src/share/vm/utilities/globalDefinitions.hpp

Thu, 16 May 2013 13:47:55 -0700

author
twisti
date
Thu, 16 May 2013 13:47:55 -0700
changeset 5115
e484fe2abebd
parent 4958
63e31ce40bdb
child 5188
fb14e9ed1594
permissions
-rw-r--r--

Merge

duke@435 1 /*
hseigel@4465 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@2314 26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@2314 27
dcubed@3202 28 #ifndef __STDC_FORMAT_MACROS
never@3156 29 #define __STDC_FORMAT_MACROS
dcubed@3202 30 #endif
never@3156 31
stefank@2314 32 #ifdef TARGET_COMPILER_gcc
stefank@2314 33 # include "utilities/globalDefinitions_gcc.hpp"
stefank@2314 34 #endif
stefank@2314 35 #ifdef TARGET_COMPILER_visCPP
stefank@2314 36 # include "utilities/globalDefinitions_visCPP.hpp"
stefank@2314 37 #endif
stefank@2314 38 #ifdef TARGET_COMPILER_sparcWorks
stefank@2314 39 # include "utilities/globalDefinitions_sparcWorks.hpp"
stefank@2314 40 #endif
stefank@2314 41
stefank@2314 42 #include "utilities/macros.hpp"
stefank@2314 43
duke@435 44 // This file holds all globally used constants & types, class (forward)
duke@435 45 // declarations and a few frequently used utility functions.
duke@435 46
duke@435 47 //----------------------------------------------------------------------------------------------------
duke@435 48 // Constants
duke@435 49
duke@435 50 const int LogBytesPerShort = 1;
duke@435 51 const int LogBytesPerInt = 2;
duke@435 52 #ifdef _LP64
duke@435 53 const int LogBytesPerWord = 3;
duke@435 54 #else
duke@435 55 const int LogBytesPerWord = 2;
duke@435 56 #endif
duke@435 57 const int LogBytesPerLong = 3;
duke@435 58
duke@435 59 const int BytesPerShort = 1 << LogBytesPerShort;
duke@435 60 const int BytesPerInt = 1 << LogBytesPerInt;
duke@435 61 const int BytesPerWord = 1 << LogBytesPerWord;
duke@435 62 const int BytesPerLong = 1 << LogBytesPerLong;
duke@435 63
duke@435 64 const int LogBitsPerByte = 3;
duke@435 65 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
duke@435 66 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
duke@435 67 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
duke@435 68 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
duke@435 69
duke@435 70 const int BitsPerByte = 1 << LogBitsPerByte;
duke@435 71 const int BitsPerShort = 1 << LogBitsPerShort;
duke@435 72 const int BitsPerInt = 1 << LogBitsPerInt;
duke@435 73 const int BitsPerWord = 1 << LogBitsPerWord;
duke@435 74 const int BitsPerLong = 1 << LogBitsPerLong;
duke@435 75
duke@435 76 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
duke@435 77 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
duke@435 78
duke@435 79 const int WordsPerLong = 2; // Number of stack entries for longs
duke@435 80
coleenp@548 81 const int oopSize = sizeof(char*); // Full-width oop
coleenp@548 82 extern int heapOopSize; // Oop within a java object
duke@435 83 const int wordSize = sizeof(char*);
duke@435 84 const int longSize = sizeof(jlong);
duke@435 85 const int jintSize = sizeof(jint);
duke@435 86 const int size_tSize = sizeof(size_t);
duke@435 87
coleenp@548 88 const int BytesPerOop = BytesPerWord; // Full-width oop
duke@435 89
coleenp@548 90 extern int LogBytesPerHeapOop; // Oop within a java object
coleenp@548 91 extern int LogBitsPerHeapOop;
coleenp@548 92 extern int BytesPerHeapOop;
coleenp@548 93 extern int BitsPerHeapOop;
duke@435 94
kvn@1926 95 // Oop encoding heap max
kvn@1926 96 extern uint64_t OopEncodingHeapMax;
kvn@1926 97
duke@435 98 const int BitsPerJavaInteger = 32;
twisti@994 99 const int BitsPerJavaLong = 64;
duke@435 100 const int BitsPerSize_t = size_tSize * BitsPerByte;
duke@435 101
coleenp@548 102 // Size of a char[] needed to represent a jint as a string in decimal.
coleenp@548 103 const int jintAsStringSize = 12;
coleenp@548 104
duke@435 105 // In fact this should be
duke@435 106 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@435 107 // see os::set_memory_serialize_page()
duke@435 108 #ifdef _LP64
duke@435 109 const int SerializePageShiftCount = 4;
duke@435 110 #else
duke@435 111 const int SerializePageShiftCount = 3;
duke@435 112 #endif
duke@435 113
duke@435 114 // An opaque struct of heap-word width, so that HeapWord* can be a generic
duke@435 115 // pointer into the heap. We require that object sizes be measured in
duke@435 116 // units of heap words, so that that
duke@435 117 // HeapWord* hw;
duke@435 118 // hw += oop(hw)->foo();
duke@435 119 // works, where foo is a method (like size or scavenge) that returns the
duke@435 120 // object size.
duke@435 121 class HeapWord {
duke@435 122 friend class VMStructs;
jmasa@698 123 private:
duke@435 124 char* i;
jmasa@796 125 #ifndef PRODUCT
jmasa@698 126 public:
jmasa@698 127 char* value() { return i; }
jmasa@698 128 #endif
duke@435 129 };
duke@435 130
coleenp@4037 131 // Analogous opaque struct for metadata allocated from
coleenp@4037 132 // metaspaces.
coleenp@4037 133 class MetaWord {
coleenp@4037 134 friend class VMStructs;
coleenp@4037 135 private:
coleenp@4037 136 char* i;
coleenp@4037 137 };
coleenp@4037 138
duke@435 139 // HeapWordSize must be 2^LogHeapWordSize.
coleenp@548 140 const int HeapWordSize = sizeof(HeapWord);
duke@435 141 #ifdef _LP64
coleenp@548 142 const int LogHeapWordSize = 3;
duke@435 143 #else
coleenp@548 144 const int LogHeapWordSize = 2;
duke@435 145 #endif
coleenp@548 146 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
coleenp@548 147 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
duke@435 148
duke@435 149 // The larger HeapWordSize for 64bit requires larger heaps
duke@435 150 // for the same application running in 64bit. See bug 4967770.
duke@435 151 // The minimum alignment to a heap word size is done. Other
duke@435 152 // parts of the memory system may required additional alignment
duke@435 153 // and are responsible for those alignments.
duke@435 154 #ifdef _LP64
duke@435 155 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
duke@435 156 #else
duke@435 157 #define ScaleForWordSize(x) (x)
duke@435 158 #endif
duke@435 159
duke@435 160 // The minimum number of native machine words necessary to contain "byte_size"
duke@435 161 // bytes.
duke@435 162 inline size_t heap_word_size(size_t byte_size) {
duke@435 163 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
duke@435 164 }
duke@435 165
duke@435 166
duke@435 167 const size_t K = 1024;
duke@435 168 const size_t M = K*K;
duke@435 169 const size_t G = M*K;
duke@435 170 const size_t HWperKB = K / sizeof(HeapWord);
duke@435 171
duke@435 172 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
duke@435 173 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
duke@435 174
duke@435 175 // Constants for converting from a base unit to milli-base units. For
duke@435 176 // example from seconds to milliseconds and microseconds
duke@435 177
duke@435 178 const int MILLIUNITS = 1000; // milli units per base unit
duke@435 179 const int MICROUNITS = 1000000; // micro units per base unit
duke@435 180 const int NANOUNITS = 1000000000; // nano units per base unit
duke@435 181
johnc@3339 182 const jlong NANOSECS_PER_SEC = CONST64(1000000000);
johnc@3339 183 const jint NANOSECS_PER_MILLISEC = 1000000;
johnc@3339 184
duke@435 185 inline const char* proper_unit_for_byte_size(size_t s) {
brutisso@3766 186 #ifdef _LP64
brutisso@3766 187 if (s >= 10*G) {
brutisso@3766 188 return "G";
brutisso@3766 189 }
brutisso@3766 190 #endif
duke@435 191 if (s >= 10*M) {
duke@435 192 return "M";
duke@435 193 } else if (s >= 10*K) {
duke@435 194 return "K";
duke@435 195 } else {
duke@435 196 return "B";
duke@435 197 }
duke@435 198 }
duke@435 199
brutisso@3762 200 template <class T>
brutisso@3762 201 inline T byte_size_in_proper_unit(T s) {
brutisso@3766 202 #ifdef _LP64
brutisso@3766 203 if (s >= 10*G) {
brutisso@3766 204 return (T)(s/G);
brutisso@3766 205 }
brutisso@3766 206 #endif
duke@435 207 if (s >= 10*M) {
brutisso@3762 208 return (T)(s/M);
duke@435 209 } else if (s >= 10*K) {
brutisso@3762 210 return (T)(s/K);
duke@435 211 } else {
duke@435 212 return s;
duke@435 213 }
duke@435 214 }
duke@435 215
duke@435 216 //----------------------------------------------------------------------------------------------------
duke@435 217 // VM type definitions
duke@435 218
duke@435 219 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
duke@435 220 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
duke@435 221
duke@435 222 typedef intptr_t intx;
duke@435 223 typedef uintptr_t uintx;
duke@435 224
duke@435 225 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
duke@435 226 const intx max_intx = (uintx)min_intx - 1;
duke@435 227 const uintx max_uintx = (uintx)-1;
duke@435 228
duke@435 229 // Table of values:
duke@435 230 // sizeof intx 4 8
duke@435 231 // min_intx 0x80000000 0x8000000000000000
duke@435 232 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
duke@435 233 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
duke@435 234
duke@435 235 typedef unsigned int uint; NEEDS_CLEANUP
duke@435 236
duke@435 237
duke@435 238 //----------------------------------------------------------------------------------------------------
duke@435 239 // Java type definitions
duke@435 240
duke@435 241 // All kinds of 'plain' byte addresses
duke@435 242 typedef signed char s_char;
duke@435 243 typedef unsigned char u_char;
duke@435 244 typedef u_char* address;
duke@435 245 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
duke@435 246 // except for some implementations of a C++
duke@435 247 // linkage pointer to function. Should never
duke@435 248 // need one of those to be placed in this
duke@435 249 // type anyway.
duke@435 250
duke@435 251 // Utility functions to "portably" (?) bit twiddle pointers
duke@435 252 // Where portable means keep ANSI C++ compilers quiet
duke@435 253
duke@435 254 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
duke@435 255 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
duke@435 256
duke@435 257 // Utility functions to "portably" make cast to/from function pointers.
duke@435 258
duke@435 259 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
duke@435 260 inline address_word castable_address(address x) { return address_word(x) ; }
duke@435 261 inline address_word castable_address(void* x) { return address_word(x) ; }
duke@435 262
duke@435 263 // Pointer subtraction.
duke@435 264 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
duke@435 265 // the range we might need to find differences from one end of the heap
duke@435 266 // to the other.
duke@435 267 // A typical use might be:
duke@435 268 // if (pointer_delta(end(), top()) >= size) {
duke@435 269 // // enough room for an object of size
duke@435 270 // ...
duke@435 271 // and then additions like
duke@435 272 // ... top() + size ...
duke@435 273 // are safe because we know that top() is at least size below end().
duke@435 274 inline size_t pointer_delta(const void* left,
duke@435 275 const void* right,
duke@435 276 size_t element_size) {
duke@435 277 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
duke@435 278 }
duke@435 279 // A version specialized for HeapWord*'s.
duke@435 280 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
duke@435 281 return pointer_delta(left, right, sizeof(HeapWord));
duke@435 282 }
coleenp@4037 283 // A version specialized for MetaWord*'s.
coleenp@4037 284 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
coleenp@4037 285 return pointer_delta(left, right, sizeof(MetaWord));
coleenp@4037 286 }
duke@435 287
duke@435 288 //
duke@435 289 // ANSI C++ does not allow casting from one pointer type to a function pointer
duke@435 290 // directly without at best a warning. This macro accomplishes it silently
duke@435 291 // In every case that is present at this point the value be cast is a pointer
duke@435 292 // to a C linkage function. In somecase the type used for the cast reflects
duke@435 293 // that linkage and a picky compiler would not complain. In other cases because
duke@435 294 // there is no convenient place to place a typedef with extern C linkage (i.e
duke@435 295 // a platform dependent header file) it doesn't. At this point no compiler seems
duke@435 296 // picky enough to catch these instances (which are few). It is possible that
duke@435 297 // using templates could fix these for all cases. This use of templates is likely
duke@435 298 // so far from the middle of the road that it is likely to be problematic in
duke@435 299 // many C++ compilers.
duke@435 300 //
duke@435 301 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
duke@435 302 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
duke@435 303
duke@435 304 // Unsigned byte types for os and stream.hpp
duke@435 305
duke@435 306 // Unsigned one, two, four and eigth byte quantities used for describing
duke@435 307 // the .class file format. See JVM book chapter 4.
duke@435 308
duke@435 309 typedef jubyte u1;
duke@435 310 typedef jushort u2;
duke@435 311 typedef juint u4;
duke@435 312 typedef julong u8;
duke@435 313
duke@435 314 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
duke@435 315 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
duke@435 316 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
duke@435 317 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
duke@435 318
phh@3427 319 typedef jbyte s1;
phh@3427 320 typedef jshort s2;
phh@3427 321 typedef jint s4;
phh@3427 322 typedef jlong s8;
phh@3427 323
duke@435 324 //----------------------------------------------------------------------------------------------------
duke@435 325 // JVM spec restrictions
duke@435 326
duke@435 327 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
duke@435 328
duke@435 329
duke@435 330 //----------------------------------------------------------------------------------------------------
hseigel@4958 331 // Default and minimum StringTableSize values
hseigel@4277 332
hseigel@4958 333 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
hseigel@4958 334 const int minimumStringTableSize=1009;
hseigel@4277 335
hseigel@4277 336
hseigel@4277 337 //----------------------------------------------------------------------------------------------------
duke@435 338 // HotSwap - for JVMTI aka Class File Replacement and PopFrame
duke@435 339 //
duke@435 340 // Determines whether on-the-fly class replacement and frame popping are enabled.
duke@435 341
duke@435 342 #define HOTSWAP
duke@435 343
duke@435 344 //----------------------------------------------------------------------------------------------------
duke@435 345 // Object alignment, in units of HeapWords.
duke@435 346 //
duke@435 347 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
duke@435 348 // reference fields can be naturally aligned.
duke@435 349
kvn@1926 350 extern int MinObjAlignment;
kvn@1926 351 extern int MinObjAlignmentInBytes;
kvn@1926 352 extern int MinObjAlignmentInBytesMask;
duke@435 353
kvn@1926 354 extern int LogMinObjAlignment;
kvn@1926 355 extern int LogMinObjAlignmentInBytes;
coleenp@548 356
roland@4159 357 const int LogKlassAlignmentInBytes = 3;
roland@4159 358 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize;
roland@4159 359 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes;
roland@4159 360 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize;
roland@4159 361
roland@4159 362 // Klass encoding metaspace max size
roland@4159 363 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
roland@4159 364
duke@435 365 // Machine dependent stuff
duke@435 366
stefank@2314 367 #ifdef TARGET_ARCH_x86
stefank@2314 368 # include "globalDefinitions_x86.hpp"
stefank@2314 369 #endif
stefank@2314 370 #ifdef TARGET_ARCH_sparc
stefank@2314 371 # include "globalDefinitions_sparc.hpp"
stefank@2314 372 #endif
stefank@2314 373 #ifdef TARGET_ARCH_zero
stefank@2314 374 # include "globalDefinitions_zero.hpp"
stefank@2314 375 #endif
bobv@2508 376 #ifdef TARGET_ARCH_arm
bobv@2508 377 # include "globalDefinitions_arm.hpp"
bobv@2508 378 #endif
bobv@2508 379 #ifdef TARGET_ARCH_ppc
bobv@2508 380 # include "globalDefinitions_ppc.hpp"
bobv@2508 381 #endif
stefank@2314 382
duke@435 383
duke@435 384 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
duke@435 385 // Note: this value must be a power of 2
duke@435 386
duke@435 387 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
duke@435 388
duke@435 389 // Signed variants of alignment helpers. There are two versions of each, a macro
duke@435 390 // for use in places like enum definitions that require compile-time constant
duke@435 391 // expressions and a function for all other places so as to get type checking.
duke@435 392
duke@435 393 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
duke@435 394
duke@435 395 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
duke@435 396 return align_size_up_(size, alignment);
duke@435 397 }
duke@435 398
duke@435 399 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
duke@435 400
duke@435 401 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
duke@435 402 return align_size_down_(size, alignment);
duke@435 403 }
duke@435 404
duke@435 405 // Align objects by rounding up their size, in HeapWord units.
duke@435 406
duke@435 407 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
duke@435 408
duke@435 409 inline intptr_t align_object_size(intptr_t size) {
duke@435 410 return align_size_up(size, MinObjAlignment);
duke@435 411 }
duke@435 412
kvn@1926 413 inline bool is_object_aligned(intptr_t addr) {
kvn@1926 414 return addr == align_object_size(addr);
kvn@1926 415 }
kvn@1926 416
duke@435 417 // Pad out certain offsets to jlong alignment, in HeapWord units.
duke@435 418
duke@435 419 inline intptr_t align_object_offset(intptr_t offset) {
duke@435 420 return align_size_up(offset, HeapWordsPerLong);
duke@435 421 }
duke@435 422
mikael@4889 423 // Clamp an address to be within a specific page
mikael@4889 424 // 1. If addr is on the page it is returned as is
mikael@4889 425 // 2. If addr is above the page_address the start of the *next* page will be returned
mikael@4889 426 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
mikael@4889 427 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
mikael@4889 428 if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
mikael@4889 429 // address is in the specified page, just return it as is
mikael@4889 430 return addr;
mikael@4889 431 } else if (addr > page_address) {
mikael@4889 432 // address is above specified page, return start of next page
mikael@4889 433 return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
mikael@4889 434 } else {
mikael@4889 435 // address is below specified page, return start of page
mikael@4889 436 return (address)align_size_down(intptr_t(page_address), page_size);
mikael@4889 437 }
mikael@4889 438 }
mikael@4889 439
mikael@4889 440
jcoomes@2020 441 // The expected size in bytes of a cache line, used to pad data structures.
jcoomes@2020 442 #define DEFAULT_CACHE_LINE_SIZE 64
jcoomes@2020 443
jcoomes@2020 444 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
jcoomes@2020 445 // expected cache line size (a power of two). The first addend avoids sharing
jcoomes@2020 446 // when the start address is not a multiple of alignment; the second maintains
jcoomes@2020 447 // alignment of starting addresses that happen to be a multiple.
jcoomes@2020 448 #define PADDING_SIZE(type, alignment) \
jcoomes@2020 449 ((alignment) + align_size_up_(sizeof(type), alignment))
jcoomes@2020 450
jcoomes@2020 451 // Templates to create a subclass padded to avoid cache line sharing. These are
jcoomes@2020 452 // effective only when applied to derived-most (leaf) classes.
jcoomes@2020 453
jcoomes@2020 454 // When no args are passed to the base ctor.
jcoomes@2020 455 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
jcoomes@2020 456 class Padded: public T {
jcoomes@2020 457 private:
jcoomes@2020 458 char _pad_buf_[PADDING_SIZE(T, alignment)];
jcoomes@2020 459 };
jcoomes@2020 460
jcoomes@2020 461 // When either 0 or 1 args may be passed to the base ctor.
jcoomes@2020 462 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
jcoomes@2020 463 class Padded01: public T {
jcoomes@2020 464 public:
jcoomes@2020 465 Padded01(): T() { }
jcoomes@2020 466 Padded01(Arg1T arg1): T(arg1) { }
jcoomes@2020 467 private:
jcoomes@2020 468 char _pad_buf_[PADDING_SIZE(T, alignment)];
jcoomes@2020 469 };
duke@435 470
duke@435 471 //----------------------------------------------------------------------------------------------------
duke@435 472 // Utility macros for compilers
duke@435 473 // used to silence compiler warnings
duke@435 474
duke@435 475 #define Unused_Variable(var) var
duke@435 476
duke@435 477
duke@435 478 //----------------------------------------------------------------------------------------------------
duke@435 479 // Miscellaneous
duke@435 480
duke@435 481 // 6302670 Eliminate Hotspot __fabsf dependency
duke@435 482 // All fabs() callers should call this function instead, which will implicitly
duke@435 483 // convert the operand to double, avoiding a dependency on __fabsf which
duke@435 484 // doesn't exist in early versions of Solaris 8.
duke@435 485 inline double fabsd(double value) {
duke@435 486 return fabs(value);
duke@435 487 }
duke@435 488
duke@435 489 inline jint low (jlong value) { return jint(value); }
duke@435 490 inline jint high(jlong value) { return jint(value >> 32); }
duke@435 491
duke@435 492 // the fancy casts are a hopefully portable way
duke@435 493 // to do unsigned 32 to 64 bit type conversion
duke@435 494 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
duke@435 495 *value |= (jlong)(julong)(juint)low; }
duke@435 496
duke@435 497 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
duke@435 498 *value |= (jlong)high << 32; }
duke@435 499
duke@435 500 inline jlong jlong_from(jint h, jint l) {
duke@435 501 jlong result = 0; // initialization to avoid warning
duke@435 502 set_high(&result, h);
duke@435 503 set_low(&result, l);
duke@435 504 return result;
duke@435 505 }
duke@435 506
duke@435 507 union jlong_accessor {
duke@435 508 jint words[2];
duke@435 509 jlong long_value;
duke@435 510 };
duke@435 511
coleenp@548 512 void basic_types_init(); // cannot define here; uses assert
duke@435 513
duke@435 514
duke@435 515 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 516 enum BasicType {
roland@4159 517 T_BOOLEAN = 4,
roland@4159 518 T_CHAR = 5,
roland@4159 519 T_FLOAT = 6,
roland@4159 520 T_DOUBLE = 7,
roland@4159 521 T_BYTE = 8,
roland@4159 522 T_SHORT = 9,
roland@4159 523 T_INT = 10,
roland@4159 524 T_LONG = 11,
roland@4159 525 T_OBJECT = 12,
roland@4159 526 T_ARRAY = 13,
roland@4159 527 T_VOID = 14,
roland@4159 528 T_ADDRESS = 15,
roland@4159 529 T_NARROWOOP = 16,
roland@4159 530 T_METADATA = 17,
roland@4159 531 T_NARROWKLASS = 18,
roland@4159 532 T_CONFLICT = 19, // for stack value type with conflicting contents
roland@4159 533 T_ILLEGAL = 99
duke@435 534 };
duke@435 535
kvn@464 536 inline bool is_java_primitive(BasicType t) {
kvn@464 537 return T_BOOLEAN <= t && t <= T_LONG;
kvn@464 538 }
kvn@464 539
jrose@1145 540 inline bool is_subword_type(BasicType t) {
jrose@1145 541 // these guys are processed exactly like T_INT in calling sequences:
jrose@1145 542 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
jrose@1145 543 }
jrose@1145 544
jrose@1145 545 inline bool is_signed_subword_type(BasicType t) {
jrose@1145 546 return (t == T_BYTE || t == T_SHORT);
jrose@1145 547 }
jrose@1145 548
duke@435 549 // Convert a char from a classfile signature to a BasicType
duke@435 550 inline BasicType char2type(char c) {
duke@435 551 switch( c ) {
duke@435 552 case 'B': return T_BYTE;
duke@435 553 case 'C': return T_CHAR;
duke@435 554 case 'D': return T_DOUBLE;
duke@435 555 case 'F': return T_FLOAT;
duke@435 556 case 'I': return T_INT;
duke@435 557 case 'J': return T_LONG;
duke@435 558 case 'S': return T_SHORT;
duke@435 559 case 'Z': return T_BOOLEAN;
duke@435 560 case 'V': return T_VOID;
duke@435 561 case 'L': return T_OBJECT;
duke@435 562 case '[': return T_ARRAY;
duke@435 563 }
duke@435 564 return T_ILLEGAL;
duke@435 565 }
duke@435 566
duke@435 567 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 568 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
duke@435 569 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
duke@435 570 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 571 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
duke@435 572 extern BasicType name2type(const char* name);
duke@435 573
duke@435 574 // Auxilary math routines
duke@435 575 // least common multiple
duke@435 576 extern size_t lcm(size_t a, size_t b);
duke@435 577
duke@435 578
duke@435 579 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 580 enum BasicTypeSize {
roland@4159 581 T_BOOLEAN_size = 1,
roland@4159 582 T_CHAR_size = 1,
roland@4159 583 T_FLOAT_size = 1,
roland@4159 584 T_DOUBLE_size = 2,
roland@4159 585 T_BYTE_size = 1,
roland@4159 586 T_SHORT_size = 1,
roland@4159 587 T_INT_size = 1,
roland@4159 588 T_LONG_size = 2,
roland@4159 589 T_OBJECT_size = 1,
roland@4159 590 T_ARRAY_size = 1,
roland@4159 591 T_NARROWOOP_size = 1,
roland@4159 592 T_NARROWKLASS_size = 1,
roland@4159 593 T_VOID_size = 0
duke@435 594 };
duke@435 595
duke@435 596
duke@435 597 // maps a BasicType to its instance field storage type:
duke@435 598 // all sub-word integral types are widened to T_INT
duke@435 599 extern BasicType type2field[T_CONFLICT+1];
duke@435 600 extern BasicType type2wfield[T_CONFLICT+1];
duke@435 601
duke@435 602
duke@435 603 // size in bytes
duke@435 604 enum ArrayElementSize {
roland@4159 605 T_BOOLEAN_aelem_bytes = 1,
roland@4159 606 T_CHAR_aelem_bytes = 2,
roland@4159 607 T_FLOAT_aelem_bytes = 4,
roland@4159 608 T_DOUBLE_aelem_bytes = 8,
roland@4159 609 T_BYTE_aelem_bytes = 1,
roland@4159 610 T_SHORT_aelem_bytes = 2,
roland@4159 611 T_INT_aelem_bytes = 4,
roland@4159 612 T_LONG_aelem_bytes = 8,
duke@435 613 #ifdef _LP64
roland@4159 614 T_OBJECT_aelem_bytes = 8,
roland@4159 615 T_ARRAY_aelem_bytes = 8,
duke@435 616 #else
roland@4159 617 T_OBJECT_aelem_bytes = 4,
roland@4159 618 T_ARRAY_aelem_bytes = 4,
duke@435 619 #endif
roland@4159 620 T_NARROWOOP_aelem_bytes = 4,
roland@4159 621 T_NARROWKLASS_aelem_bytes = 4,
roland@4159 622 T_VOID_aelem_bytes = 0
duke@435 623 };
duke@435 624
kvn@464 625 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
kvn@464 626 #ifdef ASSERT
kvn@464 627 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
kvn@464 628 #else
never@2118 629 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
kvn@464 630 #endif
duke@435 631
duke@435 632
duke@435 633 // JavaValue serves as a container for arbitrary Java values.
duke@435 634
duke@435 635 class JavaValue {
duke@435 636
duke@435 637 public:
duke@435 638 typedef union JavaCallValue {
duke@435 639 jfloat f;
duke@435 640 jdouble d;
duke@435 641 jint i;
duke@435 642 jlong l;
duke@435 643 jobject h;
duke@435 644 } JavaCallValue;
duke@435 645
duke@435 646 private:
duke@435 647 BasicType _type;
duke@435 648 JavaCallValue _value;
duke@435 649
duke@435 650 public:
duke@435 651 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
duke@435 652
duke@435 653 JavaValue(jfloat value) {
duke@435 654 _type = T_FLOAT;
duke@435 655 _value.f = value;
duke@435 656 }
duke@435 657
duke@435 658 JavaValue(jdouble value) {
duke@435 659 _type = T_DOUBLE;
duke@435 660 _value.d = value;
duke@435 661 }
duke@435 662
duke@435 663 jfloat get_jfloat() const { return _value.f; }
duke@435 664 jdouble get_jdouble() const { return _value.d; }
duke@435 665 jint get_jint() const { return _value.i; }
duke@435 666 jlong get_jlong() const { return _value.l; }
duke@435 667 jobject get_jobject() const { return _value.h; }
duke@435 668 JavaCallValue* get_value_addr() { return &_value; }
duke@435 669 BasicType get_type() const { return _type; }
duke@435 670
duke@435 671 void set_jfloat(jfloat f) { _value.f = f;}
duke@435 672 void set_jdouble(jdouble d) { _value.d = d;}
duke@435 673 void set_jint(jint i) { _value.i = i;}
duke@435 674 void set_jlong(jlong l) { _value.l = l;}
duke@435 675 void set_jobject(jobject h) { _value.h = h;}
duke@435 676 void set_type(BasicType t) { _type = t; }
duke@435 677
duke@435 678 jboolean get_jboolean() const { return (jboolean) (_value.i);}
duke@435 679 jbyte get_jbyte() const { return (jbyte) (_value.i);}
duke@435 680 jchar get_jchar() const { return (jchar) (_value.i);}
duke@435 681 jshort get_jshort() const { return (jshort) (_value.i);}
duke@435 682
duke@435 683 };
duke@435 684
duke@435 685
duke@435 686 #define STACK_BIAS 0
duke@435 687 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
duke@435 688 // in order to extend the reach of the stack pointer.
duke@435 689 #if defined(SPARC) && defined(_LP64)
duke@435 690 #undef STACK_BIAS
duke@435 691 #define STACK_BIAS 0x7ff
duke@435 692 #endif
duke@435 693
duke@435 694
duke@435 695 // TosState describes the top-of-stack state before and after the execution of
duke@435 696 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
duke@435 697 // registers. The TosState corresponds to the 'machine represention' of this cached
duke@435 698 // value. There's 4 states corresponding to the JAVA types int, long, float & double
duke@435 699 // as well as a 5th state in case the top-of-stack value is actually on the top
duke@435 700 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
duke@435 701 // state when it comes to machine representation but is used separately for (oop)
duke@435 702 // type specific operations (e.g. verification code).
duke@435 703
duke@435 704 enum TosState { // describes the tos cache contents
duke@435 705 btos = 0, // byte, bool tos cached
jrose@1161 706 ctos = 1, // char tos cached
jrose@1161 707 stos = 2, // short tos cached
duke@435 708 itos = 3, // int tos cached
duke@435 709 ltos = 4, // long tos cached
duke@435 710 ftos = 5, // float tos cached
duke@435 711 dtos = 6, // double tos cached
duke@435 712 atos = 7, // object cached
duke@435 713 vtos = 8, // tos not cached
duke@435 714 number_of_states,
duke@435 715 ilgl // illegal state: should not occur
duke@435 716 };
duke@435 717
duke@435 718
duke@435 719 inline TosState as_TosState(BasicType type) {
duke@435 720 switch (type) {
duke@435 721 case T_BYTE : return btos;
jrose@1161 722 case T_BOOLEAN: return btos; // FIXME: Add ztos
duke@435 723 case T_CHAR : return ctos;
duke@435 724 case T_SHORT : return stos;
duke@435 725 case T_INT : return itos;
duke@435 726 case T_LONG : return ltos;
duke@435 727 case T_FLOAT : return ftos;
duke@435 728 case T_DOUBLE : return dtos;
duke@435 729 case T_VOID : return vtos;
duke@435 730 case T_ARRAY : // fall through
duke@435 731 case T_OBJECT : return atos;
duke@435 732 }
duke@435 733 return ilgl;
duke@435 734 }
duke@435 735
jrose@1161 736 inline BasicType as_BasicType(TosState state) {
jrose@1161 737 switch (state) {
jrose@1161 738 //case ztos: return T_BOOLEAN;//FIXME
jrose@1161 739 case btos : return T_BYTE;
jrose@1161 740 case ctos : return T_CHAR;
jrose@1161 741 case stos : return T_SHORT;
jrose@1161 742 case itos : return T_INT;
jrose@1161 743 case ltos : return T_LONG;
jrose@1161 744 case ftos : return T_FLOAT;
jrose@1161 745 case dtos : return T_DOUBLE;
jrose@1161 746 case atos : return T_OBJECT;
jrose@1161 747 case vtos : return T_VOID;
jrose@1161 748 }
jrose@1161 749 return T_ILLEGAL;
jrose@1161 750 }
jrose@1161 751
duke@435 752
duke@435 753 // Helper function to convert BasicType info into TosState
duke@435 754 // Note: Cannot define here as it uses global constant at the time being.
duke@435 755 TosState as_TosState(BasicType type);
duke@435 756
duke@435 757
duke@435 758 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
duke@435 759
duke@435 760 enum ReferenceType {
duke@435 761 REF_NONE, // Regular class
duke@435 762 REF_OTHER, // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
duke@435 763 REF_SOFT, // Subclass of java/lang/ref/SoftReference
duke@435 764 REF_WEAK, // Subclass of java/lang/ref/WeakReference
duke@435 765 REF_FINAL, // Subclass of java/lang/ref/FinalReference
duke@435 766 REF_PHANTOM // Subclass of java/lang/ref/PhantomReference
duke@435 767 };
duke@435 768
duke@435 769
duke@435 770 // JavaThreadState keeps track of which part of the code a thread is executing in. This
duke@435 771 // information is needed by the safepoint code.
duke@435 772 //
duke@435 773 // There are 4 essential states:
duke@435 774 //
duke@435 775 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
duke@435 776 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
duke@435 777 // _thread_in_vm : Executing in the vm
duke@435 778 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
duke@435 779 //
duke@435 780 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
duke@435 781 // a transition from one state to another. These extra states makes it possible for the safepoint code to
duke@435 782 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
duke@435 783 //
duke@435 784 // Given a state, the xxx_trans state can always be found by adding 1.
duke@435 785 //
duke@435 786 enum JavaThreadState {
duke@435 787 _thread_uninitialized = 0, // should never happen (missing initialization)
duke@435 788 _thread_new = 2, // just starting up, i.e., in process of being initialized
duke@435 789 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
duke@435 790 _thread_in_native = 4, // running in native code
duke@435 791 _thread_in_native_trans = 5, // corresponding transition state
duke@435 792 _thread_in_vm = 6, // running in VM
duke@435 793 _thread_in_vm_trans = 7, // corresponding transition state
duke@435 794 _thread_in_Java = 8, // running in Java or in stub code
duke@435 795 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
duke@435 796 _thread_blocked = 10, // blocked in vm
duke@435 797 _thread_blocked_trans = 11, // corresponding transition state
duke@435 798 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
duke@435 799 };
duke@435 800
duke@435 801
duke@435 802 // Handy constants for deciding which compiler mode to use.
duke@435 803 enum MethodCompilation {
duke@435 804 InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation
duke@435 805 InvalidOSREntryBci = -2
duke@435 806 };
duke@435 807
duke@435 808 // Enumeration to distinguish tiers of compilation
duke@435 809 enum CompLevel {
iveresov@2138 810 CompLevel_any = -1,
iveresov@2138 811 CompLevel_all = -1,
iveresov@2138 812 CompLevel_none = 0, // Interpreter
iveresov@2138 813 CompLevel_simple = 1, // C1
iveresov@2138 814 CompLevel_limited_profile = 2, // C1, invocation & backedge counters
iveresov@2138 815 CompLevel_full_profile = 3, // C1, invocation & backedge counters + mdo
twisti@2729 816 CompLevel_full_optimization = 4, // C2 or Shark
duke@435 817
twisti@2729 818 #if defined(COMPILER2) || defined(SHARK)
iveresov@2138 819 CompLevel_highest_tier = CompLevel_full_optimization, // pure C2 and tiered
iveresov@2138 820 #elif defined(COMPILER1)
iveresov@2138 821 CompLevel_highest_tier = CompLevel_simple, // pure C1
duke@435 822 #else
iveresov@2138 823 CompLevel_highest_tier = CompLevel_none,
iveresov@2138 824 #endif
iveresov@2138 825
iveresov@2138 826 #if defined(TIERED)
iveresov@2138 827 CompLevel_initial_compile = CompLevel_full_profile // tiered
iveresov@2138 828 #elif defined(COMPILER1)
iveresov@2138 829 CompLevel_initial_compile = CompLevel_simple // pure C1
twisti@2729 830 #elif defined(COMPILER2) || defined(SHARK)
iveresov@2138 831 CompLevel_initial_compile = CompLevel_full_optimization // pure C2
iveresov@2138 832 #else
iveresov@2138 833 CompLevel_initial_compile = CompLevel_none
iveresov@2138 834 #endif
duke@435 835 };
duke@435 836
iveresov@2138 837 inline bool is_c1_compile(int comp_level) {
iveresov@2138 838 return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
duke@435 839 }
iveresov@2138 840
iveresov@2138 841 inline bool is_c2_compile(int comp_level) {
duke@435 842 return comp_level == CompLevel_full_optimization;
duke@435 843 }
iveresov@2138 844
duke@435 845 inline bool is_highest_tier_compile(int comp_level) {
duke@435 846 return comp_level == CompLevel_highest_tier;
duke@435 847 }
duke@435 848
iignatyev@4908 849 inline bool is_compile(int comp_level) {
iignatyev@4908 850 return is_c1_compile(comp_level) || is_c2_compile(comp_level);
iignatyev@4908 851 }
iignatyev@4908 852
duke@435 853 //----------------------------------------------------------------------------------------------------
duke@435 854 // 'Forward' declarations of frequently used classes
duke@435 855 // (in order to reduce interface dependencies & reduce
duke@435 856 // number of unnecessary compilations after changes)
duke@435 857
duke@435 858 class symbolTable;
duke@435 859 class ClassFileStream;
duke@435 860
duke@435 861 class Event;
duke@435 862
duke@435 863 class Thread;
duke@435 864 class VMThread;
duke@435 865 class JavaThread;
duke@435 866 class Threads;
duke@435 867
duke@435 868 class VM_Operation;
duke@435 869 class VMOperationQueue;
duke@435 870
duke@435 871 class CodeBlob;
duke@435 872 class nmethod;
duke@435 873 class OSRAdapter;
duke@435 874 class I2CAdapter;
duke@435 875 class C2IAdapter;
duke@435 876 class CompiledIC;
duke@435 877 class relocInfo;
duke@435 878 class ScopeDesc;
duke@435 879 class PcDesc;
duke@435 880
duke@435 881 class Recompiler;
duke@435 882 class Recompilee;
duke@435 883 class RecompilationPolicy;
duke@435 884 class RFrame;
duke@435 885 class CompiledRFrame;
duke@435 886 class InterpretedRFrame;
duke@435 887
duke@435 888 class frame;
duke@435 889
duke@435 890 class vframe;
duke@435 891 class javaVFrame;
duke@435 892 class interpretedVFrame;
duke@435 893 class compiledVFrame;
duke@435 894 class deoptimizedVFrame;
duke@435 895 class externalVFrame;
duke@435 896 class entryVFrame;
duke@435 897
duke@435 898 class RegisterMap;
duke@435 899
duke@435 900 class Mutex;
duke@435 901 class Monitor;
duke@435 902 class BasicLock;
duke@435 903 class BasicObjectLock;
duke@435 904
duke@435 905 class PeriodicTask;
duke@435 906
duke@435 907 class JavaCallWrapper;
duke@435 908
duke@435 909 class oopDesc;
coleenp@4037 910 class metaDataOopDesc;
duke@435 911
duke@435 912 class NativeCall;
duke@435 913
duke@435 914 class zone;
duke@435 915
duke@435 916 class StubQueue;
duke@435 917
duke@435 918 class outputStream;
duke@435 919
duke@435 920 class ResourceArea;
duke@435 921
duke@435 922 class DebugInformationRecorder;
duke@435 923 class ScopeValue;
duke@435 924 class CompressedStream;
duke@435 925 class DebugInfoReadStream;
duke@435 926 class DebugInfoWriteStream;
duke@435 927 class LocationValue;
duke@435 928 class ConstantValue;
duke@435 929 class IllegalValue;
duke@435 930
duke@435 931 class PrivilegedElement;
duke@435 932 class MonitorArray;
duke@435 933
duke@435 934 class MonitorInfo;
duke@435 935
duke@435 936 class OffsetClosure;
duke@435 937 class OopMapCache;
duke@435 938 class InterpreterOopMap;
duke@435 939 class OopMapCacheEntry;
duke@435 940 class OSThread;
duke@435 941
duke@435 942 typedef int (*OSThreadStartFunc)(void*);
duke@435 943
duke@435 944 class Space;
duke@435 945
duke@435 946 class JavaValue;
duke@435 947 class methodHandle;
duke@435 948 class JavaCallArguments;
duke@435 949
duke@435 950 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
duke@435 951
duke@435 952 extern void basic_fatal(const char* msg);
duke@435 953
duke@435 954
duke@435 955 //----------------------------------------------------------------------------------------------------
duke@435 956 // Special constants for debugging
duke@435 957
duke@435 958 const jint badInt = -3; // generic "bad int" value
duke@435 959 const long badAddressVal = -2; // generic "bad address" value
duke@435 960 const long badOopVal = -1; // generic "bad oop" value
duke@435 961 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
duke@435 962 const int badHandleValue = 0xBC; // value used to zap vm handle area
duke@435 963 const int badResourceValue = 0xAB; // value used to zap resource area
duke@435 964 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
duke@435 965 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
duke@435 966 const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
duke@435 967 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
coleenp@4037 968 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC
duke@435 969 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
duke@435 970 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
duke@435 971
duke@435 972
duke@435 973 // (These must be implemented as #defines because C++ compilers are
duke@435 974 // not obligated to inline non-integral constants!)
duke@435 975 #define badAddress ((address)::badAddressVal)
duke@435 976 #define badOop ((oop)::badOopVal)
duke@435 977 #define badHeapWord (::badHeapWordVal)
duke@435 978 #define badJNIHandle ((oop)::badJNIHandleVal)
duke@435 979
jcoomes@1746 980 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
jcoomes@1746 981 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
duke@435 982
duke@435 983 //----------------------------------------------------------------------------------------------------
duke@435 984 // Utility functions for bitfield manipulations
duke@435 985
duke@435 986 const intptr_t AllBits = ~0; // all bits set in a word
duke@435 987 const intptr_t NoBits = 0; // no bits set in a word
duke@435 988 const jlong NoLongBits = 0; // no bits set in a long
duke@435 989 const intptr_t OneBit = 1; // only right_most bit set in a word
duke@435 990
duke@435 991 // get a word with the n.th or the right-most or left-most n bits set
duke@435 992 // (note: #define used only so that they can be used in enum constant definitions)
duke@435 993 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n))
duke@435 994 #define right_n_bits(n) (nth_bit(n) - 1)
duke@435 995 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
duke@435 996
duke@435 997 // bit-operations using a mask m
duke@435 998 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
duke@435 999 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
duke@435 1000 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
duke@435 1001 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
duke@435 1002 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
duke@435 1003
duke@435 1004 // bit-operations using the n.th bit
duke@435 1005 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
duke@435 1006 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
duke@435 1007 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
duke@435 1008
duke@435 1009 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
duke@435 1010 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
duke@435 1011 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
duke@435 1012 }
duke@435 1013
duke@435 1014
duke@435 1015 //----------------------------------------------------------------------------------------------------
duke@435 1016 // Utility functions for integers
duke@435 1017
duke@435 1018 // Avoid use of global min/max macros which may cause unwanted double
duke@435 1019 // evaluation of arguments.
duke@435 1020 #ifdef max
duke@435 1021 #undef max
duke@435 1022 #endif
duke@435 1023
duke@435 1024 #ifdef min
duke@435 1025 #undef min
duke@435 1026 #endif
duke@435 1027
duke@435 1028 #define max(a,b) Do_not_use_max_use_MAX2_instead
duke@435 1029 #define min(a,b) Do_not_use_min_use_MIN2_instead
duke@435 1030
duke@435 1031 // It is necessary to use templates here. Having normal overloaded
duke@435 1032 // functions does not work because it is necessary to provide both 32-
duke@435 1033 // and 64-bit overloaded functions, which does not work, and having
duke@435 1034 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
duke@435 1035 // will be even more error-prone than macros.
duke@435 1036 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
duke@435 1037 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
duke@435 1038 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
duke@435 1039 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
duke@435 1040 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
duke@435 1041 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
duke@435 1042
duke@435 1043 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
duke@435 1044
duke@435 1045 // true if x is a power of 2, false otherwise
duke@435 1046 inline bool is_power_of_2(intptr_t x) {
duke@435 1047 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
duke@435 1048 }
duke@435 1049
duke@435 1050 // long version of is_power_of_2
duke@435 1051 inline bool is_power_of_2_long(jlong x) {
duke@435 1052 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
duke@435 1053 }
duke@435 1054
duke@435 1055 //* largest i such that 2^i <= x
duke@435 1056 // A negative value of 'x' will return '31'
duke@435 1057 inline int log2_intptr(intptr_t x) {
duke@435 1058 int i = -1;
duke@435 1059 uintptr_t p = 1;
duke@435 1060 while (p != 0 && p <= (uintptr_t)x) {
duke@435 1061 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 1062 i++; p *= 2;
duke@435 1063 }
duke@435 1064 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 1065 // (if p = 0 then overflow occurred and i = 31)
duke@435 1066 return i;
duke@435 1067 }
duke@435 1068
duke@435 1069 //* largest i such that 2^i <= x
duke@435 1070 // A negative value of 'x' will return '63'
duke@435 1071 inline int log2_long(jlong x) {
duke@435 1072 int i = -1;
duke@435 1073 julong p = 1;
duke@435 1074 while (p != 0 && p <= (julong)x) {
duke@435 1075 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 1076 i++; p *= 2;
duke@435 1077 }
duke@435 1078 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 1079 // (if p = 0 then overflow occurred and i = 63)
duke@435 1080 return i;
duke@435 1081 }
duke@435 1082
duke@435 1083 //* the argument must be exactly a power of 2
duke@435 1084 inline int exact_log2(intptr_t x) {
duke@435 1085 #ifdef ASSERT
duke@435 1086 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
duke@435 1087 #endif
duke@435 1088 return log2_intptr(x);
duke@435 1089 }
duke@435 1090
twisti@1003 1091 //* the argument must be exactly a power of 2
twisti@1003 1092 inline int exact_log2_long(jlong x) {
twisti@1003 1093 #ifdef ASSERT
twisti@1003 1094 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
twisti@1003 1095 #endif
twisti@1003 1096 return log2_long(x);
twisti@1003 1097 }
twisti@1003 1098
duke@435 1099
duke@435 1100 // returns integer round-up to the nearest multiple of s (s must be a power of two)
duke@435 1101 inline intptr_t round_to(intptr_t x, uintx s) {
duke@435 1102 #ifdef ASSERT
duke@435 1103 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 1104 #endif
duke@435 1105 const uintx m = s - 1;
duke@435 1106 return mask_bits(x + m, ~m);
duke@435 1107 }
duke@435 1108
duke@435 1109 // returns integer round-down to the nearest multiple of s (s must be a power of two)
duke@435 1110 inline intptr_t round_down(intptr_t x, uintx s) {
duke@435 1111 #ifdef ASSERT
duke@435 1112 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 1113 #endif
duke@435 1114 const uintx m = s - 1;
duke@435 1115 return mask_bits(x, ~m);
duke@435 1116 }
duke@435 1117
duke@435 1118
duke@435 1119 inline bool is_odd (intx x) { return x & 1; }
duke@435 1120 inline bool is_even(intx x) { return !is_odd(x); }
duke@435 1121
duke@435 1122 // "to" should be greater than "from."
duke@435 1123 inline intx byte_size(void* from, void* to) {
duke@435 1124 return (address)to - (address)from;
duke@435 1125 }
duke@435 1126
duke@435 1127 //----------------------------------------------------------------------------------------------------
duke@435 1128 // Avoid non-portable casts with these routines (DEPRECATED)
duke@435 1129
duke@435 1130 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
duke@435 1131 // Bytes is optimized machine-specifically and may be much faster then the portable routines below.
duke@435 1132
duke@435 1133 // Given sequence of four bytes, build into a 32-bit word
duke@435 1134 // following the conventions used in class files.
duke@435 1135 // On the 386, this could be realized with a simple address cast.
duke@435 1136 //
duke@435 1137
duke@435 1138 // This routine takes eight bytes:
duke@435 1139 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@2144 1140 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 ))
twisti@2144 1141 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 ))
twisti@2144 1142 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 ))
twisti@2144 1143 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 ))
twisti@2144 1144 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 ))
twisti@2144 1145 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 ))
twisti@2144 1146 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 ))
twisti@2144 1147 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 ));
duke@435 1148 }
duke@435 1149
duke@435 1150 // This routine takes four bytes:
duke@435 1151 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
twisti@2144 1152 return (( u4(c1) << 24 ) & 0xff000000)
twisti@2144 1153 | (( u4(c2) << 16 ) & 0x00ff0000)
twisti@2144 1154 | (( u4(c3) << 8 ) & 0x0000ff00)
twisti@2144 1155 | (( u4(c4) << 0 ) & 0x000000ff);
duke@435 1156 }
duke@435 1157
duke@435 1158 // And this one works if the four bytes are contiguous in memory:
duke@435 1159 inline u4 build_u4_from( u1* p ) {
duke@435 1160 return build_u4_from( p[0], p[1], p[2], p[3] );
duke@435 1161 }
duke@435 1162
duke@435 1163 // Ditto for two-byte ints:
duke@435 1164 inline u2 build_u2_from( u1 c1, u1 c2 ) {
twisti@2144 1165 return u2((( u2(c1) << 8 ) & 0xff00)
twisti@2144 1166 | (( u2(c2) << 0 ) & 0x00ff));
duke@435 1167 }
duke@435 1168
duke@435 1169 // And this one works if the two bytes are contiguous in memory:
duke@435 1170 inline u2 build_u2_from( u1* p ) {
duke@435 1171 return build_u2_from( p[0], p[1] );
duke@435 1172 }
duke@435 1173
duke@435 1174 // Ditto for floats:
duke@435 1175 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
duke@435 1176 u4 u = build_u4_from( c1, c2, c3, c4 );
duke@435 1177 return *(jfloat*)&u;
duke@435 1178 }
duke@435 1179
duke@435 1180 inline jfloat build_float_from( u1* p ) {
duke@435 1181 u4 u = build_u4_from( p );
duke@435 1182 return *(jfloat*)&u;
duke@435 1183 }
duke@435 1184
duke@435 1185
duke@435 1186 // now (64-bit) longs
duke@435 1187
duke@435 1188 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@2144 1189 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 ))
twisti@2144 1190 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 ))
twisti@2144 1191 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 ))
twisti@2144 1192 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 ))
twisti@2144 1193 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 ))
twisti@2144 1194 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 ))
twisti@2144 1195 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 ))
twisti@2144 1196 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 ));
duke@435 1197 }
duke@435 1198
duke@435 1199 inline jlong build_long_from( u1* p ) {
duke@435 1200 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
duke@435 1201 }
duke@435 1202
duke@435 1203
duke@435 1204 // Doubles, too!
duke@435 1205 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@435 1206 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
duke@435 1207 return *(jdouble*)&u;
duke@435 1208 }
duke@435 1209
duke@435 1210 inline jdouble build_double_from( u1* p ) {
duke@435 1211 jlong u = build_long_from( p );
duke@435 1212 return *(jdouble*)&u;
duke@435 1213 }
duke@435 1214
duke@435 1215
duke@435 1216 // Portable routines to go the other way:
duke@435 1217
duke@435 1218 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
duke@435 1219 c1 = u1(x >> 8);
duke@435 1220 c2 = u1(x);
duke@435 1221 }
duke@435 1222
duke@435 1223 inline void explode_short_to( u2 x, u1* p ) {
duke@435 1224 explode_short_to( x, p[0], p[1]);
duke@435 1225 }
duke@435 1226
duke@435 1227 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
duke@435 1228 c1 = u1(x >> 24);
duke@435 1229 c2 = u1(x >> 16);
duke@435 1230 c3 = u1(x >> 8);
duke@435 1231 c4 = u1(x);
duke@435 1232 }
duke@435 1233
duke@435 1234 inline void explode_int_to( u4 x, u1* p ) {
duke@435 1235 explode_int_to( x, p[0], p[1], p[2], p[3]);
duke@435 1236 }
duke@435 1237
duke@435 1238
duke@435 1239 // Pack and extract shorts to/from ints:
duke@435 1240
duke@435 1241 inline int extract_low_short_from_int(jint x) {
duke@435 1242 return x & 0xffff;
duke@435 1243 }
duke@435 1244
duke@435 1245 inline int extract_high_short_from_int(jint x) {
duke@435 1246 return (x >> 16) & 0xffff;
duke@435 1247 }
duke@435 1248
duke@435 1249 inline int build_int_from_shorts( jushort low, jushort high ) {
duke@435 1250 return ((int)((unsigned int)high << 16) | (unsigned int)low);
duke@435 1251 }
duke@435 1252
duke@435 1253 // Printf-style formatters for fixed- and variable-width types as pointers and
never@3156 1254 // integers. These are derived from the definitions in inttypes.h. If the platform
never@3156 1255 // doesn't provide appropriate definitions, they should be provided in
never@3156 1256 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
duke@435 1257
tonyp@2643 1258 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
tonyp@2472 1259
duke@435 1260 // Format 32-bit quantities.
never@3156 1261 #define INT32_FORMAT "%" PRId32
never@3156 1262 #define UINT32_FORMAT "%" PRIu32
never@3156 1263 #define INT32_FORMAT_W(width) "%" #width PRId32
never@3156 1264 #define UINT32_FORMAT_W(width) "%" #width PRIu32
duke@435 1265
never@3156 1266 #define PTR32_FORMAT "0x%08" PRIx32
duke@435 1267
duke@435 1268 // Format 64-bit quantities.
never@3156 1269 #define INT64_FORMAT "%" PRId64
never@3156 1270 #define UINT64_FORMAT "%" PRIu64
never@3156 1271 #define INT64_FORMAT_W(width) "%" #width PRId64
never@3156 1272 #define UINT64_FORMAT_W(width) "%" #width PRIu64
duke@435 1273
never@3156 1274 #define PTR64_FORMAT "0x%016" PRIx64
duke@435 1275
hseigel@4465 1276 // Format jlong, if necessary
hseigel@4465 1277 #ifndef JLONG_FORMAT
hseigel@4465 1278 #define JLONG_FORMAT INT64_FORMAT
hseigel@4465 1279 #endif
hseigel@4465 1280 #ifndef JULONG_FORMAT
hseigel@4465 1281 #define JULONG_FORMAT UINT64_FORMAT
hseigel@4465 1282 #endif
hseigel@4465 1283
never@3156 1284 // Format pointers which change size between 32- and 64-bit.
duke@435 1285 #ifdef _LP64
never@3156 1286 #define INTPTR_FORMAT "0x%016" PRIxPTR
never@3156 1287 #define PTR_FORMAT "0x%016" PRIxPTR
duke@435 1288 #else // !_LP64
never@3156 1289 #define INTPTR_FORMAT "0x%08" PRIxPTR
never@3156 1290 #define PTR_FORMAT "0x%08" PRIxPTR
duke@435 1291 #endif // _LP64
duke@435 1292
never@3156 1293 #define SSIZE_FORMAT "%" PRIdPTR
never@3156 1294 #define SIZE_FORMAT "%" PRIuPTR
never@3156 1295 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
never@3156 1296 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR
never@3156 1297
never@3156 1298 #define INTX_FORMAT "%" PRIdPTR
never@3156 1299 #define UINTX_FORMAT "%" PRIuPTR
never@3156 1300 #define INTX_FORMAT_W(width) "%" #width PRIdPTR
never@3156 1301 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
never@3156 1302
duke@435 1303
duke@435 1304 // Enable zap-a-lot if in debug version.
duke@435 1305
duke@435 1306 # ifdef ASSERT
duke@435 1307 # ifdef COMPILER2
duke@435 1308 # define ENABLE_ZAP_DEAD_LOCALS
duke@435 1309 #endif /* COMPILER2 */
duke@435 1310 # endif /* ASSERT */
duke@435 1311
duke@435 1312 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
stefank@2314 1313
coleenp@4295 1314 // Dereference vptr
coleenp@4295 1315 // All C++ compilers that we know of have the vtbl pointer in the first
coleenp@4295 1316 // word. If there are exceptions, this function needs to be made compiler
coleenp@4295 1317 // specific.
coleenp@4295 1318 static inline void* dereference_vptr(void* addr) {
coleenp@4295 1319 return *(void**)addr;
coleenp@4295 1320 }
coleenp@4295 1321
mikael@4889 1322
mikael@4889 1323 #ifndef PRODUCT
mikael@4889 1324
mikael@4889 1325 // For unit testing only
mikael@4889 1326 class GlobalDefinitions {
mikael@4889 1327 public:
mikael@4889 1328 static void test_globals();
mikael@4889 1329 };
mikael@4889 1330
mikael@4889 1331 #endif // PRODUCT
mikael@4889 1332
stefank@2314 1333 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial