src/share/vm/opto/compile.cpp

Sat, 29 Sep 2012 06:40:00 -0400

author
coleenp
date
Sat, 29 Sep 2012 06:40:00 -0400
changeset 4142
d8ce2825b193
parent 4115
e626685e9f6c
child 4154
c3e799c37717
permissions
-rw-r--r--

8000213: NPG: Should have renamed arrayKlass and typeArrayKlass
Summary: Capitalize these metadata types (and objArrayKlass)
Reviewed-by: stefank, twisti, kvn

duke@435 1 /*
kvn@3651 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "classfile/systemDictionary.hpp"
stefank@2314 28 #include "code/exceptionHandlerTable.hpp"
stefank@2314 29 #include "code/nmethod.hpp"
stefank@2314 30 #include "compiler/compileLog.hpp"
stefank@2314 31 #include "compiler/oopMap.hpp"
stefank@2314 32 #include "opto/addnode.hpp"
stefank@2314 33 #include "opto/block.hpp"
stefank@2314 34 #include "opto/c2compiler.hpp"
stefank@2314 35 #include "opto/callGenerator.hpp"
stefank@2314 36 #include "opto/callnode.hpp"
stefank@2314 37 #include "opto/cfgnode.hpp"
stefank@2314 38 #include "opto/chaitin.hpp"
stefank@2314 39 #include "opto/compile.hpp"
stefank@2314 40 #include "opto/connode.hpp"
stefank@2314 41 #include "opto/divnode.hpp"
stefank@2314 42 #include "opto/escape.hpp"
stefank@2314 43 #include "opto/idealGraphPrinter.hpp"
stefank@2314 44 #include "opto/loopnode.hpp"
stefank@2314 45 #include "opto/machnode.hpp"
stefank@2314 46 #include "opto/macro.hpp"
stefank@2314 47 #include "opto/matcher.hpp"
stefank@2314 48 #include "opto/memnode.hpp"
stefank@2314 49 #include "opto/mulnode.hpp"
stefank@2314 50 #include "opto/node.hpp"
stefank@2314 51 #include "opto/opcodes.hpp"
stefank@2314 52 #include "opto/output.hpp"
stefank@2314 53 #include "opto/parse.hpp"
stefank@2314 54 #include "opto/phaseX.hpp"
stefank@2314 55 #include "opto/rootnode.hpp"
stefank@2314 56 #include "opto/runtime.hpp"
stefank@2314 57 #include "opto/stringopts.hpp"
stefank@2314 58 #include "opto/type.hpp"
stefank@2314 59 #include "opto/vectornode.hpp"
stefank@2314 60 #include "runtime/arguments.hpp"
stefank@2314 61 #include "runtime/signature.hpp"
stefank@2314 62 #include "runtime/stubRoutines.hpp"
stefank@2314 63 #include "runtime/timer.hpp"
stefank@2314 64 #include "utilities/copy.hpp"
stefank@2314 65 #ifdef TARGET_ARCH_MODEL_x86_32
stefank@2314 66 # include "adfiles/ad_x86_32.hpp"
stefank@2314 67 #endif
stefank@2314 68 #ifdef TARGET_ARCH_MODEL_x86_64
stefank@2314 69 # include "adfiles/ad_x86_64.hpp"
stefank@2314 70 #endif
stefank@2314 71 #ifdef TARGET_ARCH_MODEL_sparc
stefank@2314 72 # include "adfiles/ad_sparc.hpp"
stefank@2314 73 #endif
stefank@2314 74 #ifdef TARGET_ARCH_MODEL_zero
stefank@2314 75 # include "adfiles/ad_zero.hpp"
stefank@2314 76 #endif
bobv@2508 77 #ifdef TARGET_ARCH_MODEL_arm
bobv@2508 78 # include "adfiles/ad_arm.hpp"
bobv@2508 79 #endif
bobv@2508 80 #ifdef TARGET_ARCH_MODEL_ppc
bobv@2508 81 # include "adfiles/ad_ppc.hpp"
bobv@2508 82 #endif
duke@435 83
twisti@2350 84
twisti@2350 85 // -------------------- Compile::mach_constant_base_node -----------------------
twisti@2350 86 // Constant table base node singleton.
twisti@2350 87 MachConstantBaseNode* Compile::mach_constant_base_node() {
twisti@2350 88 if (_mach_constant_base_node == NULL) {
twisti@2350 89 _mach_constant_base_node = new (C) MachConstantBaseNode();
twisti@2350 90 _mach_constant_base_node->add_req(C->root());
twisti@2350 91 }
twisti@2350 92 return _mach_constant_base_node;
twisti@2350 93 }
twisti@2350 94
twisti@2350 95
duke@435 96 /// Support for intrinsics.
duke@435 97
duke@435 98 // Return the index at which m must be inserted (or already exists).
duke@435 99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
duke@435 100 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
duke@435 101 #ifdef ASSERT
duke@435 102 for (int i = 1; i < _intrinsics->length(); i++) {
duke@435 103 CallGenerator* cg1 = _intrinsics->at(i-1);
duke@435 104 CallGenerator* cg2 = _intrinsics->at(i);
duke@435 105 assert(cg1->method() != cg2->method()
duke@435 106 ? cg1->method() < cg2->method()
duke@435 107 : cg1->is_virtual() < cg2->is_virtual(),
duke@435 108 "compiler intrinsics list must stay sorted");
duke@435 109 }
duke@435 110 #endif
duke@435 111 // Binary search sorted list, in decreasing intervals [lo, hi].
duke@435 112 int lo = 0, hi = _intrinsics->length()-1;
duke@435 113 while (lo <= hi) {
duke@435 114 int mid = (uint)(hi + lo) / 2;
duke@435 115 ciMethod* mid_m = _intrinsics->at(mid)->method();
duke@435 116 if (m < mid_m) {
duke@435 117 hi = mid-1;
duke@435 118 } else if (m > mid_m) {
duke@435 119 lo = mid+1;
duke@435 120 } else {
duke@435 121 // look at minor sort key
duke@435 122 bool mid_virt = _intrinsics->at(mid)->is_virtual();
duke@435 123 if (is_virtual < mid_virt) {
duke@435 124 hi = mid-1;
duke@435 125 } else if (is_virtual > mid_virt) {
duke@435 126 lo = mid+1;
duke@435 127 } else {
duke@435 128 return mid; // exact match
duke@435 129 }
duke@435 130 }
duke@435 131 }
duke@435 132 return lo; // inexact match
duke@435 133 }
duke@435 134
duke@435 135 void Compile::register_intrinsic(CallGenerator* cg) {
duke@435 136 if (_intrinsics == NULL) {
duke@435 137 _intrinsics = new GrowableArray<CallGenerator*>(60);
duke@435 138 }
duke@435 139 // This code is stolen from ciObjectFactory::insert.
duke@435 140 // Really, GrowableArray should have methods for
duke@435 141 // insert_at, remove_at, and binary_search.
duke@435 142 int len = _intrinsics->length();
duke@435 143 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
duke@435 144 if (index == len) {
duke@435 145 _intrinsics->append(cg);
duke@435 146 } else {
duke@435 147 #ifdef ASSERT
duke@435 148 CallGenerator* oldcg = _intrinsics->at(index);
duke@435 149 assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
duke@435 150 #endif
duke@435 151 _intrinsics->append(_intrinsics->at(len-1));
duke@435 152 int pos;
duke@435 153 for (pos = len-2; pos >= index; pos--) {
duke@435 154 _intrinsics->at_put(pos+1,_intrinsics->at(pos));
duke@435 155 }
duke@435 156 _intrinsics->at_put(index, cg);
duke@435 157 }
duke@435 158 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
duke@435 159 }
duke@435 160
duke@435 161 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 162 assert(m->is_loaded(), "don't try this on unloaded methods");
duke@435 163 if (_intrinsics != NULL) {
duke@435 164 int index = intrinsic_insertion_index(m, is_virtual);
duke@435 165 if (index < _intrinsics->length()
duke@435 166 && _intrinsics->at(index)->method() == m
duke@435 167 && _intrinsics->at(index)->is_virtual() == is_virtual) {
duke@435 168 return _intrinsics->at(index);
duke@435 169 }
duke@435 170 }
duke@435 171 // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
jrose@1291 172 if (m->intrinsic_id() != vmIntrinsics::_none &&
jrose@1291 173 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
duke@435 174 CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
duke@435 175 if (cg != NULL) {
duke@435 176 // Save it for next time:
duke@435 177 register_intrinsic(cg);
duke@435 178 return cg;
duke@435 179 } else {
duke@435 180 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
duke@435 181 }
duke@435 182 }
duke@435 183 return NULL;
duke@435 184 }
duke@435 185
duke@435 186 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
duke@435 187 // in library_call.cpp.
duke@435 188
duke@435 189
duke@435 190 #ifndef PRODUCT
duke@435 191 // statistics gathering...
duke@435 192
duke@435 193 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
duke@435 194 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
duke@435 195
duke@435 196 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
duke@435 197 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
duke@435 198 int oflags = _intrinsic_hist_flags[id];
duke@435 199 assert(flags != 0, "what happened?");
duke@435 200 if (is_virtual) {
duke@435 201 flags |= _intrinsic_virtual;
duke@435 202 }
duke@435 203 bool changed = (flags != oflags);
duke@435 204 if ((flags & _intrinsic_worked) != 0) {
duke@435 205 juint count = (_intrinsic_hist_count[id] += 1);
duke@435 206 if (count == 1) {
duke@435 207 changed = true; // first time
duke@435 208 }
duke@435 209 // increment the overall count also:
duke@435 210 _intrinsic_hist_count[vmIntrinsics::_none] += 1;
duke@435 211 }
duke@435 212 if (changed) {
duke@435 213 if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
duke@435 214 // Something changed about the intrinsic's virtuality.
duke@435 215 if ((flags & _intrinsic_virtual) != 0) {
duke@435 216 // This is the first use of this intrinsic as a virtual call.
duke@435 217 if (oflags != 0) {
duke@435 218 // We already saw it as a non-virtual, so note both cases.
duke@435 219 flags |= _intrinsic_both;
duke@435 220 }
duke@435 221 } else if ((oflags & _intrinsic_both) == 0) {
duke@435 222 // This is the first use of this intrinsic as a non-virtual
duke@435 223 flags |= _intrinsic_both;
duke@435 224 }
duke@435 225 }
duke@435 226 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
duke@435 227 }
duke@435 228 // update the overall flags also:
duke@435 229 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
duke@435 230 return changed;
duke@435 231 }
duke@435 232
duke@435 233 static char* format_flags(int flags, char* buf) {
duke@435 234 buf[0] = 0;
duke@435 235 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
duke@435 236 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
duke@435 237 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
duke@435 238 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
duke@435 239 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
duke@435 240 if (buf[0] == 0) strcat(buf, ",");
duke@435 241 assert(buf[0] == ',', "must be");
duke@435 242 return &buf[1];
duke@435 243 }
duke@435 244
duke@435 245 void Compile::print_intrinsic_statistics() {
duke@435 246 char flagsbuf[100];
duke@435 247 ttyLocker ttyl;
duke@435 248 if (xtty != NULL) xtty->head("statistics type='intrinsic'");
duke@435 249 tty->print_cr("Compiler intrinsic usage:");
duke@435 250 juint total = _intrinsic_hist_count[vmIntrinsics::_none];
duke@435 251 if (total == 0) total = 1; // avoid div0 in case of no successes
duke@435 252 #define PRINT_STAT_LINE(name, c, f) \
duke@435 253 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
duke@435 254 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
duke@435 255 vmIntrinsics::ID id = (vmIntrinsics::ID) index;
duke@435 256 int flags = _intrinsic_hist_flags[id];
duke@435 257 juint count = _intrinsic_hist_count[id];
duke@435 258 if ((flags | count) != 0) {
duke@435 259 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
duke@435 260 }
duke@435 261 }
duke@435 262 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
duke@435 263 if (xtty != NULL) xtty->tail("statistics");
duke@435 264 }
duke@435 265
duke@435 266 void Compile::print_statistics() {
duke@435 267 { ttyLocker ttyl;
duke@435 268 if (xtty != NULL) xtty->head("statistics type='opto'");
duke@435 269 Parse::print_statistics();
duke@435 270 PhaseCCP::print_statistics();
duke@435 271 PhaseRegAlloc::print_statistics();
duke@435 272 Scheduling::print_statistics();
duke@435 273 PhasePeephole::print_statistics();
duke@435 274 PhaseIdealLoop::print_statistics();
duke@435 275 if (xtty != NULL) xtty->tail("statistics");
duke@435 276 }
duke@435 277 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
duke@435 278 // put this under its own <statistics> element.
duke@435 279 print_intrinsic_statistics();
duke@435 280 }
duke@435 281 }
duke@435 282 #endif //PRODUCT
duke@435 283
duke@435 284 // Support for bundling info
duke@435 285 Bundle* Compile::node_bundling(const Node *n) {
duke@435 286 assert(valid_bundle_info(n), "oob");
duke@435 287 return &_node_bundling_base[n->_idx];
duke@435 288 }
duke@435 289
duke@435 290 bool Compile::valid_bundle_info(const Node *n) {
duke@435 291 return (_node_bundling_limit > n->_idx);
duke@435 292 }
duke@435 293
duke@435 294
never@1515 295 void Compile::gvn_replace_by(Node* n, Node* nn) {
never@1515 296 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
never@1515 297 Node* use = n->last_out(i);
never@1515 298 bool is_in_table = initial_gvn()->hash_delete(use);
never@1515 299 uint uses_found = 0;
never@1515 300 for (uint j = 0; j < use->len(); j++) {
never@1515 301 if (use->in(j) == n) {
never@1515 302 if (j < use->req())
never@1515 303 use->set_req(j, nn);
never@1515 304 else
never@1515 305 use->set_prec(j, nn);
never@1515 306 uses_found++;
never@1515 307 }
never@1515 308 }
never@1515 309 if (is_in_table) {
never@1515 310 // reinsert into table
never@1515 311 initial_gvn()->hash_find_insert(use);
never@1515 312 }
never@1515 313 record_for_igvn(use);
never@1515 314 i -= uses_found; // we deleted 1 or more copies of this edge
never@1515 315 }
never@1515 316 }
never@1515 317
never@1515 318
never@1515 319
never@1515 320
duke@435 321 // Identify all nodes that are reachable from below, useful.
duke@435 322 // Use breadth-first pass that records state in a Unique_Node_List,
duke@435 323 // recursive traversal is slower.
duke@435 324 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
duke@435 325 int estimated_worklist_size = unique();
duke@435 326 useful.map( estimated_worklist_size, NULL ); // preallocate space
duke@435 327
duke@435 328 // Initialize worklist
duke@435 329 if (root() != NULL) { useful.push(root()); }
duke@435 330 // If 'top' is cached, declare it useful to preserve cached node
duke@435 331 if( cached_top_node() ) { useful.push(cached_top_node()); }
duke@435 332
duke@435 333 // Push all useful nodes onto the list, breadthfirst
duke@435 334 for( uint next = 0; next < useful.size(); ++next ) {
duke@435 335 assert( next < unique(), "Unique useful nodes < total nodes");
duke@435 336 Node *n = useful.at(next);
duke@435 337 uint max = n->len();
duke@435 338 for( uint i = 0; i < max; ++i ) {
duke@435 339 Node *m = n->in(i);
duke@435 340 if( m == NULL ) continue;
duke@435 341 useful.push(m);
duke@435 342 }
duke@435 343 }
duke@435 344 }
duke@435 345
duke@435 346 // Disconnect all useless nodes by disconnecting those at the boundary.
duke@435 347 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
duke@435 348 uint next = 0;
kvn@3260 349 while (next < useful.size()) {
duke@435 350 Node *n = useful.at(next++);
duke@435 351 // Use raw traversal of out edges since this code removes out edges
duke@435 352 int max = n->outcnt();
kvn@3260 353 for (int j = 0; j < max; ++j) {
duke@435 354 Node* child = n->raw_out(j);
kvn@3260 355 if (! useful.member(child)) {
kvn@3260 356 assert(!child->is_top() || child != top(),
kvn@3260 357 "If top is cached in Compile object it is in useful list");
duke@435 358 // Only need to remove this out-edge to the useless node
duke@435 359 n->raw_del_out(j);
duke@435 360 --j;
duke@435 361 --max;
duke@435 362 }
duke@435 363 }
duke@435 364 if (n->outcnt() == 1 && n->has_special_unique_user()) {
kvn@3260 365 record_for_igvn(n->unique_out());
kvn@3260 366 }
kvn@3260 367 }
kvn@3260 368 // Remove useless macro and predicate opaq nodes
kvn@3260 369 for (int i = C->macro_count()-1; i >= 0; i--) {
kvn@3260 370 Node* n = C->macro_node(i);
kvn@3260 371 if (!useful.member(n)) {
kvn@3260 372 remove_macro_node(n);
duke@435 373 }
duke@435 374 }
duke@435 375 debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
duke@435 376 }
duke@435 377
duke@435 378 //------------------------------frame_size_in_words-----------------------------
duke@435 379 // frame_slots in units of words
duke@435 380 int Compile::frame_size_in_words() const {
duke@435 381 // shift is 0 in LP32 and 1 in LP64
duke@435 382 const int shift = (LogBytesPerWord - LogBytesPerInt);
duke@435 383 int words = _frame_slots >> shift;
duke@435 384 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
duke@435 385 return words;
duke@435 386 }
duke@435 387
duke@435 388 // ============================================================================
duke@435 389 //------------------------------CompileWrapper---------------------------------
duke@435 390 class CompileWrapper : public StackObj {
duke@435 391 Compile *const _compile;
duke@435 392 public:
duke@435 393 CompileWrapper(Compile* compile);
duke@435 394
duke@435 395 ~CompileWrapper();
duke@435 396 };
duke@435 397
duke@435 398 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
duke@435 399 // the Compile* pointer is stored in the current ciEnv:
duke@435 400 ciEnv* env = compile->env();
duke@435 401 assert(env == ciEnv::current(), "must already be a ciEnv active");
duke@435 402 assert(env->compiler_data() == NULL, "compile already active?");
duke@435 403 env->set_compiler_data(compile);
duke@435 404 assert(compile == Compile::current(), "sanity");
duke@435 405
duke@435 406 compile->set_type_dict(NULL);
duke@435 407 compile->set_type_hwm(NULL);
duke@435 408 compile->set_type_last_size(0);
duke@435 409 compile->set_last_tf(NULL, NULL);
duke@435 410 compile->set_indexSet_arena(NULL);
duke@435 411 compile->set_indexSet_free_block_list(NULL);
duke@435 412 compile->init_type_arena();
duke@435 413 Type::Initialize(compile);
duke@435 414 _compile->set_scratch_buffer_blob(NULL);
duke@435 415 _compile->begin_method();
duke@435 416 }
duke@435 417 CompileWrapper::~CompileWrapper() {
duke@435 418 _compile->end_method();
duke@435 419 if (_compile->scratch_buffer_blob() != NULL)
duke@435 420 BufferBlob::free(_compile->scratch_buffer_blob());
duke@435 421 _compile->env()->set_compiler_data(NULL);
duke@435 422 }
duke@435 423
duke@435 424
duke@435 425 //----------------------------print_compile_messages---------------------------
duke@435 426 void Compile::print_compile_messages() {
duke@435 427 #ifndef PRODUCT
duke@435 428 // Check if recompiling
duke@435 429 if (_subsume_loads == false && PrintOpto) {
duke@435 430 // Recompiling without allowing machine instructions to subsume loads
duke@435 431 tty->print_cr("*********************************************************");
duke@435 432 tty->print_cr("** Bailout: Recompile without subsuming loads **");
duke@435 433 tty->print_cr("*********************************************************");
duke@435 434 }
kvn@473 435 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
kvn@473 436 // Recompiling without escape analysis
kvn@473 437 tty->print_cr("*********************************************************");
kvn@473 438 tty->print_cr("** Bailout: Recompile without escape analysis **");
kvn@473 439 tty->print_cr("*********************************************************");
kvn@473 440 }
duke@435 441 if (env()->break_at_compile()) {
twisti@1040 442 // Open the debugger when compiling this method.
duke@435 443 tty->print("### Breaking when compiling: ");
duke@435 444 method()->print_short_name();
duke@435 445 tty->cr();
duke@435 446 BREAKPOINT;
duke@435 447 }
duke@435 448
duke@435 449 if( PrintOpto ) {
duke@435 450 if (is_osr_compilation()) {
duke@435 451 tty->print("[OSR]%3d", _compile_id);
duke@435 452 } else {
duke@435 453 tty->print("%3d", _compile_id);
duke@435 454 }
duke@435 455 }
duke@435 456 #endif
duke@435 457 }
duke@435 458
duke@435 459
kvn@2414 460 //-----------------------init_scratch_buffer_blob------------------------------
kvn@2414 461 // Construct a temporary BufferBlob and cache it for this compile.
twisti@2350 462 void Compile::init_scratch_buffer_blob(int const_size) {
kvn@2414 463 // If there is already a scratch buffer blob allocated and the
kvn@2414 464 // constant section is big enough, use it. Otherwise free the
kvn@2414 465 // current and allocate a new one.
kvn@2414 466 BufferBlob* blob = scratch_buffer_blob();
kvn@2414 467 if ((blob != NULL) && (const_size <= _scratch_const_size)) {
kvn@2414 468 // Use the current blob.
kvn@2414 469 } else {
kvn@2414 470 if (blob != NULL) {
kvn@2414 471 BufferBlob::free(blob);
kvn@2414 472 }
duke@435 473
kvn@2414 474 ResourceMark rm;
kvn@2414 475 _scratch_const_size = const_size;
kvn@2414 476 int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
kvn@2414 477 blob = BufferBlob::create("Compile::scratch_buffer", size);
kvn@2414 478 // Record the buffer blob for next time.
kvn@2414 479 set_scratch_buffer_blob(blob);
kvn@2414 480 // Have we run out of code space?
kvn@2414 481 if (scratch_buffer_blob() == NULL) {
kvn@2414 482 // Let CompilerBroker disable further compilations.
kvn@2414 483 record_failure("Not enough space for scratch buffer in CodeCache");
kvn@2414 484 return;
kvn@2414 485 }
kvn@598 486 }
duke@435 487
duke@435 488 // Initialize the relocation buffers
twisti@2103 489 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
duke@435 490 set_scratch_locs_memory(locs_buf);
duke@435 491 }
duke@435 492
duke@435 493
duke@435 494 //-----------------------scratch_emit_size-------------------------------------
duke@435 495 // Helper function that computes size by emitting code
duke@435 496 uint Compile::scratch_emit_size(const Node* n) {
twisti@2350 497 // Start scratch_emit_size section.
twisti@2350 498 set_in_scratch_emit_size(true);
twisti@2350 499
duke@435 500 // Emit into a trash buffer and count bytes emitted.
duke@435 501 // This is a pretty expensive way to compute a size,
duke@435 502 // but it works well enough if seldom used.
duke@435 503 // All common fixed-size instructions are given a size
duke@435 504 // method by the AD file.
duke@435 505 // Note that the scratch buffer blob and locs memory are
duke@435 506 // allocated at the beginning of the compile task, and
duke@435 507 // may be shared by several calls to scratch_emit_size.
duke@435 508 // The allocation of the scratch buffer blob is particularly
duke@435 509 // expensive, since it has to grab the code cache lock.
duke@435 510 BufferBlob* blob = this->scratch_buffer_blob();
duke@435 511 assert(blob != NULL, "Initialize BufferBlob at start");
duke@435 512 assert(blob->size() > MAX_inst_size, "sanity");
duke@435 513 relocInfo* locs_buf = scratch_locs_memory();
twisti@2103 514 address blob_begin = blob->content_begin();
duke@435 515 address blob_end = (address)locs_buf;
twisti@2103 516 assert(blob->content_contains(blob_end), "sanity");
duke@435 517 CodeBuffer buf(blob_begin, blob_end - blob_begin);
twisti@2350 518 buf.initialize_consts_size(_scratch_const_size);
duke@435 519 buf.initialize_stubs_size(MAX_stubs_size);
duke@435 520 assert(locs_buf != NULL, "sanity");
twisti@2350 521 int lsize = MAX_locs_size / 3;
twisti@2350 522 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
twisti@2350 523 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
twisti@2350 524 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
twisti@2350 525
twisti@2350 526 // Do the emission.
kvn@3037 527
kvn@3037 528 Label fakeL; // Fake label for branch instructions.
kvn@3051 529 Label* saveL = NULL;
kvn@3051 530 uint save_bnum = 0;
kvn@3051 531 bool is_branch = n->is_MachBranch();
kvn@3037 532 if (is_branch) {
kvn@3037 533 MacroAssembler masm(&buf);
kvn@3037 534 masm.bind(fakeL);
kvn@3051 535 n->as_MachBranch()->save_label(&saveL, &save_bnum);
kvn@3051 536 n->as_MachBranch()->label_set(&fakeL, 0);
kvn@3037 537 }
duke@435 538 n->emit(buf, this->regalloc());
kvn@3051 539 if (is_branch) // Restore label.
kvn@3051 540 n->as_MachBranch()->label_set(saveL, save_bnum);
twisti@2350 541
twisti@2350 542 // End scratch_emit_size section.
twisti@2350 543 set_in_scratch_emit_size(false);
twisti@2350 544
twisti@2103 545 return buf.insts_size();
duke@435 546 }
duke@435 547
duke@435 548
duke@435 549 // ============================================================================
duke@435 550 //------------------------------Compile standard-------------------------------
duke@435 551 debug_only( int Compile::_debug_idx = 100000; )
duke@435 552
duke@435 553 // Compile a method. entry_bci is -1 for normal compilations and indicates
duke@435 554 // the continuation bci for on stack replacement.
duke@435 555
duke@435 556
kvn@473 557 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
duke@435 558 : Phase(Compiler),
duke@435 559 _env(ci_env),
duke@435 560 _log(ci_env->log()),
duke@435 561 _compile_id(ci_env->compile_id()),
duke@435 562 _save_argument_registers(false),
duke@435 563 _stub_name(NULL),
duke@435 564 _stub_function(NULL),
duke@435 565 _stub_entry_point(NULL),
duke@435 566 _method(target),
duke@435 567 _entry_bci(osr_bci),
duke@435 568 _initial_gvn(NULL),
duke@435 569 _for_igvn(NULL),
duke@435 570 _warm_calls(NULL),
duke@435 571 _subsume_loads(subsume_loads),
kvn@473 572 _do_escape_analysis(do_escape_analysis),
duke@435 573 _failure_reason(NULL),
duke@435 574 _code_buffer("Compile::Fill_buffer"),
duke@435 575 _orig_pc_slot(0),
duke@435 576 _orig_pc_slot_offset_in_bytes(0),
twisti@1700 577 _has_method_handle_invokes(false),
twisti@2350 578 _mach_constant_base_node(NULL),
duke@435 579 _node_bundling_limit(0),
duke@435 580 _node_bundling_base(NULL),
kvn@1294 581 _java_calls(0),
kvn@1294 582 _inner_loops(0),
twisti@2350 583 _scratch_const_size(-1),
twisti@2350 584 _in_scratch_emit_size(false),
duke@435 585 #ifndef PRODUCT
duke@435 586 _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
duke@435 587 _printer(IdealGraphPrinter::printer()),
duke@435 588 #endif
duke@435 589 _congraph(NULL) {
duke@435 590 C = this;
duke@435 591
duke@435 592 CompileWrapper cw(this);
duke@435 593 #ifndef PRODUCT
duke@435 594 if (TimeCompiler2) {
duke@435 595 tty->print(" ");
duke@435 596 target->holder()->name()->print();
duke@435 597 tty->print(".");
duke@435 598 target->print_short_name();
duke@435 599 tty->print(" ");
duke@435 600 }
duke@435 601 TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
duke@435 602 TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
jrose@535 603 bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
jrose@535 604 if (!print_opto_assembly) {
jrose@535 605 bool print_assembly = (PrintAssembly || _method->should_print_assembly());
jrose@535 606 if (print_assembly && !Disassembler::can_decode()) {
jrose@535 607 tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
jrose@535 608 print_opto_assembly = true;
jrose@535 609 }
jrose@535 610 }
jrose@535 611 set_print_assembly(print_opto_assembly);
never@802 612 set_parsed_irreducible_loop(false);
duke@435 613 #endif
duke@435 614
duke@435 615 if (ProfileTraps) {
duke@435 616 // Make sure the method being compiled gets its own MDO,
duke@435 617 // so we can at least track the decompile_count().
iveresov@2349 618 method()->ensure_method_data();
duke@435 619 }
duke@435 620
duke@435 621 Init(::AliasLevel);
duke@435 622
duke@435 623
duke@435 624 print_compile_messages();
duke@435 625
duke@435 626 if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
duke@435 627 _ilt = InlineTree::build_inline_tree_root();
duke@435 628 else
duke@435 629 _ilt = NULL;
duke@435 630
duke@435 631 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
duke@435 632 assert(num_alias_types() >= AliasIdxRaw, "");
duke@435 633
duke@435 634 #define MINIMUM_NODE_HASH 1023
duke@435 635 // Node list that Iterative GVN will start with
duke@435 636 Unique_Node_List for_igvn(comp_arena());
duke@435 637 set_for_igvn(&for_igvn);
duke@435 638
duke@435 639 // GVN that will be run immediately on new nodes
duke@435 640 uint estimated_size = method()->code_size()*4+64;
duke@435 641 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
duke@435 642 PhaseGVN gvn(node_arena(), estimated_size);
duke@435 643 set_initial_gvn(&gvn);
duke@435 644
duke@435 645 { // Scope for timing the parser
duke@435 646 TracePhase t3("parse", &_t_parser, true);
duke@435 647
duke@435 648 // Put top into the hash table ASAP.
duke@435 649 initial_gvn()->transform_no_reclaim(top());
duke@435 650
duke@435 651 // Set up tf(), start(), and find a CallGenerator.
johnc@2781 652 CallGenerator* cg = NULL;
duke@435 653 if (is_osr_compilation()) {
duke@435 654 const TypeTuple *domain = StartOSRNode::osr_domain();
duke@435 655 const TypeTuple *range = TypeTuple::make_range(method()->signature());
duke@435 656 init_tf(TypeFunc::make(domain, range));
kvn@4115 657 StartNode* s = new (this) StartOSRNode(root(), domain);
duke@435 658 initial_gvn()->set_type_bottom(s);
duke@435 659 init_start(s);
duke@435 660 cg = CallGenerator::for_osr(method(), entry_bci());
duke@435 661 } else {
duke@435 662 // Normal case.
duke@435 663 init_tf(TypeFunc::make(method()));
kvn@4115 664 StartNode* s = new (this) StartNode(root(), tf()->domain());
duke@435 665 initial_gvn()->set_type_bottom(s);
duke@435 666 init_start(s);
johnc@2781 667 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
johnc@2781 668 // With java.lang.ref.reference.get() we must go through the
johnc@2781 669 // intrinsic when G1 is enabled - even when get() is the root
johnc@2781 670 // method of the compile - so that, if necessary, the value in
johnc@2781 671 // the referent field of the reference object gets recorded by
johnc@2781 672 // the pre-barrier code.
johnc@2781 673 // Specifically, if G1 is enabled, the value in the referent
johnc@2781 674 // field is recorded by the G1 SATB pre barrier. This will
johnc@2781 675 // result in the referent being marked live and the reference
johnc@2781 676 // object removed from the list of discovered references during
johnc@2781 677 // reference processing.
johnc@2781 678 cg = find_intrinsic(method(), false);
johnc@2781 679 }
johnc@2781 680 if (cg == NULL) {
johnc@2781 681 float past_uses = method()->interpreter_invocation_count();
johnc@2781 682 float expected_uses = past_uses;
johnc@2781 683 cg = CallGenerator::for_inline(method(), expected_uses);
johnc@2781 684 }
duke@435 685 }
duke@435 686 if (failing()) return;
duke@435 687 if (cg == NULL) {
duke@435 688 record_method_not_compilable_all_tiers("cannot parse method");
duke@435 689 return;
duke@435 690 }
duke@435 691 JVMState* jvms = build_start_state(start(), tf());
duke@435 692 if ((jvms = cg->generate(jvms)) == NULL) {
duke@435 693 record_method_not_compilable("method parse failed");
duke@435 694 return;
duke@435 695 }
duke@435 696 GraphKit kit(jvms);
duke@435 697
duke@435 698 if (!kit.stopped()) {
duke@435 699 // Accept return values, and transfer control we know not where.
duke@435 700 // This is done by a special, unique ReturnNode bound to root.
duke@435 701 return_values(kit.jvms());
duke@435 702 }
duke@435 703
duke@435 704 if (kit.has_exceptions()) {
duke@435 705 // Any exceptions that escape from this call must be rethrown
duke@435 706 // to whatever caller is dynamically above us on the stack.
duke@435 707 // This is done by a special, unique RethrowNode bound to root.
duke@435 708 rethrow_exceptions(kit.transfer_exceptions_into_jvms());
duke@435 709 }
duke@435 710
never@1515 711 if (!failing() && has_stringbuilder()) {
never@1515 712 {
never@1515 713 // remove useless nodes to make the usage analysis simpler
never@1515 714 ResourceMark rm;
never@1515 715 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
never@1515 716 }
never@1515 717
never@1515 718 {
never@1515 719 ResourceMark rm;
never@1515 720 print_method("Before StringOpts", 3);
never@1515 721 PhaseStringOpts pso(initial_gvn(), &for_igvn);
never@1515 722 print_method("After StringOpts", 3);
never@1515 723 }
never@1515 724
never@1515 725 // now inline anything that we skipped the first time around
never@1515 726 while (_late_inlines.length() > 0) {
never@1515 727 CallGenerator* cg = _late_inlines.pop();
never@1515 728 cg->do_late_inline();
kvn@3260 729 if (failing()) return;
never@1515 730 }
never@1515 731 }
never@1515 732 assert(_late_inlines.length() == 0, "should have been processed");
never@1515 733
never@852 734 print_method("Before RemoveUseless", 3);
never@802 735
duke@435 736 // Remove clutter produced by parsing.
duke@435 737 if (!failing()) {
duke@435 738 ResourceMark rm;
duke@435 739 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
duke@435 740 }
duke@435 741 }
duke@435 742
duke@435 743 // Note: Large methods are capped off in do_one_bytecode().
duke@435 744 if (failing()) return;
duke@435 745
duke@435 746 // After parsing, node notes are no longer automagic.
duke@435 747 // They must be propagated by register_new_node_with_optimizer(),
duke@435 748 // clone(), or the like.
duke@435 749 set_default_node_notes(NULL);
duke@435 750
duke@435 751 for (;;) {
duke@435 752 int successes = Inline_Warm();
duke@435 753 if (failing()) return;
duke@435 754 if (successes == 0) break;
duke@435 755 }
duke@435 756
duke@435 757 // Drain the list.
duke@435 758 Finish_Warm();
duke@435 759 #ifndef PRODUCT
duke@435 760 if (_printer) {
duke@435 761 _printer->print_inlining(this);
duke@435 762 }
duke@435 763 #endif
duke@435 764
duke@435 765 if (failing()) return;
duke@435 766 NOT_PRODUCT( verify_graph_edges(); )
duke@435 767
duke@435 768 // Now optimize
duke@435 769 Optimize();
duke@435 770 if (failing()) return;
duke@435 771 NOT_PRODUCT( verify_graph_edges(); )
duke@435 772
duke@435 773 #ifndef PRODUCT
duke@435 774 if (PrintIdeal) {
duke@435 775 ttyLocker ttyl; // keep the following output all in one block
duke@435 776 // This output goes directly to the tty, not the compiler log.
duke@435 777 // To enable tools to match it up with the compilation activity,
duke@435 778 // be sure to tag this tty output with the compile ID.
duke@435 779 if (xtty != NULL) {
duke@435 780 xtty->head("ideal compile_id='%d'%s", compile_id(),
duke@435 781 is_osr_compilation() ? " compile_kind='osr'" :
duke@435 782 "");
duke@435 783 }
duke@435 784 root()->dump(9999);
duke@435 785 if (xtty != NULL) {
duke@435 786 xtty->tail("ideal");
duke@435 787 }
duke@435 788 }
duke@435 789 #endif
duke@435 790
duke@435 791 // Now that we know the size of all the monitors we can add a fixed slot
duke@435 792 // for the original deopt pc.
duke@435 793
duke@435 794 _orig_pc_slot = fixed_slots();
duke@435 795 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
duke@435 796 set_fixed_slots(next_slot);
duke@435 797
duke@435 798 // Now generate code
duke@435 799 Code_Gen();
duke@435 800 if (failing()) return;
duke@435 801
duke@435 802 // Check if we want to skip execution of all compiled code.
duke@435 803 {
duke@435 804 #ifndef PRODUCT
duke@435 805 if (OptoNoExecute) {
duke@435 806 record_method_not_compilable("+OptoNoExecute"); // Flag as failed
duke@435 807 return;
duke@435 808 }
duke@435 809 TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
duke@435 810 #endif
duke@435 811
duke@435 812 if (is_osr_compilation()) {
duke@435 813 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
duke@435 814 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
duke@435 815 } else {
duke@435 816 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
duke@435 817 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
duke@435 818 }
duke@435 819
duke@435 820 env()->register_method(_method, _entry_bci,
duke@435 821 &_code_offsets,
duke@435 822 _orig_pc_slot_offset_in_bytes,
duke@435 823 code_buffer(),
duke@435 824 frame_size_in_words(), _oop_map_set,
duke@435 825 &_handler_table, &_inc_table,
duke@435 826 compiler,
duke@435 827 env()->comp_level(),
kvn@4103 828 has_unsafe_access(),
kvn@4103 829 SharedRuntime::is_wide_vector(max_vector_size())
duke@435 830 );
duke@435 831 }
duke@435 832 }
duke@435 833
duke@435 834 //------------------------------Compile----------------------------------------
duke@435 835 // Compile a runtime stub
duke@435 836 Compile::Compile( ciEnv* ci_env,
duke@435 837 TypeFunc_generator generator,
duke@435 838 address stub_function,
duke@435 839 const char *stub_name,
duke@435 840 int is_fancy_jump,
duke@435 841 bool pass_tls,
duke@435 842 bool save_arg_registers,
duke@435 843 bool return_pc )
duke@435 844 : Phase(Compiler),
duke@435 845 _env(ci_env),
duke@435 846 _log(ci_env->log()),
duke@435 847 _compile_id(-1),
duke@435 848 _save_argument_registers(save_arg_registers),
duke@435 849 _method(NULL),
duke@435 850 _stub_name(stub_name),
duke@435 851 _stub_function(stub_function),
duke@435 852 _stub_entry_point(NULL),
duke@435 853 _entry_bci(InvocationEntryBci),
duke@435 854 _initial_gvn(NULL),
duke@435 855 _for_igvn(NULL),
duke@435 856 _warm_calls(NULL),
duke@435 857 _orig_pc_slot(0),
duke@435 858 _orig_pc_slot_offset_in_bytes(0),
duke@435 859 _subsume_loads(true),
kvn@473 860 _do_escape_analysis(false),
duke@435 861 _failure_reason(NULL),
duke@435 862 _code_buffer("Compile::Fill_buffer"),
twisti@1700 863 _has_method_handle_invokes(false),
twisti@2350 864 _mach_constant_base_node(NULL),
duke@435 865 _node_bundling_limit(0),
duke@435 866 _node_bundling_base(NULL),
kvn@1294 867 _java_calls(0),
kvn@1294 868 _inner_loops(0),
duke@435 869 #ifndef PRODUCT
duke@435 870 _trace_opto_output(TraceOptoOutput),
duke@435 871 _printer(NULL),
duke@435 872 #endif
duke@435 873 _congraph(NULL) {
duke@435 874 C = this;
duke@435 875
duke@435 876 #ifndef PRODUCT
duke@435 877 TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
duke@435 878 TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
duke@435 879 set_print_assembly(PrintFrameConverterAssembly);
never@802 880 set_parsed_irreducible_loop(false);
duke@435 881 #endif
duke@435 882 CompileWrapper cw(this);
duke@435 883 Init(/*AliasLevel=*/ 0);
duke@435 884 init_tf((*generator)());
duke@435 885
duke@435 886 {
duke@435 887 // The following is a dummy for the sake of GraphKit::gen_stub
duke@435 888 Unique_Node_List for_igvn(comp_arena());
duke@435 889 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
duke@435 890 PhaseGVN gvn(Thread::current()->resource_area(),255);
duke@435 891 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
duke@435 892 gvn.transform_no_reclaim(top());
duke@435 893
duke@435 894 GraphKit kit;
duke@435 895 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
duke@435 896 }
duke@435 897
duke@435 898 NOT_PRODUCT( verify_graph_edges(); )
duke@435 899 Code_Gen();
duke@435 900 if (failing()) return;
duke@435 901
duke@435 902
duke@435 903 // Entry point will be accessed using compile->stub_entry_point();
duke@435 904 if (code_buffer() == NULL) {
duke@435 905 Matcher::soft_match_failure();
duke@435 906 } else {
duke@435 907 if (PrintAssembly && (WizardMode || Verbose))
duke@435 908 tty->print_cr("### Stub::%s", stub_name);
duke@435 909
duke@435 910 if (!failing()) {
duke@435 911 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
duke@435 912
duke@435 913 // Make the NMethod
duke@435 914 // For now we mark the frame as never safe for profile stackwalking
duke@435 915 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
duke@435 916 code_buffer(),
duke@435 917 CodeOffsets::frame_never_safe,
duke@435 918 // _code_offsets.value(CodeOffsets::Frame_Complete),
duke@435 919 frame_size_in_words(),
duke@435 920 _oop_map_set,
duke@435 921 save_arg_registers);
duke@435 922 assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
duke@435 923
duke@435 924 _stub_entry_point = rs->entry_point();
duke@435 925 }
duke@435 926 }
duke@435 927 }
duke@435 928
duke@435 929 //------------------------------Init-------------------------------------------
duke@435 930 // Prepare for a single compilation
duke@435 931 void Compile::Init(int aliaslevel) {
duke@435 932 _unique = 0;
duke@435 933 _regalloc = NULL;
duke@435 934
duke@435 935 _tf = NULL; // filled in later
duke@435 936 _top = NULL; // cached later
duke@435 937 _matcher = NULL; // filled in later
duke@435 938 _cfg = NULL; // filled in later
duke@435 939
duke@435 940 set_24_bit_selection_and_mode(Use24BitFP, false);
duke@435 941
duke@435 942 _node_note_array = NULL;
duke@435 943 _default_node_notes = NULL;
duke@435 944
duke@435 945 _immutable_memory = NULL; // filled in at first inquiry
duke@435 946
duke@435 947 // Globally visible Nodes
duke@435 948 // First set TOP to NULL to give safe behavior during creation of RootNode
duke@435 949 set_cached_top_node(NULL);
kvn@4115 950 set_root(new (this) RootNode());
duke@435 951 // Now that you have a Root to point to, create the real TOP
kvn@4115 952 set_cached_top_node( new (this) ConNode(Type::TOP) );
duke@435 953 set_recent_alloc(NULL, NULL);
duke@435 954
duke@435 955 // Create Debug Information Recorder to record scopes, oopmaps, etc.
coleenp@4037 956 env()->set_oop_recorder(new OopRecorder(env()->arena()));
duke@435 957 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
duke@435 958 env()->set_dependencies(new Dependencies(env()));
duke@435 959
duke@435 960 _fixed_slots = 0;
duke@435 961 set_has_split_ifs(false);
duke@435 962 set_has_loops(has_method() && method()->has_loops()); // first approximation
never@1515 963 set_has_stringbuilder(false);
duke@435 964 _trap_can_recompile = false; // no traps emitted yet
duke@435 965 _major_progress = true; // start out assuming good things will happen
duke@435 966 set_has_unsafe_access(false);
kvn@4103 967 set_max_vector_size(0);
duke@435 968 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
duke@435 969 set_decompile_count(0);
duke@435 970
rasbold@853 971 set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
iveresov@2138 972 set_num_loop_opts(LoopOptsCount);
iveresov@2138 973 set_do_inlining(Inline);
iveresov@2138 974 set_max_inline_size(MaxInlineSize);
iveresov@2138 975 set_freq_inline_size(FreqInlineSize);
iveresov@2138 976 set_do_scheduling(OptoScheduling);
iveresov@2138 977 set_do_count_invocations(false);
iveresov@2138 978 set_do_method_data_update(false);
duke@435 979
duke@435 980 if (debug_info()->recording_non_safepoints()) {
duke@435 981 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
duke@435 982 (comp_arena(), 8, 0, NULL));
duke@435 983 set_default_node_notes(Node_Notes::make(this));
duke@435 984 }
duke@435 985
duke@435 986 // // -- Initialize types before each compile --
duke@435 987 // // Update cached type information
duke@435 988 // if( _method && _method->constants() )
duke@435 989 // Type::update_loaded_types(_method, _method->constants());
duke@435 990
duke@435 991 // Init alias_type map.
kvn@473 992 if (!_do_escape_analysis && aliaslevel == 3)
duke@435 993 aliaslevel = 2; // No unique types without escape analysis
duke@435 994 _AliasLevel = aliaslevel;
duke@435 995 const int grow_ats = 16;
duke@435 996 _max_alias_types = grow_ats;
duke@435 997 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
duke@435 998 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
duke@435 999 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
duke@435 1000 {
duke@435 1001 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
duke@435 1002 }
duke@435 1003 // Initialize the first few types.
duke@435 1004 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
duke@435 1005 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
duke@435 1006 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
duke@435 1007 _num_alias_types = AliasIdxRaw+1;
duke@435 1008 // Zero out the alias type cache.
duke@435 1009 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
duke@435 1010 // A NULL adr_type hits in the cache right away. Preload the right answer.
duke@435 1011 probe_alias_cache(NULL)->_index = AliasIdxTop;
duke@435 1012
duke@435 1013 _intrinsics = NULL;
kvn@2040 1014 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
kvn@2040 1015 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
duke@435 1016 register_library_intrinsics();
duke@435 1017 }
duke@435 1018
duke@435 1019 //---------------------------init_start----------------------------------------
duke@435 1020 // Install the StartNode on this compile object.
duke@435 1021 void Compile::init_start(StartNode* s) {
duke@435 1022 if (failing())
duke@435 1023 return; // already failing
duke@435 1024 assert(s == start(), "");
duke@435 1025 }
duke@435 1026
duke@435 1027 StartNode* Compile::start() const {
duke@435 1028 assert(!failing(), "");
duke@435 1029 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
duke@435 1030 Node* start = root()->fast_out(i);
duke@435 1031 if( start->is_Start() )
duke@435 1032 return start->as_Start();
duke@435 1033 }
duke@435 1034 ShouldNotReachHere();
duke@435 1035 return NULL;
duke@435 1036 }
duke@435 1037
duke@435 1038 //-------------------------------immutable_memory-------------------------------------
duke@435 1039 // Access immutable memory
duke@435 1040 Node* Compile::immutable_memory() {
duke@435 1041 if (_immutable_memory != NULL) {
duke@435 1042 return _immutable_memory;
duke@435 1043 }
duke@435 1044 StartNode* s = start();
duke@435 1045 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
duke@435 1046 Node *p = s->fast_out(i);
duke@435 1047 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
duke@435 1048 _immutable_memory = p;
duke@435 1049 return _immutable_memory;
duke@435 1050 }
duke@435 1051 }
duke@435 1052 ShouldNotReachHere();
duke@435 1053 return NULL;
duke@435 1054 }
duke@435 1055
duke@435 1056 //----------------------set_cached_top_node------------------------------------
duke@435 1057 // Install the cached top node, and make sure Node::is_top works correctly.
duke@435 1058 void Compile::set_cached_top_node(Node* tn) {
duke@435 1059 if (tn != NULL) verify_top(tn);
duke@435 1060 Node* old_top = _top;
duke@435 1061 _top = tn;
duke@435 1062 // Calling Node::setup_is_top allows the nodes the chance to adjust
duke@435 1063 // their _out arrays.
duke@435 1064 if (_top != NULL) _top->setup_is_top();
duke@435 1065 if (old_top != NULL) old_top->setup_is_top();
duke@435 1066 assert(_top == NULL || top()->is_top(), "");
duke@435 1067 }
duke@435 1068
duke@435 1069 #ifndef PRODUCT
duke@435 1070 void Compile::verify_top(Node* tn) const {
duke@435 1071 if (tn != NULL) {
duke@435 1072 assert(tn->is_Con(), "top node must be a constant");
duke@435 1073 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
duke@435 1074 assert(tn->in(0) != NULL, "must have live top node");
duke@435 1075 }
duke@435 1076 }
duke@435 1077 #endif
duke@435 1078
duke@435 1079
duke@435 1080 ///-------------------Managing Per-Node Debug & Profile Info-------------------
duke@435 1081
duke@435 1082 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
duke@435 1083 guarantee(arr != NULL, "");
duke@435 1084 int num_blocks = arr->length();
duke@435 1085 if (grow_by < num_blocks) grow_by = num_blocks;
duke@435 1086 int num_notes = grow_by * _node_notes_block_size;
duke@435 1087 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
duke@435 1088 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
duke@435 1089 while (num_notes > 0) {
duke@435 1090 arr->append(notes);
duke@435 1091 notes += _node_notes_block_size;
duke@435 1092 num_notes -= _node_notes_block_size;
duke@435 1093 }
duke@435 1094 assert(num_notes == 0, "exact multiple, please");
duke@435 1095 }
duke@435 1096
duke@435 1097 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
duke@435 1098 if (source == NULL || dest == NULL) return false;
duke@435 1099
duke@435 1100 if (dest->is_Con())
duke@435 1101 return false; // Do not push debug info onto constants.
duke@435 1102
duke@435 1103 #ifdef ASSERT
duke@435 1104 // Leave a bread crumb trail pointing to the original node:
duke@435 1105 if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
duke@435 1106 dest->set_debug_orig(source);
duke@435 1107 }
duke@435 1108 #endif
duke@435 1109
duke@435 1110 if (node_note_array() == NULL)
duke@435 1111 return false; // Not collecting any notes now.
duke@435 1112
duke@435 1113 // This is a copy onto a pre-existing node, which may already have notes.
duke@435 1114 // If both nodes have notes, do not overwrite any pre-existing notes.
duke@435 1115 Node_Notes* source_notes = node_notes_at(source->_idx);
duke@435 1116 if (source_notes == NULL || source_notes->is_clear()) return false;
duke@435 1117 Node_Notes* dest_notes = node_notes_at(dest->_idx);
duke@435 1118 if (dest_notes == NULL || dest_notes->is_clear()) {
duke@435 1119 return set_node_notes_at(dest->_idx, source_notes);
duke@435 1120 }
duke@435 1121
duke@435 1122 Node_Notes merged_notes = (*source_notes);
duke@435 1123 // The order of operations here ensures that dest notes will win...
duke@435 1124 merged_notes.update_from(dest_notes);
duke@435 1125 return set_node_notes_at(dest->_idx, &merged_notes);
duke@435 1126 }
duke@435 1127
duke@435 1128
duke@435 1129 //--------------------------allow_range_check_smearing-------------------------
duke@435 1130 // Gating condition for coalescing similar range checks.
duke@435 1131 // Sometimes we try 'speculatively' replacing a series of a range checks by a
duke@435 1132 // single covering check that is at least as strong as any of them.
duke@435 1133 // If the optimization succeeds, the simplified (strengthened) range check
duke@435 1134 // will always succeed. If it fails, we will deopt, and then give up
duke@435 1135 // on the optimization.
duke@435 1136 bool Compile::allow_range_check_smearing() const {
duke@435 1137 // If this method has already thrown a range-check,
duke@435 1138 // assume it was because we already tried range smearing
duke@435 1139 // and it failed.
duke@435 1140 uint already_trapped = trap_count(Deoptimization::Reason_range_check);
duke@435 1141 return !already_trapped;
duke@435 1142 }
duke@435 1143
duke@435 1144
duke@435 1145 //------------------------------flatten_alias_type-----------------------------
duke@435 1146 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
duke@435 1147 int offset = tj->offset();
duke@435 1148 TypePtr::PTR ptr = tj->ptr();
duke@435 1149
kvn@682 1150 // Known instance (scalarizable allocation) alias only with itself.
kvn@682 1151 bool is_known_inst = tj->isa_oopptr() != NULL &&
kvn@682 1152 tj->is_oopptr()->is_known_instance();
kvn@682 1153
duke@435 1154 // Process weird unsafe references.
duke@435 1155 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
duke@435 1156 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
kvn@682 1157 assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
duke@435 1158 tj = TypeOopPtr::BOTTOM;
duke@435 1159 ptr = tj->ptr();
duke@435 1160 offset = tj->offset();
duke@435 1161 }
duke@435 1162
duke@435 1163 // Array pointers need some flattening
duke@435 1164 const TypeAryPtr *ta = tj->isa_aryptr();
kvn@682 1165 if( ta && is_known_inst ) {
kvn@682 1166 if ( offset != Type::OffsetBot &&
kvn@682 1167 offset > arrayOopDesc::length_offset_in_bytes() ) {
kvn@682 1168 offset = Type::OffsetBot; // Flatten constant access into array body only
kvn@682 1169 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
kvn@682 1170 }
kvn@682 1171 } else if( ta && _AliasLevel >= 2 ) {
duke@435 1172 // For arrays indexed by constant indices, we flatten the alias
duke@435 1173 // space to include all of the array body. Only the header, klass
duke@435 1174 // and array length can be accessed un-aliased.
duke@435 1175 if( offset != Type::OffsetBot ) {
coleenp@4037 1176 if( ta->const_oop() ) { // MethodData* or Method*
duke@435 1177 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1178 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
duke@435 1179 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
duke@435 1180 // range is OK as-is.
duke@435 1181 tj = ta = TypeAryPtr::RANGE;
duke@435 1182 } else if( offset == oopDesc::klass_offset_in_bytes() ) {
duke@435 1183 tj = TypeInstPtr::KLASS; // all klass loads look alike
duke@435 1184 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1185 ptr = TypePtr::BotPTR;
duke@435 1186 } else if( offset == oopDesc::mark_offset_in_bytes() ) {
duke@435 1187 tj = TypeInstPtr::MARK;
duke@435 1188 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1189 ptr = TypePtr::BotPTR;
duke@435 1190 } else { // Random constant offset into array body
duke@435 1191 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1192 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
duke@435 1193 }
duke@435 1194 }
duke@435 1195 // Arrays of fixed size alias with arrays of unknown size.
duke@435 1196 if (ta->size() != TypeInt::POS) {
duke@435 1197 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
kvn@682 1198 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
duke@435 1199 }
duke@435 1200 // Arrays of known objects become arrays of unknown objects.
coleenp@548 1201 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
coleenp@548 1202 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
kvn@682 1203 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
coleenp@548 1204 }
duke@435 1205 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
duke@435 1206 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
kvn@682 1207 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
duke@435 1208 }
duke@435 1209 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
duke@435 1210 // cannot be distinguished by bytecode alone.
duke@435 1211 if (ta->elem() == TypeInt::BOOL) {
duke@435 1212 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
duke@435 1213 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
kvn@682 1214 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
duke@435 1215 }
duke@435 1216 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1217 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1218 // Also, make sure exact and non-exact variants alias the same.
duke@435 1219 if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
kvn@2986 1220 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
duke@435 1221 }
duke@435 1222 }
duke@435 1223
duke@435 1224 // Oop pointers need some flattening
duke@435 1225 const TypeInstPtr *to = tj->isa_instptr();
duke@435 1226 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
never@2658 1227 ciInstanceKlass *k = to->klass()->as_instance_klass();
duke@435 1228 if( ptr == TypePtr::Constant ) {
never@2658 1229 if (to->klass() != ciEnv::current()->Class_klass() ||
never@2658 1230 offset < k->size_helper() * wordSize) {
never@2658 1231 // No constant oop pointers (such as Strings); they alias with
never@2658 1232 // unknown strings.
never@2658 1233 assert(!is_known_inst, "not scalarizable allocation");
never@2658 1234 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
never@2658 1235 }
kvn@682 1236 } else if( is_known_inst ) {
kvn@598 1237 tj = to; // Keep NotNull and klass_is_exact for instance type
duke@435 1238 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
duke@435 1239 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1240 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1241 // Also, make sure exact and non-exact variants alias the same.
kvn@682 1242 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
duke@435 1243 }
duke@435 1244 // Canonicalize the holder of this field
coleenp@548 1245 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
duke@435 1246 // First handle header references such as a LoadKlassNode, even if the
duke@435 1247 // object's klass is unloaded at compile time (4965979).
kvn@682 1248 if (!is_known_inst) { // Do it only for non-instance types
kvn@682 1249 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
kvn@682 1250 }
duke@435 1251 } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
never@2658 1252 // Static fields are in the space above the normal instance
never@2658 1253 // fields in the java.lang.Class instance.
never@2658 1254 if (to->klass() != ciEnv::current()->Class_klass()) {
never@2658 1255 to = NULL;
never@2658 1256 tj = TypeOopPtr::BOTTOM;
never@2658 1257 offset = tj->offset();
never@2658 1258 }
duke@435 1259 } else {
duke@435 1260 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
duke@435 1261 if (!k->equals(canonical_holder) || tj->offset() != offset) {
kvn@682 1262 if( is_known_inst ) {
kvn@682 1263 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
kvn@682 1264 } else {
kvn@682 1265 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
kvn@682 1266 }
duke@435 1267 }
duke@435 1268 }
duke@435 1269 }
duke@435 1270
duke@435 1271 // Klass pointers to object array klasses need some flattening
duke@435 1272 const TypeKlassPtr *tk = tj->isa_klassptr();
duke@435 1273 if( tk ) {
duke@435 1274 // If we are referencing a field within a Klass, we need
duke@435 1275 // to assume the worst case of an Object. Both exact and
never@3389 1276 // inexact types must flatten to the same alias class so
never@3389 1277 // use NotNull as the PTR.
duke@435 1278 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
duke@435 1279
never@3389 1280 tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
duke@435 1281 TypeKlassPtr::OBJECT->klass(),
duke@435 1282 offset);
duke@435 1283 }
duke@435 1284
duke@435 1285 ciKlass* klass = tk->klass();
duke@435 1286 if( klass->is_obj_array_klass() ) {
duke@435 1287 ciKlass* k = TypeAryPtr::OOPS->klass();
duke@435 1288 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
duke@435 1289 k = TypeInstPtr::BOTTOM->klass();
duke@435 1290 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
duke@435 1291 }
duke@435 1292
duke@435 1293 // Check for precise loads from the primary supertype array and force them
duke@435 1294 // to the supertype cache alias index. Check for generic array loads from
duke@435 1295 // the primary supertype array and also force them to the supertype cache
duke@435 1296 // alias index. Since the same load can reach both, we need to merge
duke@435 1297 // these 2 disparate memories into the same alias class. Since the
duke@435 1298 // primary supertype array is read-only, there's no chance of confusion
duke@435 1299 // where we bypass an array load and an array store.
stefank@3391 1300 int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
never@3389 1301 if (offset == Type::OffsetBot ||
never@3389 1302 (offset >= primary_supers_offset &&
never@3389 1303 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
stefank@3391 1304 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
stefank@3391 1305 offset = in_bytes(Klass::secondary_super_cache_offset());
duke@435 1306 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
duke@435 1307 }
duke@435 1308 }
duke@435 1309
duke@435 1310 // Flatten all Raw pointers together.
duke@435 1311 if (tj->base() == Type::RawPtr)
duke@435 1312 tj = TypeRawPtr::BOTTOM;
duke@435 1313
duke@435 1314 if (tj->base() == Type::AnyPtr)
duke@435 1315 tj = TypePtr::BOTTOM; // An error, which the caller must check for.
duke@435 1316
duke@435 1317 // Flatten all to bottom for now
duke@435 1318 switch( _AliasLevel ) {
duke@435 1319 case 0:
duke@435 1320 tj = TypePtr::BOTTOM;
duke@435 1321 break;
duke@435 1322 case 1: // Flatten to: oop, static, field or array
duke@435 1323 switch (tj->base()) {
duke@435 1324 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
duke@435 1325 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
duke@435 1326 case Type::AryPtr: // do not distinguish arrays at all
duke@435 1327 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
duke@435 1328 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
duke@435 1329 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
duke@435 1330 default: ShouldNotReachHere();
duke@435 1331 }
duke@435 1332 break;
twisti@1040 1333 case 2: // No collapsing at level 2; keep all splits
twisti@1040 1334 case 3: // No collapsing at level 3; keep all splits
duke@435 1335 break;
duke@435 1336 default:
duke@435 1337 Unimplemented();
duke@435 1338 }
duke@435 1339
duke@435 1340 offset = tj->offset();
duke@435 1341 assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
duke@435 1342
duke@435 1343 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
duke@435 1344 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
duke@435 1345 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
duke@435 1346 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
duke@435 1347 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1348 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1349 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ,
duke@435 1350 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
duke@435 1351 assert( tj->ptr() != TypePtr::TopPTR &&
duke@435 1352 tj->ptr() != TypePtr::AnyNull &&
duke@435 1353 tj->ptr() != TypePtr::Null, "No imprecise addresses" );
duke@435 1354 // assert( tj->ptr() != TypePtr::Constant ||
duke@435 1355 // tj->base() == Type::RawPtr ||
duke@435 1356 // tj->base() == Type::KlassPtr, "No constant oop addresses" );
duke@435 1357
duke@435 1358 return tj;
duke@435 1359 }
duke@435 1360
duke@435 1361 void Compile::AliasType::Init(int i, const TypePtr* at) {
duke@435 1362 _index = i;
duke@435 1363 _adr_type = at;
duke@435 1364 _field = NULL;
duke@435 1365 _is_rewritable = true; // default
duke@435 1366 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
kvn@658 1367 if (atoop != NULL && atoop->is_known_instance()) {
kvn@658 1368 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
duke@435 1369 _general_index = Compile::current()->get_alias_index(gt);
duke@435 1370 } else {
duke@435 1371 _general_index = 0;
duke@435 1372 }
duke@435 1373 }
duke@435 1374
duke@435 1375 //---------------------------------print_on------------------------------------
duke@435 1376 #ifndef PRODUCT
duke@435 1377 void Compile::AliasType::print_on(outputStream* st) {
duke@435 1378 if (index() < 10)
duke@435 1379 st->print("@ <%d> ", index());
duke@435 1380 else st->print("@ <%d>", index());
duke@435 1381 st->print(is_rewritable() ? " " : " RO");
duke@435 1382 int offset = adr_type()->offset();
duke@435 1383 if (offset == Type::OffsetBot)
duke@435 1384 st->print(" +any");
duke@435 1385 else st->print(" +%-3d", offset);
duke@435 1386 st->print(" in ");
duke@435 1387 adr_type()->dump_on(st);
duke@435 1388 const TypeOopPtr* tjp = adr_type()->isa_oopptr();
duke@435 1389 if (field() != NULL && tjp) {
duke@435 1390 if (tjp->klass() != field()->holder() ||
duke@435 1391 tjp->offset() != field()->offset_in_bytes()) {
duke@435 1392 st->print(" != ");
duke@435 1393 field()->print();
duke@435 1394 st->print(" ***");
duke@435 1395 }
duke@435 1396 }
duke@435 1397 }
duke@435 1398
duke@435 1399 void print_alias_types() {
duke@435 1400 Compile* C = Compile::current();
duke@435 1401 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
duke@435 1402 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
duke@435 1403 C->alias_type(idx)->print_on(tty);
duke@435 1404 tty->cr();
duke@435 1405 }
duke@435 1406 }
duke@435 1407 #endif
duke@435 1408
duke@435 1409
duke@435 1410 //----------------------------probe_alias_cache--------------------------------
duke@435 1411 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
duke@435 1412 intptr_t key = (intptr_t) adr_type;
duke@435 1413 key ^= key >> logAliasCacheSize;
duke@435 1414 return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
duke@435 1415 }
duke@435 1416
duke@435 1417
duke@435 1418 //-----------------------------grow_alias_types--------------------------------
duke@435 1419 void Compile::grow_alias_types() {
duke@435 1420 const int old_ats = _max_alias_types; // how many before?
duke@435 1421 const int new_ats = old_ats; // how many more?
duke@435 1422 const int grow_ats = old_ats+new_ats; // how many now?
duke@435 1423 _max_alias_types = grow_ats;
duke@435 1424 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
duke@435 1425 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
duke@435 1426 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
duke@435 1427 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
duke@435 1428 }
duke@435 1429
duke@435 1430
duke@435 1431 //--------------------------------find_alias_type------------------------------
never@2658 1432 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
duke@435 1433 if (_AliasLevel == 0)
duke@435 1434 return alias_type(AliasIdxBot);
duke@435 1435
duke@435 1436 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1437 if (ace->_adr_type == adr_type) {
duke@435 1438 return alias_type(ace->_index);
duke@435 1439 }
duke@435 1440
duke@435 1441 // Handle special cases.
duke@435 1442 if (adr_type == NULL) return alias_type(AliasIdxTop);
duke@435 1443 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
duke@435 1444
duke@435 1445 // Do it the slow way.
duke@435 1446 const TypePtr* flat = flatten_alias_type(adr_type);
duke@435 1447
duke@435 1448 #ifdef ASSERT
duke@435 1449 assert(flat == flatten_alias_type(flat), "idempotent");
duke@435 1450 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr");
duke@435 1451 if (flat->isa_oopptr() && !flat->isa_klassptr()) {
duke@435 1452 const TypeOopPtr* foop = flat->is_oopptr();
kvn@682 1453 // Scalarizable allocations have exact klass always.
kvn@682 1454 bool exact = !foop->klass_is_exact() || foop->is_known_instance();
kvn@682 1455 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
duke@435 1456 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
duke@435 1457 }
duke@435 1458 assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
duke@435 1459 #endif
duke@435 1460
duke@435 1461 int idx = AliasIdxTop;
duke@435 1462 for (int i = 0; i < num_alias_types(); i++) {
duke@435 1463 if (alias_type(i)->adr_type() == flat) {
duke@435 1464 idx = i;
duke@435 1465 break;
duke@435 1466 }
duke@435 1467 }
duke@435 1468
duke@435 1469 if (idx == AliasIdxTop) {
duke@435 1470 if (no_create) return NULL;
duke@435 1471 // Grow the array if necessary.
duke@435 1472 if (_num_alias_types == _max_alias_types) grow_alias_types();
duke@435 1473 // Add a new alias type.
duke@435 1474 idx = _num_alias_types++;
duke@435 1475 _alias_types[idx]->Init(idx, flat);
duke@435 1476 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
duke@435 1477 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
duke@435 1478 if (flat->isa_instptr()) {
duke@435 1479 if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
duke@435 1480 && flat->is_instptr()->klass() == env()->Class_klass())
duke@435 1481 alias_type(idx)->set_rewritable(false);
duke@435 1482 }
duke@435 1483 if (flat->isa_klassptr()) {
stefank@3391 1484 if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
duke@435 1485 alias_type(idx)->set_rewritable(false);
stefank@3391 1486 if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
duke@435 1487 alias_type(idx)->set_rewritable(false);
stefank@3391 1488 if (flat->offset() == in_bytes(Klass::access_flags_offset()))
duke@435 1489 alias_type(idx)->set_rewritable(false);
stefank@3391 1490 if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
duke@435 1491 alias_type(idx)->set_rewritable(false);
duke@435 1492 }
duke@435 1493 // %%% (We would like to finalize JavaThread::threadObj_offset(),
duke@435 1494 // but the base pointer type is not distinctive enough to identify
duke@435 1495 // references into JavaThread.)
duke@435 1496
never@2658 1497 // Check for final fields.
duke@435 1498 const TypeInstPtr* tinst = flat->isa_instptr();
coleenp@548 1499 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
never@2658 1500 ciField* field;
never@2658 1501 if (tinst->const_oop() != NULL &&
never@2658 1502 tinst->klass() == ciEnv::current()->Class_klass() &&
never@2658 1503 tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
never@2658 1504 // static field
never@2658 1505 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
never@2658 1506 field = k->get_field_by_offset(tinst->offset(), true);
never@2658 1507 } else {
never@2658 1508 ciInstanceKlass *k = tinst->klass()->as_instance_klass();
never@2658 1509 field = k->get_field_by_offset(tinst->offset(), false);
never@2658 1510 }
never@2658 1511 assert(field == NULL ||
never@2658 1512 original_field == NULL ||
never@2658 1513 (field->holder() == original_field->holder() &&
never@2658 1514 field->offset() == original_field->offset() &&
never@2658 1515 field->is_static() == original_field->is_static()), "wrong field?");
duke@435 1516 // Set field() and is_rewritable() attributes.
duke@435 1517 if (field != NULL) alias_type(idx)->set_field(field);
duke@435 1518 }
duke@435 1519 }
duke@435 1520
duke@435 1521 // Fill the cache for next time.
duke@435 1522 ace->_adr_type = adr_type;
duke@435 1523 ace->_index = idx;
duke@435 1524 assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
duke@435 1525
duke@435 1526 // Might as well try to fill the cache for the flattened version, too.
duke@435 1527 AliasCacheEntry* face = probe_alias_cache(flat);
duke@435 1528 if (face->_adr_type == NULL) {
duke@435 1529 face->_adr_type = flat;
duke@435 1530 face->_index = idx;
duke@435 1531 assert(alias_type(flat) == alias_type(idx), "flat type must work too");
duke@435 1532 }
duke@435 1533
duke@435 1534 return alias_type(idx);
duke@435 1535 }
duke@435 1536
duke@435 1537
duke@435 1538 Compile::AliasType* Compile::alias_type(ciField* field) {
duke@435 1539 const TypeOopPtr* t;
duke@435 1540 if (field->is_static())
never@2658 1541 t = TypeInstPtr::make(field->holder()->java_mirror());
duke@435 1542 else
duke@435 1543 t = TypeOopPtr::make_from_klass_raw(field->holder());
never@2658 1544 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
duke@435 1545 assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
duke@435 1546 return atp;
duke@435 1547 }
duke@435 1548
duke@435 1549
duke@435 1550 //------------------------------have_alias_type--------------------------------
duke@435 1551 bool Compile::have_alias_type(const TypePtr* adr_type) {
duke@435 1552 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1553 if (ace->_adr_type == adr_type) {
duke@435 1554 return true;
duke@435 1555 }
duke@435 1556
duke@435 1557 // Handle special cases.
duke@435 1558 if (adr_type == NULL) return true;
duke@435 1559 if (adr_type == TypePtr::BOTTOM) return true;
duke@435 1560
never@2658 1561 return find_alias_type(adr_type, true, NULL) != NULL;
duke@435 1562 }
duke@435 1563
duke@435 1564 //-----------------------------must_alias--------------------------------------
duke@435 1565 // True if all values of the given address type are in the given alias category.
duke@435 1566 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1567 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1568 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
duke@435 1569 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1570 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
duke@435 1571
duke@435 1572 // the only remaining possible overlap is identity
duke@435 1573 int adr_idx = get_alias_index(adr_type);
duke@435 1574 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1575 assert(adr_idx == alias_idx ||
duke@435 1576 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
duke@435 1577 && adr_type != TypeOopPtr::BOTTOM),
duke@435 1578 "should not be testing for overlap with an unsafe pointer");
duke@435 1579 return adr_idx == alias_idx;
duke@435 1580 }
duke@435 1581
duke@435 1582 //------------------------------can_alias--------------------------------------
duke@435 1583 // True if any values of the given address type are in the given alias category.
duke@435 1584 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1585 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1586 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
duke@435 1587 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1588 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins
duke@435 1589
duke@435 1590 // the only remaining possible overlap is identity
duke@435 1591 int adr_idx = get_alias_index(adr_type);
duke@435 1592 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1593 return adr_idx == alias_idx;
duke@435 1594 }
duke@435 1595
duke@435 1596
duke@435 1597
duke@435 1598 //---------------------------pop_warm_call-------------------------------------
duke@435 1599 WarmCallInfo* Compile::pop_warm_call() {
duke@435 1600 WarmCallInfo* wci = _warm_calls;
duke@435 1601 if (wci != NULL) _warm_calls = wci->remove_from(wci);
duke@435 1602 return wci;
duke@435 1603 }
duke@435 1604
duke@435 1605 //----------------------------Inline_Warm--------------------------------------
duke@435 1606 int Compile::Inline_Warm() {
duke@435 1607 // If there is room, try to inline some more warm call sites.
duke@435 1608 // %%% Do a graph index compaction pass when we think we're out of space?
duke@435 1609 if (!InlineWarmCalls) return 0;
duke@435 1610
duke@435 1611 int calls_made_hot = 0;
duke@435 1612 int room_to_grow = NodeCountInliningCutoff - unique();
duke@435 1613 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
duke@435 1614 int amount_grown = 0;
duke@435 1615 WarmCallInfo* call;
duke@435 1616 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
duke@435 1617 int est_size = (int)call->size();
duke@435 1618 if (est_size > (room_to_grow - amount_grown)) {
duke@435 1619 // This one won't fit anyway. Get rid of it.
duke@435 1620 call->make_cold();
duke@435 1621 continue;
duke@435 1622 }
duke@435 1623 call->make_hot();
duke@435 1624 calls_made_hot++;
duke@435 1625 amount_grown += est_size;
duke@435 1626 amount_to_grow -= est_size;
duke@435 1627 }
duke@435 1628
duke@435 1629 if (calls_made_hot > 0) set_major_progress();
duke@435 1630 return calls_made_hot;
duke@435 1631 }
duke@435 1632
duke@435 1633
duke@435 1634 //----------------------------Finish_Warm--------------------------------------
duke@435 1635 void Compile::Finish_Warm() {
duke@435 1636 if (!InlineWarmCalls) return;
duke@435 1637 if (failing()) return;
duke@435 1638 if (warm_calls() == NULL) return;
duke@435 1639
duke@435 1640 // Clean up loose ends, if we are out of space for inlining.
duke@435 1641 WarmCallInfo* call;
duke@435 1642 while ((call = pop_warm_call()) != NULL) {
duke@435 1643 call->make_cold();
duke@435 1644 }
duke@435 1645 }
duke@435 1646
cfang@1607 1647 //---------------------cleanup_loop_predicates-----------------------
cfang@1607 1648 // Remove the opaque nodes that protect the predicates so that all unused
cfang@1607 1649 // checks and uncommon_traps will be eliminated from the ideal graph
cfang@1607 1650 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
cfang@1607 1651 if (predicate_count()==0) return;
cfang@1607 1652 for (int i = predicate_count(); i > 0; i--) {
cfang@1607 1653 Node * n = predicate_opaque1_node(i-1);
cfang@1607 1654 assert(n->Opcode() == Op_Opaque1, "must be");
cfang@1607 1655 igvn.replace_node(n, n->in(1));
cfang@1607 1656 }
cfang@1607 1657 assert(predicate_count()==0, "should be clean!");
cfang@1607 1658 }
duke@435 1659
duke@435 1660 //------------------------------Optimize---------------------------------------
duke@435 1661 // Given a graph, optimize it.
duke@435 1662 void Compile::Optimize() {
duke@435 1663 TracePhase t1("optimizer", &_t_optimizer, true);
duke@435 1664
duke@435 1665 #ifndef PRODUCT
duke@435 1666 if (env()->break_at_compile()) {
duke@435 1667 BREAKPOINT;
duke@435 1668 }
duke@435 1669
duke@435 1670 #endif
duke@435 1671
duke@435 1672 ResourceMark rm;
duke@435 1673 int loop_opts_cnt;
duke@435 1674
duke@435 1675 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1676
never@657 1677 print_method("After Parsing");
duke@435 1678
duke@435 1679 {
duke@435 1680 // Iterative Global Value Numbering, including ideal transforms
duke@435 1681 // Initialize IterGVN with types and values from parse-time GVN
duke@435 1682 PhaseIterGVN igvn(initial_gvn());
duke@435 1683 {
duke@435 1684 NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
duke@435 1685 igvn.optimize();
duke@435 1686 }
duke@435 1687
duke@435 1688 print_method("Iter GVN 1", 2);
duke@435 1689
duke@435 1690 if (failing()) return;
duke@435 1691
kvn@1989 1692 // Perform escape analysis
kvn@1989 1693 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
kvn@3260 1694 if (has_loops()) {
kvn@3260 1695 // Cleanup graph (remove dead nodes).
kvn@3260 1696 TracePhase t2("idealLoop", &_t_idealLoop, true);
kvn@3260 1697 PhaseIdealLoop ideal_loop( igvn, false, true );
kvn@3260 1698 if (major_progress()) print_method("PhaseIdealLoop before EA", 2);
kvn@3260 1699 if (failing()) return;
kvn@3260 1700 }
kvn@1989 1701 ConnectionGraph::do_analysis(this, &igvn);
kvn@1989 1702
kvn@1989 1703 if (failing()) return;
kvn@1989 1704
kvn@3311 1705 // Optimize out fields loads from scalar replaceable allocations.
kvn@1989 1706 igvn.optimize();
kvn@3260 1707 print_method("Iter GVN after EA", 2);
kvn@1989 1708
kvn@1989 1709 if (failing()) return;
kvn@1989 1710
kvn@3311 1711 if (congraph() != NULL && macro_count() > 0) {
kvn@3651 1712 NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
kvn@3311 1713 PhaseMacroExpand mexp(igvn);
kvn@3311 1714 mexp.eliminate_macro_nodes();
kvn@3311 1715 igvn.set_delay_transform(false);
kvn@3311 1716
kvn@3311 1717 igvn.optimize();
kvn@3311 1718 print_method("Iter GVN after eliminating allocations and locks", 2);
kvn@3311 1719
kvn@3311 1720 if (failing()) return;
kvn@3311 1721 }
kvn@1989 1722 }
kvn@1989 1723
duke@435 1724 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 1725 // peeling, unrolling, etc.
duke@435 1726
duke@435 1727 // Set loop opts counter
duke@435 1728 loop_opts_cnt = num_loop_opts();
duke@435 1729 if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
duke@435 1730 {
duke@435 1731 TracePhase t2("idealLoop", &_t_idealLoop, true);
kvn@2727 1732 PhaseIdealLoop ideal_loop( igvn, true );
duke@435 1733 loop_opts_cnt--;
duke@435 1734 if (major_progress()) print_method("PhaseIdealLoop 1", 2);
duke@435 1735 if (failing()) return;
duke@435 1736 }
duke@435 1737 // Loop opts pass if partial peeling occurred in previous pass
duke@435 1738 if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
duke@435 1739 TracePhase t3("idealLoop", &_t_idealLoop, true);
kvn@2727 1740 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 1741 loop_opts_cnt--;
duke@435 1742 if (major_progress()) print_method("PhaseIdealLoop 2", 2);
duke@435 1743 if (failing()) return;
duke@435 1744 }
duke@435 1745 // Loop opts pass for loop-unrolling before CCP
duke@435 1746 if(major_progress() && (loop_opts_cnt > 0)) {
duke@435 1747 TracePhase t4("idealLoop", &_t_idealLoop, true);
kvn@2727 1748 PhaseIdealLoop ideal_loop( igvn, false );
duke@435 1749 loop_opts_cnt--;
duke@435 1750 if (major_progress()) print_method("PhaseIdealLoop 3", 2);
duke@435 1751 }
never@1356 1752 if (!failing()) {
never@1356 1753 // Verify that last round of loop opts produced a valid graph
never@1356 1754 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 1755 PhaseIdealLoop::verify(igvn);
never@1356 1756 }
duke@435 1757 }
duke@435 1758 if (failing()) return;
duke@435 1759
duke@435 1760 // Conditional Constant Propagation;
duke@435 1761 PhaseCCP ccp( &igvn );
duke@435 1762 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
duke@435 1763 {
duke@435 1764 TracePhase t2("ccp", &_t_ccp, true);
duke@435 1765 ccp.do_transform();
duke@435 1766 }
duke@435 1767 print_method("PhaseCPP 1", 2);
duke@435 1768
duke@435 1769 assert( true, "Break here to ccp.dump_old2new_map()");
duke@435 1770
duke@435 1771 // Iterative Global Value Numbering, including ideal transforms
duke@435 1772 {
duke@435 1773 NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
duke@435 1774 igvn = ccp;
duke@435 1775 igvn.optimize();
duke@435 1776 }
duke@435 1777
duke@435 1778 print_method("Iter GVN 2", 2);
duke@435 1779
duke@435 1780 if (failing()) return;
duke@435 1781
duke@435 1782 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 1783 // peeling, unrolling, etc.
duke@435 1784 if(loop_opts_cnt > 0) {
duke@435 1785 debug_only( int cnt = 0; );
duke@435 1786 while(major_progress() && (loop_opts_cnt > 0)) {
duke@435 1787 TracePhase t2("idealLoop", &_t_idealLoop, true);
duke@435 1788 assert( cnt++ < 40, "infinite cycle in loop optimization" );
kvn@2727 1789 PhaseIdealLoop ideal_loop( igvn, true);
duke@435 1790 loop_opts_cnt--;
duke@435 1791 if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
duke@435 1792 if (failing()) return;
duke@435 1793 }
duke@435 1794 }
never@1356 1795
never@1356 1796 {
never@1356 1797 // Verify that all previous optimizations produced a valid graph
never@1356 1798 // at least to this point, even if no loop optimizations were done.
never@1356 1799 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 1800 PhaseIdealLoop::verify(igvn);
never@1356 1801 }
never@1356 1802
duke@435 1803 {
duke@435 1804 NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
duke@435 1805 PhaseMacroExpand mex(igvn);
duke@435 1806 if (mex.expand_macro_nodes()) {
duke@435 1807 assert(failing(), "must bail out w/ explicit message");
duke@435 1808 return;
duke@435 1809 }
duke@435 1810 }
duke@435 1811
duke@435 1812 } // (End scope of igvn; run destructor if necessary for asserts.)
duke@435 1813
duke@435 1814 // A method with only infinite loops has no edges entering loops from root
duke@435 1815 {
duke@435 1816 NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
duke@435 1817 if (final_graph_reshaping()) {
duke@435 1818 assert(failing(), "must bail out w/ explicit message");
duke@435 1819 return;
duke@435 1820 }
duke@435 1821 }
duke@435 1822
duke@435 1823 print_method("Optimize finished", 2);
duke@435 1824 }
duke@435 1825
duke@435 1826
duke@435 1827 //------------------------------Code_Gen---------------------------------------
duke@435 1828 // Given a graph, generate code for it
duke@435 1829 void Compile::Code_Gen() {
duke@435 1830 if (failing()) return;
duke@435 1831
duke@435 1832 // Perform instruction selection. You might think we could reclaim Matcher
duke@435 1833 // memory PDQ, but actually the Matcher is used in generating spill code.
duke@435 1834 // Internals of the Matcher (including some VectorSets) must remain live
duke@435 1835 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
duke@435 1836 // set a bit in reclaimed memory.
duke@435 1837
duke@435 1838 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 1839 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 1840 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1841
duke@435 1842 Node_List proj_list;
duke@435 1843 Matcher m(proj_list);
duke@435 1844 _matcher = &m;
duke@435 1845 {
duke@435 1846 TracePhase t2("matcher", &_t_matcher, true);
duke@435 1847 m.match();
duke@435 1848 }
duke@435 1849 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 1850 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 1851 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1852
duke@435 1853 // If you have too many nodes, or if matching has failed, bail out
duke@435 1854 check_node_count(0, "out of nodes matching instructions");
duke@435 1855 if (failing()) return;
duke@435 1856
duke@435 1857 // Build a proper-looking CFG
duke@435 1858 PhaseCFG cfg(node_arena(), root(), m);
duke@435 1859 _cfg = &cfg;
duke@435 1860 {
duke@435 1861 NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
duke@435 1862 cfg.Dominators();
duke@435 1863 if (failing()) return;
duke@435 1864
duke@435 1865 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1866
duke@435 1867 cfg.Estimate_Block_Frequency();
duke@435 1868 cfg.GlobalCodeMotion(m,unique(),proj_list);
never@3654 1869 if (failing()) return;
duke@435 1870
duke@435 1871 print_method("Global code motion", 2);
duke@435 1872
duke@435 1873 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1874
duke@435 1875 debug_only( cfg.verify(); )
duke@435 1876 }
duke@435 1877 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1878
duke@435 1879 PhaseChaitin regalloc(unique(),cfg,m);
duke@435 1880 _regalloc = &regalloc;
duke@435 1881 {
duke@435 1882 TracePhase t2("regalloc", &_t_registerAllocation, true);
duke@435 1883 // Perform any platform dependent preallocation actions. This is used,
duke@435 1884 // for example, to avoid taking an implicit null pointer exception
duke@435 1885 // using the frame pointer on win95.
duke@435 1886 _regalloc->pd_preallocate_hook();
duke@435 1887
duke@435 1888 // Perform register allocation. After Chaitin, use-def chains are
duke@435 1889 // no longer accurate (at spill code) and so must be ignored.
duke@435 1890 // Node->LRG->reg mappings are still accurate.
duke@435 1891 _regalloc->Register_Allocate();
duke@435 1892
duke@435 1893 // Bail out if the allocator builds too many nodes
duke@435 1894 if (failing()) return;
duke@435 1895 }
duke@435 1896
duke@435 1897 // Prior to register allocation we kept empty basic blocks in case the
duke@435 1898 // the allocator needed a place to spill. After register allocation we
duke@435 1899 // are not adding any new instructions. If any basic block is empty, we
duke@435 1900 // can now safely remove it.
duke@435 1901 {
rasbold@853 1902 NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
rasbold@853 1903 cfg.remove_empty();
rasbold@853 1904 if (do_freq_based_layout()) {
rasbold@853 1905 PhaseBlockLayout layout(cfg);
rasbold@853 1906 } else {
rasbold@853 1907 cfg.set_loop_alignment();
rasbold@853 1908 }
rasbold@853 1909 cfg.fixup_flow();
duke@435 1910 }
duke@435 1911
duke@435 1912 // Perform any platform dependent postallocation verifications.
duke@435 1913 debug_only( _regalloc->pd_postallocate_verify_hook(); )
duke@435 1914
duke@435 1915 // Apply peephole optimizations
duke@435 1916 if( OptoPeephole ) {
duke@435 1917 NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
duke@435 1918 PhasePeephole peep( _regalloc, cfg);
duke@435 1919 peep.do_transform();
duke@435 1920 }
duke@435 1921
duke@435 1922 // Convert Nodes to instruction bits in a buffer
duke@435 1923 {
duke@435 1924 // %%%% workspace merge brought two timers together for one job
duke@435 1925 TracePhase t2a("output", &_t_output, true);
duke@435 1926 NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
duke@435 1927 Output();
duke@435 1928 }
duke@435 1929
never@657 1930 print_method("Final Code");
duke@435 1931
duke@435 1932 // He's dead, Jim.
duke@435 1933 _cfg = (PhaseCFG*)0xdeadbeef;
duke@435 1934 _regalloc = (PhaseChaitin*)0xdeadbeef;
duke@435 1935 }
duke@435 1936
duke@435 1937
duke@435 1938 //------------------------------dump_asm---------------------------------------
duke@435 1939 // Dump formatted assembly
duke@435 1940 #ifndef PRODUCT
duke@435 1941 void Compile::dump_asm(int *pcs, uint pc_limit) {
duke@435 1942 bool cut_short = false;
duke@435 1943 tty->print_cr("#");
duke@435 1944 tty->print("# "); _tf->dump(); tty->cr();
duke@435 1945 tty->print_cr("#");
duke@435 1946
duke@435 1947 // For all blocks
duke@435 1948 int pc = 0x0; // Program counter
duke@435 1949 char starts_bundle = ' ';
duke@435 1950 _regalloc->dump_frame();
duke@435 1951
duke@435 1952 Node *n = NULL;
duke@435 1953 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 1954 if (VMThread::should_terminate()) { cut_short = true; break; }
duke@435 1955 Block *b = _cfg->_blocks[i];
duke@435 1956 if (b->is_connector() && !Verbose) continue;
duke@435 1957 n = b->_nodes[0];
duke@435 1958 if (pcs && n->_idx < pc_limit)
duke@435 1959 tty->print("%3.3x ", pcs[n->_idx]);
duke@435 1960 else
duke@435 1961 tty->print(" ");
duke@435 1962 b->dump_head( &_cfg->_bbs );
duke@435 1963 if (b->is_connector()) {
duke@435 1964 tty->print_cr(" # Empty connector block");
duke@435 1965 } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
duke@435 1966 tty->print_cr(" # Block is sole successor of call");
duke@435 1967 }
duke@435 1968
duke@435 1969 // For all instructions
duke@435 1970 Node *delay = NULL;
duke@435 1971 for( uint j = 0; j<b->_nodes.size(); j++ ) {
duke@435 1972 if (VMThread::should_terminate()) { cut_short = true; break; }
duke@435 1973 n = b->_nodes[j];
duke@435 1974 if (valid_bundle_info(n)) {
duke@435 1975 Bundle *bundle = node_bundling(n);
duke@435 1976 if (bundle->used_in_unconditional_delay()) {
duke@435 1977 delay = n;
duke@435 1978 continue;
duke@435 1979 }
duke@435 1980 if (bundle->starts_bundle())
duke@435 1981 starts_bundle = '+';
duke@435 1982 }
duke@435 1983
coleenp@548 1984 if (WizardMode) n->dump();
coleenp@548 1985
duke@435 1986 if( !n->is_Region() && // Dont print in the Assembly
duke@435 1987 !n->is_Phi() && // a few noisely useless nodes
duke@435 1988 !n->is_Proj() &&
duke@435 1989 !n->is_MachTemp() &&
kvn@1535 1990 !n->is_SafePointScalarObject() &&
duke@435 1991 !n->is_Catch() && // Would be nice to print exception table targets
duke@435 1992 !n->is_MergeMem() && // Not very interesting
duke@435 1993 !n->is_top() && // Debug info table constants
duke@435 1994 !(n->is_Con() && !n->is_Mach())// Debug info table constants
duke@435 1995 ) {
duke@435 1996 if (pcs && n->_idx < pc_limit)
duke@435 1997 tty->print("%3.3x", pcs[n->_idx]);
duke@435 1998 else
duke@435 1999 tty->print(" ");
duke@435 2000 tty->print(" %c ", starts_bundle);
duke@435 2001 starts_bundle = ' ';
duke@435 2002 tty->print("\t");
duke@435 2003 n->format(_regalloc, tty);
duke@435 2004 tty->cr();
duke@435 2005 }
duke@435 2006
duke@435 2007 // If we have an instruction with a delay slot, and have seen a delay,
duke@435 2008 // then back up and print it
duke@435 2009 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
duke@435 2010 assert(delay != NULL, "no unconditional delay instruction");
coleenp@548 2011 if (WizardMode) delay->dump();
coleenp@548 2012
duke@435 2013 if (node_bundling(delay)->starts_bundle())
duke@435 2014 starts_bundle = '+';
duke@435 2015 if (pcs && n->_idx < pc_limit)
duke@435 2016 tty->print("%3.3x", pcs[n->_idx]);
duke@435 2017 else
duke@435 2018 tty->print(" ");
duke@435 2019 tty->print(" %c ", starts_bundle);
duke@435 2020 starts_bundle = ' ';
duke@435 2021 tty->print("\t");
duke@435 2022 delay->format(_regalloc, tty);
duke@435 2023 tty->print_cr("");
duke@435 2024 delay = NULL;
duke@435 2025 }
duke@435 2026
duke@435 2027 // Dump the exception table as well
duke@435 2028 if( n->is_Catch() && (Verbose || WizardMode) ) {
duke@435 2029 // Print the exception table for this offset
duke@435 2030 _handler_table.print_subtable_for(pc);
duke@435 2031 }
duke@435 2032 }
duke@435 2033
duke@435 2034 if (pcs && n->_idx < pc_limit)
duke@435 2035 tty->print_cr("%3.3x", pcs[n->_idx]);
duke@435 2036 else
duke@435 2037 tty->print_cr("");
duke@435 2038
duke@435 2039 assert(cut_short || delay == NULL, "no unconditional delay branch");
duke@435 2040
duke@435 2041 } // End of per-block dump
duke@435 2042 tty->print_cr("");
duke@435 2043
duke@435 2044 if (cut_short) tty->print_cr("*** disassembly is cut short ***");
duke@435 2045 }
duke@435 2046 #endif
duke@435 2047
duke@435 2048 //------------------------------Final_Reshape_Counts---------------------------
duke@435 2049 // This class defines counters to help identify when a method
duke@435 2050 // may/must be executed using hardware with only 24-bit precision.
duke@435 2051 struct Final_Reshape_Counts : public StackObj {
duke@435 2052 int _call_count; // count non-inlined 'common' calls
duke@435 2053 int _float_count; // count float ops requiring 24-bit precision
duke@435 2054 int _double_count; // count double ops requiring more precision
duke@435 2055 int _java_call_count; // count non-inlined 'java' calls
kvn@1294 2056 int _inner_loop_count; // count loops which need alignment
duke@435 2057 VectorSet _visited; // Visitation flags
duke@435 2058 Node_List _tests; // Set of IfNodes & PCTableNodes
duke@435 2059
duke@435 2060 Final_Reshape_Counts() :
kvn@1294 2061 _call_count(0), _float_count(0), _double_count(0),
kvn@1294 2062 _java_call_count(0), _inner_loop_count(0),
duke@435 2063 _visited( Thread::current()->resource_area() ) { }
duke@435 2064
duke@435 2065 void inc_call_count () { _call_count ++; }
duke@435 2066 void inc_float_count () { _float_count ++; }
duke@435 2067 void inc_double_count() { _double_count++; }
duke@435 2068 void inc_java_call_count() { _java_call_count++; }
kvn@1294 2069 void inc_inner_loop_count() { _inner_loop_count++; }
duke@435 2070
duke@435 2071 int get_call_count () const { return _call_count ; }
duke@435 2072 int get_float_count () const { return _float_count ; }
duke@435 2073 int get_double_count() const { return _double_count; }
duke@435 2074 int get_java_call_count() const { return _java_call_count; }
kvn@1294 2075 int get_inner_loop_count() const { return _inner_loop_count; }
duke@435 2076 };
duke@435 2077
duke@435 2078 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
duke@435 2079 ciInstanceKlass *k = tp->klass()->as_instance_klass();
duke@435 2080 // Make sure the offset goes inside the instance layout.
coleenp@548 2081 return k->contains_field_offset(tp->offset());
duke@435 2082 // Note that OffsetBot and OffsetTop are very negative.
duke@435 2083 }
duke@435 2084
never@2780 2085 // Eliminate trivially redundant StoreCMs and accumulate their
never@2780 2086 // precedence edges.
never@2780 2087 static void eliminate_redundant_card_marks(Node* n) {
never@2780 2088 assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
never@2780 2089 if (n->in(MemNode::Address)->outcnt() > 1) {
never@2780 2090 // There are multiple users of the same address so it might be
never@2780 2091 // possible to eliminate some of the StoreCMs
never@2780 2092 Node* mem = n->in(MemNode::Memory);
never@2780 2093 Node* adr = n->in(MemNode::Address);
never@2780 2094 Node* val = n->in(MemNode::ValueIn);
never@2780 2095 Node* prev = n;
never@2780 2096 bool done = false;
never@2780 2097 // Walk the chain of StoreCMs eliminating ones that match. As
never@2780 2098 // long as it's a chain of single users then the optimization is
never@2780 2099 // safe. Eliminating partially redundant StoreCMs would require
never@2780 2100 // cloning copies down the other paths.
never@2780 2101 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
never@2780 2102 if (adr == mem->in(MemNode::Address) &&
never@2780 2103 val == mem->in(MemNode::ValueIn)) {
never@2780 2104 // redundant StoreCM
never@2780 2105 if (mem->req() > MemNode::OopStore) {
never@2780 2106 // Hasn't been processed by this code yet.
never@2780 2107 n->add_prec(mem->in(MemNode::OopStore));
never@2780 2108 } else {
never@2780 2109 // Already converted to precedence edge
never@2780 2110 for (uint i = mem->req(); i < mem->len(); i++) {
never@2780 2111 // Accumulate any precedence edges
never@2780 2112 if (mem->in(i) != NULL) {
never@2780 2113 n->add_prec(mem->in(i));
never@2780 2114 }
never@2780 2115 }
never@2780 2116 // Everything above this point has been processed.
never@2780 2117 done = true;
never@2780 2118 }
never@2780 2119 // Eliminate the previous StoreCM
never@2780 2120 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
never@2780 2121 assert(mem->outcnt() == 0, "should be dead");
never@2780 2122 mem->disconnect_inputs(NULL);
never@2780 2123 } else {
never@2780 2124 prev = mem;
never@2780 2125 }
never@2780 2126 mem = prev->in(MemNode::Memory);
never@2780 2127 }
never@2780 2128 }
never@2780 2129 }
never@2780 2130
duke@435 2131 //------------------------------final_graph_reshaping_impl----------------------
duke@435 2132 // Implement items 1-5 from final_graph_reshaping below.
kvn@1294 2133 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc ) {
duke@435 2134
kvn@603 2135 if ( n->outcnt() == 0 ) return; // dead node
duke@435 2136 uint nop = n->Opcode();
duke@435 2137
duke@435 2138 // Check for 2-input instruction with "last use" on right input.
duke@435 2139 // Swap to left input. Implements item (2).
duke@435 2140 if( n->req() == 3 && // two-input instruction
duke@435 2141 n->in(1)->outcnt() > 1 && // left use is NOT a last use
duke@435 2142 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
duke@435 2143 n->in(2)->outcnt() == 1 &&// right use IS a last use
duke@435 2144 !n->in(2)->is_Con() ) { // right use is not a constant
duke@435 2145 // Check for commutative opcode
duke@435 2146 switch( nop ) {
duke@435 2147 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
duke@435 2148 case Op_MaxI: case Op_MinI:
duke@435 2149 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
duke@435 2150 case Op_AndL: case Op_XorL: case Op_OrL:
duke@435 2151 case Op_AndI: case Op_XorI: case Op_OrI: {
duke@435 2152 // Move "last use" input to left by swapping inputs
duke@435 2153 n->swap_edges(1, 2);
duke@435 2154 break;
duke@435 2155 }
duke@435 2156 default:
duke@435 2157 break;
duke@435 2158 }
duke@435 2159 }
duke@435 2160
kvn@1964 2161 #ifdef ASSERT
kvn@1964 2162 if( n->is_Mem() ) {
kvn@1964 2163 Compile* C = Compile::current();
kvn@1964 2164 int alias_idx = C->get_alias_index(n->as_Mem()->adr_type());
kvn@1964 2165 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
kvn@1964 2166 // oop will be recorded in oop map if load crosses safepoint
kvn@1964 2167 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
kvn@1964 2168 LoadNode::is_immutable_value(n->in(MemNode::Address))),
kvn@1964 2169 "raw memory operations should have control edge");
kvn@1964 2170 }
kvn@1964 2171 #endif
duke@435 2172 // Count FPU ops and common calls, implements item (3)
duke@435 2173 switch( nop ) {
duke@435 2174 // Count all float operations that may use FPU
duke@435 2175 case Op_AddF:
duke@435 2176 case Op_SubF:
duke@435 2177 case Op_MulF:
duke@435 2178 case Op_DivF:
duke@435 2179 case Op_NegF:
duke@435 2180 case Op_ModF:
duke@435 2181 case Op_ConvI2F:
duke@435 2182 case Op_ConF:
duke@435 2183 case Op_CmpF:
duke@435 2184 case Op_CmpF3:
duke@435 2185 // case Op_ConvL2F: // longs are split into 32-bit halves
kvn@1294 2186 frc.inc_float_count();
duke@435 2187 break;
duke@435 2188
duke@435 2189 case Op_ConvF2D:
duke@435 2190 case Op_ConvD2F:
kvn@1294 2191 frc.inc_float_count();
kvn@1294 2192 frc.inc_double_count();
duke@435 2193 break;
duke@435 2194
duke@435 2195 // Count all double operations that may use FPU
duke@435 2196 case Op_AddD:
duke@435 2197 case Op_SubD:
duke@435 2198 case Op_MulD:
duke@435 2199 case Op_DivD:
duke@435 2200 case Op_NegD:
duke@435 2201 case Op_ModD:
duke@435 2202 case Op_ConvI2D:
duke@435 2203 case Op_ConvD2I:
duke@435 2204 // case Op_ConvL2D: // handled by leaf call
duke@435 2205 // case Op_ConvD2L: // handled by leaf call
duke@435 2206 case Op_ConD:
duke@435 2207 case Op_CmpD:
duke@435 2208 case Op_CmpD3:
kvn@1294 2209 frc.inc_double_count();
duke@435 2210 break;
duke@435 2211 case Op_Opaque1: // Remove Opaque Nodes before matching
duke@435 2212 case Op_Opaque2: // Remove Opaque Nodes before matching
kvn@603 2213 n->subsume_by(n->in(1));
duke@435 2214 break;
duke@435 2215 case Op_CallStaticJava:
duke@435 2216 case Op_CallJava:
duke@435 2217 case Op_CallDynamicJava:
kvn@1294 2218 frc.inc_java_call_count(); // Count java call site;
duke@435 2219 case Op_CallRuntime:
duke@435 2220 case Op_CallLeaf:
duke@435 2221 case Op_CallLeafNoFP: {
duke@435 2222 assert( n->is_Call(), "" );
duke@435 2223 CallNode *call = n->as_Call();
duke@435 2224 // Count call sites where the FP mode bit would have to be flipped.
duke@435 2225 // Do not count uncommon runtime calls:
duke@435 2226 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
duke@435 2227 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
duke@435 2228 if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
kvn@1294 2229 frc.inc_call_count(); // Count the call site
duke@435 2230 } else { // See if uncommon argument is shared
duke@435 2231 Node *n = call->in(TypeFunc::Parms);
duke@435 2232 int nop = n->Opcode();
duke@435 2233 // Clone shared simple arguments to uncommon calls, item (1).
duke@435 2234 if( n->outcnt() > 1 &&
duke@435 2235 !n->is_Proj() &&
duke@435 2236 nop != Op_CreateEx &&
duke@435 2237 nop != Op_CheckCastPP &&
kvn@766 2238 nop != Op_DecodeN &&
duke@435 2239 !n->is_Mem() ) {
duke@435 2240 Node *x = n->clone();
duke@435 2241 call->set_req( TypeFunc::Parms, x );
duke@435 2242 }
duke@435 2243 }
duke@435 2244 break;
duke@435 2245 }
duke@435 2246
duke@435 2247 case Op_StoreD:
duke@435 2248 case Op_LoadD:
duke@435 2249 case Op_LoadD_unaligned:
kvn@1294 2250 frc.inc_double_count();
duke@435 2251 goto handle_mem;
duke@435 2252 case Op_StoreF:
duke@435 2253 case Op_LoadF:
kvn@1294 2254 frc.inc_float_count();
duke@435 2255 goto handle_mem;
duke@435 2256
never@2780 2257 case Op_StoreCM:
never@2780 2258 {
never@2780 2259 // Convert OopStore dependence into precedence edge
never@2780 2260 Node* prec = n->in(MemNode::OopStore);
never@2780 2261 n->del_req(MemNode::OopStore);
never@2780 2262 n->add_prec(prec);
never@2780 2263 eliminate_redundant_card_marks(n);
never@2780 2264 }
never@2780 2265
never@2780 2266 // fall through
never@2780 2267
duke@435 2268 case Op_StoreB:
duke@435 2269 case Op_StoreC:
duke@435 2270 case Op_StorePConditional:
duke@435 2271 case Op_StoreI:
duke@435 2272 case Op_StoreL:
kvn@855 2273 case Op_StoreIConditional:
duke@435 2274 case Op_StoreLConditional:
duke@435 2275 case Op_CompareAndSwapI:
duke@435 2276 case Op_CompareAndSwapL:
duke@435 2277 case Op_CompareAndSwapP:
coleenp@548 2278 case Op_CompareAndSwapN:
roland@4106 2279 case Op_GetAndAddI:
roland@4106 2280 case Op_GetAndAddL:
roland@4106 2281 case Op_GetAndSetI:
roland@4106 2282 case Op_GetAndSetL:
roland@4106 2283 case Op_GetAndSetP:
roland@4106 2284 case Op_GetAndSetN:
duke@435 2285 case Op_StoreP:
coleenp@548 2286 case Op_StoreN:
duke@435 2287 case Op_LoadB:
twisti@1059 2288 case Op_LoadUB:
twisti@993 2289 case Op_LoadUS:
duke@435 2290 case Op_LoadI:
twisti@1059 2291 case Op_LoadUI2L:
duke@435 2292 case Op_LoadKlass:
kvn@599 2293 case Op_LoadNKlass:
duke@435 2294 case Op_LoadL:
duke@435 2295 case Op_LoadL_unaligned:
duke@435 2296 case Op_LoadPLocked:
duke@435 2297 case Op_LoadP:
coleenp@548 2298 case Op_LoadN:
duke@435 2299 case Op_LoadRange:
duke@435 2300 case Op_LoadS: {
duke@435 2301 handle_mem:
duke@435 2302 #ifdef ASSERT
duke@435 2303 if( VerifyOptoOopOffsets ) {
duke@435 2304 assert( n->is_Mem(), "" );
duke@435 2305 MemNode *mem = (MemNode*)n;
duke@435 2306 // Check to see if address types have grounded out somehow.
duke@435 2307 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
duke@435 2308 assert( !tp || oop_offset_is_sane(tp), "" );
duke@435 2309 }
duke@435 2310 #endif
duke@435 2311 break;
duke@435 2312 }
duke@435 2313
duke@435 2314 case Op_AddP: { // Assert sane base pointers
kvn@617 2315 Node *addp = n->in(AddPNode::Address);
duke@435 2316 assert( !addp->is_AddP() ||
duke@435 2317 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
duke@435 2318 addp->in(AddPNode::Base) == n->in(AddPNode::Base),
duke@435 2319 "Base pointers must match" );
kvn@617 2320 #ifdef _LP64
kvn@617 2321 if (UseCompressedOops &&
kvn@617 2322 addp->Opcode() == Op_ConP &&
kvn@617 2323 addp == n->in(AddPNode::Base) &&
kvn@617 2324 n->in(AddPNode::Offset)->is_Con()) {
kvn@617 2325 // Use addressing with narrow klass to load with offset on x86.
kvn@617 2326 // On sparc loading 32-bits constant and decoding it have less
kvn@617 2327 // instructions (4) then load 64-bits constant (7).
kvn@617 2328 // Do this transformation here since IGVN will convert ConN back to ConP.
kvn@617 2329 const Type* t = addp->bottom_type();
kvn@617 2330 if (t->isa_oopptr()) {
kvn@617 2331 Node* nn = NULL;
kvn@617 2332
kvn@617 2333 // Look for existing ConN node of the same exact type.
kvn@617 2334 Compile* C = Compile::current();
kvn@617 2335 Node* r = C->root();
kvn@617 2336 uint cnt = r->outcnt();
kvn@617 2337 for (uint i = 0; i < cnt; i++) {
kvn@617 2338 Node* m = r->raw_out(i);
kvn@617 2339 if (m!= NULL && m->Opcode() == Op_ConN &&
kvn@656 2340 m->bottom_type()->make_ptr() == t) {
kvn@617 2341 nn = m;
kvn@617 2342 break;
kvn@617 2343 }
kvn@617 2344 }
kvn@617 2345 if (nn != NULL) {
kvn@617 2346 // Decode a narrow oop to match address
kvn@617 2347 // [R12 + narrow_oop_reg<<3 + offset]
kvn@4115 2348 nn = new (C) DecodeNNode(nn, t);
kvn@617 2349 n->set_req(AddPNode::Base, nn);
kvn@617 2350 n->set_req(AddPNode::Address, nn);
kvn@617 2351 if (addp->outcnt() == 0) {
kvn@617 2352 addp->disconnect_inputs(NULL);
kvn@617 2353 }
kvn@617 2354 }
kvn@617 2355 }
kvn@617 2356 }
kvn@617 2357 #endif
duke@435 2358 break;
duke@435 2359 }
duke@435 2360
kvn@599 2361 #ifdef _LP64
kvn@803 2362 case Op_CastPP:
kvn@1930 2363 if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
kvn@803 2364 Compile* C = Compile::current();
kvn@803 2365 Node* in1 = n->in(1);
kvn@803 2366 const Type* t = n->bottom_type();
kvn@803 2367 Node* new_in1 = in1->clone();
kvn@803 2368 new_in1->as_DecodeN()->set_type(t);
kvn@803 2369
kvn@1930 2370 if (!Matcher::narrow_oop_use_complex_address()) {
kvn@803 2371 //
kvn@803 2372 // x86, ARM and friends can handle 2 adds in addressing mode
kvn@803 2373 // and Matcher can fold a DecodeN node into address by using
kvn@803 2374 // a narrow oop directly and do implicit NULL check in address:
kvn@803 2375 //
kvn@803 2376 // [R12 + narrow_oop_reg<<3 + offset]
kvn@803 2377 // NullCheck narrow_oop_reg
kvn@803 2378 //
kvn@803 2379 // On other platforms (Sparc) we have to keep new DecodeN node and
kvn@803 2380 // use it to do implicit NULL check in address:
kvn@803 2381 //
kvn@803 2382 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2383 // [base_reg + offset]
kvn@803 2384 // NullCheck base_reg
kvn@803 2385 //
twisti@1040 2386 // Pin the new DecodeN node to non-null path on these platform (Sparc)
kvn@803 2387 // to keep the information to which NULL check the new DecodeN node
kvn@803 2388 // corresponds to use it as value in implicit_null_check().
kvn@803 2389 //
kvn@803 2390 new_in1->set_req(0, n->in(0));
kvn@803 2391 }
kvn@803 2392
kvn@803 2393 n->subsume_by(new_in1);
kvn@803 2394 if (in1->outcnt() == 0) {
kvn@803 2395 in1->disconnect_inputs(NULL);
kvn@803 2396 }
kvn@803 2397 }
kvn@803 2398 break;
kvn@803 2399
kvn@599 2400 case Op_CmpP:
kvn@603 2401 // Do this transformation here to preserve CmpPNode::sub() and
kvn@603 2402 // other TypePtr related Ideal optimizations (for example, ptr nullness).
kvn@766 2403 if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
kvn@766 2404 Node* in1 = n->in(1);
kvn@766 2405 Node* in2 = n->in(2);
kvn@766 2406 if (!in1->is_DecodeN()) {
kvn@766 2407 in2 = in1;
kvn@766 2408 in1 = n->in(2);
kvn@766 2409 }
kvn@766 2410 assert(in1->is_DecodeN(), "sanity");
kvn@766 2411
kvn@599 2412 Compile* C = Compile::current();
kvn@766 2413 Node* new_in2 = NULL;
kvn@766 2414 if (in2->is_DecodeN()) {
kvn@766 2415 new_in2 = in2->in(1);
kvn@766 2416 } else if (in2->Opcode() == Op_ConP) {
kvn@766 2417 const Type* t = in2->bottom_type();
kvn@1930 2418 if (t == TypePtr::NULL_PTR) {
kvn@1930 2419 // Don't convert CmpP null check into CmpN if compressed
kvn@1930 2420 // oops implicit null check is not generated.
kvn@1930 2421 // This will allow to generate normal oop implicit null check.
kvn@1930 2422 if (Matcher::gen_narrow_oop_implicit_null_checks())
kvn@1930 2423 new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
kvn@803 2424 //
kvn@803 2425 // This transformation together with CastPP transformation above
kvn@803 2426 // will generated code for implicit NULL checks for compressed oops.
kvn@803 2427 //
kvn@803 2428 // The original code after Optimize()
kvn@803 2429 //
kvn@803 2430 // LoadN memory, narrow_oop_reg
kvn@803 2431 // decode narrow_oop_reg, base_reg
kvn@803 2432 // CmpP base_reg, NULL
kvn@803 2433 // CastPP base_reg // NotNull
kvn@803 2434 // Load [base_reg + offset], val_reg
kvn@803 2435 //
kvn@803 2436 // after these transformations will be
kvn@803 2437 //
kvn@803 2438 // LoadN memory, narrow_oop_reg
kvn@803 2439 // CmpN narrow_oop_reg, NULL
kvn@803 2440 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2441 // Load [base_reg + offset], val_reg
kvn@803 2442 //
kvn@803 2443 // and the uncommon path (== NULL) will use narrow_oop_reg directly
kvn@803 2444 // since narrow oops can be used in debug info now (see the code in
kvn@803 2445 // final_graph_reshaping_walk()).
kvn@803 2446 //
kvn@803 2447 // At the end the code will be matched to
kvn@803 2448 // on x86:
kvn@803 2449 //
kvn@803 2450 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2451 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg
kvn@803 2452 // NullCheck narrow_oop_reg
kvn@803 2453 //
kvn@803 2454 // and on sparc:
kvn@803 2455 //
kvn@803 2456 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2457 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2458 // Load [base_reg + offset], val_reg
kvn@803 2459 // NullCheck base_reg
kvn@803 2460 //
kvn@599 2461 } else if (t->isa_oopptr()) {
kvn@766 2462 new_in2 = ConNode::make(C, t->make_narrowoop());
kvn@599 2463 }
kvn@599 2464 }
kvn@766 2465 if (new_in2 != NULL) {
kvn@4115 2466 Node* cmpN = new (C) CmpNNode(in1->in(1), new_in2);
kvn@603 2467 n->subsume_by( cmpN );
kvn@766 2468 if (in1->outcnt() == 0) {
kvn@766 2469 in1->disconnect_inputs(NULL);
kvn@766 2470 }
kvn@766 2471 if (in2->outcnt() == 0) {
kvn@766 2472 in2->disconnect_inputs(NULL);
kvn@766 2473 }
kvn@599 2474 }
kvn@599 2475 }
kvn@728 2476 break;
kvn@803 2477
kvn@803 2478 case Op_DecodeN:
kvn@803 2479 assert(!n->in(1)->is_EncodeP(), "should be optimized out");
kvn@1930 2480 // DecodeN could be pinned when it can't be fold into
kvn@927 2481 // an address expression, see the code for Op_CastPP above.
kvn@1930 2482 assert(n->in(0) == NULL || !Matcher::narrow_oop_use_complex_address(), "no control");
kvn@803 2483 break;
kvn@803 2484
kvn@803 2485 case Op_EncodeP: {
kvn@803 2486 Node* in1 = n->in(1);
kvn@803 2487 if (in1->is_DecodeN()) {
kvn@803 2488 n->subsume_by(in1->in(1));
kvn@803 2489 } else if (in1->Opcode() == Op_ConP) {
kvn@803 2490 Compile* C = Compile::current();
kvn@803 2491 const Type* t = in1->bottom_type();
kvn@803 2492 if (t == TypePtr::NULL_PTR) {
kvn@803 2493 n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
kvn@803 2494 } else if (t->isa_oopptr()) {
kvn@803 2495 n->subsume_by(ConNode::make(C, t->make_narrowoop()));
kvn@803 2496 }
kvn@803 2497 }
kvn@803 2498 if (in1->outcnt() == 0) {
kvn@803 2499 in1->disconnect_inputs(NULL);
kvn@803 2500 }
kvn@803 2501 break;
kvn@803 2502 }
kvn@803 2503
never@1515 2504 case Op_Proj: {
never@1515 2505 if (OptimizeStringConcat) {
never@1515 2506 ProjNode* p = n->as_Proj();
never@1515 2507 if (p->_is_io_use) {
never@1515 2508 // Separate projections were used for the exception path which
never@1515 2509 // are normally removed by a late inline. If it wasn't inlined
never@1515 2510 // then they will hang around and should just be replaced with
never@1515 2511 // the original one.
never@1515 2512 Node* proj = NULL;
never@1515 2513 // Replace with just one
never@1515 2514 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
never@1515 2515 Node *use = i.get();
never@1515 2516 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
never@1515 2517 proj = use;
never@1515 2518 break;
never@1515 2519 }
never@1515 2520 }
kvn@3396 2521 assert(proj != NULL, "must be found");
never@1515 2522 p->subsume_by(proj);
never@1515 2523 }
never@1515 2524 }
never@1515 2525 break;
never@1515 2526 }
never@1515 2527
kvn@803 2528 case Op_Phi:
kvn@803 2529 if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
kvn@803 2530 // The EncodeP optimization may create Phi with the same edges
kvn@803 2531 // for all paths. It is not handled well by Register Allocator.
kvn@803 2532 Node* unique_in = n->in(1);
kvn@803 2533 assert(unique_in != NULL, "");
kvn@803 2534 uint cnt = n->req();
kvn@803 2535 for (uint i = 2; i < cnt; i++) {
kvn@803 2536 Node* m = n->in(i);
kvn@803 2537 assert(m != NULL, "");
kvn@803 2538 if (unique_in != m)
kvn@803 2539 unique_in = NULL;
kvn@803 2540 }
kvn@803 2541 if (unique_in != NULL) {
kvn@803 2542 n->subsume_by(unique_in);
kvn@803 2543 }
kvn@803 2544 }
kvn@803 2545 break;
kvn@803 2546
kvn@599 2547 #endif
kvn@599 2548
duke@435 2549 case Op_ModI:
duke@435 2550 if (UseDivMod) {
duke@435 2551 // Check if a%b and a/b both exist
duke@435 2552 Node* d = n->find_similar(Op_DivI);
duke@435 2553 if (d) {
duke@435 2554 // Replace them with a fused divmod if supported
duke@435 2555 Compile* C = Compile::current();
duke@435 2556 if (Matcher::has_match_rule(Op_DivModI)) {
duke@435 2557 DivModINode* divmod = DivModINode::make(C, n);
kvn@603 2558 d->subsume_by(divmod->div_proj());
kvn@603 2559 n->subsume_by(divmod->mod_proj());
duke@435 2560 } else {
duke@435 2561 // replace a%b with a-((a/b)*b)
kvn@4115 2562 Node* mult = new (C) MulINode(d, d->in(2));
kvn@4115 2563 Node* sub = new (C) SubINode(d->in(1), mult);
kvn@603 2564 n->subsume_by( sub );
duke@435 2565 }
duke@435 2566 }
duke@435 2567 }
duke@435 2568 break;
duke@435 2569
duke@435 2570 case Op_ModL:
duke@435 2571 if (UseDivMod) {
duke@435 2572 // Check if a%b and a/b both exist
duke@435 2573 Node* d = n->find_similar(Op_DivL);
duke@435 2574 if (d) {
duke@435 2575 // Replace them with a fused divmod if supported
duke@435 2576 Compile* C = Compile::current();
duke@435 2577 if (Matcher::has_match_rule(Op_DivModL)) {
duke@435 2578 DivModLNode* divmod = DivModLNode::make(C, n);
kvn@603 2579 d->subsume_by(divmod->div_proj());
kvn@603 2580 n->subsume_by(divmod->mod_proj());
duke@435 2581 } else {
duke@435 2582 // replace a%b with a-((a/b)*b)
kvn@4115 2583 Node* mult = new (C) MulLNode(d, d->in(2));
kvn@4115 2584 Node* sub = new (C) SubLNode(d->in(1), mult);
kvn@603 2585 n->subsume_by( sub );
duke@435 2586 }
duke@435 2587 }
duke@435 2588 }
duke@435 2589 break;
duke@435 2590
kvn@3882 2591 case Op_LoadVector:
kvn@3882 2592 case Op_StoreVector:
duke@435 2593 break;
duke@435 2594
duke@435 2595 case Op_PackB:
duke@435 2596 case Op_PackS:
duke@435 2597 case Op_PackI:
duke@435 2598 case Op_PackF:
duke@435 2599 case Op_PackL:
duke@435 2600 case Op_PackD:
duke@435 2601 if (n->req()-1 > 2) {
duke@435 2602 // Replace many operand PackNodes with a binary tree for matching
duke@435 2603 PackNode* p = (PackNode*) n;
kvn@4006 2604 Node* btp = p->binary_tree_pack(Compile::current(), 1, n->req());
kvn@603 2605 n->subsume_by(btp);
duke@435 2606 }
duke@435 2607 break;
kvn@1294 2608 case Op_Loop:
kvn@1294 2609 case Op_CountedLoop:
kvn@1294 2610 if (n->as_Loop()->is_inner_loop()) {
kvn@1294 2611 frc.inc_inner_loop_count();
kvn@1294 2612 }
kvn@1294 2613 break;
roland@2683 2614 case Op_LShiftI:
roland@2683 2615 case Op_RShiftI:
roland@2683 2616 case Op_URShiftI:
roland@2683 2617 case Op_LShiftL:
roland@2683 2618 case Op_RShiftL:
roland@2683 2619 case Op_URShiftL:
roland@2683 2620 if (Matcher::need_masked_shift_count) {
roland@2683 2621 // The cpu's shift instructions don't restrict the count to the
roland@2683 2622 // lower 5/6 bits. We need to do the masking ourselves.
roland@2683 2623 Node* in2 = n->in(2);
roland@2683 2624 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
roland@2683 2625 const TypeInt* t = in2->find_int_type();
roland@2683 2626 if (t != NULL && t->is_con()) {
roland@2683 2627 juint shift = t->get_con();
roland@2683 2628 if (shift > mask) { // Unsigned cmp
roland@2683 2629 Compile* C = Compile::current();
roland@2683 2630 n->set_req(2, ConNode::make(C, TypeInt::make(shift & mask)));
roland@2683 2631 }
roland@2683 2632 } else {
roland@2683 2633 if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
roland@2683 2634 Compile* C = Compile::current();
kvn@4115 2635 Node* shift = new (C) AndINode(in2, ConNode::make(C, TypeInt::make(mask)));
roland@2683 2636 n->set_req(2, shift);
roland@2683 2637 }
roland@2683 2638 }
roland@2683 2639 if (in2->outcnt() == 0) { // Remove dead node
roland@2683 2640 in2->disconnect_inputs(NULL);
roland@2683 2641 }
roland@2683 2642 }
roland@2683 2643 break;
duke@435 2644 default:
duke@435 2645 assert( !n->is_Call(), "" );
duke@435 2646 assert( !n->is_Mem(), "" );
duke@435 2647 break;
duke@435 2648 }
never@562 2649
never@562 2650 // Collect CFG split points
never@562 2651 if (n->is_MultiBranch())
kvn@1294 2652 frc._tests.push(n);
duke@435 2653 }
duke@435 2654
duke@435 2655 //------------------------------final_graph_reshaping_walk---------------------
duke@435 2656 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
duke@435 2657 // requires that the walk visits a node's inputs before visiting the node.
kvn@1294 2658 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
kvn@766 2659 ResourceArea *area = Thread::current()->resource_area();
kvn@766 2660 Unique_Node_List sfpt(area);
kvn@766 2661
kvn@1294 2662 frc._visited.set(root->_idx); // first, mark node as visited
duke@435 2663 uint cnt = root->req();
duke@435 2664 Node *n = root;
duke@435 2665 uint i = 0;
duke@435 2666 while (true) {
duke@435 2667 if (i < cnt) {
duke@435 2668 // Place all non-visited non-null inputs onto stack
duke@435 2669 Node* m = n->in(i);
duke@435 2670 ++i;
kvn@1294 2671 if (m != NULL && !frc._visited.test_set(m->_idx)) {
kvn@766 2672 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
kvn@766 2673 sfpt.push(m);
duke@435 2674 cnt = m->req();
duke@435 2675 nstack.push(n, i); // put on stack parent and next input's index
duke@435 2676 n = m;
duke@435 2677 i = 0;
duke@435 2678 }
duke@435 2679 } else {
duke@435 2680 // Now do post-visit work
kvn@1294 2681 final_graph_reshaping_impl( n, frc );
duke@435 2682 if (nstack.is_empty())
duke@435 2683 break; // finished
duke@435 2684 n = nstack.node(); // Get node from stack
duke@435 2685 cnt = n->req();
duke@435 2686 i = nstack.index();
duke@435 2687 nstack.pop(); // Shift to the next node on stack
duke@435 2688 }
duke@435 2689 }
kvn@766 2690
kvn@1930 2691 // Skip next transformation if compressed oops are not used.
kvn@1930 2692 if (!UseCompressedOops || !Matcher::gen_narrow_oop_implicit_null_checks())
kvn@1930 2693 return;
kvn@1930 2694
kvn@766 2695 // Go over safepoints nodes to skip DecodeN nodes for debug edges.
kvn@766 2696 // It could be done for an uncommon traps or any safepoints/calls
kvn@766 2697 // if the DecodeN node is referenced only in a debug info.
kvn@766 2698 while (sfpt.size() > 0) {
kvn@766 2699 n = sfpt.pop();
kvn@766 2700 JVMState *jvms = n->as_SafePoint()->jvms();
kvn@766 2701 assert(jvms != NULL, "sanity");
kvn@766 2702 int start = jvms->debug_start();
kvn@766 2703 int end = n->req();
kvn@766 2704 bool is_uncommon = (n->is_CallStaticJava() &&
kvn@766 2705 n->as_CallStaticJava()->uncommon_trap_request() != 0);
kvn@766 2706 for (int j = start; j < end; j++) {
kvn@766 2707 Node* in = n->in(j);
kvn@766 2708 if (in->is_DecodeN()) {
kvn@766 2709 bool safe_to_skip = true;
kvn@766 2710 if (!is_uncommon ) {
kvn@766 2711 // Is it safe to skip?
kvn@766 2712 for (uint i = 0; i < in->outcnt(); i++) {
kvn@766 2713 Node* u = in->raw_out(i);
kvn@766 2714 if (!u->is_SafePoint() ||
kvn@766 2715 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
kvn@766 2716 safe_to_skip = false;
kvn@766 2717 }
kvn@766 2718 }
kvn@766 2719 }
kvn@766 2720 if (safe_to_skip) {
kvn@766 2721 n->set_req(j, in->in(1));
kvn@766 2722 }
kvn@766 2723 if (in->outcnt() == 0) {
kvn@766 2724 in->disconnect_inputs(NULL);
kvn@766 2725 }
kvn@766 2726 }
kvn@766 2727 }
kvn@766 2728 }
duke@435 2729 }
duke@435 2730
duke@435 2731 //------------------------------final_graph_reshaping--------------------------
duke@435 2732 // Final Graph Reshaping.
duke@435 2733 //
duke@435 2734 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
duke@435 2735 // and not commoned up and forced early. Must come after regular
duke@435 2736 // optimizations to avoid GVN undoing the cloning. Clone constant
duke@435 2737 // inputs to Loop Phis; these will be split by the allocator anyways.
duke@435 2738 // Remove Opaque nodes.
duke@435 2739 // (2) Move last-uses by commutative operations to the left input to encourage
duke@435 2740 // Intel update-in-place two-address operations and better register usage
duke@435 2741 // on RISCs. Must come after regular optimizations to avoid GVN Ideal
duke@435 2742 // calls canonicalizing them back.
duke@435 2743 // (3) Count the number of double-precision FP ops, single-precision FP ops
duke@435 2744 // and call sites. On Intel, we can get correct rounding either by
duke@435 2745 // forcing singles to memory (requires extra stores and loads after each
duke@435 2746 // FP bytecode) or we can set a rounding mode bit (requires setting and
duke@435 2747 // clearing the mode bit around call sites). The mode bit is only used
duke@435 2748 // if the relative frequency of single FP ops to calls is low enough.
duke@435 2749 // This is a key transform for SPEC mpeg_audio.
duke@435 2750 // (4) Detect infinite loops; blobs of code reachable from above but not
duke@435 2751 // below. Several of the Code_Gen algorithms fail on such code shapes,
duke@435 2752 // so we simply bail out. Happens a lot in ZKM.jar, but also happens
duke@435 2753 // from time to time in other codes (such as -Xcomp finalizer loops, etc).
duke@435 2754 // Detection is by looking for IfNodes where only 1 projection is
duke@435 2755 // reachable from below or CatchNodes missing some targets.
duke@435 2756 // (5) Assert for insane oop offsets in debug mode.
duke@435 2757
duke@435 2758 bool Compile::final_graph_reshaping() {
duke@435 2759 // an infinite loop may have been eliminated by the optimizer,
duke@435 2760 // in which case the graph will be empty.
duke@435 2761 if (root()->req() == 1) {
duke@435 2762 record_method_not_compilable("trivial infinite loop");
duke@435 2763 return true;
duke@435 2764 }
duke@435 2765
kvn@1294 2766 Final_Reshape_Counts frc;
duke@435 2767
duke@435 2768 // Visit everybody reachable!
duke@435 2769 // Allocate stack of size C->unique()/2 to avoid frequent realloc
duke@435 2770 Node_Stack nstack(unique() >> 1);
kvn@1294 2771 final_graph_reshaping_walk(nstack, root(), frc);
duke@435 2772
duke@435 2773 // Check for unreachable (from below) code (i.e., infinite loops).
kvn@1294 2774 for( uint i = 0; i < frc._tests.size(); i++ ) {
kvn@1294 2775 MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
never@562 2776 // Get number of CFG targets.
duke@435 2777 // Note that PCTables include exception targets after calls.
never@562 2778 uint required_outcnt = n->required_outcnt();
never@562 2779 if (n->outcnt() != required_outcnt) {
duke@435 2780 // Check for a few special cases. Rethrow Nodes never take the
duke@435 2781 // 'fall-thru' path, so expected kids is 1 less.
duke@435 2782 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
duke@435 2783 if (n->in(0)->in(0)->is_Call()) {
duke@435 2784 CallNode *call = n->in(0)->in(0)->as_Call();
duke@435 2785 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
never@562 2786 required_outcnt--; // Rethrow always has 1 less kid
duke@435 2787 } else if (call->req() > TypeFunc::Parms &&
duke@435 2788 call->is_CallDynamicJava()) {
duke@435 2789 // Check for null receiver. In such case, the optimizer has
duke@435 2790 // detected that the virtual call will always result in a null
duke@435 2791 // pointer exception. The fall-through projection of this CatchNode
duke@435 2792 // will not be populated.
duke@435 2793 Node *arg0 = call->in(TypeFunc::Parms);
duke@435 2794 if (arg0->is_Type() &&
duke@435 2795 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
never@562 2796 required_outcnt--;
duke@435 2797 }
duke@435 2798 } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
duke@435 2799 call->req() > TypeFunc::Parms+1 &&
duke@435 2800 call->is_CallStaticJava()) {
duke@435 2801 // Check for negative array length. In such case, the optimizer has
duke@435 2802 // detected that the allocation attempt will always result in an
duke@435 2803 // exception. There is no fall-through projection of this CatchNode .
duke@435 2804 Node *arg1 = call->in(TypeFunc::Parms+1);
duke@435 2805 if (arg1->is_Type() &&
duke@435 2806 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
never@562 2807 required_outcnt--;
duke@435 2808 }
duke@435 2809 }
duke@435 2810 }
duke@435 2811 }
never@562 2812 // Recheck with a better notion of 'required_outcnt'
never@562 2813 if (n->outcnt() != required_outcnt) {
duke@435 2814 record_method_not_compilable("malformed control flow");
duke@435 2815 return true; // Not all targets reachable!
duke@435 2816 }
duke@435 2817 }
duke@435 2818 // Check that I actually visited all kids. Unreached kids
duke@435 2819 // must be infinite loops.
duke@435 2820 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
kvn@1294 2821 if (!frc._visited.test(n->fast_out(j)->_idx)) {
duke@435 2822 record_method_not_compilable("infinite loop");
duke@435 2823 return true; // Found unvisited kid; must be unreach
duke@435 2824 }
duke@435 2825 }
duke@435 2826
duke@435 2827 // If original bytecodes contained a mixture of floats and doubles
duke@435 2828 // check if the optimizer has made it homogenous, item (3).
never@1364 2829 if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
kvn@1294 2830 frc.get_float_count() > 32 &&
kvn@1294 2831 frc.get_double_count() == 0 &&
kvn@1294 2832 (10 * frc.get_call_count() < frc.get_float_count()) ) {
duke@435 2833 set_24_bit_selection_and_mode( false, true );
duke@435 2834 }
duke@435 2835
kvn@1294 2836 set_java_calls(frc.get_java_call_count());
kvn@1294 2837 set_inner_loops(frc.get_inner_loop_count());
duke@435 2838
duke@435 2839 // No infinite loops, no reason to bail out.
duke@435 2840 return false;
duke@435 2841 }
duke@435 2842
duke@435 2843 //-----------------------------too_many_traps----------------------------------
duke@435 2844 // Report if there are too many traps at the current method and bci.
duke@435 2845 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
duke@435 2846 bool Compile::too_many_traps(ciMethod* method,
duke@435 2847 int bci,
duke@435 2848 Deoptimization::DeoptReason reason) {
duke@435 2849 ciMethodData* md = method->method_data();
duke@435 2850 if (md->is_empty()) {
duke@435 2851 // Assume the trap has not occurred, or that it occurred only
duke@435 2852 // because of a transient condition during start-up in the interpreter.
duke@435 2853 return false;
duke@435 2854 }
duke@435 2855 if (md->has_trap_at(bci, reason) != 0) {
duke@435 2856 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
duke@435 2857 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 2858 // assume the worst.
duke@435 2859 if (log())
duke@435 2860 log()->elem("observe trap='%s' count='%d'",
duke@435 2861 Deoptimization::trap_reason_name(reason),
duke@435 2862 md->trap_count(reason));
duke@435 2863 return true;
duke@435 2864 } else {
duke@435 2865 // Ignore method/bci and see if there have been too many globally.
duke@435 2866 return too_many_traps(reason, md);
duke@435 2867 }
duke@435 2868 }
duke@435 2869
duke@435 2870 // Less-accurate variant which does not require a method and bci.
duke@435 2871 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
duke@435 2872 ciMethodData* logmd) {
duke@435 2873 if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
duke@435 2874 // Too many traps globally.
duke@435 2875 // Note that we use cumulative trap_count, not just md->trap_count.
duke@435 2876 if (log()) {
duke@435 2877 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
duke@435 2878 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
duke@435 2879 Deoptimization::trap_reason_name(reason),
duke@435 2880 mcount, trap_count(reason));
duke@435 2881 }
duke@435 2882 return true;
duke@435 2883 } else {
duke@435 2884 // The coast is clear.
duke@435 2885 return false;
duke@435 2886 }
duke@435 2887 }
duke@435 2888
duke@435 2889 //--------------------------too_many_recompiles--------------------------------
duke@435 2890 // Report if there are too many recompiles at the current method and bci.
duke@435 2891 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
duke@435 2892 // Is not eager to return true, since this will cause the compiler to use
duke@435 2893 // Action_none for a trap point, to avoid too many recompilations.
duke@435 2894 bool Compile::too_many_recompiles(ciMethod* method,
duke@435 2895 int bci,
duke@435 2896 Deoptimization::DeoptReason reason) {
duke@435 2897 ciMethodData* md = method->method_data();
duke@435 2898 if (md->is_empty()) {
duke@435 2899 // Assume the trap has not occurred, or that it occurred only
duke@435 2900 // because of a transient condition during start-up in the interpreter.
duke@435 2901 return false;
duke@435 2902 }
duke@435 2903 // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
duke@435 2904 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
duke@435 2905 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
duke@435 2906 Deoptimization::DeoptReason per_bc_reason
duke@435 2907 = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
duke@435 2908 if ((per_bc_reason == Deoptimization::Reason_none
duke@435 2909 || md->has_trap_at(bci, reason) != 0)
duke@435 2910 // The trap frequency measure we care about is the recompile count:
duke@435 2911 && md->trap_recompiled_at(bci)
duke@435 2912 && md->overflow_recompile_count() >= bc_cutoff) {
duke@435 2913 // Do not emit a trap here if it has already caused recompilations.
duke@435 2914 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 2915 // assume the worst.
duke@435 2916 if (log())
duke@435 2917 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
duke@435 2918 Deoptimization::trap_reason_name(reason),
duke@435 2919 md->trap_count(reason),
duke@435 2920 md->overflow_recompile_count());
duke@435 2921 return true;
duke@435 2922 } else if (trap_count(reason) != 0
duke@435 2923 && decompile_count() >= m_cutoff) {
duke@435 2924 // Too many recompiles globally, and we have seen this sort of trap.
duke@435 2925 // Use cumulative decompile_count, not just md->decompile_count.
duke@435 2926 if (log())
duke@435 2927 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
duke@435 2928 Deoptimization::trap_reason_name(reason),
duke@435 2929 md->trap_count(reason), trap_count(reason),
duke@435 2930 md->decompile_count(), decompile_count());
duke@435 2931 return true;
duke@435 2932 } else {
duke@435 2933 // The coast is clear.
duke@435 2934 return false;
duke@435 2935 }
duke@435 2936 }
duke@435 2937
duke@435 2938
duke@435 2939 #ifndef PRODUCT
duke@435 2940 //------------------------------verify_graph_edges---------------------------
duke@435 2941 // Walk the Graph and verify that there is a one-to-one correspondence
duke@435 2942 // between Use-Def edges and Def-Use edges in the graph.
duke@435 2943 void Compile::verify_graph_edges(bool no_dead_code) {
duke@435 2944 if (VerifyGraphEdges) {
duke@435 2945 ResourceArea *area = Thread::current()->resource_area();
duke@435 2946 Unique_Node_List visited(area);
duke@435 2947 // Call recursive graph walk to check edges
duke@435 2948 _root->verify_edges(visited);
duke@435 2949 if (no_dead_code) {
duke@435 2950 // Now make sure that no visited node is used by an unvisited node.
duke@435 2951 bool dead_nodes = 0;
duke@435 2952 Unique_Node_List checked(area);
duke@435 2953 while (visited.size() > 0) {
duke@435 2954 Node* n = visited.pop();
duke@435 2955 checked.push(n);
duke@435 2956 for (uint i = 0; i < n->outcnt(); i++) {
duke@435 2957 Node* use = n->raw_out(i);
duke@435 2958 if (checked.member(use)) continue; // already checked
duke@435 2959 if (visited.member(use)) continue; // already in the graph
duke@435 2960 if (use->is_Con()) continue; // a dead ConNode is OK
duke@435 2961 // At this point, we have found a dead node which is DU-reachable.
duke@435 2962 if (dead_nodes++ == 0)
duke@435 2963 tty->print_cr("*** Dead nodes reachable via DU edges:");
duke@435 2964 use->dump(2);
duke@435 2965 tty->print_cr("---");
duke@435 2966 checked.push(use); // No repeats; pretend it is now checked.
duke@435 2967 }
duke@435 2968 }
duke@435 2969 assert(dead_nodes == 0, "using nodes must be reachable from root");
duke@435 2970 }
duke@435 2971 }
duke@435 2972 }
duke@435 2973 #endif
duke@435 2974
duke@435 2975 // The Compile object keeps track of failure reasons separately from the ciEnv.
duke@435 2976 // This is required because there is not quite a 1-1 relation between the
duke@435 2977 // ciEnv and its compilation task and the Compile object. Note that one
duke@435 2978 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
duke@435 2979 // to backtrack and retry without subsuming loads. Other than this backtracking
duke@435 2980 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
duke@435 2981 // by the logic in C2Compiler.
duke@435 2982 void Compile::record_failure(const char* reason) {
duke@435 2983 if (log() != NULL) {
duke@435 2984 log()->elem("failure reason='%s' phase='compile'", reason);
duke@435 2985 }
duke@435 2986 if (_failure_reason == NULL) {
duke@435 2987 // Record the first failure reason.
duke@435 2988 _failure_reason = reason;
duke@435 2989 }
never@657 2990 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
never@657 2991 C->print_method(_failure_reason);
never@657 2992 }
duke@435 2993 _root = NULL; // flush the graph, too
duke@435 2994 }
duke@435 2995
duke@435 2996 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
duke@435 2997 : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
duke@435 2998 {
duke@435 2999 if (dolog) {
duke@435 3000 C = Compile::current();
duke@435 3001 _log = C->log();
duke@435 3002 } else {
duke@435 3003 C = NULL;
duke@435 3004 _log = NULL;
duke@435 3005 }
duke@435 3006 if (_log != NULL) {
duke@435 3007 _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
duke@435 3008 _log->stamp();
duke@435 3009 _log->end_head();
duke@435 3010 }
duke@435 3011 }
duke@435 3012
duke@435 3013 Compile::TracePhase::~TracePhase() {
duke@435 3014 if (_log != NULL) {
duke@435 3015 _log->done("phase nodes='%d'", C->unique());
duke@435 3016 }
duke@435 3017 }
twisti@2350 3018
twisti@2350 3019 //=============================================================================
twisti@2350 3020 // Two Constant's are equal when the type and the value are equal.
twisti@2350 3021 bool Compile::Constant::operator==(const Constant& other) {
twisti@2350 3022 if (type() != other.type() ) return false;
twisti@2350 3023 if (can_be_reused() != other.can_be_reused()) return false;
twisti@2350 3024 // For floating point values we compare the bit pattern.
twisti@2350 3025 switch (type()) {
coleenp@4037 3026 case T_FLOAT: return (_v._value.i == other._v._value.i);
twisti@2350 3027 case T_LONG:
coleenp@4037 3028 case T_DOUBLE: return (_v._value.j == other._v._value.j);
twisti@2350 3029 case T_OBJECT:
coleenp@4037 3030 case T_METADATA: return (_v._metadata == other._v._metadata);
coleenp@4037 3031 case T_ADDRESS: return (_v._value.l == other._v._value.l);
coleenp@4037 3032 case T_VOID: return (_v._value.l == other._v._value.l); // jump-table entries
twisti@2350 3033 default: ShouldNotReachHere();
twisti@2350 3034 }
twisti@2350 3035 return false;
twisti@2350 3036 }
twisti@2350 3037
twisti@2350 3038 static int type_to_size_in_bytes(BasicType t) {
twisti@2350 3039 switch (t) {
twisti@2350 3040 case T_LONG: return sizeof(jlong );
twisti@2350 3041 case T_FLOAT: return sizeof(jfloat );
twisti@2350 3042 case T_DOUBLE: return sizeof(jdouble);
coleenp@4037 3043 case T_METADATA: return sizeof(Metadata*);
twisti@2350 3044 // We use T_VOID as marker for jump-table entries (labels) which
twisti@3310 3045 // need an internal word relocation.
twisti@2350 3046 case T_VOID:
twisti@2350 3047 case T_ADDRESS:
twisti@2350 3048 case T_OBJECT: return sizeof(jobject);
twisti@2350 3049 }
twisti@2350 3050
twisti@2350 3051 ShouldNotReachHere();
twisti@2350 3052 return -1;
twisti@2350 3053 }
twisti@2350 3054
twisti@3310 3055 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
twisti@3310 3056 // sort descending
twisti@3310 3057 if (a->freq() > b->freq()) return -1;
twisti@3310 3058 if (a->freq() < b->freq()) return 1;
twisti@3310 3059 return 0;
twisti@3310 3060 }
twisti@3310 3061
twisti@2350 3062 void Compile::ConstantTable::calculate_offsets_and_size() {
twisti@3310 3063 // First, sort the array by frequencies.
twisti@3310 3064 _constants.sort(qsort_comparator);
twisti@3310 3065
twisti@3310 3066 #ifdef ASSERT
twisti@3310 3067 // Make sure all jump-table entries were sorted to the end of the
twisti@3310 3068 // array (they have a negative frequency).
twisti@3310 3069 bool found_void = false;
twisti@3310 3070 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3071 Constant con = _constants.at(i);
twisti@3310 3072 if (con.type() == T_VOID)
twisti@3310 3073 found_void = true; // jump-tables
twisti@3310 3074 else
twisti@3310 3075 assert(!found_void, "wrong sorting");
twisti@3310 3076 }
twisti@3310 3077 #endif
twisti@3310 3078
twisti@3310 3079 int offset = 0;
twisti@3310 3080 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3081 Constant* con = _constants.adr_at(i);
twisti@3310 3082
twisti@3310 3083 // Align offset for type.
twisti@3310 3084 int typesize = type_to_size_in_bytes(con->type());
twisti@3310 3085 offset = align_size_up(offset, typesize);
twisti@3310 3086 con->set_offset(offset); // set constant's offset
twisti@3310 3087
twisti@3310 3088 if (con->type() == T_VOID) {
twisti@3310 3089 MachConstantNode* n = (MachConstantNode*) con->get_jobject();
twisti@3310 3090 offset = offset + typesize * n->outcnt(); // expand jump-table
twisti@3310 3091 } else {
twisti@3310 3092 offset = offset + typesize;
twisti@2350 3093 }
twisti@2350 3094 }
twisti@2350 3095
twisti@2350 3096 // Align size up to the next section start (which is insts; see
twisti@2350 3097 // CodeBuffer::align_at_start).
twisti@2350 3098 assert(_size == -1, "already set?");
twisti@3310 3099 _size = align_size_up(offset, CodeEntryAlignment);
twisti@2350 3100 }
twisti@2350 3101
twisti@2350 3102 void Compile::ConstantTable::emit(CodeBuffer& cb) {
twisti@2350 3103 MacroAssembler _masm(&cb);
twisti@3310 3104 for (int i = 0; i < _constants.length(); i++) {
twisti@3310 3105 Constant con = _constants.at(i);
twisti@3310 3106 address constant_addr;
twisti@3310 3107 switch (con.type()) {
twisti@3310 3108 case T_LONG: constant_addr = _masm.long_constant( con.get_jlong() ); break;
twisti@3310 3109 case T_FLOAT: constant_addr = _masm.float_constant( con.get_jfloat() ); break;
twisti@3310 3110 case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
twisti@3310 3111 case T_OBJECT: {
twisti@3310 3112 jobject obj = con.get_jobject();
twisti@3310 3113 int oop_index = _masm.oop_recorder()->find_index(obj);
twisti@3310 3114 constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
twisti@3310 3115 break;
twisti@3310 3116 }
twisti@3310 3117 case T_ADDRESS: {
twisti@3310 3118 address addr = (address) con.get_jobject();
twisti@3310 3119 constant_addr = _masm.address_constant(addr);
twisti@3310 3120 break;
twisti@3310 3121 }
twisti@3310 3122 // We use T_VOID as marker for jump-table entries (labels) which
twisti@3310 3123 // need an internal word relocation.
twisti@3310 3124 case T_VOID: {
twisti@3310 3125 MachConstantNode* n = (MachConstantNode*) con.get_jobject();
twisti@3310 3126 // Fill the jump-table with a dummy word. The real value is
twisti@3310 3127 // filled in later in fill_jump_table.
twisti@3310 3128 address dummy = (address) n;
twisti@3310 3129 constant_addr = _masm.address_constant(dummy);
twisti@3310 3130 // Expand jump-table
twisti@3310 3131 for (uint i = 1; i < n->outcnt(); i++) {
twisti@3310 3132 address temp_addr = _masm.address_constant(dummy + i);
twisti@3310 3133 assert(temp_addr, "consts section too small");
twisti@2350 3134 }
twisti@3310 3135 break;
twisti@2350 3136 }
coleenp@4037 3137 case T_METADATA: {
coleenp@4037 3138 Metadata* obj = con.get_metadata();
coleenp@4037 3139 int metadata_index = _masm.oop_recorder()->find_index(obj);
coleenp@4037 3140 constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
coleenp@4037 3141 break;
coleenp@4037 3142 }
twisti@3310 3143 default: ShouldNotReachHere();
twisti@3310 3144 }
twisti@3310 3145 assert(constant_addr, "consts section too small");
kvn@3971 3146 assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
twisti@2350 3147 }
twisti@2350 3148 }
twisti@2350 3149
twisti@2350 3150 int Compile::ConstantTable::find_offset(Constant& con) const {
twisti@2350 3151 int idx = _constants.find(con);
twisti@2350 3152 assert(idx != -1, "constant must be in constant table");
twisti@2350 3153 int offset = _constants.at(idx).offset();
twisti@2350 3154 assert(offset != -1, "constant table not emitted yet?");
twisti@2350 3155 return offset;
twisti@2350 3156 }
twisti@2350 3157
twisti@2350 3158 void Compile::ConstantTable::add(Constant& con) {
twisti@2350 3159 if (con.can_be_reused()) {
twisti@2350 3160 int idx = _constants.find(con);
twisti@2350 3161 if (idx != -1 && _constants.at(idx).can_be_reused()) {
twisti@3310 3162 _constants.adr_at(idx)->inc_freq(con.freq()); // increase the frequency by the current value
twisti@2350 3163 return;
twisti@2350 3164 }
twisti@2350 3165 }
twisti@2350 3166 (void) _constants.append(con);
twisti@2350 3167 }
twisti@2350 3168
twisti@3310 3169 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
twisti@3310 3170 Block* b = Compile::current()->cfg()->_bbs[n->_idx];
twisti@3310 3171 Constant con(type, value, b->_freq);
twisti@2350 3172 add(con);
twisti@2350 3173 return con;
twisti@2350 3174 }
twisti@2350 3175
coleenp@4037 3176 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
coleenp@4037 3177 Constant con(metadata);
coleenp@4037 3178 add(con);
coleenp@4037 3179 return con;
coleenp@4037 3180 }
coleenp@4037 3181
twisti@3310 3182 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
twisti@2350 3183 jvalue value;
twisti@2350 3184 BasicType type = oper->type()->basic_type();
twisti@2350 3185 switch (type) {
twisti@2350 3186 case T_LONG: value.j = oper->constantL(); break;
twisti@2350 3187 case T_FLOAT: value.f = oper->constantF(); break;
twisti@2350 3188 case T_DOUBLE: value.d = oper->constantD(); break;
twisti@2350 3189 case T_OBJECT:
twisti@2350 3190 case T_ADDRESS: value.l = (jobject) oper->constant(); break;
coleenp@4037 3191 case T_METADATA: return add((Metadata*)oper->constant()); break;
coleenp@4037 3192 default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
twisti@2350 3193 }
twisti@3310 3194 return add(n, type, value);
twisti@2350 3195 }
twisti@2350 3196
twisti@3310 3197 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
twisti@2350 3198 jvalue value;
twisti@2350 3199 // We can use the node pointer here to identify the right jump-table
twisti@2350 3200 // as this method is called from Compile::Fill_buffer right before
twisti@2350 3201 // the MachNodes are emitted and the jump-table is filled (means the
twisti@2350 3202 // MachNode pointers do not change anymore).
twisti@2350 3203 value.l = (jobject) n;
twisti@3310 3204 Constant con(T_VOID, value, next_jump_table_freq(), false); // Labels of a jump-table cannot be reused.
twisti@3310 3205 add(con);
twisti@2350 3206 return con;
twisti@2350 3207 }
twisti@2350 3208
twisti@2350 3209 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
twisti@2350 3210 // If called from Compile::scratch_emit_size do nothing.
twisti@2350 3211 if (Compile::current()->in_scratch_emit_size()) return;
twisti@2350 3212
twisti@2350 3213 assert(labels.is_nonempty(), "must be");
kvn@3971 3214 assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
twisti@2350 3215
twisti@2350 3216 // Since MachConstantNode::constant_offset() also contains
twisti@2350 3217 // table_base_offset() we need to subtract the table_base_offset()
twisti@2350 3218 // to get the plain offset into the constant table.
twisti@2350 3219 int offset = n->constant_offset() - table_base_offset();
twisti@2350 3220
twisti@2350 3221 MacroAssembler _masm(&cb);
twisti@2350 3222 address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
twisti@2350 3223
twisti@3310 3224 for (uint i = 0; i < n->outcnt(); i++) {
twisti@2350 3225 address* constant_addr = &jump_table_base[i];
kvn@3971 3226 assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
twisti@2350 3227 *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
twisti@2350 3228 cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
twisti@2350 3229 }
twisti@2350 3230 }

mercurial