src/share/vm/memory/space.cpp

Wed, 23 Jan 2013 13:02:39 -0500

author
jprovino
date
Wed, 23 Jan 2013 13:02:39 -0500
changeset 4542
db9981fd3124
parent 4384
b735136e0d82
child 6198
55fb97c4c58d
permissions
-rw-r--r--

8005915: Unify SERIALGC and INCLUDE_ALTERNATE_GCS
Summary: Rename INCLUDE_ALTERNATE_GCS to INCLUDE_ALL_GCS and replace SERIALGC with INCLUDE_ALL_GCS.
Reviewed-by: coleenp, stefank

duke@435 1 /*
brutisso@3711 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "gc_implementation/shared/liveRange.hpp"
stefank@2314 29 #include "gc_implementation/shared/markSweep.hpp"
stefank@2314 30 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 31 #include "memory/blockOffsetTable.inline.hpp"
stefank@2314 32 #include "memory/defNewGeneration.hpp"
stefank@2314 33 #include "memory/genCollectedHeap.hpp"
stefank@2314 34 #include "memory/space.hpp"
stefank@2314 35 #include "memory/space.inline.hpp"
stefank@2314 36 #include "memory/universe.inline.hpp"
stefank@2314 37 #include "oops/oop.inline.hpp"
stefank@2314 38 #include "oops/oop.inline2.hpp"
stefank@2314 39 #include "runtime/java.hpp"
stefank@2314 40 #include "runtime/safepoint.hpp"
stefank@2314 41 #include "utilities/copy.hpp"
stefank@2314 42 #include "utilities/globalDefinitions.hpp"
jprovino@4542 43 #include "utilities/macros.hpp"
duke@435 44
coleenp@548 45 void SpaceMemRegionOopsIterClosure::do_oop(oop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
coleenp@548 46 void SpaceMemRegionOopsIterClosure::do_oop(narrowOop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
coleenp@548 47
duke@435 48 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
duke@435 49 HeapWord* top_obj) {
duke@435 50 if (top_obj != NULL) {
duke@435 51 if (_sp->block_is_obj(top_obj)) {
duke@435 52 if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
duke@435 53 if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
duke@435 54 // An arrayOop is starting on the dirty card - since we do exact
duke@435 55 // store checks for objArrays we are done.
duke@435 56 } else {
duke@435 57 // Otherwise, it is possible that the object starting on the dirty
duke@435 58 // card spans the entire card, and that the store happened on a
duke@435 59 // later card. Figure out where the object ends.
duke@435 60 // Use the block_size() method of the space over which
duke@435 61 // the iteration is being done. That space (e.g. CMS) may have
duke@435 62 // specific requirements on object sizes which will
duke@435 63 // be reflected in the block_size() method.
duke@435 64 top = top_obj + oop(top_obj)->size();
duke@435 65 }
duke@435 66 }
duke@435 67 } else {
duke@435 68 top = top_obj;
duke@435 69 }
duke@435 70 } else {
duke@435 71 assert(top == _sp->end(), "only case where top_obj == NULL");
duke@435 72 }
duke@435 73 return top;
duke@435 74 }
duke@435 75
duke@435 76 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
duke@435 77 HeapWord* bottom,
duke@435 78 HeapWord* top) {
duke@435 79 // 1. Blocks may or may not be objects.
duke@435 80 // 2. Even when a block_is_obj(), it may not entirely
duke@435 81 // occupy the block if the block quantum is larger than
duke@435 82 // the object size.
duke@435 83 // We can and should try to optimize by calling the non-MemRegion
duke@435 84 // version of oop_iterate() for all but the extremal objects
duke@435 85 // (for which we need to call the MemRegion version of
duke@435 86 // oop_iterate()) To be done post-beta XXX
duke@435 87 for (; bottom < top; bottom += _sp->block_size(bottom)) {
duke@435 88 // As in the case of contiguous space above, we'd like to
duke@435 89 // just use the value returned by oop_iterate to increment the
duke@435 90 // current pointer; unfortunately, that won't work in CMS because
duke@435 91 // we'd need an interface change (it seems) to have the space
duke@435 92 // "adjust the object size" (for instance pad it up to its
duke@435 93 // block alignment or minimum block size restrictions. XXX
duke@435 94 if (_sp->block_is_obj(bottom) &&
duke@435 95 !_sp->obj_allocated_since_save_marks(oop(bottom))) {
duke@435 96 oop(bottom)->oop_iterate(_cl, mr);
duke@435 97 }
duke@435 98 }
duke@435 99 }
duke@435 100
ysr@2889 101 // We get called with "mr" representing the dirty region
ysr@2889 102 // that we want to process. Because of imprecise marking,
ysr@2889 103 // we may need to extend the incoming "mr" to the right,
ysr@2889 104 // and scan more. However, because we may already have
ysr@2889 105 // scanned some of that extended region, we may need to
ysr@2889 106 // trim its right-end back some so we do not scan what
ysr@2889 107 // we (or another worker thread) may already have scanned
ysr@2889 108 // or planning to scan.
duke@435 109 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
duke@435 110
duke@435 111 // Some collectors need to do special things whenever their dirty
duke@435 112 // cards are processed. For instance, CMS must remember mutator updates
duke@435 113 // (i.e. dirty cards) so as to re-scan mutated objects.
duke@435 114 // Such work can be piggy-backed here on dirty card scanning, so as to make
duke@435 115 // it slightly more efficient than doing a complete non-detructive pre-scan
duke@435 116 // of the card table.
duke@435 117 MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
duke@435 118 if (pCl != NULL) {
duke@435 119 pCl->do_MemRegion(mr);
duke@435 120 }
duke@435 121
duke@435 122 HeapWord* bottom = mr.start();
duke@435 123 HeapWord* last = mr.last();
duke@435 124 HeapWord* top = mr.end();
duke@435 125 HeapWord* bottom_obj;
duke@435 126 HeapWord* top_obj;
duke@435 127
duke@435 128 assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
duke@435 129 _precision == CardTableModRefBS::Precise,
duke@435 130 "Only ones we deal with for now.");
duke@435 131
duke@435 132 assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
ysr@777 133 _cl->idempotent() || _last_bottom == NULL ||
duke@435 134 top <= _last_bottom,
duke@435 135 "Not decreasing");
duke@435 136 NOT_PRODUCT(_last_bottom = mr.start());
duke@435 137
duke@435 138 bottom_obj = _sp->block_start(bottom);
duke@435 139 top_obj = _sp->block_start(last);
duke@435 140
duke@435 141 assert(bottom_obj <= bottom, "just checking");
duke@435 142 assert(top_obj <= top, "just checking");
duke@435 143
duke@435 144 // Given what we think is the top of the memory region and
duke@435 145 // the start of the object at the top, get the actual
duke@435 146 // value of the top.
duke@435 147 top = get_actual_top(top, top_obj);
duke@435 148
duke@435 149 // If the previous call did some part of this region, don't redo.
duke@435 150 if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
duke@435 151 _min_done != NULL &&
duke@435 152 _min_done < top) {
duke@435 153 top = _min_done;
duke@435 154 }
duke@435 155
duke@435 156 // Top may have been reset, and in fact may be below bottom,
duke@435 157 // e.g. the dirty card region is entirely in a now free object
duke@435 158 // -- something that could happen with a concurrent sweeper.
duke@435 159 bottom = MIN2(bottom, top);
ysr@2889 160 MemRegion extended_mr = MemRegion(bottom, top);
duke@435 161 assert(bottom <= top &&
duke@435 162 (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
duke@435 163 _min_done == NULL ||
duke@435 164 top <= _min_done),
duke@435 165 "overlap!");
duke@435 166
duke@435 167 // Walk the region if it is not empty; otherwise there is nothing to do.
ysr@2889 168 if (!extended_mr.is_empty()) {
ysr@2889 169 walk_mem_region(extended_mr, bottom_obj, top);
duke@435 170 }
duke@435 171
ysr@777 172 // An idempotent closure might be applied in any order, so we don't
ysr@777 173 // record a _min_done for it.
ysr@777 174 if (!_cl->idempotent()) {
ysr@777 175 _min_done = bottom;
ysr@777 176 } else {
ysr@777 177 assert(_min_done == _last_explicit_min_done,
ysr@777 178 "Don't update _min_done for idempotent cl");
ysr@777 179 }
duke@435 180 }
duke@435 181
coleenp@4037 182 DirtyCardToOopClosure* Space::new_dcto_cl(ExtendedOopClosure* cl,
duke@435 183 CardTableModRefBS::PrecisionStyle precision,
duke@435 184 HeapWord* boundary) {
duke@435 185 return new DirtyCardToOopClosure(this, cl, precision, boundary);
duke@435 186 }
duke@435 187
duke@435 188 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
duke@435 189 HeapWord* top_obj) {
duke@435 190 if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
duke@435 191 if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
duke@435 192 if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
duke@435 193 // An arrayOop is starting on the dirty card - since we do exact
duke@435 194 // store checks for objArrays we are done.
duke@435 195 } else {
duke@435 196 // Otherwise, it is possible that the object starting on the dirty
duke@435 197 // card spans the entire card, and that the store happened on a
duke@435 198 // later card. Figure out where the object ends.
duke@435 199 assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
duke@435 200 "Block size and object size mismatch");
duke@435 201 top = top_obj + oop(top_obj)->size();
duke@435 202 }
duke@435 203 }
duke@435 204 } else {
duke@435 205 top = (_sp->toContiguousSpace())->top();
duke@435 206 }
duke@435 207 return top;
duke@435 208 }
duke@435 209
duke@435 210 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
duke@435 211 HeapWord* bottom,
duke@435 212 HeapWord* top) {
duke@435 213 // Note that this assumption won't hold if we have a concurrent
duke@435 214 // collector in this space, which may have freed up objects after
duke@435 215 // they were dirtied and before the stop-the-world GC that is
duke@435 216 // examining cards here.
duke@435 217 assert(bottom < top, "ought to be at least one obj on a dirty card.");
duke@435 218
duke@435 219 if (_boundary != NULL) {
duke@435 220 // We have a boundary outside of which we don't want to look
duke@435 221 // at objects, so create a filtering closure around the
duke@435 222 // oop closure before walking the region.
duke@435 223 FilteringClosure filter(_boundary, _cl);
duke@435 224 walk_mem_region_with_cl(mr, bottom, top, &filter);
duke@435 225 } else {
duke@435 226 // No boundary, simply walk the heap with the oop closure.
duke@435 227 walk_mem_region_with_cl(mr, bottom, top, _cl);
duke@435 228 }
duke@435 229
duke@435 230 }
duke@435 231
duke@435 232 // We must replicate this so that the static type of "FilteringClosure"
duke@435 233 // (see above) is apparent at the oop_iterate calls.
duke@435 234 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
duke@435 235 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr, \
duke@435 236 HeapWord* bottom, \
duke@435 237 HeapWord* top, \
duke@435 238 ClosureType* cl) { \
duke@435 239 bottom += oop(bottom)->oop_iterate(cl, mr); \
duke@435 240 if (bottom < top) { \
duke@435 241 HeapWord* next_obj = bottom + oop(bottom)->size(); \
duke@435 242 while (next_obj < top) { \
duke@435 243 /* Bottom lies entirely below top, so we can call the */ \
duke@435 244 /* non-memRegion version of oop_iterate below. */ \
duke@435 245 oop(bottom)->oop_iterate(cl); \
duke@435 246 bottom = next_obj; \
duke@435 247 next_obj = bottom + oop(bottom)->size(); \
duke@435 248 } \
duke@435 249 /* Last object. */ \
duke@435 250 oop(bottom)->oop_iterate(cl, mr); \
duke@435 251 } \
duke@435 252 }
duke@435 253
duke@435 254 // (There are only two of these, rather than N, because the split is due
duke@435 255 // only to the introduction of the FilteringClosure, a local part of the
duke@435 256 // impl of this abstraction.)
coleenp@4037 257 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
duke@435 258 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
duke@435 259
duke@435 260 DirtyCardToOopClosure*
coleenp@4037 261 ContiguousSpace::new_dcto_cl(ExtendedOopClosure* cl,
duke@435 262 CardTableModRefBS::PrecisionStyle precision,
duke@435 263 HeapWord* boundary) {
duke@435 264 return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
duke@435 265 }
duke@435 266
jmasa@698 267 void Space::initialize(MemRegion mr,
jmasa@698 268 bool clear_space,
jmasa@698 269 bool mangle_space) {
duke@435 270 HeapWord* bottom = mr.start();
duke@435 271 HeapWord* end = mr.end();
duke@435 272 assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
duke@435 273 "invalid space boundaries");
duke@435 274 set_bottom(bottom);
duke@435 275 set_end(end);
jmasa@698 276 if (clear_space) clear(mangle_space);
duke@435 277 }
duke@435 278
jmasa@698 279 void Space::clear(bool mangle_space) {
jmasa@698 280 if (ZapUnusedHeapArea && mangle_space) {
jmasa@698 281 mangle_unused_area();
jmasa@698 282 }
duke@435 283 }
duke@435 284
tonyp@791 285 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
tonyp@791 286 _concurrent_iteration_safe_limit(NULL) {
jmasa@698 287 _mangler = new GenSpaceMangler(this);
jmasa@698 288 }
jmasa@698 289
jmasa@698 290 ContiguousSpace::~ContiguousSpace() {
jmasa@698 291 delete _mangler;
jmasa@698 292 }
jmasa@698 293
jmasa@698 294 void ContiguousSpace::initialize(MemRegion mr,
jmasa@698 295 bool clear_space,
jmasa@698 296 bool mangle_space)
duke@435 297 {
jmasa@698 298 CompactibleSpace::initialize(mr, clear_space, mangle_space);
ysr@782 299 set_concurrent_iteration_safe_limit(top());
duke@435 300 }
duke@435 301
jmasa@698 302 void ContiguousSpace::clear(bool mangle_space) {
duke@435 303 set_top(bottom());
duke@435 304 set_saved_mark();
tonyp@791 305 CompactibleSpace::clear(mangle_space);
duke@435 306 }
duke@435 307
duke@435 308 bool ContiguousSpace::is_in(const void* p) const {
duke@435 309 return _bottom <= p && p < _top;
duke@435 310 }
duke@435 311
duke@435 312 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
duke@435 313 return p >= _top;
duke@435 314 }
duke@435 315
jmasa@698 316 void OffsetTableContigSpace::clear(bool mangle_space) {
jmasa@698 317 ContiguousSpace::clear(mangle_space);
duke@435 318 _offsets.initialize_threshold();
duke@435 319 }
duke@435 320
duke@435 321 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
duke@435 322 Space::set_bottom(new_bottom);
duke@435 323 _offsets.set_bottom(new_bottom);
duke@435 324 }
duke@435 325
duke@435 326 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
duke@435 327 // Space should not advertize an increase in size
duke@435 328 // until after the underlying offest table has been enlarged.
duke@435 329 _offsets.resize(pointer_delta(new_end, bottom()));
duke@435 330 Space::set_end(new_end);
duke@435 331 }
duke@435 332
jmasa@698 333 #ifndef PRODUCT
jmasa@698 334
jmasa@698 335 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
jmasa@698 336 mangler()->set_top_for_allocations(v);
jmasa@698 337 }
jmasa@698 338 void ContiguousSpace::set_top_for_allocations() {
jmasa@698 339 mangler()->set_top_for_allocations(top());
jmasa@698 340 }
jmasa@698 341 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
jmasa@698 342 mangler()->check_mangled_unused_area(limit);
duke@435 343 }
duke@435 344
jmasa@698 345 void ContiguousSpace::check_mangled_unused_area_complete() {
jmasa@698 346 mangler()->check_mangled_unused_area_complete();
duke@435 347 }
duke@435 348
jmasa@698 349 // Mangled only the unused space that has not previously
jmasa@698 350 // been mangled and that has not been allocated since being
jmasa@698 351 // mangled.
jmasa@698 352 void ContiguousSpace::mangle_unused_area() {
jmasa@698 353 mangler()->mangle_unused_area();
jmasa@698 354 }
jmasa@698 355 void ContiguousSpace::mangle_unused_area_complete() {
jmasa@698 356 mangler()->mangle_unused_area_complete();
jmasa@698 357 }
jmasa@698 358 void ContiguousSpace::mangle_region(MemRegion mr) {
jmasa@698 359 // Although this method uses SpaceMangler::mangle_region() which
jmasa@698 360 // is not specific to a space, the when the ContiguousSpace version
jmasa@698 361 // is called, it is always with regard to a space and this
jmasa@698 362 // bounds checking is appropriate.
jmasa@698 363 MemRegion space_mr(bottom(), end());
jmasa@698 364 assert(space_mr.contains(mr), "Mangling outside space");
jmasa@698 365 SpaceMangler::mangle_region(mr);
jmasa@698 366 }
jmasa@698 367 #endif // NOT_PRODUCT
jmasa@698 368
jmasa@698 369 void CompactibleSpace::initialize(MemRegion mr,
jmasa@698 370 bool clear_space,
jmasa@698 371 bool mangle_space) {
jmasa@698 372 Space::initialize(mr, clear_space, mangle_space);
tonyp@791 373 set_compaction_top(bottom());
tonyp@791 374 _next_compaction_space = NULL;
tonyp@791 375 }
tonyp@791 376
tonyp@791 377 void CompactibleSpace::clear(bool mangle_space) {
tonyp@791 378 Space::clear(mangle_space);
duke@435 379 _compaction_top = bottom();
duke@435 380 }
duke@435 381
duke@435 382 HeapWord* CompactibleSpace::forward(oop q, size_t size,
duke@435 383 CompactPoint* cp, HeapWord* compact_top) {
duke@435 384 // q is alive
duke@435 385 // First check if we should switch compaction space
duke@435 386 assert(this == cp->space, "'this' should be current compaction space.");
duke@435 387 size_t compaction_max_size = pointer_delta(end(), compact_top);
duke@435 388 while (size > compaction_max_size) {
duke@435 389 // switch to next compaction space
duke@435 390 cp->space->set_compaction_top(compact_top);
duke@435 391 cp->space = cp->space->next_compaction_space();
duke@435 392 if (cp->space == NULL) {
duke@435 393 cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
duke@435 394 assert(cp->gen != NULL, "compaction must succeed");
duke@435 395 cp->space = cp->gen->first_compaction_space();
duke@435 396 assert(cp->space != NULL, "generation must have a first compaction space");
duke@435 397 }
duke@435 398 compact_top = cp->space->bottom();
duke@435 399 cp->space->set_compaction_top(compact_top);
duke@435 400 cp->threshold = cp->space->initialize_threshold();
duke@435 401 compaction_max_size = pointer_delta(cp->space->end(), compact_top);
duke@435 402 }
duke@435 403
duke@435 404 // store the forwarding pointer into the mark word
duke@435 405 if ((HeapWord*)q != compact_top) {
duke@435 406 q->forward_to(oop(compact_top));
duke@435 407 assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
duke@435 408 } else {
duke@435 409 // if the object isn't moving we can just set the mark to the default
duke@435 410 // mark and handle it specially later on.
duke@435 411 q->init_mark();
duke@435 412 assert(q->forwardee() == NULL, "should be forwarded to NULL");
duke@435 413 }
duke@435 414
duke@435 415 compact_top += size;
duke@435 416
duke@435 417 // we need to update the offset table so that the beginnings of objects can be
duke@435 418 // found during scavenge. Note that we are updating the offset table based on
duke@435 419 // where the object will be once the compaction phase finishes.
duke@435 420 if (compact_top > cp->threshold)
duke@435 421 cp->threshold =
duke@435 422 cp->space->cross_threshold(compact_top - size, compact_top);
duke@435 423 return compact_top;
duke@435 424 }
duke@435 425
duke@435 426
duke@435 427 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
duke@435 428 HeapWord* q, size_t deadlength) {
duke@435 429 if (allowed_deadspace_words >= deadlength) {
duke@435 430 allowed_deadspace_words -= deadlength;
jcoomes@916 431 CollectedHeap::fill_with_object(q, deadlength);
jcoomes@916 432 oop(q)->set_mark(oop(q)->mark()->set_marked());
jcoomes@916 433 assert((int) deadlength == oop(q)->size(), "bad filler object size");
duke@435 434 // Recall that we required "q == compaction_top".
duke@435 435 return true;
duke@435 436 } else {
duke@435 437 allowed_deadspace_words = 0;
duke@435 438 return false;
duke@435 439 }
duke@435 440 }
duke@435 441
duke@435 442 #define block_is_always_obj(q) true
duke@435 443 #define obj_size(q) oop(q)->size()
duke@435 444 #define adjust_obj_size(s) s
duke@435 445
duke@435 446 void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
duke@435 447 SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
duke@435 448 }
duke@435 449
duke@435 450 // Faster object search.
duke@435 451 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
duke@435 452 SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
duke@435 453 }
duke@435 454
duke@435 455 void Space::adjust_pointers() {
duke@435 456 // adjust all the interior pointers to point at the new locations of objects
duke@435 457 // Used by MarkSweep::mark_sweep_phase3()
duke@435 458
duke@435 459 // First check to see if there is any work to be done.
duke@435 460 if (used() == 0) {
duke@435 461 return; // Nothing to do.
duke@435 462 }
duke@435 463
duke@435 464 // Otherwise...
duke@435 465 HeapWord* q = bottom();
duke@435 466 HeapWord* t = end();
duke@435 467
duke@435 468 debug_only(HeapWord* prev_q = NULL);
duke@435 469 while (q < t) {
duke@435 470 if (oop(q)->is_gc_marked()) {
duke@435 471 // q is alive
duke@435 472
duke@435 473 // point all the oops to the new location
duke@435 474 size_t size = oop(q)->adjust_pointers();
duke@435 475
duke@435 476 debug_only(prev_q = q);
duke@435 477
duke@435 478 q += size;
duke@435 479 } else {
duke@435 480 // q is not a live object. But we're not in a compactible space,
duke@435 481 // So we don't have live ranges.
duke@435 482 debug_only(prev_q = q);
duke@435 483 q += block_size(q);
duke@435 484 assert(q > prev_q, "we should be moving forward through memory");
duke@435 485 }
duke@435 486 }
duke@435 487 assert(q == t, "just checking");
duke@435 488 }
duke@435 489
duke@435 490 void CompactibleSpace::adjust_pointers() {
duke@435 491 // Check first is there is any work to do.
duke@435 492 if (used() == 0) {
duke@435 493 return; // Nothing to do.
duke@435 494 }
duke@435 495
duke@435 496 SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
duke@435 497 }
duke@435 498
duke@435 499 void CompactibleSpace::compact() {
duke@435 500 SCAN_AND_COMPACT(obj_size);
duke@435 501 }
duke@435 502
duke@435 503 void Space::print_short() const { print_short_on(tty); }
duke@435 504
duke@435 505 void Space::print_short_on(outputStream* st) const {
duke@435 506 st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
duke@435 507 (int) ((double) used() * 100 / capacity()));
duke@435 508 }
duke@435 509
duke@435 510 void Space::print() const { print_on(tty); }
duke@435 511
duke@435 512 void Space::print_on(outputStream* st) const {
duke@435 513 print_short_on(st);
duke@435 514 st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
duke@435 515 bottom(), end());
duke@435 516 }
duke@435 517
duke@435 518 void ContiguousSpace::print_on(outputStream* st) const {
duke@435 519 print_short_on(st);
duke@435 520 st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
duke@435 521 bottom(), top(), end());
duke@435 522 }
duke@435 523
duke@435 524 void OffsetTableContigSpace::print_on(outputStream* st) const {
duke@435 525 print_short_on(st);
duke@435 526 st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
duke@435 527 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
duke@435 528 bottom(), top(), _offsets.threshold(), end());
duke@435 529 }
duke@435 530
brutisso@3711 531 void ContiguousSpace::verify() const {
duke@435 532 HeapWord* p = bottom();
duke@435 533 HeapWord* t = top();
duke@435 534 HeapWord* prev_p = NULL;
duke@435 535 while (p < t) {
duke@435 536 oop(p)->verify();
duke@435 537 prev_p = p;
duke@435 538 p += oop(p)->size();
duke@435 539 }
duke@435 540 guarantee(p == top(), "end of last object must match end of space");
duke@435 541 if (top() != end()) {
ysr@777 542 guarantee(top() == block_start_const(end()-1) &&
ysr@777 543 top() == block_start_const(top()),
duke@435 544 "top should be start of unallocated block, if it exists");
duke@435 545 }
duke@435 546 }
duke@435 547
coleenp@4037 548 void Space::oop_iterate(ExtendedOopClosure* blk) {
duke@435 549 ObjectToOopClosure blk2(blk);
duke@435 550 object_iterate(&blk2);
duke@435 551 }
duke@435 552
duke@435 553 HeapWord* Space::object_iterate_careful(ObjectClosureCareful* cl) {
duke@435 554 guarantee(false, "NYI");
duke@435 555 return bottom();
duke@435 556 }
duke@435 557
duke@435 558 HeapWord* Space::object_iterate_careful_m(MemRegion mr,
duke@435 559 ObjectClosureCareful* cl) {
duke@435 560 guarantee(false, "NYI");
duke@435 561 return bottom();
duke@435 562 }
duke@435 563
duke@435 564
duke@435 565 void Space::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
duke@435 566 assert(!mr.is_empty(), "Should be non-empty");
duke@435 567 // We use MemRegion(bottom(), end()) rather than used_region() below
duke@435 568 // because the two are not necessarily equal for some kinds of
duke@435 569 // spaces, in particular, certain kinds of free list spaces.
duke@435 570 // We could use the more complicated but more precise:
duke@435 571 // MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
duke@435 572 // but the slight imprecision seems acceptable in the assertion check.
duke@435 573 assert(MemRegion(bottom(), end()).contains(mr),
duke@435 574 "Should be within used space");
duke@435 575 HeapWord* prev = cl->previous(); // max address from last time
duke@435 576 if (prev >= mr.end()) { // nothing to do
duke@435 577 return;
duke@435 578 }
duke@435 579 // This assert will not work when we go from cms space to perm
duke@435 580 // space, and use same closure. Easy fix deferred for later. XXX YSR
duke@435 581 // assert(prev == NULL || contains(prev), "Should be within space");
duke@435 582
duke@435 583 bool last_was_obj_array = false;
duke@435 584 HeapWord *blk_start_addr, *region_start_addr;
duke@435 585 if (prev > mr.start()) {
duke@435 586 region_start_addr = prev;
duke@435 587 blk_start_addr = prev;
jmasa@953 588 // The previous invocation may have pushed "prev" beyond the
jmasa@953 589 // last allocated block yet there may be still be blocks
jmasa@953 590 // in this region due to a particular coalescing policy.
jmasa@953 591 // Relax the assertion so that the case where the unallocated
jmasa@953 592 // block is maintained and "prev" is beyond the unallocated
jmasa@953 593 // block does not cause the assertion to fire.
jmasa@953 594 assert((BlockOffsetArrayUseUnallocatedBlock &&
jmasa@953 595 (!is_in(prev))) ||
jmasa@953 596 (blk_start_addr == block_start(region_start_addr)), "invariant");
duke@435 597 } else {
duke@435 598 region_start_addr = mr.start();
duke@435 599 blk_start_addr = block_start(region_start_addr);
duke@435 600 }
duke@435 601 HeapWord* region_end_addr = mr.end();
duke@435 602 MemRegion derived_mr(region_start_addr, region_end_addr);
duke@435 603 while (blk_start_addr < region_end_addr) {
duke@435 604 const size_t size = block_size(blk_start_addr);
duke@435 605 if (block_is_obj(blk_start_addr)) {
duke@435 606 last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
duke@435 607 } else {
duke@435 608 last_was_obj_array = false;
duke@435 609 }
duke@435 610 blk_start_addr += size;
duke@435 611 }
duke@435 612 if (!last_was_obj_array) {
duke@435 613 assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
duke@435 614 "Should be within (closed) used space");
duke@435 615 assert(blk_start_addr > prev, "Invariant");
duke@435 616 cl->set_previous(blk_start_addr); // min address for next time
duke@435 617 }
duke@435 618 }
duke@435 619
duke@435 620 bool Space::obj_is_alive(const HeapWord* p) const {
duke@435 621 assert (block_is_obj(p), "The address should point to an object");
duke@435 622 return true;
duke@435 623 }
duke@435 624
duke@435 625 void ContiguousSpace::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
duke@435 626 assert(!mr.is_empty(), "Should be non-empty");
duke@435 627 assert(used_region().contains(mr), "Should be within used space");
duke@435 628 HeapWord* prev = cl->previous(); // max address from last time
duke@435 629 if (prev >= mr.end()) { // nothing to do
duke@435 630 return;
duke@435 631 }
duke@435 632 // See comment above (in more general method above) in case you
duke@435 633 // happen to use this method.
duke@435 634 assert(prev == NULL || is_in_reserved(prev), "Should be within space");
duke@435 635
duke@435 636 bool last_was_obj_array = false;
duke@435 637 HeapWord *obj_start_addr, *region_start_addr;
duke@435 638 if (prev > mr.start()) {
duke@435 639 region_start_addr = prev;
duke@435 640 obj_start_addr = prev;
duke@435 641 assert(obj_start_addr == block_start(region_start_addr), "invariant");
duke@435 642 } else {
duke@435 643 region_start_addr = mr.start();
duke@435 644 obj_start_addr = block_start(region_start_addr);
duke@435 645 }
duke@435 646 HeapWord* region_end_addr = mr.end();
duke@435 647 MemRegion derived_mr(region_start_addr, region_end_addr);
duke@435 648 while (obj_start_addr < region_end_addr) {
duke@435 649 oop obj = oop(obj_start_addr);
duke@435 650 const size_t size = obj->size();
duke@435 651 last_was_obj_array = cl->do_object_bm(obj, derived_mr);
duke@435 652 obj_start_addr += size;
duke@435 653 }
duke@435 654 if (!last_was_obj_array) {
duke@435 655 assert((bottom() <= obj_start_addr) && (obj_start_addr <= end()),
duke@435 656 "Should be within (closed) used space");
duke@435 657 assert(obj_start_addr > prev, "Invariant");
duke@435 658 cl->set_previous(obj_start_addr); // min address for next time
duke@435 659 }
duke@435 660 }
duke@435 661
jprovino@4542 662 #if INCLUDE_ALL_GCS
duke@435 663 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \
duke@435 664 \
duke@435 665 void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
duke@435 666 HeapWord* obj_addr = mr.start(); \
duke@435 667 HeapWord* t = mr.end(); \
duke@435 668 while (obj_addr < t) { \
duke@435 669 assert(oop(obj_addr)->is_oop(), "Should be an oop"); \
duke@435 670 obj_addr += oop(obj_addr)->oop_iterate(blk); \
duke@435 671 } \
duke@435 672 }
duke@435 673
duke@435 674 ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
duke@435 675
duke@435 676 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
jprovino@4542 677 #endif // INCLUDE_ALL_GCS
duke@435 678
coleenp@4037 679 void ContiguousSpace::oop_iterate(ExtendedOopClosure* blk) {
duke@435 680 if (is_empty()) return;
duke@435 681 HeapWord* obj_addr = bottom();
duke@435 682 HeapWord* t = top();
duke@435 683 // Could call objects iterate, but this is easier.
duke@435 684 while (obj_addr < t) {
duke@435 685 obj_addr += oop(obj_addr)->oop_iterate(blk);
duke@435 686 }
duke@435 687 }
duke@435 688
coleenp@4037 689 void ContiguousSpace::oop_iterate(MemRegion mr, ExtendedOopClosure* blk) {
duke@435 690 if (is_empty()) {
duke@435 691 return;
duke@435 692 }
duke@435 693 MemRegion cur = MemRegion(bottom(), top());
duke@435 694 mr = mr.intersection(cur);
duke@435 695 if (mr.is_empty()) {
duke@435 696 return;
duke@435 697 }
duke@435 698 if (mr.equals(cur)) {
duke@435 699 oop_iterate(blk);
duke@435 700 return;
duke@435 701 }
duke@435 702 assert(mr.end() <= top(), "just took an intersection above");
duke@435 703 HeapWord* obj_addr = block_start(mr.start());
duke@435 704 HeapWord* t = mr.end();
duke@435 705
duke@435 706 // Handle first object specially.
duke@435 707 oop obj = oop(obj_addr);
duke@435 708 SpaceMemRegionOopsIterClosure smr_blk(blk, mr);
duke@435 709 obj_addr += obj->oop_iterate(&smr_blk);
duke@435 710 while (obj_addr < t) {
duke@435 711 oop obj = oop(obj_addr);
duke@435 712 assert(obj->is_oop(), "expected an oop");
duke@435 713 obj_addr += obj->size();
duke@435 714 // If "obj_addr" is not greater than top, then the
duke@435 715 // entire object "obj" is within the region.
duke@435 716 if (obj_addr <= t) {
duke@435 717 obj->oop_iterate(blk);
duke@435 718 } else {
duke@435 719 // "obj" extends beyond end of region
duke@435 720 obj->oop_iterate(&smr_blk);
duke@435 721 break;
duke@435 722 }
duke@435 723 };
duke@435 724 }
duke@435 725
duke@435 726 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
duke@435 727 if (is_empty()) return;
duke@435 728 WaterMark bm = bottom_mark();
duke@435 729 object_iterate_from(bm, blk);
duke@435 730 }
duke@435 731
jmasa@952 732 // For a continguous space object_iterate() and safe_object_iterate()
jmasa@952 733 // are the same.
jmasa@952 734 void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
jmasa@952 735 object_iterate(blk);
jmasa@952 736 }
jmasa@952 737
duke@435 738 void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
duke@435 739 assert(mark.space() == this, "Mark does not match space");
duke@435 740 HeapWord* p = mark.point();
duke@435 741 while (p < top()) {
duke@435 742 blk->do_object(oop(p));
duke@435 743 p += oop(p)->size();
duke@435 744 }
duke@435 745 }
duke@435 746
duke@435 747 HeapWord*
duke@435 748 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
duke@435 749 HeapWord * limit = concurrent_iteration_safe_limit();
duke@435 750 assert(limit <= top(), "sanity check");
duke@435 751 for (HeapWord* p = bottom(); p < limit;) {
duke@435 752 size_t size = blk->do_object_careful(oop(p));
duke@435 753 if (size == 0) {
duke@435 754 return p; // failed at p
duke@435 755 } else {
duke@435 756 p += size;
duke@435 757 }
duke@435 758 }
duke@435 759 return NULL; // all done
duke@435 760 }
duke@435 761
duke@435 762 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
duke@435 763 \
duke@435 764 void ContiguousSpace:: \
duke@435 765 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) { \
duke@435 766 HeapWord* t; \
duke@435 767 HeapWord* p = saved_mark_word(); \
duke@435 768 assert(p != NULL, "expected saved mark"); \
duke@435 769 \
duke@435 770 const intx interval = PrefetchScanIntervalInBytes; \
duke@435 771 do { \
duke@435 772 t = top(); \
duke@435 773 while (p < t) { \
duke@435 774 Prefetch::write(p, interval); \
duke@435 775 debug_only(HeapWord* prev = p); \
duke@435 776 oop m = oop(p); \
duke@435 777 p += m->oop_iterate(blk); \
duke@435 778 } \
duke@435 779 } while (t < top()); \
duke@435 780 \
duke@435 781 set_saved_mark_word(p); \
duke@435 782 }
duke@435 783
duke@435 784 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
duke@435 785
duke@435 786 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
duke@435 787
duke@435 788 // Very general, slow implementation.
ysr@777 789 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
johnc@4300 790 assert(MemRegion(bottom(), end()).contains(p),
johnc@4300 791 err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
johnc@4300 792 p, bottom(), end()));
duke@435 793 if (p >= top()) {
duke@435 794 return top();
duke@435 795 } else {
duke@435 796 HeapWord* last = bottom();
duke@435 797 HeapWord* cur = last;
duke@435 798 while (cur <= p) {
duke@435 799 last = cur;
duke@435 800 cur += oop(cur)->size();
duke@435 801 }
johnc@4300 802 assert(oop(last)->is_oop(),
johnc@4300 803 err_msg(PTR_FORMAT " should be an object start", last));
duke@435 804 return last;
duke@435 805 }
duke@435 806 }
duke@435 807
duke@435 808 size_t ContiguousSpace::block_size(const HeapWord* p) const {
johnc@4300 809 assert(MemRegion(bottom(), end()).contains(p),
johnc@4300 810 err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
johnc@4300 811 p, bottom(), end()));
duke@435 812 HeapWord* current_top = top();
johnc@4300 813 assert(p <= current_top,
johnc@4300 814 err_msg("p > current top - p: " PTR_FORMAT ", current top: " PTR_FORMAT,
johnc@4300 815 p, current_top));
johnc@4300 816 assert(p == current_top || oop(p)->is_oop(),
johnc@4300 817 err_msg("p (" PTR_FORMAT ") is not a block start - "
johnc@4300 818 "current_top: " PTR_FORMAT ", is_oop: %s",
johnc@4300 819 p, current_top, BOOL_TO_STR(oop(p)->is_oop())));
johnc@4300 820 if (p < current_top) {
duke@435 821 return oop(p)->size();
johnc@4300 822 } else {
duke@435 823 assert(p == current_top, "just checking");
duke@435 824 return pointer_delta(end(), (HeapWord*) p);
duke@435 825 }
duke@435 826 }
duke@435 827
duke@435 828 // This version requires locking.
duke@435 829 inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
duke@435 830 HeapWord* const end_value) {
tonyp@2715 831 // In G1 there are places where a GC worker can allocates into a
tonyp@2715 832 // region using this serial allocation code without being prone to a
tonyp@2715 833 // race with other GC workers (we ensure that no other GC worker can
tonyp@2715 834 // access the same region at the same time). So the assert below is
tonyp@2715 835 // too strong in the case of G1.
duke@435 836 assert(Heap_lock->owned_by_self() ||
duke@435 837 (SafepointSynchronize::is_at_safepoint() &&
tonyp@2715 838 (Thread::current()->is_VM_thread() || UseG1GC)),
duke@435 839 "not locked");
duke@435 840 HeapWord* obj = top();
duke@435 841 if (pointer_delta(end_value, obj) >= size) {
duke@435 842 HeapWord* new_top = obj + size;
duke@435 843 set_top(new_top);
duke@435 844 assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
duke@435 845 return obj;
duke@435 846 } else {
duke@435 847 return NULL;
duke@435 848 }
duke@435 849 }
duke@435 850
duke@435 851 // This version is lock-free.
duke@435 852 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size,
duke@435 853 HeapWord* const end_value) {
duke@435 854 do {
duke@435 855 HeapWord* obj = top();
duke@435 856 if (pointer_delta(end_value, obj) >= size) {
duke@435 857 HeapWord* new_top = obj + size;
duke@435 858 HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
duke@435 859 // result can be one of two:
duke@435 860 // the old top value: the exchange succeeded
duke@435 861 // otherwise: the new value of the top is returned.
duke@435 862 if (result == obj) {
duke@435 863 assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
duke@435 864 return obj;
duke@435 865 }
duke@435 866 } else {
duke@435 867 return NULL;
duke@435 868 }
duke@435 869 } while (true);
duke@435 870 }
duke@435 871
duke@435 872 // Requires locking.
duke@435 873 HeapWord* ContiguousSpace::allocate(size_t size) {
duke@435 874 return allocate_impl(size, end());
duke@435 875 }
duke@435 876
duke@435 877 // Lock-free.
duke@435 878 HeapWord* ContiguousSpace::par_allocate(size_t size) {
duke@435 879 return par_allocate_impl(size, end());
duke@435 880 }
duke@435 881
duke@435 882 void ContiguousSpace::allocate_temporary_filler(int factor) {
duke@435 883 // allocate temporary type array decreasing free size with factor 'factor'
duke@435 884 assert(factor >= 0, "just checking");
duke@435 885 size_t size = pointer_delta(end(), top());
duke@435 886
duke@435 887 // if space is full, return
duke@435 888 if (size == 0) return;
duke@435 889
duke@435 890 if (factor > 0) {
duke@435 891 size -= size/factor;
duke@435 892 }
duke@435 893 size = align_object_size(size);
duke@435 894
kvn@1926 895 const size_t array_header_size = typeArrayOopDesc::header_size(T_INT);
kvn@1926 896 if (size >= (size_t)align_object_size(array_header_size)) {
kvn@1926 897 size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint));
duke@435 898 // allocate uninitialized int array
duke@435 899 typeArrayOop t = (typeArrayOop) allocate(size);
duke@435 900 assert(t != NULL, "allocation should succeed");
duke@435 901 t->set_mark(markOopDesc::prototype());
duke@435 902 t->set_klass(Universe::intArrayKlassObj());
duke@435 903 t->set_length((int)length);
duke@435 904 } else {
kvn@1926 905 assert(size == CollectedHeap::min_fill_size(),
duke@435 906 "size for smallest fake object doesn't match");
duke@435 907 instanceOop obj = (instanceOop) allocate(size);
duke@435 908 obj->set_mark(markOopDesc::prototype());
coleenp@602 909 obj->set_klass_gap(0);
never@1577 910 obj->set_klass(SystemDictionary::Object_klass());
duke@435 911 }
duke@435 912 }
duke@435 913
jmasa@698 914 void EdenSpace::clear(bool mangle_space) {
jmasa@698 915 ContiguousSpace::clear(mangle_space);
duke@435 916 set_soft_end(end());
duke@435 917 }
duke@435 918
duke@435 919 // Requires locking.
duke@435 920 HeapWord* EdenSpace::allocate(size_t size) {
duke@435 921 return allocate_impl(size, soft_end());
duke@435 922 }
duke@435 923
duke@435 924 // Lock-free.
duke@435 925 HeapWord* EdenSpace::par_allocate(size_t size) {
duke@435 926 return par_allocate_impl(size, soft_end());
duke@435 927 }
duke@435 928
duke@435 929 HeapWord* ConcEdenSpace::par_allocate(size_t size)
duke@435 930 {
duke@435 931 do {
duke@435 932 // The invariant is top() should be read before end() because
duke@435 933 // top() can't be greater than end(), so if an update of _soft_end
duke@435 934 // occurs between 'end_val = end();' and 'top_val = top();' top()
duke@435 935 // also can grow up to the new end() and the condition
duke@435 936 // 'top_val > end_val' is true. To ensure the loading order
duke@435 937 // OrderAccess::loadload() is required after top() read.
duke@435 938 HeapWord* obj = top();
duke@435 939 OrderAccess::loadload();
duke@435 940 if (pointer_delta(*soft_end_addr(), obj) >= size) {
duke@435 941 HeapWord* new_top = obj + size;
duke@435 942 HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
duke@435 943 // result can be one of two:
duke@435 944 // the old top value: the exchange succeeded
duke@435 945 // otherwise: the new value of the top is returned.
duke@435 946 if (result == obj) {
duke@435 947 assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
duke@435 948 return obj;
duke@435 949 }
duke@435 950 } else {
duke@435 951 return NULL;
duke@435 952 }
duke@435 953 } while (true);
duke@435 954 }
duke@435 955
duke@435 956
duke@435 957 HeapWord* OffsetTableContigSpace::initialize_threshold() {
duke@435 958 return _offsets.initialize_threshold();
duke@435 959 }
duke@435 960
duke@435 961 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
duke@435 962 _offsets.alloc_block(start, end);
duke@435 963 return _offsets.threshold();
duke@435 964 }
duke@435 965
duke@435 966 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
duke@435 967 MemRegion mr) :
duke@435 968 _offsets(sharedOffsetArray, mr),
duke@435 969 _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
duke@435 970 {
duke@435 971 _offsets.set_contig_space(this);
jmasa@698 972 initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
duke@435 973 }
duke@435 974
duke@435 975 #define OBJ_SAMPLE_INTERVAL 0
duke@435 976 #define BLOCK_SAMPLE_INTERVAL 100
duke@435 977
brutisso@3711 978 void OffsetTableContigSpace::verify() const {
duke@435 979 HeapWord* p = bottom();
duke@435 980 HeapWord* prev_p = NULL;
duke@435 981 int objs = 0;
duke@435 982 int blocks = 0;
duke@435 983
duke@435 984 if (VerifyObjectStartArray) {
duke@435 985 _offsets.verify();
duke@435 986 }
duke@435 987
duke@435 988 while (p < top()) {
duke@435 989 size_t size = oop(p)->size();
duke@435 990 // For a sampling of objects in the space, find it using the
duke@435 991 // block offset table.
duke@435 992 if (blocks == BLOCK_SAMPLE_INTERVAL) {
ysr@777 993 guarantee(p == block_start_const(p + (size/2)),
ysr@777 994 "check offset computation");
duke@435 995 blocks = 0;
duke@435 996 } else {
duke@435 997 blocks++;
duke@435 998 }
duke@435 999
duke@435 1000 if (objs == OBJ_SAMPLE_INTERVAL) {
duke@435 1001 oop(p)->verify();
duke@435 1002 objs = 0;
duke@435 1003 } else {
duke@435 1004 objs++;
duke@435 1005 }
duke@435 1006 prev_p = p;
duke@435 1007 p += size;
duke@435 1008 }
duke@435 1009 guarantee(p == top(), "end of last object must match end of space");
duke@435 1010 }
duke@435 1011
duke@435 1012
jcoomes@873 1013 size_t TenuredSpace::allowed_dead_ratio() const {
duke@435 1014 return MarkSweepDeadRatio;
duke@435 1015 }

mercurial