src/os/windows/vm/os_windows.cpp

Thu, 04 Dec 2008 17:29:56 -0800

author
poonam
date
Thu, 04 Dec 2008 17:29:56 -0800
changeset 900
dc16daa0329d
parent 824
ee21eaa8ffe1
child 902
8724fb00c422
permissions
-rw-r--r--

6739363: Xcheck jni doesn't check native function arguments
Summary: Fix adds support for verifying arguments with -Xcheck:jni.
Reviewed-by: coleenp

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #ifdef _WIN64
    26 // Must be at least Windows 2000 or XP to use VectoredExceptions
    27 #define _WIN32_WINNT 0x500
    28 #endif
    30 // do not include precompiled header file
    31 # include "incls/_os_windows.cpp.incl"
    33 #ifdef _DEBUG
    34 #include <crtdbg.h>
    35 #endif
    38 #include <windows.h>
    39 #include <sys/types.h>
    40 #include <sys/stat.h>
    41 #include <sys/timeb.h>
    42 #include <objidl.h>
    43 #include <shlobj.h>
    45 #include <malloc.h>
    46 #include <signal.h>
    47 #include <direct.h>
    48 #include <errno.h>
    49 #include <fcntl.h>
    50 #include <io.h>
    51 #include <process.h>              // For _beginthreadex(), _endthreadex()
    52 #include <imagehlp.h>             // For os::dll_address_to_function_name
    54 /* for enumerating dll libraries */
    55 #include <tlhelp32.h>
    56 #include <vdmdbg.h>
    58 // for timer info max values which include all bits
    59 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
    61 // For DLL loading/load error detection
    62 // Values of PE COFF
    63 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
    64 #define IMAGE_FILE_SIGNATURE_LENGTH 4
    66 static HANDLE main_process;
    67 static HANDLE main_thread;
    68 static int    main_thread_id;
    70 static FILETIME process_creation_time;
    71 static FILETIME process_exit_time;
    72 static FILETIME process_user_time;
    73 static FILETIME process_kernel_time;
    75 #ifdef _WIN64
    76 PVOID  topLevelVectoredExceptionHandler = NULL;
    77 #endif
    79 #ifdef _M_IA64
    80 #define __CPU__ ia64
    81 #elif _M_AMD64
    82 #define __CPU__ amd64
    83 #else
    84 #define __CPU__ i486
    85 #endif
    87 // save DLL module handle, used by GetModuleFileName
    89 HINSTANCE vm_lib_handle;
    90 static int getLastErrorString(char *buf, size_t len);
    92 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
    93   switch (reason) {
    94     case DLL_PROCESS_ATTACH:
    95       vm_lib_handle = hinst;
    96       if(ForceTimeHighResolution)
    97         timeBeginPeriod(1L);
    98       break;
    99     case DLL_PROCESS_DETACH:
   100       if(ForceTimeHighResolution)
   101         timeEndPeriod(1L);
   102 #ifdef _WIN64
   103       if (topLevelVectoredExceptionHandler != NULL) {
   104         RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
   105         topLevelVectoredExceptionHandler = NULL;
   106       }
   107 #endif
   108       break;
   109     default:
   110       break;
   111   }
   112   return true;
   113 }
   115 static inline double fileTimeAsDouble(FILETIME* time) {
   116   const double high  = (double) ((unsigned int) ~0);
   117   const double split = 10000000.0;
   118   double result = (time->dwLowDateTime / split) +
   119                    time->dwHighDateTime * (high/split);
   120   return result;
   121 }
   123 // Implementation of os
   125 bool os::getenv(const char* name, char* buffer, int len) {
   126  int result = GetEnvironmentVariable(name, buffer, len);
   127  return result > 0 && result < len;
   128 }
   131 // No setuid programs under Windows.
   132 bool os::have_special_privileges() {
   133   return false;
   134 }
   137 // This method is  a periodic task to check for misbehaving JNI applications
   138 // under CheckJNI, we can add any periodic checks here.
   139 // For Windows at the moment does nothing
   140 void os::run_periodic_checks() {
   141   return;
   142 }
   144 #ifndef _WIN64
   145 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
   146 #endif
   147 void os::init_system_properties_values() {
   148   /* sysclasspath, java_home, dll_dir */
   149   {
   150       char *home_path;
   151       char *dll_path;
   152       char *pslash;
   153       char *bin = "\\bin";
   154       char home_dir[MAX_PATH];
   156       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
   157           os::jvm_path(home_dir, sizeof(home_dir));
   158           // Found the full path to jvm[_g].dll.
   159           // Now cut the path to <java_home>/jre if we can.
   160           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
   161           pslash = strrchr(home_dir, '\\');
   162           if (pslash != NULL) {
   163               *pslash = '\0';                 /* get rid of \{client|server} */
   164               pslash = strrchr(home_dir, '\\');
   165               if (pslash != NULL)
   166                   *pslash = '\0';             /* get rid of \bin */
   167           }
   168       }
   170       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
   171       if (home_path == NULL)
   172           return;
   173       strcpy(home_path, home_dir);
   174       Arguments::set_java_home(home_path);
   176       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
   177       if (dll_path == NULL)
   178           return;
   179       strcpy(dll_path, home_dir);
   180       strcat(dll_path, bin);
   181       Arguments::set_dll_dir(dll_path);
   183       if (!set_boot_path('\\', ';'))
   184           return;
   185   }
   187   /* library_path */
   188   #define EXT_DIR "\\lib\\ext"
   189   #define BIN_DIR "\\bin"
   190   #define PACKAGE_DIR "\\Sun\\Java"
   191   {
   192     /* Win32 library search order (See the documentation for LoadLibrary):
   193      *
   194      * 1. The directory from which application is loaded.
   195      * 2. The current directory
   196      * 3. The system wide Java Extensions directory (Java only)
   197      * 4. System directory (GetSystemDirectory)
   198      * 5. Windows directory (GetWindowsDirectory)
   199      * 6. The PATH environment variable
   200      */
   202     char *library_path;
   203     char tmp[MAX_PATH];
   204     char *path_str = ::getenv("PATH");
   206     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
   207         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
   209     library_path[0] = '\0';
   211     GetModuleFileName(NULL, tmp, sizeof(tmp));
   212     *(strrchr(tmp, '\\')) = '\0';
   213     strcat(library_path, tmp);
   215     strcat(library_path, ";.");
   217     GetWindowsDirectory(tmp, sizeof(tmp));
   218     strcat(library_path, ";");
   219     strcat(library_path, tmp);
   220     strcat(library_path, PACKAGE_DIR BIN_DIR);
   222     GetSystemDirectory(tmp, sizeof(tmp));
   223     strcat(library_path, ";");
   224     strcat(library_path, tmp);
   226     GetWindowsDirectory(tmp, sizeof(tmp));
   227     strcat(library_path, ";");
   228     strcat(library_path, tmp);
   230     if (path_str) {
   231         strcat(library_path, ";");
   232         strcat(library_path, path_str);
   233     }
   235     Arguments::set_library_path(library_path);
   236     FREE_C_HEAP_ARRAY(char, library_path);
   237   }
   239   /* Default extensions directory */
   240   {
   241     char path[MAX_PATH];
   242     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
   243     GetWindowsDirectory(path, MAX_PATH);
   244     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
   245         path, PACKAGE_DIR, EXT_DIR);
   246     Arguments::set_ext_dirs(buf);
   247   }
   248   #undef EXT_DIR
   249   #undef BIN_DIR
   250   #undef PACKAGE_DIR
   252   /* Default endorsed standards directory. */
   253   {
   254     #define ENDORSED_DIR "\\lib\\endorsed"
   255     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
   256     char * buf = NEW_C_HEAP_ARRAY(char, len);
   257     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
   258     Arguments::set_endorsed_dirs(buf);
   259     #undef ENDORSED_DIR
   260   }
   262 #ifndef _WIN64
   263   SetUnhandledExceptionFilter(Handle_FLT_Exception);
   264 #endif
   266   // Done
   267   return;
   268 }
   270 void os::breakpoint() {
   271   DebugBreak();
   272 }
   274 // Invoked from the BREAKPOINT Macro
   275 extern "C" void breakpoint() {
   276   os::breakpoint();
   277 }
   279 // Returns an estimate of the current stack pointer. Result must be guaranteed
   280 // to point into the calling threads stack, and be no lower than the current
   281 // stack pointer.
   283 address os::current_stack_pointer() {
   284   int dummy;
   285   address sp = (address)&dummy;
   286   return sp;
   287 }
   289 // os::current_stack_base()
   290 //
   291 //   Returns the base of the stack, which is the stack's
   292 //   starting address.  This function must be called
   293 //   while running on the stack of the thread being queried.
   295 address os::current_stack_base() {
   296   MEMORY_BASIC_INFORMATION minfo;
   297   address stack_bottom;
   298   size_t stack_size;
   300   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   301   stack_bottom =  (address)minfo.AllocationBase;
   302   stack_size = minfo.RegionSize;
   304   // Add up the sizes of all the regions with the same
   305   // AllocationBase.
   306   while( 1 )
   307   {
   308     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
   309     if ( stack_bottom == (address)minfo.AllocationBase )
   310       stack_size += minfo.RegionSize;
   311     else
   312       break;
   313   }
   315 #ifdef _M_IA64
   316   // IA64 has memory and register stacks
   317   stack_size = stack_size / 2;
   318 #endif
   319   return stack_bottom + stack_size;
   320 }
   322 size_t os::current_stack_size() {
   323   size_t sz;
   324   MEMORY_BASIC_INFORMATION minfo;
   325   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   326   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
   327   return sz;
   328 }
   331 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
   333 // Thread start routine for all new Java threads
   334 static unsigned __stdcall java_start(Thread* thread) {
   335   // Try to randomize the cache line index of hot stack frames.
   336   // This helps when threads of the same stack traces evict each other's
   337   // cache lines. The threads can be either from the same JVM instance, or
   338   // from different JVM instances. The benefit is especially true for
   339   // processors with hyperthreading technology.
   340   static int counter = 0;
   341   int pid = os::current_process_id();
   342   _alloca(((pid ^ counter++) & 7) * 128);
   344   OSThread* osthr = thread->osthread();
   345   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   347   if (UseNUMA) {
   348     int lgrp_id = os::numa_get_group_id();
   349     if (lgrp_id != -1) {
   350       thread->set_lgrp_id(lgrp_id);
   351     }
   352   }
   355   if (UseVectoredExceptions) {
   356     // If we are using vectored exception we don't need to set a SEH
   357     thread->run();
   358   }
   359   else {
   360     // Install a win32 structured exception handler around every thread created
   361     // by VM, so VM can genrate error dump when an exception occurred in non-
   362     // Java thread (e.g. VM thread).
   363     __try {
   364        thread->run();
   365     } __except(topLevelExceptionFilter(
   366                (_EXCEPTION_POINTERS*)_exception_info())) {
   367         // Nothing to do.
   368     }
   369   }
   371   // One less thread is executing
   372   // When the VMThread gets here, the main thread may have already exited
   373   // which frees the CodeHeap containing the Atomic::add code
   374   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   375     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
   376   }
   378   return 0;
   379 }
   381 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
   382   // Allocate the OSThread object
   383   OSThread* osthread = new OSThread(NULL, NULL);
   384   if (osthread == NULL) return NULL;
   386   // Initialize support for Java interrupts
   387   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   388   if (interrupt_event == NULL) {
   389     delete osthread;
   390     return NULL;
   391   }
   392   osthread->set_interrupt_event(interrupt_event);
   394   // Store info on the Win32 thread into the OSThread
   395   osthread->set_thread_handle(thread_handle);
   396   osthread->set_thread_id(thread_id);
   398   if (UseNUMA) {
   399     int lgrp_id = os::numa_get_group_id();
   400     if (lgrp_id != -1) {
   401       thread->set_lgrp_id(lgrp_id);
   402     }
   403   }
   405   // Initial thread state is INITIALIZED, not SUSPENDED
   406   osthread->set_state(INITIALIZED);
   408   return osthread;
   409 }
   412 bool os::create_attached_thread(JavaThread* thread) {
   413 #ifdef ASSERT
   414   thread->verify_not_published();
   415 #endif
   416   HANDLE thread_h;
   417   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
   418                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
   419     fatal("DuplicateHandle failed\n");
   420   }
   421   OSThread* osthread = create_os_thread(thread, thread_h,
   422                                         (int)current_thread_id());
   423   if (osthread == NULL) {
   424      return false;
   425   }
   427   // Initial thread state is RUNNABLE
   428   osthread->set_state(RUNNABLE);
   430   thread->set_osthread(osthread);
   431   return true;
   432 }
   434 bool os::create_main_thread(JavaThread* thread) {
   435 #ifdef ASSERT
   436   thread->verify_not_published();
   437 #endif
   438   if (_starting_thread == NULL) {
   439     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
   440      if (_starting_thread == NULL) {
   441         return false;
   442      }
   443   }
   445   // The primordial thread is runnable from the start)
   446   _starting_thread->set_state(RUNNABLE);
   448   thread->set_osthread(_starting_thread);
   449   return true;
   450 }
   452 // Allocate and initialize a new OSThread
   453 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   454   unsigned thread_id;
   456   // Allocate the OSThread object
   457   OSThread* osthread = new OSThread(NULL, NULL);
   458   if (osthread == NULL) {
   459     return false;
   460   }
   462   // Initialize support for Java interrupts
   463   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   464   if (interrupt_event == NULL) {
   465     delete osthread;
   466     return NULL;
   467   }
   468   osthread->set_interrupt_event(interrupt_event);
   469   osthread->set_interrupted(false);
   471   thread->set_osthread(osthread);
   473   if (stack_size == 0) {
   474     switch (thr_type) {
   475     case os::java_thread:
   476       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   477       if (JavaThread::stack_size_at_create() > 0)
   478         stack_size = JavaThread::stack_size_at_create();
   479       break;
   480     case os::compiler_thread:
   481       if (CompilerThreadStackSize > 0) {
   482         stack_size = (size_t)(CompilerThreadStackSize * K);
   483         break;
   484       } // else fall through:
   485         // use VMThreadStackSize if CompilerThreadStackSize is not defined
   486     case os::vm_thread:
   487     case os::pgc_thread:
   488     case os::cgc_thread:
   489     case os::watcher_thread:
   490       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   491       break;
   492     }
   493   }
   495   // Create the Win32 thread
   496   //
   497   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
   498   // does not specify stack size. Instead, it specifies the size of
   499   // initially committed space. The stack size is determined by
   500   // PE header in the executable. If the committed "stack_size" is larger
   501   // than default value in the PE header, the stack is rounded up to the
   502   // nearest multiple of 1MB. For example if the launcher has default
   503   // stack size of 320k, specifying any size less than 320k does not
   504   // affect the actual stack size at all, it only affects the initial
   505   // commitment. On the other hand, specifying 'stack_size' larger than
   506   // default value may cause significant increase in memory usage, because
   507   // not only the stack space will be rounded up to MB, but also the
   508   // entire space is committed upfront.
   509   //
   510   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
   511   // for CreateThread() that can treat 'stack_size' as stack size. However we
   512   // are not supposed to call CreateThread() directly according to MSDN
   513   // document because JVM uses C runtime library. The good news is that the
   514   // flag appears to work with _beginthredex() as well.
   516 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
   517 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
   518 #endif
   520   HANDLE thread_handle =
   521     (HANDLE)_beginthreadex(NULL,
   522                            (unsigned)stack_size,
   523                            (unsigned (__stdcall *)(void*)) java_start,
   524                            thread,
   525                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
   526                            &thread_id);
   527   if (thread_handle == NULL) {
   528     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
   529     // without the flag.
   530     thread_handle =
   531     (HANDLE)_beginthreadex(NULL,
   532                            (unsigned)stack_size,
   533                            (unsigned (__stdcall *)(void*)) java_start,
   534                            thread,
   535                            CREATE_SUSPENDED,
   536                            &thread_id);
   537   }
   538   if (thread_handle == NULL) {
   539     // Need to clean up stuff we've allocated so far
   540     CloseHandle(osthread->interrupt_event());
   541     thread->set_osthread(NULL);
   542     delete osthread;
   543     return NULL;
   544   }
   546   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
   548   // Store info on the Win32 thread into the OSThread
   549   osthread->set_thread_handle(thread_handle);
   550   osthread->set_thread_id(thread_id);
   552   // Initial thread state is INITIALIZED, not SUSPENDED
   553   osthread->set_state(INITIALIZED);
   555   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
   556   return true;
   557 }
   560 // Free Win32 resources related to the OSThread
   561 void os::free_thread(OSThread* osthread) {
   562   assert(osthread != NULL, "osthread not set");
   563   CloseHandle(osthread->thread_handle());
   564   CloseHandle(osthread->interrupt_event());
   565   delete osthread;
   566 }
   569 static int    has_performance_count = 0;
   570 static jlong first_filetime;
   571 static jlong initial_performance_count;
   572 static jlong performance_frequency;
   575 jlong as_long(LARGE_INTEGER x) {
   576   jlong result = 0; // initialization to avoid warning
   577   set_high(&result, x.HighPart);
   578   set_low(&result,  x.LowPart);
   579   return result;
   580 }
   583 jlong os::elapsed_counter() {
   584   LARGE_INTEGER count;
   585   if (has_performance_count) {
   586     QueryPerformanceCounter(&count);
   587     return as_long(count) - initial_performance_count;
   588   } else {
   589     FILETIME wt;
   590     GetSystemTimeAsFileTime(&wt);
   591     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
   592   }
   593 }
   596 jlong os::elapsed_frequency() {
   597   if (has_performance_count) {
   598     return performance_frequency;
   599   } else {
   600    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
   601    return 10000000;
   602   }
   603 }
   606 julong os::available_memory() {
   607   return win32::available_memory();
   608 }
   610 julong os::win32::available_memory() {
   611   // FIXME: GlobalMemoryStatus() may return incorrect value if total memory
   612   // is larger than 4GB
   613   MEMORYSTATUS ms;
   614   GlobalMemoryStatus(&ms);
   616   return (julong)ms.dwAvailPhys;
   617 }
   619 julong os::physical_memory() {
   620   return win32::physical_memory();
   621 }
   623 julong os::allocatable_physical_memory(julong size) {
   624 #ifdef _LP64
   625   return size;
   626 #else
   627   // Limit to 1400m because of the 2gb address space wall
   628   return MIN2(size, (julong)1400*M);
   629 #endif
   630 }
   632 // VC6 lacks DWORD_PTR
   633 #if _MSC_VER < 1300
   634 typedef UINT_PTR DWORD_PTR;
   635 #endif
   637 int os::active_processor_count() {
   638   DWORD_PTR lpProcessAffinityMask = 0;
   639   DWORD_PTR lpSystemAffinityMask = 0;
   640   int proc_count = processor_count();
   641   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
   642       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
   643     // Nof active processors is number of bits in process affinity mask
   644     int bitcount = 0;
   645     while (lpProcessAffinityMask != 0) {
   646       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
   647       bitcount++;
   648     }
   649     return bitcount;
   650   } else {
   651     return proc_count;
   652   }
   653 }
   655 bool os::distribute_processes(uint length, uint* distribution) {
   656   // Not yet implemented.
   657   return false;
   658 }
   660 bool os::bind_to_processor(uint processor_id) {
   661   // Not yet implemented.
   662   return false;
   663 }
   665 static void initialize_performance_counter() {
   666   LARGE_INTEGER count;
   667   if (QueryPerformanceFrequency(&count)) {
   668     has_performance_count = 1;
   669     performance_frequency = as_long(count);
   670     QueryPerformanceCounter(&count);
   671     initial_performance_count = as_long(count);
   672   } else {
   673     has_performance_count = 0;
   674     FILETIME wt;
   675     GetSystemTimeAsFileTime(&wt);
   676     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   677   }
   678 }
   681 double os::elapsedTime() {
   682   return (double) elapsed_counter() / (double) elapsed_frequency();
   683 }
   686 // Windows format:
   687 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
   688 // Java format:
   689 //   Java standards require the number of milliseconds since 1/1/1970
   691 // Constant offset - calculated using offset()
   692 static jlong  _offset   = 116444736000000000;
   693 // Fake time counter for reproducible results when debugging
   694 static jlong  fake_time = 0;
   696 #ifdef ASSERT
   697 // Just to be safe, recalculate the offset in debug mode
   698 static jlong _calculated_offset = 0;
   699 static int   _has_calculated_offset = 0;
   701 jlong offset() {
   702   if (_has_calculated_offset) return _calculated_offset;
   703   SYSTEMTIME java_origin;
   704   java_origin.wYear          = 1970;
   705   java_origin.wMonth         = 1;
   706   java_origin.wDayOfWeek     = 0; // ignored
   707   java_origin.wDay           = 1;
   708   java_origin.wHour          = 0;
   709   java_origin.wMinute        = 0;
   710   java_origin.wSecond        = 0;
   711   java_origin.wMilliseconds  = 0;
   712   FILETIME jot;
   713   if (!SystemTimeToFileTime(&java_origin, &jot)) {
   714     fatal1("Error = %d\nWindows error", GetLastError());
   715   }
   716   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
   717   _has_calculated_offset = 1;
   718   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
   719   return _calculated_offset;
   720 }
   721 #else
   722 jlong offset() {
   723   return _offset;
   724 }
   725 #endif
   727 jlong windows_to_java_time(FILETIME wt) {
   728   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   729   return (a - offset()) / 10000;
   730 }
   732 FILETIME java_to_windows_time(jlong l) {
   733   jlong a = (l * 10000) + offset();
   734   FILETIME result;
   735   result.dwHighDateTime = high(a);
   736   result.dwLowDateTime  = low(a);
   737   return result;
   738 }
   740 // For now, we say that Windows does not support vtime.  I have no idea
   741 // whether it can actually be made to (DLD, 9/13/05).
   743 bool os::supports_vtime() { return false; }
   744 bool os::enable_vtime() { return false; }
   745 bool os::vtime_enabled() { return false; }
   746 double os::elapsedVTime() {
   747   // better than nothing, but not much
   748   return elapsedTime();
   749 }
   751 jlong os::javaTimeMillis() {
   752   if (UseFakeTimers) {
   753     return fake_time++;
   754   } else {
   755     FILETIME wt;
   756     GetSystemTimeAsFileTime(&wt);
   757     return windows_to_java_time(wt);
   758   }
   759 }
   761 #define NANOS_PER_SEC         CONST64(1000000000)
   762 #define NANOS_PER_MILLISEC    1000000
   763 jlong os::javaTimeNanos() {
   764   if (!has_performance_count) {
   765     return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
   766   } else {
   767     LARGE_INTEGER current_count;
   768     QueryPerformanceCounter(&current_count);
   769     double current = as_long(current_count);
   770     double freq = performance_frequency;
   771     jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
   772     return time;
   773   }
   774 }
   776 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
   777   if (!has_performance_count) {
   778     // javaTimeMillis() doesn't have much percision,
   779     // but it is not going to wrap -- so all 64 bits
   780     info_ptr->max_value = ALL_64_BITS;
   782     // this is a wall clock timer, so may skip
   783     info_ptr->may_skip_backward = true;
   784     info_ptr->may_skip_forward = true;
   785   } else {
   786     jlong freq = performance_frequency;
   787     if (freq < NANOS_PER_SEC) {
   788       // the performance counter is 64 bits and we will
   789       // be multiplying it -- so no wrap in 64 bits
   790       info_ptr->max_value = ALL_64_BITS;
   791     } else if (freq > NANOS_PER_SEC) {
   792       // use the max value the counter can reach to
   793       // determine the max value which could be returned
   794       julong max_counter = (julong)ALL_64_BITS;
   795       info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
   796     } else {
   797       // the performance counter is 64 bits and we will
   798       // be using it directly -- so no wrap in 64 bits
   799       info_ptr->max_value = ALL_64_BITS;
   800     }
   802     // using a counter, so no skipping
   803     info_ptr->may_skip_backward = false;
   804     info_ptr->may_skip_forward = false;
   805   }
   806   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
   807 }
   809 char* os::local_time_string(char *buf, size_t buflen) {
   810   SYSTEMTIME st;
   811   GetLocalTime(&st);
   812   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
   813                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
   814   return buf;
   815 }
   817 bool os::getTimesSecs(double* process_real_time,
   818                      double* process_user_time,
   819                      double* process_system_time) {
   820   HANDLE h_process = GetCurrentProcess();
   821   FILETIME create_time, exit_time, kernel_time, user_time;
   822   BOOL result = GetProcessTimes(h_process,
   823                                &create_time,
   824                                &exit_time,
   825                                &kernel_time,
   826                                &user_time);
   827   if (result != 0) {
   828     FILETIME wt;
   829     GetSystemTimeAsFileTime(&wt);
   830     jlong rtc_millis = windows_to_java_time(wt);
   831     jlong user_millis = windows_to_java_time(user_time);
   832     jlong system_millis = windows_to_java_time(kernel_time);
   833     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
   834     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
   835     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
   836     return true;
   837   } else {
   838     return false;
   839   }
   840 }
   842 void os::shutdown() {
   844   // allow PerfMemory to attempt cleanup of any persistent resources
   845   perfMemory_exit();
   847   // flush buffered output, finish log files
   848   ostream_abort();
   850   // Check for abort hook
   851   abort_hook_t abort_hook = Arguments::abort_hook();
   852   if (abort_hook != NULL) {
   853     abort_hook();
   854   }
   855 }
   857 void os::abort(bool dump_core)
   858 {
   859   os::shutdown();
   860   // no core dump on Windows
   861   ::exit(1);
   862 }
   864 // Die immediately, no exit hook, no abort hook, no cleanup.
   865 void os::die() {
   866   _exit(-1);
   867 }
   869 // Directory routines copied from src/win32/native/java/io/dirent_md.c
   870 //  * dirent_md.c       1.15 00/02/02
   871 //
   872 // The declarations for DIR and struct dirent are in jvm_win32.h.
   874 /* Caller must have already run dirname through JVM_NativePath, which removes
   875    duplicate slashes and converts all instances of '/' into '\\'. */
   877 DIR *
   878 os::opendir(const char *dirname)
   879 {
   880     assert(dirname != NULL, "just checking");   // hotspot change
   881     DIR *dirp = (DIR *)malloc(sizeof(DIR));
   882     DWORD fattr;                                // hotspot change
   883     char alt_dirname[4] = { 0, 0, 0, 0 };
   885     if (dirp == 0) {
   886         errno = ENOMEM;
   887         return 0;
   888     }
   890     /*
   891      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
   892      * as a directory in FindFirstFile().  We detect this case here and
   893      * prepend the current drive name.
   894      */
   895     if (dirname[1] == '\0' && dirname[0] == '\\') {
   896         alt_dirname[0] = _getdrive() + 'A' - 1;
   897         alt_dirname[1] = ':';
   898         alt_dirname[2] = '\\';
   899         alt_dirname[3] = '\0';
   900         dirname = alt_dirname;
   901     }
   903     dirp->path = (char *)malloc(strlen(dirname) + 5);
   904     if (dirp->path == 0) {
   905         free(dirp);
   906         errno = ENOMEM;
   907         return 0;
   908     }
   909     strcpy(dirp->path, dirname);
   911     fattr = GetFileAttributes(dirp->path);
   912     if (fattr == 0xffffffff) {
   913         free(dirp->path);
   914         free(dirp);
   915         errno = ENOENT;
   916         return 0;
   917     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
   918         free(dirp->path);
   919         free(dirp);
   920         errno = ENOTDIR;
   921         return 0;
   922     }
   924     /* Append "*.*", or possibly "\\*.*", to path */
   925     if (dirp->path[1] == ':'
   926         && (dirp->path[2] == '\0'
   927             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
   928         /* No '\\' needed for cases like "Z:" or "Z:\" */
   929         strcat(dirp->path, "*.*");
   930     } else {
   931         strcat(dirp->path, "\\*.*");
   932     }
   934     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
   935     if (dirp->handle == INVALID_HANDLE_VALUE) {
   936         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
   937             free(dirp->path);
   938             free(dirp);
   939             errno = EACCES;
   940             return 0;
   941         }
   942     }
   943     return dirp;
   944 }
   946 /* parameter dbuf unused on Windows */
   948 struct dirent *
   949 os::readdir(DIR *dirp, dirent *dbuf)
   950 {
   951     assert(dirp != NULL, "just checking");      // hotspot change
   952     if (dirp->handle == INVALID_HANDLE_VALUE) {
   953         return 0;
   954     }
   956     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
   958     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
   959         if (GetLastError() == ERROR_INVALID_HANDLE) {
   960             errno = EBADF;
   961             return 0;
   962         }
   963         FindClose(dirp->handle);
   964         dirp->handle = INVALID_HANDLE_VALUE;
   965     }
   967     return &dirp->dirent;
   968 }
   970 int
   971 os::closedir(DIR *dirp)
   972 {
   973     assert(dirp != NULL, "just checking");      // hotspot change
   974     if (dirp->handle != INVALID_HANDLE_VALUE) {
   975         if (!FindClose(dirp->handle)) {
   976             errno = EBADF;
   977             return -1;
   978         }
   979         dirp->handle = INVALID_HANDLE_VALUE;
   980     }
   981     free(dirp->path);
   982     free(dirp);
   983     return 0;
   984 }
   986 const char* os::dll_file_extension() { return ".dll"; }
   988 const char * os::get_temp_directory()
   989 {
   990     static char path_buf[MAX_PATH];
   991     if (GetTempPath(MAX_PATH, path_buf)>0)
   992       return path_buf;
   993     else{
   994       path_buf[0]='\0';
   995       return path_buf;
   996     }
   997 }
   999 void os::dll_build_name(char *holder, size_t holderlen,
  1000                         const char* pname, const char* fname)
  1002     // copied from libhpi
  1003     const size_t pnamelen = pname ? strlen(pname) : 0;
  1004     const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
  1006     /* Quietly truncates on buffer overflow. Should be an error. */
  1007     if (pnamelen + strlen(fname) + 10 > holderlen) {
  1008         *holder = '\0';
  1009         return;
  1012     if (pnamelen == 0) {
  1013         sprintf(holder, "%s.dll", fname);
  1014     } else if (c == ':' || c == '\\') {
  1015         sprintf(holder, "%s%s.dll", pname, fname);
  1016     } else {
  1017         sprintf(holder, "%s\\%s.dll", pname, fname);
  1021 // Needs to be in os specific directory because windows requires another
  1022 // header file <direct.h>
  1023 const char* os::get_current_directory(char *buf, int buflen) {
  1024   return _getcwd(buf, buflen);
  1027 //-----------------------------------------------------------
  1028 // Helper functions for fatal error handler
  1030 // The following library functions are resolved dynamically at runtime:
  1032 // PSAPI functions, for Windows NT, 2000, XP
  1034 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
  1035 // SDK from Microsoft.  Here are the definitions copied from psapi.h
  1036 typedef struct _MODULEINFO {
  1037     LPVOID lpBaseOfDll;
  1038     DWORD SizeOfImage;
  1039     LPVOID EntryPoint;
  1040 } MODULEINFO, *LPMODULEINFO;
  1042 static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
  1043 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
  1044 static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
  1046 // ToolHelp Functions, for Windows 95, 98 and ME
  1048 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
  1049 static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
  1050 static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
  1052 bool _has_psapi;
  1053 bool _psapi_init = false;
  1054 bool _has_toolhelp;
  1056 static bool _init_psapi() {
  1057   HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
  1058   if( psapi == NULL ) return false ;
  1060   _EnumProcessModules = CAST_TO_FN_PTR(
  1061       BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
  1062       GetProcAddress(psapi, "EnumProcessModules")) ;
  1063   _GetModuleFileNameEx = CAST_TO_FN_PTR(
  1064       DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
  1065       GetProcAddress(psapi, "GetModuleFileNameExA"));
  1066   _GetModuleInformation = CAST_TO_FN_PTR(
  1067       BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
  1068       GetProcAddress(psapi, "GetModuleInformation"));
  1070   _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
  1071   _psapi_init = true;
  1072   return _has_psapi;
  1075 static bool _init_toolhelp() {
  1076   HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
  1077   if (kernel32 == NULL) return false ;
  1079   _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
  1080       HANDLE(WINAPI *)(DWORD,DWORD),
  1081       GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
  1082   _Module32First = CAST_TO_FN_PTR(
  1083       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
  1084       GetProcAddress(kernel32, "Module32First" ));
  1085   _Module32Next = CAST_TO_FN_PTR(
  1086       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
  1087       GetProcAddress(kernel32, "Module32Next" ));
  1089   _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
  1090   return _has_toolhelp;
  1093 #ifdef _WIN64
  1094 // Helper routine which returns true if address in
  1095 // within the NTDLL address space.
  1096 //
  1097 static bool _addr_in_ntdll( address addr )
  1099   HMODULE hmod;
  1100   MODULEINFO minfo;
  1102   hmod = GetModuleHandle("NTDLL.DLL");
  1103   if ( hmod == NULL ) return false;
  1104   if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
  1105                                &minfo, sizeof(MODULEINFO)) )
  1106     return false;
  1108   if ( (addr >= minfo.lpBaseOfDll) &&
  1109        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
  1110     return true;
  1111   else
  1112     return false;
  1114 #endif
  1117 // Enumerate all modules for a given process ID
  1118 //
  1119 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
  1120 // different API for doing this. We use PSAPI.DLL on NT based
  1121 // Windows and ToolHelp on 95/98/Me.
  1123 // Callback function that is called by enumerate_modules() on
  1124 // every DLL module.
  1125 // Input parameters:
  1126 //    int       pid,
  1127 //    char*     module_file_name,
  1128 //    address   module_base_addr,
  1129 //    unsigned  module_size,
  1130 //    void*     param
  1131 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
  1133 // enumerate_modules for Windows NT, using PSAPI
  1134 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
  1136   HANDLE   hProcess ;
  1138 # define MAX_NUM_MODULES 128
  1139   HMODULE     modules[MAX_NUM_MODULES];
  1140   static char filename[ MAX_PATH ];
  1141   int         result = 0;
  1143   if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
  1145   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
  1146                          FALSE, pid ) ;
  1147   if (hProcess == NULL) return 0;
  1149   DWORD size_needed;
  1150   if (!_EnumProcessModules(hProcess, modules,
  1151                            sizeof(modules), &size_needed)) {
  1152       CloseHandle( hProcess );
  1153       return 0;
  1156   // number of modules that are currently loaded
  1157   int num_modules = size_needed / sizeof(HMODULE);
  1159   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
  1160     // Get Full pathname:
  1161     if(!_GetModuleFileNameEx(hProcess, modules[i],
  1162                              filename, sizeof(filename))) {
  1163         filename[0] = '\0';
  1166     MODULEINFO modinfo;
  1167     if (!_GetModuleInformation(hProcess, modules[i],
  1168                                &modinfo, sizeof(modinfo))) {
  1169         modinfo.lpBaseOfDll = NULL;
  1170         modinfo.SizeOfImage = 0;
  1173     // Invoke callback function
  1174     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
  1175                   modinfo.SizeOfImage, param);
  1176     if (result) break;
  1179   CloseHandle( hProcess ) ;
  1180   return result;
  1184 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
  1185 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
  1187   HANDLE                hSnapShot ;
  1188   static MODULEENTRY32  modentry ;
  1189   int                   result = 0;
  1191   if (!_has_toolhelp) return 0;
  1193   // Get a handle to a Toolhelp snapshot of the system
  1194   hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
  1195   if( hSnapShot == INVALID_HANDLE_VALUE ) {
  1196       return FALSE ;
  1199   // iterate through all modules
  1200   modentry.dwSize = sizeof(MODULEENTRY32) ;
  1201   bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
  1203   while( not_done ) {
  1204     // invoke the callback
  1205     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
  1206                 modentry.modBaseSize, param);
  1207     if (result) break;
  1209     modentry.dwSize = sizeof(MODULEENTRY32) ;
  1210     not_done = _Module32Next( hSnapShot, &modentry ) != 0;
  1213   CloseHandle(hSnapShot);
  1214   return result;
  1217 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
  1219   // Get current process ID if caller doesn't provide it.
  1220   if (!pid) pid = os::current_process_id();
  1222   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
  1223   else                    return _enumerate_modules_windows(pid, func, param);
  1226 struct _modinfo {
  1227    address addr;
  1228    char*   full_path;   // point to a char buffer
  1229    int     buflen;      // size of the buffer
  1230    address base_addr;
  1231 };
  1233 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
  1234                                   unsigned size, void * param) {
  1235    struct _modinfo *pmod = (struct _modinfo *)param;
  1236    if (!pmod) return -1;
  1238    if (base_addr     <= pmod->addr &&
  1239        base_addr+size > pmod->addr) {
  1240      // if a buffer is provided, copy path name to the buffer
  1241      if (pmod->full_path) {
  1242        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
  1244      pmod->base_addr = base_addr;
  1245      return 1;
  1247    return 0;
  1250 bool os::dll_address_to_library_name(address addr, char* buf,
  1251                                      int buflen, int* offset) {
  1252 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
  1253 //       return the full path to the DLL file, sometimes it returns path
  1254 //       to the corresponding PDB file (debug info); sometimes it only
  1255 //       returns partial path, which makes life painful.
  1257    struct _modinfo mi;
  1258    mi.addr      = addr;
  1259    mi.full_path = buf;
  1260    mi.buflen    = buflen;
  1261    int pid = os::current_process_id();
  1262    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
  1263       // buf already contains path name
  1264       if (offset) *offset = addr - mi.base_addr;
  1265       return true;
  1266    } else {
  1267       if (buf) buf[0] = '\0';
  1268       if (offset) *offset = -1;
  1269       return false;
  1273 bool os::dll_address_to_function_name(address addr, char *buf,
  1274                                       int buflen, int *offset) {
  1275   // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
  1276   // we need to initialize imagehlp/dbghelp, then load symbol table
  1277   // for every module. That's too much work to do after a fatal error.
  1278   // For an example on how to implement this function, see 1.4.2.
  1279   if (offset)  *offset  = -1;
  1280   if (buf) buf[0] = '\0';
  1281   return false;
  1284 void* os::dll_lookup(void* handle, const char* name) {
  1285   return GetProcAddress((HMODULE)handle, name);
  1288 // save the start and end address of jvm.dll into param[0] and param[1]
  1289 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
  1290                     unsigned size, void * param) {
  1291    if (!param) return -1;
  1293    if (base_addr     <= (address)_locate_jvm_dll &&
  1294        base_addr+size > (address)_locate_jvm_dll) {
  1295          ((address*)param)[0] = base_addr;
  1296          ((address*)param)[1] = base_addr + size;
  1297          return 1;
  1299    return 0;
  1302 address vm_lib_location[2];    // start and end address of jvm.dll
  1304 // check if addr is inside jvm.dll
  1305 bool os::address_is_in_vm(address addr) {
  1306   if (!vm_lib_location[0] || !vm_lib_location[1]) {
  1307     int pid = os::current_process_id();
  1308     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
  1309       assert(false, "Can't find jvm module.");
  1310       return false;
  1314   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
  1317 // print module info; param is outputStream*
  1318 static int _print_module(int pid, char* fname, address base,
  1319                          unsigned size, void* param) {
  1320    if (!param) return -1;
  1322    outputStream* st = (outputStream*)param;
  1324    address end_addr = base + size;
  1325    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
  1326    return 0;
  1329 // Loads .dll/.so and
  1330 // in case of error it checks if .dll/.so was built for the
  1331 // same architecture as Hotspot is running on
  1332 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
  1334   void * result = LoadLibrary(name);
  1335   if (result != NULL)
  1337     return result;
  1340   long errcode = GetLastError();
  1341   if (errcode == ERROR_MOD_NOT_FOUND) {
  1342     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
  1343     ebuf[ebuflen-1]='\0';
  1344     return NULL;
  1347   // Parsing dll below
  1348   // If we can read dll-info and find that dll was built
  1349   // for an architecture other than Hotspot is running in
  1350   // - then print to buffer "DLL was built for a different architecture"
  1351   // else call getLastErrorString to obtain system error message
  1353   // Read system error message into ebuf
  1354   // It may or may not be overwritten below (in the for loop and just above)
  1355   getLastErrorString(ebuf, (size_t) ebuflen);
  1356   ebuf[ebuflen-1]='\0';
  1357   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
  1358   if (file_descriptor<0)
  1360     return NULL;
  1363   uint32_t signature_offset;
  1364   uint16_t lib_arch=0;
  1365   bool failed_to_get_lib_arch=
  1367     //Go to position 3c in the dll
  1368     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
  1369     ||
  1370     // Read loacation of signature
  1371     (sizeof(signature_offset)!=
  1372       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
  1373     ||
  1374     //Go to COFF File Header in dll
  1375     //that is located after"signature" (4 bytes long)
  1376     (os::seek_to_file_offset(file_descriptor,
  1377       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
  1378     ||
  1379     //Read field that contains code of architecture
  1380     // that dll was build for
  1381     (sizeof(lib_arch)!=
  1382       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
  1383   );
  1385   ::close(file_descriptor);
  1386   if (failed_to_get_lib_arch)
  1388     // file i/o error - report getLastErrorString(...) msg
  1389     return NULL;
  1392   typedef struct
  1394     uint16_t arch_code;
  1395     char* arch_name;
  1396   } arch_t;
  1398   static const arch_t arch_array[]={
  1399     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
  1400     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
  1401     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
  1402   };
  1403   #if   (defined _M_IA64)
  1404     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
  1405   #elif (defined _M_AMD64)
  1406     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
  1407   #elif (defined _M_IX86)
  1408     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
  1409   #else
  1410     #error Method os::dll_load requires that one of following \
  1411            is defined :_M_IA64,_M_AMD64 or _M_IX86
  1412   #endif
  1415   // Obtain a string for printf operation
  1416   // lib_arch_str shall contain string what platform this .dll was built for
  1417   // running_arch_str shall string contain what platform Hotspot was built for
  1418   char *running_arch_str=NULL,*lib_arch_str=NULL;
  1419   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
  1421     if (lib_arch==arch_array[i].arch_code)
  1422       lib_arch_str=arch_array[i].arch_name;
  1423     if (running_arch==arch_array[i].arch_code)
  1424       running_arch_str=arch_array[i].arch_name;
  1427   assert(running_arch_str,
  1428     "Didn't find runing architecture code in arch_array");
  1430   // If the architure is right
  1431   // but some other error took place - report getLastErrorString(...) msg
  1432   if (lib_arch == running_arch)
  1434     return NULL;
  1437   if (lib_arch_str!=NULL)
  1439     ::_snprintf(ebuf, ebuflen-1,
  1440       "Can't load %s-bit .dll on a %s-bit platform",
  1441       lib_arch_str,running_arch_str);
  1443   else
  1445     // don't know what architecture this dll was build for
  1446     ::_snprintf(ebuf, ebuflen-1,
  1447       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
  1448       lib_arch,running_arch_str);
  1451   return NULL;
  1455 void os::print_dll_info(outputStream *st) {
  1456    int pid = os::current_process_id();
  1457    st->print_cr("Dynamic libraries:");
  1458    enumerate_modules(pid, _print_module, (void *)st);
  1461 // function pointer to Windows API "GetNativeSystemInfo".
  1462 typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
  1463 static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
  1465 void os::print_os_info(outputStream* st) {
  1466   st->print("OS:");
  1468   OSVERSIONINFOEX osvi;
  1469   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
  1470   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  1472   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
  1473     st->print_cr("N/A");
  1474     return;
  1477   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
  1478   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
  1479     switch (os_vers) {
  1480     case 3051: st->print(" Windows NT 3.51"); break;
  1481     case 4000: st->print(" Windows NT 4.0"); break;
  1482     case 5000: st->print(" Windows 2000"); break;
  1483     case 5001: st->print(" Windows XP"); break;
  1484     case 5002:
  1485     case 6000: {
  1486       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
  1487       // find out whether we are running on 64 bit processor or not.
  1488       SYSTEM_INFO si;
  1489       ZeroMemory(&si, sizeof(SYSTEM_INFO));
  1490       // Check to see if _GetNativeSystemInfo has been initialized.
  1491       if (_GetNativeSystemInfo == NULL) {
  1492         HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
  1493         _GetNativeSystemInfo =
  1494             CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
  1495                            GetProcAddress(hKernel32,
  1496                                           "GetNativeSystemInfo"));
  1497         if (_GetNativeSystemInfo == NULL)
  1498           GetSystemInfo(&si);
  1499       } else {
  1500         _GetNativeSystemInfo(&si);
  1502       if (os_vers == 5002) {
  1503         if (osvi.wProductType == VER_NT_WORKSTATION &&
  1504             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1505           st->print(" Windows XP x64 Edition");
  1506         else
  1507             st->print(" Windows Server 2003 family");
  1508       } else { // os_vers == 6000
  1509         if (osvi.wProductType == VER_NT_WORKSTATION)
  1510             st->print(" Windows Vista");
  1511         else
  1512             st->print(" Windows Server 2008");
  1513         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1514             st->print(" , 64 bit");
  1516       break;
  1518     default: // future windows, print out its major and minor versions
  1519       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1521   } else {
  1522     switch (os_vers) {
  1523     case 4000: st->print(" Windows 95"); break;
  1524     case 4010: st->print(" Windows 98"); break;
  1525     case 4090: st->print(" Windows Me"); break;
  1526     default: // future windows, print out its major and minor versions
  1527       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1530   st->print(" Build %d", osvi.dwBuildNumber);
  1531   st->print(" %s", osvi.szCSDVersion);           // service pack
  1532   st->cr();
  1535 void os::print_memory_info(outputStream* st) {
  1536   st->print("Memory:");
  1537   st->print(" %dk page", os::vm_page_size()>>10);
  1539   // FIXME: GlobalMemoryStatus() may return incorrect value if total memory
  1540   // is larger than 4GB
  1541   MEMORYSTATUS ms;
  1542   GlobalMemoryStatus(&ms);
  1544   st->print(", physical %uk", os::physical_memory() >> 10);
  1545   st->print("(%uk free)", os::available_memory() >> 10);
  1547   st->print(", swap %uk", ms.dwTotalPageFile >> 10);
  1548   st->print("(%uk free)", ms.dwAvailPageFile >> 10);
  1549   st->cr();
  1552 void os::print_siginfo(outputStream *st, void *siginfo) {
  1553   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
  1554   st->print("siginfo:");
  1555   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
  1557   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  1558       er->NumberParameters >= 2) {
  1559       switch (er->ExceptionInformation[0]) {
  1560       case 0: st->print(", reading address"); break;
  1561       case 1: st->print(", writing address"); break;
  1562       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
  1563                             er->ExceptionInformation[0]);
  1565       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
  1566   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
  1567              er->NumberParameters >= 2 && UseSharedSpaces) {
  1568     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1569     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
  1570       st->print("\n\nError accessing class data sharing archive."       \
  1571                 " Mapped file inaccessible during execution, "          \
  1572                 " possible disk/network problem.");
  1574   } else {
  1575     int num = er->NumberParameters;
  1576     if (num > 0) {
  1577       st->print(", ExceptionInformation=");
  1578       for (int i = 0; i < num; i++) {
  1579         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
  1583   st->cr();
  1586 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1587   // do nothing
  1590 static char saved_jvm_path[MAX_PATH] = {0};
  1592 // Find the full path to the current module, jvm.dll or jvm_g.dll
  1593 void os::jvm_path(char *buf, jint buflen) {
  1594   // Error checking.
  1595   if (buflen < MAX_PATH) {
  1596     assert(false, "must use a large-enough buffer");
  1597     buf[0] = '\0';
  1598     return;
  1600   // Lazy resolve the path to current module.
  1601   if (saved_jvm_path[0] != 0) {
  1602     strcpy(buf, saved_jvm_path);
  1603     return;
  1606   GetModuleFileName(vm_lib_handle, buf, buflen);
  1607   strcpy(saved_jvm_path, buf);
  1611 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1612 #ifndef _WIN64
  1613   st->print("_");
  1614 #endif
  1618 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1619 #ifndef _WIN64
  1620   st->print("@%d", args_size  * sizeof(int));
  1621 #endif
  1624 // sun.misc.Signal
  1625 // NOTE that this is a workaround for an apparent kernel bug where if
  1626 // a signal handler for SIGBREAK is installed then that signal handler
  1627 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
  1628 // See bug 4416763.
  1629 static void (*sigbreakHandler)(int) = NULL;
  1631 static void UserHandler(int sig, void *siginfo, void *context) {
  1632   os::signal_notify(sig);
  1633   // We need to reinstate the signal handler each time...
  1634   os::signal(sig, (void*)UserHandler);
  1637 void* os::user_handler() {
  1638   return (void*) UserHandler;
  1641 void* os::signal(int signal_number, void* handler) {
  1642   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
  1643     void (*oldHandler)(int) = sigbreakHandler;
  1644     sigbreakHandler = (void (*)(int)) handler;
  1645     return (void*) oldHandler;
  1646   } else {
  1647     return (void*)::signal(signal_number, (void (*)(int))handler);
  1651 void os::signal_raise(int signal_number) {
  1652   raise(signal_number);
  1655 // The Win32 C runtime library maps all console control events other than ^C
  1656 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
  1657 // logoff, and shutdown events.  We therefore install our own console handler
  1658 // that raises SIGTERM for the latter cases.
  1659 //
  1660 static BOOL WINAPI consoleHandler(DWORD event) {
  1661   switch(event) {
  1662     case CTRL_C_EVENT:
  1663       if (is_error_reported()) {
  1664         // Ctrl-C is pressed during error reporting, likely because the error
  1665         // handler fails to abort. Let VM die immediately.
  1666         os::die();
  1669       os::signal_raise(SIGINT);
  1670       return TRUE;
  1671       break;
  1672     case CTRL_BREAK_EVENT:
  1673       if (sigbreakHandler != NULL) {
  1674         (*sigbreakHandler)(SIGBREAK);
  1676       return TRUE;
  1677       break;
  1678     case CTRL_CLOSE_EVENT:
  1679     case CTRL_LOGOFF_EVENT:
  1680     case CTRL_SHUTDOWN_EVENT:
  1681       os::signal_raise(SIGTERM);
  1682       return TRUE;
  1683       break;
  1684     default:
  1685       break;
  1687   return FALSE;
  1690 /*
  1691  * The following code is moved from os.cpp for making this
  1692  * code platform specific, which it is by its very nature.
  1693  */
  1695 // Return maximum OS signal used + 1 for internal use only
  1696 // Used as exit signal for signal_thread
  1697 int os::sigexitnum_pd(){
  1698   return NSIG;
  1701 // a counter for each possible signal value, including signal_thread exit signal
  1702 static volatile jint pending_signals[NSIG+1] = { 0 };
  1703 static HANDLE sig_sem;
  1705 void os::signal_init_pd() {
  1706   // Initialize signal structures
  1707   memset((void*)pending_signals, 0, sizeof(pending_signals));
  1709   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
  1711   // Programs embedding the VM do not want it to attempt to receive
  1712   // events like CTRL_LOGOFF_EVENT, which are used to implement the
  1713   // shutdown hooks mechanism introduced in 1.3.  For example, when
  1714   // the VM is run as part of a Windows NT service (i.e., a servlet
  1715   // engine in a web server), the correct behavior is for any console
  1716   // control handler to return FALSE, not TRUE, because the OS's
  1717   // "final" handler for such events allows the process to continue if
  1718   // it is a service (while terminating it if it is not a service).
  1719   // To make this behavior uniform and the mechanism simpler, we
  1720   // completely disable the VM's usage of these console events if -Xrs
  1721   // (=ReduceSignalUsage) is specified.  This means, for example, that
  1722   // the CTRL-BREAK thread dump mechanism is also disabled in this
  1723   // case.  See bugs 4323062, 4345157, and related bugs.
  1725   if (!ReduceSignalUsage) {
  1726     // Add a CTRL-C handler
  1727     SetConsoleCtrlHandler(consoleHandler, TRUE);
  1731 void os::signal_notify(int signal_number) {
  1732   BOOL ret;
  1734   Atomic::inc(&pending_signals[signal_number]);
  1735   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1736   assert(ret != 0, "ReleaseSemaphore() failed");
  1739 static int check_pending_signals(bool wait_for_signal) {
  1740   DWORD ret;
  1741   while (true) {
  1742     for (int i = 0; i < NSIG + 1; i++) {
  1743       jint n = pending_signals[i];
  1744       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  1745         return i;
  1748     if (!wait_for_signal) {
  1749       return -1;
  1752     JavaThread *thread = JavaThread::current();
  1754     ThreadBlockInVM tbivm(thread);
  1756     bool threadIsSuspended;
  1757     do {
  1758       thread->set_suspend_equivalent();
  1759       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  1760       ret = ::WaitForSingleObject(sig_sem, INFINITE);
  1761       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
  1763       // were we externally suspended while we were waiting?
  1764       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  1765       if (threadIsSuspended) {
  1766         //
  1767         // The semaphore has been incremented, but while we were waiting
  1768         // another thread suspended us. We don't want to continue running
  1769         // while suspended because that would surprise the thread that
  1770         // suspended us.
  1771         //
  1772         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1773         assert(ret != 0, "ReleaseSemaphore() failed");
  1775         thread->java_suspend_self();
  1777     } while (threadIsSuspended);
  1781 int os::signal_lookup() {
  1782   return check_pending_signals(false);
  1785 int os::signal_wait() {
  1786   return check_pending_signals(true);
  1789 // Implicit OS exception handling
  1791 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
  1792   JavaThread* thread = JavaThread::current();
  1793   // Save pc in thread
  1794 #ifdef _M_IA64
  1795   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
  1796   // Set pc to handler
  1797   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
  1798 #elif _M_AMD64
  1799   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
  1800   // Set pc to handler
  1801   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
  1802 #else
  1803   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
  1804   // Set pc to handler
  1805   exceptionInfo->ContextRecord->Eip = (LONG)handler;
  1806 #endif
  1808   // Continue the execution
  1809   return EXCEPTION_CONTINUE_EXECUTION;
  1813 // Used for PostMortemDump
  1814 extern "C" void safepoints();
  1815 extern "C" void find(int x);
  1816 extern "C" void events();
  1818 // According to Windows API documentation, an illegal instruction sequence should generate
  1819 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
  1820 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
  1821 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
  1823 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
  1825 // From "Execution Protection in the Windows Operating System" draft 0.35
  1826 // Once a system header becomes available, the "real" define should be
  1827 // included or copied here.
  1828 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
  1830 #define def_excpt(val) #val, val
  1832 struct siglabel {
  1833   char *name;
  1834   int   number;
  1835 };
  1837 struct siglabel exceptlabels[] = {
  1838     def_excpt(EXCEPTION_ACCESS_VIOLATION),
  1839     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
  1840     def_excpt(EXCEPTION_BREAKPOINT),
  1841     def_excpt(EXCEPTION_SINGLE_STEP),
  1842     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
  1843     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
  1844     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
  1845     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
  1846     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
  1847     def_excpt(EXCEPTION_FLT_OVERFLOW),
  1848     def_excpt(EXCEPTION_FLT_STACK_CHECK),
  1849     def_excpt(EXCEPTION_FLT_UNDERFLOW),
  1850     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
  1851     def_excpt(EXCEPTION_INT_OVERFLOW),
  1852     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
  1853     def_excpt(EXCEPTION_IN_PAGE_ERROR),
  1854     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
  1855     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
  1856     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
  1857     def_excpt(EXCEPTION_STACK_OVERFLOW),
  1858     def_excpt(EXCEPTION_INVALID_DISPOSITION),
  1859     def_excpt(EXCEPTION_GUARD_PAGE),
  1860     def_excpt(EXCEPTION_INVALID_HANDLE),
  1861     NULL, 0
  1862 };
  1864 const char* os::exception_name(int exception_code, char *buf, size_t size) {
  1865   for (int i = 0; exceptlabels[i].name != NULL; i++) {
  1866     if (exceptlabels[i].number == exception_code) {
  1867        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
  1868        return buf;
  1872   return NULL;
  1875 //-----------------------------------------------------------------------------
  1876 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  1877   // handle exception caused by idiv; should only happen for -MinInt/-1
  1878   // (division by zero is handled explicitly)
  1879 #ifdef _M_IA64
  1880   assert(0, "Fix Handle_IDiv_Exception");
  1881 #elif _M_AMD64
  1882   PCONTEXT ctx = exceptionInfo->ContextRecord;
  1883   address pc = (address)ctx->Rip;
  1884   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
  1885   assert(pc[0] == 0xF7, "not an idiv opcode");
  1886   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  1887   assert(ctx->Rax == min_jint, "unexpected idiv exception");
  1888   // set correct result values and continue after idiv instruction
  1889   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  1890   ctx->Rax = (DWORD)min_jint;      // result
  1891   ctx->Rdx = (DWORD)0;             // remainder
  1892   // Continue the execution
  1893 #else
  1894   PCONTEXT ctx = exceptionInfo->ContextRecord;
  1895   address pc = (address)ctx->Eip;
  1896   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
  1897   assert(pc[0] == 0xF7, "not an idiv opcode");
  1898   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  1899   assert(ctx->Eax == min_jint, "unexpected idiv exception");
  1900   // set correct result values and continue after idiv instruction
  1901   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  1902   ctx->Eax = (DWORD)min_jint;      // result
  1903   ctx->Edx = (DWORD)0;             // remainder
  1904   // Continue the execution
  1905 #endif
  1906   return EXCEPTION_CONTINUE_EXECUTION;
  1909 #ifndef  _WIN64
  1910 //-----------------------------------------------------------------------------
  1911 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  1912   // handle exception caused by native mothod modifying control word
  1913   PCONTEXT ctx = exceptionInfo->ContextRecord;
  1914   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  1916   switch (exception_code) {
  1917     case EXCEPTION_FLT_DENORMAL_OPERAND:
  1918     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
  1919     case EXCEPTION_FLT_INEXACT_RESULT:
  1920     case EXCEPTION_FLT_INVALID_OPERATION:
  1921     case EXCEPTION_FLT_OVERFLOW:
  1922     case EXCEPTION_FLT_STACK_CHECK:
  1923     case EXCEPTION_FLT_UNDERFLOW:
  1924       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
  1925       if (fp_control_word != ctx->FloatSave.ControlWord) {
  1926         // Restore FPCW and mask out FLT exceptions
  1927         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
  1928         // Mask out pending FLT exceptions
  1929         ctx->FloatSave.StatusWord &=  0xffffff00;
  1930         return EXCEPTION_CONTINUE_EXECUTION;
  1933   return EXCEPTION_CONTINUE_SEARCH;
  1935 #else //_WIN64
  1936 /*
  1937   On Windows, the mxcsr control bits are non-volatile across calls
  1938   See also CR 6192333
  1939   If EXCEPTION_FLT_* happened after some native method modified
  1940   mxcsr - it is not a jvm fault.
  1941   However should we decide to restore of mxcsr after a faulty
  1942   native method we can uncomment following code
  1943       jint MxCsr = INITIAL_MXCSR;
  1944         // we can't use StubRoutines::addr_mxcsr_std()
  1945         // because in Win64 mxcsr is not saved there
  1946       if (MxCsr != ctx->MxCsr) {
  1947         ctx->MxCsr = MxCsr;
  1948         return EXCEPTION_CONTINUE_EXECUTION;
  1951 */
  1952 #endif //_WIN64
  1955 // Fatal error reporting is single threaded so we can make this a
  1956 // static and preallocated.  If it's more than MAX_PATH silently ignore
  1957 // it.
  1958 static char saved_error_file[MAX_PATH] = {0};
  1960 void os::set_error_file(const char *logfile) {
  1961   if (strlen(logfile) <= MAX_PATH) {
  1962     strncpy(saved_error_file, logfile, MAX_PATH);
  1966 static inline void report_error(Thread* t, DWORD exception_code,
  1967                                 address addr, void* siginfo, void* context) {
  1968   VMError err(t, exception_code, addr, siginfo, context);
  1969   err.report_and_die();
  1971   // If UseOsErrorReporting, this will return here and save the error file
  1972   // somewhere where we can find it in the minidump.
  1975 //-----------------------------------------------------------------------------
  1976 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  1977   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
  1978   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  1979 #ifdef _M_IA64
  1980   address pc = (address) exceptionInfo->ContextRecord->StIIP;
  1981 #elif _M_AMD64
  1982   address pc = (address) exceptionInfo->ContextRecord->Rip;
  1983 #else
  1984   address pc = (address) exceptionInfo->ContextRecord->Eip;
  1985 #endif
  1986   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
  1988 #ifndef _WIN64
  1989   // Execution protection violation - win32 running on AMD64 only
  1990   // Handled first to avoid misdiagnosis as a "normal" access violation;
  1991   // This is safe to do because we have a new/unique ExceptionInformation
  1992   // code for this condition.
  1993   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  1994     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  1995     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
  1996     address addr = (address) exceptionRecord->ExceptionInformation[1];
  1998     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
  1999       int page_size = os::vm_page_size();
  2001       // Make sure the pc and the faulting address are sane.
  2002       //
  2003       // If an instruction spans a page boundary, and the page containing
  2004       // the beginning of the instruction is executable but the following
  2005       // page is not, the pc and the faulting address might be slightly
  2006       // different - we still want to unguard the 2nd page in this case.
  2007       //
  2008       // 15 bytes seems to be a (very) safe value for max instruction size.
  2009       bool pc_is_near_addr =
  2010         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
  2011       bool instr_spans_page_boundary =
  2012         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
  2013                          (intptr_t) page_size) > 0);
  2015       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
  2016         static volatile address last_addr =
  2017           (address) os::non_memory_address_word();
  2019         // In conservative mode, don't unguard unless the address is in the VM
  2020         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
  2021             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
  2023           // Unguard and retry
  2024           address page_start =
  2025             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
  2026           bool res = os::unguard_memory((char*) page_start, page_size);
  2028           if (PrintMiscellaneous && Verbose) {
  2029             char buf[256];
  2030             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
  2031                          "at " INTPTR_FORMAT
  2032                          ", unguarding " INTPTR_FORMAT ": %s", addr,
  2033                          page_start, (res ? "success" : strerror(errno)));
  2034             tty->print_raw_cr(buf);
  2037           // Set last_addr so if we fault again at the same address, we don't
  2038           // end up in an endless loop.
  2039           //
  2040           // There are two potential complications here.  Two threads trapping
  2041           // at the same address at the same time could cause one of the
  2042           // threads to think it already unguarded, and abort the VM.  Likely
  2043           // very rare.
  2044           //
  2045           // The other race involves two threads alternately trapping at
  2046           // different addresses and failing to unguard the page, resulting in
  2047           // an endless loop.  This condition is probably even more unlikely
  2048           // than the first.
  2049           //
  2050           // Although both cases could be avoided by using locks or thread
  2051           // local last_addr, these solutions are unnecessary complication:
  2052           // this handler is a best-effort safety net, not a complete solution.
  2053           // It is disabled by default and should only be used as a workaround
  2054           // in case we missed any no-execute-unsafe VM code.
  2056           last_addr = addr;
  2058           return EXCEPTION_CONTINUE_EXECUTION;
  2062       // Last unguard failed or not unguarding
  2063       tty->print_raw_cr("Execution protection violation");
  2064       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
  2065                    exceptionInfo->ContextRecord);
  2066       return EXCEPTION_CONTINUE_SEARCH;
  2069 #endif // _WIN64
  2071   // Check to see if we caught the safepoint code in the
  2072   // process of write protecting the memory serialization page.
  2073   // It write enables the page immediately after protecting it
  2074   // so just return.
  2075   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  2076     JavaThread* thread = (JavaThread*) t;
  2077     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2078     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2079     if ( os::is_memory_serialize_page(thread, addr) ) {
  2080       // Block current thread until the memory serialize page permission restored.
  2081       os::block_on_serialize_page_trap();
  2082       return EXCEPTION_CONTINUE_EXECUTION;
  2087   if (t != NULL && t->is_Java_thread()) {
  2088     JavaThread* thread = (JavaThread*) t;
  2089     bool in_java = thread->thread_state() == _thread_in_Java;
  2091     // Handle potential stack overflows up front.
  2092     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
  2093       if (os::uses_stack_guard_pages()) {
  2094 #ifdef _M_IA64
  2095         //
  2096         // If it's a legal stack address continue, Windows will map it in.
  2097         //
  2098         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2099         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2100         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
  2101           return EXCEPTION_CONTINUE_EXECUTION;
  2103         // The register save area is the same size as the memory stack
  2104         // and starts at the page just above the start of the memory stack.
  2105         // If we get a fault in this area, we've run out of register
  2106         // stack.  If we are in java, try throwing a stack overflow exception.
  2107         if (addr > thread->stack_base() &&
  2108                       addr <= (thread->stack_base()+thread->stack_size()) ) {
  2109           char buf[256];
  2110           jio_snprintf(buf, sizeof(buf),
  2111                        "Register stack overflow, addr:%p, stack_base:%p\n",
  2112                        addr, thread->stack_base() );
  2113           tty->print_raw_cr(buf);
  2114           // If not in java code, return and hope for the best.
  2115           return in_java ? Handle_Exception(exceptionInfo,
  2116             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2117             :  EXCEPTION_CONTINUE_EXECUTION;
  2119 #endif
  2120         if (thread->stack_yellow_zone_enabled()) {
  2121           // Yellow zone violation.  The o/s has unprotected the first yellow
  2122           // zone page for us.  Note:  must call disable_stack_yellow_zone to
  2123           // update the enabled status, even if the zone contains only one page.
  2124           thread->disable_stack_yellow_zone();
  2125           // If not in java code, return and hope for the best.
  2126           return in_java ? Handle_Exception(exceptionInfo,
  2127             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2128             :  EXCEPTION_CONTINUE_EXECUTION;
  2129         } else {
  2130           // Fatal red zone violation.
  2131           thread->disable_stack_red_zone();
  2132           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
  2133           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2134                        exceptionInfo->ContextRecord);
  2135           return EXCEPTION_CONTINUE_SEARCH;
  2137       } else if (in_java) {
  2138         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
  2139         // a one-time-only guard page, which it has released to us.  The next
  2140         // stack overflow on this thread will result in an ACCESS_VIOLATION.
  2141         return Handle_Exception(exceptionInfo,
  2142           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2143       } else {
  2144         // Can only return and hope for the best.  Further stack growth will
  2145         // result in an ACCESS_VIOLATION.
  2146         return EXCEPTION_CONTINUE_EXECUTION;
  2148     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2149       // Either stack overflow or null pointer exception.
  2150       if (in_java) {
  2151         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2152         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2153         address stack_end = thread->stack_base() - thread->stack_size();
  2154         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
  2155           // Stack overflow.
  2156           assert(!os::uses_stack_guard_pages(),
  2157             "should be caught by red zone code above.");
  2158           return Handle_Exception(exceptionInfo,
  2159             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2161         //
  2162         // Check for safepoint polling and implicit null
  2163         // We only expect null pointers in the stubs (vtable)
  2164         // the rest are checked explicitly now.
  2165         //
  2166         CodeBlob* cb = CodeCache::find_blob(pc);
  2167         if (cb != NULL) {
  2168           if (os::is_poll_address(addr)) {
  2169             address stub = SharedRuntime::get_poll_stub(pc);
  2170             return Handle_Exception(exceptionInfo, stub);
  2174 #ifdef _WIN64
  2175           //
  2176           // If it's a legal stack address map the entire region in
  2177           //
  2178           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2179           address addr = (address) exceptionRecord->ExceptionInformation[1];
  2180           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
  2181                   addr = (address)((uintptr_t)addr &
  2182                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
  2183                   os::commit_memory( (char *)addr, thread->stack_base() - addr );
  2184                   return EXCEPTION_CONTINUE_EXECUTION;
  2186           else
  2187 #endif
  2189             // Null pointer exception.
  2190 #ifdef _M_IA64
  2191             // We catch register stack overflows in compiled code by doing
  2192             // an explicit compare and executing a st8(G0, G0) if the
  2193             // BSP enters into our guard area.  We test for the overflow
  2194             // condition and fall into the normal null pointer exception
  2195             // code if BSP hasn't overflowed.
  2196             if ( in_java ) {
  2197               if(thread->register_stack_overflow()) {
  2198                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
  2199                                 thread->register_stack_limit(),
  2200                                "GR7 doesn't contain register_stack_limit");
  2201                 // Disable the yellow zone which sets the state that
  2202                 // we've got a stack overflow problem.
  2203                 if (thread->stack_yellow_zone_enabled()) {
  2204                   thread->disable_stack_yellow_zone();
  2206                 // Give us some room to process the exception
  2207                 thread->disable_register_stack_guard();
  2208                 // Update GR7 with the new limit so we can continue running
  2209                 // compiled code.
  2210                 exceptionInfo->ContextRecord->IntS3 =
  2211                                (ULONGLONG)thread->register_stack_limit();
  2212                 return Handle_Exception(exceptionInfo,
  2213                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2214               } else {
  2215                 //
  2216                 // Check for implicit null
  2217                 // We only expect null pointers in the stubs (vtable)
  2218                 // the rest are checked explicitly now.
  2219                 //
  2220                 if (((uintptr_t)addr) < os::vm_page_size() ) {
  2221                   // an access to the first page of VM--assume it is a null pointer
  2222                   address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2223                   if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2226             } // in_java
  2228             // IA64 doesn't use implicit null checking yet. So we shouldn't
  2229             // get here.
  2230             tty->print_raw_cr("Access violation, possible null pointer exception");
  2231             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2232                          exceptionInfo->ContextRecord);
  2233             return EXCEPTION_CONTINUE_SEARCH;
  2234 #else /* !IA64 */
  2236             // Windows 98 reports faulting addresses incorrectly
  2237             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
  2238                 !os::win32::is_nt()) {
  2239               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2240               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2242             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2243                          exceptionInfo->ContextRecord);
  2244             return EXCEPTION_CONTINUE_SEARCH;
  2245 #endif
  2250 #ifdef _WIN64
  2251       // Special care for fast JNI field accessors.
  2252       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
  2253       // in and the heap gets shrunk before the field access.
  2254       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2255         address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2256         if (addr != (address)-1) {
  2257           return Handle_Exception(exceptionInfo, addr);
  2260 #endif
  2262 #ifdef _WIN64
  2263       // Windows will sometimes generate an access violation
  2264       // when we call malloc.  Since we use VectoredExceptions
  2265       // on 64 bit platforms, we see this exception.  We must
  2266       // pass this exception on so Windows can recover.
  2267       // We check to see if the pc of the fault is in NTDLL.DLL
  2268       // if so, we pass control on to Windows for handling.
  2269       if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
  2270 #endif
  2272       // Stack overflow or null pointer exception in native code.
  2273       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2274                    exceptionInfo->ContextRecord);
  2275       return EXCEPTION_CONTINUE_SEARCH;
  2278     if (in_java) {
  2279       switch (exception_code) {
  2280       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2281         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
  2283       case EXCEPTION_INT_OVERFLOW:
  2284         return Handle_IDiv_Exception(exceptionInfo);
  2286       } // switch
  2288 #ifndef _WIN64
  2289     if ((thread->thread_state() == _thread_in_Java) ||
  2290         (thread->thread_state() == _thread_in_native) )
  2292       LONG result=Handle_FLT_Exception(exceptionInfo);
  2293       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
  2295 #endif //_WIN64
  2298   if (exception_code != EXCEPTION_BREAKPOINT) {
  2299 #ifndef _WIN64
  2300     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2301                  exceptionInfo->ContextRecord);
  2302 #else
  2303     // Itanium Windows uses a VectoredExceptionHandler
  2304     // Which means that C++ programatic exception handlers (try/except)
  2305     // will get here.  Continue the search for the right except block if
  2306     // the exception code is not a fatal code.
  2307     switch ( exception_code ) {
  2308       case EXCEPTION_ACCESS_VIOLATION:
  2309       case EXCEPTION_STACK_OVERFLOW:
  2310       case EXCEPTION_ILLEGAL_INSTRUCTION:
  2311       case EXCEPTION_ILLEGAL_INSTRUCTION_2:
  2312       case EXCEPTION_INT_OVERFLOW:
  2313       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2314       {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2315                        exceptionInfo->ContextRecord);
  2317         break;
  2318       default:
  2319         break;
  2321 #endif
  2323   return EXCEPTION_CONTINUE_SEARCH;
  2326 #ifndef _WIN64
  2327 // Special care for fast JNI accessors.
  2328 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
  2329 // the heap gets shrunk before the field access.
  2330 // Need to install our own structured exception handler since native code may
  2331 // install its own.
  2332 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2333   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2334   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2335     address pc = (address) exceptionInfo->ContextRecord->Eip;
  2336     address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2337     if (addr != (address)-1) {
  2338       return Handle_Exception(exceptionInfo, addr);
  2341   return EXCEPTION_CONTINUE_SEARCH;
  2344 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
  2345 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
  2346   __try { \
  2347     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
  2348   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
  2349   } \
  2350   return 0; \
  2353 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
  2354 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
  2355 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
  2356 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
  2357 DEFINE_FAST_GETFIELD(jint,     int,    Int)
  2358 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
  2359 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
  2360 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
  2362 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
  2363   switch (type) {
  2364     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
  2365     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
  2366     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
  2367     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
  2368     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
  2369     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
  2370     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
  2371     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
  2372     default:        ShouldNotReachHere();
  2374   return (address)-1;
  2376 #endif
  2378 // Virtual Memory
  2380 int os::vm_page_size() { return os::win32::vm_page_size(); }
  2381 int os::vm_allocation_granularity() {
  2382   return os::win32::vm_allocation_granularity();
  2385 // Windows large page support is available on Windows 2003. In order to use
  2386 // large page memory, the administrator must first assign additional privilege
  2387 // to the user:
  2388 //   + select Control Panel -> Administrative Tools -> Local Security Policy
  2389 //   + select Local Policies -> User Rights Assignment
  2390 //   + double click "Lock pages in memory", add users and/or groups
  2391 //   + reboot
  2392 // Note the above steps are needed for administrator as well, as administrators
  2393 // by default do not have the privilege to lock pages in memory.
  2394 //
  2395 // Note about Windows 2003: although the API supports committing large page
  2396 // memory on a page-by-page basis and VirtualAlloc() returns success under this
  2397 // scenario, I found through experiment it only uses large page if the entire
  2398 // memory region is reserved and committed in a single VirtualAlloc() call.
  2399 // This makes Windows large page support more or less like Solaris ISM, in
  2400 // that the entire heap must be committed upfront. This probably will change
  2401 // in the future, if so the code below needs to be revisited.
  2403 #ifndef MEM_LARGE_PAGES
  2404 #define MEM_LARGE_PAGES 0x20000000
  2405 #endif
  2407 // GetLargePageMinimum is only available on Windows 2003. The other functions
  2408 // are available on NT but not on Windows 98/Me. We have to resolve them at
  2409 // runtime.
  2410 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
  2411 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
  2412              (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
  2413 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
  2414 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
  2416 static GetLargePageMinimum_func_type   _GetLargePageMinimum;
  2417 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
  2418 static OpenProcessToken_func_type      _OpenProcessToken;
  2419 static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
  2421 static HINSTANCE _kernel32;
  2422 static HINSTANCE _advapi32;
  2423 static HANDLE    _hProcess;
  2424 static HANDLE    _hToken;
  2426 static size_t _large_page_size = 0;
  2428 static bool resolve_functions_for_large_page_init() {
  2429   _kernel32 = LoadLibrary("kernel32.dll");
  2430   if (_kernel32 == NULL) return false;
  2432   _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
  2433                             GetProcAddress(_kernel32, "GetLargePageMinimum"));
  2434   if (_GetLargePageMinimum == NULL) return false;
  2436   _advapi32 = LoadLibrary("advapi32.dll");
  2437   if (_advapi32 == NULL) return false;
  2439   _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
  2440                             GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
  2441   _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
  2442                             GetProcAddress(_advapi32, "OpenProcessToken"));
  2443   _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
  2444                             GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
  2445   return _AdjustTokenPrivileges != NULL &&
  2446          _OpenProcessToken      != NULL &&
  2447          _LookupPrivilegeValue  != NULL;
  2450 static bool request_lock_memory_privilege() {
  2451   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
  2452                                 os::current_process_id());
  2454   LUID luid;
  2455   if (_hProcess != NULL &&
  2456       _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
  2457       _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
  2459     TOKEN_PRIVILEGES tp;
  2460     tp.PrivilegeCount = 1;
  2461     tp.Privileges[0].Luid = luid;
  2462     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
  2464     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
  2465     // privilege. Check GetLastError() too. See MSDN document.
  2466     if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
  2467         (GetLastError() == ERROR_SUCCESS)) {
  2468       return true;
  2472   return false;
  2475 static void cleanup_after_large_page_init() {
  2476   _GetLargePageMinimum = NULL;
  2477   _AdjustTokenPrivileges = NULL;
  2478   _OpenProcessToken = NULL;
  2479   _LookupPrivilegeValue = NULL;
  2480   if (_kernel32) FreeLibrary(_kernel32);
  2481   _kernel32 = NULL;
  2482   if (_advapi32) FreeLibrary(_advapi32);
  2483   _advapi32 = NULL;
  2484   if (_hProcess) CloseHandle(_hProcess);
  2485   _hProcess = NULL;
  2486   if (_hToken) CloseHandle(_hToken);
  2487   _hToken = NULL;
  2490 bool os::large_page_init() {
  2491   if (!UseLargePages) return false;
  2493   // print a warning if any large page related flag is specified on command line
  2494   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
  2495                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  2496   bool success = false;
  2498 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2499   if (resolve_functions_for_large_page_init()) {
  2500     if (request_lock_memory_privilege()) {
  2501       size_t s = _GetLargePageMinimum();
  2502       if (s) {
  2503 #if defined(IA32) || defined(AMD64)
  2504         if (s > 4*M || LargePageSizeInBytes > 4*M) {
  2505           WARN("JVM cannot use large pages bigger than 4mb.");
  2506         } else {
  2507 #endif
  2508           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
  2509             _large_page_size = LargePageSizeInBytes;
  2510           } else {
  2511             _large_page_size = s;
  2513           success = true;
  2514 #if defined(IA32) || defined(AMD64)
  2516 #endif
  2517       } else {
  2518         WARN("Large page is not supported by the processor.");
  2520     } else {
  2521       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
  2523   } else {
  2524     WARN("Large page is not supported by the operating system.");
  2526 #undef WARN
  2528   const size_t default_page_size = (size_t) vm_page_size();
  2529   if (success && _large_page_size > default_page_size) {
  2530     _page_sizes[0] = _large_page_size;
  2531     _page_sizes[1] = default_page_size;
  2532     _page_sizes[2] = 0;
  2535   cleanup_after_large_page_init();
  2536   return success;
  2539 // On win32, one cannot release just a part of reserved memory, it's an
  2540 // all or nothing deal.  When we split a reservation, we must break the
  2541 // reservation into two reservations.
  2542 void os::split_reserved_memory(char *base, size_t size, size_t split,
  2543                               bool realloc) {
  2544   if (size > 0) {
  2545     release_memory(base, size);
  2546     if (realloc) {
  2547       reserve_memory(split, base);
  2549     if (size != split) {
  2550       reserve_memory(size - split, base + split);
  2555 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  2556   assert((size_t)addr % os::vm_allocation_granularity() == 0,
  2557          "reserve alignment");
  2558   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
  2559   char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE,
  2560                                   PAGE_EXECUTE_READWRITE);
  2561   assert(res == NULL || addr == NULL || addr == res,
  2562          "Unexpected address from reserve.");
  2563   return res;
  2566 // Reserve memory at an arbitrary address, only if that area is
  2567 // available (and not reserved for something else).
  2568 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  2569   // Windows os::reserve_memory() fails of the requested address range is
  2570   // not avilable.
  2571   return reserve_memory(bytes, requested_addr);
  2574 size_t os::large_page_size() {
  2575   return _large_page_size;
  2578 bool os::can_commit_large_page_memory() {
  2579   // Windows only uses large page memory when the entire region is reserved
  2580   // and committed in a single VirtualAlloc() call. This may change in the
  2581   // future, but with Windows 2003 it's not possible to commit on demand.
  2582   return false;
  2585 bool os::can_execute_large_page_memory() {
  2586   return true;
  2589 char* os::reserve_memory_special(size_t bytes) {
  2591   if (UseLargePagesIndividualAllocation) {
  2592     if (TracePageSizes && Verbose) {
  2593        tty->print_cr("Reserving large pages individually.");
  2595     char * p_buf;
  2596     // first reserve enough address space in advance since we want to be
  2597     // able to break a single contiguous virtual address range into multiple
  2598     // large page commits but WS2003 does not allow reserving large page space
  2599     // so we just use 4K pages for reserve, this gives us a legal contiguous
  2600     // address space. then we will deallocate that reservation, and re alloc
  2601     // using large pages
  2602     const size_t size_of_reserve = bytes + _large_page_size;
  2603     if (bytes > size_of_reserve) {
  2604       // Overflowed.
  2605       warning("Individually allocated large pages failed, "
  2606         "use -XX:-UseLargePagesIndividualAllocation to turn off");
  2607       return NULL;
  2609     p_buf = (char *) VirtualAlloc(NULL,
  2610                                  size_of_reserve,  // size of Reserve
  2611                                  MEM_RESERVE,
  2612                                  PAGE_EXECUTE_READWRITE);
  2613     // If reservation failed, return NULL
  2614     if (p_buf == NULL) return NULL;
  2616     release_memory(p_buf, bytes + _large_page_size);
  2617     // round up to page boundary.  If the size_of_reserve did not
  2618     // overflow and the reservation did not fail, this align up
  2619     // should not overflow.
  2620     p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
  2622     // now go through and allocate one page at a time until all bytes are
  2623     // allocated
  2624     size_t  bytes_remaining = align_size_up(bytes, _large_page_size);
  2625     // An overflow of align_size_up() would have been caught above
  2626     // in the calculation of size_of_reserve.
  2627     char * next_alloc_addr = p_buf;
  2629 #ifdef ASSERT
  2630     // Variable for the failure injection
  2631     long ran_num = os::random();
  2632     size_t fail_after = ran_num % bytes;
  2633 #endif
  2635     while (bytes_remaining) {
  2636       size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
  2637       // Note allocate and commit
  2638       char * p_new;
  2640 #ifdef ASSERT
  2641       bool inject_error = LargePagesIndividualAllocationInjectError &&
  2642           (bytes_remaining <= fail_after);
  2643 #else
  2644       const bool inject_error = false;
  2645 #endif
  2647       if (inject_error) {
  2648         p_new = NULL;
  2649       } else {
  2650         p_new = (char *) VirtualAlloc(next_alloc_addr,
  2651                                     bytes_to_rq,
  2652                                     MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
  2653                                     PAGE_EXECUTE_READWRITE);
  2656       if (p_new == NULL) {
  2657         // Free any allocated pages
  2658         if (next_alloc_addr > p_buf) {
  2659           // Some memory was committed so release it.
  2660           size_t bytes_to_release = bytes - bytes_remaining;
  2661           release_memory(p_buf, bytes_to_release);
  2663 #ifdef ASSERT
  2664         if (UseLargePagesIndividualAllocation &&
  2665             LargePagesIndividualAllocationInjectError) {
  2666           if (TracePageSizes && Verbose) {
  2667              tty->print_cr("Reserving large pages individually failed.");
  2670 #endif
  2671         return NULL;
  2673       bytes_remaining -= bytes_to_rq;
  2674       next_alloc_addr += bytes_to_rq;
  2677     return p_buf;
  2679   } else {
  2680     // normal policy just allocate it all at once
  2681     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  2682     char * res = (char *)VirtualAlloc(NULL,
  2683                                       bytes,
  2684                                       flag,
  2685                                       PAGE_EXECUTE_READWRITE);
  2686     return res;
  2690 bool os::release_memory_special(char* base, size_t bytes) {
  2691   return release_memory(base, bytes);
  2694 void os::print_statistics() {
  2697 bool os::commit_memory(char* addr, size_t bytes) {
  2698   if (bytes == 0) {
  2699     // Don't bother the OS with noops.
  2700     return true;
  2702   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
  2703   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
  2704   // Don't attempt to print anything if the OS call fails. We're
  2705   // probably low on resources, so the print itself may cause crashes.
  2706   return VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_EXECUTE_READWRITE) != NULL;
  2709 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint) {
  2710   return commit_memory(addr, size);
  2713 bool os::uncommit_memory(char* addr, size_t bytes) {
  2714   if (bytes == 0) {
  2715     // Don't bother the OS with noops.
  2716     return true;
  2718   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
  2719   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
  2720   return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
  2723 bool os::release_memory(char* addr, size_t bytes) {
  2724   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
  2727 // Set protections specified
  2728 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2729                         bool is_committed) {
  2730   unsigned int p = 0;
  2731   switch (prot) {
  2732   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
  2733   case MEM_PROT_READ: p = PAGE_READONLY; break;
  2734   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
  2735   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
  2736   default:
  2737     ShouldNotReachHere();
  2740   DWORD old_status;
  2742   // Strange enough, but on Win32 one can change protection only for committed
  2743   // memory, not a big deal anyway, as bytes less or equal than 64K
  2744   if (!is_committed && !commit_memory(addr, bytes)) {
  2745     fatal("cannot commit protection page");
  2747   // One cannot use os::guard_memory() here, as on Win32 guard page
  2748   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
  2749   //
  2750   // Pages in the region become guard pages. Any attempt to access a guard page
  2751   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
  2752   // the guard page status. Guard pages thus act as a one-time access alarm.
  2753   return VirtualProtect(addr, bytes, p, &old_status) != 0;
  2756 bool os::guard_memory(char* addr, size_t bytes) {
  2757   DWORD old_status;
  2758   return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE | PAGE_GUARD, &old_status) != 0;
  2761 bool os::unguard_memory(char* addr, size_t bytes) {
  2762   DWORD old_status;
  2763   return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &old_status) != 0;
  2766 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  2767 void os::free_memory(char *addr, size_t bytes)         { }
  2768 void os::numa_make_global(char *addr, size_t bytes)    { }
  2769 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
  2770 bool os::numa_topology_changed()                       { return false; }
  2771 size_t os::numa_get_groups_num()                       { return 1; }
  2772 int os::numa_get_group_id()                            { return 0; }
  2773 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2774   if (size > 0) {
  2775     ids[0] = 0;
  2776     return 1;
  2778   return 0;
  2781 bool os::get_page_info(char *start, page_info* info) {
  2782   return false;
  2785 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2786   return end;
  2789 char* os::non_memory_address_word() {
  2790   // Must never look like an address returned by reserve_memory,
  2791   // even in its subfields (as defined by the CPU immediate fields,
  2792   // if the CPU splits constants across multiple instructions).
  2793   return (char*)-1;
  2796 #define MAX_ERROR_COUNT 100
  2797 #define SYS_THREAD_ERROR 0xffffffffUL
  2799 void os::pd_start_thread(Thread* thread) {
  2800   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
  2801   // Returns previous suspend state:
  2802   // 0:  Thread was not suspended
  2803   // 1:  Thread is running now
  2804   // >1: Thread is still suspended.
  2805   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
  2808 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  2809   return ::read(fd, buf, nBytes);
  2812 class HighResolutionInterval {
  2813   // The default timer resolution seems to be 10 milliseconds.
  2814   // (Where is this written down?)
  2815   // If someone wants to sleep for only a fraction of the default,
  2816   // then we set the timer resolution down to 1 millisecond for
  2817   // the duration of their interval.
  2818   // We carefully set the resolution back, since otherwise we
  2819   // seem to incur an overhead (3%?) that we don't need.
  2820   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
  2821   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
  2822   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
  2823   // timeBeginPeriod() if the relative error exceeded some threshold.
  2824   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
  2825   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
  2826   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
  2827   // resolution timers running.
  2828 private:
  2829     jlong resolution;
  2830 public:
  2831   HighResolutionInterval(jlong ms) {
  2832     resolution = ms % 10L;
  2833     if (resolution != 0) {
  2834       MMRESULT result = timeBeginPeriod(1L);
  2837   ~HighResolutionInterval() {
  2838     if (resolution != 0) {
  2839       MMRESULT result = timeEndPeriod(1L);
  2841     resolution = 0L;
  2843 };
  2845 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
  2846   jlong limit = (jlong) MAXDWORD;
  2848   while(ms > limit) {
  2849     int res;
  2850     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
  2851       return res;
  2852     ms -= limit;
  2855   assert(thread == Thread::current(),  "thread consistency check");
  2856   OSThread* osthread = thread->osthread();
  2857   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
  2858   int result;
  2859   if (interruptable) {
  2860     assert(thread->is_Java_thread(), "must be java thread");
  2861     JavaThread *jt = (JavaThread *) thread;
  2862     ThreadBlockInVM tbivm(jt);
  2864     jt->set_suspend_equivalent();
  2865     // cleared by handle_special_suspend_equivalent_condition() or
  2866     // java_suspend_self() via check_and_wait_while_suspended()
  2868     HANDLE events[1];
  2869     events[0] = osthread->interrupt_event();
  2870     HighResolutionInterval *phri=NULL;
  2871     if(!ForceTimeHighResolution)
  2872       phri = new HighResolutionInterval( ms );
  2873     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
  2874       result = OS_TIMEOUT;
  2875     } else {
  2876       ResetEvent(osthread->interrupt_event());
  2877       osthread->set_interrupted(false);
  2878       result = OS_INTRPT;
  2880     delete phri; //if it is NULL, harmless
  2882     // were we externally suspended while we were waiting?
  2883     jt->check_and_wait_while_suspended();
  2884   } else {
  2885     assert(!thread->is_Java_thread(), "must not be java thread");
  2886     Sleep((long) ms);
  2887     result = OS_TIMEOUT;
  2889   return result;
  2892 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  2893 void os::infinite_sleep() {
  2894   while (true) {    // sleep forever ...
  2895     Sleep(100000);  // ... 100 seconds at a time
  2899 typedef BOOL (WINAPI * STTSignature)(void) ;
  2901 os::YieldResult os::NakedYield() {
  2902   // Use either SwitchToThread() or Sleep(0)
  2903   // Consider passing back the return value from SwitchToThread().
  2904   // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
  2905   // In that case we revert to Sleep(0).
  2906   static volatile STTSignature stt = (STTSignature) 1 ;
  2908   if (stt == ((STTSignature) 1)) {
  2909     stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
  2910     // It's OK if threads race during initialization as the operation above is idempotent.
  2912   if (stt != NULL) {
  2913     return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
  2914   } else {
  2915     Sleep (0) ;
  2917   return os::YIELD_UNKNOWN ;
  2920 void os::yield() {  os::NakedYield(); }
  2922 void os::yield_all(int attempts) {
  2923   // Yields to all threads, including threads with lower priorities
  2924   Sleep(1);
  2927 // Win32 only gives you access to seven real priorities at a time,
  2928 // so we compress Java's ten down to seven.  It would be better
  2929 // if we dynamically adjusted relative priorities.
  2931 int os::java_to_os_priority[MaxPriority + 1] = {
  2932   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  2933   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  2934   THREAD_PRIORITY_LOWEST,                       // 2
  2935   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  2936   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  2937   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  2938   THREAD_PRIORITY_NORMAL,                       // 6
  2939   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  2940   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
  2941   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  2942   THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
  2943 };
  2945 int prio_policy1[MaxPriority + 1] = {
  2946   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  2947   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  2948   THREAD_PRIORITY_LOWEST,                       // 2
  2949   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  2950   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  2951   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  2952   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
  2953   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  2954   THREAD_PRIORITY_HIGHEST,                      // 8
  2955   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  2956   THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
  2957 };
  2959 static int prio_init() {
  2960   // If ThreadPriorityPolicy is 1, switch tables
  2961   if (ThreadPriorityPolicy == 1) {
  2962     int i;
  2963     for (i = 0; i < MaxPriority + 1; i++) {
  2964       os::java_to_os_priority[i] = prio_policy1[i];
  2967   return 0;
  2970 OSReturn os::set_native_priority(Thread* thread, int priority) {
  2971   if (!UseThreadPriorities) return OS_OK;
  2972   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
  2973   return ret ? OS_OK : OS_ERR;
  2976 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
  2977   if ( !UseThreadPriorities ) {
  2978     *priority_ptr = java_to_os_priority[NormPriority];
  2979     return OS_OK;
  2981   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
  2982   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
  2983     assert(false, "GetThreadPriority failed");
  2984     return OS_ERR;
  2986   *priority_ptr = os_prio;
  2987   return OS_OK;
  2991 // Hint to the underlying OS that a task switch would not be good.
  2992 // Void return because it's a hint and can fail.
  2993 void os::hint_no_preempt() {}
  2995 void os::interrupt(Thread* thread) {
  2996   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  2997          "possibility of dangling Thread pointer");
  2999   OSThread* osthread = thread->osthread();
  3000   osthread->set_interrupted(true);
  3001   // More than one thread can get here with the same value of osthread,
  3002   // resulting in multiple notifications.  We do, however, want the store
  3003   // to interrupted() to be visible to other threads before we post
  3004   // the interrupt event.
  3005   OrderAccess::release();
  3006   SetEvent(osthread->interrupt_event());
  3007   // For JSR166:  unpark after setting status
  3008   if (thread->is_Java_thread())
  3009     ((JavaThread*)thread)->parker()->unpark();
  3011   ParkEvent * ev = thread->_ParkEvent ;
  3012   if (ev != NULL) ev->unpark() ;
  3017 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3018   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3019          "possibility of dangling Thread pointer");
  3021   OSThread* osthread = thread->osthread();
  3022   bool interrupted;
  3023   interrupted = osthread->interrupted();
  3024   if (clear_interrupted == true) {
  3025     osthread->set_interrupted(false);
  3026     ResetEvent(osthread->interrupt_event());
  3027   } // Otherwise leave the interrupted state alone
  3029   return interrupted;
  3032 // Get's a pc (hint) for a running thread. Currently used only for profiling.
  3033 ExtendedPC os::get_thread_pc(Thread* thread) {
  3034   CONTEXT context;
  3035   context.ContextFlags = CONTEXT_CONTROL;
  3036   HANDLE handle = thread->osthread()->thread_handle();
  3037 #ifdef _M_IA64
  3038   assert(0, "Fix get_thread_pc");
  3039   return ExtendedPC(NULL);
  3040 #else
  3041   if (GetThreadContext(handle, &context)) {
  3042 #ifdef _M_AMD64
  3043     return ExtendedPC((address) context.Rip);
  3044 #else
  3045     return ExtendedPC((address) context.Eip);
  3046 #endif
  3047   } else {
  3048     return ExtendedPC(NULL);
  3050 #endif
  3053 // GetCurrentThreadId() returns DWORD
  3054 intx os::current_thread_id()          { return GetCurrentThreadId(); }
  3056 static int _initial_pid = 0;
  3058 int os::current_process_id()
  3060   return (_initial_pid ? _initial_pid : _getpid());
  3063 int    os::win32::_vm_page_size       = 0;
  3064 int    os::win32::_vm_allocation_granularity = 0;
  3065 int    os::win32::_processor_type     = 0;
  3066 // Processor level is not available on non-NT systems, use vm_version instead
  3067 int    os::win32::_processor_level    = 0;
  3068 julong os::win32::_physical_memory    = 0;
  3069 size_t os::win32::_default_stack_size = 0;
  3071          intx os::win32::_os_thread_limit    = 0;
  3072 volatile intx os::win32::_os_thread_count    = 0;
  3074 bool   os::win32::_is_nt              = false;
  3075 bool   os::win32::_is_windows_2003    = false;
  3078 void os::win32::initialize_system_info() {
  3079   SYSTEM_INFO si;
  3080   GetSystemInfo(&si);
  3081   _vm_page_size    = si.dwPageSize;
  3082   _vm_allocation_granularity = si.dwAllocationGranularity;
  3083   _processor_type  = si.dwProcessorType;
  3084   _processor_level = si.wProcessorLevel;
  3085   _processor_count = si.dwNumberOfProcessors;
  3087   MEMORYSTATUS ms;
  3088   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
  3089   // dwMemoryLoad (% of memory in use)
  3090   GlobalMemoryStatus(&ms);
  3091   _physical_memory = ms.dwTotalPhys;
  3093   OSVERSIONINFO oi;
  3094   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
  3095   GetVersionEx(&oi);
  3096   switch(oi.dwPlatformId) {
  3097     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
  3098     case VER_PLATFORM_WIN32_NT:
  3099       _is_nt = true;
  3101         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
  3102         if (os_vers == 5002) {
  3103           _is_windows_2003 = true;
  3106       break;
  3107     default: fatal("Unknown platform");
  3110   _default_stack_size = os::current_stack_size();
  3111   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
  3112   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
  3113     "stack size not a multiple of page size");
  3115   initialize_performance_counter();
  3117   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
  3118   // known to deadlock the system, if the VM issues to thread operations with
  3119   // a too high frequency, e.g., such as changing the priorities.
  3120   // The 6000 seems to work well - no deadlocks has been notices on the test
  3121   // programs that we have seen experience this problem.
  3122   if (!os::win32::is_nt()) {
  3123     StarvationMonitorInterval = 6000;
  3128 void os::win32::setmode_streams() {
  3129   _setmode(_fileno(stdin), _O_BINARY);
  3130   _setmode(_fileno(stdout), _O_BINARY);
  3131   _setmode(_fileno(stderr), _O_BINARY);
  3135 int os::message_box(const char* title, const char* message) {
  3136   int result = MessageBox(NULL, message, title,
  3137                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
  3138   return result == IDYES;
  3141 int os::allocate_thread_local_storage() {
  3142   return TlsAlloc();
  3146 void os::free_thread_local_storage(int index) {
  3147   TlsFree(index);
  3151 void os::thread_local_storage_at_put(int index, void* value) {
  3152   TlsSetValue(index, value);
  3153   assert(thread_local_storage_at(index) == value, "Just checking");
  3157 void* os::thread_local_storage_at(int index) {
  3158   return TlsGetValue(index);
  3162 #ifndef PRODUCT
  3163 #ifndef _WIN64
  3164 // Helpers to check whether NX protection is enabled
  3165 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
  3166   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  3167       pex->ExceptionRecord->NumberParameters > 0 &&
  3168       pex->ExceptionRecord->ExceptionInformation[0] ==
  3169       EXCEPTION_INFO_EXEC_VIOLATION) {
  3170     return EXCEPTION_EXECUTE_HANDLER;
  3172   return EXCEPTION_CONTINUE_SEARCH;
  3175 void nx_check_protection() {
  3176   // If NX is enabled we'll get an exception calling into code on the stack
  3177   char code[] = { (char)0xC3 }; // ret
  3178   void *code_ptr = (void *)code;
  3179   __try {
  3180     __asm call code_ptr
  3181   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
  3182     tty->print_raw_cr("NX protection detected.");
  3185 #endif // _WIN64
  3186 #endif // PRODUCT
  3188 // this is called _before_ the global arguments have been parsed
  3189 void os::init(void) {
  3190   _initial_pid = _getpid();
  3192   init_random(1234567);
  3194   win32::initialize_system_info();
  3195   win32::setmode_streams();
  3196   init_page_sizes((size_t) win32::vm_page_size());
  3198   // For better scalability on MP systems (must be called after initialize_system_info)
  3199 #ifndef PRODUCT
  3200   if (is_MP()) {
  3201     NoYieldsInMicrolock = true;
  3203 #endif
  3204   // This may be overridden later when argument processing is done.
  3205   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
  3206     os::win32::is_windows_2003());
  3208   // Initialize main_process and main_thread
  3209   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
  3210  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
  3211                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
  3212     fatal("DuplicateHandle failed\n");
  3214   main_thread_id = (int) GetCurrentThreadId();
  3217 // To install functions for atexit processing
  3218 extern "C" {
  3219   static void perfMemory_exit_helper() {
  3220     perfMemory_exit();
  3225 // this is called _after_ the global arguments have been parsed
  3226 jint os::init_2(void) {
  3227   // Allocate a single page and mark it as readable for safepoint polling
  3228   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
  3229   guarantee( polling_page != NULL, "Reserve Failed for polling page");
  3231   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
  3232   guarantee( return_page != NULL, "Commit Failed for polling page");
  3234   os::set_polling_page( polling_page );
  3236 #ifndef PRODUCT
  3237   if( Verbose && PrintMiscellaneous )
  3238     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3239 #endif
  3241   if (!UseMembar) {
  3242     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_EXECUTE_READWRITE);
  3243     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
  3245     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  3246     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
  3248     os::set_memory_serialize_page( mem_serialize_page );
  3250 #ifndef PRODUCT
  3251     if(Verbose && PrintMiscellaneous)
  3252       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3253 #endif
  3256   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
  3258   // Setup Windows Exceptions
  3260   // On Itanium systems, Structured Exception Handling does not
  3261   // work since stack frames must be walkable by the OS.  Since
  3262   // much of our code is dynamically generated, and we do not have
  3263   // proper unwind .xdata sections, the system simply exits
  3264   // rather than delivering the exception.  To work around
  3265   // this we use VectorExceptions instead.
  3266 #ifdef _WIN64
  3267   if (UseVectoredExceptions) {
  3268     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
  3270 #endif
  3272   // for debugging float code generation bugs
  3273   if (ForceFloatExceptions) {
  3274 #ifndef  _WIN64
  3275     static long fp_control_word = 0;
  3276     __asm { fstcw fp_control_word }
  3277     // see Intel PPro Manual, Vol. 2, p 7-16
  3278     const long precision = 0x20;
  3279     const long underflow = 0x10;
  3280     const long overflow  = 0x08;
  3281     const long zero_div  = 0x04;
  3282     const long denorm    = 0x02;
  3283     const long invalid   = 0x01;
  3284     fp_control_word |= invalid;
  3285     __asm { fldcw fp_control_word }
  3286 #endif
  3289   // Initialize HPI.
  3290   jint hpi_result = hpi::initialize();
  3291   if (hpi_result != JNI_OK) { return hpi_result; }
  3293   // If stack_commit_size is 0, windows will reserve the default size,
  3294   // but only commit a small portion of it.
  3295   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
  3296   size_t default_reserve_size = os::win32::default_stack_size();
  3297   size_t actual_reserve_size = stack_commit_size;
  3298   if (stack_commit_size < default_reserve_size) {
  3299     // If stack_commit_size == 0, we want this too
  3300     actual_reserve_size = default_reserve_size;
  3303   JavaThread::set_stack_size_at_create(stack_commit_size);
  3305   // Calculate theoretical max. size of Threads to guard gainst artifical
  3306   // out-of-memory situations, where all available address-space has been
  3307   // reserved by thread stacks.
  3308   assert(actual_reserve_size != 0, "Must have a stack");
  3310   // Calculate the thread limit when we should start doing Virtual Memory
  3311   // banging. Currently when the threads will have used all but 200Mb of space.
  3312   //
  3313   // TODO: consider performing a similar calculation for commit size instead
  3314   // as reserve size, since on a 64-bit platform we'll run into that more
  3315   // often than running out of virtual memory space.  We can use the
  3316   // lower value of the two calculations as the os_thread_limit.
  3317   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
  3318   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
  3320   // at exit methods are called in the reverse order of their registration.
  3321   // there is no limit to the number of functions registered. atexit does
  3322   // not set errno.
  3324   if (PerfAllowAtExitRegistration) {
  3325     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3326     // atexit functions can be delayed until process exit time, which
  3327     // can be problematic for embedded VM situations. Embedded VMs should
  3328     // call DestroyJavaVM() to assure that VM resources are released.
  3330     // note: perfMemory_exit_helper atexit function may be removed in
  3331     // the future if the appropriate cleanup code can be added to the
  3332     // VM_Exit VMOperation's doit method.
  3333     if (atexit(perfMemory_exit_helper) != 0) {
  3334       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  3338   // initialize PSAPI or ToolHelp for fatal error handler
  3339   if (win32::is_nt()) _init_psapi();
  3340   else _init_toolhelp();
  3342 #ifndef _WIN64
  3343   // Print something if NX is enabled (win32 on AMD64)
  3344   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
  3345 #endif
  3347   // initialize thread priority policy
  3348   prio_init();
  3350   return JNI_OK;
  3354 // Mark the polling page as unreadable
  3355 void os::make_polling_page_unreadable(void) {
  3356   DWORD old_status;
  3357   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
  3358     fatal("Could not disable polling page");
  3359 };
  3361 // Mark the polling page as readable
  3362 void os::make_polling_page_readable(void) {
  3363   DWORD old_status;
  3364   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
  3365     fatal("Could not enable polling page");
  3366 };
  3369 int os::stat(const char *path, struct stat *sbuf) {
  3370   char pathbuf[MAX_PATH];
  3371   if (strlen(path) > MAX_PATH - 1) {
  3372     errno = ENAMETOOLONG;
  3373     return -1;
  3375   hpi::native_path(strcpy(pathbuf, path));
  3376   int ret = ::stat(pathbuf, sbuf);
  3377   if (sbuf != NULL && UseUTCFileTimestamp) {
  3378     // Fix for 6539723.  st_mtime returned from stat() is dependent on
  3379     // the system timezone and so can return different values for the
  3380     // same file if/when daylight savings time changes.  This adjustment
  3381     // makes sure the same timestamp is returned regardless of the TZ.
  3382     //
  3383     // See:
  3384     // http://msdn.microsoft.com/library/
  3385     //   default.asp?url=/library/en-us/sysinfo/base/
  3386     //   time_zone_information_str.asp
  3387     // and
  3388     // http://msdn.microsoft.com/library/default.asp?url=
  3389     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
  3390     //
  3391     // NOTE: there is a insidious bug here:  If the timezone is changed
  3392     // after the call to stat() but before 'GetTimeZoneInformation()', then
  3393     // the adjustment we do here will be wrong and we'll return the wrong
  3394     // value (which will likely end up creating an invalid class data
  3395     // archive).  Absent a better API for this, or some time zone locking
  3396     // mechanism, we'll have to live with this risk.
  3397     TIME_ZONE_INFORMATION tz;
  3398     DWORD tzid = GetTimeZoneInformation(&tz);
  3399     int daylightBias =
  3400       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
  3401     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
  3403   return ret;
  3407 #define FT2INT64(ft) \
  3408   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
  3411 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  3412 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  3413 // of a thread.
  3414 //
  3415 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  3416 // the fast estimate available on the platform.
  3418 // current_thread_cpu_time() is not optimized for Windows yet
  3419 jlong os::current_thread_cpu_time() {
  3420   // return user + sys since the cost is the same
  3421   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
  3424 jlong os::thread_cpu_time(Thread* thread) {
  3425   // consistent with what current_thread_cpu_time() returns.
  3426   return os::thread_cpu_time(thread, true /* user+sys */);
  3429 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  3430   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  3433 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
  3434   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
  3435   // If this function changes, os::is_thread_cpu_time_supported() should too
  3436   if (os::win32::is_nt()) {
  3437     FILETIME CreationTime;
  3438     FILETIME ExitTime;
  3439     FILETIME KernelTime;
  3440     FILETIME UserTime;
  3442     if ( GetThreadTimes(thread->osthread()->thread_handle(),
  3443                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3444       return -1;
  3445     else
  3446       if (user_sys_cpu_time) {
  3447         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
  3448       } else {
  3449         return FT2INT64(UserTime) * 100;
  3451   } else {
  3452     return (jlong) timeGetTime() * 1000000;
  3456 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3457   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3458   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3459   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3460   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3463 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3464   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3465   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3466   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3467   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3470 bool os::is_thread_cpu_time_supported() {
  3471   // see os::thread_cpu_time
  3472   if (os::win32::is_nt()) {
  3473     FILETIME CreationTime;
  3474     FILETIME ExitTime;
  3475     FILETIME KernelTime;
  3476     FILETIME UserTime;
  3478     if ( GetThreadTimes(GetCurrentThread(),
  3479                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3480       return false;
  3481     else
  3482       return true;
  3483   } else {
  3484     return false;
  3488 // Windows does't provide a loadavg primitive so this is stubbed out for now.
  3489 // It does have primitives (PDH API) to get CPU usage and run queue length.
  3490 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
  3491 // If we wanted to implement loadavg on Windows, we have a few options:
  3492 //
  3493 // a) Query CPU usage and run queue length and "fake" an answer by
  3494 //    returning the CPU usage if it's under 100%, and the run queue
  3495 //    length otherwise.  It turns out that querying is pretty slow
  3496 //    on Windows, on the order of 200 microseconds on a fast machine.
  3497 //    Note that on the Windows the CPU usage value is the % usage
  3498 //    since the last time the API was called (and the first call
  3499 //    returns 100%), so we'd have to deal with that as well.
  3500 //
  3501 // b) Sample the "fake" answer using a sampling thread and store
  3502 //    the answer in a global variable.  The call to loadavg would
  3503 //    just return the value of the global, avoiding the slow query.
  3504 //
  3505 // c) Sample a better answer using exponential decay to smooth the
  3506 //    value.  This is basically the algorithm used by UNIX kernels.
  3507 //
  3508 // Note that sampling thread starvation could affect both (b) and (c).
  3509 int os::loadavg(double loadavg[], int nelem) {
  3510   return -1;
  3514 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
  3515 bool os::dont_yield() {
  3516   return DontYieldALot;
  3519 // Is a (classpath) directory empty?
  3520 bool os::dir_is_empty(const char* path) {
  3521   WIN32_FIND_DATA fd;
  3522   HANDLE f = FindFirstFile(path, &fd);
  3523   if (f == INVALID_HANDLE_VALUE) {
  3524     return true;
  3526   FindClose(f);
  3527   return false;
  3530 // create binary file, rewriting existing file if required
  3531 int os::create_binary_file(const char* path, bool rewrite_existing) {
  3532   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
  3533   if (!rewrite_existing) {
  3534     oflags |= _O_EXCL;
  3536   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
  3539 // return current position of file pointer
  3540 jlong os::current_file_offset(int fd) {
  3541   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
  3544 // move file pointer to the specified offset
  3545 jlong os::seek_to_file_offset(int fd, jlong offset) {
  3546   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
  3550 // Map a block of memory.
  3551 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  3552                      char *addr, size_t bytes, bool read_only,
  3553                      bool allow_exec) {
  3554   HANDLE hFile;
  3555   char* base;
  3557   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
  3558                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
  3559   if (hFile == NULL) {
  3560     if (PrintMiscellaneous && Verbose) {
  3561       DWORD err = GetLastError();
  3562       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
  3564     return NULL;
  3567   if (allow_exec) {
  3568     // CreateFileMapping/MapViewOfFileEx can't map executable memory
  3569     // unless it comes from a PE image (which the shared archive is not.)
  3570     // Even VirtualProtect refuses to give execute access to mapped memory
  3571     // that was not previously executable.
  3572     //
  3573     // Instead, stick the executable region in anonymous memory.  Yuck.
  3574     // Penalty is that ~4 pages will not be shareable - in the future
  3575     // we might consider DLLizing the shared archive with a proper PE
  3576     // header so that mapping executable + sharing is possible.
  3578     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
  3579                                 PAGE_READWRITE);
  3580     if (base == NULL) {
  3581       if (PrintMiscellaneous && Verbose) {
  3582         DWORD err = GetLastError();
  3583         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
  3585       CloseHandle(hFile);
  3586       return NULL;
  3589     DWORD bytes_read;
  3590     OVERLAPPED overlapped;
  3591     overlapped.Offset = (DWORD)file_offset;
  3592     overlapped.OffsetHigh = 0;
  3593     overlapped.hEvent = NULL;
  3594     // ReadFile guarantees that if the return value is true, the requested
  3595     // number of bytes were read before returning.
  3596     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
  3597     if (!res) {
  3598       if (PrintMiscellaneous && Verbose) {
  3599         DWORD err = GetLastError();
  3600         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
  3602       release_memory(base, bytes);
  3603       CloseHandle(hFile);
  3604       return NULL;
  3606   } else {
  3607     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
  3608                                     NULL /*file_name*/);
  3609     if (hMap == NULL) {
  3610       if (PrintMiscellaneous && Verbose) {
  3611         DWORD err = GetLastError();
  3612         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
  3614       CloseHandle(hFile);
  3615       return NULL;
  3618     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
  3619     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
  3620                                   (DWORD)bytes, addr);
  3621     if (base == NULL) {
  3622       if (PrintMiscellaneous && Verbose) {
  3623         DWORD err = GetLastError();
  3624         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
  3626       CloseHandle(hMap);
  3627       CloseHandle(hFile);
  3628       return NULL;
  3631     if (CloseHandle(hMap) == 0) {
  3632       if (PrintMiscellaneous && Verbose) {
  3633         DWORD err = GetLastError();
  3634         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
  3636       CloseHandle(hFile);
  3637       return base;
  3641   if (allow_exec) {
  3642     DWORD old_protect;
  3643     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
  3644     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
  3646     if (!res) {
  3647       if (PrintMiscellaneous && Verbose) {
  3648         DWORD err = GetLastError();
  3649         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
  3651       // Don't consider this a hard error, on IA32 even if the
  3652       // VirtualProtect fails, we should still be able to execute
  3653       CloseHandle(hFile);
  3654       return base;
  3658   if (CloseHandle(hFile) == 0) {
  3659     if (PrintMiscellaneous && Verbose) {
  3660       DWORD err = GetLastError();
  3661       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
  3663     return base;
  3666   return base;
  3670 // Remap a block of memory.
  3671 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  3672                        char *addr, size_t bytes, bool read_only,
  3673                        bool allow_exec) {
  3674   // This OS does not allow existing memory maps to be remapped so we
  3675   // have to unmap the memory before we remap it.
  3676   if (!os::unmap_memory(addr, bytes)) {
  3677     return NULL;
  3680   // There is a very small theoretical window between the unmap_memory()
  3681   // call above and the map_memory() call below where a thread in native
  3682   // code may be able to access an address that is no longer mapped.
  3684   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  3685                         allow_exec);
  3689 // Unmap a block of memory.
  3690 // Returns true=success, otherwise false.
  3692 bool os::unmap_memory(char* addr, size_t bytes) {
  3693   BOOL result = UnmapViewOfFile(addr);
  3694   if (result == 0) {
  3695     if (PrintMiscellaneous && Verbose) {
  3696       DWORD err = GetLastError();
  3697       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
  3699     return false;
  3701   return true;
  3704 void os::pause() {
  3705   char filename[MAX_PATH];
  3706   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  3707     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  3708   } else {
  3709     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  3712   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  3713   if (fd != -1) {
  3714     struct stat buf;
  3715     close(fd);
  3716     while (::stat(filename, &buf) == 0) {
  3717       Sleep(100);
  3719   } else {
  3720     jio_fprintf(stderr,
  3721       "Could not open pause file '%s', continuing immediately.\n", filename);
  3725 // An Event wraps a win32 "CreateEvent" kernel handle.
  3726 //
  3727 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
  3728 //
  3729 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
  3730 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
  3731 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
  3732 //     In addition, an unpark() operation might fetch the handle field, but the
  3733 //     event could recycle between the fetch and the SetEvent() operation.
  3734 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
  3735 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
  3736 //     on an stale but recycled handle would be harmless, but in practice this might
  3737 //     confuse other non-Sun code, so it's not a viable approach.
  3738 //
  3739 // 2:  Once a win32 event handle is associated with an Event, it remains associated
  3740 //     with the Event.  The event handle is never closed.  This could be construed
  3741 //     as handle leakage, but only up to the maximum # of threads that have been extant
  3742 //     at any one time.  This shouldn't be an issue, as windows platforms typically
  3743 //     permit a process to have hundreds of thousands of open handles.
  3744 //
  3745 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
  3746 //     and release unused handles.
  3747 //
  3748 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
  3749 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
  3750 //
  3751 // 5.  Use an RCU-like mechanism (Read-Copy Update).
  3752 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
  3753 //
  3754 // We use (2).
  3755 //
  3756 // TODO-FIXME:
  3757 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
  3758 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
  3759 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
  3760 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
  3761 //     into a single win32 CreateEvent() handle.
  3762 //
  3763 // _Event transitions in park()
  3764 //   -1 => -1 : illegal
  3765 //    1 =>  0 : pass - return immediately
  3766 //    0 => -1 : block
  3767 //
  3768 // _Event serves as a restricted-range semaphore :
  3769 //    -1 : thread is blocked
  3770 //     0 : neutral  - thread is running or ready
  3771 //     1 : signaled - thread is running or ready
  3772 //
  3773 // Another possible encoding of _Event would be
  3774 // with explicit "PARKED" and "SIGNALED" bits.
  3776 int os::PlatformEvent::park (jlong Millis) {
  3777     guarantee (_ParkHandle != NULL , "Invariant") ;
  3778     guarantee (Millis > 0          , "Invariant") ;
  3779     int v ;
  3781     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
  3782     // the initial park() operation.
  3784     for (;;) {
  3785         v = _Event ;
  3786         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  3788     guarantee ((v == 0) || (v == 1), "invariant") ;
  3789     if (v != 0) return OS_OK ;
  3791     // Do this the hard way by blocking ...
  3792     // TODO: consider a brief spin here, gated on the success of recent
  3793     // spin attempts by this thread.
  3794     //
  3795     // We decompose long timeouts into series of shorter timed waits.
  3796     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
  3797     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
  3798     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
  3799     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
  3800     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
  3801     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
  3802     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
  3803     // for the already waited time.  This policy does not admit any new outcomes.
  3804     // In the future, however, we might want to track the accumulated wait time and
  3805     // adjust Millis accordingly if we encounter a spurious wakeup.
  3807     const int MAXTIMEOUT = 0x10000000 ;
  3808     DWORD rv = WAIT_TIMEOUT ;
  3809     while (_Event < 0 && Millis > 0) {
  3810        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
  3811        if (Millis > MAXTIMEOUT) {
  3812           prd = MAXTIMEOUT ;
  3814        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
  3815        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
  3816        if (rv == WAIT_TIMEOUT) {
  3817            Millis -= prd ;
  3820     v = _Event ;
  3821     _Event = 0 ;
  3822     OrderAccess::fence() ;
  3823     // If we encounter a nearly simultanous timeout expiry and unpark()
  3824     // we return OS_OK indicating we awoke via unpark().
  3825     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
  3826     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
  3829 void os::PlatformEvent::park () {
  3830     guarantee (_ParkHandle != NULL, "Invariant") ;
  3831     // Invariant: Only the thread associated with the Event/PlatformEvent
  3832     // may call park().
  3833     int v ;
  3834     for (;;) {
  3835         v = _Event ;
  3836         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  3838     guarantee ((v == 0) || (v == 1), "invariant") ;
  3839     if (v != 0) return ;
  3841     // Do this the hard way by blocking ...
  3842     // TODO: consider a brief spin here, gated on the success of recent
  3843     // spin attempts by this thread.
  3844     while (_Event < 0) {
  3845        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
  3846        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
  3849     // Usually we'll find _Event == 0 at this point, but as
  3850     // an optional optimization we clear it, just in case can
  3851     // multiple unpark() operations drove _Event up to 1.
  3852     _Event = 0 ;
  3853     OrderAccess::fence() ;
  3854     guarantee (_Event >= 0, "invariant") ;
  3857 void os::PlatformEvent::unpark() {
  3858   guarantee (_ParkHandle != NULL, "Invariant") ;
  3859   int v ;
  3860   for (;;) {
  3861       v = _Event ;      // Increment _Event if it's < 1.
  3862       if (v > 0) {
  3863          // If it's already signaled just return.
  3864          // The LD of _Event could have reordered or be satisfied
  3865          // by a read-aside from this processor's write buffer.
  3866          // To avoid problems execute a barrier and then
  3867          // ratify the value.  A degenerate CAS() would also work.
  3868          // Viz., CAS (v+0, &_Event, v) == v).
  3869          OrderAccess::fence() ;
  3870          if (_Event == v) return ;
  3871          continue ;
  3873       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  3875   if (v < 0) {
  3876      ::SetEvent (_ParkHandle) ;
  3881 // JSR166
  3882 // -------------------------------------------------------
  3884 /*
  3885  * The Windows implementation of Park is very straightforward: Basic
  3886  * operations on Win32 Events turn out to have the right semantics to
  3887  * use them directly. We opportunistically resuse the event inherited
  3888  * from Monitor.
  3889  */
  3892 void Parker::park(bool isAbsolute, jlong time) {
  3893   guarantee (_ParkEvent != NULL, "invariant") ;
  3894   // First, demultiplex/decode time arguments
  3895   if (time < 0) { // don't wait
  3896     return;
  3898   else if (time == 0) {
  3899     time = INFINITE;
  3901   else if  (isAbsolute) {
  3902     time -= os::javaTimeMillis(); // convert to relative time
  3903     if (time <= 0) // already elapsed
  3904       return;
  3906   else { // relative
  3907     time /= 1000000; // Must coarsen from nanos to millis
  3908     if (time == 0)   // Wait for the minimal time unit if zero
  3909       time = 1;
  3912   JavaThread* thread = (JavaThread*)(Thread::current());
  3913   assert(thread->is_Java_thread(), "Must be JavaThread");
  3914   JavaThread *jt = (JavaThread *)thread;
  3916   // Don't wait if interrupted or already triggered
  3917   if (Thread::is_interrupted(thread, false) ||
  3918     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
  3919     ResetEvent(_ParkEvent);
  3920     return;
  3922   else {
  3923     ThreadBlockInVM tbivm(jt);
  3924     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3925     jt->set_suspend_equivalent();
  3927     WaitForSingleObject(_ParkEvent,  time);
  3928     ResetEvent(_ParkEvent);
  3930     // If externally suspended while waiting, re-suspend
  3931     if (jt->handle_special_suspend_equivalent_condition()) {
  3932       jt->java_suspend_self();
  3937 void Parker::unpark() {
  3938   guarantee (_ParkEvent != NULL, "invariant") ;
  3939   SetEvent(_ParkEvent);
  3942 // Run the specified command in a separate process. Return its exit value,
  3943 // or -1 on failure (e.g. can't create a new process).
  3944 int os::fork_and_exec(char* cmd) {
  3945   STARTUPINFO si;
  3946   PROCESS_INFORMATION pi;
  3948   memset(&si, 0, sizeof(si));
  3949   si.cb = sizeof(si);
  3950   memset(&pi, 0, sizeof(pi));
  3951   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
  3952                             cmd,    // command line
  3953                             NULL,   // process security attribute
  3954                             NULL,   // thread security attribute
  3955                             TRUE,   // inherits system handles
  3956                             0,      // no creation flags
  3957                             NULL,   // use parent's environment block
  3958                             NULL,   // use parent's starting directory
  3959                             &si,    // (in) startup information
  3960                             &pi);   // (out) process information
  3962   if (rslt) {
  3963     // Wait until child process exits.
  3964     WaitForSingleObject(pi.hProcess, INFINITE);
  3966     DWORD exit_code;
  3967     GetExitCodeProcess(pi.hProcess, &exit_code);
  3969     // Close process and thread handles.
  3970     CloseHandle(pi.hProcess);
  3971     CloseHandle(pi.hThread);
  3973     return (int)exit_code;
  3974   } else {
  3975     return -1;
  3979 //--------------------------------------------------------------------------------------------------
  3980 // Non-product code
  3982 static int mallocDebugIntervalCounter = 0;
  3983 static int mallocDebugCounter = 0;
  3984 bool os::check_heap(bool force) {
  3985   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
  3986   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
  3987     // Note: HeapValidate executes two hardware breakpoints when it finds something
  3988     // wrong; at these points, eax contains the address of the offending block (I think).
  3989     // To get to the exlicit error message(s) below, just continue twice.
  3990     HANDLE heap = GetProcessHeap();
  3991     { HeapLock(heap);
  3992       PROCESS_HEAP_ENTRY phe;
  3993       phe.lpData = NULL;
  3994       while (HeapWalk(heap, &phe) != 0) {
  3995         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
  3996             !HeapValidate(heap, 0, phe.lpData)) {
  3997           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
  3998           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
  3999           fatal("corrupted C heap");
  4002       int err = GetLastError();
  4003       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
  4004         fatal1("heap walk aborted with error %d", err);
  4006       HeapUnlock(heap);
  4008     mallocDebugIntervalCounter = 0;
  4010   return true;
  4014 #ifndef PRODUCT
  4015 bool os::find(address addr) {
  4016   // Nothing yet
  4017   return false;
  4019 #endif
  4021 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
  4022   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
  4024   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  4025     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
  4026     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
  4027     address addr = (address) exceptionRecord->ExceptionInformation[1];
  4029     if (os::is_memory_serialize_page(thread, addr))
  4030       return EXCEPTION_CONTINUE_EXECUTION;
  4033   return EXCEPTION_CONTINUE_SEARCH;
  4036 static int getLastErrorString(char *buf, size_t len)
  4038     long errval;
  4040     if ((errval = GetLastError()) != 0)
  4042       /* DOS error */
  4043       size_t n = (size_t)FormatMessage(
  4044             FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
  4045             NULL,
  4046             errval,
  4047             0,
  4048             buf,
  4049             (DWORD)len,
  4050             NULL);
  4051       if (n > 3) {
  4052         /* Drop final '.', CR, LF */
  4053         if (buf[n - 1] == '\n') n--;
  4054         if (buf[n - 1] == '\r') n--;
  4055         if (buf[n - 1] == '.') n--;
  4056         buf[n] = '\0';
  4058       return (int)n;
  4061     if (errno != 0)
  4063       /* C runtime error that has no corresponding DOS error code */
  4064       const char *s = strerror(errno);
  4065       size_t n = strlen(s);
  4066       if (n >= len) n = len - 1;
  4067       strncpy(buf, s, n);
  4068       buf[n] = '\0';
  4069       return (int)n;
  4071     return 0;

mercurial