src/share/vm/opto/loopnode.cpp

Fri, 15 Jun 2012 01:25:19 -0700

author
kvn
date
Fri, 15 Jun 2012 01:25:19 -0700
changeset 3882
8c92982cbbc4
parent 3847
5e990493719e
child 4001
006050192a5a
permissions
-rw-r--r--

7119644: Increase superword's vector size up to 256 bits
Summary: Increase vector size up to 256-bits for YMM AVX registers on x86.
Reviewed-by: never, twisti, roland

duke@435 1 /*
brutisso@3489 2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "ci/ciMethodData.hpp"
stefank@2314 27 #include "compiler/compileLog.hpp"
stefank@2314 28 #include "libadt/vectset.hpp"
stefank@2314 29 #include "memory/allocation.inline.hpp"
stefank@2314 30 #include "opto/addnode.hpp"
stefank@2314 31 #include "opto/callnode.hpp"
stefank@2314 32 #include "opto/connode.hpp"
stefank@2314 33 #include "opto/divnode.hpp"
stefank@2314 34 #include "opto/idealGraphPrinter.hpp"
stefank@2314 35 #include "opto/loopnode.hpp"
stefank@2314 36 #include "opto/mulnode.hpp"
stefank@2314 37 #include "opto/rootnode.hpp"
stefank@2314 38 #include "opto/superword.hpp"
duke@435 39
duke@435 40 //=============================================================================
duke@435 41 //------------------------------is_loop_iv-------------------------------------
duke@435 42 // Determine if a node is Counted loop induction variable.
duke@435 43 // The method is declared in node.hpp.
duke@435 44 const Node* Node::is_loop_iv() const {
duke@435 45 if (this->is_Phi() && !this->as_Phi()->is_copy() &&
duke@435 46 this->as_Phi()->region()->is_CountedLoop() &&
duke@435 47 this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
duke@435 48 return this;
duke@435 49 } else {
duke@435 50 return NULL;
duke@435 51 }
duke@435 52 }
duke@435 53
duke@435 54 //=============================================================================
duke@435 55 //------------------------------dump_spec--------------------------------------
duke@435 56 // Dump special per-node info
duke@435 57 #ifndef PRODUCT
duke@435 58 void LoopNode::dump_spec(outputStream *st) const {
kvn@2665 59 if (is_inner_loop()) st->print( "inner " );
kvn@2665 60 if (is_partial_peel_loop()) st->print( "partial_peel " );
kvn@2665 61 if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
duke@435 62 }
duke@435 63 #endif
duke@435 64
kvn@2665 65 //------------------------------is_valid_counted_loop-------------------------
kvn@2665 66 bool LoopNode::is_valid_counted_loop() const {
kvn@2665 67 if (is_CountedLoop()) {
kvn@2665 68 CountedLoopNode* l = as_CountedLoop();
kvn@2665 69 CountedLoopEndNode* le = l->loopexit();
kvn@2665 70 if (le != NULL &&
kvn@2665 71 le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
kvn@2665 72 Node* phi = l->phi();
kvn@2665 73 Node* exit = le->proj_out(0 /* false */);
kvn@2665 74 if (exit != NULL && exit->Opcode() == Op_IfFalse &&
kvn@2665 75 phi != NULL && phi->is_Phi() &&
kvn@2665 76 phi->in(LoopNode::LoopBackControl) == l->incr() &&
kvn@2665 77 le->loopnode() == l && le->stride_is_con()) {
kvn@2665 78 return true;
kvn@2665 79 }
kvn@2665 80 }
kvn@2665 81 }
kvn@2665 82 return false;
kvn@2665 83 }
kvn@2665 84
duke@435 85 //------------------------------get_early_ctrl---------------------------------
duke@435 86 // Compute earliest legal control
duke@435 87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
duke@435 88 assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
duke@435 89 uint i;
duke@435 90 Node *early;
duke@435 91 if( n->in(0) ) {
duke@435 92 early = n->in(0);
duke@435 93 if( !early->is_CFG() ) // Might be a non-CFG multi-def
duke@435 94 early = get_ctrl(early); // So treat input as a straight data input
duke@435 95 i = 1;
duke@435 96 } else {
duke@435 97 early = get_ctrl(n->in(1));
duke@435 98 i = 2;
duke@435 99 }
duke@435 100 uint e_d = dom_depth(early);
duke@435 101 assert( early, "" );
duke@435 102 for( ; i < n->req(); i++ ) {
duke@435 103 Node *cin = get_ctrl(n->in(i));
duke@435 104 assert( cin, "" );
duke@435 105 // Keep deepest dominator depth
duke@435 106 uint c_d = dom_depth(cin);
duke@435 107 if( c_d > e_d ) { // Deeper guy?
duke@435 108 early = cin; // Keep deepest found so far
duke@435 109 e_d = c_d;
duke@435 110 } else if( c_d == e_d && // Same depth?
duke@435 111 early != cin ) { // If not equal, must use slower algorithm
duke@435 112 // If same depth but not equal, one _must_ dominate the other
duke@435 113 // and we want the deeper (i.e., dominated) guy.
duke@435 114 Node *n1 = early;
duke@435 115 Node *n2 = cin;
duke@435 116 while( 1 ) {
duke@435 117 n1 = idom(n1); // Walk up until break cycle
duke@435 118 n2 = idom(n2);
duke@435 119 if( n1 == cin || // Walked early up to cin
duke@435 120 dom_depth(n2) < c_d )
duke@435 121 break; // early is deeper; keep him
duke@435 122 if( n2 == early || // Walked cin up to early
duke@435 123 dom_depth(n1) < c_d ) {
duke@435 124 early = cin; // cin is deeper; keep him
duke@435 125 break;
duke@435 126 }
duke@435 127 }
duke@435 128 e_d = dom_depth(early); // Reset depth register cache
duke@435 129 }
duke@435 130 }
duke@435 131
duke@435 132 // Return earliest legal location
duke@435 133 assert(early == find_non_split_ctrl(early), "unexpected early control");
duke@435 134
duke@435 135 return early;
duke@435 136 }
duke@435 137
duke@435 138 //------------------------------set_early_ctrl---------------------------------
duke@435 139 // Set earliest legal control
duke@435 140 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
duke@435 141 Node *early = get_early_ctrl(n);
duke@435 142
duke@435 143 // Record earliest legal location
duke@435 144 set_ctrl(n, early);
duke@435 145 }
duke@435 146
duke@435 147 //------------------------------set_subtree_ctrl-------------------------------
duke@435 148 // set missing _ctrl entries on new nodes
duke@435 149 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
duke@435 150 // Already set? Get out.
duke@435 151 if( _nodes[n->_idx] ) return;
duke@435 152 // Recursively set _nodes array to indicate where the Node goes
duke@435 153 uint i;
duke@435 154 for( i = 0; i < n->req(); ++i ) {
duke@435 155 Node *m = n->in(i);
duke@435 156 if( m && m != C->root() )
duke@435 157 set_subtree_ctrl( m );
duke@435 158 }
duke@435 159
duke@435 160 // Fixup self
duke@435 161 set_early_ctrl( n );
duke@435 162 }
duke@435 163
duke@435 164 //------------------------------is_counted_loop--------------------------------
kvn@2665 165 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
duke@435 166 PhaseGVN *gvn = &_igvn;
duke@435 167
duke@435 168 // Counted loop head must be a good RegionNode with only 3 not NULL
duke@435 169 // control input edges: Self, Entry, LoopBack.
kvn@2665 170 if (x->in(LoopNode::Self) == NULL || x->req() != 3)
kvn@2665 171 return false;
duke@435 172
duke@435 173 Node *init_control = x->in(LoopNode::EntryControl);
duke@435 174 Node *back_control = x->in(LoopNode::LoopBackControl);
kvn@2665 175 if (init_control == NULL || back_control == NULL) // Partially dead
kvn@2665 176 return false;
duke@435 177 // Must also check for TOP when looking for a dead loop
kvn@2665 178 if (init_control->is_top() || back_control->is_top())
kvn@2665 179 return false;
duke@435 180
duke@435 181 // Allow funny placement of Safepoint
kvn@2665 182 if (back_control->Opcode() == Op_SafePoint)
duke@435 183 back_control = back_control->in(TypeFunc::Control);
duke@435 184
duke@435 185 // Controlling test for loop
duke@435 186 Node *iftrue = back_control;
duke@435 187 uint iftrue_op = iftrue->Opcode();
kvn@2665 188 if (iftrue_op != Op_IfTrue &&
kvn@2665 189 iftrue_op != Op_IfFalse)
duke@435 190 // I have a weird back-control. Probably the loop-exit test is in
duke@435 191 // the middle of the loop and I am looking at some trailing control-flow
duke@435 192 // merge point. To fix this I would have to partially peel the loop.
kvn@2665 193 return false; // Obscure back-control
duke@435 194
duke@435 195 // Get boolean guarding loop-back test
duke@435 196 Node *iff = iftrue->in(0);
kvn@2665 197 if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
kvn@2665 198 return false;
duke@435 199 BoolNode *test = iff->in(1)->as_Bool();
duke@435 200 BoolTest::mask bt = test->_test._test;
duke@435 201 float cl_prob = iff->as_If()->_prob;
kvn@2665 202 if (iftrue_op == Op_IfFalse) {
duke@435 203 bt = BoolTest(bt).negate();
duke@435 204 cl_prob = 1.0 - cl_prob;
duke@435 205 }
duke@435 206 // Get backedge compare
duke@435 207 Node *cmp = test->in(1);
duke@435 208 int cmp_op = cmp->Opcode();
kvn@2877 209 if (cmp_op != Op_CmpI)
kvn@2665 210 return false; // Avoid pointer & float compares
duke@435 211
duke@435 212 // Find the trip-counter increment & limit. Limit must be loop invariant.
duke@435 213 Node *incr = cmp->in(1);
duke@435 214 Node *limit = cmp->in(2);
duke@435 215
duke@435 216 // ---------
duke@435 217 // need 'loop()' test to tell if limit is loop invariant
duke@435 218 // ---------
duke@435 219
kvn@2665 220 if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
kvn@2665 221 Node *tmp = incr; // Then reverse order into the CmpI
duke@435 222 incr = limit;
duke@435 223 limit = tmp;
duke@435 224 bt = BoolTest(bt).commute(); // And commute the exit test
duke@435 225 }
kvn@2665 226 if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
kvn@2665 227 return false;
kvn@2665 228 if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
kvn@2665 229 return false;
duke@435 230
kvn@2665 231 Node* phi_incr = NULL;
duke@435 232 // Trip-counter increment must be commutative & associative.
kvn@2665 233 if (incr->is_Phi()) {
kvn@2665 234 if (incr->as_Phi()->region() != x || incr->req() != 3)
kvn@2665 235 return false; // Not simple trip counter expression
kvn@2665 236 phi_incr = incr;
kvn@2665 237 incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
kvn@2665 238 if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
kvn@2665 239 return false;
duke@435 240 }
kvn@2665 241
duke@435 242 Node* trunc1 = NULL;
duke@435 243 Node* trunc2 = NULL;
duke@435 244 const TypeInt* iv_trunc_t = NULL;
duke@435 245 if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
kvn@2665 246 return false; // Funny increment opcode
duke@435 247 }
kvn@2665 248 assert(incr->Opcode() == Op_AddI, "wrong increment code");
duke@435 249
duke@435 250 // Get merge point
duke@435 251 Node *xphi = incr->in(1);
duke@435 252 Node *stride = incr->in(2);
kvn@2665 253 if (!stride->is_Con()) { // Oops, swap these
kvn@2665 254 if (!xphi->is_Con()) // Is the other guy a constant?
kvn@2665 255 return false; // Nope, unknown stride, bail out
duke@435 256 Node *tmp = xphi; // 'incr' is commutative, so ok to swap
duke@435 257 xphi = stride;
duke@435 258 stride = tmp;
duke@435 259 }
kvn@2665 260 // Stride must be constant
kvn@2665 261 int stride_con = stride->get_int();
kvn@2877 262 if (stride_con == 0)
kvn@2877 263 return false; // missed some peephole opt
kvn@2665 264
kvn@2665 265 if (!xphi->is_Phi())
kvn@2665 266 return false; // Too much math on the trip counter
kvn@2665 267 if (phi_incr != NULL && phi_incr != xphi)
kvn@2665 268 return false;
duke@435 269 PhiNode *phi = xphi->as_Phi();
duke@435 270
duke@435 271 // Phi must be of loop header; backedge must wrap to increment
kvn@2665 272 if (phi->region() != x)
kvn@2665 273 return false;
kvn@2665 274 if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
kvn@2665 275 trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
kvn@2665 276 return false;
duke@435 277 }
duke@435 278 Node *init_trip = phi->in(LoopNode::EntryControl);
duke@435 279
duke@435 280 // If iv trunc type is smaller than int, check for possible wrap.
duke@435 281 if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
duke@435 282 assert(trunc1 != NULL, "must have found some truncation");
duke@435 283
duke@435 284 // Get a better type for the phi (filtered thru if's)
duke@435 285 const TypeInt* phi_ft = filtered_type(phi);
duke@435 286
duke@435 287 // Can iv take on a value that will wrap?
duke@435 288 //
duke@435 289 // Ensure iv's limit is not within "stride" of the wrap value.
duke@435 290 //
duke@435 291 // Example for "short" type
duke@435 292 // Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
duke@435 293 // If the stride is +10, then the last value of the induction
duke@435 294 // variable before the increment (phi_ft->_hi) must be
duke@435 295 // <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
duke@435 296 // ensure no truncation occurs after the increment.
duke@435 297
duke@435 298 if (stride_con > 0) {
duke@435 299 if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
duke@435 300 iv_trunc_t->_lo > phi_ft->_lo) {
kvn@2665 301 return false; // truncation may occur
duke@435 302 }
duke@435 303 } else if (stride_con < 0) {
duke@435 304 if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
duke@435 305 iv_trunc_t->_hi < phi_ft->_hi) {
kvn@2665 306 return false; // truncation may occur
duke@435 307 }
duke@435 308 }
duke@435 309 // No possibility of wrap so truncation can be discarded
duke@435 310 // Promote iv type to Int
duke@435 311 } else {
duke@435 312 assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
duke@435 313 }
duke@435 314
kvn@2665 315 // If the condition is inverted and we will be rolling
kvn@2665 316 // through MININT to MAXINT, then bail out.
kvn@2665 317 if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
kvn@2665 318 // Odd stride
kvn@2665 319 bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
kvn@2665 320 // Count down loop rolls through MAXINT
kvn@2665 321 (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
kvn@2665 322 // Count up loop rolls through MININT
kvn@2877 323 (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0) {
kvn@2665 324 return false; // Bail out
kvn@2665 325 }
kvn@2665 326
kvn@2665 327 const TypeInt* init_t = gvn->type(init_trip)->is_int();
kvn@2665 328 const TypeInt* limit_t = gvn->type(limit)->is_int();
kvn@2665 329
kvn@2665 330 if (stride_con > 0) {
kvn@2665 331 long init_p = (long)init_t->_lo + stride_con;
kvn@2665 332 if (init_p > (long)max_jint || init_p > (long)limit_t->_hi)
kvn@2665 333 return false; // cyclic loop or this loop trips only once
kvn@2665 334 } else {
kvn@2665 335 long init_p = (long)init_t->_hi + stride_con;
kvn@2665 336 if (init_p < (long)min_jint || init_p < (long)limit_t->_lo)
kvn@2665 337 return false; // cyclic loop or this loop trips only once
kvn@2665 338 }
kvn@2665 339
duke@435 340 // =================================================
duke@435 341 // ---- SUCCESS! Found A Trip-Counted Loop! -----
duke@435 342 //
kvn@2665 343 assert(x->Opcode() == Op_Loop, "regular loops only");
duke@435 344 C->print_method("Before CountedLoop", 3);
kvn@2877 345
kvn@2877 346 Node *hook = new (C, 6) Node(6);
kvn@2877 347
kvn@2877 348 if (LoopLimitCheck) {
kvn@2877 349
kvn@2877 350 // ===================================================
kvn@2877 351 // Generate loop limit check to avoid integer overflow
kvn@2877 352 // in cases like next (cyclic loops):
kvn@2877 353 //
kvn@2877 354 // for (i=0; i <= max_jint; i++) {}
kvn@2877 355 // for (i=0; i < max_jint; i+=2) {}
kvn@2877 356 //
kvn@2877 357 //
kvn@2877 358 // Limit check predicate depends on the loop test:
kvn@2877 359 //
kvn@2877 360 // for(;i != limit; i++) --> limit <= (max_jint)
kvn@2877 361 // for(;i < limit; i+=stride) --> limit <= (max_jint - stride + 1)
kvn@2877 362 // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride )
kvn@2877 363 //
kvn@2877 364
kvn@2877 365 // Check if limit is excluded to do more precise int overflow check.
kvn@2877 366 bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
kvn@2877 367 int stride_m = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
kvn@2877 368
kvn@2877 369 // If compare points directly to the phi we need to adjust
kvn@2877 370 // the compare so that it points to the incr. Limit have
kvn@2877 371 // to be adjusted to keep trip count the same and the
kvn@2877 372 // adjusted limit should be checked for int overflow.
kvn@2877 373 if (phi_incr != NULL) {
kvn@2877 374 stride_m += stride_con;
kvn@2877 375 }
kvn@2877 376
kvn@2877 377 if (limit->is_Con()) {
kvn@2877 378 int limit_con = limit->get_int();
kvn@2877 379 if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
kvn@2877 380 (stride_con < 0 && limit_con < (min_jint - stride_m))) {
kvn@2877 381 // Bailout: it could be integer overflow.
kvn@2877 382 return false;
kvn@2877 383 }
kvn@2877 384 } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
kvn@2877 385 (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
kvn@2877 386 // Limit's type may satisfy the condition, for example,
kvn@2877 387 // when it is an array length.
kvn@2877 388 } else {
kvn@2877 389 // Generate loop's limit check.
kvn@2877 390 // Loop limit check predicate should be near the loop.
kvn@2877 391 ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
kvn@2877 392 if (!limit_check_proj) {
kvn@2877 393 // The limit check predicate is not generated if this method trapped here before.
kvn@2877 394 #ifdef ASSERT
kvn@2877 395 if (TraceLoopLimitCheck) {
kvn@2877 396 tty->print("missing loop limit check:");
kvn@2877 397 loop->dump_head();
kvn@2877 398 x->dump(1);
kvn@2877 399 }
kvn@2877 400 #endif
kvn@2877 401 return false;
kvn@2877 402 }
kvn@2877 403
kvn@2877 404 IfNode* check_iff = limit_check_proj->in(0)->as_If();
kvn@2877 405 Node* cmp_limit;
kvn@2877 406 Node* bol;
kvn@2877 407
kvn@2877 408 if (stride_con > 0) {
kvn@2877 409 cmp_limit = new (C, 3) CmpINode(limit, _igvn.intcon(max_jint - stride_m));
kvn@2877 410 bol = new (C, 2) BoolNode(cmp_limit, BoolTest::le);
kvn@2877 411 } else {
kvn@2877 412 cmp_limit = new (C, 3) CmpINode(limit, _igvn.intcon(min_jint - stride_m));
kvn@2877 413 bol = new (C, 2) BoolNode(cmp_limit, BoolTest::ge);
kvn@2877 414 }
kvn@2877 415 cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
kvn@2877 416 bol = _igvn.register_new_node_with_optimizer(bol);
kvn@2877 417 set_subtree_ctrl(bol);
kvn@2877 418
kvn@2877 419 // Replace condition in original predicate but preserve Opaque node
kvn@2877 420 // so that previous predicates could be found.
kvn@2877 421 assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
kvn@2877 422 check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
kvn@2877 423 Node* opq = check_iff->in(1)->in(1);
kvn@2877 424 _igvn.hash_delete(opq);
kvn@2877 425 opq->set_req(1, bol);
kvn@2877 426 // Update ctrl.
kvn@2877 427 set_ctrl(opq, check_iff->in(0));
kvn@2877 428 set_ctrl(check_iff->in(1), check_iff->in(0));
kvn@2877 429
kvn@2727 430 #ifndef PRODUCT
kvn@2877 431 // report that the loop predication has been actually performed
kvn@2877 432 // for this loop
kvn@2877 433 if (TraceLoopLimitCheck) {
kvn@2877 434 tty->print_cr("Counted Loop Limit Check generated:");
kvn@2877 435 debug_only( bol->dump(2); )
kvn@2877 436 }
kvn@2877 437 #endif
kvn@2727 438 }
kvn@2877 439
kvn@2877 440 if (phi_incr != NULL) {
kvn@2877 441 // If compare points directly to the phi we need to adjust
kvn@2877 442 // the compare so that it points to the incr. Limit have
kvn@2877 443 // to be adjusted to keep trip count the same and we
kvn@2877 444 // should avoid int overflow.
kvn@2877 445 //
kvn@2877 446 // i = init; do {} while(i++ < limit);
kvn@2877 447 // is converted to
kvn@2877 448 // i = init; do {} while(++i < limit+1);
kvn@2877 449 //
kvn@2877 450 limit = gvn->transform(new (C, 3) AddINode(limit, stride));
kvn@2877 451 }
kvn@2877 452
kvn@2877 453 // Now we need to canonicalize loop condition.
kvn@2877 454 if (bt == BoolTest::ne) {
kvn@2877 455 assert(stride_con == 1 || stride_con == -1, "simple increment only");
kvn@2979 456 // 'ne' can be replaced with 'lt' only when init < limit.
kvn@2979 457 if (stride_con > 0 && init_t->_hi < limit_t->_lo)
kvn@2979 458 bt = BoolTest::lt;
kvn@2979 459 // 'ne' can be replaced with 'gt' only when init > limit.
kvn@2979 460 if (stride_con < 0 && init_t->_lo > limit_t->_hi)
kvn@2979 461 bt = BoolTest::gt;
kvn@2877 462 }
kvn@2877 463
kvn@2877 464 if (incl_limit) {
kvn@2877 465 // The limit check guaranties that 'limit <= (max_jint - stride)' so
kvn@2877 466 // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
kvn@2877 467 //
kvn@2877 468 Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
kvn@2877 469 limit = gvn->transform(new (C, 3) AddINode(limit, one));
kvn@2877 470 if (bt == BoolTest::le)
kvn@2877 471 bt = BoolTest::lt;
kvn@2877 472 else if (bt == BoolTest::ge)
kvn@2877 473 bt = BoolTest::gt;
kvn@2877 474 else
kvn@2877 475 ShouldNotReachHere();
kvn@2877 476 }
kvn@2877 477 set_subtree_ctrl( limit );
kvn@2877 478
kvn@2877 479 } else { // LoopLimitCheck
kvn@2877 480
duke@435 481 // If compare points to incr, we are ok. Otherwise the compare
duke@435 482 // can directly point to the phi; in this case adjust the compare so that
twisti@1040 483 // it points to the incr by adjusting the limit.
kvn@2665 484 if (cmp->in(1) == phi || cmp->in(2) == phi)
duke@435 485 limit = gvn->transform(new (C, 3) AddINode(limit,stride));
duke@435 486
duke@435 487 // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
duke@435 488 // Final value for iterator should be: trip_count * stride + init_trip.
duke@435 489 Node *one_p = gvn->intcon( 1);
duke@435 490 Node *one_m = gvn->intcon(-1);
duke@435 491
duke@435 492 Node *trip_count = NULL;
duke@435 493 switch( bt ) {
duke@435 494 case BoolTest::eq:
kvn@2665 495 ShouldNotReachHere();
duke@435 496 case BoolTest::ne: // Ahh, the case we desire
kvn@2665 497 if (stride_con == 1)
duke@435 498 trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
kvn@2665 499 else if (stride_con == -1)
duke@435 500 trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
duke@435 501 else
kvn@2665 502 ShouldNotReachHere();
kvn@2665 503 set_subtree_ctrl(trip_count);
duke@435 504 //_loop.map(trip_count->_idx,loop(limit));
duke@435 505 break;
duke@435 506 case BoolTest::le: // Maybe convert to '<' case
duke@435 507 limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
duke@435 508 set_subtree_ctrl( limit );
duke@435 509 hook->init_req(4, limit);
duke@435 510
duke@435 511 bt = BoolTest::lt;
duke@435 512 // Make the new limit be in the same loop nest as the old limit
duke@435 513 //_loop.map(limit->_idx,limit_loop);
duke@435 514 // Fall into next case
duke@435 515 case BoolTest::lt: { // Maybe convert to '!=' case
kvn@2665 516 if (stride_con < 0) // Count down loop rolls through MAXINT
kvn@2665 517 ShouldNotReachHere();
duke@435 518 Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
duke@435 519 set_subtree_ctrl( range );
duke@435 520 hook->init_req(0, range);
duke@435 521
duke@435 522 Node *bias = gvn->transform(new (C, 3) AddINode(range,stride));
duke@435 523 set_subtree_ctrl( bias );
duke@435 524 hook->init_req(1, bias);
duke@435 525
duke@435 526 Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
duke@435 527 set_subtree_ctrl( bias1 );
duke@435 528 hook->init_req(2, bias1);
duke@435 529
duke@435 530 trip_count = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
duke@435 531 set_subtree_ctrl( trip_count );
duke@435 532 hook->init_req(3, trip_count);
duke@435 533 break;
duke@435 534 }
duke@435 535
duke@435 536 case BoolTest::ge: // Maybe convert to '>' case
duke@435 537 limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
duke@435 538 set_subtree_ctrl( limit );
duke@435 539 hook->init_req(4 ,limit);
duke@435 540
duke@435 541 bt = BoolTest::gt;
duke@435 542 // Make the new limit be in the same loop nest as the old limit
duke@435 543 //_loop.map(limit->_idx,limit_loop);
duke@435 544 // Fall into next case
duke@435 545 case BoolTest::gt: { // Maybe convert to '!=' case
kvn@2665 546 if (stride_con > 0) // count up loop rolls through MININT
kvn@2665 547 ShouldNotReachHere();
duke@435 548 Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
duke@435 549 set_subtree_ctrl( range );
duke@435 550 hook->init_req(0, range);
duke@435 551
duke@435 552 Node *bias = gvn->transform(new (C, 3) AddINode(range,stride));
duke@435 553 set_subtree_ctrl( bias );
duke@435 554 hook->init_req(1, bias);
duke@435 555
duke@435 556 Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
duke@435 557 set_subtree_ctrl( bias1 );
duke@435 558 hook->init_req(2, bias1);
duke@435 559
duke@435 560 trip_count = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
duke@435 561 set_subtree_ctrl( trip_count );
duke@435 562 hook->init_req(3, trip_count);
duke@435 563 break;
duke@435 564 }
kvn@2665 565 } // switch( bt )
duke@435 566
duke@435 567 Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
duke@435 568 set_subtree_ctrl( span );
duke@435 569 hook->init_req(5, span);
duke@435 570
duke@435 571 limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
duke@435 572 set_subtree_ctrl( limit );
duke@435 573
kvn@2877 574 } // LoopLimitCheck
kvn@2877 575
kvn@2665 576 // Check for SafePoint on backedge and remove
kvn@2665 577 Node *sfpt = x->in(LoopNode::LoopBackControl);
kvn@2665 578 if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
kvn@2665 579 lazy_replace( sfpt, iftrue );
kvn@2665 580 loop->_tail = iftrue;
kvn@2665 581 }
kvn@2665 582
duke@435 583 // Build a canonical trip test.
duke@435 584 // Clone code, as old values may be in use.
duke@435 585 incr = incr->clone();
kvn@3135 586 incr->set_req(1,phi);
duke@435 587 incr->set_req(2,stride);
duke@435 588 incr = _igvn.register_new_node_with_optimizer(incr);
duke@435 589 set_early_ctrl( incr );
kvn@3135 590 _igvn.hash_delete(phi);
kvn@3135 591 phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
kvn@3135 592
kvn@3135 593 // If phi type is more restrictive than Int, raise to
kvn@3135 594 // Int to prevent (almost) infinite recursion in igvn
kvn@3135 595 // which can only handle integer types for constants or minint..maxint.
kvn@3135 596 if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
kvn@3135 597 Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
kvn@3135 598 nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
kvn@3135 599 nphi = _igvn.register_new_node_with_optimizer(nphi);
kvn@3135 600 set_ctrl(nphi, get_ctrl(phi));
kvn@3135 601 _igvn.replace_node(phi, nphi);
kvn@3135 602 phi = nphi->as_Phi();
kvn@3135 603 }
duke@435 604 cmp = cmp->clone();
duke@435 605 cmp->set_req(1,incr);
duke@435 606 cmp->set_req(2,limit);
duke@435 607 cmp = _igvn.register_new_node_with_optimizer(cmp);
duke@435 608 set_ctrl(cmp, iff->in(0));
duke@435 609
kvn@2665 610 test = test->clone()->as_Bool();
kvn@2665 611 (*(BoolTest*)&test->_test)._test = bt;
duke@435 612 test->set_req(1,cmp);
duke@435 613 _igvn.register_new_node_with_optimizer(test);
duke@435 614 set_ctrl(test, iff->in(0));
duke@435 615
duke@435 616 // Replace the old IfNode with a new LoopEndNode
kvn@2665 617 Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
duke@435 618 IfNode *le = lex->as_If();
duke@435 619 uint dd = dom_depth(iff);
duke@435 620 set_idom(le, le->in(0), dd); // Update dominance for loop exit
duke@435 621 set_loop(le, loop);
duke@435 622
duke@435 623 // Get the loop-exit control
kvn@2665 624 Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
duke@435 625
duke@435 626 // Need to swap loop-exit and loop-back control?
kvn@2665 627 if (iftrue_op == Op_IfFalse) {
duke@435 628 Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
duke@435 629 Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
duke@435 630
duke@435 631 loop->_tail = back_control = ift2;
duke@435 632 set_loop(ift2, loop);
kvn@2665 633 set_loop(iff2, get_loop(iffalse));
duke@435 634
duke@435 635 // Lazy update of 'get_ctrl' mechanism.
kvn@2665 636 lazy_replace_proj( iffalse, iff2 );
kvn@2665 637 lazy_replace_proj( iftrue, ift2 );
duke@435 638
duke@435 639 // Swap names
kvn@2665 640 iffalse = iff2;
kvn@2665 641 iftrue = ift2;
duke@435 642 } else {
kvn@2665 643 _igvn.hash_delete(iffalse);
duke@435 644 _igvn.hash_delete(iftrue);
kvn@2665 645 iffalse->set_req_X( 0, le, &_igvn );
kvn@2665 646 iftrue ->set_req_X( 0, le, &_igvn );
duke@435 647 }
duke@435 648
kvn@2665 649 set_idom(iftrue, le, dd+1);
kvn@2665 650 set_idom(iffalse, le, dd+1);
kvn@2665 651 assert(iff->outcnt() == 0, "should be dead now");
kvn@2665 652 lazy_replace( iff, le ); // fix 'get_ctrl'
duke@435 653
duke@435 654 // Now setup a new CountedLoopNode to replace the existing LoopNode
duke@435 655 CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
kvn@2665 656 l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
duke@435 657 // The following assert is approximately true, and defines the intention
duke@435 658 // of can_be_counted_loop. It fails, however, because phase->type
duke@435 659 // is not yet initialized for this loop and its parts.
duke@435 660 //assert(l->can_be_counted_loop(this), "sanity");
duke@435 661 _igvn.register_new_node_with_optimizer(l);
duke@435 662 set_loop(l, loop);
duke@435 663 loop->_head = l;
duke@435 664 // Fix all data nodes placed at the old loop head.
duke@435 665 // Uses the lazy-update mechanism of 'get_ctrl'.
duke@435 666 lazy_replace( x, l );
duke@435 667 set_idom(l, init_control, dom_depth(x));
duke@435 668
twisti@1040 669 // Check for immediately preceding SafePoint and remove
duke@435 670 Node *sfpt2 = le->in(0);
kvn@2877 671 if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
duke@435 672 lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
duke@435 673
duke@435 674 // Free up intermediate goo
duke@435 675 _igvn.remove_dead_node(hook);
duke@435 676
kvn@2665 677 #ifdef ASSERT
kvn@2665 678 assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
kvn@2665 679 assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
kvn@2665 680 #endif
kvn@2877 681 #ifndef PRODUCT
kvn@2877 682 if (TraceLoopOpts) {
kvn@2877 683 tty->print("Counted ");
kvn@2877 684 loop->dump_head();
kvn@2877 685 }
kvn@2877 686 #endif
kvn@2665 687
duke@435 688 C->print_method("After CountedLoop", 3);
duke@435 689
kvn@2665 690 return true;
duke@435 691 }
duke@435 692
kvn@2877 693 //----------------------exact_limit-------------------------------------------
kvn@2877 694 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
kvn@2877 695 assert(loop->_head->is_CountedLoop(), "");
kvn@2877 696 CountedLoopNode *cl = loop->_head->as_CountedLoop();
kvn@3048 697 assert(cl->is_valid_counted_loop(), "");
kvn@2877 698
kvn@2877 699 if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
kvn@2877 700 cl->limit()->Opcode() == Op_LoopLimit) {
kvn@2877 701 // Old code has exact limit (it could be incorrect in case of int overflow).
kvn@2877 702 // Loop limit is exact with stride == 1. And loop may already have exact limit.
kvn@2877 703 return cl->limit();
kvn@2877 704 }
kvn@2877 705 Node *limit = NULL;
kvn@2877 706 #ifdef ASSERT
kvn@2877 707 BoolTest::mask bt = cl->loopexit()->test_trip();
kvn@2877 708 assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
kvn@2877 709 #endif
kvn@2877 710 if (cl->has_exact_trip_count()) {
kvn@2877 711 // Simple case: loop has constant boundaries.
kvn@2877 712 // Use longs to avoid integer overflow.
kvn@2877 713 int stride_con = cl->stride_con();
kvn@2877 714 long init_con = cl->init_trip()->get_int();
kvn@2877 715 long limit_con = cl->limit()->get_int();
kvn@2877 716 julong trip_cnt = cl->trip_count();
kvn@2877 717 long final_con = init_con + trip_cnt*stride_con;
kvn@2877 718 int final_int = (int)final_con;
kvn@2877 719 // The final value should be in integer range since the loop
kvn@2877 720 // is counted and the limit was checked for overflow.
kvn@2877 721 assert(final_con == (long)final_int, "final value should be integer");
kvn@2877 722 limit = _igvn.intcon(final_int);
kvn@2877 723 } else {
kvn@2877 724 // Create new LoopLimit node to get exact limit (final iv value).
kvn@2877 725 limit = new (C, 4) LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
kvn@2877 726 register_new_node(limit, cl->in(LoopNode::EntryControl));
kvn@2877 727 }
kvn@2877 728 assert(limit != NULL, "sanity");
kvn@2877 729 return limit;
kvn@2877 730 }
duke@435 731
duke@435 732 //------------------------------Ideal------------------------------------------
duke@435 733 // Return a node which is more "ideal" than the current node.
duke@435 734 // Attempt to convert into a counted-loop.
duke@435 735 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 736 if (!can_be_counted_loop(phase)) {
duke@435 737 phase->C->set_major_progress();
duke@435 738 }
duke@435 739 return RegionNode::Ideal(phase, can_reshape);
duke@435 740 }
duke@435 741
duke@435 742
duke@435 743 //=============================================================================
duke@435 744 //------------------------------Ideal------------------------------------------
duke@435 745 // Return a node which is more "ideal" than the current node.
duke@435 746 // Attempt to convert into a counted-loop.
duke@435 747 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 748 return RegionNode::Ideal(phase, can_reshape);
duke@435 749 }
duke@435 750
duke@435 751 //------------------------------dump_spec--------------------------------------
duke@435 752 // Dump special per-node info
duke@435 753 #ifndef PRODUCT
duke@435 754 void CountedLoopNode::dump_spec(outputStream *st) const {
duke@435 755 LoopNode::dump_spec(st);
kvn@2877 756 if (stride_is_con()) {
duke@435 757 st->print("stride: %d ",stride_con());
duke@435 758 }
kvn@2877 759 if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
kvn@2877 760 if (is_main_loop()) st->print("main of N%d", _idx);
kvn@2877 761 if (is_post_loop()) st->print("post of N%d", _main_idx);
duke@435 762 }
duke@435 763 #endif
duke@435 764
duke@435 765 //=============================================================================
duke@435 766 int CountedLoopEndNode::stride_con() const {
duke@435 767 return stride()->bottom_type()->is_int()->get_con();
duke@435 768 }
duke@435 769
kvn@2877 770 //=============================================================================
kvn@2877 771 //------------------------------Value-----------------------------------------
kvn@2877 772 const Type *LoopLimitNode::Value( PhaseTransform *phase ) const {
kvn@2877 773 const Type* init_t = phase->type(in(Init));
kvn@2877 774 const Type* limit_t = phase->type(in(Limit));
kvn@2877 775 const Type* stride_t = phase->type(in(Stride));
kvn@2877 776 // Either input is TOP ==> the result is TOP
kvn@2877 777 if (init_t == Type::TOP) return Type::TOP;
kvn@2877 778 if (limit_t == Type::TOP) return Type::TOP;
kvn@2877 779 if (stride_t == Type::TOP) return Type::TOP;
kvn@2877 780
kvn@2877 781 int stride_con = stride_t->is_int()->get_con();
kvn@2877 782 if (stride_con == 1)
kvn@2877 783 return NULL; // Identity
kvn@2877 784
kvn@2877 785 if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
kvn@2877 786 // Use longs to avoid integer overflow.
kvn@2877 787 long init_con = init_t->is_int()->get_con();
kvn@2877 788 long limit_con = limit_t->is_int()->get_con();
kvn@2877 789 int stride_m = stride_con - (stride_con > 0 ? 1 : -1);
kvn@2877 790 long trip_count = (limit_con - init_con + stride_m)/stride_con;
kvn@2877 791 long final_con = init_con + stride_con*trip_count;
kvn@2877 792 int final_int = (int)final_con;
kvn@2877 793 // The final value should be in integer range since the loop
kvn@2877 794 // is counted and the limit was checked for overflow.
kvn@2877 795 assert(final_con == (long)final_int, "final value should be integer");
kvn@2877 796 return TypeInt::make(final_int);
kvn@2877 797 }
kvn@2877 798
kvn@2877 799 return bottom_type(); // TypeInt::INT
kvn@2877 800 }
kvn@2877 801
kvn@2877 802 //------------------------------Ideal------------------------------------------
kvn@2877 803 // Return a node which is more "ideal" than the current node.
kvn@2877 804 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@2877 805 if (phase->type(in(Init)) == Type::TOP ||
kvn@2877 806 phase->type(in(Limit)) == Type::TOP ||
kvn@2877 807 phase->type(in(Stride)) == Type::TOP)
kvn@2877 808 return NULL; // Dead
kvn@2877 809
kvn@2877 810 int stride_con = phase->type(in(Stride))->is_int()->get_con();
kvn@2877 811 if (stride_con == 1)
kvn@2877 812 return NULL; // Identity
kvn@2877 813
kvn@2877 814 if (in(Init)->is_Con() && in(Limit)->is_Con())
kvn@2877 815 return NULL; // Value
kvn@2877 816
kvn@2877 817 // Delay following optimizations until all loop optimizations
kvn@2877 818 // done to keep Ideal graph simple.
kvn@2877 819 if (!can_reshape || phase->C->major_progress())
kvn@2877 820 return NULL;
kvn@2877 821
kvn@2877 822 const TypeInt* init_t = phase->type(in(Init) )->is_int();
kvn@2877 823 const TypeInt* limit_t = phase->type(in(Limit))->is_int();
kvn@2877 824 int stride_p;
kvn@2877 825 long lim, ini;
kvn@2877 826 julong max;
kvn@2877 827 if (stride_con > 0) {
kvn@2877 828 stride_p = stride_con;
kvn@2877 829 lim = limit_t->_hi;
kvn@2877 830 ini = init_t->_lo;
kvn@2877 831 max = (julong)max_jint;
kvn@2877 832 } else {
kvn@2877 833 stride_p = -stride_con;
kvn@2877 834 lim = init_t->_hi;
kvn@2877 835 ini = limit_t->_lo;
kvn@2877 836 max = (julong)min_jint;
kvn@2877 837 }
kvn@2877 838 julong range = lim - ini + stride_p;
kvn@2877 839 if (range <= max) {
kvn@2877 840 // Convert to integer expression if it is not overflow.
kvn@2877 841 Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
kvn@2877 842 Node *range = phase->transform(new (phase->C, 3) SubINode(in(Limit), in(Init)));
kvn@2877 843 Node *bias = phase->transform(new (phase->C, 3) AddINode(range, stride_m));
kvn@2877 844 Node *trip = phase->transform(new (phase->C, 3) DivINode(0, bias, in(Stride)));
kvn@2877 845 Node *span = phase->transform(new (phase->C, 3) MulINode(trip, in(Stride)));
kvn@2877 846 return new (phase->C, 3) AddINode(span, in(Init)); // exact limit
kvn@2877 847 }
kvn@2877 848
kvn@2877 849 if (is_power_of_2(stride_p) || // divisor is 2^n
kvn@2877 850 !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
kvn@2877 851 // Convert to long expression to avoid integer overflow
kvn@2877 852 // and let igvn optimizer convert this division.
kvn@2877 853 //
kvn@2877 854 Node* init = phase->transform( new (phase->C, 2) ConvI2LNode(in(Init)));
kvn@2877 855 Node* limit = phase->transform( new (phase->C, 2) ConvI2LNode(in(Limit)));
kvn@2877 856 Node* stride = phase->longcon(stride_con);
kvn@2877 857 Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
kvn@2877 858
kvn@2877 859 Node *range = phase->transform(new (phase->C, 3) SubLNode(limit, init));
kvn@2877 860 Node *bias = phase->transform(new (phase->C, 3) AddLNode(range, stride_m));
kvn@2877 861 Node *span;
kvn@2877 862 if (stride_con > 0 && is_power_of_2(stride_p)) {
kvn@2877 863 // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
kvn@2877 864 // and avoid generating rounding for division. Zero trip guard should
kvn@2877 865 // guarantee that init < limit but sometimes the guard is missing and
kvn@2877 866 // we can get situation when init > limit. Note, for the empty loop
kvn@2877 867 // optimization zero trip guard is generated explicitly which leaves
kvn@2877 868 // only RCE predicate where exact limit is used and the predicate
kvn@2877 869 // will simply fail forcing recompilation.
kvn@2877 870 Node* neg_stride = phase->longcon(-stride_con);
kvn@2877 871 span = phase->transform(new (phase->C, 3) AndLNode(bias, neg_stride));
kvn@2877 872 } else {
kvn@2877 873 Node *trip = phase->transform(new (phase->C, 3) DivLNode(0, bias, stride));
kvn@2877 874 span = phase->transform(new (phase->C, 3) MulLNode(trip, stride));
kvn@2877 875 }
kvn@2877 876 // Convert back to int
kvn@2877 877 Node *span_int = phase->transform(new (phase->C, 2) ConvL2INode(span));
kvn@2877 878 return new (phase->C, 3) AddINode(span_int, in(Init)); // exact limit
kvn@2877 879 }
kvn@2877 880
kvn@2877 881 return NULL; // No progress
kvn@2877 882 }
kvn@2877 883
kvn@2877 884 //------------------------------Identity---------------------------------------
kvn@2877 885 // If stride == 1 return limit node.
kvn@2877 886 Node *LoopLimitNode::Identity( PhaseTransform *phase ) {
kvn@2877 887 int stride_con = phase->type(in(Stride))->is_int()->get_con();
kvn@2877 888 if (stride_con == 1 || stride_con == -1)
kvn@2877 889 return in(Limit);
kvn@2877 890 return this;
kvn@2877 891 }
kvn@2877 892
kvn@2877 893 //=============================================================================
duke@435 894 //----------------------match_incr_with_optional_truncation--------------------
duke@435 895 // Match increment with optional truncation:
duke@435 896 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
duke@435 897 // Return NULL for failure. Success returns the increment node.
duke@435 898 Node* CountedLoopNode::match_incr_with_optional_truncation(
duke@435 899 Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
duke@435 900 // Quick cutouts:
brutisso@3489 901 if (expr == NULL || expr->req() != 3) return NULL;
duke@435 902
duke@435 903 Node *t1 = NULL;
duke@435 904 Node *t2 = NULL;
duke@435 905 const TypeInt* trunc_t = TypeInt::INT;
duke@435 906 Node* n1 = expr;
duke@435 907 int n1op = n1->Opcode();
duke@435 908
duke@435 909 // Try to strip (n1 & M) or (n1 << N >> N) from n1.
duke@435 910 if (n1op == Op_AndI &&
duke@435 911 n1->in(2)->is_Con() &&
duke@435 912 n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
duke@435 913 // %%% This check should match any mask of 2**K-1.
duke@435 914 t1 = n1;
duke@435 915 n1 = t1->in(1);
duke@435 916 n1op = n1->Opcode();
duke@435 917 trunc_t = TypeInt::CHAR;
duke@435 918 } else if (n1op == Op_RShiftI &&
duke@435 919 n1->in(1) != NULL &&
duke@435 920 n1->in(1)->Opcode() == Op_LShiftI &&
duke@435 921 n1->in(2) == n1->in(1)->in(2) &&
duke@435 922 n1->in(2)->is_Con()) {
duke@435 923 jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
duke@435 924 // %%% This check should match any shift in [1..31].
duke@435 925 if (shift == 16 || shift == 8) {
duke@435 926 t1 = n1;
duke@435 927 t2 = t1->in(1);
duke@435 928 n1 = t2->in(1);
duke@435 929 n1op = n1->Opcode();
duke@435 930 if (shift == 16) {
duke@435 931 trunc_t = TypeInt::SHORT;
duke@435 932 } else if (shift == 8) {
duke@435 933 trunc_t = TypeInt::BYTE;
duke@435 934 }
duke@435 935 }
duke@435 936 }
duke@435 937
duke@435 938 // If (maybe after stripping) it is an AddI, we won:
duke@435 939 if (n1op == Op_AddI) {
duke@435 940 *trunc1 = t1;
duke@435 941 *trunc2 = t2;
duke@435 942 *trunc_type = trunc_t;
duke@435 943 return n1;
duke@435 944 }
duke@435 945
duke@435 946 // failed
duke@435 947 return NULL;
duke@435 948 }
duke@435 949
duke@435 950
duke@435 951 //------------------------------filtered_type--------------------------------
duke@435 952 // Return a type based on condition control flow
duke@435 953 // A successful return will be a type that is restricted due
duke@435 954 // to a series of dominating if-tests, such as:
duke@435 955 // if (i < 10) {
duke@435 956 // if (i > 0) {
duke@435 957 // here: "i" type is [1..10)
duke@435 958 // }
duke@435 959 // }
duke@435 960 // or a control flow merge
duke@435 961 // if (i < 10) {
duke@435 962 // do {
duke@435 963 // phi( , ) -- at top of loop type is [min_int..10)
duke@435 964 // i = ?
duke@435 965 // } while ( i < 10)
duke@435 966 //
duke@435 967 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
duke@435 968 assert(n && n->bottom_type()->is_int(), "must be int");
duke@435 969 const TypeInt* filtered_t = NULL;
duke@435 970 if (!n->is_Phi()) {
duke@435 971 assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
duke@435 972 filtered_t = filtered_type_from_dominators(n, n_ctrl);
duke@435 973
duke@435 974 } else {
duke@435 975 Node* phi = n->as_Phi();
duke@435 976 Node* region = phi->in(0);
duke@435 977 assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
duke@435 978 if (region && region != C->top()) {
duke@435 979 for (uint i = 1; i < phi->req(); i++) {
duke@435 980 Node* val = phi->in(i);
duke@435 981 Node* use_c = region->in(i);
duke@435 982 const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
duke@435 983 if (val_t != NULL) {
duke@435 984 if (filtered_t == NULL) {
duke@435 985 filtered_t = val_t;
duke@435 986 } else {
duke@435 987 filtered_t = filtered_t->meet(val_t)->is_int();
duke@435 988 }
duke@435 989 }
duke@435 990 }
duke@435 991 }
duke@435 992 }
duke@435 993 const TypeInt* n_t = _igvn.type(n)->is_int();
duke@435 994 if (filtered_t != NULL) {
duke@435 995 n_t = n_t->join(filtered_t)->is_int();
duke@435 996 }
duke@435 997 return n_t;
duke@435 998 }
duke@435 999
duke@435 1000
duke@435 1001 //------------------------------filtered_type_from_dominators--------------------------------
duke@435 1002 // Return a possibly more restrictive type for val based on condition control flow of dominators
duke@435 1003 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
duke@435 1004 if (val->is_Con()) {
duke@435 1005 return val->bottom_type()->is_int();
duke@435 1006 }
duke@435 1007 uint if_limit = 10; // Max number of dominating if's visited
duke@435 1008 const TypeInt* rtn_t = NULL;
duke@435 1009
duke@435 1010 if (use_ctrl && use_ctrl != C->top()) {
duke@435 1011 Node* val_ctrl = get_ctrl(val);
duke@435 1012 uint val_dom_depth = dom_depth(val_ctrl);
duke@435 1013 Node* pred = use_ctrl;
duke@435 1014 uint if_cnt = 0;
duke@435 1015 while (if_cnt < if_limit) {
duke@435 1016 if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
duke@435 1017 if_cnt++;
never@452 1018 const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
duke@435 1019 if (if_t != NULL) {
duke@435 1020 if (rtn_t == NULL) {
duke@435 1021 rtn_t = if_t;
duke@435 1022 } else {
duke@435 1023 rtn_t = rtn_t->join(if_t)->is_int();
duke@435 1024 }
duke@435 1025 }
duke@435 1026 }
duke@435 1027 pred = idom(pred);
duke@435 1028 if (pred == NULL || pred == C->top()) {
duke@435 1029 break;
duke@435 1030 }
duke@435 1031 // Stop if going beyond definition block of val
duke@435 1032 if (dom_depth(pred) < val_dom_depth) {
duke@435 1033 break;
duke@435 1034 }
duke@435 1035 }
duke@435 1036 }
duke@435 1037 return rtn_t;
duke@435 1038 }
duke@435 1039
duke@435 1040
duke@435 1041 //------------------------------dump_spec--------------------------------------
duke@435 1042 // Dump special per-node info
duke@435 1043 #ifndef PRODUCT
duke@435 1044 void CountedLoopEndNode::dump_spec(outputStream *st) const {
duke@435 1045 if( in(TestValue)->is_Bool() ) {
duke@435 1046 BoolTest bt( test_trip()); // Added this for g++.
duke@435 1047
duke@435 1048 st->print("[");
duke@435 1049 bt.dump_on(st);
duke@435 1050 st->print("]");
duke@435 1051 }
duke@435 1052 st->print(" ");
duke@435 1053 IfNode::dump_spec(st);
duke@435 1054 }
duke@435 1055 #endif
duke@435 1056
duke@435 1057 //=============================================================================
duke@435 1058 //------------------------------is_member--------------------------------------
duke@435 1059 // Is 'l' a member of 'this'?
duke@435 1060 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
duke@435 1061 while( l->_nest > _nest ) l = l->_parent;
duke@435 1062 return l == this;
duke@435 1063 }
duke@435 1064
duke@435 1065 //------------------------------set_nest---------------------------------------
duke@435 1066 // Set loop tree nesting depth. Accumulate _has_call bits.
duke@435 1067 int IdealLoopTree::set_nest( uint depth ) {
duke@435 1068 _nest = depth;
duke@435 1069 int bits = _has_call;
duke@435 1070 if( _child ) bits |= _child->set_nest(depth+1);
duke@435 1071 if( bits ) _has_call = 1;
duke@435 1072 if( _next ) bits |= _next ->set_nest(depth );
duke@435 1073 return bits;
duke@435 1074 }
duke@435 1075
duke@435 1076 //------------------------------split_fall_in----------------------------------
duke@435 1077 // Split out multiple fall-in edges from the loop header. Move them to a
duke@435 1078 // private RegionNode before the loop. This becomes the loop landing pad.
duke@435 1079 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
duke@435 1080 PhaseIterGVN &igvn = phase->_igvn;
duke@435 1081 uint i;
duke@435 1082
duke@435 1083 // Make a new RegionNode to be the landing pad.
duke@435 1084 Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
duke@435 1085 phase->set_loop(landing_pad,_parent);
duke@435 1086 // Gather all the fall-in control paths into the landing pad
duke@435 1087 uint icnt = fall_in_cnt;
duke@435 1088 uint oreq = _head->req();
duke@435 1089 for( i = oreq-1; i>0; i-- )
duke@435 1090 if( !phase->is_member( this, _head->in(i) ) )
duke@435 1091 landing_pad->set_req(icnt--,_head->in(i));
duke@435 1092
duke@435 1093 // Peel off PhiNode edges as well
duke@435 1094 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
duke@435 1095 Node *oj = _head->fast_out(j);
duke@435 1096 if( oj->is_Phi() ) {
duke@435 1097 PhiNode* old_phi = oj->as_Phi();
duke@435 1098 assert( old_phi->region() == _head, "" );
duke@435 1099 igvn.hash_delete(old_phi); // Yank from hash before hacking edges
duke@435 1100 Node *p = PhiNode::make_blank(landing_pad, old_phi);
duke@435 1101 uint icnt = fall_in_cnt;
duke@435 1102 for( i = oreq-1; i>0; i-- ) {
duke@435 1103 if( !phase->is_member( this, _head->in(i) ) ) {
duke@435 1104 p->init_req(icnt--, old_phi->in(i));
duke@435 1105 // Go ahead and clean out old edges from old phi
duke@435 1106 old_phi->del_req(i);
duke@435 1107 }
duke@435 1108 }
duke@435 1109 // Search for CSE's here, because ZKM.jar does a lot of
duke@435 1110 // loop hackery and we need to be a little incremental
duke@435 1111 // with the CSE to avoid O(N^2) node blow-up.
duke@435 1112 Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
duke@435 1113 if( p2 ) { // Found CSE
duke@435 1114 p->destruct(); // Recover useless new node
duke@435 1115 p = p2; // Use old node
duke@435 1116 } else {
duke@435 1117 igvn.register_new_node_with_optimizer(p, old_phi);
duke@435 1118 }
duke@435 1119 // Make old Phi refer to new Phi.
duke@435 1120 old_phi->add_req(p);
duke@435 1121 // Check for the special case of making the old phi useless and
duke@435 1122 // disappear it. In JavaGrande I have a case where this useless
duke@435 1123 // Phi is the loop limit and prevents recognizing a CountedLoop
duke@435 1124 // which in turn prevents removing an empty loop.
duke@435 1125 Node *id_old_phi = old_phi->Identity( &igvn );
duke@435 1126 if( id_old_phi != old_phi ) { // Found a simple identity?
kvn@1976 1127 // Note that I cannot call 'replace_node' here, because
duke@435 1128 // that will yank the edge from old_phi to the Region and
duke@435 1129 // I'm mid-iteration over the Region's uses.
duke@435 1130 for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
duke@435 1131 Node* use = old_phi->last_out(i);
kvn@3847 1132 igvn.rehash_node_delayed(use);
duke@435 1133 uint uses_found = 0;
duke@435 1134 for (uint j = 0; j < use->len(); j++) {
duke@435 1135 if (use->in(j) == old_phi) {
duke@435 1136 if (j < use->req()) use->set_req (j, id_old_phi);
duke@435 1137 else use->set_prec(j, id_old_phi);
duke@435 1138 uses_found++;
duke@435 1139 }
duke@435 1140 }
duke@435 1141 i -= uses_found; // we deleted 1 or more copies of this edge
duke@435 1142 }
duke@435 1143 }
duke@435 1144 igvn._worklist.push(old_phi);
duke@435 1145 }
duke@435 1146 }
duke@435 1147 // Finally clean out the fall-in edges from the RegionNode
duke@435 1148 for( i = oreq-1; i>0; i-- ) {
duke@435 1149 if( !phase->is_member( this, _head->in(i) ) ) {
duke@435 1150 _head->del_req(i);
duke@435 1151 }
duke@435 1152 }
duke@435 1153 // Transform landing pad
duke@435 1154 igvn.register_new_node_with_optimizer(landing_pad, _head);
duke@435 1155 // Insert landing pad into the header
duke@435 1156 _head->add_req(landing_pad);
duke@435 1157 }
duke@435 1158
duke@435 1159 //------------------------------split_outer_loop-------------------------------
duke@435 1160 // Split out the outermost loop from this shared header.
duke@435 1161 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
duke@435 1162 PhaseIterGVN &igvn = phase->_igvn;
duke@435 1163
duke@435 1164 // Find index of outermost loop; it should also be my tail.
duke@435 1165 uint outer_idx = 1;
duke@435 1166 while( _head->in(outer_idx) != _tail ) outer_idx++;
duke@435 1167
duke@435 1168 // Make a LoopNode for the outermost loop.
duke@435 1169 Node *ctl = _head->in(LoopNode::EntryControl);
duke@435 1170 Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
duke@435 1171 outer = igvn.register_new_node_with_optimizer(outer, _head);
duke@435 1172 phase->set_created_loop_node();
kvn@2727 1173
duke@435 1174 // Outermost loop falls into '_head' loop
kvn@3043 1175 _head->set_req(LoopNode::EntryControl, outer);
duke@435 1176 _head->del_req(outer_idx);
duke@435 1177 // Split all the Phis up between '_head' loop and 'outer' loop.
duke@435 1178 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
duke@435 1179 Node *out = _head->fast_out(j);
duke@435 1180 if( out->is_Phi() ) {
duke@435 1181 PhiNode *old_phi = out->as_Phi();
duke@435 1182 assert( old_phi->region() == _head, "" );
duke@435 1183 Node *phi = PhiNode::make_blank(outer, old_phi);
duke@435 1184 phi->init_req(LoopNode::EntryControl, old_phi->in(LoopNode::EntryControl));
duke@435 1185 phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
duke@435 1186 phi = igvn.register_new_node_with_optimizer(phi, old_phi);
duke@435 1187 // Make old Phi point to new Phi on the fall-in path
kvn@3847 1188 igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
duke@435 1189 old_phi->del_req(outer_idx);
duke@435 1190 }
duke@435 1191 }
duke@435 1192
duke@435 1193 // Use the new loop head instead of the old shared one
duke@435 1194 _head = outer;
duke@435 1195 phase->set_loop(_head, this);
duke@435 1196 }
duke@435 1197
duke@435 1198 //------------------------------fix_parent-------------------------------------
duke@435 1199 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
duke@435 1200 loop->_parent = parent;
duke@435 1201 if( loop->_child ) fix_parent( loop->_child, loop );
duke@435 1202 if( loop->_next ) fix_parent( loop->_next , parent );
duke@435 1203 }
duke@435 1204
duke@435 1205 //------------------------------estimate_path_freq-----------------------------
duke@435 1206 static float estimate_path_freq( Node *n ) {
duke@435 1207 // Try to extract some path frequency info
duke@435 1208 IfNode *iff;
duke@435 1209 for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
duke@435 1210 uint nop = n->Opcode();
duke@435 1211 if( nop == Op_SafePoint ) { // Skip any safepoint
duke@435 1212 n = n->in(0);
duke@435 1213 continue;
duke@435 1214 }
duke@435 1215 if( nop == Op_CatchProj ) { // Get count from a prior call
duke@435 1216 // Assume call does not always throw exceptions: means the call-site
duke@435 1217 // count is also the frequency of the fall-through path.
duke@435 1218 assert( n->is_CatchProj(), "" );
duke@435 1219 if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
duke@435 1220 return 0.0f; // Assume call exception path is rare
duke@435 1221 Node *call = n->in(0)->in(0)->in(0);
duke@435 1222 assert( call->is_Call(), "expect a call here" );
duke@435 1223 const JVMState *jvms = ((CallNode*)call)->jvms();
duke@435 1224 ciMethodData* methodData = jvms->method()->method_data();
duke@435 1225 if (!methodData->is_mature()) return 0.0f; // No call-site data
duke@435 1226 ciProfileData* data = methodData->bci_to_data(jvms->bci());
duke@435 1227 if ((data == NULL) || !data->is_CounterData()) {
duke@435 1228 // no call profile available, try call's control input
duke@435 1229 n = n->in(0);
duke@435 1230 continue;
duke@435 1231 }
duke@435 1232 return data->as_CounterData()->count()/FreqCountInvocations;
duke@435 1233 }
duke@435 1234 // See if there's a gating IF test
duke@435 1235 Node *n_c = n->in(0);
duke@435 1236 if( !n_c->is_If() ) break; // No estimate available
duke@435 1237 iff = n_c->as_If();
duke@435 1238 if( iff->_fcnt != COUNT_UNKNOWN ) // Have a valid count?
duke@435 1239 // Compute how much count comes on this path
duke@435 1240 return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
duke@435 1241 // Have no count info. Skip dull uncommon-trap like branches.
duke@435 1242 if( (nop == Op_IfTrue && iff->_prob < PROB_LIKELY_MAG(5)) ||
duke@435 1243 (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
duke@435 1244 break;
duke@435 1245 // Skip through never-taken branch; look for a real loop exit.
duke@435 1246 n = iff->in(0);
duke@435 1247 }
duke@435 1248 return 0.0f; // No estimate available
duke@435 1249 }
duke@435 1250
duke@435 1251 //------------------------------merge_many_backedges---------------------------
duke@435 1252 // Merge all the backedges from the shared header into a private Region.
duke@435 1253 // Feed that region as the one backedge to this loop.
duke@435 1254 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
duke@435 1255 uint i;
duke@435 1256
duke@435 1257 // Scan for the top 2 hottest backedges
duke@435 1258 float hotcnt = 0.0f;
duke@435 1259 float warmcnt = 0.0f;
duke@435 1260 uint hot_idx = 0;
duke@435 1261 // Loop starts at 2 because slot 1 is the fall-in path
duke@435 1262 for( i = 2; i < _head->req(); i++ ) {
duke@435 1263 float cnt = estimate_path_freq(_head->in(i));
duke@435 1264 if( cnt > hotcnt ) { // Grab hottest path
duke@435 1265 warmcnt = hotcnt;
duke@435 1266 hotcnt = cnt;
duke@435 1267 hot_idx = i;
duke@435 1268 } else if( cnt > warmcnt ) { // And 2nd hottest path
duke@435 1269 warmcnt = cnt;
duke@435 1270 }
duke@435 1271 }
duke@435 1272
duke@435 1273 // See if the hottest backedge is worthy of being an inner loop
duke@435 1274 // by being much hotter than the next hottest backedge.
duke@435 1275 if( hotcnt <= 0.0001 ||
duke@435 1276 hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
duke@435 1277
duke@435 1278 // Peel out the backedges into a private merge point; peel
duke@435 1279 // them all except optionally hot_idx.
duke@435 1280 PhaseIterGVN &igvn = phase->_igvn;
duke@435 1281
duke@435 1282 Node *hot_tail = NULL;
duke@435 1283 // Make a Region for the merge point
duke@435 1284 Node *r = new (phase->C, 1) RegionNode(1);
duke@435 1285 for( i = 2; i < _head->req(); i++ ) {
duke@435 1286 if( i != hot_idx )
duke@435 1287 r->add_req( _head->in(i) );
duke@435 1288 else hot_tail = _head->in(i);
duke@435 1289 }
duke@435 1290 igvn.register_new_node_with_optimizer(r, _head);
duke@435 1291 // Plug region into end of loop _head, followed by hot_tail
duke@435 1292 while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
duke@435 1293 _head->set_req(2, r);
duke@435 1294 if( hot_idx ) _head->add_req(hot_tail);
duke@435 1295
duke@435 1296 // Split all the Phis up between '_head' loop and the Region 'r'
duke@435 1297 for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
duke@435 1298 Node *out = _head->fast_out(j);
duke@435 1299 if( out->is_Phi() ) {
duke@435 1300 PhiNode* n = out->as_Phi();
duke@435 1301 igvn.hash_delete(n); // Delete from hash before hacking edges
duke@435 1302 Node *hot_phi = NULL;
duke@435 1303 Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
duke@435 1304 // Check all inputs for the ones to peel out
duke@435 1305 uint j = 1;
duke@435 1306 for( uint i = 2; i < n->req(); i++ ) {
duke@435 1307 if( i != hot_idx )
duke@435 1308 phi->set_req( j++, n->in(i) );
duke@435 1309 else hot_phi = n->in(i);
duke@435 1310 }
duke@435 1311 // Register the phi but do not transform until whole place transforms
duke@435 1312 igvn.register_new_node_with_optimizer(phi, n);
duke@435 1313 // Add the merge phi to the old Phi
duke@435 1314 while( n->req() > 3 ) n->del_req( n->req()-1 );
duke@435 1315 n->set_req(2, phi);
duke@435 1316 if( hot_idx ) n->add_req(hot_phi);
duke@435 1317 }
duke@435 1318 }
duke@435 1319
duke@435 1320
duke@435 1321 // Insert a new IdealLoopTree inserted below me. Turn it into a clone
duke@435 1322 // of self loop tree. Turn self into a loop headed by _head and with
duke@435 1323 // tail being the new merge point.
duke@435 1324 IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
duke@435 1325 phase->set_loop(_tail,ilt); // Adjust tail
duke@435 1326 _tail = r; // Self's tail is new merge point
duke@435 1327 phase->set_loop(r,this);
duke@435 1328 ilt->_child = _child; // New guy has my children
duke@435 1329 _child = ilt; // Self has new guy as only child
duke@435 1330 ilt->_parent = this; // new guy has self for parent
duke@435 1331 ilt->_nest = _nest; // Same nesting depth (for now)
duke@435 1332
duke@435 1333 // Starting with 'ilt', look for child loop trees using the same shared
duke@435 1334 // header. Flatten these out; they will no longer be loops in the end.
duke@435 1335 IdealLoopTree **pilt = &_child;
duke@435 1336 while( ilt ) {
duke@435 1337 if( ilt->_head == _head ) {
duke@435 1338 uint i;
duke@435 1339 for( i = 2; i < _head->req(); i++ )
duke@435 1340 if( _head->in(i) == ilt->_tail )
duke@435 1341 break; // Still a loop
duke@435 1342 if( i == _head->req() ) { // No longer a loop
duke@435 1343 // Flatten ilt. Hang ilt's "_next" list from the end of
duke@435 1344 // ilt's '_child' list. Move the ilt's _child up to replace ilt.
duke@435 1345 IdealLoopTree **cp = &ilt->_child;
duke@435 1346 while( *cp ) cp = &(*cp)->_next; // Find end of child list
duke@435 1347 *cp = ilt->_next; // Hang next list at end of child list
duke@435 1348 *pilt = ilt->_child; // Move child up to replace ilt
duke@435 1349 ilt->_head = NULL; // Flag as a loop UNIONED into parent
duke@435 1350 ilt = ilt->_child; // Repeat using new ilt
duke@435 1351 continue; // do not advance over ilt->_child
duke@435 1352 }
duke@435 1353 assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
duke@435 1354 phase->set_loop(_head,ilt);
duke@435 1355 }
duke@435 1356 pilt = &ilt->_child; // Advance to next
duke@435 1357 ilt = *pilt;
duke@435 1358 }
duke@435 1359
duke@435 1360 if( _child ) fix_parent( _child, this );
duke@435 1361 }
duke@435 1362
duke@435 1363 //------------------------------beautify_loops---------------------------------
duke@435 1364 // Split shared headers and insert loop landing pads.
duke@435 1365 // Insert a LoopNode to replace the RegionNode.
duke@435 1366 // Return TRUE if loop tree is structurally changed.
duke@435 1367 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
duke@435 1368 bool result = false;
duke@435 1369 // Cache parts in locals for easy
duke@435 1370 PhaseIterGVN &igvn = phase->_igvn;
duke@435 1371
duke@435 1372 igvn.hash_delete(_head); // Yank from hash before hacking edges
duke@435 1373
duke@435 1374 // Check for multiple fall-in paths. Peel off a landing pad if need be.
duke@435 1375 int fall_in_cnt = 0;
duke@435 1376 for( uint i = 1; i < _head->req(); i++ )
duke@435 1377 if( !phase->is_member( this, _head->in(i) ) )
duke@435 1378 fall_in_cnt++;
duke@435 1379 assert( fall_in_cnt, "at least 1 fall-in path" );
duke@435 1380 if( fall_in_cnt > 1 ) // Need a loop landing pad to merge fall-ins
duke@435 1381 split_fall_in( phase, fall_in_cnt );
duke@435 1382
duke@435 1383 // Swap inputs to the _head and all Phis to move the fall-in edge to
duke@435 1384 // the left.
duke@435 1385 fall_in_cnt = 1;
duke@435 1386 while( phase->is_member( this, _head->in(fall_in_cnt) ) )
duke@435 1387 fall_in_cnt++;
duke@435 1388 if( fall_in_cnt > 1 ) {
duke@435 1389 // Since I am just swapping inputs I do not need to update def-use info
duke@435 1390 Node *tmp = _head->in(1);
duke@435 1391 _head->set_req( 1, _head->in(fall_in_cnt) );
duke@435 1392 _head->set_req( fall_in_cnt, tmp );
duke@435 1393 // Swap also all Phis
duke@435 1394 for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
duke@435 1395 Node* phi = _head->fast_out(i);
duke@435 1396 if( phi->is_Phi() ) {
duke@435 1397 igvn.hash_delete(phi); // Yank from hash before hacking edges
duke@435 1398 tmp = phi->in(1);
duke@435 1399 phi->set_req( 1, phi->in(fall_in_cnt) );
duke@435 1400 phi->set_req( fall_in_cnt, tmp );
duke@435 1401 }
duke@435 1402 }
duke@435 1403 }
duke@435 1404 assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
duke@435 1405 assert( phase->is_member( this, _head->in(2) ), "right edge is loop" );
duke@435 1406
duke@435 1407 // If I am a shared header (multiple backedges), peel off the many
duke@435 1408 // backedges into a private merge point and use the merge point as
duke@435 1409 // the one true backedge.
duke@435 1410 if( _head->req() > 3 ) {
kvn@2727 1411 // Merge the many backedges into a single backedge but leave
kvn@2727 1412 // the hottest backedge as separate edge for the following peel.
duke@435 1413 merge_many_backedges( phase );
duke@435 1414 result = true;
duke@435 1415 }
duke@435 1416
kvn@2727 1417 // If I have one hot backedge, peel off myself loop.
duke@435 1418 // I better be the outermost loop.
duke@435 1419 if( _head->req() > 3 ) {
duke@435 1420 split_outer_loop( phase );
duke@435 1421 result = true;
duke@435 1422
duke@435 1423 } else if( !_head->is_Loop() && !_irreducible ) {
duke@435 1424 // Make a new LoopNode to replace the old loop head
duke@435 1425 Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
duke@435 1426 l = igvn.register_new_node_with_optimizer(l, _head);
duke@435 1427 phase->set_created_loop_node();
duke@435 1428 // Go ahead and replace _head
kvn@1976 1429 phase->_igvn.replace_node( _head, l );
duke@435 1430 _head = l;
duke@435 1431 phase->set_loop(_head, this);
duke@435 1432 }
duke@435 1433
duke@435 1434 // Now recursively beautify nested loops
duke@435 1435 if( _child ) result |= _child->beautify_loops( phase );
duke@435 1436 if( _next ) result |= _next ->beautify_loops( phase );
duke@435 1437 return result;
duke@435 1438 }
duke@435 1439
duke@435 1440 //------------------------------allpaths_check_safepts----------------------------
duke@435 1441 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
duke@435 1442 // encountered. Helper for check_safepts.
duke@435 1443 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
duke@435 1444 assert(stack.size() == 0, "empty stack");
duke@435 1445 stack.push(_tail);
duke@435 1446 visited.Clear();
duke@435 1447 visited.set(_tail->_idx);
duke@435 1448 while (stack.size() > 0) {
duke@435 1449 Node* n = stack.pop();
duke@435 1450 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
duke@435 1451 // Terminate this path
duke@435 1452 } else if (n->Opcode() == Op_SafePoint) {
duke@435 1453 if (_phase->get_loop(n) != this) {
duke@435 1454 if (_required_safept == NULL) _required_safept = new Node_List();
duke@435 1455 _required_safept->push(n); // save the one closest to the tail
duke@435 1456 }
duke@435 1457 // Terminate this path
duke@435 1458 } else {
duke@435 1459 uint start = n->is_Region() ? 1 : 0;
duke@435 1460 uint end = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
duke@435 1461 for (uint i = start; i < end; i++) {
duke@435 1462 Node* in = n->in(i);
duke@435 1463 assert(in->is_CFG(), "must be");
duke@435 1464 if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
duke@435 1465 stack.push(in);
duke@435 1466 }
duke@435 1467 }
duke@435 1468 }
duke@435 1469 }
duke@435 1470 }
duke@435 1471
duke@435 1472 //------------------------------check_safepts----------------------------
duke@435 1473 // Given dominators, try to find loops with calls that must always be
duke@435 1474 // executed (call dominates loop tail). These loops do not need non-call
duke@435 1475 // safepoints (ncsfpt).
duke@435 1476 //
duke@435 1477 // A complication is that a safepoint in a inner loop may be needed
duke@435 1478 // by an outer loop. In the following, the inner loop sees it has a
duke@435 1479 // call (block 3) on every path from the head (block 2) to the
duke@435 1480 // backedge (arc 3->2). So it deletes the ncsfpt (non-call safepoint)
duke@435 1481 // in block 2, _but_ this leaves the outer loop without a safepoint.
duke@435 1482 //
duke@435 1483 // entry 0
duke@435 1484 // |
duke@435 1485 // v
duke@435 1486 // outer 1,2 +->1
duke@435 1487 // | |
duke@435 1488 // | v
duke@435 1489 // | 2<---+ ncsfpt in 2
duke@435 1490 // |_/|\ |
duke@435 1491 // | v |
duke@435 1492 // inner 2,3 / 3 | call in 3
duke@435 1493 // / | |
duke@435 1494 // v +--+
duke@435 1495 // exit 4
duke@435 1496 //
duke@435 1497 //
duke@435 1498 // This method creates a list (_required_safept) of ncsfpt nodes that must
duke@435 1499 // be protected is created for each loop. When a ncsfpt maybe deleted, it
duke@435 1500 // is first looked for in the lists for the outer loops of the current loop.
duke@435 1501 //
duke@435 1502 // The insights into the problem:
duke@435 1503 // A) counted loops are okay
duke@435 1504 // B) innermost loops are okay (only an inner loop can delete
duke@435 1505 // a ncsfpt needed by an outer loop)
duke@435 1506 // C) a loop is immune from an inner loop deleting a safepoint
duke@435 1507 // if the loop has a call on the idom-path
duke@435 1508 // D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
duke@435 1509 // idom-path that is not in a nested loop
duke@435 1510 // E) otherwise, an ncsfpt on the idom-path that is nested in an inner
duke@435 1511 // loop needs to be prevented from deletion by an inner loop
duke@435 1512 //
duke@435 1513 // There are two analyses:
duke@435 1514 // 1) The first, and cheaper one, scans the loop body from
duke@435 1515 // tail to head following the idom (immediate dominator)
duke@435 1516 // chain, looking for the cases (C,D,E) above.
duke@435 1517 // Since inner loops are scanned before outer loops, there is summary
duke@435 1518 // information about inner loops. Inner loops can be skipped over
duke@435 1519 // when the tail of an inner loop is encountered.
duke@435 1520 //
duke@435 1521 // 2) The second, invoked if the first fails to find a call or ncsfpt on
duke@435 1522 // the idom path (which is rare), scans all predecessor control paths
duke@435 1523 // from the tail to the head, terminating a path when a call or sfpt
duke@435 1524 // is encountered, to find the ncsfpt's that are closest to the tail.
duke@435 1525 //
duke@435 1526 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
duke@435 1527 // Bottom up traversal
duke@435 1528 IdealLoopTree* ch = _child;
duke@435 1529 while (ch != NULL) {
duke@435 1530 ch->check_safepts(visited, stack);
duke@435 1531 ch = ch->_next;
duke@435 1532 }
duke@435 1533
duke@435 1534 if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
duke@435 1535 bool has_call = false; // call on dom-path
duke@435 1536 bool has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
duke@435 1537 Node* nonlocal_ncsfpt = NULL; // ncsfpt on dom-path at a deeper depth
duke@435 1538 // Scan the dom-path nodes from tail to head
duke@435 1539 for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
duke@435 1540 if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
duke@435 1541 has_call = true;
duke@435 1542 _has_sfpt = 1; // Then no need for a safept!
duke@435 1543 break;
duke@435 1544 } else if (n->Opcode() == Op_SafePoint) {
duke@435 1545 if (_phase->get_loop(n) == this) {
duke@435 1546 has_local_ncsfpt = true;
duke@435 1547 break;
duke@435 1548 }
duke@435 1549 if (nonlocal_ncsfpt == NULL) {
duke@435 1550 nonlocal_ncsfpt = n; // save the one closest to the tail
duke@435 1551 }
duke@435 1552 } else {
duke@435 1553 IdealLoopTree* nlpt = _phase->get_loop(n);
duke@435 1554 if (this != nlpt) {
duke@435 1555 // If at an inner loop tail, see if the inner loop has already
duke@435 1556 // recorded seeing a call on the dom-path (and stop.) If not,
duke@435 1557 // jump to the head of the inner loop.
duke@435 1558 assert(is_member(nlpt), "nested loop");
duke@435 1559 Node* tail = nlpt->_tail;
duke@435 1560 if (tail->in(0)->is_If()) tail = tail->in(0);
duke@435 1561 if (n == tail) {
duke@435 1562 // If inner loop has call on dom-path, so does outer loop
duke@435 1563 if (nlpt->_has_sfpt) {
duke@435 1564 has_call = true;
duke@435 1565 _has_sfpt = 1;
duke@435 1566 break;
duke@435 1567 }
duke@435 1568 // Skip to head of inner loop
duke@435 1569 assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
duke@435 1570 n = nlpt->_head;
duke@435 1571 }
duke@435 1572 }
duke@435 1573 }
duke@435 1574 }
duke@435 1575 // Record safept's that this loop needs preserved when an
duke@435 1576 // inner loop attempts to delete it's safepoints.
duke@435 1577 if (_child != NULL && !has_call && !has_local_ncsfpt) {
duke@435 1578 if (nonlocal_ncsfpt != NULL) {
duke@435 1579 if (_required_safept == NULL) _required_safept = new Node_List();
duke@435 1580 _required_safept->push(nonlocal_ncsfpt);
duke@435 1581 } else {
duke@435 1582 // Failed to find a suitable safept on the dom-path. Now use
duke@435 1583 // an all paths walk from tail to head, looking for safepoints to preserve.
duke@435 1584 allpaths_check_safepts(visited, stack);
duke@435 1585 }
duke@435 1586 }
duke@435 1587 }
duke@435 1588 }
duke@435 1589
duke@435 1590 //---------------------------is_deleteable_safept----------------------------
duke@435 1591 // Is safept not required by an outer loop?
duke@435 1592 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
duke@435 1593 assert(sfpt->Opcode() == Op_SafePoint, "");
duke@435 1594 IdealLoopTree* lp = get_loop(sfpt)->_parent;
duke@435 1595 while (lp != NULL) {
duke@435 1596 Node_List* sfpts = lp->_required_safept;
duke@435 1597 if (sfpts != NULL) {
duke@435 1598 for (uint i = 0; i < sfpts->size(); i++) {
duke@435 1599 if (sfpt == sfpts->at(i))
duke@435 1600 return false;
duke@435 1601 }
duke@435 1602 }
duke@435 1603 lp = lp->_parent;
duke@435 1604 }
duke@435 1605 return true;
duke@435 1606 }
duke@435 1607
kvn@2665 1608 //---------------------------replace_parallel_iv-------------------------------
kvn@2665 1609 // Replace parallel induction variable (parallel to trip counter)
kvn@2665 1610 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
kvn@2665 1611 assert(loop->_head->is_CountedLoop(), "");
kvn@2665 1612 CountedLoopNode *cl = loop->_head->as_CountedLoop();
kvn@3048 1613 if (!cl->is_valid_counted_loop())
kvn@3048 1614 return; // skip malformed counted loop
kvn@2665 1615 Node *incr = cl->incr();
kvn@2665 1616 if (incr == NULL)
kvn@2665 1617 return; // Dead loop?
kvn@2665 1618 Node *init = cl->init_trip();
kvn@2665 1619 Node *phi = cl->phi();
kvn@2665 1620 int stride_con = cl->stride_con();
kvn@2665 1621
kvn@2665 1622 // Visit all children, looking for Phis
kvn@2665 1623 for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
kvn@2665 1624 Node *out = cl->out(i);
kvn@2665 1625 // Look for other phis (secondary IVs). Skip dead ones
kvn@2665 1626 if (!out->is_Phi() || out == phi || !has_node(out))
kvn@2665 1627 continue;
kvn@2665 1628 PhiNode* phi2 = out->as_Phi();
kvn@2665 1629 Node *incr2 = phi2->in( LoopNode::LoopBackControl );
kvn@2665 1630 // Look for induction variables of the form: X += constant
kvn@2665 1631 if (phi2->region() != loop->_head ||
kvn@2665 1632 incr2->req() != 3 ||
kvn@2665 1633 incr2->in(1) != phi2 ||
kvn@2665 1634 incr2 == incr ||
kvn@2665 1635 incr2->Opcode() != Op_AddI ||
kvn@2665 1636 !incr2->in(2)->is_Con())
kvn@2665 1637 continue;
kvn@2665 1638
kvn@2665 1639 // Check for parallel induction variable (parallel to trip counter)
kvn@2665 1640 // via an affine function. In particular, count-down loops with
kvn@2665 1641 // count-up array indices are common. We only RCE references off
kvn@2665 1642 // the trip-counter, so we need to convert all these to trip-counter
kvn@2665 1643 // expressions.
kvn@2665 1644 Node *init2 = phi2->in( LoopNode::EntryControl );
kvn@2665 1645 int stride_con2 = incr2->in(2)->get_int();
kvn@2665 1646
kvn@2665 1647 // The general case here gets a little tricky. We want to find the
kvn@2665 1648 // GCD of all possible parallel IV's and make a new IV using this
kvn@2665 1649 // GCD for the loop. Then all possible IVs are simple multiples of
kvn@2665 1650 // the GCD. In practice, this will cover very few extra loops.
kvn@2665 1651 // Instead we require 'stride_con2' to be a multiple of 'stride_con',
kvn@2665 1652 // where +/-1 is the common case, but other integer multiples are
kvn@2665 1653 // also easy to handle.
kvn@2665 1654 int ratio_con = stride_con2/stride_con;
kvn@2665 1655
kvn@2665 1656 if ((ratio_con * stride_con) == stride_con2) { // Check for exact
kvn@3135 1657 #ifndef PRODUCT
kvn@3135 1658 if (TraceLoopOpts) {
kvn@3135 1659 tty->print("Parallel IV: %d ", phi2->_idx);
kvn@3135 1660 loop->dump_head();
kvn@3135 1661 }
kvn@3135 1662 #endif
kvn@2665 1663 // Convert to using the trip counter. The parallel induction
kvn@2665 1664 // variable differs from the trip counter by a loop-invariant
kvn@2665 1665 // amount, the difference between their respective initial values.
kvn@2665 1666 // It is scaled by the 'ratio_con'.
kvn@2665 1667 Node* ratio = _igvn.intcon(ratio_con);
kvn@2665 1668 set_ctrl(ratio, C->root());
kvn@3135 1669 Node* ratio_init = new (C, 3) MulINode(init, ratio);
kvn@3135 1670 _igvn.register_new_node_with_optimizer(ratio_init, init);
kvn@3135 1671 set_early_ctrl(ratio_init);
kvn@3135 1672 Node* diff = new (C, 3) SubINode(init2, ratio_init);
kvn@3135 1673 _igvn.register_new_node_with_optimizer(diff, init2);
kvn@3135 1674 set_early_ctrl(diff);
kvn@3135 1675 Node* ratio_idx = new (C, 3) MulINode(phi, ratio);
kvn@3135 1676 _igvn.register_new_node_with_optimizer(ratio_idx, phi);
kvn@3135 1677 set_ctrl(ratio_idx, cl);
kvn@3135 1678 Node* add = new (C, 3) AddINode(ratio_idx, diff);
kvn@3135 1679 _igvn.register_new_node_with_optimizer(add);
kvn@3135 1680 set_ctrl(add, cl);
kvn@2665 1681 _igvn.replace_node( phi2, add );
kvn@2665 1682 // Sometimes an induction variable is unused
kvn@2665 1683 if (add->outcnt() == 0) {
kvn@2665 1684 _igvn.remove_dead_node(add);
kvn@2665 1685 }
kvn@2665 1686 --i; // deleted this phi; rescan starting with next position
kvn@2665 1687 continue;
kvn@2665 1688 }
kvn@2665 1689 }
kvn@2665 1690 }
kvn@2665 1691
duke@435 1692 //------------------------------counted_loop-----------------------------------
duke@435 1693 // Convert to counted loops where possible
duke@435 1694 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
duke@435 1695
duke@435 1696 // For grins, set the inner-loop flag here
kvn@2665 1697 if (!_child) {
kvn@2665 1698 if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
duke@435 1699 }
duke@435 1700
kvn@2665 1701 if (_head->is_CountedLoop() ||
kvn@2665 1702 phase->is_counted_loop(_head, this)) {
duke@435 1703 _has_sfpt = 1; // Indicate we do not need a safepoint here
duke@435 1704
duke@435 1705 // Look for a safepoint to remove
duke@435 1706 for (Node* n = tail(); n != _head; n = phase->idom(n))
duke@435 1707 if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
duke@435 1708 phase->is_deleteable_safept(n))
duke@435 1709 phase->lazy_replace(n,n->in(TypeFunc::Control));
duke@435 1710
kvn@2665 1711 // Look for induction variables
kvn@2665 1712 phase->replace_parallel_iv(this);
duke@435 1713
duke@435 1714 } else if (_parent != NULL && !_irreducible) {
duke@435 1715 // Not a counted loop.
duke@435 1716 // Look for a safepoint on the idom-path to remove, preserving the first one
duke@435 1717 bool found = false;
duke@435 1718 Node* n = tail();
duke@435 1719 for (; n != _head && !found; n = phase->idom(n)) {
duke@435 1720 if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
duke@435 1721 found = true; // Found one
duke@435 1722 }
duke@435 1723 // Skip past it and delete the others
duke@435 1724 for (; n != _head; n = phase->idom(n)) {
duke@435 1725 if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
duke@435 1726 phase->is_deleteable_safept(n))
duke@435 1727 phase->lazy_replace(n,n->in(TypeFunc::Control));
duke@435 1728 }
duke@435 1729 }
duke@435 1730
duke@435 1731 // Recursively
kvn@2665 1732 if (_child) _child->counted_loop( phase );
kvn@2665 1733 if (_next) _next ->counted_loop( phase );
duke@435 1734 }
duke@435 1735
duke@435 1736 #ifndef PRODUCT
duke@435 1737 //------------------------------dump_head--------------------------------------
duke@435 1738 // Dump 1 liner for loop header info
duke@435 1739 void IdealLoopTree::dump_head( ) const {
kvn@2665 1740 for (uint i=0; i<_nest; i++)
duke@435 1741 tty->print(" ");
duke@435 1742 tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
kvn@2665 1743 if (_irreducible) tty->print(" IRREDUCIBLE");
kvn@2877 1744 Node* entry = _head->in(LoopNode::EntryControl);
kvn@2877 1745 if (LoopLimitCheck) {
kvn@2877 1746 Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
kvn@2877 1747 if (predicate != NULL ) {
kvn@2877 1748 tty->print(" limit_check");
kvn@2877 1749 entry = entry->in(0)->in(0);
kvn@2877 1750 }
kvn@2877 1751 }
kvn@2665 1752 if (UseLoopPredicate) {
kvn@2877 1753 entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
kvn@2727 1754 if (entry != NULL) {
kvn@2665 1755 tty->print(" predicated");
kvn@2665 1756 }
kvn@2665 1757 }
kvn@2665 1758 if (_head->is_CountedLoop()) {
duke@435 1759 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 1760 tty->print(" counted");
kvn@2747 1761
kvn@2747 1762 Node* init_n = cl->init_trip();
kvn@2747 1763 if (init_n != NULL && init_n->is_Con())
kvn@2747 1764 tty->print(" [%d,", cl->init_trip()->get_int());
kvn@2747 1765 else
kvn@2747 1766 tty->print(" [int,");
kvn@2747 1767 Node* limit_n = cl->limit();
kvn@2747 1768 if (limit_n != NULL && limit_n->is_Con())
kvn@2747 1769 tty->print("%d),", cl->limit()->get_int());
kvn@2747 1770 else
kvn@2747 1771 tty->print("int),");
kvn@2747 1772 int stride_con = cl->stride_con();
kvn@2747 1773 if (stride_con > 0) tty->print("+");
kvn@2747 1774 tty->print("%d", stride_con);
kvn@2747 1775
kvn@2665 1776 if (cl->is_pre_loop ()) tty->print(" pre" );
kvn@2665 1777 if (cl->is_main_loop()) tty->print(" main");
kvn@2665 1778 if (cl->is_post_loop()) tty->print(" post");
duke@435 1779 }
duke@435 1780 tty->cr();
duke@435 1781 }
duke@435 1782
duke@435 1783 //------------------------------dump-------------------------------------------
duke@435 1784 // Dump loops by loop tree
duke@435 1785 void IdealLoopTree::dump( ) const {
duke@435 1786 dump_head();
kvn@2665 1787 if (_child) _child->dump();
kvn@2665 1788 if (_next) _next ->dump();
duke@435 1789 }
duke@435 1790
duke@435 1791 #endif
duke@435 1792
never@802 1793 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
never@802 1794 if (loop == root) {
never@802 1795 if (loop->_child != NULL) {
never@802 1796 log->begin_head("loop_tree");
never@802 1797 log->end_head();
never@802 1798 if( loop->_child ) log_loop_tree(root, loop->_child, log);
never@802 1799 log->tail("loop_tree");
never@802 1800 assert(loop->_next == NULL, "what?");
never@802 1801 }
never@802 1802 } else {
never@802 1803 Node* head = loop->_head;
never@802 1804 log->begin_head("loop");
never@802 1805 log->print(" idx='%d' ", head->_idx);
never@802 1806 if (loop->_irreducible) log->print("irreducible='1' ");
never@802 1807 if (head->is_Loop()) {
never@802 1808 if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
never@802 1809 if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
never@802 1810 }
never@802 1811 if (head->is_CountedLoop()) {
never@802 1812 CountedLoopNode* cl = head->as_CountedLoop();
never@802 1813 if (cl->is_pre_loop()) log->print("pre_loop='%d' ", cl->main_idx());
never@802 1814 if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
never@802 1815 if (cl->is_post_loop()) log->print("post_loop='%d' ", cl->main_idx());
never@802 1816 }
never@802 1817 log->end_head();
never@802 1818 if( loop->_child ) log_loop_tree(root, loop->_child, log);
never@802 1819 log->tail("loop");
never@802 1820 if( loop->_next ) log_loop_tree(root, loop->_next, log);
never@802 1821 }
never@802 1822 }
never@802 1823
cfang@1607 1824 //---------------------collect_potentially_useful_predicates-----------------------
cfang@1607 1825 // Helper function to collect potentially useful predicates to prevent them from
cfang@1607 1826 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
cfang@1607 1827 void PhaseIdealLoop::collect_potentially_useful_predicates(
cfang@1607 1828 IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
cfang@1607 1829 if (loop->_child) { // child
cfang@1607 1830 collect_potentially_useful_predicates(loop->_child, useful_predicates);
cfang@1607 1831 }
cfang@1607 1832
cfang@1607 1833 // self (only loops that we can apply loop predication may use their predicates)
kvn@2665 1834 if (loop->_head->is_Loop() &&
kvn@2665 1835 !loop->_irreducible &&
cfang@1607 1836 !loop->tail()->is_top()) {
kvn@2665 1837 LoopNode* lpn = loop->_head->as_Loop();
cfang@1607 1838 Node* entry = lpn->in(LoopNode::EntryControl);
kvn@2877 1839 Node* predicate_proj = find_predicate(entry); // loop_limit_check first
cfang@1607 1840 if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
kvn@2665 1841 assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
cfang@1607 1842 useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
kvn@2877 1843 entry = entry->in(0)->in(0);
kvn@2877 1844 }
kvn@2877 1845 predicate_proj = find_predicate(entry); // Predicate
kvn@2877 1846 if (predicate_proj != NULL ) {
kvn@2877 1847 useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
cfang@1607 1848 }
cfang@1607 1849 }
cfang@1607 1850
kvn@2665 1851 if (loop->_next) { // sibling
cfang@1607 1852 collect_potentially_useful_predicates(loop->_next, useful_predicates);
cfang@1607 1853 }
cfang@1607 1854 }
cfang@1607 1855
cfang@1607 1856 //------------------------eliminate_useless_predicates-----------------------------
cfang@1607 1857 // Eliminate all inserted predicates if they could not be used by loop predication.
kvn@2877 1858 // Note: it will also eliminates loop limits check predicate since it also uses
kvn@2877 1859 // Opaque1 node (see Parse::add_predicate()).
cfang@1607 1860 void PhaseIdealLoop::eliminate_useless_predicates() {
kvn@2665 1861 if (C->predicate_count() == 0)
kvn@2665 1862 return; // no predicate left
cfang@1607 1863
cfang@1607 1864 Unique_Node_List useful_predicates; // to store useful predicates
cfang@1607 1865 if (C->has_loops()) {
cfang@1607 1866 collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
cfang@1607 1867 }
cfang@1607 1868
cfang@1607 1869 for (int i = C->predicate_count(); i > 0; i--) {
cfang@1607 1870 Node * n = C->predicate_opaque1_node(i-1);
cfang@1607 1871 assert(n->Opcode() == Op_Opaque1, "must be");
cfang@1607 1872 if (!useful_predicates.member(n)) { // not in the useful list
cfang@1607 1873 _igvn.replace_node(n, n->in(1));
cfang@1607 1874 }
cfang@1607 1875 }
cfang@1607 1876 }
cfang@1607 1877
duke@435 1878 //=============================================================================
never@1356 1879 //----------------------------build_and_optimize-------------------------------
duke@435 1880 // Create a PhaseLoop. Build the ideal Loop tree. Map each Ideal Node to
duke@435 1881 // its corresponding LoopNode. If 'optimize' is true, do some loop cleanups.
kvn@3260 1882 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
kvn@2555 1883 ResourceMark rm;
kvn@2555 1884
never@1356 1885 int old_progress = C->major_progress();
never@2685 1886 uint orig_worklist_size = _igvn._worklist.size();
never@1356 1887
duke@435 1888 // Reset major-progress flag for the driver's heuristics
duke@435 1889 C->clear_major_progress();
duke@435 1890
duke@435 1891 #ifndef PRODUCT
duke@435 1892 // Capture for later assert
duke@435 1893 uint unique = C->unique();
duke@435 1894 _loop_invokes++;
duke@435 1895 _loop_work += unique;
duke@435 1896 #endif
duke@435 1897
duke@435 1898 // True if the method has at least 1 irreducible loop
duke@435 1899 _has_irreducible_loops = false;
duke@435 1900
duke@435 1901 _created_loop_node = false;
duke@435 1902
duke@435 1903 Arena *a = Thread::current()->resource_area();
duke@435 1904 VectorSet visited(a);
duke@435 1905 // Pre-grow the mapping from Nodes to IdealLoopTrees.
duke@435 1906 _nodes.map(C->unique(), NULL);
duke@435 1907 memset(_nodes.adr(), 0, wordSize * C->unique());
duke@435 1908
duke@435 1909 // Pre-build the top-level outermost loop tree entry
duke@435 1910 _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
duke@435 1911 // Do not need a safepoint at the top level
duke@435 1912 _ltree_root->_has_sfpt = 1;
duke@435 1913
kvn@2727 1914 // Initialize Dominators.
kvn@2727 1915 // Checked in clone_loop_predicate() during beautify_loops().
kvn@2727 1916 _idom_size = 0;
kvn@2727 1917 _idom = NULL;
kvn@2727 1918 _dom_depth = NULL;
kvn@2727 1919 _dom_stk = NULL;
kvn@2727 1920
duke@435 1921 // Empty pre-order array
duke@435 1922 allocate_preorders();
duke@435 1923
duke@435 1924 // Build a loop tree on the fly. Build a mapping from CFG nodes to
duke@435 1925 // IdealLoopTree entries. Data nodes are NOT walked.
duke@435 1926 build_loop_tree();
duke@435 1927 // Check for bailout, and return
duke@435 1928 if (C->failing()) {
duke@435 1929 return;
duke@435 1930 }
duke@435 1931
duke@435 1932 // No loops after all
never@1356 1933 if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
duke@435 1934
duke@435 1935 // There should always be an outer loop containing the Root and Return nodes.
duke@435 1936 // If not, we have a degenerate empty program. Bail out in this case.
duke@435 1937 if (!has_node(C->root())) {
never@1356 1938 if (!_verify_only) {
never@1356 1939 C->clear_major_progress();
never@1356 1940 C->record_method_not_compilable("empty program detected during loop optimization");
never@1356 1941 }
duke@435 1942 return;
duke@435 1943 }
duke@435 1944
duke@435 1945 // Nothing to do, so get out
kvn@3311 1946 if( !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only ) {
duke@435 1947 _igvn.optimize(); // Cleanup NeverBranches
duke@435 1948 return;
duke@435 1949 }
duke@435 1950
duke@435 1951 // Set loop nesting depth
duke@435 1952 _ltree_root->set_nest( 0 );
duke@435 1953
duke@435 1954 // Split shared headers and insert loop landing pads.
duke@435 1955 // Do not bother doing this on the Root loop of course.
never@1356 1956 if( !_verify_me && !_verify_only && _ltree_root->_child ) {
never@2685 1957 C->print_method("Before beautify loops", 3);
duke@435 1958 if( _ltree_root->_child->beautify_loops( this ) ) {
duke@435 1959 // Re-build loop tree!
duke@435 1960 _ltree_root->_child = NULL;
duke@435 1961 _nodes.clear();
duke@435 1962 reallocate_preorders();
duke@435 1963 build_loop_tree();
duke@435 1964 // Check for bailout, and return
duke@435 1965 if (C->failing()) {
duke@435 1966 return;
duke@435 1967 }
duke@435 1968 // Reset loop nesting depth
duke@435 1969 _ltree_root->set_nest( 0 );
never@657 1970
never@657 1971 C->print_method("After beautify loops", 3);
duke@435 1972 }
duke@435 1973 }
duke@435 1974
duke@435 1975 // Build Dominators for elision of NULL checks & loop finding.
duke@435 1976 // Since nodes do not have a slot for immediate dominator, make
twisti@1040 1977 // a persistent side array for that info indexed on node->_idx.
duke@435 1978 _idom_size = C->unique();
duke@435 1979 _idom = NEW_RESOURCE_ARRAY( Node*, _idom_size );
duke@435 1980 _dom_depth = NEW_RESOURCE_ARRAY( uint, _idom_size );
duke@435 1981 _dom_stk = NULL; // Allocated on demand in recompute_dom_depth
duke@435 1982 memset( _dom_depth, 0, _idom_size * sizeof(uint) );
duke@435 1983
duke@435 1984 Dominators();
duke@435 1985
never@1356 1986 if (!_verify_only) {
never@1356 1987 // As a side effect, Dominators removed any unreachable CFG paths
never@1356 1988 // into RegionNodes. It doesn't do this test against Root, so
never@1356 1989 // we do it here.
never@1356 1990 for( uint i = 1; i < C->root()->req(); i++ ) {
never@1356 1991 if( !_nodes[C->root()->in(i)->_idx] ) { // Dead path into Root?
kvn@3847 1992 _igvn.delete_input_of(C->root(), i);
never@1356 1993 i--; // Rerun same iteration on compressed edges
never@1356 1994 }
duke@435 1995 }
never@1356 1996
never@1356 1997 // Given dominators, try to find inner loops with calls that must
never@1356 1998 // always be executed (call dominates loop tail). These loops do
never@1356 1999 // not need a separate safepoint.
never@1356 2000 Node_List cisstack(a);
never@1356 2001 _ltree_root->check_safepts(visited, cisstack);
duke@435 2002 }
duke@435 2003
duke@435 2004 // Walk the DATA nodes and place into loops. Find earliest control
duke@435 2005 // node. For CFG nodes, the _nodes array starts out and remains
duke@435 2006 // holding the associated IdealLoopTree pointer. For DATA nodes, the
duke@435 2007 // _nodes array holds the earliest legal controlling CFG node.
duke@435 2008
duke@435 2009 // Allocate stack with enough space to avoid frequent realloc
duke@435 2010 int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
duke@435 2011 Node_Stack nstack( a, stack_size );
duke@435 2012
duke@435 2013 visited.Clear();
duke@435 2014 Node_List worklist(a);
duke@435 2015 // Don't need C->root() on worklist since
duke@435 2016 // it will be processed among C->top() inputs
duke@435 2017 worklist.push( C->top() );
duke@435 2018 visited.set( C->top()->_idx ); // Set C->top() as visited now
never@1356 2019 build_loop_early( visited, worklist, nstack );
duke@435 2020
duke@435 2021 // Given early legal placement, try finding counted loops. This placement
duke@435 2022 // is good enough to discover most loop invariants.
never@1356 2023 if( !_verify_me && !_verify_only )
duke@435 2024 _ltree_root->counted_loop( this );
duke@435 2025
duke@435 2026 // Find latest loop placement. Find ideal loop placement.
duke@435 2027 visited.Clear();
duke@435 2028 init_dom_lca_tags();
duke@435 2029 // Need C->root() on worklist when processing outs
duke@435 2030 worklist.push( C->root() );
duke@435 2031 NOT_PRODUCT( C->verify_graph_edges(); )
duke@435 2032 worklist.push( C->top() );
never@1356 2033 build_loop_late( visited, worklist, nstack );
never@1356 2034
never@1356 2035 if (_verify_only) {
never@1356 2036 // restore major progress flag
never@1356 2037 for (int i = 0; i < old_progress; i++)
never@1356 2038 C->set_major_progress();
never@1356 2039 assert(C->unique() == unique, "verification mode made Nodes? ? ?");
never@2685 2040 assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
never@1356 2041 return;
never@1356 2042 }
duke@435 2043
kvn@2727 2044 // Some parser-inserted loop predicates could never be used by loop
kvn@2727 2045 // predication or they were moved away from loop during some optimizations.
kvn@2727 2046 // For example, peeling. Eliminate them before next loop optimizations.
kvn@2877 2047 if (UseLoopPredicate || LoopLimitCheck) {
cfang@1607 2048 eliminate_useless_predicates();
cfang@1607 2049 }
cfang@1607 2050
duke@435 2051 // clear out the dead code
duke@435 2052 while(_deadlist.size()) {
never@1356 2053 _igvn.remove_globally_dead_node(_deadlist.pop());
duke@435 2054 }
duke@435 2055
duke@435 2056 #ifndef PRODUCT
duke@435 2057 C->verify_graph_edges();
kvn@2665 2058 if (_verify_me) { // Nested verify pass?
duke@435 2059 // Check to see if the verify mode is broken
duke@435 2060 assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
duke@435 2061 return;
duke@435 2062 }
kvn@2665 2063 if(VerifyLoopOptimizations) verify();
kvn@2665 2064 if(TraceLoopOpts && C->has_loops()) {
kvn@2665 2065 _ltree_root->dump();
kvn@2665 2066 }
duke@435 2067 #endif
duke@435 2068
kvn@3260 2069 if (skip_loop_opts) {
kvn@3260 2070 // Cleanup any modified bits
kvn@3260 2071 _igvn.optimize();
kvn@3260 2072
kvn@3260 2073 if (C->log() != NULL) {
kvn@3260 2074 log_loop_tree(_ltree_root, _ltree_root, C->log());
kvn@3260 2075 }
kvn@3260 2076 return;
kvn@3260 2077 }
kvn@3260 2078
duke@435 2079 if (ReassociateInvariants) {
duke@435 2080 // Reassociate invariants and prep for split_thru_phi
duke@435 2081 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
duke@435 2082 IdealLoopTree* lpt = iter.current();
duke@435 2083 if (!lpt->is_counted() || !lpt->is_inner()) continue;
duke@435 2084
duke@435 2085 lpt->reassociate_invariants(this);
duke@435 2086
duke@435 2087 // Because RCE opportunities can be masked by split_thru_phi,
duke@435 2088 // look for RCE candidates and inhibit split_thru_phi
duke@435 2089 // on just their loop-phi's for this pass of loop opts
cfang@1607 2090 if (SplitIfBlocks && do_split_ifs) {
duke@435 2091 if (lpt->policy_range_check(this)) {
kvn@474 2092 lpt->_rce_candidate = 1; // = true
duke@435 2093 }
duke@435 2094 }
duke@435 2095 }
duke@435 2096 }
duke@435 2097
duke@435 2098 // Check for aggressive application of split-if and other transforms
duke@435 2099 // that require basic-block info (like cloning through Phi's)
duke@435 2100 if( SplitIfBlocks && do_split_ifs ) {
duke@435 2101 visited.Clear();
duke@435 2102 split_if_with_blocks( visited, nstack );
duke@435 2103 NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
duke@435 2104 }
duke@435 2105
cfang@1607 2106 // Perform loop predication before iteration splitting
kvn@2727 2107 if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
cfang@1607 2108 _ltree_root->_child->loop_predication(this);
cfang@1607 2109 }
cfang@1607 2110
never@2118 2111 if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
never@2118 2112 if (do_intrinsify_fill()) {
never@2118 2113 C->set_major_progress();
never@2118 2114 }
never@2118 2115 }
never@2118 2116
duke@435 2117 // Perform iteration-splitting on inner loops. Split iterations to avoid
duke@435 2118 // range checks or one-shot null checks.
duke@435 2119
duke@435 2120 // If split-if's didn't hack the graph too bad (no CFG changes)
duke@435 2121 // then do loop opts.
cfang@1607 2122 if (C->has_loops() && !C->major_progress()) {
duke@435 2123 memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
duke@435 2124 _ltree_root->_child->iteration_split( this, worklist );
duke@435 2125 // No verify after peeling! GCM has hoisted code out of the loop.
duke@435 2126 // After peeling, the hoisted code could sink inside the peeled area.
duke@435 2127 // The peeling code does not try to recompute the best location for
duke@435 2128 // all the code before the peeled area, so the verify pass will always
duke@435 2129 // complain about it.
duke@435 2130 }
duke@435 2131 // Do verify graph edges in any case
duke@435 2132 NOT_PRODUCT( C->verify_graph_edges(); );
duke@435 2133
cfang@1607 2134 if (!do_split_ifs) {
duke@435 2135 // We saw major progress in Split-If to get here. We forced a
duke@435 2136 // pass with unrolling and not split-if, however more split-if's
duke@435 2137 // might make progress. If the unrolling didn't make progress
duke@435 2138 // then the major-progress flag got cleared and we won't try
duke@435 2139 // another round of Split-If. In particular the ever-common
duke@435 2140 // instance-of/check-cast pattern requires at least 2 rounds of
duke@435 2141 // Split-If to clear out.
duke@435 2142 C->set_major_progress();
duke@435 2143 }
duke@435 2144
duke@435 2145 // Repeat loop optimizations if new loops were seen
duke@435 2146 if (created_loop_node()) {
duke@435 2147 C->set_major_progress();
duke@435 2148 }
duke@435 2149
kvn@2727 2150 // Keep loop predicates and perform optimizations with them
kvn@2727 2151 // until no more loop optimizations could be done.
kvn@2727 2152 // After that switch predicates off and do more loop optimizations.
kvn@2727 2153 if (!C->major_progress() && (C->predicate_count() > 0)) {
kvn@2727 2154 C->cleanup_loop_predicates(_igvn);
kvn@2727 2155 #ifndef PRODUCT
kvn@2727 2156 if (TraceLoopOpts) {
kvn@2727 2157 tty->print_cr("PredicatesOff");
kvn@2727 2158 }
kvn@2727 2159 #endif
kvn@2727 2160 C->set_major_progress();
kvn@2727 2161 }
duke@435 2162
kvn@2727 2163 // Convert scalar to superword operations at the end of all loop opts.
duke@435 2164 if (UseSuperWord && C->has_loops() && !C->major_progress()) {
duke@435 2165 // SuperWord transform
duke@435 2166 SuperWord sw(this);
duke@435 2167 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
duke@435 2168 IdealLoopTree* lpt = iter.current();
duke@435 2169 if (lpt->is_counted()) {
duke@435 2170 sw.transform_loop(lpt);
duke@435 2171 }
duke@435 2172 }
duke@435 2173 }
duke@435 2174
duke@435 2175 // Cleanup any modified bits
duke@435 2176 _igvn.optimize();
duke@435 2177
never@802 2178 // disable assert until issue with split_flow_path is resolved (6742111)
never@802 2179 // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
never@802 2180 // "shouldn't introduce irreducible loops");
never@802 2181
never@802 2182 if (C->log() != NULL) {
never@802 2183 log_loop_tree(_ltree_root, _ltree_root, C->log());
never@802 2184 }
duke@435 2185 }
duke@435 2186
duke@435 2187 #ifndef PRODUCT
duke@435 2188 //------------------------------print_statistics-------------------------------
duke@435 2189 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
duke@435 2190 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
duke@435 2191 void PhaseIdealLoop::print_statistics() {
duke@435 2192 tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
duke@435 2193 }
duke@435 2194
duke@435 2195 //------------------------------verify-----------------------------------------
duke@435 2196 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
duke@435 2197 static int fail; // debug only, so its multi-thread dont care
duke@435 2198 void PhaseIdealLoop::verify() const {
duke@435 2199 int old_progress = C->major_progress();
duke@435 2200 ResourceMark rm;
never@1356 2201 PhaseIdealLoop loop_verify( _igvn, this );
duke@435 2202 VectorSet visited(Thread::current()->resource_area());
duke@435 2203
duke@435 2204 fail = 0;
duke@435 2205 verify_compare( C->root(), &loop_verify, visited );
duke@435 2206 assert( fail == 0, "verify loops failed" );
duke@435 2207 // Verify loop structure is the same
duke@435 2208 _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
duke@435 2209 // Reset major-progress. It was cleared by creating a verify version of
duke@435 2210 // PhaseIdealLoop.
duke@435 2211 for( int i=0; i<old_progress; i++ )
duke@435 2212 C->set_major_progress();
duke@435 2213 }
duke@435 2214
duke@435 2215 //------------------------------verify_compare---------------------------------
duke@435 2216 // Make sure me and the given PhaseIdealLoop agree on key data structures
duke@435 2217 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
duke@435 2218 if( !n ) return;
duke@435 2219 if( visited.test_set( n->_idx ) ) return;
duke@435 2220 if( !_nodes[n->_idx] ) { // Unreachable
duke@435 2221 assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
duke@435 2222 return;
duke@435 2223 }
duke@435 2224
duke@435 2225 uint i;
duke@435 2226 for( i = 0; i < n->req(); i++ )
duke@435 2227 verify_compare( n->in(i), loop_verify, visited );
duke@435 2228
duke@435 2229 // Check the '_nodes' block/loop structure
duke@435 2230 i = n->_idx;
duke@435 2231 if( has_ctrl(n) ) { // We have control; verify has loop or ctrl
duke@435 2232 if( _nodes[i] != loop_verify->_nodes[i] &&
duke@435 2233 get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
duke@435 2234 tty->print("Mismatched control setting for: ");
duke@435 2235 n->dump();
duke@435 2236 if( fail++ > 10 ) return;
duke@435 2237 Node *c = get_ctrl_no_update(n);
duke@435 2238 tty->print("We have it as: ");
duke@435 2239 if( c->in(0) ) c->dump();
duke@435 2240 else tty->print_cr("N%d",c->_idx);
duke@435 2241 tty->print("Verify thinks: ");
duke@435 2242 if( loop_verify->has_ctrl(n) )
duke@435 2243 loop_verify->get_ctrl_no_update(n)->dump();
duke@435 2244 else
duke@435 2245 loop_verify->get_loop_idx(n)->dump();
duke@435 2246 tty->cr();
duke@435 2247 }
duke@435 2248 } else { // We have a loop
duke@435 2249 IdealLoopTree *us = get_loop_idx(n);
duke@435 2250 if( loop_verify->has_ctrl(n) ) {
duke@435 2251 tty->print("Mismatched loop setting for: ");
duke@435 2252 n->dump();
duke@435 2253 if( fail++ > 10 ) return;
duke@435 2254 tty->print("We have it as: ");
duke@435 2255 us->dump();
duke@435 2256 tty->print("Verify thinks: ");
duke@435 2257 loop_verify->get_ctrl_no_update(n)->dump();
duke@435 2258 tty->cr();
duke@435 2259 } else if (!C->major_progress()) {
duke@435 2260 // Loop selection can be messed up if we did a major progress
duke@435 2261 // operation, like split-if. Do not verify in that case.
duke@435 2262 IdealLoopTree *them = loop_verify->get_loop_idx(n);
duke@435 2263 if( us->_head != them->_head || us->_tail != them->_tail ) {
duke@435 2264 tty->print("Unequals loops for: ");
duke@435 2265 n->dump();
duke@435 2266 if( fail++ > 10 ) return;
duke@435 2267 tty->print("We have it as: ");
duke@435 2268 us->dump();
duke@435 2269 tty->print("Verify thinks: ");
duke@435 2270 them->dump();
duke@435 2271 tty->cr();
duke@435 2272 }
duke@435 2273 }
duke@435 2274 }
duke@435 2275
duke@435 2276 // Check for immediate dominators being equal
duke@435 2277 if( i >= _idom_size ) {
duke@435 2278 if( !n->is_CFG() ) return;
duke@435 2279 tty->print("CFG Node with no idom: ");
duke@435 2280 n->dump();
duke@435 2281 return;
duke@435 2282 }
duke@435 2283 if( !n->is_CFG() ) return;
duke@435 2284 if( n == C->root() ) return; // No IDOM here
duke@435 2285
duke@435 2286 assert(n->_idx == i, "sanity");
duke@435 2287 Node *id = idom_no_update(n);
duke@435 2288 if( id != loop_verify->idom_no_update(n) ) {
duke@435 2289 tty->print("Unequals idoms for: ");
duke@435 2290 n->dump();
duke@435 2291 if( fail++ > 10 ) return;
duke@435 2292 tty->print("We have it as: ");
duke@435 2293 id->dump();
duke@435 2294 tty->print("Verify thinks: ");
duke@435 2295 loop_verify->idom_no_update(n)->dump();
duke@435 2296 tty->cr();
duke@435 2297 }
duke@435 2298
duke@435 2299 }
duke@435 2300
duke@435 2301 //------------------------------verify_tree------------------------------------
duke@435 2302 // Verify that tree structures match. Because the CFG can change, siblings
duke@435 2303 // within the loop tree can be reordered. We attempt to deal with that by
duke@435 2304 // reordering the verify's loop tree if possible.
duke@435 2305 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
duke@435 2306 assert( _parent == parent, "Badly formed loop tree" );
duke@435 2307
duke@435 2308 // Siblings not in same order? Attempt to re-order.
duke@435 2309 if( _head != loop->_head ) {
duke@435 2310 // Find _next pointer to update
duke@435 2311 IdealLoopTree **pp = &loop->_parent->_child;
duke@435 2312 while( *pp != loop )
duke@435 2313 pp = &((*pp)->_next);
duke@435 2314 // Find proper sibling to be next
duke@435 2315 IdealLoopTree **nn = &loop->_next;
duke@435 2316 while( (*nn) && (*nn)->_head != _head )
duke@435 2317 nn = &((*nn)->_next);
duke@435 2318
duke@435 2319 // Check for no match.
duke@435 2320 if( !(*nn) ) {
duke@435 2321 // Annoyingly, irreducible loops can pick different headers
duke@435 2322 // after a major_progress operation, so the rest of the loop
duke@435 2323 // tree cannot be matched.
duke@435 2324 if (_irreducible && Compile::current()->major_progress()) return;
duke@435 2325 assert( 0, "failed to match loop tree" );
duke@435 2326 }
duke@435 2327
duke@435 2328 // Move (*nn) to (*pp)
duke@435 2329 IdealLoopTree *hit = *nn;
duke@435 2330 *nn = hit->_next;
duke@435 2331 hit->_next = loop;
duke@435 2332 *pp = loop;
duke@435 2333 loop = hit;
duke@435 2334 // Now try again to verify
duke@435 2335 }
duke@435 2336
duke@435 2337 assert( _head == loop->_head , "mismatched loop head" );
duke@435 2338 Node *tail = _tail; // Inline a non-updating version of
duke@435 2339 while( !tail->in(0) ) // the 'tail()' call.
duke@435 2340 tail = tail->in(1);
duke@435 2341 assert( tail == loop->_tail, "mismatched loop tail" );
duke@435 2342
duke@435 2343 // Counted loops that are guarded should be able to find their guards
duke@435 2344 if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
duke@435 2345 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 2346 Node *init = cl->init_trip();
duke@435 2347 Node *ctrl = cl->in(LoopNode::EntryControl);
duke@435 2348 assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
duke@435 2349 Node *iff = ctrl->in(0);
duke@435 2350 assert( iff->Opcode() == Op_If, "" );
duke@435 2351 Node *bol = iff->in(1);
duke@435 2352 assert( bol->Opcode() == Op_Bool, "" );
duke@435 2353 Node *cmp = bol->in(1);
duke@435 2354 assert( cmp->Opcode() == Op_CmpI, "" );
duke@435 2355 Node *add = cmp->in(1);
duke@435 2356 Node *opaq;
duke@435 2357 if( add->Opcode() == Op_Opaque1 ) {
duke@435 2358 opaq = add;
duke@435 2359 } else {
duke@435 2360 assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
duke@435 2361 assert( add == init, "" );
duke@435 2362 opaq = cmp->in(2);
duke@435 2363 }
duke@435 2364 assert( opaq->Opcode() == Op_Opaque1, "" );
duke@435 2365
duke@435 2366 }
duke@435 2367
duke@435 2368 if (_child != NULL) _child->verify_tree(loop->_child, this);
duke@435 2369 if (_next != NULL) _next ->verify_tree(loop->_next, parent);
duke@435 2370 // Innermost loops need to verify loop bodies,
duke@435 2371 // but only if no 'major_progress'
duke@435 2372 int fail = 0;
duke@435 2373 if (!Compile::current()->major_progress() && _child == NULL) {
duke@435 2374 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 2375 Node *n = _body.at(i);
duke@435 2376 if (n->outcnt() == 0) continue; // Ignore dead
duke@435 2377 uint j;
duke@435 2378 for( j = 0; j < loop->_body.size(); j++ )
duke@435 2379 if( loop->_body.at(j) == n )
duke@435 2380 break;
duke@435 2381 if( j == loop->_body.size() ) { // Not found in loop body
duke@435 2382 // Last ditch effort to avoid assertion: Its possible that we
duke@435 2383 // have some users (so outcnt not zero) but are still dead.
duke@435 2384 // Try to find from root.
duke@435 2385 if (Compile::current()->root()->find(n->_idx)) {
duke@435 2386 fail++;
duke@435 2387 tty->print("We have that verify does not: ");
duke@435 2388 n->dump();
duke@435 2389 }
duke@435 2390 }
duke@435 2391 }
duke@435 2392 for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
duke@435 2393 Node *n = loop->_body.at(i2);
duke@435 2394 if (n->outcnt() == 0) continue; // Ignore dead
duke@435 2395 uint j;
duke@435 2396 for( j = 0; j < _body.size(); j++ )
duke@435 2397 if( _body.at(j) == n )
duke@435 2398 break;
duke@435 2399 if( j == _body.size() ) { // Not found in loop body
duke@435 2400 // Last ditch effort to avoid assertion: Its possible that we
duke@435 2401 // have some users (so outcnt not zero) but are still dead.
duke@435 2402 // Try to find from root.
duke@435 2403 if (Compile::current()->root()->find(n->_idx)) {
duke@435 2404 fail++;
duke@435 2405 tty->print("Verify has that we do not: ");
duke@435 2406 n->dump();
duke@435 2407 }
duke@435 2408 }
duke@435 2409 }
duke@435 2410 assert( !fail, "loop body mismatch" );
duke@435 2411 }
duke@435 2412 }
duke@435 2413
duke@435 2414 #endif
duke@435 2415
duke@435 2416 //------------------------------set_idom---------------------------------------
duke@435 2417 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
duke@435 2418 uint idx = d->_idx;
duke@435 2419 if (idx >= _idom_size) {
duke@435 2420 uint newsize = _idom_size<<1;
duke@435 2421 while( idx >= newsize ) {
duke@435 2422 newsize <<= 1;
duke@435 2423 }
duke@435 2424 _idom = REALLOC_RESOURCE_ARRAY( Node*, _idom,_idom_size,newsize);
duke@435 2425 _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
duke@435 2426 memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
duke@435 2427 _idom_size = newsize;
duke@435 2428 }
duke@435 2429 _idom[idx] = n;
duke@435 2430 _dom_depth[idx] = dom_depth;
duke@435 2431 }
duke@435 2432
duke@435 2433 //------------------------------recompute_dom_depth---------------------------------------
duke@435 2434 // The dominator tree is constructed with only parent pointers.
duke@435 2435 // This recomputes the depth in the tree by first tagging all
duke@435 2436 // nodes as "no depth yet" marker. The next pass then runs up
duke@435 2437 // the dom tree from each node marked "no depth yet", and computes
duke@435 2438 // the depth on the way back down.
duke@435 2439 void PhaseIdealLoop::recompute_dom_depth() {
duke@435 2440 uint no_depth_marker = C->unique();
duke@435 2441 uint i;
duke@435 2442 // Initialize depth to "no depth yet"
duke@435 2443 for (i = 0; i < _idom_size; i++) {
duke@435 2444 if (_dom_depth[i] > 0 && _idom[i] != NULL) {
duke@435 2445 _dom_depth[i] = no_depth_marker;
duke@435 2446 }
duke@435 2447 }
duke@435 2448 if (_dom_stk == NULL) {
duke@435 2449 uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
duke@435 2450 if (init_size < 10) init_size = 10;
kvn@2555 2451 _dom_stk = new GrowableArray<uint>(init_size);
duke@435 2452 }
duke@435 2453 // Compute new depth for each node.
duke@435 2454 for (i = 0; i < _idom_size; i++) {
duke@435 2455 uint j = i;
duke@435 2456 // Run up the dom tree to find a node with a depth
duke@435 2457 while (_dom_depth[j] == no_depth_marker) {
duke@435 2458 _dom_stk->push(j);
duke@435 2459 j = _idom[j]->_idx;
duke@435 2460 }
duke@435 2461 // Compute the depth on the way back down this tree branch
duke@435 2462 uint dd = _dom_depth[j] + 1;
duke@435 2463 while (_dom_stk->length() > 0) {
duke@435 2464 uint j = _dom_stk->pop();
duke@435 2465 _dom_depth[j] = dd;
duke@435 2466 dd++;
duke@435 2467 }
duke@435 2468 }
duke@435 2469 }
duke@435 2470
duke@435 2471 //------------------------------sort-------------------------------------------
duke@435 2472 // Insert 'loop' into the existing loop tree. 'innermost' is a leaf of the
duke@435 2473 // loop tree, not the root.
duke@435 2474 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
duke@435 2475 if( !innermost ) return loop; // New innermost loop
duke@435 2476
duke@435 2477 int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
duke@435 2478 assert( loop_preorder, "not yet post-walked loop" );
duke@435 2479 IdealLoopTree **pp = &innermost; // Pointer to previous next-pointer
duke@435 2480 IdealLoopTree *l = *pp; // Do I go before or after 'l'?
duke@435 2481
duke@435 2482 // Insert at start of list
duke@435 2483 while( l ) { // Insertion sort based on pre-order
duke@435 2484 if( l == loop ) return innermost; // Already on list!
duke@435 2485 int l_preorder = get_preorder(l->_head); // Cache pre-order number
duke@435 2486 assert( l_preorder, "not yet post-walked l" );
duke@435 2487 // Check header pre-order number to figure proper nesting
duke@435 2488 if( loop_preorder > l_preorder )
duke@435 2489 break; // End of insertion
duke@435 2490 // If headers tie (e.g., shared headers) check tail pre-order numbers.
duke@435 2491 // Since I split shared headers, you'd think this could not happen.
duke@435 2492 // BUT: I must first do the preorder numbering before I can discover I
duke@435 2493 // have shared headers, so the split headers all get the same preorder
duke@435 2494 // number as the RegionNode they split from.
duke@435 2495 if( loop_preorder == l_preorder &&
duke@435 2496 get_preorder(loop->_tail) < get_preorder(l->_tail) )
duke@435 2497 break; // Also check for shared headers (same pre#)
duke@435 2498 pp = &l->_parent; // Chain up list
duke@435 2499 l = *pp;
duke@435 2500 }
duke@435 2501 // Link into list
duke@435 2502 // Point predecessor to me
duke@435 2503 *pp = loop;
duke@435 2504 // Point me to successor
duke@435 2505 IdealLoopTree *p = loop->_parent;
duke@435 2506 loop->_parent = l; // Point me to successor
duke@435 2507 if( p ) sort( p, innermost ); // Insert my parents into list as well
duke@435 2508 return innermost;
duke@435 2509 }
duke@435 2510
duke@435 2511 //------------------------------build_loop_tree--------------------------------
duke@435 2512 // I use a modified Vick/Tarjan algorithm. I need pre- and a post- visit
duke@435 2513 // bits. The _nodes[] array is mapped by Node index and holds a NULL for
duke@435 2514 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
duke@435 2515 // tightest enclosing IdealLoopTree for post-walked.
duke@435 2516 //
duke@435 2517 // During my forward walk I do a short 1-layer lookahead to see if I can find
duke@435 2518 // a loop backedge with that doesn't have any work on the backedge. This
duke@435 2519 // helps me construct nested loops with shared headers better.
duke@435 2520 //
duke@435 2521 // Once I've done the forward recursion, I do the post-work. For each child
duke@435 2522 // I check to see if there is a backedge. Backedges define a loop! I
duke@435 2523 // insert an IdealLoopTree at the target of the backedge.
duke@435 2524 //
duke@435 2525 // During the post-work I also check to see if I have several children
duke@435 2526 // belonging to different loops. If so, then this Node is a decision point
duke@435 2527 // where control flow can choose to change loop nests. It is at this
duke@435 2528 // decision point where I can figure out how loops are nested. At this
duke@435 2529 // time I can properly order the different loop nests from my children.
duke@435 2530 // Note that there may not be any backedges at the decision point!
duke@435 2531 //
duke@435 2532 // Since the decision point can be far removed from the backedges, I can't
duke@435 2533 // order my loops at the time I discover them. Thus at the decision point
duke@435 2534 // I need to inspect loop header pre-order numbers to properly nest my
duke@435 2535 // loops. This means I need to sort my childrens' loops by pre-order.
duke@435 2536 // The sort is of size number-of-control-children, which generally limits
duke@435 2537 // it to size 2 (i.e., I just choose between my 2 target loops).
duke@435 2538 void PhaseIdealLoop::build_loop_tree() {
duke@435 2539 // Allocate stack of size C->unique()/2 to avoid frequent realloc
duke@435 2540 GrowableArray <Node *> bltstack(C->unique() >> 1);
duke@435 2541 Node *n = C->root();
duke@435 2542 bltstack.push(n);
duke@435 2543 int pre_order = 1;
duke@435 2544 int stack_size;
duke@435 2545
duke@435 2546 while ( ( stack_size = bltstack.length() ) != 0 ) {
duke@435 2547 n = bltstack.top(); // Leave node on stack
duke@435 2548 if ( !is_visited(n) ) {
duke@435 2549 // ---- Pre-pass Work ----
duke@435 2550 // Pre-walked but not post-walked nodes need a pre_order number.
duke@435 2551
duke@435 2552 set_preorder_visited( n, pre_order ); // set as visited
duke@435 2553
duke@435 2554 // ---- Scan over children ----
duke@435 2555 // Scan first over control projections that lead to loop headers.
duke@435 2556 // This helps us find inner-to-outer loops with shared headers better.
duke@435 2557
duke@435 2558 // Scan children's children for loop headers.
duke@435 2559 for ( int i = n->outcnt() - 1; i >= 0; --i ) {
duke@435 2560 Node* m = n->raw_out(i); // Child
duke@435 2561 if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
duke@435 2562 // Scan over children's children to find loop
duke@435 2563 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
duke@435 2564 Node* l = m->fast_out(j);
duke@435 2565 if( is_visited(l) && // Been visited?
duke@435 2566 !is_postvisited(l) && // But not post-visited
duke@435 2567 get_preorder(l) < pre_order ) { // And smaller pre-order
duke@435 2568 // Found! Scan the DFS down this path before doing other paths
duke@435 2569 bltstack.push(m);
duke@435 2570 break;
duke@435 2571 }
duke@435 2572 }
duke@435 2573 }
duke@435 2574 }
duke@435 2575 pre_order++;
duke@435 2576 }
duke@435 2577 else if ( !is_postvisited(n) ) {
duke@435 2578 // Note: build_loop_tree_impl() adds out edges on rare occasions,
duke@435 2579 // such as com.sun.rsasign.am::a.
duke@435 2580 // For non-recursive version, first, process current children.
duke@435 2581 // On next iteration, check if additional children were added.
duke@435 2582 for ( int k = n->outcnt() - 1; k >= 0; --k ) {
duke@435 2583 Node* u = n->raw_out(k);
duke@435 2584 if ( u->is_CFG() && !is_visited(u) ) {
duke@435 2585 bltstack.push(u);
duke@435 2586 }
duke@435 2587 }
duke@435 2588 if ( bltstack.length() == stack_size ) {
duke@435 2589 // There were no additional children, post visit node now
duke@435 2590 (void)bltstack.pop(); // Remove node from stack
duke@435 2591 pre_order = build_loop_tree_impl( n, pre_order );
duke@435 2592 // Check for bailout
duke@435 2593 if (C->failing()) {
duke@435 2594 return;
duke@435 2595 }
duke@435 2596 // Check to grow _preorders[] array for the case when
duke@435 2597 // build_loop_tree_impl() adds new nodes.
duke@435 2598 check_grow_preorders();
duke@435 2599 }
duke@435 2600 }
duke@435 2601 else {
duke@435 2602 (void)bltstack.pop(); // Remove post-visited node from stack
duke@435 2603 }
duke@435 2604 }
duke@435 2605 }
duke@435 2606
duke@435 2607 //------------------------------build_loop_tree_impl---------------------------
duke@435 2608 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
duke@435 2609 // ---- Post-pass Work ----
duke@435 2610 // Pre-walked but not post-walked nodes need a pre_order number.
duke@435 2611
duke@435 2612 // Tightest enclosing loop for this Node
duke@435 2613 IdealLoopTree *innermost = NULL;
duke@435 2614
duke@435 2615 // For all children, see if any edge is a backedge. If so, make a loop
duke@435 2616 // for it. Then find the tightest enclosing loop for the self Node.
duke@435 2617 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 2618 Node* m = n->fast_out(i); // Child
duke@435 2619 if( n == m ) continue; // Ignore control self-cycles
duke@435 2620 if( !m->is_CFG() ) continue;// Ignore non-CFG edges
duke@435 2621
duke@435 2622 IdealLoopTree *l; // Child's loop
duke@435 2623 if( !is_postvisited(m) ) { // Child visited but not post-visited?
duke@435 2624 // Found a backedge
duke@435 2625 assert( get_preorder(m) < pre_order, "should be backedge" );
duke@435 2626 // Check for the RootNode, which is already a LoopNode and is allowed
duke@435 2627 // to have multiple "backedges".
duke@435 2628 if( m == C->root()) { // Found the root?
duke@435 2629 l = _ltree_root; // Root is the outermost LoopNode
duke@435 2630 } else { // Else found a nested loop
duke@435 2631 // Insert a LoopNode to mark this loop.
duke@435 2632 l = new IdealLoopTree(this, m, n);
duke@435 2633 } // End of Else found a nested loop
duke@435 2634 if( !has_loop(m) ) // If 'm' does not already have a loop set
duke@435 2635 set_loop(m, l); // Set loop header to loop now
duke@435 2636
duke@435 2637 } else { // Else not a nested loop
duke@435 2638 if( !_nodes[m->_idx] ) continue; // Dead code has no loop
duke@435 2639 l = get_loop(m); // Get previously determined loop
duke@435 2640 // If successor is header of a loop (nest), move up-loop till it
duke@435 2641 // is a member of some outer enclosing loop. Since there are no
duke@435 2642 // shared headers (I've split them already) I only need to go up
duke@435 2643 // at most 1 level.
duke@435 2644 while( l && l->_head == m ) // Successor heads loop?
duke@435 2645 l = l->_parent; // Move up 1 for me
duke@435 2646 // If this loop is not properly parented, then this loop
duke@435 2647 // has no exit path out, i.e. its an infinite loop.
duke@435 2648 if( !l ) {
duke@435 2649 // Make loop "reachable" from root so the CFG is reachable. Basically
duke@435 2650 // insert a bogus loop exit that is never taken. 'm', the loop head,
duke@435 2651 // points to 'n', one (of possibly many) fall-in paths. There may be
duke@435 2652 // many backedges as well.
duke@435 2653
duke@435 2654 // Here I set the loop to be the root loop. I could have, after
duke@435 2655 // inserting a bogus loop exit, restarted the recursion and found my
duke@435 2656 // new loop exit. This would make the infinite loop a first-class
duke@435 2657 // loop and it would then get properly optimized. What's the use of
duke@435 2658 // optimizing an infinite loop?
duke@435 2659 l = _ltree_root; // Oops, found infinite loop
duke@435 2660
never@1356 2661 if (!_verify_only) {
never@1356 2662 // Insert the NeverBranch between 'm' and it's control user.
never@1356 2663 NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
never@1356 2664 _igvn.register_new_node_with_optimizer(iff);
never@1356 2665 set_loop(iff, l);
never@1356 2666 Node *if_t = new (C, 1) CProjNode( iff, 0 );
never@1356 2667 _igvn.register_new_node_with_optimizer(if_t);
never@1356 2668 set_loop(if_t, l);
duke@435 2669
never@1356 2670 Node* cfg = NULL; // Find the One True Control User of m
never@1356 2671 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
never@1356 2672 Node* x = m->fast_out(j);
never@1356 2673 if (x->is_CFG() && x != m && x != iff)
never@1356 2674 { cfg = x; break; }
never@1356 2675 }
never@1356 2676 assert(cfg != NULL, "must find the control user of m");
never@1356 2677 uint k = 0; // Probably cfg->in(0)
never@1356 2678 while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
never@1356 2679 cfg->set_req( k, if_t ); // Now point to NeverBranch
never@1356 2680
never@1356 2681 // Now create the never-taken loop exit
never@1356 2682 Node *if_f = new (C, 1) CProjNode( iff, 1 );
never@1356 2683 _igvn.register_new_node_with_optimizer(if_f);
never@1356 2684 set_loop(if_f, l);
never@1356 2685 // Find frame ptr for Halt. Relies on the optimizer
never@1356 2686 // V-N'ing. Easier and quicker than searching through
never@1356 2687 // the program structure.
never@1356 2688 Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
never@1356 2689 _igvn.register_new_node_with_optimizer(frame);
never@1356 2690 // Halt & Catch Fire
never@1356 2691 Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
never@1356 2692 _igvn.register_new_node_with_optimizer(halt);
never@1356 2693 set_loop(halt, l);
never@1356 2694 C->root()->add_req(halt);
duke@435 2695 }
duke@435 2696 set_loop(C->root(), _ltree_root);
duke@435 2697 }
duke@435 2698 }
duke@435 2699 // Weeny check for irreducible. This child was already visited (this
duke@435 2700 // IS the post-work phase). Is this child's loop header post-visited
duke@435 2701 // as well? If so, then I found another entry into the loop.
never@1356 2702 if (!_verify_only) {
never@1356 2703 while( is_postvisited(l->_head) ) {
never@1356 2704 // found irreducible
never@1356 2705 l->_irreducible = 1; // = true
never@1356 2706 l = l->_parent;
never@1356 2707 _has_irreducible_loops = true;
never@1356 2708 // Check for bad CFG here to prevent crash, and bailout of compile
never@1356 2709 if (l == NULL) {
never@1356 2710 C->record_method_not_compilable("unhandled CFG detected during loop optimization");
never@1356 2711 return pre_order;
never@1356 2712 }
duke@435 2713 }
duke@435 2714 }
duke@435 2715
duke@435 2716 // This Node might be a decision point for loops. It is only if
duke@435 2717 // it's children belong to several different loops. The sort call
duke@435 2718 // does a trivial amount of work if there is only 1 child or all
duke@435 2719 // children belong to the same loop. If however, the children
duke@435 2720 // belong to different loops, the sort call will properly set the
duke@435 2721 // _parent pointers to show how the loops nest.
duke@435 2722 //
duke@435 2723 // In any case, it returns the tightest enclosing loop.
duke@435 2724 innermost = sort( l, innermost );
duke@435 2725 }
duke@435 2726
duke@435 2727 // Def-use info will have some dead stuff; dead stuff will have no
duke@435 2728 // loop decided on.
duke@435 2729
duke@435 2730 // Am I a loop header? If so fix up my parent's child and next ptrs.
duke@435 2731 if( innermost && innermost->_head == n ) {
duke@435 2732 assert( get_loop(n) == innermost, "" );
duke@435 2733 IdealLoopTree *p = innermost->_parent;
duke@435 2734 IdealLoopTree *l = innermost;
duke@435 2735 while( p && l->_head == n ) {
duke@435 2736 l->_next = p->_child; // Put self on parents 'next child'
duke@435 2737 p->_child = l; // Make self as first child of parent
duke@435 2738 l = p; // Now walk up the parent chain
duke@435 2739 p = l->_parent;
duke@435 2740 }
duke@435 2741 } else {
duke@435 2742 // Note that it is possible for a LoopNode to reach here, if the
duke@435 2743 // backedge has been made unreachable (hence the LoopNode no longer
duke@435 2744 // denotes a Loop, and will eventually be removed).
duke@435 2745
duke@435 2746 // Record tightest enclosing loop for self. Mark as post-visited.
duke@435 2747 set_loop(n, innermost);
duke@435 2748 // Also record has_call flag early on
duke@435 2749 if( innermost ) {
duke@435 2750 if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
duke@435 2751 // Do not count uncommon calls
duke@435 2752 if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
duke@435 2753 Node *iff = n->in(0)->in(0);
kvn@3882 2754 // No any calls for vectorized loops.
kvn@3882 2755 if( UseSuperWord || !iff->is_If() ||
duke@435 2756 (n->in(0)->Opcode() == Op_IfFalse &&
duke@435 2757 (1.0 - iff->as_If()->_prob) >= 0.01) ||
duke@435 2758 (iff->as_If()->_prob >= 0.01) )
duke@435 2759 innermost->_has_call = 1;
duke@435 2760 }
kvn@474 2761 } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
kvn@474 2762 // Disable loop optimizations if the loop has a scalar replaceable
kvn@474 2763 // allocation. This disabling may cause a potential performance lost
kvn@474 2764 // if the allocation is not eliminated for some reason.
kvn@474 2765 innermost->_allow_optimizations = false;
kvn@474 2766 innermost->_has_call = 1; // = true
duke@435 2767 }
duke@435 2768 }
duke@435 2769 }
duke@435 2770
duke@435 2771 // Flag as post-visited now
duke@435 2772 set_postvisited(n);
duke@435 2773 return pre_order;
duke@435 2774 }
duke@435 2775
duke@435 2776
duke@435 2777 //------------------------------build_loop_early-------------------------------
duke@435 2778 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
duke@435 2779 // First pass computes the earliest controlling node possible. This is the
duke@435 2780 // controlling input with the deepest dominating depth.
never@1356 2781 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
duke@435 2782 while (worklist.size() != 0) {
duke@435 2783 // Use local variables nstack_top_n & nstack_top_i to cache values
duke@435 2784 // on nstack's top.
duke@435 2785 Node *nstack_top_n = worklist.pop();
duke@435 2786 uint nstack_top_i = 0;
duke@435 2787 //while_nstack_nonempty:
duke@435 2788 while (true) {
duke@435 2789 // Get parent node and next input's index from stack's top.
duke@435 2790 Node *n = nstack_top_n;
duke@435 2791 uint i = nstack_top_i;
duke@435 2792 uint cnt = n->req(); // Count of inputs
duke@435 2793 if (i == 0) { // Pre-process the node.
duke@435 2794 if( has_node(n) && // Have either loop or control already?
duke@435 2795 !has_ctrl(n) ) { // Have loop picked out already?
duke@435 2796 // During "merge_many_backedges" we fold up several nested loops
duke@435 2797 // into a single loop. This makes the members of the original
duke@435 2798 // loop bodies pointing to dead loops; they need to move up
duke@435 2799 // to the new UNION'd larger loop. I set the _head field of these
duke@435 2800 // dead loops to NULL and the _parent field points to the owning
duke@435 2801 // loop. Shades of UNION-FIND algorithm.
duke@435 2802 IdealLoopTree *ilt;
duke@435 2803 while( !(ilt = get_loop(n))->_head ) {
duke@435 2804 // Normally I would use a set_loop here. But in this one special
duke@435 2805 // case, it is legal (and expected) to change what loop a Node
duke@435 2806 // belongs to.
duke@435 2807 _nodes.map(n->_idx, (Node*)(ilt->_parent) );
duke@435 2808 }
duke@435 2809 // Remove safepoints ONLY if I've already seen I don't need one.
duke@435 2810 // (the old code here would yank a 2nd safepoint after seeing a
duke@435 2811 // first one, even though the 1st did not dominate in the loop body
duke@435 2812 // and thus could be avoided indefinitely)
never@1356 2813 if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
duke@435 2814 is_deleteable_safept(n)) {
duke@435 2815 Node *in = n->in(TypeFunc::Control);
duke@435 2816 lazy_replace(n,in); // Pull safepoint now
duke@435 2817 // Carry on with the recursion "as if" we are walking
duke@435 2818 // only the control input
duke@435 2819 if( !visited.test_set( in->_idx ) ) {
duke@435 2820 worklist.push(in); // Visit this guy later, using worklist
duke@435 2821 }
duke@435 2822 // Get next node from nstack:
duke@435 2823 // - skip n's inputs processing by setting i > cnt;
duke@435 2824 // - we also will not call set_early_ctrl(n) since
duke@435 2825 // has_node(n) == true (see the condition above).
duke@435 2826 i = cnt + 1;
duke@435 2827 }
duke@435 2828 }
duke@435 2829 } // if (i == 0)
duke@435 2830
duke@435 2831 // Visit all inputs
duke@435 2832 bool done = true; // Assume all n's inputs will be processed
duke@435 2833 while (i < cnt) {
duke@435 2834 Node *in = n->in(i);
duke@435 2835 ++i;
duke@435 2836 if (in == NULL) continue;
duke@435 2837 if (in->pinned() && !in->is_CFG())
duke@435 2838 set_ctrl(in, in->in(0));
duke@435 2839 int is_visited = visited.test_set( in->_idx );
duke@435 2840 if (!has_node(in)) { // No controlling input yet?
duke@435 2841 assert( !in->is_CFG(), "CFG Node with no controlling input?" );
duke@435 2842 assert( !is_visited, "visit only once" );
duke@435 2843 nstack.push(n, i); // Save parent node and next input's index.
duke@435 2844 nstack_top_n = in; // Process current input now.
duke@435 2845 nstack_top_i = 0;
duke@435 2846 done = false; // Not all n's inputs processed.
duke@435 2847 break; // continue while_nstack_nonempty;
duke@435 2848 } else if (!is_visited) {
duke@435 2849 // This guy has a location picked out for him, but has not yet
duke@435 2850 // been visited. Happens to all CFG nodes, for instance.
duke@435 2851 // Visit him using the worklist instead of recursion, to break
duke@435 2852 // cycles. Since he has a location already we do not need to
duke@435 2853 // find his location before proceeding with the current Node.
duke@435 2854 worklist.push(in); // Visit this guy later, using worklist
duke@435 2855 }
duke@435 2856 }
duke@435 2857 if (done) {
duke@435 2858 // All of n's inputs have been processed, complete post-processing.
duke@435 2859
twisti@1040 2860 // Compute earliest point this Node can go.
duke@435 2861 // CFG, Phi, pinned nodes already know their controlling input.
duke@435 2862 if (!has_node(n)) {
duke@435 2863 // Record earliest legal location
duke@435 2864 set_early_ctrl( n );
duke@435 2865 }
duke@435 2866 if (nstack.is_empty()) {
duke@435 2867 // Finished all nodes on stack.
duke@435 2868 // Process next node on the worklist.
duke@435 2869 break;
duke@435 2870 }
duke@435 2871 // Get saved parent node and next input's index.
duke@435 2872 nstack_top_n = nstack.node();
duke@435 2873 nstack_top_i = nstack.index();
duke@435 2874 nstack.pop();
duke@435 2875 }
duke@435 2876 } // while (true)
duke@435 2877 }
duke@435 2878 }
duke@435 2879
duke@435 2880 //------------------------------dom_lca_internal--------------------------------
duke@435 2881 // Pair-wise LCA
duke@435 2882 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
duke@435 2883 if( !n1 ) return n2; // Handle NULL original LCA
duke@435 2884 assert( n1->is_CFG(), "" );
duke@435 2885 assert( n2->is_CFG(), "" );
duke@435 2886 // find LCA of all uses
duke@435 2887 uint d1 = dom_depth(n1);
duke@435 2888 uint d2 = dom_depth(n2);
duke@435 2889 while (n1 != n2) {
duke@435 2890 if (d1 > d2) {
duke@435 2891 n1 = idom(n1);
duke@435 2892 d1 = dom_depth(n1);
duke@435 2893 } else if (d1 < d2) {
duke@435 2894 n2 = idom(n2);
duke@435 2895 d2 = dom_depth(n2);
duke@435 2896 } else {
duke@435 2897 // Here d1 == d2. Due to edits of the dominator-tree, sections
duke@435 2898 // of the tree might have the same depth. These sections have
duke@435 2899 // to be searched more carefully.
duke@435 2900
duke@435 2901 // Scan up all the n1's with equal depth, looking for n2.
duke@435 2902 Node *t1 = idom(n1);
duke@435 2903 while (dom_depth(t1) == d1) {
duke@435 2904 if (t1 == n2) return n2;
duke@435 2905 t1 = idom(t1);
duke@435 2906 }
duke@435 2907 // Scan up all the n2's with equal depth, looking for n1.
duke@435 2908 Node *t2 = idom(n2);
duke@435 2909 while (dom_depth(t2) == d2) {
duke@435 2910 if (t2 == n1) return n1;
duke@435 2911 t2 = idom(t2);
duke@435 2912 }
duke@435 2913 // Move up to a new dominator-depth value as well as up the dom-tree.
duke@435 2914 n1 = t1;
duke@435 2915 n2 = t2;
duke@435 2916 d1 = dom_depth(n1);
duke@435 2917 d2 = dom_depth(n2);
duke@435 2918 }
duke@435 2919 }
duke@435 2920 return n1;
duke@435 2921 }
duke@435 2922
duke@435 2923 //------------------------------compute_idom-----------------------------------
duke@435 2924 // Locally compute IDOM using dom_lca call. Correct only if the incoming
duke@435 2925 // IDOMs are correct.
duke@435 2926 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
duke@435 2927 assert( region->is_Region(), "" );
duke@435 2928 Node *LCA = NULL;
duke@435 2929 for( uint i = 1; i < region->req(); i++ ) {
duke@435 2930 if( region->in(i) != C->top() )
duke@435 2931 LCA = dom_lca( LCA, region->in(i) );
duke@435 2932 }
duke@435 2933 return LCA;
duke@435 2934 }
duke@435 2935
never@1356 2936 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
never@1356 2937 bool had_error = false;
never@1356 2938 #ifdef ASSERT
never@1356 2939 if (early != C->root()) {
never@1356 2940 // Make sure that there's a dominance path from use to LCA
never@1356 2941 Node* d = use;
never@1356 2942 while (d != LCA) {
never@1356 2943 d = idom(d);
never@1356 2944 if (d == C->root()) {
never@1356 2945 tty->print_cr("*** Use %d isn't dominated by def %s", use->_idx, n->_idx);
never@1356 2946 n->dump();
never@1356 2947 use->dump();
never@1356 2948 had_error = true;
never@1356 2949 break;
never@1356 2950 }
never@1356 2951 }
never@1356 2952 }
never@1356 2953 #endif
never@1356 2954 return had_error;
never@1356 2955 }
duke@435 2956
never@1356 2957
never@1356 2958 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
duke@435 2959 // Compute LCA over list of uses
never@1356 2960 bool had_error = false;
duke@435 2961 Node *LCA = NULL;
duke@435 2962 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
duke@435 2963 Node* c = n->fast_out(i);
duke@435 2964 if (_nodes[c->_idx] == NULL)
duke@435 2965 continue; // Skip the occasional dead node
duke@435 2966 if( c->is_Phi() ) { // For Phis, we must land above on the path
duke@435 2967 for( uint j=1; j<c->req(); j++ ) {// For all inputs
duke@435 2968 if( c->in(j) == n ) { // Found matching input?
duke@435 2969 Node *use = c->in(0)->in(j);
never@1356 2970 if (_verify_only && use->is_top()) continue;
duke@435 2971 LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
never@1356 2972 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
duke@435 2973 }
duke@435 2974 }
duke@435 2975 } else {
duke@435 2976 // For CFG data-users, use is in the block just prior
duke@435 2977 Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
duke@435 2978 LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
never@1356 2979 if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
duke@435 2980 }
duke@435 2981 }
never@1356 2982 assert(!had_error, "bad dominance");
never@1356 2983 return LCA;
never@1356 2984 }
never@1356 2985
never@1356 2986 //------------------------------get_late_ctrl----------------------------------
never@1356 2987 // Compute latest legal control.
never@1356 2988 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
never@1356 2989 assert(early != NULL, "early control should not be NULL");
never@1356 2990
never@1356 2991 Node* LCA = compute_lca_of_uses(n, early);
never@1356 2992 #ifdef ASSERT
never@1356 2993 if (LCA == C->root() && LCA != early) {
never@1356 2994 // def doesn't dominate uses so print some useful debugging output
never@1356 2995 compute_lca_of_uses(n, early, true);
never@1356 2996 }
never@1356 2997 #endif
duke@435 2998
duke@435 2999 // if this is a load, check for anti-dependent stores
duke@435 3000 // We use a conservative algorithm to identify potential interfering
duke@435 3001 // instructions and for rescheduling the load. The users of the memory
duke@435 3002 // input of this load are examined. Any use which is not a load and is
duke@435 3003 // dominated by early is considered a potentially interfering store.
duke@435 3004 // This can produce false positives.
duke@435 3005 if (n->is_Load() && LCA != early) {
duke@435 3006 Node_List worklist;
duke@435 3007
duke@435 3008 Node *mem = n->in(MemNode::Memory);
duke@435 3009 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
duke@435 3010 Node* s = mem->fast_out(i);
duke@435 3011 worklist.push(s);
duke@435 3012 }
duke@435 3013 while(worklist.size() != 0 && LCA != early) {
duke@435 3014 Node* s = worklist.pop();
duke@435 3015 if (s->is_Load()) {
duke@435 3016 continue;
duke@435 3017 } else if (s->is_MergeMem()) {
duke@435 3018 for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
duke@435 3019 Node* s1 = s->fast_out(i);
duke@435 3020 worklist.push(s1);
duke@435 3021 }
duke@435 3022 } else {
duke@435 3023 Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
duke@435 3024 assert(sctrl != NULL || s->outcnt() == 0, "must have control");
duke@435 3025 if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
duke@435 3026 LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
duke@435 3027 }
duke@435 3028 }
duke@435 3029 }
duke@435 3030 }
duke@435 3031
duke@435 3032 assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
duke@435 3033 return LCA;
duke@435 3034 }
duke@435 3035
duke@435 3036 // true if CFG node d dominates CFG node n
duke@435 3037 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
duke@435 3038 if (d == n)
duke@435 3039 return true;
duke@435 3040 assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
duke@435 3041 uint dd = dom_depth(d);
duke@435 3042 while (dom_depth(n) >= dd) {
duke@435 3043 if (n == d)
duke@435 3044 return true;
duke@435 3045 n = idom(n);
duke@435 3046 }
duke@435 3047 return false;
duke@435 3048 }
duke@435 3049
duke@435 3050 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
duke@435 3051 // Pair-wise LCA with tags.
duke@435 3052 // Tag each index with the node 'tag' currently being processed
duke@435 3053 // before advancing up the dominator chain using idom().
duke@435 3054 // Later calls that find a match to 'tag' know that this path has already
duke@435 3055 // been considered in the current LCA (which is input 'n1' by convention).
duke@435 3056 // Since get_late_ctrl() is only called once for each node, the tag array
duke@435 3057 // does not need to be cleared between calls to get_late_ctrl().
duke@435 3058 // Algorithm trades a larger constant factor for better asymptotic behavior
duke@435 3059 //
duke@435 3060 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
duke@435 3061 uint d1 = dom_depth(n1);
duke@435 3062 uint d2 = dom_depth(n2);
duke@435 3063
duke@435 3064 do {
duke@435 3065 if (d1 > d2) {
duke@435 3066 // current lca is deeper than n2
duke@435 3067 _dom_lca_tags.map(n1->_idx, tag);
duke@435 3068 n1 = idom(n1);
duke@435 3069 d1 = dom_depth(n1);
duke@435 3070 } else if (d1 < d2) {
duke@435 3071 // n2 is deeper than current lca
duke@435 3072 Node *memo = _dom_lca_tags[n2->_idx];
duke@435 3073 if( memo == tag ) {
duke@435 3074 return n1; // Return the current LCA
duke@435 3075 }
duke@435 3076 _dom_lca_tags.map(n2->_idx, tag);
duke@435 3077 n2 = idom(n2);
duke@435 3078 d2 = dom_depth(n2);
duke@435 3079 } else {
duke@435 3080 // Here d1 == d2. Due to edits of the dominator-tree, sections
duke@435 3081 // of the tree might have the same depth. These sections have
duke@435 3082 // to be searched more carefully.
duke@435 3083
duke@435 3084 // Scan up all the n1's with equal depth, looking for n2.
duke@435 3085 _dom_lca_tags.map(n1->_idx, tag);
duke@435 3086 Node *t1 = idom(n1);
duke@435 3087 while (dom_depth(t1) == d1) {
duke@435 3088 if (t1 == n2) return n2;
duke@435 3089 _dom_lca_tags.map(t1->_idx, tag);
duke@435 3090 t1 = idom(t1);
duke@435 3091 }
duke@435 3092 // Scan up all the n2's with equal depth, looking for n1.
duke@435 3093 _dom_lca_tags.map(n2->_idx, tag);
duke@435 3094 Node *t2 = idom(n2);
duke@435 3095 while (dom_depth(t2) == d2) {
duke@435 3096 if (t2 == n1) return n1;
duke@435 3097 _dom_lca_tags.map(t2->_idx, tag);
duke@435 3098 t2 = idom(t2);
duke@435 3099 }
duke@435 3100 // Move up to a new dominator-depth value as well as up the dom-tree.
duke@435 3101 n1 = t1;
duke@435 3102 n2 = t2;
duke@435 3103 d1 = dom_depth(n1);
duke@435 3104 d2 = dom_depth(n2);
duke@435 3105 }
duke@435 3106 } while (n1 != n2);
duke@435 3107 return n1;
duke@435 3108 }
duke@435 3109
duke@435 3110 //------------------------------init_dom_lca_tags------------------------------
duke@435 3111 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
duke@435 3112 // Intended use does not involve any growth for the array, so it could
duke@435 3113 // be of fixed size.
duke@435 3114 void PhaseIdealLoop::init_dom_lca_tags() {
duke@435 3115 uint limit = C->unique() + 1;
duke@435 3116 _dom_lca_tags.map( limit, NULL );
duke@435 3117 #ifdef ASSERT
duke@435 3118 for( uint i = 0; i < limit; ++i ) {
duke@435 3119 assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
duke@435 3120 }
duke@435 3121 #endif // ASSERT
duke@435 3122 }
duke@435 3123
duke@435 3124 //------------------------------clear_dom_lca_tags------------------------------
duke@435 3125 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
duke@435 3126 // Intended use does not involve any growth for the array, so it could
duke@435 3127 // be of fixed size.
duke@435 3128 void PhaseIdealLoop::clear_dom_lca_tags() {
duke@435 3129 uint limit = C->unique() + 1;
duke@435 3130 _dom_lca_tags.map( limit, NULL );
duke@435 3131 _dom_lca_tags.clear();
duke@435 3132 #ifdef ASSERT
duke@435 3133 for( uint i = 0; i < limit; ++i ) {
duke@435 3134 assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
duke@435 3135 }
duke@435 3136 #endif // ASSERT
duke@435 3137 }
duke@435 3138
duke@435 3139 //------------------------------build_loop_late--------------------------------
duke@435 3140 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
duke@435 3141 // Second pass finds latest legal placement, and ideal loop placement.
never@1356 3142 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
duke@435 3143 while (worklist.size() != 0) {
duke@435 3144 Node *n = worklist.pop();
duke@435 3145 // Only visit once
duke@435 3146 if (visited.test_set(n->_idx)) continue;
duke@435 3147 uint cnt = n->outcnt();
duke@435 3148 uint i = 0;
duke@435 3149 while (true) {
duke@435 3150 assert( _nodes[n->_idx], "no dead nodes" );
duke@435 3151 // Visit all children
duke@435 3152 if (i < cnt) {
duke@435 3153 Node* use = n->raw_out(i);
duke@435 3154 ++i;
duke@435 3155 // Check for dead uses. Aggressively prune such junk. It might be
duke@435 3156 // dead in the global sense, but still have local uses so I cannot
duke@435 3157 // easily call 'remove_dead_node'.
duke@435 3158 if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
duke@435 3159 // Due to cycles, we might not hit the same fixed point in the verify
duke@435 3160 // pass as we do in the regular pass. Instead, visit such phis as
duke@435 3161 // simple uses of the loop head.
duke@435 3162 if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
duke@435 3163 if( !visited.test(use->_idx) )
duke@435 3164 worklist.push(use);
duke@435 3165 } else if( !visited.test_set(use->_idx) ) {
duke@435 3166 nstack.push(n, i); // Save parent and next use's index.
duke@435 3167 n = use; // Process all children of current use.
duke@435 3168 cnt = use->outcnt();
duke@435 3169 i = 0;
duke@435 3170 }
duke@435 3171 } else {
duke@435 3172 // Do not visit around the backedge of loops via data edges.
duke@435 3173 // push dead code onto a worklist
duke@435 3174 _deadlist.push(use);
duke@435 3175 }
duke@435 3176 } else {
duke@435 3177 // All of n's children have been processed, complete post-processing.
never@1356 3178 build_loop_late_post(n);
duke@435 3179 if (nstack.is_empty()) {
duke@435 3180 // Finished all nodes on stack.
duke@435 3181 // Process next node on the worklist.
duke@435 3182 break;
duke@435 3183 }
duke@435 3184 // Get saved parent node and next use's index. Visit the rest of uses.
duke@435 3185 n = nstack.node();
duke@435 3186 cnt = n->outcnt();
duke@435 3187 i = nstack.index();
duke@435 3188 nstack.pop();
duke@435 3189 }
duke@435 3190 }
duke@435 3191 }
duke@435 3192 }
duke@435 3193
duke@435 3194 //------------------------------build_loop_late_post---------------------------
duke@435 3195 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
duke@435 3196 // Second pass finds latest legal placement, and ideal loop placement.
never@1356 3197 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
duke@435 3198
never@1356 3199 if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
duke@435 3200 _igvn._worklist.push(n); // Maybe we'll normalize it, if no more loops.
duke@435 3201 }
duke@435 3202
duke@435 3203 // CFG and pinned nodes already handled
duke@435 3204 if( n->in(0) ) {
duke@435 3205 if( n->in(0)->is_top() ) return; // Dead?
duke@435 3206
duke@435 3207 // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
duke@435 3208 // _must_ be pinned (they have to observe their control edge of course).
duke@435 3209 // Unlike Stores (which modify an unallocable resource, the memory
duke@435 3210 // state), Mods/Loads can float around. So free them up.
duke@435 3211 bool pinned = true;
duke@435 3212 switch( n->Opcode() ) {
duke@435 3213 case Op_DivI:
duke@435 3214 case Op_DivF:
duke@435 3215 case Op_DivD:
duke@435 3216 case Op_ModI:
duke@435 3217 case Op_ModF:
duke@435 3218 case Op_ModD:
duke@435 3219 case Op_LoadB: // Same with Loads; they can sink
kvn@3882 3220 case Op_LoadUB: // during loop optimizations.
kvn@3882 3221 case Op_LoadUS:
duke@435 3222 case Op_LoadD:
duke@435 3223 case Op_LoadF:
duke@435 3224 case Op_LoadI:
duke@435 3225 case Op_LoadKlass:
kvn@728 3226 case Op_LoadNKlass:
duke@435 3227 case Op_LoadL:
duke@435 3228 case Op_LoadS:
duke@435 3229 case Op_LoadP:
kvn@728 3230 case Op_LoadN:
duke@435 3231 case Op_LoadRange:
duke@435 3232 case Op_LoadD_unaligned:
duke@435 3233 case Op_LoadL_unaligned:
duke@435 3234 case Op_StrComp: // Does a bunch of load-like effects
cfang@1116 3235 case Op_StrEquals:
cfang@1116 3236 case Op_StrIndexOf:
rasbold@604 3237 case Op_AryEq:
duke@435 3238 pinned = false;
duke@435 3239 }
duke@435 3240 if( pinned ) {
twisti@1040 3241 IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
twisti@1040 3242 if( !chosen_loop->_child ) // Inner loop?
twisti@1040 3243 chosen_loop->_body.push(n); // Collect inner loops
duke@435 3244 return;
duke@435 3245 }
duke@435 3246 } else { // No slot zero
duke@435 3247 if( n->is_CFG() ) { // CFG with no slot 0 is dead
duke@435 3248 _nodes.map(n->_idx,0); // No block setting, it's globally dead
duke@435 3249 return;
duke@435 3250 }
duke@435 3251 assert(!n->is_CFG() || n->outcnt() == 0, "");
duke@435 3252 }
duke@435 3253
duke@435 3254 // Do I have a "safe range" I can select over?
duke@435 3255 Node *early = get_ctrl(n);// Early location already computed
duke@435 3256
duke@435 3257 // Compute latest point this Node can go
duke@435 3258 Node *LCA = get_late_ctrl( n, early );
duke@435 3259 // LCA is NULL due to uses being dead
duke@435 3260 if( LCA == NULL ) {
duke@435 3261 #ifdef ASSERT
duke@435 3262 for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
duke@435 3263 assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
duke@435 3264 }
duke@435 3265 #endif
duke@435 3266 _nodes.map(n->_idx, 0); // This node is useless
duke@435 3267 _deadlist.push(n);
duke@435 3268 return;
duke@435 3269 }
duke@435 3270 assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
duke@435 3271
duke@435 3272 Node *legal = LCA; // Walk 'legal' up the IDOM chain
duke@435 3273 Node *least = legal; // Best legal position so far
duke@435 3274 while( early != legal ) { // While not at earliest legal
cfang@1607 3275 #ifdef ASSERT
cfang@1607 3276 if (legal->is_Start() && !early->is_Root()) {
cfang@1607 3277 // Bad graph. Print idom path and fail.
kvn@3408 3278 dump_bad_graph(n, early, LCA);
cfang@1607 3279 assert(false, "Bad graph detected in build_loop_late");
cfang@1607 3280 }
cfang@1607 3281 #endif
duke@435 3282 // Find least loop nesting depth
duke@435 3283 legal = idom(legal); // Bump up the IDOM tree
duke@435 3284 // Check for lower nesting depth
duke@435 3285 if( get_loop(legal)->_nest < get_loop(least)->_nest )
duke@435 3286 least = legal;
duke@435 3287 }
never@1356 3288 assert(early == legal || legal != C->root(), "bad dominance of inputs");
duke@435 3289
duke@435 3290 // Try not to place code on a loop entry projection
duke@435 3291 // which can inhibit range check elimination.
duke@435 3292 if (least != early) {
duke@435 3293 Node* ctrl_out = least->unique_ctrl_out();
duke@435 3294 if (ctrl_out && ctrl_out->is_CountedLoop() &&
duke@435 3295 least == ctrl_out->in(LoopNode::EntryControl)) {
duke@435 3296 Node* least_dom = idom(least);
duke@435 3297 if (get_loop(least_dom)->is_member(get_loop(least))) {
duke@435 3298 least = least_dom;
duke@435 3299 }
duke@435 3300 }
duke@435 3301 }
duke@435 3302
duke@435 3303 #ifdef ASSERT
duke@435 3304 // If verifying, verify that 'verify_me' has a legal location
duke@435 3305 // and choose it as our location.
never@1356 3306 if( _verify_me ) {
never@1356 3307 Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
duke@435 3308 Node *legal = LCA;
duke@435 3309 while( early != legal ) { // While not at earliest legal
duke@435 3310 if( legal == v_ctrl ) break; // Check for prior good location
duke@435 3311 legal = idom(legal) ;// Bump up the IDOM tree
duke@435 3312 }
duke@435 3313 // Check for prior good location
duke@435 3314 if( legal == v_ctrl ) least = legal; // Keep prior if found
duke@435 3315 }
duke@435 3316 #endif
duke@435 3317
duke@435 3318 // Assign discovered "here or above" point
duke@435 3319 least = find_non_split_ctrl(least);
duke@435 3320 set_ctrl(n, least);
duke@435 3321
duke@435 3322 // Collect inner loop bodies
twisti@1040 3323 IdealLoopTree *chosen_loop = get_loop(least);
twisti@1040 3324 if( !chosen_loop->_child ) // Inner loop?
twisti@1040 3325 chosen_loop->_body.push(n);// Collect inner loops
duke@435 3326 }
duke@435 3327
kvn@3408 3328 #ifdef ASSERT
kvn@3408 3329 void PhaseIdealLoop::dump_bad_graph(Node* n, Node* early, Node* LCA) {
kvn@3408 3330 tty->print_cr( "Bad graph detected in build_loop_late");
kvn@3408 3331 tty->print("n: "); n->dump();
kvn@3408 3332 tty->print("early(n): "); early->dump();
kvn@3408 3333 if (n->in(0) != NULL && !n->in(0)->is_top() &&
kvn@3408 3334 n->in(0) != early && !n->in(0)->is_Root()) {
kvn@3408 3335 tty->print("n->in(0): "); n->in(0)->dump();
kvn@3408 3336 }
kvn@3408 3337 for (uint i = 1; i < n->req(); i++) {
kvn@3408 3338 Node* in1 = n->in(i);
kvn@3408 3339 if (in1 != NULL && in1 != n && !in1->is_top()) {
kvn@3408 3340 tty->print("n->in(%d): ", i); in1->dump();
kvn@3408 3341 Node* in1_early = get_ctrl(in1);
kvn@3408 3342 tty->print("early(n->in(%d)): ", i); in1_early->dump();
kvn@3408 3343 if (in1->in(0) != NULL && !in1->in(0)->is_top() &&
kvn@3408 3344 in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
kvn@3408 3345 tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
kvn@3408 3346 }
kvn@3408 3347 for (uint j = 1; j < in1->req(); j++) {
kvn@3408 3348 Node* in2 = in1->in(j);
kvn@3408 3349 if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
kvn@3408 3350 tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
kvn@3408 3351 Node* in2_early = get_ctrl(in2);
kvn@3408 3352 tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
kvn@3408 3353 if (in2->in(0) != NULL && !in2->in(0)->is_top() &&
kvn@3408 3354 in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
kvn@3408 3355 tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
kvn@3408 3356 }
kvn@3408 3357 }
kvn@3408 3358 }
kvn@3408 3359 }
kvn@3408 3360 }
kvn@3408 3361 tty->cr();
kvn@3408 3362 tty->print("LCA(n): "); LCA->dump();
kvn@3408 3363 for (uint i = 0; i < n->outcnt(); i++) {
kvn@3408 3364 Node* u1 = n->raw_out(i);
kvn@3408 3365 if (u1 == n)
kvn@3408 3366 continue;
kvn@3408 3367 tty->print("n->out(%d): ", i); u1->dump();
kvn@3408 3368 if (u1->is_CFG()) {
kvn@3408 3369 for (uint j = 0; j < u1->outcnt(); j++) {
kvn@3408 3370 Node* u2 = u1->raw_out(j);
kvn@3408 3371 if (u2 != u1 && u2 != n && u2->is_CFG()) {
kvn@3408 3372 tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
kvn@3408 3373 }
kvn@3408 3374 }
kvn@3408 3375 } else {
kvn@3408 3376 Node* u1_later = get_ctrl(u1);
kvn@3408 3377 tty->print("later(n->out(%d)): ", i); u1_later->dump();
kvn@3408 3378 if (u1->in(0) != NULL && !u1->in(0)->is_top() &&
kvn@3408 3379 u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
kvn@3408 3380 tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
kvn@3408 3381 }
kvn@3408 3382 for (uint j = 0; j < u1->outcnt(); j++) {
kvn@3408 3383 Node* u2 = u1->raw_out(j);
kvn@3408 3384 if (u2 == n || u2 == u1)
kvn@3408 3385 continue;
kvn@3408 3386 tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
kvn@3408 3387 if (!u2->is_CFG()) {
kvn@3408 3388 Node* u2_later = get_ctrl(u2);
kvn@3408 3389 tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
kvn@3408 3390 if (u2->in(0) != NULL && !u2->in(0)->is_top() &&
kvn@3408 3391 u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
kvn@3408 3392 tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
kvn@3408 3393 }
kvn@3408 3394 }
kvn@3408 3395 }
kvn@3408 3396 }
kvn@3408 3397 }
kvn@3408 3398 tty->cr();
kvn@3408 3399 int ct = 0;
kvn@3408 3400 Node *dbg_legal = LCA;
kvn@3408 3401 while(!dbg_legal->is_Start() && ct < 100) {
kvn@3408 3402 tty->print("idom[%d] ",ct); dbg_legal->dump();
kvn@3408 3403 ct++;
kvn@3408 3404 dbg_legal = idom(dbg_legal);
kvn@3408 3405 }
kvn@3408 3406 tty->cr();
kvn@3408 3407 }
kvn@3408 3408 #endif
kvn@3408 3409
duke@435 3410 #ifndef PRODUCT
duke@435 3411 //------------------------------dump-------------------------------------------
duke@435 3412 void PhaseIdealLoop::dump( ) const {
duke@435 3413 ResourceMark rm;
duke@435 3414 Arena* arena = Thread::current()->resource_area();
duke@435 3415 Node_Stack stack(arena, C->unique() >> 2);
duke@435 3416 Node_List rpo_list;
duke@435 3417 VectorSet visited(arena);
duke@435 3418 visited.set(C->top()->_idx);
duke@435 3419 rpo( C->root(), stack, visited, rpo_list );
duke@435 3420 // Dump root loop indexed by last element in PO order
duke@435 3421 dump( _ltree_root, rpo_list.size(), rpo_list );
duke@435 3422 }
duke@435 3423
duke@435 3424 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
never@802 3425 loop->dump_head();
duke@435 3426
duke@435 3427 // Now scan for CFG nodes in the same loop
duke@435 3428 for( uint j=idx; j > 0; j-- ) {
duke@435 3429 Node *n = rpo_list[j-1];
duke@435 3430 if( !_nodes[n->_idx] ) // Skip dead nodes
duke@435 3431 continue;
duke@435 3432 if( get_loop(n) != loop ) { // Wrong loop nest
duke@435 3433 if( get_loop(n)->_head == n && // Found nested loop?
duke@435 3434 get_loop(n)->_parent == loop )
duke@435 3435 dump(get_loop(n),rpo_list.size(),rpo_list); // Print it nested-ly
duke@435 3436 continue;
duke@435 3437 }
duke@435 3438
duke@435 3439 // Dump controlling node
duke@435 3440 for( uint x = 0; x < loop->_nest; x++ )
duke@435 3441 tty->print(" ");
duke@435 3442 tty->print("C");
duke@435 3443 if( n == C->root() ) {
duke@435 3444 n->dump();
duke@435 3445 } else {
duke@435 3446 Node* cached_idom = idom_no_update(n);
duke@435 3447 Node *computed_idom = n->in(0);
duke@435 3448 if( n->is_Region() ) {
duke@435 3449 computed_idom = compute_idom(n);
duke@435 3450 // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
duke@435 3451 // any MultiBranch ctrl node), so apply a similar transform to
duke@435 3452 // the cached idom returned from idom_no_update.
duke@435 3453 cached_idom = find_non_split_ctrl(cached_idom);
duke@435 3454 }
duke@435 3455 tty->print(" ID:%d",computed_idom->_idx);
duke@435 3456 n->dump();
duke@435 3457 if( cached_idom != computed_idom ) {
duke@435 3458 tty->print_cr("*** BROKEN IDOM! Computed as: %d, cached as: %d",
duke@435 3459 computed_idom->_idx, cached_idom->_idx);
duke@435 3460 }
duke@435 3461 }
duke@435 3462 // Dump nodes it controls
duke@435 3463 for( uint k = 0; k < _nodes.Size(); k++ ) {
duke@435 3464 // (k < C->unique() && get_ctrl(find(k)) == n)
duke@435 3465 if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
duke@435 3466 Node *m = C->root()->find(k);
duke@435 3467 if( m && m->outcnt() > 0 ) {
duke@435 3468 if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
duke@435 3469 tty->print_cr("*** BROKEN CTRL ACCESSOR! _nodes[k] is %p, ctrl is %p",
duke@435 3470 _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
duke@435 3471 }
duke@435 3472 for( uint j = 0; j < loop->_nest; j++ )
duke@435 3473 tty->print(" ");
duke@435 3474 tty->print(" ");
duke@435 3475 m->dump();
duke@435 3476 }
duke@435 3477 }
duke@435 3478 }
duke@435 3479 }
duke@435 3480 }
duke@435 3481
duke@435 3482 // Collect a R-P-O for the whole CFG.
duke@435 3483 // Result list is in post-order (scan backwards for RPO)
duke@435 3484 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
duke@435 3485 stk.push(start, 0);
duke@435 3486 visited.set(start->_idx);
duke@435 3487
duke@435 3488 while (stk.is_nonempty()) {
duke@435 3489 Node* m = stk.node();
duke@435 3490 uint idx = stk.index();
duke@435 3491 if (idx < m->outcnt()) {
duke@435 3492 stk.set_index(idx + 1);
duke@435 3493 Node* n = m->raw_out(idx);
duke@435 3494 if (n->is_CFG() && !visited.test_set(n->_idx)) {
duke@435 3495 stk.push(n, 0);
duke@435 3496 }
duke@435 3497 } else {
duke@435 3498 rpo_list.push(m);
duke@435 3499 stk.pop();
duke@435 3500 }
duke@435 3501 }
duke@435 3502 }
duke@435 3503 #endif
duke@435 3504
duke@435 3505
duke@435 3506 //=============================================================================
duke@435 3507 //------------------------------LoopTreeIterator-----------------------------------
duke@435 3508
duke@435 3509 // Advance to next loop tree using a preorder, left-to-right traversal.
duke@435 3510 void LoopTreeIterator::next() {
duke@435 3511 assert(!done(), "must not be done.");
duke@435 3512 if (_curnt->_child != NULL) {
duke@435 3513 _curnt = _curnt->_child;
duke@435 3514 } else if (_curnt->_next != NULL) {
duke@435 3515 _curnt = _curnt->_next;
duke@435 3516 } else {
duke@435 3517 while (_curnt != _root && _curnt->_next == NULL) {
duke@435 3518 _curnt = _curnt->_parent;
duke@435 3519 }
duke@435 3520 if (_curnt == _root) {
duke@435 3521 _curnt = NULL;
duke@435 3522 assert(done(), "must be done.");
duke@435 3523 } else {
duke@435 3524 assert(_curnt->_next != NULL, "must be more to do");
duke@435 3525 _curnt = _curnt->_next;
duke@435 3526 }
duke@435 3527 }
duke@435 3528 }

mercurial