src/share/vm/c1/c1_LIRGenerator.cpp

Wed, 27 Aug 2008 00:21:55 -0700

author
never
date
Wed, 27 Aug 2008 00:21:55 -0700
changeset 739
dc7f315e41f7
parent 435
a61af66fc99e
child 772
9ee9cf798b59
child 797
f8199438385b
permissions
-rw-r--r--

5108146: Merge i486 and amd64 cpu directories
6459804: Want client (c1) compiler for x86_64 (amd64) for faster start-up
Reviewed-by: kvn

     1 /*
     2  * Copyright 2005-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRGenerator.cpp.incl"
    28 #ifdef ASSERT
    29 #define __ gen()->lir(__FILE__, __LINE__)->
    30 #else
    31 #define __ gen()->lir()->
    32 #endif
    35 void PhiResolverState::reset(int max_vregs) {
    36   // Initialize array sizes
    37   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    38   _virtual_operands.trunc_to(0);
    39   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    40   _other_operands.trunc_to(0);
    41   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
    42   _vreg_table.trunc_to(0);
    43 }
    47 //--------------------------------------------------------------
    48 // PhiResolver
    50 // Resolves cycles:
    51 //
    52 //  r1 := r2  becomes  temp := r1
    53 //  r2 := r1           r1 := r2
    54 //                     r2 := temp
    55 // and orders moves:
    56 //
    57 //  r2 := r3  becomes  r1 := r2
    58 //  r1 := r2           r2 := r3
    60 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
    61  : _gen(gen)
    62  , _state(gen->resolver_state())
    63  , _temp(LIR_OprFact::illegalOpr)
    64 {
    65   // reinitialize the shared state arrays
    66   _state.reset(max_vregs);
    67 }
    70 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
    71   assert(src->is_valid(), "");
    72   assert(dest->is_valid(), "");
    73   __ move(src, dest);
    74 }
    77 void PhiResolver::move_temp_to(LIR_Opr dest) {
    78   assert(_temp->is_valid(), "");
    79   emit_move(_temp, dest);
    80   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
    81 }
    84 void PhiResolver::move_to_temp(LIR_Opr src) {
    85   assert(_temp->is_illegal(), "");
    86   _temp = _gen->new_register(src->type());
    87   emit_move(src, _temp);
    88 }
    91 // Traverse assignment graph in depth first order and generate moves in post order
    92 // ie. two assignments: b := c, a := b start with node c:
    93 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
    94 // Generates moves in this order: move b to a and move c to b
    95 // ie. cycle a := b, b := a start with node a
    96 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
    97 // Generates moves in this order: move b to temp, move a to b, move temp to a
    98 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
    99   if (!dest->visited()) {
   100     dest->set_visited();
   101     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
   102       move(dest, dest->destination_at(i));
   103     }
   104   } else if (!dest->start_node()) {
   105     // cylce in graph detected
   106     assert(_loop == NULL, "only one loop valid!");
   107     _loop = dest;
   108     move_to_temp(src->operand());
   109     return;
   110   } // else dest is a start node
   112   if (!dest->assigned()) {
   113     if (_loop == dest) {
   114       move_temp_to(dest->operand());
   115       dest->set_assigned();
   116     } else if (src != NULL) {
   117       emit_move(src->operand(), dest->operand());
   118       dest->set_assigned();
   119     }
   120   }
   121 }
   124 PhiResolver::~PhiResolver() {
   125   int i;
   126   // resolve any cycles in moves from and to virtual registers
   127   for (i = virtual_operands().length() - 1; i >= 0; i --) {
   128     ResolveNode* node = virtual_operands()[i];
   129     if (!node->visited()) {
   130       _loop = NULL;
   131       move(NULL, node);
   132       node->set_start_node();
   133       assert(_temp->is_illegal(), "move_temp_to() call missing");
   134     }
   135   }
   137   // generate move for move from non virtual register to abitrary destination
   138   for (i = other_operands().length() - 1; i >= 0; i --) {
   139     ResolveNode* node = other_operands()[i];
   140     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
   141       emit_move(node->operand(), node->destination_at(j)->operand());
   142     }
   143   }
   144 }
   147 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
   148   ResolveNode* node;
   149   if (opr->is_virtual()) {
   150     int vreg_num = opr->vreg_number();
   151     node = vreg_table().at_grow(vreg_num, NULL);
   152     assert(node == NULL || node->operand() == opr, "");
   153     if (node == NULL) {
   154       node = new ResolveNode(opr);
   155       vreg_table()[vreg_num] = node;
   156     }
   157     // Make sure that all virtual operands show up in the list when
   158     // they are used as the source of a move.
   159     if (source && !virtual_operands().contains(node)) {
   160       virtual_operands().append(node);
   161     }
   162   } else {
   163     assert(source, "");
   164     node = new ResolveNode(opr);
   165     other_operands().append(node);
   166   }
   167   return node;
   168 }
   171 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
   172   assert(dest->is_virtual(), "");
   173   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
   174   assert(src->is_valid(), "");
   175   assert(dest->is_valid(), "");
   176   ResolveNode* source = source_node(src);
   177   source->append(destination_node(dest));
   178 }
   181 //--------------------------------------------------------------
   182 // LIRItem
   184 void LIRItem::set_result(LIR_Opr opr) {
   185   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
   186   value()->set_operand(opr);
   188   if (opr->is_virtual()) {
   189     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
   190   }
   192   _result = opr;
   193 }
   195 void LIRItem::load_item() {
   196   if (result()->is_illegal()) {
   197     // update the items result
   198     _result = value()->operand();
   199   }
   200   if (!result()->is_register()) {
   201     LIR_Opr reg = _gen->new_register(value()->type());
   202     __ move(result(), reg);
   203     if (result()->is_constant()) {
   204       _result = reg;
   205     } else {
   206       set_result(reg);
   207     }
   208   }
   209 }
   212 void LIRItem::load_for_store(BasicType type) {
   213   if (_gen->can_store_as_constant(value(), type)) {
   214     _result = value()->operand();
   215     if (!_result->is_constant()) {
   216       _result = LIR_OprFact::value_type(value()->type());
   217     }
   218   } else if (type == T_BYTE || type == T_BOOLEAN) {
   219     load_byte_item();
   220   } else {
   221     load_item();
   222   }
   223 }
   225 void LIRItem::load_item_force(LIR_Opr reg) {
   226   LIR_Opr r = result();
   227   if (r != reg) {
   228     if (r->type() != reg->type()) {
   229       // moves between different types need an intervening spill slot
   230       LIR_Opr tmp = _gen->force_to_spill(r, reg->type());
   231       __ move(tmp, reg);
   232     } else {
   233       __ move(r, reg);
   234     }
   235     _result = reg;
   236   }
   237 }
   239 ciObject* LIRItem::get_jobject_constant() const {
   240   ObjectType* oc = type()->as_ObjectType();
   241   if (oc) {
   242     return oc->constant_value();
   243   }
   244   return NULL;
   245 }
   248 jint LIRItem::get_jint_constant() const {
   249   assert(is_constant() && value() != NULL, "");
   250   assert(type()->as_IntConstant() != NULL, "type check");
   251   return type()->as_IntConstant()->value();
   252 }
   255 jint LIRItem::get_address_constant() const {
   256   assert(is_constant() && value() != NULL, "");
   257   assert(type()->as_AddressConstant() != NULL, "type check");
   258   return type()->as_AddressConstant()->value();
   259 }
   262 jfloat LIRItem::get_jfloat_constant() const {
   263   assert(is_constant() && value() != NULL, "");
   264   assert(type()->as_FloatConstant() != NULL, "type check");
   265   return type()->as_FloatConstant()->value();
   266 }
   269 jdouble LIRItem::get_jdouble_constant() const {
   270   assert(is_constant() && value() != NULL, "");
   271   assert(type()->as_DoubleConstant() != NULL, "type check");
   272   return type()->as_DoubleConstant()->value();
   273 }
   276 jlong LIRItem::get_jlong_constant() const {
   277   assert(is_constant() && value() != NULL, "");
   278   assert(type()->as_LongConstant() != NULL, "type check");
   279   return type()->as_LongConstant()->value();
   280 }
   284 //--------------------------------------------------------------
   287 void LIRGenerator::init() {
   288   BarrierSet* bs = Universe::heap()->barrier_set();
   289   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
   290   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
   291   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
   293 #ifdef _LP64
   294   _card_table_base = new LIR_Const((jlong)ct->byte_map_base);
   295 #else
   296   _card_table_base = new LIR_Const((jint)ct->byte_map_base);
   297 #endif
   298 }
   301 void LIRGenerator::block_do_prolog(BlockBegin* block) {
   302 #ifndef PRODUCT
   303   if (PrintIRWithLIR) {
   304     block->print();
   305   }
   306 #endif
   308   // set up the list of LIR instructions
   309   assert(block->lir() == NULL, "LIR list already computed for this block");
   310   _lir = new LIR_List(compilation(), block);
   311   block->set_lir(_lir);
   313   __ branch_destination(block->label());
   315   if (LIRTraceExecution &&
   316       Compilation::current_compilation()->hir()->start()->block_id() != block->block_id() &&
   317       !block->is_set(BlockBegin::exception_entry_flag)) {
   318     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
   319     trace_block_entry(block);
   320   }
   321 }
   324 void LIRGenerator::block_do_epilog(BlockBegin* block) {
   325 #ifndef PRODUCT
   326   if (PrintIRWithLIR) {
   327     tty->cr();
   328   }
   329 #endif
   331   // LIR_Opr for unpinned constants shouldn't be referenced by other
   332   // blocks so clear them out after processing the block.
   333   for (int i = 0; i < _unpinned_constants.length(); i++) {
   334     _unpinned_constants.at(i)->clear_operand();
   335   }
   336   _unpinned_constants.trunc_to(0);
   338   // clear our any registers for other local constants
   339   _constants.trunc_to(0);
   340   _reg_for_constants.trunc_to(0);
   341 }
   344 void LIRGenerator::block_do(BlockBegin* block) {
   345   CHECK_BAILOUT();
   347   block_do_prolog(block);
   348   set_block(block);
   350   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
   351     if (instr->is_pinned()) do_root(instr);
   352   }
   354   set_block(NULL);
   355   block_do_epilog(block);
   356 }
   359 //-------------------------LIRGenerator-----------------------------
   361 // This is where the tree-walk starts; instr must be root;
   362 void LIRGenerator::do_root(Value instr) {
   363   CHECK_BAILOUT();
   365   InstructionMark im(compilation(), instr);
   367   assert(instr->is_pinned(), "use only with roots");
   368   assert(instr->subst() == instr, "shouldn't have missed substitution");
   370   instr->visit(this);
   372   assert(!instr->has_uses() || instr->operand()->is_valid() ||
   373          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
   374 }
   377 // This is called for each node in tree; the walk stops if a root is reached
   378 void LIRGenerator::walk(Value instr) {
   379   InstructionMark im(compilation(), instr);
   380   //stop walk when encounter a root
   381   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
   382     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
   383   } else {
   384     assert(instr->subst() == instr, "shouldn't have missed substitution");
   385     instr->visit(this);
   386     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
   387   }
   388 }
   391 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
   392   int index;
   393   Value value;
   394   for_each_stack_value(state, index, value) {
   395     assert(value->subst() == value, "missed substition");
   396     if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   397       walk(value);
   398       assert(value->operand()->is_valid(), "must be evaluated now");
   399     }
   400   }
   401   ValueStack* s = state;
   402   int bci = x->bci();
   403   for_each_state(s) {
   404     IRScope* scope = s->scope();
   405     ciMethod* method = scope->method();
   407     MethodLivenessResult liveness = method->liveness_at_bci(bci);
   408     if (bci == SynchronizationEntryBCI) {
   409       if (x->as_ExceptionObject() || x->as_Throw()) {
   410         // all locals are dead on exit from the synthetic unlocker
   411         liveness.clear();
   412       } else {
   413         assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
   414       }
   415     }
   416     if (!liveness.is_valid()) {
   417       // Degenerate or breakpointed method.
   418       bailout("Degenerate or breakpointed method");
   419     } else {
   420       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
   421       for_each_local_value(s, index, value) {
   422         assert(value->subst() == value, "missed substition");
   423         if (liveness.at(index) && !value->type()->is_illegal()) {
   424           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   425             walk(value);
   426             assert(value->operand()->is_valid(), "must be evaluated now");
   427           }
   428         } else {
   429           // NULL out this local so that linear scan can assume that all non-NULL values are live.
   430           s->invalidate_local(index);
   431         }
   432       }
   433     }
   434     bci = scope->caller_bci();
   435   }
   437   return new CodeEmitInfo(x->bci(), state, ignore_xhandler ? NULL : x->exception_handlers());
   438 }
   441 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
   442   return state_for(x, x->lock_stack());
   443 }
   446 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
   447   if (!obj->is_loaded() || PatchALot) {
   448     assert(info != NULL, "info must be set if class is not loaded");
   449     __ oop2reg_patch(NULL, r, info);
   450   } else {
   451     // no patching needed
   452     __ oop2reg(obj->encoding(), r);
   453   }
   454 }
   457 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
   458                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
   459   CodeStub* stub = new RangeCheckStub(range_check_info, index);
   460   if (index->is_constant()) {
   461     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
   462                 index->as_jint(), null_check_info);
   463     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   464   } else {
   465     cmp_reg_mem(lir_cond_aboveEqual, index, array,
   466                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
   467     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   468   }
   469 }
   472 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
   473   CodeStub* stub = new RangeCheckStub(info, index, true);
   474   if (index->is_constant()) {
   475     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
   476     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   477   } else {
   478     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
   479                 java_nio_Buffer::limit_offset(), T_INT, info);
   480     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   481   }
   482   __ move(index, result);
   483 }
   486 // increment a counter returning the incremented value
   487 LIR_Opr LIRGenerator::increment_and_return_counter(LIR_Opr base, int offset, int increment) {
   488   LIR_Address* counter = new LIR_Address(base, offset, T_INT);
   489   LIR_Opr result = new_register(T_INT);
   490   __ load(counter, result);
   491   __ add(result, LIR_OprFact::intConst(increment), result);
   492   __ store(result, counter);
   493   return result;
   494 }
   497 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
   498   LIR_Opr result_op = result;
   499   LIR_Opr left_op   = left;
   500   LIR_Opr right_op  = right;
   502   if (TwoOperandLIRForm && left_op != result_op) {
   503     assert(right_op != result_op, "malformed");
   504     __ move(left_op, result_op);
   505     left_op = result_op;
   506   }
   508   switch(code) {
   509     case Bytecodes::_dadd:
   510     case Bytecodes::_fadd:
   511     case Bytecodes::_ladd:
   512     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
   513     case Bytecodes::_fmul:
   514     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
   516     case Bytecodes::_dmul:
   517       {
   518         if (is_strictfp) {
   519           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
   520         } else {
   521           __ mul(left_op, right_op, result_op); break;
   522         }
   523       }
   524       break;
   526     case Bytecodes::_imul:
   527       {
   528         bool    did_strength_reduce = false;
   530         if (right->is_constant()) {
   531           int c = right->as_jint();
   532           if (is_power_of_2(c)) {
   533             // do not need tmp here
   534             __ shift_left(left_op, exact_log2(c), result_op);
   535             did_strength_reduce = true;
   536           } else {
   537             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
   538           }
   539         }
   540         // we couldn't strength reduce so just emit the multiply
   541         if (!did_strength_reduce) {
   542           __ mul(left_op, right_op, result_op);
   543         }
   544       }
   545       break;
   547     case Bytecodes::_dsub:
   548     case Bytecodes::_fsub:
   549     case Bytecodes::_lsub:
   550     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
   552     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
   553     // ldiv and lrem are implemented with a direct runtime call
   555     case Bytecodes::_ddiv:
   556       {
   557         if (is_strictfp) {
   558           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
   559         } else {
   560           __ div (left_op, right_op, result_op); break;
   561         }
   562       }
   563       break;
   565     case Bytecodes::_drem:
   566     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
   568     default: ShouldNotReachHere();
   569   }
   570 }
   573 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
   574   arithmetic_op(code, result, left, right, false, tmp);
   575 }
   578 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
   579   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
   580 }
   583 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
   584   arithmetic_op(code, result, left, right, is_strictfp, tmp);
   585 }
   588 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
   589   if (TwoOperandLIRForm && value != result_op) {
   590     assert(count != result_op, "malformed");
   591     __ move(value, result_op);
   592     value = result_op;
   593   }
   595   assert(count->is_constant() || count->is_register(), "must be");
   596   switch(code) {
   597   case Bytecodes::_ishl:
   598   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
   599   case Bytecodes::_ishr:
   600   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
   601   case Bytecodes::_iushr:
   602   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
   603   default: ShouldNotReachHere();
   604   }
   605 }
   608 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
   609   if (TwoOperandLIRForm && left_op != result_op) {
   610     assert(right_op != result_op, "malformed");
   611     __ move(left_op, result_op);
   612     left_op = result_op;
   613   }
   615   switch(code) {
   616     case Bytecodes::_iand:
   617     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
   619     case Bytecodes::_ior:
   620     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
   622     case Bytecodes::_ixor:
   623     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
   625     default: ShouldNotReachHere();
   626   }
   627 }
   630 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
   631   if (!GenerateSynchronizationCode) return;
   632   // for slow path, use debug info for state after successful locking
   633   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
   634   __ load_stack_address_monitor(monitor_no, lock);
   635   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
   636   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
   637 }
   640 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, int monitor_no) {
   641   if (!GenerateSynchronizationCode) return;
   642   // setup registers
   643   LIR_Opr hdr = lock;
   644   lock = new_hdr;
   645   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
   646   __ load_stack_address_monitor(monitor_no, lock);
   647   __ unlock_object(hdr, object, lock, slow_path);
   648 }
   651 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
   652   jobject2reg_with_patching(klass_reg, klass, info);
   653   // If klass is not loaded we do not know if the klass has finalizers:
   654   if (UseFastNewInstance && klass->is_loaded()
   655       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
   657     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
   659     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
   661     assert(klass->is_loaded(), "must be loaded");
   662     // allocate space for instance
   663     assert(klass->size_helper() >= 0, "illegal instance size");
   664     const int instance_size = align_object_size(klass->size_helper());
   665     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
   666                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
   667   } else {
   668     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
   669     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
   670     __ branch_destination(slow_path->continuation());
   671   }
   672 }
   675 static bool is_constant_zero(Instruction* inst) {
   676   IntConstant* c = inst->type()->as_IntConstant();
   677   if (c) {
   678     return (c->value() == 0);
   679   }
   680   return false;
   681 }
   684 static bool positive_constant(Instruction* inst) {
   685   IntConstant* c = inst->type()->as_IntConstant();
   686   if (c) {
   687     return (c->value() >= 0);
   688   }
   689   return false;
   690 }
   693 static ciArrayKlass* as_array_klass(ciType* type) {
   694   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
   695     return (ciArrayKlass*)type;
   696   } else {
   697     return NULL;
   698   }
   699 }
   701 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
   702   Instruction* src     = x->argument_at(0);
   703   Instruction* src_pos = x->argument_at(1);
   704   Instruction* dst     = x->argument_at(2);
   705   Instruction* dst_pos = x->argument_at(3);
   706   Instruction* length  = x->argument_at(4);
   708   // first try to identify the likely type of the arrays involved
   709   ciArrayKlass* expected_type = NULL;
   710   bool is_exact = false;
   711   {
   712     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
   713     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
   714     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
   715     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
   716     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
   717       // the types exactly match so the type is fully known
   718       is_exact = true;
   719       expected_type = src_exact_type;
   720     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
   721       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
   722       ciArrayKlass* src_type = NULL;
   723       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
   724         src_type = (ciArrayKlass*) src_exact_type;
   725       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
   726         src_type = (ciArrayKlass*) src_declared_type;
   727       }
   728       if (src_type != NULL) {
   729         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
   730           is_exact = true;
   731           expected_type = dst_type;
   732         }
   733       }
   734     }
   735     // at least pass along a good guess
   736     if (expected_type == NULL) expected_type = dst_exact_type;
   737     if (expected_type == NULL) expected_type = src_declared_type;
   738     if (expected_type == NULL) expected_type = dst_declared_type;
   739   }
   741   // if a probable array type has been identified, figure out if any
   742   // of the required checks for a fast case can be elided.
   743   int flags = LIR_OpArrayCopy::all_flags;
   744   if (expected_type != NULL) {
   745     // try to skip null checks
   746     if (src->as_NewArray() != NULL)
   747       flags &= ~LIR_OpArrayCopy::src_null_check;
   748     if (dst->as_NewArray() != NULL)
   749       flags &= ~LIR_OpArrayCopy::dst_null_check;
   751     // check from incoming constant values
   752     if (positive_constant(src_pos))
   753       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
   754     if (positive_constant(dst_pos))
   755       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
   756     if (positive_constant(length))
   757       flags &= ~LIR_OpArrayCopy::length_positive_check;
   759     // see if the range check can be elided, which might also imply
   760     // that src or dst is non-null.
   761     ArrayLength* al = length->as_ArrayLength();
   762     if (al != NULL) {
   763       if (al->array() == src) {
   764         // it's the length of the source array
   765         flags &= ~LIR_OpArrayCopy::length_positive_check;
   766         flags &= ~LIR_OpArrayCopy::src_null_check;
   767         if (is_constant_zero(src_pos))
   768           flags &= ~LIR_OpArrayCopy::src_range_check;
   769       }
   770       if (al->array() == dst) {
   771         // it's the length of the destination array
   772         flags &= ~LIR_OpArrayCopy::length_positive_check;
   773         flags &= ~LIR_OpArrayCopy::dst_null_check;
   774         if (is_constant_zero(dst_pos))
   775           flags &= ~LIR_OpArrayCopy::dst_range_check;
   776       }
   777     }
   778     if (is_exact) {
   779       flags &= ~LIR_OpArrayCopy::type_check;
   780     }
   781   }
   783   if (src == dst) {
   784     // moving within a single array so no type checks are needed
   785     if (flags & LIR_OpArrayCopy::type_check) {
   786       flags &= ~LIR_OpArrayCopy::type_check;
   787     }
   788   }
   789   *flagsp = flags;
   790   *expected_typep = (ciArrayKlass*)expected_type;
   791 }
   794 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
   795   assert(opr->is_register(), "why spill if item is not register?");
   797   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
   798     LIR_Opr result = new_register(T_FLOAT);
   799     set_vreg_flag(result, must_start_in_memory);
   800     assert(opr->is_register(), "only a register can be spilled");
   801     assert(opr->value_type()->is_float(), "rounding only for floats available");
   802     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
   803     return result;
   804   }
   805   return opr;
   806 }
   809 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
   810   assert(type2size[t] == type2size[value->type()], "size mismatch");
   811   if (!value->is_register()) {
   812     // force into a register
   813     LIR_Opr r = new_register(value->type());
   814     __ move(value, r);
   815     value = r;
   816   }
   818   // create a spill location
   819   LIR_Opr tmp = new_register(t);
   820   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
   822   // move from register to spill
   823   __ move(value, tmp);
   824   return tmp;
   825 }
   828 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
   829   if (if_instr->should_profile()) {
   830     ciMethod* method = if_instr->profiled_method();
   831     assert(method != NULL, "method should be set if branch is profiled");
   832     ciMethodData* md = method->method_data();
   833     if (md == NULL) {
   834       bailout("out of memory building methodDataOop");
   835       return;
   836     }
   837     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
   838     assert(data != NULL, "must have profiling data");
   839     assert(data->is_BranchData(), "need BranchData for two-way branches");
   840     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
   841     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
   842     LIR_Opr md_reg = new_register(T_OBJECT);
   843     __ move(LIR_OprFact::oopConst(md->encoding()), md_reg);
   844     LIR_Opr data_offset_reg = new_register(T_INT);
   845     __ cmove(lir_cond(cond),
   846              LIR_OprFact::intConst(taken_count_offset),
   847              LIR_OprFact::intConst(not_taken_count_offset),
   848              data_offset_reg);
   849     LIR_Opr data_reg = new_register(T_INT);
   850     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, T_INT);
   851     __ move(LIR_OprFact::address(data_addr), data_reg);
   852     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
   853     // Use leal instead of add to avoid destroying condition codes on x86
   854     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
   855     __ move(data_reg, LIR_OprFact::address(data_addr));
   856   }
   857 }
   860 // Phi technique:
   861 // This is about passing live values from one basic block to the other.
   862 // In code generated with Java it is rather rare that more than one
   863 // value is on the stack from one basic block to the other.
   864 // We optimize our technique for efficient passing of one value
   865 // (of type long, int, double..) but it can be extended.
   866 // When entering or leaving a basic block, all registers and all spill
   867 // slots are release and empty. We use the released registers
   868 // and spill slots to pass the live values from one block
   869 // to the other. The topmost value, i.e., the value on TOS of expression
   870 // stack is passed in registers. All other values are stored in spilling
   871 // area. Every Phi has an index which designates its spill slot
   872 // At exit of a basic block, we fill the register(s) and spill slots.
   873 // At entry of a basic block, the block_prolog sets up the content of phi nodes
   874 // and locks necessary registers and spilling slots.
   877 // move current value to referenced phi function
   878 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
   879   Phi* phi = sux_val->as_Phi();
   880   // cur_val can be null without phi being null in conjunction with inlining
   881   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
   882     LIR_Opr operand = cur_val->operand();
   883     if (cur_val->operand()->is_illegal()) {
   884       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
   885              "these can be produced lazily");
   886       operand = operand_for_instruction(cur_val);
   887     }
   888     resolver->move(operand, operand_for_instruction(phi));
   889   }
   890 }
   893 // Moves all stack values into their PHI position
   894 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
   895   BlockBegin* bb = block();
   896   if (bb->number_of_sux() == 1) {
   897     BlockBegin* sux = bb->sux_at(0);
   898     assert(sux->number_of_preds() > 0, "invalid CFG");
   900     // a block with only one predecessor never has phi functions
   901     if (sux->number_of_preds() > 1) {
   902       int max_phis = cur_state->stack_size() + cur_state->locals_size();
   903       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
   905       ValueStack* sux_state = sux->state();
   906       Value sux_value;
   907       int index;
   909       for_each_stack_value(sux_state, index, sux_value) {
   910         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
   911       }
   913       // Inlining may cause the local state not to match up, so walk up
   914       // the caller state until we get to the same scope as the
   915       // successor and then start processing from there.
   916       while (cur_state->scope() != sux_state->scope()) {
   917         cur_state = cur_state->caller_state();
   918         assert(cur_state != NULL, "scopes don't match up");
   919       }
   921       for_each_local_value(sux_state, index, sux_value) {
   922         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
   923       }
   925       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
   926     }
   927   }
   928 }
   931 LIR_Opr LIRGenerator::new_register(BasicType type) {
   932   int vreg = _virtual_register_number;
   933   // add a little fudge factor for the bailout, since the bailout is
   934   // only checked periodically.  This gives a few extra registers to
   935   // hand out before we really run out, which helps us keep from
   936   // tripping over assertions.
   937   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
   938     bailout("out of virtual registers");
   939     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
   940       // wrap it around
   941       _virtual_register_number = LIR_OprDesc::vreg_base;
   942     }
   943   }
   944   _virtual_register_number += 1;
   945   if (type == T_ADDRESS) type = T_INT;
   946   return LIR_OprFact::virtual_register(vreg, type);
   947 }
   950 // Try to lock using register in hint
   951 LIR_Opr LIRGenerator::rlock(Value instr) {
   952   return new_register(instr->type());
   953 }
   956 // does an rlock and sets result
   957 LIR_Opr LIRGenerator::rlock_result(Value x) {
   958   LIR_Opr reg = rlock(x);
   959   set_result(x, reg);
   960   return reg;
   961 }
   964 // does an rlock and sets result
   965 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
   966   LIR_Opr reg;
   967   switch (type) {
   968   case T_BYTE:
   969   case T_BOOLEAN:
   970     reg = rlock_byte(type);
   971     break;
   972   default:
   973     reg = rlock(x);
   974     break;
   975   }
   977   set_result(x, reg);
   978   return reg;
   979 }
   982 //---------------------------------------------------------------------
   983 ciObject* LIRGenerator::get_jobject_constant(Value value) {
   984   ObjectType* oc = value->type()->as_ObjectType();
   985   if (oc) {
   986     return oc->constant_value();
   987   }
   988   return NULL;
   989 }
   992 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
   993   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
   994   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
   996   // no moves are created for phi functions at the begin of exception
   997   // handlers, so assign operands manually here
   998   for_each_phi_fun(block(), phi,
   999                    operand_for_instruction(phi));
  1001   LIR_Opr thread_reg = getThreadPointer();
  1002   __ move(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
  1003           exceptionOopOpr());
  1004   __ move(LIR_OprFact::oopConst(NULL),
  1005           new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
  1006   __ move(LIR_OprFact::oopConst(NULL),
  1007           new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
  1009   LIR_Opr result = new_register(T_OBJECT);
  1010   __ move(exceptionOopOpr(), result);
  1011   set_result(x, result);
  1015 //----------------------------------------------------------------------
  1016 //----------------------------------------------------------------------
  1017 //----------------------------------------------------------------------
  1018 //----------------------------------------------------------------------
  1019 //                        visitor functions
  1020 //----------------------------------------------------------------------
  1021 //----------------------------------------------------------------------
  1022 //----------------------------------------------------------------------
  1023 //----------------------------------------------------------------------
  1025 void LIRGenerator::do_Phi(Phi* x) {
  1026   // phi functions are never visited directly
  1027   ShouldNotReachHere();
  1031 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
  1032 void LIRGenerator::do_Constant(Constant* x) {
  1033   if (x->state() != NULL) {
  1034     // Any constant with a ValueStack requires patching so emit the patch here
  1035     LIR_Opr reg = rlock_result(x);
  1036     CodeEmitInfo* info = state_for(x, x->state());
  1037     __ oop2reg_patch(NULL, reg, info);
  1038   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
  1039     if (!x->is_pinned()) {
  1040       // unpinned constants are handled specially so that they can be
  1041       // put into registers when they are used multiple times within a
  1042       // block.  After the block completes their operand will be
  1043       // cleared so that other blocks can't refer to that register.
  1044       set_result(x, load_constant(x));
  1045     } else {
  1046       LIR_Opr res = x->operand();
  1047       if (!res->is_valid()) {
  1048         res = LIR_OprFact::value_type(x->type());
  1050       if (res->is_constant()) {
  1051         LIR_Opr reg = rlock_result(x);
  1052         __ move(res, reg);
  1053       } else {
  1054         set_result(x, res);
  1057   } else {
  1058     set_result(x, LIR_OprFact::value_type(x->type()));
  1063 void LIRGenerator::do_Local(Local* x) {
  1064   // operand_for_instruction has the side effect of setting the result
  1065   // so there's no need to do it here.
  1066   operand_for_instruction(x);
  1070 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
  1071   Unimplemented();
  1075 void LIRGenerator::do_Return(Return* x) {
  1076   if (DTraceMethodProbes) {
  1077     BasicTypeList signature;
  1078     signature.append(T_INT);    // thread
  1079     signature.append(T_OBJECT); // methodOop
  1080     LIR_OprList* args = new LIR_OprList();
  1081     args->append(getThreadPointer());
  1082     LIR_Opr meth = new_register(T_OBJECT);
  1083     __ oop2reg(method()->encoding(), meth);
  1084     args->append(meth);
  1085     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
  1088   if (x->type()->is_void()) {
  1089     __ return_op(LIR_OprFact::illegalOpr);
  1090   } else {
  1091     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
  1092     LIRItem result(x->result(), this);
  1094     result.load_item_force(reg);
  1095     __ return_op(result.result());
  1097   set_no_result(x);
  1101 // Example: object.getClass ()
  1102 void LIRGenerator::do_getClass(Intrinsic* x) {
  1103   assert(x->number_of_arguments() == 1, "wrong type");
  1105   LIRItem rcvr(x->argument_at(0), this);
  1106   rcvr.load_item();
  1107   LIR_Opr result = rlock_result(x);
  1109   // need to perform the null check on the rcvr
  1110   CodeEmitInfo* info = NULL;
  1111   if (x->needs_null_check()) {
  1112     info = state_for(x, x->state()->copy_locks());
  1114   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
  1115   __ move(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
  1116                           klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
  1120 // Example: Thread.currentThread()
  1121 void LIRGenerator::do_currentThread(Intrinsic* x) {
  1122   assert(x->number_of_arguments() == 0, "wrong type");
  1123   LIR_Opr reg = rlock_result(x);
  1124   __ load(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
  1128 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
  1129   assert(x->number_of_arguments() == 1, "wrong type");
  1130   LIRItem receiver(x->argument_at(0), this);
  1132   receiver.load_item();
  1133   BasicTypeList signature;
  1134   signature.append(T_OBJECT); // receiver
  1135   LIR_OprList* args = new LIR_OprList();
  1136   args->append(receiver.result());
  1137   CodeEmitInfo* info = state_for(x, x->state());
  1138   call_runtime(&signature, args,
  1139                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
  1140                voidType, info);
  1142   set_no_result(x);
  1146 //------------------------local access--------------------------------------
  1148 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
  1149   if (x->operand()->is_illegal()) {
  1150     Constant* c = x->as_Constant();
  1151     if (c != NULL) {
  1152       x->set_operand(LIR_OprFact::value_type(c->type()));
  1153     } else {
  1154       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
  1155       // allocate a virtual register for this local or phi
  1156       x->set_operand(rlock(x));
  1157       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
  1160   return x->operand();
  1164 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
  1165   if (opr->is_virtual()) {
  1166     return instruction_for_vreg(opr->vreg_number());
  1168   return NULL;
  1172 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
  1173   if (reg_num < _instruction_for_operand.length()) {
  1174     return _instruction_for_operand.at(reg_num);
  1176   return NULL;
  1180 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
  1181   if (_vreg_flags.size_in_bits() == 0) {
  1182     BitMap2D temp(100, num_vreg_flags);
  1183     temp.clear();
  1184     _vreg_flags = temp;
  1186   _vreg_flags.at_put_grow(vreg_num, f, true);
  1189 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
  1190   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
  1191     return false;
  1193   return _vreg_flags.at(vreg_num, f);
  1197 // Block local constant handling.  This code is useful for keeping
  1198 // unpinned constants and constants which aren't exposed in the IR in
  1199 // registers.  Unpinned Constant instructions have their operands
  1200 // cleared when the block is finished so that other blocks can't end
  1201 // up referring to their registers.
  1203 LIR_Opr LIRGenerator::load_constant(Constant* x) {
  1204   assert(!x->is_pinned(), "only for unpinned constants");
  1205   _unpinned_constants.append(x);
  1206   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
  1210 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
  1211   BasicType t = c->type();
  1212   for (int i = 0; i < _constants.length(); i++) {
  1213     LIR_Const* other = _constants.at(i);
  1214     if (t == other->type()) {
  1215       switch (t) {
  1216       case T_INT:
  1217       case T_FLOAT:
  1218         if (c->as_jint_bits() != other->as_jint_bits()) continue;
  1219         break;
  1220       case T_LONG:
  1221       case T_DOUBLE:
  1222         if (c->as_jint_hi_bits() != other->as_jint_lo_bits()) continue;
  1223         if (c->as_jint_lo_bits() != other->as_jint_hi_bits()) continue;
  1224         break;
  1225       case T_OBJECT:
  1226         if (c->as_jobject() != other->as_jobject()) continue;
  1227         break;
  1229       return _reg_for_constants.at(i);
  1233   LIR_Opr result = new_register(t);
  1234   __ move((LIR_Opr)c, result);
  1235   _constants.append(c);
  1236   _reg_for_constants.append(result);
  1237   return result;
  1240 // Various barriers
  1242 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1243   switch (Universe::heap()->barrier_set()->kind()) {
  1244     case BarrierSet::CardTableModRef:
  1245     case BarrierSet::CardTableExtension:
  1246       CardTableModRef_post_barrier(addr,  new_val);
  1247       break;
  1248     case BarrierSet::ModRef:
  1249     case BarrierSet::Other:
  1250       // No post barriers
  1251       break;
  1252     default      :
  1253       ShouldNotReachHere();
  1257 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1259   BarrierSet* bs = Universe::heap()->barrier_set();
  1260   assert(sizeof(*((CardTableModRefBS*)bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
  1261   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)bs)->byte_map_base);
  1262   if (addr->is_address()) {
  1263     LIR_Address* address = addr->as_address_ptr();
  1264     LIR_Opr ptr = new_register(T_OBJECT);
  1265     if (!address->index()->is_valid() && address->disp() == 0) {
  1266       __ move(address->base(), ptr);
  1267     } else {
  1268       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1269       __ leal(addr, ptr);
  1271     addr = ptr;
  1273   assert(addr->is_register(), "must be a register at this point");
  1275   LIR_Opr tmp = new_pointer_register();
  1276   if (TwoOperandLIRForm) {
  1277     __ move(addr, tmp);
  1278     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
  1279   } else {
  1280     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
  1282   if (can_inline_as_constant(card_table_base)) {
  1283     __ move(LIR_OprFact::intConst(0),
  1284               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
  1285   } else {
  1286     __ move(LIR_OprFact::intConst(0),
  1287               new LIR_Address(tmp, load_constant(card_table_base),
  1288                               T_BYTE));
  1293 //------------------------field access--------------------------------------
  1295 // Comment copied form templateTable_i486.cpp
  1296 // ----------------------------------------------------------------------------
  1297 // Volatile variables demand their effects be made known to all CPU's in
  1298 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1299 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1300 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1301 // reorder volatile references, the hardware also must not reorder them).
  1302 //
  1303 // According to the new Java Memory Model (JMM):
  1304 // (1) All volatiles are serialized wrt to each other.
  1305 // ALSO reads & writes act as aquire & release, so:
  1306 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1307 // the read float up to before the read.  It's OK for non-volatile memory refs
  1308 // that happen before the volatile read to float down below it.
  1309 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1310 // that happen BEFORE the write float down to after the write.  It's OK for
  1311 // non-volatile memory refs that happen after the volatile write to float up
  1312 // before it.
  1313 //
  1314 // We only put in barriers around volatile refs (they are expensive), not
  1315 // _between_ memory refs (that would require us to track the flavor of the
  1316 // previous memory refs).  Requirements (2) and (3) require some barriers
  1317 // before volatile stores and after volatile loads.  These nearly cover
  1318 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  1319 // case is placed after volatile-stores although it could just as well go
  1320 // before volatile-loads.
  1323 void LIRGenerator::do_StoreField(StoreField* x) {
  1324   bool needs_patching = x->needs_patching();
  1325   bool is_volatile = x->field()->is_volatile();
  1326   BasicType field_type = x->field_type();
  1327   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
  1329   CodeEmitInfo* info = NULL;
  1330   if (needs_patching) {
  1331     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1332     info = state_for(x, x->state_before());
  1333   } else if (x->needs_null_check()) {
  1334     NullCheck* nc = x->explicit_null_check();
  1335     if (nc == NULL) {
  1336       info = state_for(x, x->lock_stack());
  1337     } else {
  1338       info = state_for(nc);
  1343   LIRItem object(x->obj(), this);
  1344   LIRItem value(x->value(),  this);
  1346   object.load_item();
  1348   if (is_volatile || needs_patching) {
  1349     // load item if field is volatile (fewer special cases for volatiles)
  1350     // load item if field not initialized
  1351     // load item if field not constant
  1352     // because of code patching we cannot inline constants
  1353     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
  1354       value.load_byte_item();
  1355     } else  {
  1356       value.load_item();
  1358   } else {
  1359     value.load_for_store(field_type);
  1362   set_no_result(x);
  1364   if (PrintNotLoaded && needs_patching) {
  1365     tty->print_cr("   ###class not loaded at store_%s bci %d",
  1366                   x->is_static() ?  "static" : "field", x->bci());
  1369   if (x->needs_null_check() &&
  1370       (needs_patching ||
  1371        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1372     // emit an explicit null check because the offset is too large
  1373     __ null_check(object.result(), new CodeEmitInfo(info));
  1376   LIR_Address* address;
  1377   if (needs_patching) {
  1378     // we need to patch the offset in the instruction so don't allow
  1379     // generate_address to try to be smart about emitting the -1.
  1380     // Otherwise the patching code won't know how to find the
  1381     // instruction to patch.
  1382     address = new LIR_Address(object.result(), max_jint, field_type);
  1383   } else {
  1384     address = generate_address(object.result(), x->offset(), field_type);
  1387   if (is_volatile && os::is_MP()) {
  1388     __ membar_release();
  1391   if (is_volatile) {
  1392     assert(!needs_patching && x->is_loaded(),
  1393            "how do we know it's volatile if it's not loaded");
  1394     volatile_field_store(value.result(), address, info);
  1395   } else {
  1396     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1397     __ store(value.result(), address, info, patch_code);
  1400   if (is_oop) {
  1401     post_barrier(object.result(), value.result());
  1404   if (is_volatile && os::is_MP()) {
  1405     __ membar();
  1410 void LIRGenerator::do_LoadField(LoadField* x) {
  1411   bool needs_patching = x->needs_patching();
  1412   bool is_volatile = x->field()->is_volatile();
  1413   BasicType field_type = x->field_type();
  1415   CodeEmitInfo* info = NULL;
  1416   if (needs_patching) {
  1417     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1418     info = state_for(x, x->state_before());
  1419   } else if (x->needs_null_check()) {
  1420     NullCheck* nc = x->explicit_null_check();
  1421     if (nc == NULL) {
  1422       info = state_for(x, x->lock_stack());
  1423     } else {
  1424       info = state_for(nc);
  1428   LIRItem object(x->obj(), this);
  1430   object.load_item();
  1432   if (PrintNotLoaded && needs_patching) {
  1433     tty->print_cr("   ###class not loaded at load_%s bci %d",
  1434                   x->is_static() ?  "static" : "field", x->bci());
  1437   if (x->needs_null_check() &&
  1438       (needs_patching ||
  1439        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1440     // emit an explicit null check because the offset is too large
  1441     __ null_check(object.result(), new CodeEmitInfo(info));
  1444   LIR_Opr reg = rlock_result(x, field_type);
  1445   LIR_Address* address;
  1446   if (needs_patching) {
  1447     // we need to patch the offset in the instruction so don't allow
  1448     // generate_address to try to be smart about emitting the -1.
  1449     // Otherwise the patching code won't know how to find the
  1450     // instruction to patch.
  1451     address = new LIR_Address(object.result(), max_jint, field_type);
  1452   } else {
  1453     address = generate_address(object.result(), x->offset(), field_type);
  1456   if (is_volatile) {
  1457     assert(!needs_patching && x->is_loaded(),
  1458            "how do we know it's volatile if it's not loaded");
  1459     volatile_field_load(address, reg, info);
  1460   } else {
  1461     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1462     __ load(address, reg, info, patch_code);
  1465   if (is_volatile && os::is_MP()) {
  1466     __ membar_acquire();
  1471 //------------------------java.nio.Buffer.checkIndex------------------------
  1473 // int java.nio.Buffer.checkIndex(int)
  1474 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
  1475   // NOTE: by the time we are in checkIndex() we are guaranteed that
  1476   // the buffer is non-null (because checkIndex is package-private and
  1477   // only called from within other methods in the buffer).
  1478   assert(x->number_of_arguments() == 2, "wrong type");
  1479   LIRItem buf  (x->argument_at(0), this);
  1480   LIRItem index(x->argument_at(1), this);
  1481   buf.load_item();
  1482   index.load_item();
  1484   LIR_Opr result = rlock_result(x);
  1485   if (GenerateRangeChecks) {
  1486     CodeEmitInfo* info = state_for(x);
  1487     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
  1488     if (index.result()->is_constant()) {
  1489       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
  1490       __ branch(lir_cond_belowEqual, T_INT, stub);
  1491     } else {
  1492       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
  1493                   java_nio_Buffer::limit_offset(), T_INT, info);
  1494       __ branch(lir_cond_aboveEqual, T_INT, stub);
  1496     __ move(index.result(), result);
  1497   } else {
  1498     // Just load the index into the result register
  1499     __ move(index.result(), result);
  1504 //------------------------array access--------------------------------------
  1507 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
  1508   LIRItem array(x->array(), this);
  1509   array.load_item();
  1510   LIR_Opr reg = rlock_result(x);
  1512   CodeEmitInfo* info = NULL;
  1513   if (x->needs_null_check()) {
  1514     NullCheck* nc = x->explicit_null_check();
  1515     if (nc == NULL) {
  1516       info = state_for(x);
  1517     } else {
  1518       info = state_for(nc);
  1521   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
  1525 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
  1526   bool use_length = x->length() != NULL;
  1527   LIRItem array(x->array(), this);
  1528   LIRItem index(x->index(), this);
  1529   LIRItem length(this);
  1530   bool needs_range_check = true;
  1532   if (use_length) {
  1533     needs_range_check = x->compute_needs_range_check();
  1534     if (needs_range_check) {
  1535       length.set_instruction(x->length());
  1536       length.load_item();
  1540   array.load_item();
  1541   if (index.is_constant() && can_inline_as_constant(x->index())) {
  1542     // let it be a constant
  1543     index.dont_load_item();
  1544   } else {
  1545     index.load_item();
  1548   CodeEmitInfo* range_check_info = state_for(x);
  1549   CodeEmitInfo* null_check_info = NULL;
  1550   if (x->needs_null_check()) {
  1551     NullCheck* nc = x->explicit_null_check();
  1552     if (nc != NULL) {
  1553       null_check_info = state_for(nc);
  1554     } else {
  1555       null_check_info = range_check_info;
  1559   // emit array address setup early so it schedules better
  1560   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
  1562   if (GenerateRangeChecks && needs_range_check) {
  1563     if (use_length) {
  1564       // TODO: use a (modified) version of array_range_check that does not require a
  1565       //       constant length to be loaded to a register
  1566       __ cmp(lir_cond_belowEqual, length.result(), index.result());
  1567       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
  1568     } else {
  1569       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
  1570       // The range check performs the null check, so clear it out for the load
  1571       null_check_info = NULL;
  1575   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
  1579 void LIRGenerator::do_NullCheck(NullCheck* x) {
  1580   if (x->can_trap()) {
  1581     LIRItem value(x->obj(), this);
  1582     value.load_item();
  1583     CodeEmitInfo* info = state_for(x);
  1584     __ null_check(value.result(), info);
  1589 void LIRGenerator::do_Throw(Throw* x) {
  1590   LIRItem exception(x->exception(), this);
  1591   exception.load_item();
  1592   set_no_result(x);
  1593   LIR_Opr exception_opr = exception.result();
  1594   CodeEmitInfo* info = state_for(x, x->state());
  1596 #ifndef PRODUCT
  1597   if (PrintC1Statistics) {
  1598     increment_counter(Runtime1::throw_count_address());
  1600 #endif
  1602   // check if the instruction has an xhandler in any of the nested scopes
  1603   bool unwind = false;
  1604   if (info->exception_handlers()->length() == 0) {
  1605     // this throw is not inside an xhandler
  1606     unwind = true;
  1607   } else {
  1608     // get some idea of the throw type
  1609     bool type_is_exact = true;
  1610     ciType* throw_type = x->exception()->exact_type();
  1611     if (throw_type == NULL) {
  1612       type_is_exact = false;
  1613       throw_type = x->exception()->declared_type();
  1615     if (throw_type != NULL && throw_type->is_instance_klass()) {
  1616       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
  1617       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
  1621   // do null check before moving exception oop into fixed register
  1622   // to avoid a fixed interval with an oop during the null check.
  1623   // Use a copy of the CodeEmitInfo because debug information is
  1624   // different for null_check and throw.
  1625   if (GenerateCompilerNullChecks &&
  1626       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
  1627     // if the exception object wasn't created using new then it might be null.
  1628     __ null_check(exception_opr, new CodeEmitInfo(info, true));
  1631   if (JvmtiExport::can_post_exceptions() &&
  1632       !block()->is_set(BlockBegin::default_exception_handler_flag)) {
  1633     // we need to go through the exception lookup path to get JVMTI
  1634     // notification done
  1635     unwind = false;
  1638   assert(!block()->is_set(BlockBegin::default_exception_handler_flag) || unwind,
  1639          "should be no more handlers to dispatch to");
  1641   if (DTraceMethodProbes &&
  1642       block()->is_set(BlockBegin::default_exception_handler_flag)) {
  1643     // notify that this frame is unwinding
  1644     BasicTypeList signature;
  1645     signature.append(T_INT);    // thread
  1646     signature.append(T_OBJECT); // methodOop
  1647     LIR_OprList* args = new LIR_OprList();
  1648     args->append(getThreadPointer());
  1649     LIR_Opr meth = new_register(T_OBJECT);
  1650     __ oop2reg(method()->encoding(), meth);
  1651     args->append(meth);
  1652     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
  1655   // move exception oop into fixed register
  1656   __ move(exception_opr, exceptionOopOpr());
  1658   if (unwind) {
  1659     __ unwind_exception(LIR_OprFact::illegalOpr, exceptionOopOpr(), info);
  1660   } else {
  1661     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
  1666 void LIRGenerator::do_RoundFP(RoundFP* x) {
  1667   LIRItem input(x->input(), this);
  1668   input.load_item();
  1669   LIR_Opr input_opr = input.result();
  1670   assert(input_opr->is_register(), "why round if value is not in a register?");
  1671   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
  1672   if (input_opr->is_single_fpu()) {
  1673     set_result(x, round_item(input_opr)); // This code path not currently taken
  1674   } else {
  1675     LIR_Opr result = new_register(T_DOUBLE);
  1676     set_vreg_flag(result, must_start_in_memory);
  1677     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
  1678     set_result(x, result);
  1682 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
  1683   LIRItem base(x->base(), this);
  1684   LIRItem idx(this);
  1686   base.load_item();
  1687   if (x->has_index()) {
  1688     idx.set_instruction(x->index());
  1689     idx.load_nonconstant();
  1692   LIR_Opr reg = rlock_result(x, x->basic_type());
  1694   int   log2_scale = 0;
  1695   if (x->has_index()) {
  1696     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  1697     log2_scale = x->log2_scale();
  1700   assert(!x->has_index() || idx.value() == x->index(), "should match");
  1702   LIR_Opr base_op = base.result();
  1703 #ifndef _LP64
  1704   if (x->base()->type()->tag() == longTag) {
  1705     base_op = new_register(T_INT);
  1706     __ convert(Bytecodes::_l2i, base.result(), base_op);
  1707   } else {
  1708     assert(x->base()->type()->tag() == intTag, "must be");
  1710 #endif
  1712   BasicType dst_type = x->basic_type();
  1713   LIR_Opr index_op = idx.result();
  1715   LIR_Address* addr;
  1716   if (index_op->is_constant()) {
  1717     assert(log2_scale == 0, "must not have a scale");
  1718     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
  1719   } else {
  1720 #ifdef X86
  1721     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
  1722 #else
  1723     if (index_op->is_illegal() || log2_scale == 0) {
  1724       addr = new LIR_Address(base_op, index_op, dst_type);
  1725     } else {
  1726       LIR_Opr tmp = new_register(T_INT);
  1727       __ shift_left(index_op, log2_scale, tmp);
  1728       addr = new LIR_Address(base_op, tmp, dst_type);
  1730 #endif
  1733   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
  1734     __ unaligned_move(addr, reg);
  1735   } else {
  1736     __ move(addr, reg);
  1741 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
  1742   int  log2_scale = 0;
  1743   BasicType type = x->basic_type();
  1745   if (x->has_index()) {
  1746     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
  1747     log2_scale = x->log2_scale();
  1750   LIRItem base(x->base(), this);
  1751   LIRItem value(x->value(), this);
  1752   LIRItem idx(this);
  1754   base.load_item();
  1755   if (x->has_index()) {
  1756     idx.set_instruction(x->index());
  1757     idx.load_item();
  1760   if (type == T_BYTE || type == T_BOOLEAN) {
  1761     value.load_byte_item();
  1762   } else {
  1763     value.load_item();
  1766   set_no_result(x);
  1768   LIR_Opr base_op = base.result();
  1769 #ifndef _LP64
  1770   if (x->base()->type()->tag() == longTag) {
  1771     base_op = new_register(T_INT);
  1772     __ convert(Bytecodes::_l2i, base.result(), base_op);
  1773   } else {
  1774     assert(x->base()->type()->tag() == intTag, "must be");
  1776 #endif
  1778   LIR_Opr index_op = idx.result();
  1779   if (log2_scale != 0) {
  1780     // temporary fix (platform dependent code without shift on Intel would be better)
  1781     index_op = new_register(T_INT);
  1782     __ move(idx.result(), index_op);
  1783     __ shift_left(index_op, log2_scale, index_op);
  1786   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
  1787   __ move(value.result(), addr);
  1791 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
  1792   BasicType type = x->basic_type();
  1793   LIRItem src(x->object(), this);
  1794   LIRItem off(x->offset(), this);
  1796   off.load_item();
  1797   src.load_item();
  1799   LIR_Opr reg = reg = rlock_result(x, x->basic_type());
  1801   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
  1802   get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
  1803   if (x->is_volatile() && os::is_MP()) __ membar();
  1807 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
  1808   BasicType type = x->basic_type();
  1809   LIRItem src(x->object(), this);
  1810   LIRItem off(x->offset(), this);
  1811   LIRItem data(x->value(), this);
  1813   src.load_item();
  1814   if (type == T_BOOLEAN || type == T_BYTE) {
  1815     data.load_byte_item();
  1816   } else {
  1817     data.load_item();
  1819   off.load_item();
  1821   set_no_result(x);
  1823   if (x->is_volatile() && os::is_MP()) __ membar_release();
  1824   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
  1828 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
  1829   LIRItem src(x->object(), this);
  1830   LIRItem off(x->offset(), this);
  1832   src.load_item();
  1833   if (off.is_constant() && can_inline_as_constant(x->offset())) {
  1834     // let it be a constant
  1835     off.dont_load_item();
  1836   } else {
  1837     off.load_item();
  1840   set_no_result(x);
  1842   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
  1843   __ prefetch(addr, is_store);
  1847 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
  1848   do_UnsafePrefetch(x, false);
  1852 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
  1853   do_UnsafePrefetch(x, true);
  1857 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
  1858   int lng = x->length();
  1860   for (int i = 0; i < lng; i++) {
  1861     SwitchRange* one_range = x->at(i);
  1862     int low_key = one_range->low_key();
  1863     int high_key = one_range->high_key();
  1864     BlockBegin* dest = one_range->sux();
  1865     if (low_key == high_key) {
  1866       __ cmp(lir_cond_equal, value, low_key);
  1867       __ branch(lir_cond_equal, T_INT, dest);
  1868     } else if (high_key - low_key == 1) {
  1869       __ cmp(lir_cond_equal, value, low_key);
  1870       __ branch(lir_cond_equal, T_INT, dest);
  1871       __ cmp(lir_cond_equal, value, high_key);
  1872       __ branch(lir_cond_equal, T_INT, dest);
  1873     } else {
  1874       LabelObj* L = new LabelObj();
  1875       __ cmp(lir_cond_less, value, low_key);
  1876       __ branch(lir_cond_less, L->label());
  1877       __ cmp(lir_cond_lessEqual, value, high_key);
  1878       __ branch(lir_cond_lessEqual, T_INT, dest);
  1879       __ branch_destination(L->label());
  1882   __ jump(default_sux);
  1886 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
  1887   SwitchRangeList* res = new SwitchRangeList();
  1888   int len = x->length();
  1889   if (len > 0) {
  1890     BlockBegin* sux = x->sux_at(0);
  1891     int key = x->lo_key();
  1892     BlockBegin* default_sux = x->default_sux();
  1893     SwitchRange* range = new SwitchRange(key, sux);
  1894     for (int i = 0; i < len; i++, key++) {
  1895       BlockBegin* new_sux = x->sux_at(i);
  1896       if (sux == new_sux) {
  1897         // still in same range
  1898         range->set_high_key(key);
  1899       } else {
  1900         // skip tests which explicitly dispatch to the default
  1901         if (sux != default_sux) {
  1902           res->append(range);
  1904         range = new SwitchRange(key, new_sux);
  1906       sux = new_sux;
  1908     if (res->length() == 0 || res->last() != range)  res->append(range);
  1910   return res;
  1914 // we expect the keys to be sorted by increasing value
  1915 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
  1916   SwitchRangeList* res = new SwitchRangeList();
  1917   int len = x->length();
  1918   if (len > 0) {
  1919     BlockBegin* default_sux = x->default_sux();
  1920     int key = x->key_at(0);
  1921     BlockBegin* sux = x->sux_at(0);
  1922     SwitchRange* range = new SwitchRange(key, sux);
  1923     for (int i = 1; i < len; i++) {
  1924       int new_key = x->key_at(i);
  1925       BlockBegin* new_sux = x->sux_at(i);
  1926       if (key+1 == new_key && sux == new_sux) {
  1927         // still in same range
  1928         range->set_high_key(new_key);
  1929       } else {
  1930         // skip tests which explicitly dispatch to the default
  1931         if (range->sux() != default_sux) {
  1932           res->append(range);
  1934         range = new SwitchRange(new_key, new_sux);
  1936       key = new_key;
  1937       sux = new_sux;
  1939     if (res->length() == 0 || res->last() != range)  res->append(range);
  1941   return res;
  1945 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
  1946   LIRItem tag(x->tag(), this);
  1947   tag.load_item();
  1948   set_no_result(x);
  1950   if (x->is_safepoint()) {
  1951     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  1954   // move values into phi locations
  1955   move_to_phi(x->state());
  1957   int lo_key = x->lo_key();
  1958   int hi_key = x->hi_key();
  1959   int len = x->length();
  1960   CodeEmitInfo* info = state_for(x, x->state());
  1961   LIR_Opr value = tag.result();
  1962   if (UseTableRanges) {
  1963     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  1964   } else {
  1965     for (int i = 0; i < len; i++) {
  1966       __ cmp(lir_cond_equal, value, i + lo_key);
  1967       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  1969     __ jump(x->default_sux());
  1974 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
  1975   LIRItem tag(x->tag(), this);
  1976   tag.load_item();
  1977   set_no_result(x);
  1979   if (x->is_safepoint()) {
  1980     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  1983   // move values into phi locations
  1984   move_to_phi(x->state());
  1986   LIR_Opr value = tag.result();
  1987   if (UseTableRanges) {
  1988     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  1989   } else {
  1990     int len = x->length();
  1991     for (int i = 0; i < len; i++) {
  1992       __ cmp(lir_cond_equal, value, x->key_at(i));
  1993       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  1995     __ jump(x->default_sux());
  2000 void LIRGenerator::do_Goto(Goto* x) {
  2001   set_no_result(x);
  2003   if (block()->next()->as_OsrEntry()) {
  2004     // need to free up storage used for OSR entry point
  2005     LIR_Opr osrBuffer = block()->next()->operand();
  2006     BasicTypeList signature;
  2007     signature.append(T_INT);
  2008     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
  2009     __ move(osrBuffer, cc->args()->at(0));
  2010     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
  2011                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
  2014   if (x->is_safepoint()) {
  2015     ValueStack* state = x->state_before() ? x->state_before() : x->state();
  2017     // increment backedge counter if needed
  2018     increment_backedge_counter(state_for(x, state));
  2020     CodeEmitInfo* safepoint_info = state_for(x, state);
  2021     __ safepoint(safepoint_poll_register(), safepoint_info);
  2024   // emit phi-instruction move after safepoint since this simplifies
  2025   // describing the state as the safepoint.
  2026   move_to_phi(x->state());
  2028   __ jump(x->default_sux());
  2032 void LIRGenerator::do_Base(Base* x) {
  2033   __ std_entry(LIR_OprFact::illegalOpr);
  2034   // Emit moves from physical registers / stack slots to virtual registers
  2035   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  2036   IRScope* irScope = compilation()->hir()->top_scope();
  2037   int java_index = 0;
  2038   for (int i = 0; i < args->length(); i++) {
  2039     LIR_Opr src = args->at(i);
  2040     assert(!src->is_illegal(), "check");
  2041     BasicType t = src->type();
  2043     // Types which are smaller than int are passed as int, so
  2044     // correct the type which passed.
  2045     switch (t) {
  2046     case T_BYTE:
  2047     case T_BOOLEAN:
  2048     case T_SHORT:
  2049     case T_CHAR:
  2050       t = T_INT;
  2051       break;
  2054     LIR_Opr dest = new_register(t);
  2055     __ move(src, dest);
  2057     // Assign new location to Local instruction for this local
  2058     Local* local = x->state()->local_at(java_index)->as_Local();
  2059     assert(local != NULL, "Locals for incoming arguments must have been created");
  2060     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
  2061     local->set_operand(dest);
  2062     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
  2063     java_index += type2size[t];
  2066   if (DTraceMethodProbes) {
  2067     BasicTypeList signature;
  2068     signature.append(T_INT);    // thread
  2069     signature.append(T_OBJECT); // methodOop
  2070     LIR_OprList* args = new LIR_OprList();
  2071     args->append(getThreadPointer());
  2072     LIR_Opr meth = new_register(T_OBJECT);
  2073     __ oop2reg(method()->encoding(), meth);
  2074     args->append(meth);
  2075     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
  2078   if (method()->is_synchronized()) {
  2079     LIR_Opr obj;
  2080     if (method()->is_static()) {
  2081       obj = new_register(T_OBJECT);
  2082       __ oop2reg(method()->holder()->java_mirror()->encoding(), obj);
  2083     } else {
  2084       Local* receiver = x->state()->local_at(0)->as_Local();
  2085       assert(receiver != NULL, "must already exist");
  2086       obj = receiver->operand();
  2088     assert(obj->is_valid(), "must be valid");
  2090     if (method()->is_synchronized() && GenerateSynchronizationCode) {
  2091       LIR_Opr lock = new_register(T_INT);
  2092       __ load_stack_address_monitor(0, lock);
  2094       CodeEmitInfo* info = new CodeEmitInfo(SynchronizationEntryBCI, scope()->start()->state(), NULL);
  2095       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
  2097       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
  2098       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
  2102   // increment invocation counters if needed
  2103   increment_invocation_counter(new CodeEmitInfo(0, scope()->start()->state(), NULL));
  2105   // all blocks with a successor must end with an unconditional jump
  2106   // to the successor even if they are consecutive
  2107   __ jump(x->default_sux());
  2111 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
  2112   // construct our frame and model the production of incoming pointer
  2113   // to the OSR buffer.
  2114   __ osr_entry(LIR_Assembler::osrBufferPointer());
  2115   LIR_Opr result = rlock_result(x);
  2116   __ move(LIR_Assembler::osrBufferPointer(), result);
  2120 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
  2121   int i = x->has_receiver() ? 1 : 0;
  2122   for (; i < args->length(); i++) {
  2123     LIRItem* param = args->at(i);
  2124     LIR_Opr loc = arg_list->at(i);
  2125     if (loc->is_register()) {
  2126       param->load_item_force(loc);
  2127     } else {
  2128       LIR_Address* addr = loc->as_address_ptr();
  2129       param->load_for_store(addr->type());
  2130       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2131         __ unaligned_move(param->result(), addr);
  2132       } else {
  2133         __ move(param->result(), addr);
  2138   if (x->has_receiver()) {
  2139     LIRItem* receiver = args->at(0);
  2140     LIR_Opr loc = arg_list->at(0);
  2141     if (loc->is_register()) {
  2142       receiver->load_item_force(loc);
  2143     } else {
  2144       assert(loc->is_address(), "just checking");
  2145       receiver->load_for_store(T_OBJECT);
  2146       __ move(receiver->result(), loc);
  2152 // Visits all arguments, returns appropriate items without loading them
  2153 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
  2154   LIRItemList* argument_items = new LIRItemList();
  2155   if (x->has_receiver()) {
  2156     LIRItem* receiver = new LIRItem(x->receiver(), this);
  2157     argument_items->append(receiver);
  2159   int idx = x->has_receiver() ? 1 : 0;
  2160   for (int i = 0; i < x->number_of_arguments(); i++) {
  2161     LIRItem* param = new LIRItem(x->argument_at(i), this);
  2162     argument_items->append(param);
  2163     idx += (param->type()->is_double_word() ? 2 : 1);
  2165   return argument_items;
  2169 // The invoke with receiver has following phases:
  2170 //   a) traverse and load/lock receiver;
  2171 //   b) traverse all arguments -> item-array (invoke_visit_argument)
  2172 //   c) push receiver on stack
  2173 //   d) load each of the items and push on stack
  2174 //   e) unlock receiver
  2175 //   f) move receiver into receiver-register %o0
  2176 //   g) lock result registers and emit call operation
  2177 //
  2178 // Before issuing a call, we must spill-save all values on stack
  2179 // that are in caller-save register. "spill-save" moves thos registers
  2180 // either in a free callee-save register or spills them if no free
  2181 // callee save register is available.
  2182 //
  2183 // The problem is where to invoke spill-save.
  2184 // - if invoked between e) and f), we may lock callee save
  2185 //   register in "spill-save" that destroys the receiver register
  2186 //   before f) is executed
  2187 // - if we rearange the f) to be earlier, by loading %o0, it
  2188 //   may destroy a value on the stack that is currently in %o0
  2189 //   and is waiting to be spilled
  2190 // - if we keep the receiver locked while doing spill-save,
  2191 //   we cannot spill it as it is spill-locked
  2192 //
  2193 void LIRGenerator::do_Invoke(Invoke* x) {
  2194   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
  2196   LIR_OprList* arg_list = cc->args();
  2197   LIRItemList* args = invoke_visit_arguments(x);
  2198   LIR_Opr receiver = LIR_OprFact::illegalOpr;
  2200   // setup result register
  2201   LIR_Opr result_register = LIR_OprFact::illegalOpr;
  2202   if (x->type() != voidType) {
  2203     result_register = result_register_for(x->type());
  2206   CodeEmitInfo* info = state_for(x, x->state());
  2208   invoke_load_arguments(x, args, arg_list);
  2210   if (x->has_receiver()) {
  2211     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
  2212     receiver = args->at(0)->result();
  2215   // emit invoke code
  2216   bool optimized = x->target_is_loaded() && x->target_is_final();
  2217   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
  2219   switch (x->code()) {
  2220     case Bytecodes::_invokestatic:
  2221       __ call_static(x->target(), result_register,
  2222                      SharedRuntime::get_resolve_static_call_stub(),
  2223                      arg_list, info);
  2224       break;
  2225     case Bytecodes::_invokespecial:
  2226     case Bytecodes::_invokevirtual:
  2227     case Bytecodes::_invokeinterface:
  2228       // for final target we still produce an inline cache, in order
  2229       // to be able to call mixed mode
  2230       if (x->code() == Bytecodes::_invokespecial || optimized) {
  2231         __ call_opt_virtual(x->target(), receiver, result_register,
  2232                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
  2233                             arg_list, info);
  2234       } else if (x->vtable_index() < 0) {
  2235         __ call_icvirtual(x->target(), receiver, result_register,
  2236                           SharedRuntime::get_resolve_virtual_call_stub(),
  2237                           arg_list, info);
  2238       } else {
  2239         int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
  2240         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  2241         __ call_virtual(x->target(), receiver, result_register, vtable_offset, arg_list, info);
  2243       break;
  2244     default:
  2245       ShouldNotReachHere();
  2246       break;
  2249   if (x->type()->is_float() || x->type()->is_double()) {
  2250     // Force rounding of results from non-strictfp when in strictfp
  2251     // scope (or when we don't know the strictness of the callee, to
  2252     // be safe.)
  2253     if (method()->is_strict()) {
  2254       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
  2255         result_register = round_item(result_register);
  2260   if (result_register->is_valid()) {
  2261     LIR_Opr result = rlock_result(x);
  2262     __ move(result_register, result);
  2267 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
  2268   assert(x->number_of_arguments() == 1, "wrong type");
  2269   LIRItem value       (x->argument_at(0), this);
  2270   LIR_Opr reg = rlock_result(x);
  2271   value.load_item();
  2272   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
  2273   __ move(tmp, reg);
  2278 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
  2279 void LIRGenerator::do_IfOp(IfOp* x) {
  2280 #ifdef ASSERT
  2282     ValueTag xtag = x->x()->type()->tag();
  2283     ValueTag ttag = x->tval()->type()->tag();
  2284     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
  2285     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
  2286     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
  2288 #endif
  2290   LIRItem left(x->x(), this);
  2291   LIRItem right(x->y(), this);
  2292   left.load_item();
  2293   if (can_inline_as_constant(right.value())) {
  2294     right.dont_load_item();
  2295   } else {
  2296     right.load_item();
  2299   LIRItem t_val(x->tval(), this);
  2300   LIRItem f_val(x->fval(), this);
  2301   t_val.dont_load_item();
  2302   f_val.dont_load_item();
  2303   LIR_Opr reg = rlock_result(x);
  2305   __ cmp(lir_cond(x->cond()), left.result(), right.result());
  2306   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg);
  2310 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
  2311   switch (x->id()) {
  2312   case vmIntrinsics::_intBitsToFloat      :
  2313   case vmIntrinsics::_doubleToRawLongBits :
  2314   case vmIntrinsics::_longBitsToDouble    :
  2315   case vmIntrinsics::_floatToRawIntBits   : {
  2316     do_FPIntrinsics(x);
  2317     break;
  2320   case vmIntrinsics::_currentTimeMillis: {
  2321     assert(x->number_of_arguments() == 0, "wrong type");
  2322     LIR_Opr reg = result_register_for(x->type());
  2323     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
  2324                          reg, new LIR_OprList());
  2325     LIR_Opr result = rlock_result(x);
  2326     __ move(reg, result);
  2327     break;
  2330   case vmIntrinsics::_nanoTime: {
  2331     assert(x->number_of_arguments() == 0, "wrong type");
  2332     LIR_Opr reg = result_register_for(x->type());
  2333     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
  2334                          reg, new LIR_OprList());
  2335     LIR_Opr result = rlock_result(x);
  2336     __ move(reg, result);
  2337     break;
  2340   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
  2341   case vmIntrinsics::_getClass:       do_getClass(x);      break;
  2342   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
  2344   case vmIntrinsics::_dlog:           // fall through
  2345   case vmIntrinsics::_dlog10:         // fall through
  2346   case vmIntrinsics::_dabs:           // fall through
  2347   case vmIntrinsics::_dsqrt:          // fall through
  2348   case vmIntrinsics::_dtan:           // fall through
  2349   case vmIntrinsics::_dsin :          // fall through
  2350   case vmIntrinsics::_dcos :          do_MathIntrinsic(x); break;
  2351   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
  2353   // java.nio.Buffer.checkIndex
  2354   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
  2356   case vmIntrinsics::_compareAndSwapObject:
  2357     do_CompareAndSwap(x, objectType);
  2358     break;
  2359   case vmIntrinsics::_compareAndSwapInt:
  2360     do_CompareAndSwap(x, intType);
  2361     break;
  2362   case vmIntrinsics::_compareAndSwapLong:
  2363     do_CompareAndSwap(x, longType);
  2364     break;
  2366     // sun.misc.AtomicLongCSImpl.attemptUpdate
  2367   case vmIntrinsics::_attemptUpdate:
  2368     do_AttemptUpdate(x);
  2369     break;
  2371   default: ShouldNotReachHere(); break;
  2376 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
  2377   // Need recv in a temporary register so it interferes with the other temporaries
  2378   LIR_Opr recv = LIR_OprFact::illegalOpr;
  2379   LIR_Opr mdo = new_register(T_OBJECT);
  2380   LIR_Opr tmp = new_register(T_INT);
  2381   if (x->recv() != NULL) {
  2382     LIRItem value(x->recv(), this);
  2383     value.load_item();
  2384     recv = new_register(T_OBJECT);
  2385     __ move(value.result(), recv);
  2387   __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
  2391 void LIRGenerator::do_ProfileCounter(ProfileCounter* x) {
  2392   LIRItem mdo(x->mdo(), this);
  2393   mdo.load_item();
  2395   increment_counter(new LIR_Address(mdo.result(), x->offset(), T_INT), x->increment());
  2399 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
  2400   LIRItemList args(1);
  2401   LIRItem value(arg1, this);
  2402   args.append(&value);
  2403   BasicTypeList signature;
  2404   signature.append(as_BasicType(arg1->type()));
  2406   return call_runtime(&signature, &args, entry, result_type, info);
  2410 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
  2411   LIRItemList args(2);
  2412   LIRItem value1(arg1, this);
  2413   LIRItem value2(arg2, this);
  2414   args.append(&value1);
  2415   args.append(&value2);
  2416   BasicTypeList signature;
  2417   signature.append(as_BasicType(arg1->type()));
  2418   signature.append(as_BasicType(arg2->type()));
  2420   return call_runtime(&signature, &args, entry, result_type, info);
  2424 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
  2425                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  2426   // get a result register
  2427   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  2428   LIR_Opr result = LIR_OprFact::illegalOpr;
  2429   if (result_type->tag() != voidTag) {
  2430     result = new_register(result_type);
  2431     phys_reg = result_register_for(result_type);
  2434   // move the arguments into the correct location
  2435   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  2436   assert(cc->length() == args->length(), "argument mismatch");
  2437   for (int i = 0; i < args->length(); i++) {
  2438     LIR_Opr arg = args->at(i);
  2439     LIR_Opr loc = cc->at(i);
  2440     if (loc->is_register()) {
  2441       __ move(arg, loc);
  2442     } else {
  2443       LIR_Address* addr = loc->as_address_ptr();
  2444 //           if (!can_store_as_constant(arg)) {
  2445 //             LIR_Opr tmp = new_register(arg->type());
  2446 //             __ move(arg, tmp);
  2447 //             arg = tmp;
  2448 //           }
  2449       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2450         __ unaligned_move(arg, addr);
  2451       } else {
  2452         __ move(arg, addr);
  2457   if (info) {
  2458     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  2459   } else {
  2460     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  2462   if (result->is_valid()) {
  2463     __ move(phys_reg, result);
  2465   return result;
  2469 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
  2470                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  2471   // get a result register
  2472   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  2473   LIR_Opr result = LIR_OprFact::illegalOpr;
  2474   if (result_type->tag() != voidTag) {
  2475     result = new_register(result_type);
  2476     phys_reg = result_register_for(result_type);
  2479   // move the arguments into the correct location
  2480   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  2482   assert(cc->length() == args->length(), "argument mismatch");
  2483   for (int i = 0; i < args->length(); i++) {
  2484     LIRItem* arg = args->at(i);
  2485     LIR_Opr loc = cc->at(i);
  2486     if (loc->is_register()) {
  2487       arg->load_item_force(loc);
  2488     } else {
  2489       LIR_Address* addr = loc->as_address_ptr();
  2490       arg->load_for_store(addr->type());
  2491       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  2492         __ unaligned_move(arg->result(), addr);
  2493       } else {
  2494         __ move(arg->result(), addr);
  2499   if (info) {
  2500     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  2501   } else {
  2502     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  2504   if (result->is_valid()) {
  2505     __ move(phys_reg, result);
  2507   return result;
  2512 void LIRGenerator::increment_invocation_counter(CodeEmitInfo* info, bool backedge) {
  2513 #ifdef TIERED
  2514   if (_compilation->env()->comp_level() == CompLevel_fast_compile &&
  2515       (method()->code_size() >= Tier1BytecodeLimit || backedge)) {
  2516     int limit = InvocationCounter::Tier1InvocationLimit;
  2517     int offset = in_bytes(methodOopDesc::invocation_counter_offset() +
  2518                           InvocationCounter::counter_offset());
  2519     if (backedge) {
  2520       limit = InvocationCounter::Tier1BackEdgeLimit;
  2521       offset = in_bytes(methodOopDesc::backedge_counter_offset() +
  2522                         InvocationCounter::counter_offset());
  2525     LIR_Opr meth = new_register(T_OBJECT);
  2526     __ oop2reg(method()->encoding(), meth);
  2527     LIR_Opr result = increment_and_return_counter(meth, offset, InvocationCounter::count_increment);
  2528     __ cmp(lir_cond_aboveEqual, result, LIR_OprFact::intConst(limit));
  2529     CodeStub* overflow = new CounterOverflowStub(info, info->bci());
  2530     __ branch(lir_cond_aboveEqual, T_INT, overflow);
  2531     __ branch_destination(overflow->continuation());
  2533 #endif

mercurial