duke@435 708 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
duke@435 709 while( l->_nest > _nest ) l = l->_parent;
duke@435 710 return l == this;
duke@435 711 }
duke@435 712
duke@435 713 //------------------------------set_nest---------------------------------------
duke@435 714 // Set loop tree nesting depth. Accumulate _has_call bits.
duke@435 715 int IdealLoopTree::set_nest( uint depth ) {
duke@435 716 _nest = depth;
duke@435 717 int bits = _has_call;
duke@435 718 if( _child ) bits |= _child->set_nest(depth+1);
duke@435 719 if( bits ) _has_call = 1;
duke@435 720 if( _next ) bits |= _next ->set_nest(depth );
duke@435 721 return bits;
duke@435 722 }
duke@435 723
duke@435 724 //------------------------------split_fall_in----------------------------------
duke@435 725 // Split out multiple fall-in edges from the loop header. Move them to a
duke@435 726 // private RegionNode before the loop. This becomes the loop landing pad.
duke@435 727 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
duke@435 728 PhaseIterGVN &igvn = phase->_igvn;
duke@435 729 uint i;
duke@435 730
duke@435 731 // Make a new RegionNode to be the landing pad.
duke@435 732 Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
duke@435 733 phase->set_loop(landing_pad,_parent);
duke@435 734 // Gather all the fall-in control paths into the landing pad
duke@435 735 uint icnt = fall_in_cnt;
duke@435 736 uint oreq = _head->req();
duke@435 737 for( i = oreq-1; i>0; i-- )
duke@435 738 if( !phase->is_member( this, _head->in(i) ) )
duke@435 739 landing_pad->set_req(icnt--,_head->in(i));
duke@435 740
duke@435 741 // Peel off PhiNode edges as well
duke@435 742 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
duke@435 743 Node *oj = _head->fast_out(j);
duke@435 744 if( oj->is_Phi() ) {
duke@435 745 PhiNode* old_phi = oj->as_Phi();
duke@435 746 assert( old_phi->region() == _head, "" );
duke@435 747 igvn.hash_delete(old_phi); // Yank from hash before hacking edges
duke@435 748 Node *p = PhiNode::make_blank(landing_pad, old_phi);
duke@435 749 uint icnt = fall_in_cnt;
duke@435 750 for( i = oreq-1; i>0; i-- ) {
duke@435 751 if( !phase->is_member( this, _head->in(i) ) ) {
duke@435 752 p->init_req(icnt--, old_phi->in(i));
duke@435 753 // Go ahead and clean out old edges from old phi
duke@435 754 old_phi->del_req(i);
duke@435 755 }
duke@435 756 }
duke@435 757 // Search for CSE's here, because ZKM.jar does a lot of
duke@435 758 // loop hackery and we need to be a little incremental
duke@435 759 // with the CSE to avoid O(N^2) node blow-up.
duke@435 760 Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
duke@435 761 if( p2 ) { // Found CSE
duke@435 762 p->destruct(); // Recover useless new node
duke@435 763 p = p2; // Use old node
duke@435 764 } else {
duke@435 765 igvn.register_new_node_with_optimizer(p, old_phi);
duke@435 766 }
duke@435 767 // Make old Phi refer to new Phi.
duke@435 768 old_phi->add_req(p);
duke@435 769 // Check for the special case of making the old phi useless and
duke@435 770 // disappear it. In JavaGrande I have a case where this useless
duke@435 771 // Phi is the loop limit and prevents recognizing a CountedLoop
duke@435 772 // which in turn prevents removing an empty loop.
duke@435 773 Node *id_old_phi = old_phi->Identity( &igvn );
duke@435 774 if( id_old_phi != old_phi ) { // Found a simple identity?
kvn@1976 775 // Note that I cannot call 'replace_node' here, because
duke@435 776 // that will yank the edge from old_phi to the Region and
duke@435 777 // I'm mid-iteration over the Region's uses.
duke@435 778 for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
duke@435 779 Node* use = old_phi->last_out(i);
duke@435 780 igvn.hash_delete(use);
duke@435 781 igvn._worklist.push(use);
duke@435 782 uint uses_found = 0;
duke@435 783 for (uint j = 0; j < use->len(); j++) {
duke@435 784 if (use->in(j) == old_phi) {
duke@435 785 if (j < use->req()) use->set_req (j, id_old_phi);
duke@435 786 else use->set_prec(j, id_old_phi);
duke@435 787 uses_found++;
duke@435 788 }
duke@435 789 }
duke@435 790 i -= uses_found; // we deleted 1 or more copies of this edge
duke@435 791 }
duke@435 792 }
duke@435 793 igvn._worklist.push(old_phi);
duke@435 794 }
duke@435 795 }
duke@435 796 // Finally clean out the fall-in edges from the RegionNode
duke@435 797 for( i = oreq-1; i>0; i-- ) {
duke@435 798 if( !phase->is_member( this, _head->in(i) ) ) {
duke@435 799 _head->del_req(i);
duke@435 800 }
duke@435 801 }
duke@435 802 // Transform landing pad
duke@435 803 igvn.register_new_node_with_optimizer(landing_pad, _head);
duke@435 804 // Insert landing pad into the header
duke@435 805 _head->add_req(landing_pad);
duke@435 806 }
duke@435 807
duke@435 808 //------------------------------split_outer_loop-------------------------------
duke@435 809 // Split out the outermost loop from this shared header.
duke@435 810 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
duke@435 811 PhaseIterGVN &igvn = phase->_igvn;
duke@435 812
duke@435 813 // Find index of outermost loop; it should also be my tail.
duke@435 814 uint outer_idx = 1;
duke@435 815 while( _head->in(outer_idx) != _tail ) outer_idx++;
duke@435 816
duke@435 817 // Make a LoopNode for the outermost loop.
duke@435 818 Node *ctl = _head->in(LoopNode::EntryControl);
duke@435 819 Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
duke@435 820 outer = igvn.register_new_node_with_optimizer(outer, _head);
duke@435 821 phase->set_created_loop_node();
duke@435 822 // Outermost loop falls into '_head' loop
duke@435 823 _head->set_req(LoopNode::EntryControl, outer);
duke@435 824 _head->del_req(outer_idx);
duke@435 825 // Split all the Phis up between '_head' loop and 'outer' loop.
duke@435 826 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
duke@435 827 Node *out = _head->fast_out(j);
duke@435 828 if( out->is_Phi() ) {
duke@435 829 PhiNode *old_phi = out->as_Phi();
duke@435 830 assert( old_phi->region() == _head, "" );
duke@435 831 Node *phi = PhiNode::make_blank(outer, old_phi);
duke@435 832 phi->init_req(LoopNode::EntryControl, old_phi->in(LoopNode::EntryControl));
duke@435 833 phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
duke@435 834 phi = igvn.register_new_node_with_optimizer(phi, old_phi);
duke@435 835 // Make old Phi point to new Phi on the fall-in path
duke@435 836 igvn.hash_delete(old_phi);
duke@435 837 old_phi->set_req(LoopNode::EntryControl, phi);
duke@435 838 old_phi->del_req(outer_idx);
duke@435 839 igvn._worklist.push(old_phi);
duke@435 840 }
duke@435 841 }
duke@435 842
duke@435 843 // Use the new loop head instead of the old shared one
duke@435 844 _head = outer;
duke@435 845 phase->set_loop(_head, this);
duke@435 846 }
duke@435 847
duke@435 848 //------------------------------fix_parent-------------------------------------
duke@435 849 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
duke@435 850 loop->_parent = parent;
duke@435 851 if( loop->_child ) fix_parent( loop->_child, loop );
duke@435 852 if( loop->_next ) fix_parent( loop->_next , parent );
duke@435 853 }
duke@435 854
duke@435 855 //------------------------------estimate_path_freq-----------------------------
duke@435 856 static float estimate_path_freq( Node *n ) {
duke@435 857 // Try to extract some path frequency info
duke@435 858 IfNode *iff;
duke@435 859 for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
duke@435 860 uint nop = n->Opcode();
duke@435 861 if( nop == Op_SafePoint ) { // Skip any safepoint
duke@435 862 n = n->in(0);
duke@435 863 continue;
duke@435 864 }
duke@435 865 if( nop == Op_CatchProj ) { // Get count from a prior call
duke@435 866 // Assume call does not always throw exceptions: means the call-site
duke@435 867 // count is also the frequency of the fall-through path.
duke@435 868 assert( n->is_CatchProj(), "" );
duke@435 869 if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
duke@435 870 return 0.0f; // Assume call exception path is rare
duke@435 871 Node *call = n->in(0)->in(0)->in(0);
duke@435 872 assert( call->is_Call(), "expect a call here" );
duke@435 873 const JVMState *jvms = ((CallNode*)call)->jvms();
duke@435 874 ciMethodData* methodData = jvms->method()->method_data();
duke@435 875 if (!methodData->is_mature()) return 0.0f; // No call-site data
duke@435 876 ciProfileData* data = methodData->bci_to_data(jvms->bci());
duke@435 877 if ((data == NULL) || !data->is_CounterData()) {
duke@435 878 // no call profile available, try call's control input
duke@435 879 n = n->in(0);
duke@435 880 continue;
duke@435 881 }
duke@435 882 return data->as_CounterData()->count()/FreqCountInvocations;
duke@435 883 }
duke@435 884 // See if there's a gating IF test
duke@435 885 Node *n_c = n->in(0);
duke@435 886 if( !n_c->is_If() ) break; // No estimate available
duke@435 887 iff = n_c->as_If();
duke@435 888 if( iff->_fcnt != COUNT_UNKNOWN ) // Have a valid count?
duke@435 889 // Compute how much count comes on this path
duke@435 890 return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
duke@435 891 // Have no count info. Skip dull uncommon-trap like branches.
duke@435 892 if( (nop == Op_IfTrue && iff->_prob < PROB_LIKELY_MAG(5)) ||
duke@435 893 (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
duke@435 894 break;
duke@435 895 // Skip through never-taken branch; look for a real loop exit.
duke@435 896 n = iff->in(0);
duke@435 897 }
duke@435 898 return 0.0f; // No estimate available
duke@435 899 }
duke@435 900
duke@435 901 //------------------------------merge_many_backedges---------------------------
duke@435 902 // Merge all the backedges from the shared header into a private Region.
duke@435 903 // Feed that region as the one backedge to this loop.
duke@435 904 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
duke@435 905 uint i;
duke@435 906
duke@435 907 // Scan for the top 2 hottest backedges
duke@435 908 float hotcnt = 0.0f;
duke@435 909 float warmcnt = 0.0f;
duke@435 910 uint hot_idx = 0;
duke@435 911 // Loop starts at 2 because slot 1 is the fall-in path
duke@435 912 for( i = 2; i < _head->req(); i++ ) {
duke@435 913 float cnt = estimate_path_freq(_head->in(i));
duke@435 914 if( cnt > hotcnt ) { // Grab hottest path
duke@435 915 warmcnt = hotcnt;
duke@435 916 hotcnt = cnt;
duke@435 917 hot_idx = i;
duke@435 918 } else if( cnt > warmcnt ) { // And 2nd hottest path
duke@435 919 warmcnt = cnt;
duke@435 920 }
duke@435 921 }
duke@435 922
duke@435 923 // See if the hottest backedge is worthy of being an inner loop
duke@435 924 // by being much hotter than the next hottest backedge.
duke@435 925 if( hotcnt <= 0.0001 ||
duke@435 926 hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
duke@435 927
duke@435 928 // Peel out the backedges into a private merge point; peel
duke@435 929 // them all except optionally hot_idx.
duke@435 930 PhaseIterGVN &igvn = phase->_igvn;
duke@435 931
duke@435 932 Node *hot_tail = NULL;
duke@435 933 // Make a Region for the merge point
duke@435 934 Node *r = new (phase->C, 1) RegionNode(1);
duke@435 935 for( i = 2; i < _head->req(); i++ ) {
duke@435 936 if( i != hot_idx )
duke@435 937 r->add_req( _head->in(i) );
duke@435 938 else hot_tail = _head->in(i);
duke@435 939 }
duke@435 940 igvn.register_new_node_with_optimizer(r, _head);
duke@435 941 // Plug region into end of loop _head, followed by hot_tail
duke@435 942 while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
duke@435 943 _head->set_req(2, r);
duke@435 944 if( hot_idx ) _head->add_req(hot_tail);
duke@435 945
duke@435 946 // Split all the Phis up between '_head' loop and the Region 'r'
duke@435 947 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
duke@435 948 Node *out = _head->fast_out(j);
duke@435 949 if( out->is_Phi() ) {
duke@435 950 PhiNode* n = out->as_Phi();
duke@435 951 igvn.hash_delete(n); // Delete from hash before hacking edges
duke@435 952 Node *hot_phi = NULL;
duke@435 953 Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
duke@435 954 // Check all inputs for the ones to peel out
duke@435 955 uint j = 1;
duke@435 956 for( uint i = 2; i < n->req(); i++ ) {
duke@435 957 if( i != hot_idx )
duke@435 958 phi->set_req( j++, n->in(i) );
duke@435 959 else hot_phi = n->in(i);
duke@435 960 }
duke@435 961 // Register the phi but do not transform until whole place transforms
duke@435 962 igvn.register_new_node_with_optimizer(phi, n);
duke@435 963 // Add the merge phi to the old Phi
duke@435 964 while( n->req() > 3 ) n->del_req( n->req()-1 );
duke@435 965 n->set_req(2, phi);
duke@435 966 if( hot_idx ) n->add_req(hot_phi);
duke@435 967 }
duke@435 968 }
duke@435 969
duke@435 970
duke@435 971 // Insert a new IdealLoopTree inserted below me. Turn it into a clone
duke@435 972 // of self loop tree. Turn self into a loop headed by _head and with
duke@435 973 // tail being the new merge point.
duke@435 974 IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
duke@435 975 phase->set_loop(_tail,ilt); // Adjust tail
duke@435 976 _tail = r; // Self's tail is new merge point
duke@435 977 phase->set_loop(r,this);
duke@435 978 ilt->_child = _child; // New guy has my children
duke@435 979 _child = ilt; // Self has new guy as only child
duke@435 980 ilt->_parent = this; // new guy has self for parent
duke@435 981 ilt->_nest = _nest; // Same nesting depth (for now)
duke@435 982
duke@435 983 // Starting with 'ilt', look for child loop trees using the same shared
duke@435 984 // header. Flatten these out; they will no longer be loops in the end.
duke@435 985 IdealLoopTree **pilt = &_child;
duke@435 986 while( ilt ) {
duke@435 987 if( ilt->_head == _head ) {
duke@435 988 uint i;
duke@435 989 for( i = 2; i < _head->req(); i++ )
duke@435 990 if( _head->in(i) == ilt->_tail )
duke@435 991 break; // Still a loop
duke@435 992 if( i == _head->req() ) { // No longer a loop
duke@435 993 // Flatten ilt. Hang ilt's "_next" list from the end of
duke@435 994 // ilt's '_child' list. Move the ilt's _child up to replace ilt.
duke@435 995 IdealLoopTree **cp = &ilt->_child;
duke@435 996 while( *cp ) cp = &(*cp)->_next; // Find end of child list
duke@435 997 *cp = ilt->_next; // Hang next list at end of child list
duke@435 998 *pilt = ilt->_child; // Move child up to replace ilt
duke@435 999 ilt->_head = NULL; // Flag as a loop UNIONED into parent
duke@435 1000 ilt = ilt->_child; // Repeat using new ilt
duke@435 1001 continue; // do not advance over ilt->_child
duke@435 1002 }
duke@435 1003 assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
duke@435 1004 phase->set_loop(_head,ilt);
duke@435 1005 }
duke@435 1006 pilt = &ilt->_child; // Advance to next
duke@435 1007 ilt = *pilt;
duke@435 1008 }
duke@435 1009
duke@435 1010 if( _child ) fix_parent( _child, this );
duke@435 1011 }
duke@435 1012
duke@435 1013 //------------------------------beautify_loops---------------------------------
duke@435 1014 // Split shared headers and insert loop landing pads.
duke@435 1015 // Insert a LoopNode to replace the RegionNode.
duke@435 1016 // Return TRUE if loop tree is structurally changed.
duke@435 1017 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
duke@435 1018 bool result = false;
duke@435 1019 // Cache parts in locals for easy
duke@435 1020 PhaseIterGVN &igvn = phase->_igvn;
duke@435 1021
duke@435 1022 phase->C->print_method("Before beautify loops", 3);
duke@435 1023
duke@435 1024 igvn.hash_delete(_head); // Yank from hash before hacking edges
duke@435 1025
duke@435 1026 // Check for multiple fall-in paths. Peel off a landing pad if need be.
duke@435 1027 int fall_in_cnt = 0;
duke@435 1028 for( uint i = 1; i < _head->req(); i++ )
duke@435 1029 if( !phase->is_member( this, _head->in(i) ) )
duke@435 1030 fall_in_cnt++;
duke@435 1031 assert( fall_in_cnt, "at least 1 fall-in path" );
duke@435 1032 if( fall_in_cnt > 1 ) // Need a loop landing pad to merge fall-ins
duke@435 1033 split_fall_in( phase, fall_in_cnt );
duke@435 1034
duke@435 1035 // Swap inputs to the _head and all Phis to move the fall-in edge to
duke@435 1036 // the left.
duke@435 1037 fall_in_cnt = 1;
duke@435 1038 while( phase->is_member( this, _head->in(fall_in_cnt) ) )
duke@435 1039 fall_in_cnt++;
duke@435 1040 if( fall_in_cnt > 1 ) {
duke@435 1041 // Since I am just swapping inputs I do not need to update def-use info
duke@435 1042 Node *tmp = _head->in(1);
duke@435 1043 _head->set_req( 1, _head->in(fall_in_cnt) );
duke@435 1044 _head->set_req( fall_in_cnt, tmp );
duke@435 1045 // Swap also all Phis
duke@435 1046 for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
duke@435 1047 Node* phi = _head->fast_out(i);
duke@435 1048 if( phi->is_Phi() ) {
duke@435 1049 igvn.hash_delete(phi); // Yank from hash before hacking edges
duke@435 1050 tmp = phi->in(1);
duke@435 1051 phi->set_req( 1, phi->in(fall_in_cnt) );
duke@435 1052 phi->set_req( fall_in_cnt, tmp );
duke@435 1053 }
duke@435 1054 }
duke@435 1055 }
duke@435 1056 assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
duke@435 1057 assert( phase->is_member( this, _head->in(2) ), "right edge is loop" );
duke@435 1058
duke@435 1059 // If I am a shared header (multiple backedges), peel off the many
duke@435 1060 // backedges into a private merge point and use the merge point as
duke@435 1061 // the one true backedge.
duke@435 1062 if( _head->req() > 3 ) {
duke@435 1063 // Merge the many backedges into a single backedge.
duke@435 1064 merge_many_backedges( phase );
duke@435 1065 result = true;
duke@435 1066 }
duke@435 1067
duke@435 1068 // If I am a shared header (multiple backedges), peel off myself loop.
duke@435 1069 // I better be the outermost loop.
duke@435 1070 if( _head->req() > 3 ) {
duke@435 1071 split_outer_loop( phase );
duke@435 1072 result = true;
duke@435 1073
duke@435 1074 } else if( !_head->is_Loop() && !_irreducible ) {
duke@435 1075 // Make a new LoopNode to replace the old loop head
duke@435 1076 Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
duke@435 1077 l = igvn.register_new_node_with_optimizer(l, _head);
duke@435 1078 phase->set_created_loop_node();
duke@435 1079 // Go ahead and replace _head
kvn@1976 1080 phase->_igvn.replace_node( _head, l );
duke@435 1081 _head = l;
duke@435 1082 phase->set_loop(_head, this);
duke@435 1083 }
duke@435 1084
duke@435 1085 // Now recursively beautify nested loops
duke@435 1086 if( _child ) result |= _child->beautify_loops( phase );
duke@435 1087 if( _next ) result |= _next ->beautify_loops( phase );
duke@435 1088 return result;
duke@435 1089 }
duke@435 1090
duke@435 1091 //------------------------------allpaths_check_safepts----------------------------
duke@435 1092 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
duke@435 1093 // encountered. Helper for check_safepts.
duke@435 1094 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
duke@435 1095 assert(stack.size() == 0, "empty stack");
duke@435 1096 stack.push(_tail);
duke@435 1097 visited.Clear();
duke@435 1098 visited.set(_tail->_idx);
duke@435 1099 while (stack.size() > 0) {
duke@435 1100 Node* n = stack.pop();
duke@435 1101 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
duke@435 1102 // Terminate this path
duke@435 1103 } else if (n->Opcode() == Op_SafePoint) {
duke@435 1104 if (_phase->get_loop(n) != this) {
duke@435 1105 if (_required_safept == NULL) _required_safept = new Node_List();
duke@435 1106 _required_safept->push(n); // save the one closest to the tail
duke@435 1107 }
duke@435 1108 // Terminate this path
duke@435 1109 } else {
duke@435 1110 uint start = n->is_Region() ? 1 : 0;
duke@435 1111 uint end = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
duke@435 1112 for (uint i = start; i < end; i++) {
duke@435 1113 Node* in = n->in(i);
duke@435 1114 assert(in->is_CFG(), "must be");
duke@435 1115 if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
duke@435 1116 stack.push(in);
duke@435 1117 }
duke@435 1118 }
duke@435 1119 }
duke@435 1120 }
duke@435 1121 }
duke@435 1122
duke@435 1123 //------------------------------check_safepts----------------------------
duke@435 1124 // Given dominators, try to find loops with calls that must always be
duke@435 1125 // executed (call dominates loop tail). These loops do not need non-call
duke@435 1126 // safepoints (ncsfpt).
duke@435 1127 //
duke@435 1128 // A complication is that a safepoint in a inner loop may be needed
duke@435 1129 // by an outer loop. In the following, the inner loop sees it has a
duke@435 1130 // call (block 3) on every path from the head (block 2) to the
duke@435 1131 // backedge (arc 3->2). So it deletes the ncsfpt (non-call safepoint)
duke@435 1132 // in block 2, _but_ this leaves the outer loop without a safepoint.
duke@435 1133 //
duke@435 1134 // entry 0
duke@435 1135 // |
duke@435 1136 // v
duke@435 1137 // outer 1,2 +->1
duke@435 1138 // | |
duke@435 1139 // | v
duke@435 1140 // | 2<---+ ncsfpt in 2
duke@435 1141 // |_/|\ |
duke@435 1142 // | v |
duke@435 1143 // inner 2,3 / 3 | call in 3
duke@435 1144 // / | |
duke@435 1145 // v +--+
duke@435 1146 // exit 4
duke@435 1147 //
duke@435 1148 //
duke@435 1149 // This method creates a list (_required_safept) of ncsfpt nodes that must
duke@435 1150 // be protected is created for each loop. When a ncsfpt maybe deleted, it
duke@435 1151 // is first looked for in the lists for the outer loops of the current loop.
duke@435 1152 //
duke@435 1153 // The insights into the problem:
duke@435 1154 // A) counted loops are okay
duke@435 1155 // B) innermost loops are okay (only an inner loop can delete
duke@435 1156 // a ncsfpt needed by an outer loop)
duke@435 1157 // C) a loop is immune from an inner loop deleting a safepoint
duke@435 1158 // if the loop has a call on the idom-path
duke@435 1159 // D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
duke@435 1160 // idom-path that is not in a nested loop
duke@435 1161 // E) otherwise, an ncsfpt on the idom-path that is nested in an inner
duke@435 1162 // loop needs to be prevented from deletion by an inner loop
duke@435 1163 //
duke@435 1164 // There are two analyses:
duke@435 1165 // 1) The first, and cheaper one, scans the loop body from
duke@435 1166 // tail to head following the idom (immediate dominator)
duke@435 1167 // chain, looking for the cases (C,D,E) above.
duke@435 1168 // Since inner loops are scanned before outer loops, there is summary
duke@435 1169 // information about inner loops. Inner loops can be skipped over
duke@435 1170 // when the tail of an inner loop is encountered.
duke@435 1171 //
duke@435 1172 // 2) The second, invoked if the first fails to find a call or ncsfpt on
duke@435 1173 // the idom path (which is rare), scans all predecessor control paths
duke@435 1174 // from the tail to the head, terminating a path when a call or sfpt
duke@435 1175 // is encountered, to find the ncsfpt's that are closest to the tail.
duke@435 1176 //
duke@435 1177 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
duke@435 1178 // Bottom up traversal
duke@435 1179 IdealLoopTree* ch = _child;
duke@435 1180 while (ch != NULL) {
duke@435 1181 ch->check_safepts(visited, stack);
duke@435 1182 ch = ch->_next;
duke@435 1183 }
duke@435 1184
duke@435 1185 if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
duke@435 1186 bool has_call = false; // call on dom-path
duke@435 1187 bool has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
duke@435 1188 Node* nonlocal_ncsfpt = NULL; // ncsfpt on dom-path at a deeper depth
duke@435 1189 // Scan the dom-path nodes from tail to head
duke@435 1190 for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
duke@435 1191 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
duke@435 1192 has_call = true;
duke@435 1193 _has_sfpt = 1; // Then no need for a safept!
duke@435 1194 break;
duke@435 1195 } else if (n->Opcode() == Op_SafePoint) {
duke@435 1196 if (_phase->get_loop(n) == this) {
duke@435 1197 has_local_ncsfpt = true;
duke@435 1198 break;
duke@435 1199 }
duke@435 1200 if (nonlocal_ncsfpt == NULL) {
duke@435 1201 nonlocal_ncsfpt = n; // save the one closest to the tail
duke@435 1202 }
duke@435 1203 } else {
duke@435 1204 IdealLoopTree* nlpt = _phase->get_loop(n);
duke@435 1205 if (this != nlpt) {
duke@435 1206 // If at an inner loop tail, see if the inner loop has already
duke@435 1207 // recorded seeing a call on the dom-path (and stop.) If not,
duke@435 1208 // jump to the head of the inner loop.
duke@435 1209 assert(is_member(nlpt), "nested loop");
duke@435 1210 Node* tail = nlpt->_tail;
duke@435 1211 if (tail->in(0)->is_If()) tail = tail->in(0);
duke@435 1212 if (n == tail) {
duke@435 1213 // If inner loop has call on dom-path, so does outer loop
duke@435 1214 if (nlpt->_has_sfpt) {
duke@435 1215 has_call = true;
duke@435 1216 _has_sfpt = 1;
duke@435 1217 break;
duke@435 1218 }
duke@435 1219 // Skip to head of inner loop
duke@435 1220 assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
duke@435 1221 n = nlpt->_head;
duke@435 1222 }
duke@435 1223 }
duke@435 1224 }
duke@435 1225 }
duke@435 1226 // Record safept's that this loop needs preserved when an
duke@435 1227 // inner loop attempts to delete it's safepoints.
duke@435 1228 if (_child != NULL && !has_call && !has_local_ncsfpt) {
duke@435 1229 if (nonlocal_ncsfpt != NULL) {
duke@435 1230 if (_required_safept == NULL) _required_safept = new Node_List();
duke@435 1231 _required_safept->push(nonlocal_ncsfpt);
duke@435 1232 } else {
duke@435 1233 // Failed to find a suitable safept on the dom-path. Now use
duke@435 1234 // an all paths walk from tail to head, looking for safepoints to preserve.
duke@435 1235 allpaths_check_safepts(visited, stack);
duke@435 1236 }
duke@435 1237 }
duke@435 1238 }
duke@435 1239 }
duke@435 1240
duke@435 1241 //---------------------------is_deleteable_safept----------------------------
duke@435 1242 // Is safept not required by an outer loop?
duke@435 1243 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
duke@435 1244 assert(sfpt->Opcode() == Op_SafePoint, "");
duke@435 1245 IdealLoopTree* lp = get_loop(sfpt)->_parent;
duke@435 1246 while (lp != NULL) {
duke@435 1247 Node_List* sfpts = lp->_required_safept;
duke@435 1248 if (sfpts != NULL) {
duke@435 1249 for (uint i = 0; i < sfpts->size(); i++) {
duke@435 1250 if (sfpt == sfpts->at(i))
duke@435 1251 return false;
duke@435 1252 }
duke@435 1253 }
duke@435 1254 lp = lp->_parent;
duke@435 1255 }
duke@435 1256 return true;
duke@435 1257 }
duke@435 1258
duke@435 1259 //------------------------------counted_loop-----------------------------------
duke@435 1260 // Convert to counted loops where possible
duke@435 1261 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
duke@435 1262
duke@435 1263 // For grins, set the inner-loop flag here
duke@435 1264 if( !_child ) {
duke@435 1265 if( _head->is_Loop() ) _head->as_Loop()->set_inner_loop();
duke@435 1266 }
duke@435 1267
duke@435 1268 if( _head->is_CountedLoop() ||
duke@435 1269 phase->is_counted_loop( _head, this ) ) {
duke@435 1270 _has_sfpt = 1; // Indicate we do not need a safepoint here
duke@435 1271
duke@435 1272 // Look for a safepoint to remove
duke@435 1273 for (Node* n = tail(); n != _head; n = phase->idom(n))
duke@435 1274 if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
duke@435 1275 phase->is_deleteable_safept(n))
duke@435 1276 phase->lazy_replace(n,n->in(TypeFunc::Control));
duke@435 1277
duke@435 1278 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 1279 Node *incr = cl->incr();
duke@435 1280 if( !incr ) return; // Dead loop?
duke@435 1281 Node *init = cl->init_trip();
duke@435 1282 Node *phi = cl->phi();
duke@435 1283 // protect against stride not being a constant
duke@435 1284 if( !cl->stride_is_con() ) return;
duke@435 1285 int stride_con = cl->stride_con();
duke@435 1286
duke@435 1287 // Look for induction variables
duke@435 1288
duke@435 1289 // Visit all children, looking for Phis
duke@435 1290 for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
duke@435 1291 Node *out = cl->out(i);
cfang@1518 1292 // Look for other phis (secondary IVs). Skip dead ones
cfang@1518 1293 if (!out->is_Phi() || out == phi || !phase->has_node(out)) continue;
duke@435 1294 PhiNode* phi2 = out->as_Phi();
duke@435 1295 Node *incr2 = phi2->in( LoopNode::LoopBackControl );
duke@435 1296 // Look for induction variables of the form: X += constant
duke@435 1297 if( phi2->region() != _head ||
duke@435 1298 incr2->req() != 3 ||
duke@435 1299 incr2->in(1) != phi2 ||
duke@435 1300 incr2 == incr ||
duke@435 1301 incr2->Opcode() != Op_AddI ||
duke@435 1302 !incr2->in(2)->is_Con() )
duke@435 1303 continue;
duke@435 1304
duke@435 1305 // Check for parallel induction variable (parallel to trip counter)
duke@435 1306 // via an affine function. In particular, count-down loops with
duke@435 1307 // count-up array indices are common. We only RCE references off
duke@435 1308 // the trip-counter, so we need to convert all these to trip-counter
duke@435 1309 // expressions.
duke@435 1310 Node *init2 = phi2->in( LoopNode::EntryControl );
duke@435 1311 int stride_con2 = incr2->in(2)->get_int();
duke@435 1312
duke@435 1313 // The general case here gets a little tricky. We want to find the
duke@435 1314 // GCD of all possible parallel IV's and make a new IV using this
duke@435 1315 // GCD for the loop. Then all possible IVs are simple multiples of
duke@435 1316 // the GCD. In practice, this will cover very few extra loops.
duke@435 1317 // Instead we require 'stride_con2' to be a multiple of 'stride_con',
duke@435 1318 // where +/-1 is the common case, but other integer multiples are
duke@435 1319 // also easy to handle.
duke@435 1320 int ratio_con = stride_con2/stride_con;
duke@435 1321
duke@435 1322 if( ratio_con * stride_con == stride_con2 ) { // Check for exact
duke@435 1323 // Convert to using the trip counter. The parallel induction
duke@435 1324 // variable differs from the trip counter by a loop-invariant
duke@435 1325 // amount, the difference between their respective initial values.
duke@435 1326 // It is scaled by the 'ratio_con'.
duke@435 1327 Compile* C = phase->C;
duke@435 1328 Node* ratio = phase->_igvn.intcon(ratio_con);
duke@435 1329 phase->set_ctrl(ratio, C->root());
duke@435 1330 Node* ratio_init = new (C, 3) MulINode(init, ratio);
duke@435 1331 phase->_igvn.register_new_node_with_optimizer(ratio_init, init);
duke@435 1332 phase->set_early_ctrl(ratio_init);
duke@435 1333 Node* diff = new (C, 3) SubINode(init2, ratio_init);
duke@435 1334 phase->_igvn.register_new_node_with_optimizer(diff, init2);
duke@435 1335 phase->set_early_ctrl(diff);
duke@435 1336 Node* ratio_idx = new (C, 3) MulINode(phi, ratio);
duke@435 1337 phase->_igvn.register_new_node_with_optimizer(ratio_idx, phi);
duke@435 1338 phase->set_ctrl(ratio_idx, cl);
duke@435 1339 Node* add = new (C, 3) AddINode(ratio_idx, diff);
duke@435 1340 phase->_igvn.register_new_node_with_optimizer(add);
duke@435 1341 phase->set_ctrl(add, cl);
kvn@1976 1342 phase->_igvn.replace_node( phi2, add );
duke@435 1343 // Sometimes an induction variable is unused
duke@435 1344 if (add->outcnt() == 0) {
duke@435 1345 phase->_igvn.remove_dead_node(add);
duke@435 1346 }
duke@435 1347 --i; // deleted this phi; rescan starting with next position
duke@435 1348 continue;
duke@435 1349 }
duke@435 1350 }
duke@435 1351 } else if (_parent != NULL && !_irreducible) {
duke@435 1352 // Not a counted loop.
duke@435 1353 // Look for a safepoint on the idom-path to remove, preserving the first one
duke@435 1354 bool found = false;
duke@435 1355 Node* n = tail();
duke@435 1356 for (; n != _head && !found; n = phase->idom(n)) {
duke@435 1357 if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
duke@435 1358 found = true; // Found one
duke@435 1359 }
duke@435 1360 // Skip past it and delete the others
duke@435 1361 for (; n != _head; n = phase->idom(n)) {
duke@435 1362 if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
duke@435 1363 phase->is_deleteable_safept(n))
duke@435 1364 phase->lazy_replace(n,n->in(TypeFunc::Control));
duke@435 1365 }
duke@435 1366 }
duke@435 1367
duke@435 1368 // Recursively
duke@435 1369 if( _child ) _child->counted_loop( phase );
duke@435 1370 if( _next ) _next ->counted_loop( phase );
duke@435 1371 }
duke@435 1372
duke@435 1373 #ifndef PRODUCT
duke@435 1374 //------------------------------dump_head--------------------------------------
duke@435 1375 // Dump 1 liner for loop header info
duke@435 1376 void IdealLoopTree::dump_head( ) const {
duke@435 1377 for( uint i=0; i<_nest; i++ )
duke@435 1378 tty->print(" ");
duke@435 1379 tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
duke@435 1380 if( _irreducible ) tty->print(" IRREDUCIBLE");
duke@435 1381 if( _head->is_CountedLoop() ) {
duke@435 1382 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 1383 tty->print(" counted");
duke@435 1384 if( cl->is_pre_loop () ) tty->print(" pre" );
duke@435 1385 if( cl->is_main_loop() ) tty->print(" main");
duke@435 1386 if( cl->is_post_loop() ) tty->print(" post");
duke@435 1387 }
duke@435 1388 tty->cr();
duke@435 1389 }
duke@435 1390
duke@435 1391 //------------------------------dump-------------------------------------------
duke@435 1392 // Dump loops by loop tree
duke@435 1393 void IdealLoopTree::dump( ) const {
duke@435 1394 dump_head();
duke@435 1395 if( _child ) _child->dump();
duke@435 1396 if( _next ) _next ->dump();
duke@435 1397 }
duke@435 1398
duke@435 1399 #endif
duke@435 1400
never@802 1401 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
never@802 1402 if (loop == root) {
never@802 1403 if (loop->_child != NULL) {
never@802 1404 log->begin_head("loop_tree");
never@802 1405 log->end_head();
never@802 1406 if( loop->_child ) log_loop_tree(root, loop->_child, log);
never@802 1407 log->tail("loop_tree");
never@802 1408 assert(loop->_next == NULL, "what?");
never@802 1409 }
never@802 1410 } else {
never@802 1411 Node* head = loop->_head;
never@802 1412 log->begin_head("loop");
never@802 1413 log->print(" idx='%d' ", head->_idx);
never@802 1414 if (loop->_irreducible) log->print("irreducible='1' ");
never@802 1415 if (head->is_Loop()) {
never@802 1416 if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
never@802 1417 if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
never@802 1418 }
never@802 1419 if (head->is_CountedLoop()) {
never@802 1420 CountedLoopNode* cl = head->as_CountedLoop();
never@802 1421 if (cl->is_pre_loop()) log->print("pre_loop='%d' ", cl->main_idx());
never@802 1422 if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
never@802 1423 if (cl->is_post_loop()) log->print("post_loop='%d' ", cl->main_idx());
never@802 1424 }
never@802 1425 log->end_head();
never@802 1426 if( loop->_child ) log_loop_tree(root, loop->_child, log);
never@802 1427 log->tail("loop");
never@802 1428 if( loop->_next ) log_loop_tree(root, loop->_next, log);
never@802 1429 }
never@802 1430 }
never@802 1431
cfang@1607 1432 //---------------------collect_potentially_useful_predicates-----------------------
cfang@1607 1433 // Helper function to collect potentially useful predicates to prevent them from
cfang@1607 1434 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
cfang@1607 1435 void PhaseIdealLoop::collect_potentially_useful_predicates(
cfang@1607 1436 IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
cfang@1607 1437 if (loop->_child) { // child
cfang@1607 1438 collect_potentially_useful_predicates(loop->_child, useful_predicates);
cfang@1607 1439 }
cfang@1607 1440
cfang@1607 1441 // self (only loops that we can apply loop predication may use their predicates)
cfang@1607 1442 if (loop->_head->is_Loop() &&
cfang@1607 1443 !loop->_irreducible &&
cfang@1607 1444 !loop->tail()->is_top()) {
cfang@1607 1445 LoopNode *lpn = loop->_head->as_Loop();
cfang@1607 1446 Node* entry = lpn->in(LoopNode::EntryControl);
cfang@1607 1447 ProjNode *predicate_proj = find_predicate_insertion_point(entry);
cfang@1607 1448 if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
cfang@1607 1449 assert(entry->in(0)->in(1)->in(1)->Opcode()==Op_Opaque1, "must be");
cfang@1607 1450 useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
cfang@1607 1451 }
cfang@1607 1452 }
cfang@1607 1453
cfang@1607 1454 if ( loop->_next ) { // sibling
cfang@1607 1455 collect_potentially_useful_predicates(loop->_next, useful_predicates);
cfang@1607 1456 }
cfang@1607 1457 }
cfang@1607 1458
cfang@1607 1459 //------------------------eliminate_useless_predicates-----------------------------
cfang@1607 1460 // Eliminate all inserted predicates if they could not be used by loop predication.
cfang@1607 1461 void PhaseIdealLoop::eliminate_useless_predicates() {
cfang@1607 1462 if (C->predicate_count() == 0) return; // no predicate left
cfang@1607 1463
cfang@1607 1464 Unique_Node_List useful_predicates; // to store useful predicates
cfang@1607 1465 if (C->has_loops()) {
cfang@1607 1466 collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
cfang@1607 1467 }
cfang@1607 1468
cfang@1607 1469 for (int i = C->predicate_count(); i > 0; i--) {
cfang@1607 1470 Node * n = C->predicate_opaque1_node(i-1);
cfang@1607 1471 assert(n->Opcode() == Op_Opaque1, "must be");
cfang@1607 1472 if (!useful_predicates.member(n)) { // not in the useful list
cfang@1607 1473 _igvn.replace_node(n, n->in(1));
cfang@1607 1474 }
cfang@1607 1475 }
cfang@1607 1476 }
cfang@1607 1477
duke@435 1478 //=============================================================================
never@1356 1479 //----------------------------build_and_optimize-------------------------------
duke@435 1480 // Create a PhaseLoop. Build the ideal Loop tree. Map each Ideal Node to
duke@435 1481 // its corresponding LoopNode. If 'optimize' is true, do some loop cleanups.
cfang@1607 1482 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool do_loop_pred) {
never@1356 1483 int old_progress = C->major_progress();
never@1356 1484
duke@435 1485 // Reset major-progress flag for the driver's heuristics
duke@435 1486 C->clear_major_progress();
duke@435 1487
duke@435 1488 #ifndef PRODUCT
duke@435 1489 // Capture for later assert
duke@435 1490 uint unique = C->unique();
duke@435 1491 _loop_invokes++;
duke@435 1492 _loop_work += unique;
duke@435 1493 #endif
duke@435 1494
duke@435 1495 // True if the method has at least 1 irreducible loop
duke@435 1496 _has_irreducible_loops = false;
duke@435 1497
duke@435 1498 _created_loop_node = false;
duke@435 1499
duke@435 1500 Arena *a = Thread::current()->resource_area();
duke@435 1501 VectorSet visited(a);
duke@435 1502 // Pre-grow the mapping from Nodes to IdealLoopTrees.
duke@435 1503 _nodes.map(C->unique(), NULL);
duke@435 1504 memset(_nodes.adr(), 0, wordSize * C->unique());
duke@435 1505
duke@435 1506 // Pre-build the top-level outermost loop tree entry
duke@435 1507 _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
duke@435 1508 // Do not need a safepoint at the top level
duke@435 1509 _ltree_root->_has_sfpt = 1;
duke@435 1510
duke@435 1511 // Empty pre-order array
duke@435 1512 allocate_preorders();
duke@435 1513
duke@435 1514 // Build a loop tree on the fly. Build a mapping from CFG nodes to
duke@435 1515 // IdealLoopTree entries. Data nodes are NOT walked.
duke@435 1516 build_loop_tree();
duke@435 1517 // Check for bailout, and return
duke@435 1518 if (C->failing()) {
duke@435 1519 return;
duke@435 1520 }
duke@435 1521
duke@435 1522 // No loops after all
never@1356 1523 if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
duke@435 1524
duke@435 1525 // There should always be an outer loop containing the Root and Return nodes.
duke@435 1526 // If not, we have a degenerate empty program. Bail out in this case.
duke@435 1527 if (!has_node(C->root())) {
never@1356 1528 if (!_verify_only) {
never@1356 1529 C->clear_major_progress();
never@1356 1530 C->record_method_not_compilable("empty program detected during loop optimization");
never@1356 1531 }
duke@435 1532 return;
duke@435 1533 }
duke@435 1534
duke@435 1535 // Nothing to do, so get out
never@1356 1536 if( !C->has_loops() && !do_split_ifs && !_verify_me && !_verify_only ) {
duke@435 1537 _igvn.optimize(); // Cleanup NeverBranches
duke@435 1538 return;
duke@435 1539 }
duke@435 1540
duke@435 1541 // Set loop nesting depth
duke@435 1542 _ltree_root->set_nest( 0 );
duke@435 1543
duke@435 1544 // Split shared headers and insert loop landing pads.
duke@435 1545 // Do not bother doing this on the Root loop of course.
never@1356 1546 if( !_verify_me && !_verify_only && _ltree_root->_child ) {
duke@435 1547 if( _ltree_root->_child->beautify_loops( this ) ) {
duke@435 1548 // Re-build loop tree!
duke@435 1549 _ltree_root->_child = NULL;
duke@435 1550 _nodes.clear();
duke@435 1551 reallocate_preorders();
duke@435 1552 build_loop_tree();
duke@435 1553 // Check for bailout, and return
duke@435 1554 if (C->failing()) {
duke@435 1555 return;
duke@435 1556 }
duke@435 1557 // Reset loop nesting depth
duke@435 1558 _ltree_root->set_nest( 0 );
never@657 1559
never@657 1560 C->print_method("After beautify loops", 3);
duke@435 1561 }
duke@435 1562 }
duke@435 1563
duke@435 1564 // Build Dominators for elision of NULL checks & loop finding.
duke@435 1565 // Since nodes do not have a slot for immediate dominator, make
twisti@1040 1566 // a persistent side array for that info indexed on node->_idx.
duke@435 1567 _idom_size = C->unique();
duke@435 1568 _idom = NEW_RESOURCE_ARRAY( Node*, _idom_size );
duke@435 1569 _dom_depth = NEW_RESOURCE_ARRAY( uint, _idom_size );
duke@435 1570 _dom_stk = NULL; // Allocated on demand in recompute_dom_depth
duke@435 1571 memset( _dom_depth, 0, _idom_size * sizeof(uint) );
duke@435 1572
duke@435 1573 Dominators();
duke@435 1574
never@1356 1575 if (!_verify_only) {
never@1356 1576 // As a side effect, Dominators removed any unreachable CFG paths
never@1356 1577 // into RegionNodes. It doesn't do this test against Root, so
never@1356 1578 // we do it here.
never@1356 1579 for( uint i = 1; i < C->root()->req(); i++ ) {
never@1356 1580 if( !_nodes[C->root()->in(i)->_idx] ) { // Dead path into Root?
never@1356 1581 _igvn.hash_delete(C->root());
never@1356 1582 C->root()->del_req(i);
never@1356 1583 _igvn._worklist.push(C->root());
never@1356 1584 i--; // Rerun same iteration on compressed edges
never@1356 1585 }
duke@435 1586 }
never@1356 1587
never@1356 1588 // Given dominators, try to find inner loops with calls that must
never@1356 1589 // always be executed (call dominates loop tail). These loops do
never@1356 1590 // not need a separate safepoint.
never@1356 1591 Node_List cisstack(a);
never@1356 1592 _ltree_root->check_safepts(visited, cisstack);
duke@435 1593 }
duke@435 1594
duke@435 1595 // Walk the DATA nodes and place into loops. Find earliest control
duke@435 1596 // node. For CFG nodes, the _nodes array starts out and remains
duke@435 1597 // holding the associated IdealLoopTree pointer. For DATA nodes, the
duke@435 1598 // _nodes array holds the earliest legal controlling CFG node.
duke@435 1599
duke@435 1600 // Allocate stack with enough space to avoid frequent realloc
duke@435 1601 int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
duke@435 1602 Node_Stack nstack( a, stack_size );
duke@435 1603
duke@435 1604 visited.Clear();
duke@435 1605 Node_List worklist(a);
duke@435 1606 // Don't need C->root() on worklist since
duke@435 1607 // it will be processed among C->top() inputs
duke@435 1608 worklist.push( C->top() );
duke@435 1609 visited.set( C->top()->_idx ); // Set C->top() as visited now
never@1356 1610 build_loop_early( visited, worklist, nstack );
duke@435 1611
duke@435 1612 // Given early legal placement, try finding counted loops. This placement
duke@435 1613 // is good enough to discover most loop invariants.
never@1356 1614 if( !_verify_me && !_verify_only )
duke@435 1615 _ltree_root->counted_loop( this );
duke@435 1616
duke@435 1617 // Find latest loop placement. Find ideal loop placement.
duke@435 1618 visited.Clear();
duke@435 1619 init_dom_lca_tags();
duke@435 1620 // Need C->root() on worklist when processing outs
duke@435 1621 worklist.push( C->root() );
duke@435 1622 NOT_PRODUCT( C->verify_graph_edges(); )
duke@435 1623 worklist.push( C->top() );
never@1356 1624 build_loop_late( visited, worklist, nstack );
never@1356 1625
never@1356 1626 if (_verify_only) {
never@1356 1627 // restore major progress flag
never@1356 1628 for (int i = 0; i < old_progress; i++)
never@1356 1629 C->set_major_progress();
never@1356 1630 assert(C->unique() == unique, "verification mode made Nodes? ? ?");
never@1356 1631 assert(_igvn._worklist.size() == 0, "shouldn't push anything");
never@1356 1632 return;
never@1356 1633 }
duke@435 1634
cfang@1607 1635 // some parser-inserted loop predicates could never be used by loop
cfang@1607 1636 // predication. Eliminate them before loop optimization
cfang@1607 1637 if (UseLoopPredicate) {
cfang@1607 1638 eliminate_useless_predicates();
cfang@1607 1639 }
cfang@1607 1640
duke@435 1641 // clear out the dead code
duke@435 1642 while(_deadlist.size()) {
never@1356 1643 _igvn.remove_globally_dead_node(_deadlist.pop());
duke@435 1644 }
duke@435 1645
duke@435 1646 #ifndef PRODUCT
duke@435 1647 C->verify_graph_edges();
never@1356 1648 if( _verify_me ) { // Nested verify pass?
duke@435 1649 // Check to see if the verify mode is broken
duke@435 1650 assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
duke@435 1651 return;
duke@435 1652 }
duke@435 1653 if( VerifyLoopOptimizations ) verify();
duke@435 1654 #endif
duke@435 1655
duke@435 1656 if (ReassociateInvariants) {
duke@435 1657 // Reassociate invariants and prep for split_thru_phi
duke@435 1658 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
duke@435 1659 IdealLoopTree* lpt = iter.current();
duke@435 1660 if (!lpt->is_counted() || !lpt->is_inner()) continue;
duke@435 1661
duke@435 1662 lpt->reassociate_invariants(this);
duke@435 1663
duke@435 1664 // Because RCE opportunities can be masked by split_thru_phi,
duke@435 1665 // look for RCE candidates and inhibit split_thru_phi
duke@435 1666 // on just their loop-phi's for this pass of loop opts
cfang@1607 1667 if (SplitIfBlocks && do_split_ifs) {
duke@435 1668 if (lpt->policy_range_check(this)) {
kvn@474 1669 lpt->_rce_candidate = 1; // = true
duke@435 1670 }
duke@435 1671 }
duke@435 1672 }
duke@435 1673 }
duke@435 1674
duke@435 1675 // Check for aggressive application of split-if and other transforms
duke@435 1676 // that require basic-block info (like cloning through Phi's)
duke@435 1677 if( SplitIfBlocks && do_split_ifs ) {
duke@435 1678 visited.Clear();
duke@435 1679 split_if_with_blocks( visited, nstack );
duke@435 1680 NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
duke@435 1681 }
duke@435 1682
cfang@1607 1683 // Perform loop predication before iteration splitting
cfang@1607 1684 if (do_loop_pred && C->has_loops() && !C->major_progress()) {
cfang@1607 1685 _ltree_root->_child->loop_predication(this);
cfang@1607 1686 }
cfang@1607 1687
never@2118 1688 if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
never@2118 1689 if (do_intrinsify_fill()) {
never@2118 1690 C->set_major_progress();
never@2118 1691 }
never@2118 1692 }
never@2118 1693
duke@435 1694 // Perform iteration-splitting on inner loops. Split iterations to avoid
duke@435 1695 // range checks or one-shot null checks.
duke@435 1696
duke@435 1697 // If split-if's didn't hack the graph too bad (no CFG changes)
duke@435 1698 // then do loop opts.
cfang@1607 1699 if (C->has_loops() && !C->major_progress()) {
duke@435 1700 memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
duke@435 1701 _ltree_root->_child->iteration_split( this, worklist );
duke@435 1702 // No verify after peeling! GCM has hoisted code out of the loop.
duke@435 1703 // After peeling, the hoisted code could sink inside the peeled area.
duke@435 1704 // The peeling code does not try to recompute the best location for
duke@435 1705 // all the code before the peeled area, so the verify pass will always
duke@435 1706 // complain about it.
duke@435 1707 }
duke@435 1708 // Do verify graph edges in any case
duke@435 1709 NOT_PRODUCT( C->verify_graph_edges(); );
duke@435 1710
cfang@1607 1711 if (!do_split_ifs) {
duke@435 1712 // We saw major progress in Split-If to get here. We forced a
duke@435 1713 // pass with unrolling and not split-if, however more split-if's
duke@435 1714 // might make progress. If the unrolling didn't make progress
duke@435 1715 // then the major-progress flag got cleared and we won't try
duke@435 1716 // another round of Split-If. In particular the ever-common
duke@435 1717 // instance-of/check-cast pattern requires at least 2 rounds of
duke@435 1718 // Split-If to clear out.
duke@435 1719 C->set_major_progress();
duke@435 1720 }
duke@435 1721
duke@435 1722 // Repeat loop optimizations if new loops were seen
duke@435 1723 if (created_loop_node()) {
duke@435 1724 C->set_major_progress();
duke@435 1725 }
duke@435 1726
duke@435 1727 // Convert scalar to superword operations
duke@435 1728
duke@435 1729 if (UseSuperWord && C->has_loops() && !C->major_progress()) {
duke@435 1730 // SuperWord transform
duke@435 1731 SuperWord sw(this);
duke@435 1732 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
duke@435 1733 IdealLoopTree* lpt = iter.current();
duke@435 1734 if (lpt->is_counted()) {
duke@435 1735 sw.transform_loop(lpt);
duke@435 1736 }
duke@435 1737 }
duke@435 1738 }
duke@435 1739
duke@435 1740 // Cleanup any modified bits
duke@435 1741 _igvn.optimize();
duke@435 1742
never@802 1743 // disable assert until issue with split_flow_path is resolved (6742111)
never@802 1744 // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
never@802 1745 // "shouldn't introduce irreducible loops");
never@802 1746
never@802 1747 if (C->log() != NULL) {
never@802 1748 log_loop_tree(_ltree_root, _ltree_root, C->log());
never@802 1749 }
duke@435 1750 }
duke@435 1751
duke@435 1752 #ifndef PRODUCT
duke@435 1753 //------------------------------print_statistics-------------------------------
duke@435 1754 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
duke@435 1755 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
duke@435 1756 void PhaseIdealLoop::print_statistics() {
duke@435 1757 tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
duke@435 1758 }
duke@435 1759
duke@435 1760 //------------------------------verify-----------------------------------------
duke@435 1761 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
duke@435 1762 static int fail; // debug only, so its multi-thread dont care
duke@435 1763 void PhaseIdealLoop::verify() const {
duke@435 1764 int old_progress = C->major_progress();
duke@435 1765 ResourceMark rm;
never@1356 1766 PhaseIdealLoop loop_verify( _igvn, this );
duke@435 1767 VectorSet visited(Thread::current()->resource_area());
duke@435 1768
duke@435 1769 fail = 0;
duke@435 1770 verify_compare( C->root(), &loop_verify, visited );
duke@435 1771 assert( fail == 0, "verify loops failed" );
duke@435 1772 // Verify loop structure is the same
duke@435 1773 _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
duke@435 1774 // Reset major-progress. It was cleared by creating a verify version of
duke@435 1775 // PhaseIdealLoop.
duke@435 1776 for( int i=0; i<old_progress; i++ )
duke@435 1777 C->set_major_progress();
duke@435 1778 }
duke@435 1779
duke@435 1780 //------------------------------verify_compare---------------------------------
duke@435 1781 // Make sure me and the given PhaseIdealLoop agree on key data structures
duke@435 1782 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
duke@435 1783 if( !n ) return;
duke@435 1784 if( visited.test_set( n->_idx ) ) return;
duke@435 1785 if( !_nodes[n->_idx] ) { // Unreachable
duke@435 1786 assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
duke@435 1787 return;
duke@435 1788 }
duke@435 1789
duke@435 1790 uint i;
duke@435 1791 for( i = 0; i < n->req(); i++ )
duke@435 1792 verify_compare( n->in(i), loop_verify, visited );
duke@435 1793
duke@435 1794 // Check the '_nodes' block/loop structure
duke@435 1795 i = n->_idx;
duke@435 1796 if( has_ctrl(n) ) { // We have control; verify has loop or ctrl
duke@435 1797 if( _nodes[i] != loop_verify->_nodes[i] &&
duke@435 1798 get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
duke@435 1799 tty->print("Mismatched control setting for: ");
duke@435 1800 n->dump();
duke@435 1801 if( fail++ > 10 ) return;
duke@435 1802 Node *c = get_ctrl_no_update(n);
duke@435 1803 tty->print("We have it as: ");
duke@435 1804 if( c->in(0) ) c->dump();
duke@435 1805 else tty->print_cr("N%d",c->_idx);
duke@435 1806 tty->print("Verify thinks: ");
duke@435 1807 if( loop_verify->has_ctrl(n) )
duke@435 1808 loop_verify->get_ctrl_no_update(n)->dump();
duke@435 1809 else
duke@435 1810 loop_verify->get_loop_idx(n)->dump();
duke@435 1811 tty->cr();
duke@435 1812 }
duke@435 1813 } else { // We have a loop
duke@435 1814 IdealLoopTree *us = get_loop_idx(n);
duke@435 1815 if( loop_verify->has_ctrl(n) ) {
duke@435 1816 tty->print("Mismatched loop setting for: ");
duke@435 1817 n->dump();
duke@435 1818 if( fail++ > 10 ) return;
duke@435 1819 tty->print("We have it as: ");
duke@435 1820 us->dump();
duke@435 1821 tty->print("Verify thinks: ");
duke@435 1822 loop_verify->get_ctrl_no_update(n)->dump();
duke@435 1823 tty->cr();
duke@435 1824 } else if (!C->major_progress()) {
duke@435 1825 // Loop selection can be messed up if we did a major progress
duke@435 1826 // operation, like split-if. Do not verify in that case.
duke@435 1827 IdealLoopTree *them = loop_verify->get_loop_idx(n);
duke@435 1828 if( us->_head != them->_head || us->_tail != them->_tail ) {
duke@435 1829 tty->print("Unequals loops for: ");
duke@435 1830 n->dump();
duke@435 1831 if( fail++ > 10 ) return;
duke@435 1832 tty->print("We have it as: ");
duke@435 1833 us->dump();
duke@435 1834 tty->print("Verify thinks: ");
duke@435 1835 them->dump();
duke@435 1836 tty->cr();
duke@435 1837 }
duke@435 1838 }
duke@435 1839 }
duke@435 1840
duke@435 1841 // Check for immediate dominators being equal
duke@435 1842 if( i >= _idom_size ) {
duke@435 1843 if( !n->is_CFG() ) return;
duke@435 1844 tty->print("CFG Node with no idom: ");
duke@435 1845 n->dump();
duke@435 1846 return;
duke@435 1847 }
duke@435 1848 if( !n->is_CFG() ) return;
duke@435 1849 if( n == C->root() ) return; // No IDOM here
duke@435 1850
duke@435 1851 assert(n->_idx == i, "sanity");
duke@435 1852 Node *id = idom_no_update(n);
duke@435 1853 if( id != loop_verify->idom_no_update(n) ) {
duke@435 1854 tty->print("Unequals idoms for: ");
duke@435 1855 n->dump();
duke@435 1856 if( fail++ > 10 ) return;
duke@435 1857 tty->print("We have it as: ");
duke@435 1858 id->dump();
duke@435 1859 tty->print("Verify thinks: ");
duke@435 1860 loop_verify->idom_no_update(n)->dump();
duke@435 1861 tty->cr();
duke@435 1862 }
duke@435 1863
duke@435 1864 }
duke@435 1865
duke@435 1866 //------------------------------verify_tree------------------------------------
duke@435 1867 // Verify that tree structures match. Because the CFG can change, siblings
duke@435 1868 // within the loop tree can be reordered. We attempt to deal with that by
duke@435 1869 // reordering the verify's loop tree if possible.
duke@435 1870 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
duke@435 1871 assert( _parent == parent, "Badly formed loop tree" );
duke@435 1872
duke@435 1873 // Siblings not in same order? Attempt to re-order.
duke@435 1874 if( _head != loop->_head ) {
duke@435 1875 // Find _next pointer to update
duke@435 1876 IdealLoopTree **pp = &loop->_parent->_child;
duke@435 1877 while( *pp != loop )
duke@435 1878 pp = &((*pp)->_next);
duke@435 1879 // Find proper sibling to be next
duke@435 1880 IdealLoopTree **nn = &loop->_next;
duke@435 1881 while( (*nn) && (*nn)->_head != _head )
duke@435 1882 nn = &((*nn)->_next);
duke@435 1883
duke@435 1884 // Check for no match.
duke@435 1885 if( !(*nn) ) {
duke@435 1886 // Annoyingly, irreducible loops can pick different headers
duke@435 1887 // after a major_progress operation, so the rest of the loop
duke@435 1888 // tree cannot be matched.
duke@435 1889 if (_irreducible && Compile::current()->major_progress()) return;
duke@435 1890 assert( 0, "failed to match loop tree" );
duke@435 1891 }
duke@435 1892
duke@435 1893 // Move (*nn) to (*pp)
duke@435 1894 IdealLoopTree *hit = *nn;
duke@435 1895 *nn = hit->_next;
duke@435 1896 hit->_next = loop;
duke@435 1897 *pp = loop;
duke@435 1898 loop = hit;
duke@435 1899 // Now try again to verify
duke@435 1900 }
duke@435 1901
duke@435 1902 assert( _head == loop->_head , "mismatched loop head" );
duke@435 1903 Node *tail = _tail; // Inline a non-updating version of
duke@435 1904 while( !tail->in(0) ) // the 'tail()' call.
duke@435 1905 tail = tail->in(1);
duke@435 1906 assert( tail == loop->_tail, "mismatched loop tail" );
duke@435 1907
duke@435 1908 // Counted loops that are guarded should be able to find their guards
duke@435 1909 if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
duke@435 1910 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 1911 Node *init = cl->init_trip();
duke@435 1912 Node *ctrl = cl->in(LoopNode::EntryControl);
duke@435 1913 assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
duke@435 1914 Node *iff = ctrl->in(0);
duke@435 1915 assert( iff->Opcode() == Op_If, "" );
duke@435 1916 Node *bol = iff->in(1);
duke@435 1917 assert( bol->Opcode() == Op_Bool, "" );
duke@435 1918 Node *cmp = bol->in(1);
duke@435 1919 assert( cmp->Opcode() == Op_CmpI, "" );
duke@435 1920 Node *add = cmp->in(1);
duke@435 1921 Node *opaq;
duke@435 1922 if( add->Opcode() == Op_Opaque1 ) {
duke@435 1923 opaq = add;
duke@435 1924 } else {
duke@435 1925 assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
duke@435 1926 assert( add == init, "" );
duke@435 1927 opaq = cmp->in(2);
duke@435 1928 }
duke@435 1929 assert( opaq->Opcode() == Op_Opaque1, "" );
duke@435 1930
duke@435 1931 }
duke@435 1932
duke@435 1933 if (_child != NULL) _child->verify_tree(loop->_child, this);
duke@435 1934 if (_next != NULL) _next ->verify_tree(loop->_next, parent);
duke@435 1935 // Innermost loops need to verify loop bodies,
duke@435 1936 // but only if no 'major_progress'
duke@435 1937 int fail = 0;
duke@435 1938 if (!Compile::current()->major_progress() && _child == NULL) {
duke@435 1939 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 1940 Node *n = _body.at(i);
duke@435 1941 if (n->outcnt() == 0) continue; // Ignore dead
duke@435 1942 uint j;
duke@435 1943 for( j = 0; j < loop->_body.size(); j++ )
duke@435 1944 if( loop->_body.at(j) == n )
duke@435 1945 break;
duke@435 1946 if( j == loop->_body.size() ) { // Not found in loop body
duke@435 1947 // Last ditch effort to avoid assertion: Its possible that we
duke@435 1948 // have some users (so outcnt not zero) but are still dead.
duke@435 1949 // Try to find from root.
duke@435 1950 if (Compile::current()->root()->find(n->_idx)) {
duke@435 1951 fail++;
duke@435 1952 tty->print("We have that verify does not: ");
duke@435 1953 n->dump();
duke@435 1954 }
duke@435 1955 }
duke@435 1956 }
duke@435 1957 for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
duke@435 1958 Node *n = loop->_body.at(i2);
duke@435 1959 if (n->outcnt() == 0) continue; // Ignore dead
duke@435 1960 uint j;
duke@435 1961 for( j = 0; j < _body.size(); j++ )
duke@435 1962 if( _body.at(j) == n )
duke@435 1963 break;
duke@435 1964 if( j == _body.size() ) { // Not found in loop body
duke@435 1965 // Last ditch effort to avoid assertion: Its possible that we
duke@435 1966 // have some users (so outcnt not zero) but are still dead.
duke@435 1967 // Try to find from root.
duke@435 1968 if (Compile::current()->root()->find(n->_idx)) {
duke@435 1969 fail++;
duke@435 1970 tty->print("Verify has that we do not: ");
duke@435 1971 n->dump();
duke@435 1972 }
duke@435 1973 }
duke@435 1974 }
duke@435 1975 assert( !fail, "loop body mismatch" );
duke@435 1976 }
duke@435 1977 }
duke@435 1978
duke@435 1979 #endif
duke@435 1980
duke@435 1981 //------------------------------set_idom---------------------------------------
duke@435 1982 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
duke@435 1983 uint idx = d->_idx;
duke@435 1984 if (idx >= _idom_size) {
duke@435 1985 uint newsize = _idom_size<<1;
duke@435 1986 while( idx >= newsize ) {
duke@435 1987 newsize <<= 1;
duke@435 1988 }
duke@435 1989 _idom = REALLOC_RESOURCE_ARRAY( Node*, _idom,_idom_size,newsize);
duke@435 1990 _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
duke@435 1991 memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
duke@435 1992 _idom_size = newsize;
duke@435 1993 }
duke@435 1994 _idom[idx] = n;
duke@435 1995 _dom_depth[idx] = dom_depth;
duke@435 1996 }
duke@435 1997
duke@435 1998 //------------------------------recompute_dom_depth---------------------------------------
duke@435 1999 // The dominator tree is constructed with only parent pointers.
duke@435 2000 // This recomputes the depth in the tree by first tagging all
duke@435 2001 // nodes as "no depth yet" marker. The next pass then runs up
duke@435 2002 // the dom tree from each node marked "no depth yet", and computes
duke@435 2003 // the depth on the way back down.
duke@435 2004 void PhaseIdealLoop::recompute_dom_depth() {
duke@435 2005 uint no_depth_marker = C->unique();
duke@435 2006 uint i;
duke@435 2007 // Initialize depth to "no depth yet"
duke@435 2008 for (i = 0; i < _idom_size; i++) {
duke@435 2009 if (_dom_depth[i] > 0 && _idom[i] != NULL) {
duke@435 2010 _dom_depth[i] = no_depth_marker;
duke@435 2011 }
duke@435 2012 }
duke@435 2013 if (_dom_stk == NULL) {
duke@435 2014 uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
duke@435 2015 if (init_size < 10) init_size = 10;
duke@435 2016 _dom_stk = new (C->node_arena()) GrowableArray<uint>(C->node_arena(), init_size, 0, 0);
duke@435 2017 }
duke@435 2018 // Compute new depth for each node.
duke@435 2019 for (i = 0; i < _idom_size; i++) {
duke@435 2020 uint j = i;
duke@435 2021 // Run up the dom tree to find a node with a depth
duke@435 2022 while (_dom_depth[j] == no_depth_marker) {
duke@435 2023 _dom_stk->push(j);
duke@435 2024 j = _idom[j]->_idx;
duke@435 2025 }
duke@435 2026 // Compute the depth on the way back down this tree branch
duke@435 2027 uint dd = _dom_depth[j] + 1;
duke@435 2028 while (_dom_stk->length() > 0) {
duke@435 2029 uint j = _dom_stk->pop();
duke@435 2030 _dom_depth[j] = dd;
duke@435 2031 dd++;
duke@435 2032 }
duke@435 2033 }
duke@435 2034 }
duke@435 2035
duke@435 2036 //------------------------------sort-------------------------------------------
duke@435 2037 // Insert 'loop' into the existing loop tree. 'innermost' is a leaf of the
duke@435 2038 // loop tree, not the root.
duke@435 2039 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
duke@435 2040 if( !innermost ) return loop; // New innermost loop
duke@435 2041
duke@435 2042 int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
duke@435 2043 assert( loop_preorder, "not yet post-walked loop" );
duke@435 2044 IdealLoopTree **pp = &innermost; // Pointer to previous next-pointer
duke@435 2045 IdealLoopTree *l = *pp; // Do I go before or after 'l'?
duke@435 2046
duke@435 2047 // Insert at start of list
duke@435 2048 while( l ) { // Insertion sort based on pre-order
duke@435 2049 if( l == loop ) return innermost; // Already on list!
duke@435 2050 int l_preorder = get_preorder(l->_head); // Cache pre-order number
duke@435 2051 assert( l_preorder, "not yet post-walked l" );
duke@435 2052 // Check header pre-order number to figure proper nesting
duke@435 2053 if( loop_preorder > l_preorder )
duke@435 2054 break; // End of insertion
duke@435 2055 // If headers tie (e.g., shared headers) check tail pre-order numbers.
duke@435 2056 // Since I split shared headers, you'd think this could not happen.
duke@435 2057 // BUT: I must first do the preorder numbering before I can discover I
duke@435 2058 // have shared headers, so the split headers all get the same preorder
duke@435 2059 // number as the RegionNode they split from.
duke@435 2060 if( loop_preorder == l_preorder &&
duke@435 2061 get_preorder(loop->_tail) < get_preorder(l->_tail) )
duke@435 2062 break; // Also check for shared headers (same pre#)
duke@435 2063 pp = &l->_parent; // Chain up list
duke@435 2064 l = *pp;
duke@435 2065 }
duke@435 2066 // Link into list
duke@435 2067 // Point predecessor to me
duke@435 2068 *pp = loop;
duke@435 2069 // Point me to successor
duke@435 2070 IdealLoopTree *p = loop->_parent;
duke@435 2071 loop->_parent = l; // Point me to successor
duke@435 2072 if( p ) sort( p, innermost ); // Insert my parents into list as well
duke@435 2073 return innermost;
duke@435 2074 }
duke@435 2075
duke@435 2076 //------------------------------build_loop_tree--------------------------------
duke@435 2077 // I use a modified Vick/Tarjan algorithm. I need pre- and a post- visit
duke@435 2078 // bits. The _nodes[] array is mapped by Node index and holds a NULL for
duke@435 2079 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
duke@435 2080 // tightest enclosing IdealLoopTree for post-walked.
duke@435 2081 //
duke@435 2082 // During my forward walk I do a short 1-layer lookahead to see if I can find
duke@435 2083 // a loop backedge with that doesn't have any work on the backedge. This
duke@435 2084 // helps me construct nested loops with shared headers better.
duke@435 2085 //
duke@435 2086 // Once I've done the forward recursion, I do the post-work. For each child
duke@435 2087 // I check to see if there is a backedge. Backedges define a loop! I
duke@435 2088 // insert an IdealLoopTree at the target of the backedge.
duke@435 2089 //
duke@435 2090 // During the post-work I also check to see if I have several children
duke@435 2091 // belonging to different loops. If so, then this Node is a decision point
duke@435 2092 // where control flow can choose to change loop nests. It is at this
duke@435 2093 // decision point where I can figure out how loops are nested. At this
duke@435 2094 // time I can properly order the different loop nests from my children.
duke@435 2095 // Note that there may not be any backedges at the decision point!
duke@435 2096 //
duke@435 2097 // Since the decision point can be far removed from the backedges, I can't
duke@435 2098 // order my loops at the time I discover them. Thus at the decision point
duke@435 2099 // I need to inspect loop header pre-order numbers to properly nest my
duke@435 2100 // loops. This means I need to sort my childrens' loops by pre-order.
duke@435 2101 // The sort is of size number-of-control-children, which generally limits
duke@435 2102 // it to size 2 (i.e., I just choose between my 2 target loops).
duke@435 2103 void PhaseIdealLoop::build_loop_tree() {
duke@435 2104 // Allocate stack of size C->unique()/2 to avoid frequent realloc
duke@435 2105 GrowableArray <Node *> bltstack(C->unique() >> 1);
duke@435 2106 Node *n = C->root();
duke@435 2107 bltstack.push(n);
duke@435 2108 int pre_order = 1;
duke@435 2109 int stack_size;
duke@435 2110
duke@435 2111 while ( ( stack_size = bltstack.length() ) != 0 ) {
duke@435 2112 n = bltstack.top(); // Leave node on stack
duke@435 2113 if ( !is_visited(n) ) {
duke@435 2114 // ---- Pre-pass Work ----
duke@435 2115 // Pre-walked but not post-walked nodes need a pre_order number.
duke@435 2116
duke@435 2117 set_preorder_visited( n, pre_order ); // set as visited
duke@435 2118
duke@435 2119 // ---- Scan over children ----
duke@435 2120 // Scan first over control projections that lead to loop headers.
duke@435 2121 // This helps us find inner-to-outer loops with shared headers better.
duke@435 2122
duke@435 2123 // Scan children's children for loop headers.
duke@435 2124 for ( int i = n->outcnt() - 1; i >= 0; --i ) {
duke@435 2125 Node* m = n->raw_out(i); // Child
duke@435 2126 if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
duke@435 2127 // Scan over children's children to find loop
duke@435 2128 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
duke@435 2129 Node* l = m->fast_out(j);
duke@435 2130 if( is_visited(l) && // Been visited?
duke@435 2131 !is_postvisited(l) && // But not post-visited
duke@435 2132 get_preorder(l) < pre_order ) { // And smaller pre-order
duke@435 2133 // Found! Scan the DFS down this path before doing other paths
duke@435 2134 bltstack.push(m);
duke@435 2135 break;
duke@435 2136 }
duke@435 2137 }
duke@435 2138 }
duke@435 2139 }
duke@435 2140 pre_order++;
duke@435 2141 }
duke@435 2142 else if ( !is_postvisited(n) ) {
duke@435 2143 // Note: build_loop_tree_impl() adds out edges on rare occasions,
duke@435 2144 // such as com.sun.rsasign.am::a.
duke@435 2145 // For non-recursive version, first, process current children.
duke@435 2146 // On next iteration, check if additional children were added.
duke@435 2147 for ( int k = n->outcnt() - 1; k >= 0; --k ) {
duke@435 2148 Node* u = n->raw_out(k);
duke@435 2149 if ( u->is_CFG() && !is_visited(u) ) {
duke@435 2150 bltstack.push(u);
duke@435 2151 }
duke@435 2152 }
duke@435 2153 if ( bltstack.length() == stack_size ) {
duke@435 2154 // There were no additional children, post visit node now
duke@435 2155 (void)bltstack.pop(); // Remove node from stack
duke@435 2156 pre_order = build_loop_tree_impl( n, pre_order );
duke@435 2157 // Check for bailout
duke@435 2158 if (C->failing()) {
duke@435 2159 return;
duke@435 2160 }
duke@435 2161 // Check to grow _preorders[] array for the case when
duke@435 2162 // build_loop_tree_impl() adds new nodes.
duke@435 2163 check_grow_preorders();
duke@435 2164 }
duke@435 2165 }
duke@435 2166 else {
duke@435 2167 (void)bltstack.pop(); // Remove post-visited node from stack
duke@435 2168 }
duke@435 2169 }
duke@435 2170 }
duke@435 2171
duke@435 2172 //------------------------------build_loop_tree_impl---------------------------
duke@435 2173 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
duke@435 2174 // ---- Post-pass Work ----
duke@435 2175 // Pre-walked but not post-walked nodes need a pre_order number.
duke@435 2176
duke@435 2177 // Tightest enclosing loop for this Node
duke@435 2178 IdealLoopTree *innermost = NULL;
duke@435 2179
duke@435 2180 // For all children, see if any edge is a backedge. If so, make a loop
duke@435 2181 // for it. Then find the tightest enclosing loop for the self Node.
duke@435 2182 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 2183 Node* m = n->fast_out(i); // Child
duke@435 2184 if( n == m ) continue; // Ignore control self-cycles
duke@435 2185 if( !m->is_CFG() ) continue;// Ignore non-CFG edges
duke@435 2186
duke@435 2187 IdealLoopTree *l; // Child's loop
duke@435 2188 if( !is_postvisited(m) ) { // Child visited but not post-visited?
duke@435 2189 // Found a backedge
duke@435 2190 assert( get_preorder(m) < pre_order, "should be backedge" );
duke@435 2191 // Check for the RootNode, which is already a LoopNode and is allowed
duke@435 2192 // to have multiple "backedges".
duke@435 2193 if( m == C->root()) { // Found the root?
duke@435 2194 l = _ltree_root; // Root is the outermost LoopNode
duke@435 2195 } else { // Else found a nested loop
duke@435 2196 // Insert a LoopNode to mark this loop.
duke@435 2197 l = new IdealLoopTree(this, m, n);
duke@435 2198 } // End of Else found a nested loop
duke@435 2199 if( !has_loop(m) ) // If 'm' does not already have a loop set
duke@435 2200 set_loop(m, l); // Set loop header to loop now
duke@435 2201
duke@435 2202 } else { // Else not a nested loop
duke@435 2203 if( !_nodes[m->_idx] ) continue; // Dead code has no loop
duke@435 2204 l = get_loop(m); // Get previously determined loop
duke@435 2205 // If successor is header of a loop (nest), move up-loop till it
duke@435 2206 // is a member of some outer enclosing loop. Since there are no
duke@435 2207 // shared headers (I've split them already) I only need to go up
duke@435 2208 // at most 1 level.
duke@435 2209 while( l && l->_head == m ) // Successor heads loop?
duke@435 2210 l = l->_parent; // Move up 1 for me
duke@435 2211 // If this loop is not properly parented, then this loop
duke@435 2212 // has no exit path out, i.e. its an infinite loop.
duke@435 2213 if( !l ) {
duke@435 2214 // Make loop "reachable" from root so the CFG is reachable. Basically
duke@435 2215 // insert a bogus loop exit that is never taken. 'm', the loop head,
duke@435 2216 // points to 'n', one (of possibly many) fall-in paths. There may be
duke@435 2217 // many backedges as well.
duke@435 2218
duke@435 2219 // Here I set the loop to be the root loop. I could have, after
duke@435 2220 // inserting a bogus loop exit, restarted the recursion and found my
duke@435 2221 // new loop exit. This would make the infinite loop a first-class
duke@435 2222 // loop and it would then get properly optimized. What's the use of
duke@435 2223 // optimizing an infinite loop?
duke@435 2224 l = _ltree_root; // Oops, found infinite loop
duke@435 2225
never@1356 2226 if (!_verify_only) {
never@1356 2227 // Insert the NeverBranch between 'm' and it's control user.
never@1356 2228 NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
never@1356 2229 _igvn.register_new_node_with_optimizer(iff);
never@1356 2230 set_loop(iff, l);
never@1356 2231 Node *if_t = new (C, 1) CProjNode( iff, 0 );
never@1356 2232 _igvn.register_new_node_with_optimizer(if_t);
never@1356 2233 set_loop(if_t, l);
duke@435 2234
never@1356 2235 Node* cfg = NULL; // Find the One True Control User of m
never@1356 2236 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
never@1356 2237 Node* x = m->fast_out(j);
never@1356 2238 if (x->is_CFG() && x != m && x != iff)
never@1356 2239 { cfg = x; break; }
never@1356 2240 }
never@1356 2241 assert(cfg != NULL, "must find the control user of m");
never@1356 2242 uint k = 0; // Probably cfg->in(0)
never@1356 2243 while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
never@1356 2244 cfg->set_req( k, if_t ); // Now point to NeverBranch
never@1356 2245
never@1356 2246 // Now create the never-taken loop exit
never@1356 2247 Node *if_f = new (C, 1) CProjNode( iff, 1 );
never@1356 2248 _igvn.register_new_node_with_optimizer(if_f);
never@1356 2249 set_loop(if_f, l);
never@1356 2250 // Find frame ptr for Halt. Relies on the optimizer
never@1356 2251 // V-N'ing. Easier and quicker than searching through
never@1356 2252 // the program structure.
never@1356 2253 Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
never@1356 2254 _igvn.register_new_node_with_optimizer(frame);
never@1356 2255 // Halt & Catch Fire
never@1356 2256 Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
never@1356 2257 _igvn.register_new_node_with_optimizer(halt);
never@1356 2258 set_loop(halt, l);
never@1356 2259 C->root()->add_req(halt);
duke@435 2260 }
duke@435 2261 set_loop(C->root(), _ltree_root);
duke@435 2262 }
duke@435 2263 }
duke@435 2264 // Weeny check for irreducible. This child was already visited (this
duke@435 2265 // IS the post-work phase). Is this child's loop header post-visited
duke@435 2266 // as well? If so, then I found another entry into the loop.
never@1356 2267 if (!_verify_only) {
never@1356 2268 while( is_postvisited(l->_head) ) {
never@1356 2269 // found irreducible
never@1356 2270 l->_irreducible = 1; // = true
never@1356 2271 l = l->_parent;
never@1356 2272 _has_irreducible_loops = true;
never@1356 2273 // Check for bad CFG here to prevent crash, and bailout of compile
never@1356 2274 if (l == NULL) {
never@1356 2275 C->record_method_not_compilable("unhandled CFG detected during loop optimization");
never@1356 2276 return pre_order;
never@1356 2277 }
duke@435 2278 }
duke@435 2279 }
duke@435 2280
duke@435 2281 // This Node might be a decision point for loops. It is only if
duke@435 2282 // it's children belong to several different loops. The sort call
duke@435 2283 // does a trivial amount of work if there is only 1 child or all
duke@435 2284 // children belong to the same loop. If however, the children
duke@435 2285 // belong to different loops, the sort call will properly set the
duke@435 2286 // _parent pointers to show how the loops nest.
duke@435 2287 //
duke@435 2288 // In any case, it returns the tightest enclosing loop.
duke@435 2289 innermost = sort( l, innermost );
duke@435 2290 }
duke@435 2291
duke@435 2292 // Def-use info will have some dead stuff; dead stuff will have no
duke@435 2293 // loop decided on.
duke@435 2294
duke@435 2295 // Am I a loop header? If so fix up my parent's child and next ptrs.
duke@435 2296 if( innermost && innermost->_head == n ) {
duke@435 2297 assert( get_loop(n) == innermost, "" );
duke@435 2298 IdealLoopTree *p = innermost->_parent;
duke@435 2299 IdealLoopTree *l = innermost;
duke@435 2300 while( p && l->_head == n ) {
duke@435 2301 l->_next = p->_child; // Put self on parents 'next child'
duke@435 2302 p->_child = l; // Make self as first child of parent
duke@435 2303 l = p; // Now walk up the parent chain
duke@435 2304 p = l->_parent;
duke@435 2305 }
duke@435 2306 } else {
duke@435 2307 // Note that it is possible for a LoopNode to reach here, if the
duke@435 2308 // backedge has been made unreachable (hence the LoopNode no longer
duke@435 2309 // denotes a Loop, and will eventually be removed).
duke@435 2310
duke@435 2311 // Record tightest enclosing loop for self. Mark as post-visited.
duke@435 2312 set_loop(n, innermost);
duke@435 2313 // Also record has_call flag early on
duke@435 2314 if( innermost ) {
duke@435 2315 if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
duke@435 2316 // Do not count uncommon calls
duke@435 2317 if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
duke@435 2318 Node *iff = n->in(0)->in(0);
duke@435 2319 if( !iff->is_If() ||
duke@435 2320 (n->in(0)->Opcode() == Op_IfFalse &&
duke@435 2321 (1.0 - iff->as_If()->_prob) >= 0.01) ||
duke@435 2322 (iff->as_If()->_prob >= 0.01) )
duke@435 2323 innermost->_has_call = 1;
duke@435 2324 }
kvn@474 2325 } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
kvn@474 2326 // Disable loop optimizations if the loop has a scalar replaceable
kvn@474 2327 // allocation. This disabling may cause a potential performance lost
kvn@474 2328 // if the allocation is not eliminated for some reason.
kvn@474 2329 innermost->_allow_optimizations = false;
kvn@474 2330 innermost->_has_call = 1; // = true
duke@435 2331 }
duke@435 2332 }
duke@435 2333 }
duke@435 2334
duke@435 2335 // Flag as post-visited now
duke@435 2336 set_postvisited(n);
duke@435 2337 return pre_order;
duke@435 2338 }
duke@435 2339
duke@435 2340
duke@435 2341 //------------------------------build_loop_early-------------------------------
duke@435 2342 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
duke@435 2343 // First pass computes the earliest controlling node possible. This is the
duke@435 2344 // controlling input with the deepest dominating depth.
never@1356 2345 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
duke@435 2346 while (worklist.size() != 0) {
duke@435 2347 // Use local variables nstack_top_n & nstack_top_i to cache values
duke@435 2348 // on nstack's top.
duke@435 2349 Node *nstack_top_n = worklist.pop();
duke@435 2350 uint nstack_top_i = 0;
duke@435 2351 //while_nstack_nonempty:
duke@435 2352 while (true) {
duke@435 2353 // Get parent node and next input's index from stack's top.
duke@435 2354 Node *n = nstack_top_n;
duke@435 2355 uint i = nstack_top_i;
duke@435 2356 uint cnt = n->req(); // Count of inputs
duke@435 2357 if (i == 0) { // Pre-process the node.
duke@435 2358 if( has_node(n) && // Have either loop or control already?
duke@435 2359 !has_ctrl(n) ) { // Have loop picked out already?
duke@435 2360 // During "merge_many_backedges" we fold up several nested loops
duke@435 2361 // into a single loop. This makes the members of the original
duke@435 2362 // loop bodies pointing to dead loops; they need to move up
duke@435 2363 // to the new UNION'd larger loop. I set the _head field of these
duke@435 2364 // dead loops to NULL and the _parent field points to the owning
duke@435 2365 // loop. Shades of UNION-FIND algorithm.
duke@435 2366 IdealLoopTree *ilt;
duke@435 2367 while( !(ilt = get_loop(n))->_head ) {
duke@435 2368 // Normally I would use a set_loop here. But in this one special
duke@435 2369 // case, it is legal (and expected) to change what loop a Node
duke@435 2370 // belongs to.
duke@435 2371 _nodes.map(n->_idx, (Node*)(ilt->_parent) );
duke@435 2372 }
duke@435 2373 // Remove safepoints ONLY if I've already seen I don't need one.
duke@435 2374 // (the old code here would yank a 2nd safepoint after seeing a
duke@435 2375 // first one, even though the 1st did not dominate in the loop body
duke@435 2376 // and thus could be avoided indefinitely)
never@1356 2377 if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
duke@435 2378 is_deleteable_safept(n)) {
duke@435 2379 Node *in = n->in(TypeFunc::Control);
duke@435 2380 lazy_replace(n,in); // Pull safepoint now
duke@435 2381 // Carry on with the recursion "as if" we are walking
duke@435 2382 // only the control input
duke@435 2383 if( !visited.test_set( in->_idx ) ) {
duke@435 2384 worklist.push(in); // Visit this guy later, using worklist
duke@435 2385 }
duke@435 2386 // Get next node from nstack:
duke@435 2387 // - skip n's inputs processing by setting i > cnt;
duke@435 2388 // - we also will not call set_early_ctrl(n) since
duke@435 2389 // has_node(n) == true (see the condition above).
duke@435 2390 i = cnt + 1;
duke@435 2391 }
duke@435 2392 }
duke@435 2393 } // if (i == 0)
duke@435 2394
duke@435 2395 // Visit all inputs
duke@435 2396 bool done = true; // Assume all n's inputs will be processed
duke@435 2397 while (i < cnt) {
duke@435 2398 Node *in = n->in(i);
duke@435 2399 ++i;
duke@435 2400 if (in == NULL) continue;
duke@435 2401 if (in->pinned() && !in->is_CFG())
duke@435 2402 set_ctrl(in, in->in(0));
duke@435 2403 int is_visited = visited.test_set( in->_idx );
duke@435 2404 if (!has_node(in)) { // No controlling input yet?
duke@435 2405 assert( !in->is_CFG(), "CFG Node with no controlling input?" );
duke@435 2406 assert( !is_visited, "visit only once" );
duke@435 2407 nstack.push(n, i); // Save parent node and next input's index.
duke@435 2408 nstack_top_n = in; // Process current input now.
duke@435 2409 nstack_top_i = 0;
duke@435 2410 done = false; // Not all n's inputs processed.
duke@435 2411 break; // continue while_nstack_nonempty;
duke@435 2412 } else if (!is_visited) {
duke@435 2413 // This guy has a location picked out for him, but has not yet
duke@435 2414 // been visited. Happens to all CFG nodes, for instance.
duke@435 2415 // Visit him using the worklist instead of recursion, to break
duke@435 2416 // cycles. Since he has a location already we do not need to
duke@435 2417 // find his location before proceeding with the current Node.
duke@435 2418 worklist.push(in); // Visit this guy later, using worklist
duke@435 2419 }
duke@435 2420 }
duke@435 2421 if (done) {
duke@435 2422 // All of n's inputs have been processed, complete post-processing.
duke@435 2423
twisti@1040 2424 // Compute earliest point this Node can go.
duke@435 2425 // CFG, Phi, pinned nodes already know their controlling input.
duke@435 2426 if (!has_node(n)) {
duke@435 2427 // Record earliest legal location
duke@435 2428 set_early_ctrl( n );
duke@435 2429 }
duke@435 2430 if (nstack.is_empty()) {
duke@435 2431 // Finished all nodes on stack.
duke@435 2432 // Process next node on the worklist.
duke@435 2433 break;
duke@435 2434 }
duke@435 2435 // Get saved parent node and next input's index.
duke@435 2436 nstack_top_n = nstack.node();
duke@435 2437 nstack_top_i = nstack.index();
duke@435 2438 nstack.pop();
duke@435 2439 }
duke@435 2440 } // while (true)
duke@435 2441 }
duke@435 2442 }
duke@435 2443
duke@435 2444 //------------------------------dom_lca_internal--------------------------------
duke@435 2445 // Pair-wise LCA
duke@435 2446 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
duke@435 2447 if( !n1 ) return n2; // Handle NULL original LCA
duke@435 2448 assert( n1->is_CFG(), "" );
duke@435 2449 assert( n2->is_CFG(), "" );
duke@435 2450 // find LCA of all uses
duke@435 2451 uint d1 = dom_depth(n1);
duke@435 2452 uint d2 = dom_depth(n2);
duke@435 2453 while (n1 != n2) {
duke@435 2454 if (d1 > d2) {
duke@435 2455 n1 = idom(n1);
duke@435 2456 d1 = dom_depth(n1);
duke@435 2457 } else if (d1 < d2) {
duke@435 2458 n2 = idom(n2);
duke@435 2459 d2 = dom_depth(n2);
duke@435 2460 } else {
duke@435 2461 // Here d1 == d2. Due to edits of the dominator-tree, sections
duke@435 2462 // of the tree might have the same depth. These sections have
duke@435 2463 // to be searched more carefully.
duke@435 2464
duke@435 2465 // Scan up all the n1's with equal depth, looking for n2.
duke@435 2466 Node *t1 = idom(n1);
duke@435 2467 while (dom_depth(t1) == d1) {
duke@435 2468 if (t1 == n2) return n2;
duke@435 2469 t1 = idom(t1);
duke@435 2470 }
duke@435 2471 // Scan up all the n2's with equal depth, looking for n1.
duke@435 2472 Node *t2 = idom(n2);
duke@435 2473 while (dom_depth(t2) == d2) {
duke@435 2474 if (t2 == n1) return n1;
duke@435 2475 t2 = idom(t2);
duke@435 2476 }
duke@435 2477 // Move up to a new dominator-depth value as well as up the dom-tree.
duke@435 2478 n1 = t1;
duke@435 2479 n2 = t2;
duke@435 2480 d1 = dom_depth(n1);
duke@435 2481 d2 = dom_depth(n2);
duke@435 2482 }
duke@435 2483 }
duke@435 2484 return n1;
duke@435 2485 }
duke@435 2486
duke@435 2487 //------------------------------compute_idom-----------------------------------
duke@435 2488 // Locally compute IDOM using dom_lca call. Correct only if the incoming
duke@435 2489 // IDOMs are correct.
duke@435 2490 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
duke@435 2491 assert( region->is_Region(), "" );
duke@435 2492 Node *LCA = NULL;
duke@435 2493 for( uint i = 1; i < region->req(); i++ ) {
duke@435 2494 if( region->in(i) != C->top() )
duke@435 2495 LCA = dom_lca( LCA, region->in(i) );
duke@435 2496 }
duke@435 2497 return LCA;
duke@435 2498 }
duke@435 2499
never@1356 2500 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
never@1356 2501 bool had_error = false;
never@1356 2502 #ifdef ASSERT
never@1356 2503 if (early != C->root()) {
never@1356 2504 // Make sure that there's a dominance path from use to LCA
never@1356 2505 Node* d = use;
never@1356 2506 while (d != LCA) {
never@1356 2507 d = idom(d);
never@1356 2508 if (d == C->root()) {
never@1356 2509 tty->print_cr("*** Use %d isn't dominated by def %s", use->_idx, n->_idx);
never@1356 2510 n->dump();
never@1356 2511 use->dump();
never@1356 2512 had_error = true;
never@1356 2513 break;
never@1356 2514 }
never@1356 2515 }
never@1356 2516 }
never@1356 2517 #endif
never@1356 2518 return had_error;
never@1356 2519 }
duke@435 2520
never@1356 2521
never@1356 2522 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
duke@435 2523 // Compute LCA over list of uses
never@1356 2524 bool had_error = false;
duke@435 2525 Node *LCA = NULL;
duke@435 2526 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
duke@435 2527 Node* c = n->fast_out(i);
duke@435 2528 if (_nodes[c->_idx] == NULL)
duke@435 2529 continue; // Skip the occasional dead node
duke@435 2530 if( c->is_Phi() ) { // For Phis, we must land above on the path
duke@435 2531 for( uint j=1; j<c->req(); j++ ) {// For all inputs
duke@435 2532 if( c->in(j) == n ) { // Found matching input?
duke@435 2533 Node *use = c->in(0)->in(j);
never@1356 2534 if (_verify_only && use->is_top()) continue;
duke@435 2535 LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
never@1356 2536 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
duke@435 2537 }
duke@435 2538 }
duke@435 2539 } else {
duke@435 2540 // For CFG data-users, use is in the block just prior
duke@435 2541 Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
duke@435 2542 LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
never@1356 2543 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
duke@435 2544 }
duke@435 2545 }
never@1356 2546 assert(!had_error, "bad dominance");
never@1356 2547 return LCA;
never@1356 2548 }
never@1356 2549
never@1356 2550 //------------------------------get_late_ctrl----------------------------------
never@1356 2551 // Compute latest legal control.
never@1356 2552 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
never@1356 2553 assert(early != NULL, "early control should not be NULL");
never@1356 2554
never@1356 2555 Node* LCA = compute_lca_of_uses(n, early);
never@1356 2556 #ifdef ASSERT
never@1356 2557 if (LCA == C->root() && LCA != early) {
never@1356 2558 // def doesn't dominate uses so print some useful debugging output
never@1356 2559 compute_lca_of_uses(n, early, true);
never@1356 2560 }
never@1356 2561 #endif
duke@435 2562
duke@435 2563 // if this is a load, check for anti-dependent stores
duke@435 2564 // We use a conservative algorithm to identify potential interfering
duke@435 2565 // instructions and for rescheduling the load. The users of the memory
duke@435 2566 // input of this load are examined. Any use which is not a load and is
duke@435 2567 // dominated by early is considered a potentially interfering store.
duke@435 2568 // This can produce false positives.
duke@435 2569 if (n->is_Load() && LCA != early) {
duke@435 2570 Node_List worklist;
duke@435 2571
duke@435 2572 Node *mem = n->in(MemNode::Memory);
duke@435 2573 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
duke@435 2574 Node* s = mem->fast_out(i);
duke@435 2575 worklist.push(s);
duke@435 2576 }
duke@435 2577 while(worklist.size() != 0 && LCA != early) {
duke@435 2578 Node* s = worklist.pop();
duke@435 2579 if (s->is_Load()) {
duke@435 2580 continue;
duke@435 2581 } else if (s->is_MergeMem()) {
duke@435 2582 for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
duke@435 2583 Node* s1 = s->fast_out(i);
duke@435 2584 worklist.push(s1);
duke@435 2585 }
duke@435 2586 } else {
duke@435 2587 Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
duke@435 2588 assert(sctrl != NULL || s->outcnt() == 0, "must have control");
duke@435 2589 if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
duke@435 2590 LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
duke@435 2591 }
duke@435 2592 }
duke@435 2593 }
duke@435 2594 }
duke@435 2595
duke@435 2596 assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
duke@435 2597 return LCA;
duke@435 2598 }
duke@435 2599
duke@435 2600 // true if CFG node d dominates CFG node n
duke@435 2601 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
duke@435 2602 if (d == n)
duke@435 2603 return true;
duke@435 2604 assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
duke@435 2605 uint dd = dom_depth(d);
duke@435 2606 while (dom_depth(n) >= dd) {
duke@435 2607 if (n == d)
duke@435 2608 return true;
duke@435 2609 n = idom(n);
duke@435 2610 }
duke@435 2611 return false;
duke@435 2612 }
duke@435 2613
duke@435 2614 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
duke@435 2615 // Pair-wise LCA with tags.
duke@435 2616 // Tag each index with the node 'tag' currently being processed
duke@435 2617 // before advancing up the dominator chain using idom().
duke@435 2618 // Later calls that find a match to 'tag' know that this path has already
duke@435 2619 // been considered in the current LCA (which is input 'n1' by convention).
duke@435 2620 // Since get_late_ctrl() is only called once for each node, the tag array
duke@435 2621 // does not need to be cleared between calls to get_late_ctrl().
duke@435 2622 // Algorithm trades a larger constant factor for better asymptotic behavior
duke@435 2623 //
duke@435 2624 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
duke@435 2625 uint d1 = dom_depth(n1);
duke@435 2626 uint d2 = dom_depth(n2);
duke@435 2627
duke@435 2628 do {
duke@435 2629 if (d1 > d2) {
duke@435 2630 // current lca is deeper than n2
duke@435 2631 _dom_lca_tags.map(n1->_idx, tag);
duke@435 2632 n1 = idom(n1);
duke@435 2633 d1 = dom_depth(n1);
duke@435 2634 } else if (d1 < d2) {
duke@435 2635 // n2 is deeper than current lca
duke@435 2636 Node *memo = _dom_lca_tags[n2->_idx];
duke@435 2637 if( memo == tag ) {
duke@435 2638 return n1; // Return the current LCA
duke@435 2639 }
duke@435 2640 _dom_lca_tags.map(n2->_idx, tag);
duke@435 2641 n2 = idom(n2);
duke@435 2642 d2 = dom_depth(n2);
duke@435 2643 } else {
duke@435 2644 // Here d1 == d2. Due to edits of the dominator-tree, sections
duke@435 2645 // of the tree might have the same depth. These sections have
duke@435 2646 // to be searched more carefully.
duke@435 2647
duke@435 2648 // Scan up all the n1's with equal depth, looking for n2.
duke@435 2649 _dom_lca_tags.map(n1->_idx, tag);
duke@435 2650 Node *t1 = idom(n1);
duke@435 2651 while (dom_depth(t1) == d1) {
duke@435 2652 if (t1 == n2) return n2;
duke@435 2653 _dom_lca_tags.map(t1->_idx, tag);
duke@435 2654 t1 = idom(t1);
duke@435 2655 }
duke@435 2656 // Scan up all the n2's with equal depth, looking for n1.
duke@435 2657 _dom_lca_tags.map(n2->_idx, tag);
duke@435 2658 Node *t2 = idom(n2);
duke@435 2659 while (dom_depth(t2) == d2) {
duke@435 2660 if (t2 == n1) return n1;
duke@435 2661 _dom_lca_tags.map(t2->_idx, tag);
duke@435 2662 t2 = idom(t2);
duke@435 2663 }
duke@435 2664 // Move up to a new dominator-depth value as well as up the dom-tree.
duke@435 2665 n1 = t1;
duke@435 2666 n2 = t2;
duke@435 2667 d1 = dom_depth(n1);
duke@435 2668 d2 = dom_depth(n2);
duke@435 2669 }
duke@435 2670 } while (n1 != n2);
duke@435 2671 return n1;
duke@435 2672 }
duke@435 2673
duke@435 2674 //------------------------------init_dom_lca_tags------------------------------
duke@435 2675 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
duke@435 2676 // Intended use does not involve any growth for the array, so it could
duke@435 2677 // be of fixed size.
duke@435 2678 void PhaseIdealLoop::init_dom_lca_tags() {
duke@435 2679 uint limit = C->unique() + 1;
duke@435 2680 _dom_lca_tags.map( limit, NULL );
duke@435 2681 #ifdef ASSERT
duke@435 2682 for( uint i = 0; i < limit; ++i ) {
duke@435 2683 assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
duke@435 2684 }
duke@435 2685 #endif // ASSERT
duke@435 2686 }
duke@435 2687
duke@435 2688 //------------------------------clear_dom_lca_tags------------------------------
duke@435 2689 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
duke@435 2690 // Intended use does not involve any growth for the array, so it could
duke@435 2691 // be of fixed size.
duke@435 2692 void PhaseIdealLoop::clear_dom_lca_tags() {
duke@435 2693 uint limit = C->unique() + 1;
duke@435 2694 _dom_lca_tags.map( limit, NULL );
duke@435 2695 _dom_lca_tags.clear();
duke@435 2696 #ifdef ASSERT
duke@435 2697 for( uint i = 0; i < limit; ++i ) {
duke@435 2698 assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
duke@435 2699 }
duke@435 2700 #endif // ASSERT
duke@435 2701 }
duke@435 2702
duke@435 2703 //------------------------------build_loop_late--------------------------------
duke@435 2704 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
duke@435 2705 // Second pass finds latest legal placement, and ideal loop placement.
never@1356 2706 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
duke@435 2707 while (worklist.size() != 0) {
duke@435 2708 Node *n = worklist.pop();
duke@435 2709 // Only visit once
duke@435 2710 if (visited.test_set(n->_idx)) continue;
duke@435 2711 uint cnt = n->outcnt();
duke@435 2712 uint i = 0;
duke@435 2713 while (true) {
duke@435 2714 assert( _nodes[n->_idx], "no dead nodes" );
duke@435 2715 // Visit all children
duke@435 2716 if (i < cnt) {
duke@435 2717 Node* use = n->raw_out(i);
duke@435 2718 ++i;
duke@435 2719 // Check for dead uses. Aggressively prune such junk. It might be
duke@435 2720 // dead in the global sense, but still have local uses so I cannot
duke@435 2721 // easily call 'remove_dead_node'.
duke@435 2722 if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
duke@435 2723 // Due to cycles, we might not hit the same fixed point in the verify
duke@435 2724 // pass as we do in the regular pass. Instead, visit such phis as
duke@435 2725 // simple uses of the loop head.
duke@435 2726 if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
duke@435 2727 if( !visited.test(use->_idx) )
duke@435 2728 worklist.push(use);
duke@435 2729 } else if( !visited.test_set(use->_idx) ) {
duke@435 2730 nstack.push(n, i); // Save parent and next use's index.
duke@435 2731 n = use; // Process all children of current use.
duke@435 2732 cnt = use->outcnt();
duke@435 2733 i = 0;
duke@435 2734 }
duke@435 2735 } else {
duke@435 2736 // Do not visit around the backedge of loops via data edges.
duke@435 2737 // push dead code onto a worklist
duke@435 2738 _deadlist.push(use);
duke@435 2739 }
duke@435 2740 } else {
duke@435 2741 // All of n's children have been processed, complete post-processing.
never@1356 2742 build_loop_late_post(n);
duke@435 2743 if (nstack.is_empty()) {
duke@435 2744 // Finished all nodes on stack.
duke@435 2745 // Process next node on the worklist.
duke@435 2746 break;
duke@435 2747 }
duke@435 2748 // Get saved parent node and next use's index. Visit the rest of uses.
duke@435 2749 n = nstack.node();
duke@435 2750 cnt = n->outcnt();
duke@435 2751 i = nstack.index();
duke@435 2752 nstack.pop();
duke@435 2753 }
duke@435 2754 }
duke@435 2755 }
duke@435 2756 }
duke@435 2757
duke@435 2758 //------------------------------build_loop_late_post---------------------------
duke@435 2759 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
duke@435 2760 // Second pass finds latest legal placement, and ideal loop placement.
never@1356 2761 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
duke@435 2762
never@1356 2763 if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
duke@435 2764 _igvn._worklist.push(n); // Maybe we'll normalize it, if no more loops.
duke@435 2765 }
duke@435 2766
duke@435 2767 // CFG and pinned nodes already handled
duke@435 2768 if( n->in(0) ) {
duke@435 2769 if( n->in(0)->is_top() ) return; // Dead?
duke@435 2770
duke@435 2771 // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
duke@435 2772 // _must_ be pinned (they have to observe their control edge of course).
duke@435 2773 // Unlike Stores (which modify an unallocable resource, the memory
duke@435 2774 // state), Mods/Loads can float around. So free them up.
duke@435 2775 bool pinned = true;
duke@435 2776 switch( n->Opcode() ) {
duke@435 2777 case Op_DivI:
duke@435 2778 case Op_DivF:
duke@435 2779 case Op_DivD:
duke@435 2780 case Op_ModI:
duke@435 2781 case Op_ModF:
duke@435 2782 case Op_ModD:
duke@435 2783 case Op_LoadB: // Same with Loads; they can sink
twisti@993 2784 case Op_LoadUS: // during loop optimizations.
duke@435 2785 case Op_LoadD:
duke@435 2786 case Op_LoadF:
duke@435 2787 case Op_LoadI:
duke@435 2788 case Op_LoadKlass:
kvn@728 2789 case Op_LoadNKlass:
duke@435 2790 case Op_LoadL:
duke@435 2791 case Op_LoadS:
duke@435 2792 case Op_LoadP:
kvn@728 2793 case Op_LoadN:
duke@435 2794 case Op_LoadRange:
duke@435 2795 case Op_LoadD_unaligned:
duke@435 2796 case Op_LoadL_unaligned:
duke@435 2797 case Op_StrComp: // Does a bunch of load-like effects
cfang@1116 2798 case Op_StrEquals:
cfang@1116 2799 case Op_StrIndexOf:
rasbold@604 2800 case Op_AryEq:
duke@435 2801 pinned = false;
duke@435 2802 }
duke@435 2803 if( pinned ) {
twisti@1040 2804 IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
twisti@1040 2805 if( !chosen_loop->_child ) // Inner loop?
twisti@1040 2806 chosen_loop->_body.push(n); // Collect inner loops
duke@435 2807 return;
duke@435 2808 }
duke@435 2809 } else { // No slot zero
duke@435 2810 if( n->is_CFG() ) { // CFG with no slot 0 is dead
duke@435 2811 _nodes.map(n->_idx,0); // No block setting, it's globally dead
duke@435 2812 return;
duke@435 2813 }
duke@435 2814 assert(!n->is_CFG() || n->outcnt() == 0, "");
duke@435 2815 }
duke@435 2816
duke@435 2817 // Do I have a "safe range" I can select over?
duke@435 2818 Node *early = get_ctrl(n);// Early location already computed
duke@435 2819
duke@435 2820 // Compute latest point this Node can go
duke@435 2821 Node *LCA = get_late_ctrl( n, early );
duke@435 2822 // LCA is NULL due to uses being dead
duke@435 2823 if( LCA == NULL ) {
duke@435 2824 #ifdef ASSERT
duke@435 2825 for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
duke@435 2826 assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
duke@435 2827 }
duke@435 2828 #endif
duke@435 2829 _nodes.map(n->_idx, 0); // This node is useless
duke@435 2830 _deadlist.push(n);
duke@435 2831 return;
duke@435 2832 }
duke@435 2833 assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
duke@435 2834
duke@435 2835 Node *legal = LCA; // Walk 'legal' up the IDOM chain
duke@435 2836 Node *least = legal; // Best legal position so far
duke@435 2837 while( early != legal ) { // While not at earliest legal
cfang@1607 2838 #ifdef ASSERT
cfang@1607 2839 if (legal->is_Start() && !early->is_Root()) {
cfang@1607 2840 // Bad graph. Print idom path and fail.
cfang@1607 2841 tty->print_cr( "Bad graph detected in build_loop_late");
cfang@1607 2842 tty->print("n: ");n->dump(); tty->cr();
cfang@1607 2843 tty->print("early: ");early->dump(); tty->cr();
cfang@1607 2844 int ct = 0;
cfang@1607 2845 Node *dbg_legal = LCA;
cfang@1607 2846 while(!dbg_legal->is_Start() && ct < 100) {
cfang@1607 2847 tty->print("idom[%d] ",ct); dbg_legal->dump(); tty->cr();
cfang@1607 2848 ct++;
cfang@1607 2849 dbg_legal = idom(dbg_legal);
cfang@1607 2850 }
cfang@1607 2851 assert(false, "Bad graph detected in build_loop_late");
cfang@1607 2852 }
cfang@1607 2853 #endif
duke@435 2854 // Find least loop nesting depth
duke@435 2855 legal = idom(legal); // Bump up the IDOM tree
duke@435 2856 // Check for lower nesting depth
duke@435 2857 if( get_loop(legal)->_nest < get_loop(least)->_nest )
duke@435 2858 least = legal;
duke@435 2859 }
never@1356 2860 assert(early == legal || legal != C->root(), "bad dominance of inputs");
duke@435 2861
duke@435 2862 // Try not to place code on a loop entry projection
duke@435 2863 // which can inhibit range check elimination.
duke@435 2864 if (least != early) {
duke@435 2865 Node* ctrl_out = least->unique_ctrl_out();
duke@435 2866 if (ctrl_out && ctrl_out->is_CountedLoop() &&
duke@435 2867 least == ctrl_out->in(LoopNode::EntryControl)) {
duke@435 2868 Node* least_dom = idom(least);
duke@435 2869 if (get_loop(least_dom)->is_member(get_loop(least))) {
duke@435 2870 least = least_dom;
duke@435 2871 }
duke@435 2872 }
duke@435 2873 }
duke@435 2874
duke@435 2875 #ifdef ASSERT
duke@435 2876 // If verifying, verify that 'verify_me' has a legal location
duke@435 2877 // and choose it as our location.
never@1356 2878 if( _verify_me ) {
never@1356 2879 Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
duke@435 2880 Node *legal = LCA;
duke@435 2881 while( early != legal ) { // While not at earliest legal
duke@435 2882 if( legal == v_ctrl ) break; // Check for prior good location
duke@435 2883 legal = idom(legal) ;// Bump up the IDOM tree
duke@435 2884 }
duke@435 2885 // Check for prior good location
duke@435 2886 if( legal == v_ctrl ) least = legal; // Keep prior if found
duke@435 2887 }
duke@435 2888 #endif
duke@435 2889
duke@435 2890 // Assign discovered "here or above" point
duke@435 2891 least = find_non_split_ctrl(least);
duke@435 2892 set_ctrl(n, least);
duke@435 2893
duke@435 2894 // Collect inner loop bodies
twisti@1040 2895 IdealLoopTree *chosen_loop = get_loop(least);
twisti@1040 2896 if( !chosen_loop->_child ) // Inner loop?
twisti@1040 2897 chosen_loop->_body.push(n);// Collect inner loops
duke@435 2898 }
duke@435 2899
duke@435 2900 #ifndef PRODUCT
duke@435 2901 //------------------------------dump-------------------------------------------
duke@435 2902 void PhaseIdealLoop::dump( ) const {
duke@435 2903 ResourceMark rm;
duke@435 2904 Arena* arena = Thread::current()->resource_area();
duke@435 2905 Node_Stack stack(arena, C->unique() >> 2);
duke@435 2906 Node_List rpo_list;
duke@435 2907 VectorSet visited(arena);
duke@435 2908 visited.set(C->top()->_idx);
duke@435 2909 rpo( C->root(), stack, visited, rpo_list );
duke@435 2910 // Dump root loop indexed by last element in PO order
duke@435 2911 dump( _ltree_root, rpo_list.size(), rpo_list );
duke@435 2912 }
duke@435 2913
duke@435 2914 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
never@802 2915 loop->dump_head();
duke@435 2916
duke@435 2917 // Now scan for CFG nodes in the same loop
duke@435 2918 for( uint j=idx; j > 0; j-- ) {
duke@435 2919 Node *n = rpo_list[j-1];
duke@435 2920 if( !_nodes[n->_idx] ) // Skip dead nodes
duke@435 2921 continue;
duke@435 2922 if( get_loop(n) != loop ) { // Wrong loop nest
duke@435 2923 if( get_loop(n)->_head == n && // Found nested loop?
duke@435 2924 get_loop(n)->_parent == loop )
duke@435 2925 dump(get_loop(n),rpo_list.size(),rpo_list); // Print it nested-ly
duke@435 2926 continue;
duke@435 2927 }
duke@435 2928
duke@435 2929 // Dump controlling node
duke@435 2930 for( uint x = 0; x < loop->_nest; x++ )
duke@435 2931 tty->print(" ");
duke@435 2932 tty->print("C");
duke@435 2933 if( n == C->root() ) {
duke@435 2934 n->dump();
duke@435 2935 } else {
duke@435 2936 Node* cached_idom = idom_no_update(n);
duke@435 2937 Node *computed_idom = n->in(0);
duke@435 2938 if( n->is_Region() ) {
duke@435 2939 computed_idom = compute_idom(n);
duke@435 2940 // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
duke@435 2941 // any MultiBranch ctrl node), so apply a similar transform to
duke@435 2942 // the cached idom returned from idom_no_update.
duke@435 2943 cached_idom = find_non_split_ctrl(cached_idom);
duke@435 2944 }
duke@435 2945 tty->print(" ID:%d",computed_idom->_idx);
duke@435 2946 n->dump();
duke@435 2947 if( cached_idom != computed_idom ) {
duke@435 2948 tty->print_cr("*** BROKEN IDOM! Computed as: %d, cached as: %d",
duke@435 2949 computed_idom->_idx, cached_idom->_idx);
duke@435 2950 }
duke@435 2951 }
duke@435 2952 // Dump nodes it controls
duke@435 2953 for( uint k = 0; k < _nodes.Size(); k++ ) {
duke@435 2954 // (k < C->unique() && get_ctrl(find(k)) == n)
duke@435 2955 if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
duke@435 2956 Node *m = C->root()->find(k);
duke@435 2957 if( m && m->outcnt() > 0 ) {
duke@435 2958 if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
duke@435 2959 tty->print_cr("*** BROKEN CTRL ACCESSOR! _nodes[k] is %p, ctrl is %p",
duke@435 2960 _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
duke@435 2961 }
duke@435 2962 for( uint j = 0; j < loop->_nest; j++ )
duke@435 2963 tty->print(" ");
duke@435 2964 tty->print(" ");
duke@435 2965 m->dump();
duke@435 2966 }
duke@435 2967 }
duke@435 2968 }
duke@435 2969 }
duke@435 2970 }
duke@435 2971
duke@435 2972 // Collect a R-P-O for the whole CFG.
duke@435 2973 // Result list is in post-order (scan backwards for RPO)
duke@435 2974 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
duke@435 2975 stk.push(start, 0);
duke@435 2976 visited.set(start->_idx);
duke@435 2977
duke@435 2978 while (stk.is_nonempty()) {
duke@435 2979 Node* m = stk.node();
duke@435 2980 uint idx = stk.index();
duke@435 2981 if (idx < m->outcnt()) {
duke@435 2982 stk.set_index(idx + 1);
duke@435 2983 Node* n = m->raw_out(idx);
duke@435 2984 if (n->is_CFG() && !visited.test_set(n->_idx)) {
duke@435 2985 stk.push(n, 0);
duke@435 2986 }
duke@435 2987 } else {
duke@435 2988 rpo_list.push(m);
duke@435 2989 stk.pop();
duke@435 2990 }
duke@435 2991 }
duke@435 2992 }
duke@435 2993 #endif
duke@435 2994
duke@435 2995
duke@435 2996 //=============================================================================
duke@435 2997 //------------------------------LoopTreeIterator-----------------------------------
duke@435 2998
duke@435 2999 // Advance to next loop tree using a preorder, left-to-right traversal.
duke@435 3000 void LoopTreeIterator::next() {
duke@435 3001 assert(!done(), "must not be done.");
duke@435 3002 if (_curnt->_child != NULL) {
duke@435 3003 _curnt = _curnt->_child;
duke@435 3004 } else if (_curnt->_next != NULL) {
duke@435 3005 _curnt = _curnt->_next;
duke@435 3006 } else {
duke@435 3007 while (_curnt != _root && _curnt->_next == NULL) {
duke@435 3008 _curnt = _curnt->_parent;
duke@435 3009 }
duke@435 3010 if (_curnt == _root) {
duke@435 3011 _curnt = NULL;
duke@435 3012 assert(done(), "must be done.");
duke@435 3013 } else {
duke@435 3014 assert(_curnt->_next != NULL, "must be more to do");
duke@435 3015 _curnt = _curnt->_next;
duke@435 3016 }
duke@435 3017 }
duke@435 3018 }

mercurial