src/share/vm/memory/space.cpp

Wed, 23 Jan 2013 13:02:39 -0500

author
jprovino
date
Wed, 23 Jan 2013 13:02:39 -0500
changeset 4542
db9981fd3124
parent 4384
b735136e0d82
child 6198
55fb97c4c58d
permissions
-rw-r--r--

8005915: Unify SERIALGC and INCLUDE_ALTERNATE_GCS
Summary: Rename INCLUDE_ALTERNATE_GCS to INCLUDE_ALL_GCS and replace SERIALGC with INCLUDE_ALL_GCS.
Reviewed-by: coleenp, stefank

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "gc_implementation/shared/liveRange.hpp"
    29 #include "gc_implementation/shared/markSweep.hpp"
    30 #include "gc_implementation/shared/spaceDecorator.hpp"
    31 #include "memory/blockOffsetTable.inline.hpp"
    32 #include "memory/defNewGeneration.hpp"
    33 #include "memory/genCollectedHeap.hpp"
    34 #include "memory/space.hpp"
    35 #include "memory/space.inline.hpp"
    36 #include "memory/universe.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "oops/oop.inline2.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/safepoint.hpp"
    41 #include "utilities/copy.hpp"
    42 #include "utilities/globalDefinitions.hpp"
    43 #include "utilities/macros.hpp"
    45 void SpaceMemRegionOopsIterClosure::do_oop(oop* p)       { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
    46 void SpaceMemRegionOopsIterClosure::do_oop(narrowOop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
    48 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
    49                                                 HeapWord* top_obj) {
    50   if (top_obj != NULL) {
    51     if (_sp->block_is_obj(top_obj)) {
    52       if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
    53         if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
    54           // An arrayOop is starting on the dirty card - since we do exact
    55           // store checks for objArrays we are done.
    56         } else {
    57           // Otherwise, it is possible that the object starting on the dirty
    58           // card spans the entire card, and that the store happened on a
    59           // later card.  Figure out where the object ends.
    60           // Use the block_size() method of the space over which
    61           // the iteration is being done.  That space (e.g. CMS) may have
    62           // specific requirements on object sizes which will
    63           // be reflected in the block_size() method.
    64           top = top_obj + oop(top_obj)->size();
    65         }
    66       }
    67     } else {
    68       top = top_obj;
    69     }
    70   } else {
    71     assert(top == _sp->end(), "only case where top_obj == NULL");
    72   }
    73   return top;
    74 }
    76 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
    77                                             HeapWord* bottom,
    78                                             HeapWord* top) {
    79   // 1. Blocks may or may not be objects.
    80   // 2. Even when a block_is_obj(), it may not entirely
    81   //    occupy the block if the block quantum is larger than
    82   //    the object size.
    83   // We can and should try to optimize by calling the non-MemRegion
    84   // version of oop_iterate() for all but the extremal objects
    85   // (for which we need to call the MemRegion version of
    86   // oop_iterate()) To be done post-beta XXX
    87   for (; bottom < top; bottom += _sp->block_size(bottom)) {
    88     // As in the case of contiguous space above, we'd like to
    89     // just use the value returned by oop_iterate to increment the
    90     // current pointer; unfortunately, that won't work in CMS because
    91     // we'd need an interface change (it seems) to have the space
    92     // "adjust the object size" (for instance pad it up to its
    93     // block alignment or minimum block size restrictions. XXX
    94     if (_sp->block_is_obj(bottom) &&
    95         !_sp->obj_allocated_since_save_marks(oop(bottom))) {
    96       oop(bottom)->oop_iterate(_cl, mr);
    97     }
    98   }
    99 }
   101 // We get called with "mr" representing the dirty region
   102 // that we want to process. Because of imprecise marking,
   103 // we may need to extend the incoming "mr" to the right,
   104 // and scan more. However, because we may already have
   105 // scanned some of that extended region, we may need to
   106 // trim its right-end back some so we do not scan what
   107 // we (or another worker thread) may already have scanned
   108 // or planning to scan.
   109 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
   111   // Some collectors need to do special things whenever their dirty
   112   // cards are processed. For instance, CMS must remember mutator updates
   113   // (i.e. dirty cards) so as to re-scan mutated objects.
   114   // Such work can be piggy-backed here on dirty card scanning, so as to make
   115   // it slightly more efficient than doing a complete non-detructive pre-scan
   116   // of the card table.
   117   MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
   118   if (pCl != NULL) {
   119     pCl->do_MemRegion(mr);
   120   }
   122   HeapWord* bottom = mr.start();
   123   HeapWord* last = mr.last();
   124   HeapWord* top = mr.end();
   125   HeapWord* bottom_obj;
   126   HeapWord* top_obj;
   128   assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
   129          _precision == CardTableModRefBS::Precise,
   130          "Only ones we deal with for now.");
   132   assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   133          _cl->idempotent() || _last_bottom == NULL ||
   134          top <= _last_bottom,
   135          "Not decreasing");
   136   NOT_PRODUCT(_last_bottom = mr.start());
   138   bottom_obj = _sp->block_start(bottom);
   139   top_obj    = _sp->block_start(last);
   141   assert(bottom_obj <= bottom, "just checking");
   142   assert(top_obj    <= top,    "just checking");
   144   // Given what we think is the top of the memory region and
   145   // the start of the object at the top, get the actual
   146   // value of the top.
   147   top = get_actual_top(top, top_obj);
   149   // If the previous call did some part of this region, don't redo.
   150   if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
   151       _min_done != NULL &&
   152       _min_done < top) {
   153     top = _min_done;
   154   }
   156   // Top may have been reset, and in fact may be below bottom,
   157   // e.g. the dirty card region is entirely in a now free object
   158   // -- something that could happen with a concurrent sweeper.
   159   bottom = MIN2(bottom, top);
   160   MemRegion extended_mr = MemRegion(bottom, top);
   161   assert(bottom <= top &&
   162          (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   163           _min_done == NULL ||
   164           top <= _min_done),
   165          "overlap!");
   167   // Walk the region if it is not empty; otherwise there is nothing to do.
   168   if (!extended_mr.is_empty()) {
   169     walk_mem_region(extended_mr, bottom_obj, top);
   170   }
   172   // An idempotent closure might be applied in any order, so we don't
   173   // record a _min_done for it.
   174   if (!_cl->idempotent()) {
   175     _min_done = bottom;
   176   } else {
   177     assert(_min_done == _last_explicit_min_done,
   178            "Don't update _min_done for idempotent cl");
   179   }
   180 }
   182 DirtyCardToOopClosure* Space::new_dcto_cl(ExtendedOopClosure* cl,
   183                                           CardTableModRefBS::PrecisionStyle precision,
   184                                           HeapWord* boundary) {
   185   return new DirtyCardToOopClosure(this, cl, precision, boundary);
   186 }
   188 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
   189                                                HeapWord* top_obj) {
   190   if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
   191     if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
   192       if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
   193         // An arrayOop is starting on the dirty card - since we do exact
   194         // store checks for objArrays we are done.
   195       } else {
   196         // Otherwise, it is possible that the object starting on the dirty
   197         // card spans the entire card, and that the store happened on a
   198         // later card.  Figure out where the object ends.
   199         assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
   200           "Block size and object size mismatch");
   201         top = top_obj + oop(top_obj)->size();
   202       }
   203     }
   204   } else {
   205     top = (_sp->toContiguousSpace())->top();
   206   }
   207   return top;
   208 }
   210 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
   211                                       HeapWord* bottom,
   212                                       HeapWord* top) {
   213   // Note that this assumption won't hold if we have a concurrent
   214   // collector in this space, which may have freed up objects after
   215   // they were dirtied and before the stop-the-world GC that is
   216   // examining cards here.
   217   assert(bottom < top, "ought to be at least one obj on a dirty card.");
   219   if (_boundary != NULL) {
   220     // We have a boundary outside of which we don't want to look
   221     // at objects, so create a filtering closure around the
   222     // oop closure before walking the region.
   223     FilteringClosure filter(_boundary, _cl);
   224     walk_mem_region_with_cl(mr, bottom, top, &filter);
   225   } else {
   226     // No boundary, simply walk the heap with the oop closure.
   227     walk_mem_region_with_cl(mr, bottom, top, _cl);
   228   }
   230 }
   232 // We must replicate this so that the static type of "FilteringClosure"
   233 // (see above) is apparent at the oop_iterate calls.
   234 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
   235 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
   236                                                    HeapWord* bottom,    \
   237                                                    HeapWord* top,       \
   238                                                    ClosureType* cl) {   \
   239   bottom += oop(bottom)->oop_iterate(cl, mr);                           \
   240   if (bottom < top) {                                                   \
   241     HeapWord* next_obj = bottom + oop(bottom)->size();                  \
   242     while (next_obj < top) {                                            \
   243       /* Bottom lies entirely below top, so we can call the */          \
   244       /* non-memRegion version of oop_iterate below. */                 \
   245       oop(bottom)->oop_iterate(cl);                                     \
   246       bottom = next_obj;                                                \
   247       next_obj = bottom + oop(bottom)->size();                          \
   248     }                                                                   \
   249     /* Last object. */                                                  \
   250     oop(bottom)->oop_iterate(cl, mr);                                   \
   251   }                                                                     \
   252 }
   254 // (There are only two of these, rather than N, because the split is due
   255 // only to the introduction of the FilteringClosure, a local part of the
   256 // impl of this abstraction.)
   257 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
   258 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
   260 DirtyCardToOopClosure*
   261 ContiguousSpace::new_dcto_cl(ExtendedOopClosure* cl,
   262                              CardTableModRefBS::PrecisionStyle precision,
   263                              HeapWord* boundary) {
   264   return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
   265 }
   267 void Space::initialize(MemRegion mr,
   268                        bool clear_space,
   269                        bool mangle_space) {
   270   HeapWord* bottom = mr.start();
   271   HeapWord* end    = mr.end();
   272   assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
   273          "invalid space boundaries");
   274   set_bottom(bottom);
   275   set_end(end);
   276   if (clear_space) clear(mangle_space);
   277 }
   279 void Space::clear(bool mangle_space) {
   280   if (ZapUnusedHeapArea && mangle_space) {
   281     mangle_unused_area();
   282   }
   283 }
   285 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
   286     _concurrent_iteration_safe_limit(NULL) {
   287   _mangler = new GenSpaceMangler(this);
   288 }
   290 ContiguousSpace::~ContiguousSpace() {
   291   delete _mangler;
   292 }
   294 void ContiguousSpace::initialize(MemRegion mr,
   295                                  bool clear_space,
   296                                  bool mangle_space)
   297 {
   298   CompactibleSpace::initialize(mr, clear_space, mangle_space);
   299   set_concurrent_iteration_safe_limit(top());
   300 }
   302 void ContiguousSpace::clear(bool mangle_space) {
   303   set_top(bottom());
   304   set_saved_mark();
   305   CompactibleSpace::clear(mangle_space);
   306 }
   308 bool ContiguousSpace::is_in(const void* p) const {
   309   return _bottom <= p && p < _top;
   310 }
   312 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
   313   return p >= _top;
   314 }
   316 void OffsetTableContigSpace::clear(bool mangle_space) {
   317   ContiguousSpace::clear(mangle_space);
   318   _offsets.initialize_threshold();
   319 }
   321 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
   322   Space::set_bottom(new_bottom);
   323   _offsets.set_bottom(new_bottom);
   324 }
   326 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
   327   // Space should not advertize an increase in size
   328   // until after the underlying offest table has been enlarged.
   329   _offsets.resize(pointer_delta(new_end, bottom()));
   330   Space::set_end(new_end);
   331 }
   333 #ifndef PRODUCT
   335 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
   336   mangler()->set_top_for_allocations(v);
   337 }
   338 void ContiguousSpace::set_top_for_allocations() {
   339   mangler()->set_top_for_allocations(top());
   340 }
   341 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
   342   mangler()->check_mangled_unused_area(limit);
   343 }
   345 void ContiguousSpace::check_mangled_unused_area_complete() {
   346   mangler()->check_mangled_unused_area_complete();
   347 }
   349 // Mangled only the unused space that has not previously
   350 // been mangled and that has not been allocated since being
   351 // mangled.
   352 void ContiguousSpace::mangle_unused_area() {
   353   mangler()->mangle_unused_area();
   354 }
   355 void ContiguousSpace::mangle_unused_area_complete() {
   356   mangler()->mangle_unused_area_complete();
   357 }
   358 void ContiguousSpace::mangle_region(MemRegion mr) {
   359   // Although this method uses SpaceMangler::mangle_region() which
   360   // is not specific to a space, the when the ContiguousSpace version
   361   // is called, it is always with regard to a space and this
   362   // bounds checking is appropriate.
   363   MemRegion space_mr(bottom(), end());
   364   assert(space_mr.contains(mr), "Mangling outside space");
   365   SpaceMangler::mangle_region(mr);
   366 }
   367 #endif  // NOT_PRODUCT
   369 void CompactibleSpace::initialize(MemRegion mr,
   370                                   bool clear_space,
   371                                   bool mangle_space) {
   372   Space::initialize(mr, clear_space, mangle_space);
   373   set_compaction_top(bottom());
   374   _next_compaction_space = NULL;
   375 }
   377 void CompactibleSpace::clear(bool mangle_space) {
   378   Space::clear(mangle_space);
   379   _compaction_top = bottom();
   380 }
   382 HeapWord* CompactibleSpace::forward(oop q, size_t size,
   383                                     CompactPoint* cp, HeapWord* compact_top) {
   384   // q is alive
   385   // First check if we should switch compaction space
   386   assert(this == cp->space, "'this' should be current compaction space.");
   387   size_t compaction_max_size = pointer_delta(end(), compact_top);
   388   while (size > compaction_max_size) {
   389     // switch to next compaction space
   390     cp->space->set_compaction_top(compact_top);
   391     cp->space = cp->space->next_compaction_space();
   392     if (cp->space == NULL) {
   393       cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
   394       assert(cp->gen != NULL, "compaction must succeed");
   395       cp->space = cp->gen->first_compaction_space();
   396       assert(cp->space != NULL, "generation must have a first compaction space");
   397     }
   398     compact_top = cp->space->bottom();
   399     cp->space->set_compaction_top(compact_top);
   400     cp->threshold = cp->space->initialize_threshold();
   401     compaction_max_size = pointer_delta(cp->space->end(), compact_top);
   402   }
   404   // store the forwarding pointer into the mark word
   405   if ((HeapWord*)q != compact_top) {
   406     q->forward_to(oop(compact_top));
   407     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
   408   } else {
   409     // if the object isn't moving we can just set the mark to the default
   410     // mark and handle it specially later on.
   411     q->init_mark();
   412     assert(q->forwardee() == NULL, "should be forwarded to NULL");
   413   }
   415   compact_top += size;
   417   // we need to update the offset table so that the beginnings of objects can be
   418   // found during scavenge.  Note that we are updating the offset table based on
   419   // where the object will be once the compaction phase finishes.
   420   if (compact_top > cp->threshold)
   421     cp->threshold =
   422       cp->space->cross_threshold(compact_top - size, compact_top);
   423   return compact_top;
   424 }
   427 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
   428                                         HeapWord* q, size_t deadlength) {
   429   if (allowed_deadspace_words >= deadlength) {
   430     allowed_deadspace_words -= deadlength;
   431     CollectedHeap::fill_with_object(q, deadlength);
   432     oop(q)->set_mark(oop(q)->mark()->set_marked());
   433     assert((int) deadlength == oop(q)->size(), "bad filler object size");
   434     // Recall that we required "q == compaction_top".
   435     return true;
   436   } else {
   437     allowed_deadspace_words = 0;
   438     return false;
   439   }
   440 }
   442 #define block_is_always_obj(q) true
   443 #define obj_size(q) oop(q)->size()
   444 #define adjust_obj_size(s) s
   446 void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
   447   SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
   448 }
   450 // Faster object search.
   451 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
   452   SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
   453 }
   455 void Space::adjust_pointers() {
   456   // adjust all the interior pointers to point at the new locations of objects
   457   // Used by MarkSweep::mark_sweep_phase3()
   459   // First check to see if there is any work to be done.
   460   if (used() == 0) {
   461     return;  // Nothing to do.
   462   }
   464   // Otherwise...
   465   HeapWord* q = bottom();
   466   HeapWord* t = end();
   468   debug_only(HeapWord* prev_q = NULL);
   469   while (q < t) {
   470     if (oop(q)->is_gc_marked()) {
   471       // q is alive
   473       // point all the oops to the new location
   474       size_t size = oop(q)->adjust_pointers();
   476       debug_only(prev_q = q);
   478       q += size;
   479     } else {
   480       // q is not a live object.  But we're not in a compactible space,
   481       // So we don't have live ranges.
   482       debug_only(prev_q = q);
   483       q += block_size(q);
   484       assert(q > prev_q, "we should be moving forward through memory");
   485     }
   486   }
   487   assert(q == t, "just checking");
   488 }
   490 void CompactibleSpace::adjust_pointers() {
   491   // Check first is there is any work to do.
   492   if (used() == 0) {
   493     return;   // Nothing to do.
   494   }
   496   SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
   497 }
   499 void CompactibleSpace::compact() {
   500   SCAN_AND_COMPACT(obj_size);
   501 }
   503 void Space::print_short() const { print_short_on(tty); }
   505 void Space::print_short_on(outputStream* st) const {
   506   st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
   507               (int) ((double) used() * 100 / capacity()));
   508 }
   510 void Space::print() const { print_on(tty); }
   512 void Space::print_on(outputStream* st) const {
   513   print_short_on(st);
   514   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   515                 bottom(), end());
   516 }
   518 void ContiguousSpace::print_on(outputStream* st) const {
   519   print_short_on(st);
   520   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   521                 bottom(), top(), end());
   522 }
   524 void OffsetTableContigSpace::print_on(outputStream* st) const {
   525   print_short_on(st);
   526   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
   527                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   528               bottom(), top(), _offsets.threshold(), end());
   529 }
   531 void ContiguousSpace::verify() const {
   532   HeapWord* p = bottom();
   533   HeapWord* t = top();
   534   HeapWord* prev_p = NULL;
   535   while (p < t) {
   536     oop(p)->verify();
   537     prev_p = p;
   538     p += oop(p)->size();
   539   }
   540   guarantee(p == top(), "end of last object must match end of space");
   541   if (top() != end()) {
   542     guarantee(top() == block_start_const(end()-1) &&
   543               top() == block_start_const(top()),
   544               "top should be start of unallocated block, if it exists");
   545   }
   546 }
   548 void Space::oop_iterate(ExtendedOopClosure* blk) {
   549   ObjectToOopClosure blk2(blk);
   550   object_iterate(&blk2);
   551 }
   553 HeapWord* Space::object_iterate_careful(ObjectClosureCareful* cl) {
   554   guarantee(false, "NYI");
   555   return bottom();
   556 }
   558 HeapWord* Space::object_iterate_careful_m(MemRegion mr,
   559                                           ObjectClosureCareful* cl) {
   560   guarantee(false, "NYI");
   561   return bottom();
   562 }
   565 void Space::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
   566   assert(!mr.is_empty(), "Should be non-empty");
   567   // We use MemRegion(bottom(), end()) rather than used_region() below
   568   // because the two are not necessarily equal for some kinds of
   569   // spaces, in particular, certain kinds of free list spaces.
   570   // We could use the more complicated but more precise:
   571   // MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
   572   // but the slight imprecision seems acceptable in the assertion check.
   573   assert(MemRegion(bottom(), end()).contains(mr),
   574          "Should be within used space");
   575   HeapWord* prev = cl->previous();   // max address from last time
   576   if (prev >= mr.end()) { // nothing to do
   577     return;
   578   }
   579   // This assert will not work when we go from cms space to perm
   580   // space, and use same closure. Easy fix deferred for later. XXX YSR
   581   // assert(prev == NULL || contains(prev), "Should be within space");
   583   bool last_was_obj_array = false;
   584   HeapWord *blk_start_addr, *region_start_addr;
   585   if (prev > mr.start()) {
   586     region_start_addr = prev;
   587     blk_start_addr    = prev;
   588     // The previous invocation may have pushed "prev" beyond the
   589     // last allocated block yet there may be still be blocks
   590     // in this region due to a particular coalescing policy.
   591     // Relax the assertion so that the case where the unallocated
   592     // block is maintained and "prev" is beyond the unallocated
   593     // block does not cause the assertion to fire.
   594     assert((BlockOffsetArrayUseUnallocatedBlock &&
   595             (!is_in(prev))) ||
   596            (blk_start_addr == block_start(region_start_addr)), "invariant");
   597   } else {
   598     region_start_addr = mr.start();
   599     blk_start_addr    = block_start(region_start_addr);
   600   }
   601   HeapWord* region_end_addr = mr.end();
   602   MemRegion derived_mr(region_start_addr, region_end_addr);
   603   while (blk_start_addr < region_end_addr) {
   604     const size_t size = block_size(blk_start_addr);
   605     if (block_is_obj(blk_start_addr)) {
   606       last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
   607     } else {
   608       last_was_obj_array = false;
   609     }
   610     blk_start_addr += size;
   611   }
   612   if (!last_was_obj_array) {
   613     assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
   614            "Should be within (closed) used space");
   615     assert(blk_start_addr > prev, "Invariant");
   616     cl->set_previous(blk_start_addr); // min address for next time
   617   }
   618 }
   620 bool Space::obj_is_alive(const HeapWord* p) const {
   621   assert (block_is_obj(p), "The address should point to an object");
   622   return true;
   623 }
   625 void ContiguousSpace::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
   626   assert(!mr.is_empty(), "Should be non-empty");
   627   assert(used_region().contains(mr), "Should be within used space");
   628   HeapWord* prev = cl->previous();   // max address from last time
   629   if (prev >= mr.end()) { // nothing to do
   630     return;
   631   }
   632   // See comment above (in more general method above) in case you
   633   // happen to use this method.
   634   assert(prev == NULL || is_in_reserved(prev), "Should be within space");
   636   bool last_was_obj_array = false;
   637   HeapWord *obj_start_addr, *region_start_addr;
   638   if (prev > mr.start()) {
   639     region_start_addr = prev;
   640     obj_start_addr    = prev;
   641     assert(obj_start_addr == block_start(region_start_addr), "invariant");
   642   } else {
   643     region_start_addr = mr.start();
   644     obj_start_addr    = block_start(region_start_addr);
   645   }
   646   HeapWord* region_end_addr = mr.end();
   647   MemRegion derived_mr(region_start_addr, region_end_addr);
   648   while (obj_start_addr < region_end_addr) {
   649     oop obj = oop(obj_start_addr);
   650     const size_t size = obj->size();
   651     last_was_obj_array = cl->do_object_bm(obj, derived_mr);
   652     obj_start_addr += size;
   653   }
   654   if (!last_was_obj_array) {
   655     assert((bottom() <= obj_start_addr)  && (obj_start_addr <= end()),
   656            "Should be within (closed) used space");
   657     assert(obj_start_addr > prev, "Invariant");
   658     cl->set_previous(obj_start_addr); // min address for next time
   659   }
   660 }
   662 #if INCLUDE_ALL_GCS
   663 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)         \
   664                                                                             \
   665   void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
   666     HeapWord* obj_addr = mr.start();                                        \
   667     HeapWord* t = mr.end();                                                 \
   668     while (obj_addr < t) {                                                  \
   669       assert(oop(obj_addr)->is_oop(), "Should be an oop");                  \
   670       obj_addr += oop(obj_addr)->oop_iterate(blk);                          \
   671     }                                                                       \
   672   }
   674   ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
   676 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
   677 #endif // INCLUDE_ALL_GCS
   679 void ContiguousSpace::oop_iterate(ExtendedOopClosure* blk) {
   680   if (is_empty()) return;
   681   HeapWord* obj_addr = bottom();
   682   HeapWord* t = top();
   683   // Could call objects iterate, but this is easier.
   684   while (obj_addr < t) {
   685     obj_addr += oop(obj_addr)->oop_iterate(blk);
   686   }
   687 }
   689 void ContiguousSpace::oop_iterate(MemRegion mr, ExtendedOopClosure* blk) {
   690   if (is_empty()) {
   691     return;
   692   }
   693   MemRegion cur = MemRegion(bottom(), top());
   694   mr = mr.intersection(cur);
   695   if (mr.is_empty()) {
   696     return;
   697   }
   698   if (mr.equals(cur)) {
   699     oop_iterate(blk);
   700     return;
   701   }
   702   assert(mr.end() <= top(), "just took an intersection above");
   703   HeapWord* obj_addr = block_start(mr.start());
   704   HeapWord* t = mr.end();
   706   // Handle first object specially.
   707   oop obj = oop(obj_addr);
   708   SpaceMemRegionOopsIterClosure smr_blk(blk, mr);
   709   obj_addr += obj->oop_iterate(&smr_blk);
   710   while (obj_addr < t) {
   711     oop obj = oop(obj_addr);
   712     assert(obj->is_oop(), "expected an oop");
   713     obj_addr += obj->size();
   714     // If "obj_addr" is not greater than top, then the
   715     // entire object "obj" is within the region.
   716     if (obj_addr <= t) {
   717       obj->oop_iterate(blk);
   718     } else {
   719       // "obj" extends beyond end of region
   720       obj->oop_iterate(&smr_blk);
   721       break;
   722     }
   723   };
   724 }
   726 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
   727   if (is_empty()) return;
   728   WaterMark bm = bottom_mark();
   729   object_iterate_from(bm, blk);
   730 }
   732 // For a continguous space object_iterate() and safe_object_iterate()
   733 // are the same.
   734 void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
   735   object_iterate(blk);
   736 }
   738 void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
   739   assert(mark.space() == this, "Mark does not match space");
   740   HeapWord* p = mark.point();
   741   while (p < top()) {
   742     blk->do_object(oop(p));
   743     p += oop(p)->size();
   744   }
   745 }
   747 HeapWord*
   748 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
   749   HeapWord * limit = concurrent_iteration_safe_limit();
   750   assert(limit <= top(), "sanity check");
   751   for (HeapWord* p = bottom(); p < limit;) {
   752     size_t size = blk->do_object_careful(oop(p));
   753     if (size == 0) {
   754       return p;  // failed at p
   755     } else {
   756       p += size;
   757     }
   758   }
   759   return NULL; // all done
   760 }
   762 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)  \
   763                                                                           \
   764 void ContiguousSpace::                                                    \
   765 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {            \
   766   HeapWord* t;                                                            \
   767   HeapWord* p = saved_mark_word();                                        \
   768   assert(p != NULL, "expected saved mark");                               \
   769                                                                           \
   770   const intx interval = PrefetchScanIntervalInBytes;                      \
   771   do {                                                                    \
   772     t = top();                                                            \
   773     while (p < t) {                                                       \
   774       Prefetch::write(p, interval);                                       \
   775       debug_only(HeapWord* prev = p);                                     \
   776       oop m = oop(p);                                                     \
   777       p += m->oop_iterate(blk);                                           \
   778     }                                                                     \
   779   } while (t < top());                                                    \
   780                                                                           \
   781   set_saved_mark_word(p);                                                 \
   782 }
   784 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
   786 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
   788 // Very general, slow implementation.
   789 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
   790   assert(MemRegion(bottom(), end()).contains(p),
   791          err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
   792                   p, bottom(), end()));
   793   if (p >= top()) {
   794     return top();
   795   } else {
   796     HeapWord* last = bottom();
   797     HeapWord* cur = last;
   798     while (cur <= p) {
   799       last = cur;
   800       cur += oop(cur)->size();
   801     }
   802     assert(oop(last)->is_oop(),
   803            err_msg(PTR_FORMAT " should be an object start", last));
   804     return last;
   805   }
   806 }
   808 size_t ContiguousSpace::block_size(const HeapWord* p) const {
   809   assert(MemRegion(bottom(), end()).contains(p),
   810          err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
   811                   p, bottom(), end()));
   812   HeapWord* current_top = top();
   813   assert(p <= current_top,
   814          err_msg("p > current top - p: " PTR_FORMAT ", current top: " PTR_FORMAT,
   815                   p, current_top));
   816   assert(p == current_top || oop(p)->is_oop(),
   817          err_msg("p (" PTR_FORMAT ") is not a block start - "
   818                  "current_top: " PTR_FORMAT ", is_oop: %s",
   819                  p, current_top, BOOL_TO_STR(oop(p)->is_oop())));
   820   if (p < current_top) {
   821     return oop(p)->size();
   822   } else {
   823     assert(p == current_top, "just checking");
   824     return pointer_delta(end(), (HeapWord*) p);
   825   }
   826 }
   828 // This version requires locking.
   829 inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
   830                                                 HeapWord* const end_value) {
   831   // In G1 there are places where a GC worker can allocates into a
   832   // region using this serial allocation code without being prone to a
   833   // race with other GC workers (we ensure that no other GC worker can
   834   // access the same region at the same time). So the assert below is
   835   // too strong in the case of G1.
   836   assert(Heap_lock->owned_by_self() ||
   837          (SafepointSynchronize::is_at_safepoint() &&
   838                                (Thread::current()->is_VM_thread() || UseG1GC)),
   839          "not locked");
   840   HeapWord* obj = top();
   841   if (pointer_delta(end_value, obj) >= size) {
   842     HeapWord* new_top = obj + size;
   843     set_top(new_top);
   844     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   845     return obj;
   846   } else {
   847     return NULL;
   848   }
   849 }
   851 // This version is lock-free.
   852 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size,
   853                                                     HeapWord* const end_value) {
   854   do {
   855     HeapWord* obj = top();
   856     if (pointer_delta(end_value, obj) >= size) {
   857       HeapWord* new_top = obj + size;
   858       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   859       // result can be one of two:
   860       //  the old top value: the exchange succeeded
   861       //  otherwise: the new value of the top is returned.
   862       if (result == obj) {
   863         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   864         return obj;
   865       }
   866     } else {
   867       return NULL;
   868     }
   869   } while (true);
   870 }
   872 // Requires locking.
   873 HeapWord* ContiguousSpace::allocate(size_t size) {
   874   return allocate_impl(size, end());
   875 }
   877 // Lock-free.
   878 HeapWord* ContiguousSpace::par_allocate(size_t size) {
   879   return par_allocate_impl(size, end());
   880 }
   882 void ContiguousSpace::allocate_temporary_filler(int factor) {
   883   // allocate temporary type array decreasing free size with factor 'factor'
   884   assert(factor >= 0, "just checking");
   885   size_t size = pointer_delta(end(), top());
   887   // if space is full, return
   888   if (size == 0) return;
   890   if (factor > 0) {
   891     size -= size/factor;
   892   }
   893   size = align_object_size(size);
   895   const size_t array_header_size = typeArrayOopDesc::header_size(T_INT);
   896   if (size >= (size_t)align_object_size(array_header_size)) {
   897     size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint));
   898     // allocate uninitialized int array
   899     typeArrayOop t = (typeArrayOop) allocate(size);
   900     assert(t != NULL, "allocation should succeed");
   901     t->set_mark(markOopDesc::prototype());
   902     t->set_klass(Universe::intArrayKlassObj());
   903     t->set_length((int)length);
   904   } else {
   905     assert(size == CollectedHeap::min_fill_size(),
   906            "size for smallest fake object doesn't match");
   907     instanceOop obj = (instanceOop) allocate(size);
   908     obj->set_mark(markOopDesc::prototype());
   909     obj->set_klass_gap(0);
   910     obj->set_klass(SystemDictionary::Object_klass());
   911   }
   912 }
   914 void EdenSpace::clear(bool mangle_space) {
   915   ContiguousSpace::clear(mangle_space);
   916   set_soft_end(end());
   917 }
   919 // Requires locking.
   920 HeapWord* EdenSpace::allocate(size_t size) {
   921   return allocate_impl(size, soft_end());
   922 }
   924 // Lock-free.
   925 HeapWord* EdenSpace::par_allocate(size_t size) {
   926   return par_allocate_impl(size, soft_end());
   927 }
   929 HeapWord* ConcEdenSpace::par_allocate(size_t size)
   930 {
   931   do {
   932     // The invariant is top() should be read before end() because
   933     // top() can't be greater than end(), so if an update of _soft_end
   934     // occurs between 'end_val = end();' and 'top_val = top();' top()
   935     // also can grow up to the new end() and the condition
   936     // 'top_val > end_val' is true. To ensure the loading order
   937     // OrderAccess::loadload() is required after top() read.
   938     HeapWord* obj = top();
   939     OrderAccess::loadload();
   940     if (pointer_delta(*soft_end_addr(), obj) >= size) {
   941       HeapWord* new_top = obj + size;
   942       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   943       // result can be one of two:
   944       //  the old top value: the exchange succeeded
   945       //  otherwise: the new value of the top is returned.
   946       if (result == obj) {
   947         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   948         return obj;
   949       }
   950     } else {
   951       return NULL;
   952     }
   953   } while (true);
   954 }
   957 HeapWord* OffsetTableContigSpace::initialize_threshold() {
   958   return _offsets.initialize_threshold();
   959 }
   961 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
   962   _offsets.alloc_block(start, end);
   963   return _offsets.threshold();
   964 }
   966 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
   967                                                MemRegion mr) :
   968   _offsets(sharedOffsetArray, mr),
   969   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
   970 {
   971   _offsets.set_contig_space(this);
   972   initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   973 }
   975 #define OBJ_SAMPLE_INTERVAL 0
   976 #define BLOCK_SAMPLE_INTERVAL 100
   978 void OffsetTableContigSpace::verify() const {
   979   HeapWord* p = bottom();
   980   HeapWord* prev_p = NULL;
   981   int objs = 0;
   982   int blocks = 0;
   984   if (VerifyObjectStartArray) {
   985     _offsets.verify();
   986   }
   988   while (p < top()) {
   989     size_t size = oop(p)->size();
   990     // For a sampling of objects in the space, find it using the
   991     // block offset table.
   992     if (blocks == BLOCK_SAMPLE_INTERVAL) {
   993       guarantee(p == block_start_const(p + (size/2)),
   994                 "check offset computation");
   995       blocks = 0;
   996     } else {
   997       blocks++;
   998     }
  1000     if (objs == OBJ_SAMPLE_INTERVAL) {
  1001       oop(p)->verify();
  1002       objs = 0;
  1003     } else {
  1004       objs++;
  1006     prev_p = p;
  1007     p += size;
  1009   guarantee(p == top(), "end of last object must match end of space");
  1013 size_t TenuredSpace::allowed_dead_ratio() const {
  1014   return MarkSweepDeadRatio;

mercurial