src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Sat, 29 Sep 2012 06:40:00 -0400

author
coleenp
date
Sat, 29 Sep 2012 06:40:00 -0400
changeset 4142
d8ce2825b193
parent 4103
137868b7aa6f
child 4251
18fb7da42534
permissions
-rw-r--r--

8000213: NPG: Should have renamed arrayKlass and typeArrayKlass
Summary: Capitalize these metadata types (and objArrayKlass)
Reviewed-by: stefank, twisti, kvn

duke@435 1 /*
never@3500 2 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_x86.inline.hpp"
stefank@2314 28 #include "code/debugInfoRec.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "interpreter/interpreter.hpp"
coleenp@4037 32 #include "oops/compiledICHolder.hpp"
stefank@2314 33 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 34 #include "runtime/sharedRuntime.hpp"
stefank@2314 35 #include "runtime/vframeArray.hpp"
stefank@2314 36 #include "vmreg_x86.inline.hpp"
stefank@2314 37 #ifdef COMPILER1
stefank@2314 38 #include "c1/c1_Runtime1.hpp"
stefank@2314 39 #endif
stefank@2314 40 #ifdef COMPILER2
stefank@2314 41 #include "opto/runtime.hpp"
stefank@2314 42 #endif
duke@435 43
duke@435 44 #define __ masm->
duke@435 45
xlu@959 46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
xlu@959 47
duke@435 48 class RegisterSaver {
duke@435 49 // Capture info about frame layout
kvn@4103 50 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
duke@435 51 enum layout {
duke@435 52 fpu_state_off = 0,
kvn@4103 53 fpu_state_end = fpu_state_off+FPUStateSizeInWords,
duke@435 54 st0_off, st0H_off,
duke@435 55 st1_off, st1H_off,
duke@435 56 st2_off, st2H_off,
duke@435 57 st3_off, st3H_off,
duke@435 58 st4_off, st4H_off,
duke@435 59 st5_off, st5H_off,
duke@435 60 st6_off, st6H_off,
duke@435 61 st7_off, st7H_off,
kvn@4103 62 xmm_off,
kvn@4103 63 DEF_XMM_OFFS(0),
kvn@4103 64 DEF_XMM_OFFS(1),
kvn@4103 65 DEF_XMM_OFFS(2),
kvn@4103 66 DEF_XMM_OFFS(3),
kvn@4103 67 DEF_XMM_OFFS(4),
kvn@4103 68 DEF_XMM_OFFS(5),
kvn@4103 69 DEF_XMM_OFFS(6),
kvn@4103 70 DEF_XMM_OFFS(7),
kvn@4103 71 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
duke@435 72 rdi_off,
duke@435 73 rsi_off,
duke@435 74 ignore_off, // extra copy of rbp,
duke@435 75 rsp_off,
duke@435 76 rbx_off,
duke@435 77 rdx_off,
duke@435 78 rcx_off,
duke@435 79 rax_off,
duke@435 80 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 81 // will override any oopMap setting for it. We must therefore force the layout
duke@435 82 // so that it agrees with the frame sender code.
duke@435 83 rbp_off,
duke@435 84 return_off, // slot for return address
duke@435 85 reg_save_size };
kvn@4103 86 enum { FPU_regs_live = flags_off - fpu_state_end };
duke@435 87
duke@435 88 public:
duke@435 89
duke@435 90 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
kvn@4103 91 int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
kvn@4103 92 static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
duke@435 93
duke@435 94 static int rax_offset() { return rax_off; }
duke@435 95 static int rbx_offset() { return rbx_off; }
duke@435 96
duke@435 97 // Offsets into the register save area
duke@435 98 // Used by deoptimization when it is managing result register
duke@435 99 // values on its own
duke@435 100
duke@435 101 static int raxOffset(void) { return rax_off; }
duke@435 102 static int rdxOffset(void) { return rdx_off; }
duke@435 103 static int rbxOffset(void) { return rbx_off; }
duke@435 104 static int xmm0Offset(void) { return xmm0_off; }
duke@435 105 // This really returns a slot in the fp save area, which one is not important
duke@435 106 static int fpResultOffset(void) { return st0_off; }
duke@435 107
duke@435 108 // During deoptimization only the result register need to be restored
duke@435 109 // all the other values have already been extracted.
duke@435 110
duke@435 111 static void restore_result_registers(MacroAssembler* masm);
duke@435 112
duke@435 113 };
duke@435 114
duke@435 115 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
kvn@4103 116 int* total_frame_words, bool verify_fpu, bool save_vectors) {
kvn@4103 117 int vect_words = 0;
kvn@4103 118 #ifdef COMPILER2
kvn@4103 119 if (save_vectors) {
kvn@4103 120 assert(UseAVX > 0, "256bit vectors are supported only with AVX");
kvn@4103 121 assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
kvn@4103 122 // Save upper half of YMM registes
kvn@4103 123 vect_words = 8 * 16 / wordSize;
kvn@4103 124 additional_frame_words += vect_words;
kvn@4103 125 }
kvn@4103 126 #else
kvn@4103 127 assert(!save_vectors, "vectors are generated only by C2");
kvn@4103 128 #endif
kvn@4103 129 int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
duke@435 130 int frame_words = frame_size_in_bytes / wordSize;
duke@435 131 *total_frame_words = frame_words;
duke@435 132
duke@435 133 assert(FPUStateSizeInWords == 27, "update stack layout");
duke@435 134
duke@435 135 // save registers, fpu state, and flags
duke@435 136 // We assume caller has already has return address slot on the stack
duke@435 137 // We push epb twice in this sequence because we want the real rbp,
never@739 138 // to be under the return like a normal enter and we want to use pusha
duke@435 139 // We push by hand instead of pusing push
duke@435 140 __ enter();
never@739 141 __ pusha();
never@739 142 __ pushf();
kvn@4103 143 __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
duke@435 144 __ push_FPU_state(); // Save FPU state & init
duke@435 145
duke@435 146 if (verify_fpu) {
duke@435 147 // Some stubs may have non standard FPU control word settings so
duke@435 148 // only check and reset the value when it required to be the
duke@435 149 // standard value. The safepoint blob in particular can be used
duke@435 150 // in methods which are using the 24 bit control word for
duke@435 151 // optimized float math.
duke@435 152
duke@435 153 #ifdef ASSERT
duke@435 154 // Make sure the control word has the expected value
duke@435 155 Label ok;
duke@435 156 __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 157 __ jccb(Assembler::equal, ok);
duke@435 158 __ stop("corrupted control word detected");
duke@435 159 __ bind(ok);
duke@435 160 #endif
duke@435 161
duke@435 162 // Reset the control word to guard against exceptions being unmasked
duke@435 163 // since fstp_d can cause FPU stack underflow exceptions. Write it
duke@435 164 // into the on stack copy and then reload that to make sure that the
duke@435 165 // current and future values are correct.
duke@435 166 __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 167 }
duke@435 168
duke@435 169 __ frstor(Address(rsp, 0));
duke@435 170 if (!verify_fpu) {
duke@435 171 // Set the control word so that exceptions are masked for the
duke@435 172 // following code.
duke@435 173 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 174 }
duke@435 175
duke@435 176 // Save the FPU registers in de-opt-able form
duke@435 177
duke@435 178 __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
duke@435 179 __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
duke@435 180 __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
duke@435 181 __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
duke@435 182 __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
duke@435 183 __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
duke@435 184 __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
duke@435 185 __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
duke@435 186
duke@435 187 if( UseSSE == 1 ) { // Save the XMM state
duke@435 188 __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
duke@435 189 __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
duke@435 190 __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
duke@435 191 __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
duke@435 192 __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
duke@435 193 __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
duke@435 194 __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
duke@435 195 __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
duke@435 196 } else if( UseSSE >= 2 ) {
kvn@4103 197 // Save whole 128bit (16 bytes) XMM regiters
kvn@4103 198 __ movdqu(Address(rsp,xmm0_off*wordSize),xmm0);
kvn@4103 199 __ movdqu(Address(rsp,xmm1_off*wordSize),xmm1);
kvn@4103 200 __ movdqu(Address(rsp,xmm2_off*wordSize),xmm2);
kvn@4103 201 __ movdqu(Address(rsp,xmm3_off*wordSize),xmm3);
kvn@4103 202 __ movdqu(Address(rsp,xmm4_off*wordSize),xmm4);
kvn@4103 203 __ movdqu(Address(rsp,xmm5_off*wordSize),xmm5);
kvn@4103 204 __ movdqu(Address(rsp,xmm6_off*wordSize),xmm6);
kvn@4103 205 __ movdqu(Address(rsp,xmm7_off*wordSize),xmm7);
kvn@4103 206 }
kvn@4103 207
kvn@4103 208 if (vect_words > 0) {
kvn@4103 209 assert(vect_words*wordSize == 128, "");
kvn@4103 210 __ subptr(rsp, 128); // Save upper half of YMM registes
kvn@4103 211 __ vextractf128h(Address(rsp, 0),xmm0);
kvn@4103 212 __ vextractf128h(Address(rsp, 16),xmm1);
kvn@4103 213 __ vextractf128h(Address(rsp, 32),xmm2);
kvn@4103 214 __ vextractf128h(Address(rsp, 48),xmm3);
kvn@4103 215 __ vextractf128h(Address(rsp, 64),xmm4);
kvn@4103 216 __ vextractf128h(Address(rsp, 80),xmm5);
kvn@4103 217 __ vextractf128h(Address(rsp, 96),xmm6);
kvn@4103 218 __ vextractf128h(Address(rsp,112),xmm7);
duke@435 219 }
duke@435 220
duke@435 221 // Set an oopmap for the call site. This oopmap will map all
duke@435 222 // oop-registers and debug-info registers as callee-saved. This
duke@435 223 // will allow deoptimization at this safepoint to find all possible
duke@435 224 // debug-info recordings, as well as let GC find all oops.
duke@435 225
duke@435 226 OopMapSet *oop_maps = new OopMapSet();
duke@435 227 OopMap* map = new OopMap( frame_words, 0 );
duke@435 228
duke@435 229 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
duke@435 230
duke@435 231 map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
duke@435 232 map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
duke@435 233 map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
duke@435 234 map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
duke@435 235 // rbp, location is known implicitly, no oopMap
duke@435 236 map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
duke@435 237 map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
duke@435 238 map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
duke@435 239 map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
duke@435 240 map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
duke@435 241 map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
duke@435 242 map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
duke@435 243 map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
duke@435 244 map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
duke@435 245 map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
duke@435 246 map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
duke@435 247 map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
duke@435 248 map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
duke@435 249 map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
duke@435 250 map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
duke@435 251 map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
duke@435 252 map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
duke@435 253 map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
duke@435 254 // %%% This is really a waste but we'll keep things as they were for now
duke@435 255 if (true) {
duke@435 256 #define NEXTREG(x) (x)->as_VMReg()->next()
duke@435 257 map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
duke@435 258 map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
duke@435 259 map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
duke@435 260 map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
duke@435 261 map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
duke@435 262 map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
duke@435 263 map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
duke@435 264 map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
duke@435 265 map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
duke@435 266 map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
duke@435 267 map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
duke@435 268 map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
duke@435 269 map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
duke@435 270 map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
duke@435 271 map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
duke@435 272 map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
duke@435 273 #undef NEXTREG
duke@435 274 #undef STACK_OFFSET
duke@435 275 }
duke@435 276
duke@435 277 return map;
duke@435 278
duke@435 279 }
duke@435 280
kvn@4103 281 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
duke@435 282 // Recover XMM & FPU state
kvn@4103 283 int additional_frame_bytes = 0;
kvn@4103 284 #ifdef COMPILER2
kvn@4103 285 if (restore_vectors) {
kvn@4103 286 assert(UseAVX > 0, "256bit vectors are supported only with AVX");
kvn@4103 287 assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
kvn@4103 288 additional_frame_bytes = 128;
kvn@4103 289 }
kvn@4103 290 #else
kvn@4103 291 assert(!restore_vectors, "vectors are generated only by C2");
kvn@4103 292 #endif
kvn@4103 293 if (UseSSE == 1) {
kvn@4103 294 assert(additional_frame_bytes == 0, "");
duke@435 295 __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
duke@435 296 __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
duke@435 297 __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
duke@435 298 __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
duke@435 299 __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
duke@435 300 __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
duke@435 301 __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
duke@435 302 __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
kvn@4103 303 } else if (UseSSE >= 2) {
kvn@4103 304 #define STACK_ADDRESS(x) Address(rsp,(x)*wordSize + additional_frame_bytes)
kvn@4103 305 __ movdqu(xmm0,STACK_ADDRESS(xmm0_off));
kvn@4103 306 __ movdqu(xmm1,STACK_ADDRESS(xmm1_off));
kvn@4103 307 __ movdqu(xmm2,STACK_ADDRESS(xmm2_off));
kvn@4103 308 __ movdqu(xmm3,STACK_ADDRESS(xmm3_off));
kvn@4103 309 __ movdqu(xmm4,STACK_ADDRESS(xmm4_off));
kvn@4103 310 __ movdqu(xmm5,STACK_ADDRESS(xmm5_off));
kvn@4103 311 __ movdqu(xmm6,STACK_ADDRESS(xmm6_off));
kvn@4103 312 __ movdqu(xmm7,STACK_ADDRESS(xmm7_off));
kvn@4103 313 #undef STACK_ADDRESS
kvn@4103 314 }
kvn@4103 315 if (restore_vectors) {
kvn@4103 316 // Restore upper half of YMM registes.
kvn@4103 317 assert(additional_frame_bytes == 128, "");
kvn@4103 318 __ vinsertf128h(xmm0, Address(rsp, 0));
kvn@4103 319 __ vinsertf128h(xmm1, Address(rsp, 16));
kvn@4103 320 __ vinsertf128h(xmm2, Address(rsp, 32));
kvn@4103 321 __ vinsertf128h(xmm3, Address(rsp, 48));
kvn@4103 322 __ vinsertf128h(xmm4, Address(rsp, 64));
kvn@4103 323 __ vinsertf128h(xmm5, Address(rsp, 80));
kvn@4103 324 __ vinsertf128h(xmm6, Address(rsp, 96));
kvn@4103 325 __ vinsertf128h(xmm7, Address(rsp,112));
kvn@4103 326 __ addptr(rsp, additional_frame_bytes);
duke@435 327 }
duke@435 328 __ pop_FPU_state();
kvn@4103 329 __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
never@739 330
never@739 331 __ popf();
never@739 332 __ popa();
duke@435 333 // Get the rbp, described implicitly by the frame sender code (no oopMap)
never@739 334 __ pop(rbp);
duke@435 335
duke@435 336 }
duke@435 337
duke@435 338 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
duke@435 339
duke@435 340 // Just restore result register. Only used by deoptimization. By
duke@435 341 // now any callee save register that needs to be restore to a c2
duke@435 342 // caller of the deoptee has been extracted into the vframeArray
duke@435 343 // and will be stuffed into the c2i adapter we create for later
duke@435 344 // restoration so only result registers need to be restored here.
duke@435 345 //
duke@435 346
duke@435 347 __ frstor(Address(rsp, 0)); // Restore fpu state
duke@435 348
duke@435 349 // Recover XMM & FPU state
duke@435 350 if( UseSSE == 1 ) {
duke@435 351 __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 352 } else if( UseSSE >= 2 ) {
duke@435 353 __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 354 }
never@739 355 __ movptr(rax, Address(rsp, rax_off*wordSize));
never@739 356 __ movptr(rdx, Address(rsp, rdx_off*wordSize));
duke@435 357 // Pop all of the register save are off the stack except the return address
never@739 358 __ addptr(rsp, return_off * wordSize);
duke@435 359 }
duke@435 360
kvn@4103 361 // Is vector's size (in bytes) bigger than a size saved by default?
kvn@4103 362 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
kvn@4103 363 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
kvn@4103 364 bool SharedRuntime::is_wide_vector(int size) {
kvn@4103 365 return size > 16;
kvn@4103 366 }
kvn@4103 367
duke@435 368 // The java_calling_convention describes stack locations as ideal slots on
duke@435 369 // a frame with no abi restrictions. Since we must observe abi restrictions
duke@435 370 // (like the placement of the register window) the slots must be biased by
duke@435 371 // the following value.
duke@435 372 static int reg2offset_in(VMReg r) {
duke@435 373 // Account for saved rbp, and return address
duke@435 374 // This should really be in_preserve_stack_slots
duke@435 375 return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
duke@435 376 }
duke@435 377
duke@435 378 static int reg2offset_out(VMReg r) {
duke@435 379 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
duke@435 380 }
duke@435 381
duke@435 382 // ---------------------------------------------------------------------------
duke@435 383 // Read the array of BasicTypes from a signature, and compute where the
duke@435 384 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
duke@435 385 // quantities. Values less than SharedInfo::stack0 are registers, those above
duke@435 386 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
duke@435 387 // as framesizes are fixed.
duke@435 388 // VMRegImpl::stack0 refers to the first slot 0(sp).
duke@435 389 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
duke@435 390 // up to RegisterImpl::number_of_registers) are the 32-bit
duke@435 391 // integer registers.
duke@435 392
duke@435 393 // Pass first two oop/int args in registers ECX and EDX.
duke@435 394 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 395 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 396 // the doubles will grab the registers before the floats will.
duke@435 397
duke@435 398 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
duke@435 399 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
duke@435 400 // units regardless of build. Of course for i486 there is no 64 bit build
duke@435 401
duke@435 402
duke@435 403 // ---------------------------------------------------------------------------
duke@435 404 // The compiled Java calling convention.
duke@435 405 // Pass first two oop/int args in registers ECX and EDX.
duke@435 406 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 407 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 408 // the doubles will grab the registers before the floats will.
duke@435 409 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
duke@435 410 VMRegPair *regs,
duke@435 411 int total_args_passed,
duke@435 412 int is_outgoing) {
duke@435 413 uint stack = 0; // Starting stack position for args on stack
duke@435 414
duke@435 415
duke@435 416 // Pass first two oop/int args in registers ECX and EDX.
duke@435 417 uint reg_arg0 = 9999;
duke@435 418 uint reg_arg1 = 9999;
duke@435 419
duke@435 420 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 421 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 422 // the doubles will grab the registers before the floats will.
duke@435 423 // CNC - TURNED OFF FOR non-SSE.
duke@435 424 // On Intel we have to round all doubles (and most floats) at
duke@435 425 // call sites by storing to the stack in any case.
duke@435 426 // UseSSE=0 ==> Don't Use ==> 9999+0
duke@435 427 // UseSSE=1 ==> Floats only ==> 9999+1
duke@435 428 // UseSSE>=2 ==> Floats or doubles ==> 9999+2
duke@435 429 enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
duke@435 430 uint fargs = (UseSSE>=2) ? 2 : UseSSE;
duke@435 431 uint freg_arg0 = 9999+fargs;
duke@435 432 uint freg_arg1 = 9999+fargs;
duke@435 433
duke@435 434 // Pass doubles & longs aligned on the stack. First count stack slots for doubles
duke@435 435 int i;
duke@435 436 for( i = 0; i < total_args_passed; i++) {
duke@435 437 if( sig_bt[i] == T_DOUBLE ) {
duke@435 438 // first 2 doubles go in registers
duke@435 439 if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
duke@435 440 else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
duke@435 441 else // Else double is passed low on the stack to be aligned.
duke@435 442 stack += 2;
duke@435 443 } else if( sig_bt[i] == T_LONG ) {
duke@435 444 stack += 2;
duke@435 445 }
duke@435 446 }
duke@435 447 int dstack = 0; // Separate counter for placing doubles
duke@435 448
duke@435 449 // Now pick where all else goes.
duke@435 450 for( i = 0; i < total_args_passed; i++) {
duke@435 451 // From the type and the argument number (count) compute the location
duke@435 452 switch( sig_bt[i] ) {
duke@435 453 case T_SHORT:
duke@435 454 case T_CHAR:
duke@435 455 case T_BYTE:
duke@435 456 case T_BOOLEAN:
duke@435 457 case T_INT:
duke@435 458 case T_ARRAY:
duke@435 459 case T_OBJECT:
duke@435 460 case T_ADDRESS:
duke@435 461 if( reg_arg0 == 9999 ) {
duke@435 462 reg_arg0 = i;
duke@435 463 regs[i].set1(rcx->as_VMReg());
duke@435 464 } else if( reg_arg1 == 9999 ) {
duke@435 465 reg_arg1 = i;
duke@435 466 regs[i].set1(rdx->as_VMReg());
duke@435 467 } else {
duke@435 468 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 469 }
duke@435 470 break;
duke@435 471 case T_FLOAT:
duke@435 472 if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
duke@435 473 freg_arg0 = i;
duke@435 474 regs[i].set1(xmm0->as_VMReg());
duke@435 475 } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
duke@435 476 freg_arg1 = i;
duke@435 477 regs[i].set1(xmm1->as_VMReg());
duke@435 478 } else {
duke@435 479 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 480 }
duke@435 481 break;
duke@435 482 case T_LONG:
duke@435 483 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 484 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 485 dstack += 2;
duke@435 486 break;
duke@435 487 case T_DOUBLE:
duke@435 488 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 489 if( freg_arg0 == (uint)i ) {
duke@435 490 regs[i].set2(xmm0->as_VMReg());
duke@435 491 } else if( freg_arg1 == (uint)i ) {
duke@435 492 regs[i].set2(xmm1->as_VMReg());
duke@435 493 } else {
duke@435 494 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 495 dstack += 2;
duke@435 496 }
duke@435 497 break;
duke@435 498 case T_VOID: regs[i].set_bad(); break;
duke@435 499 break;
duke@435 500 default:
duke@435 501 ShouldNotReachHere();
duke@435 502 break;
duke@435 503 }
duke@435 504 }
duke@435 505
duke@435 506 // return value can be odd number of VMRegImpl stack slots make multiple of 2
duke@435 507 return round_to(stack, 2);
duke@435 508 }
duke@435 509
duke@435 510 // Patch the callers callsite with entry to compiled code if it exists.
duke@435 511 static void patch_callers_callsite(MacroAssembler *masm) {
duke@435 512 Label L;
coleenp@4037 513 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
duke@435 514 __ jcc(Assembler::equal, L);
duke@435 515 // Schedule the branch target address early.
duke@435 516 // Call into the VM to patch the caller, then jump to compiled callee
duke@435 517 // rax, isn't live so capture return address while we easily can
never@739 518 __ movptr(rax, Address(rsp, 0));
never@739 519 __ pusha();
never@739 520 __ pushf();
duke@435 521
duke@435 522 if (UseSSE == 1) {
never@739 523 __ subptr(rsp, 2*wordSize);
duke@435 524 __ movflt(Address(rsp, 0), xmm0);
duke@435 525 __ movflt(Address(rsp, wordSize), xmm1);
duke@435 526 }
duke@435 527 if (UseSSE >= 2) {
never@739 528 __ subptr(rsp, 4*wordSize);
duke@435 529 __ movdbl(Address(rsp, 0), xmm0);
duke@435 530 __ movdbl(Address(rsp, 2*wordSize), xmm1);
duke@435 531 }
duke@435 532 #ifdef COMPILER2
duke@435 533 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 534 if (UseSSE >= 2) {
duke@435 535 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 536 } else {
duke@435 537 __ empty_FPU_stack();
duke@435 538 }
duke@435 539 #endif /* COMPILER2 */
duke@435 540
duke@435 541 // VM needs caller's callsite
never@739 542 __ push(rax);
duke@435 543 // VM needs target method
never@739 544 __ push(rbx);
duke@435 545 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
never@739 546 __ addptr(rsp, 2*wordSize);
duke@435 547
duke@435 548 if (UseSSE == 1) {
duke@435 549 __ movflt(xmm0, Address(rsp, 0));
duke@435 550 __ movflt(xmm1, Address(rsp, wordSize));
never@739 551 __ addptr(rsp, 2*wordSize);
duke@435 552 }
duke@435 553 if (UseSSE >= 2) {
duke@435 554 __ movdbl(xmm0, Address(rsp, 0));
duke@435 555 __ movdbl(xmm1, Address(rsp, 2*wordSize));
never@739 556 __ addptr(rsp, 4*wordSize);
duke@435 557 }
duke@435 558
never@739 559 __ popf();
never@739 560 __ popa();
duke@435 561 __ bind(L);
duke@435 562 }
duke@435 563
duke@435 564
duke@435 565 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
twisti@1861 566 int next_off = st_off - Interpreter::stackElementSize;
twisti@1861 567 __ movdbl(Address(rsp, next_off), r);
duke@435 568 }
duke@435 569
duke@435 570 static void gen_c2i_adapter(MacroAssembler *masm,
duke@435 571 int total_args_passed,
duke@435 572 int comp_args_on_stack,
duke@435 573 const BasicType *sig_bt,
duke@435 574 const VMRegPair *regs,
duke@435 575 Label& skip_fixup) {
duke@435 576 // Before we get into the guts of the C2I adapter, see if we should be here
duke@435 577 // at all. We've come from compiled code and are attempting to jump to the
duke@435 578 // interpreter, which means the caller made a static call to get here
duke@435 579 // (vcalls always get a compiled target if there is one). Check for a
duke@435 580 // compiled target. If there is one, we need to patch the caller's call.
duke@435 581 patch_callers_callsite(masm);
duke@435 582
duke@435 583 __ bind(skip_fixup);
duke@435 584
duke@435 585 #ifdef COMPILER2
duke@435 586 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 587 if (UseSSE >= 2) {
duke@435 588 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 589 } else {
duke@435 590 __ empty_FPU_stack();
duke@435 591 }
duke@435 592 #endif /* COMPILER2 */
duke@435 593
duke@435 594 // Since all args are passed on the stack, total_args_passed * interpreter_
duke@435 595 // stack_element_size is the
duke@435 596 // space we need.
twisti@1861 597 int extraspace = total_args_passed * Interpreter::stackElementSize;
duke@435 598
duke@435 599 // Get return address
never@739 600 __ pop(rax);
duke@435 601
duke@435 602 // set senderSP value
never@739 603 __ movptr(rsi, rsp);
never@739 604
never@739 605 __ subptr(rsp, extraspace);
duke@435 606
duke@435 607 // Now write the args into the outgoing interpreter space
duke@435 608 for (int i = 0; i < total_args_passed; i++) {
duke@435 609 if (sig_bt[i] == T_VOID) {
duke@435 610 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 611 continue;
duke@435 612 }
duke@435 613
duke@435 614 // st_off points to lowest address on stack.
twisti@1861 615 int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
twisti@1861 616 int next_off = st_off - Interpreter::stackElementSize;
never@739 617
duke@435 618 // Say 4 args:
duke@435 619 // i st_off
duke@435 620 // 0 12 T_LONG
duke@435 621 // 1 8 T_VOID
duke@435 622 // 2 4 T_OBJECT
duke@435 623 // 3 0 T_BOOL
duke@435 624 VMReg r_1 = regs[i].first();
duke@435 625 VMReg r_2 = regs[i].second();
duke@435 626 if (!r_1->is_valid()) {
duke@435 627 assert(!r_2->is_valid(), "");
duke@435 628 continue;
duke@435 629 }
duke@435 630
duke@435 631 if (r_1->is_stack()) {
duke@435 632 // memory to memory use fpu stack top
duke@435 633 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
duke@435 634
duke@435 635 if (!r_2->is_valid()) {
duke@435 636 __ movl(rdi, Address(rsp, ld_off));
never@739 637 __ movptr(Address(rsp, st_off), rdi);
duke@435 638 } else {
duke@435 639
duke@435 640 // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
duke@435 641 // st_off == MSW, st_off-wordSize == LSW
duke@435 642
never@739 643 __ movptr(rdi, Address(rsp, ld_off));
never@739 644 __ movptr(Address(rsp, next_off), rdi);
never@739 645 #ifndef _LP64
never@739 646 __ movptr(rdi, Address(rsp, ld_off + wordSize));
never@739 647 __ movptr(Address(rsp, st_off), rdi);
never@739 648 #else
never@739 649 #ifdef ASSERT
never@739 650 // Overwrite the unused slot with known junk
never@739 651 __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
never@739 652 __ movptr(Address(rsp, st_off), rax);
never@739 653 #endif /* ASSERT */
never@739 654 #endif // _LP64
duke@435 655 }
duke@435 656 } else if (r_1->is_Register()) {
duke@435 657 Register r = r_1->as_Register();
duke@435 658 if (!r_2->is_valid()) {
duke@435 659 __ movl(Address(rsp, st_off), r);
duke@435 660 } else {
duke@435 661 // long/double in gpr
never@739 662 NOT_LP64(ShouldNotReachHere());
never@739 663 // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
never@739 664 // T_DOUBLE and T_LONG use two slots in the interpreter
never@739 665 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
never@739 666 // long/double in gpr
never@739 667 #ifdef ASSERT
never@739 668 // Overwrite the unused slot with known junk
never@739 669 LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
never@739 670 __ movptr(Address(rsp, st_off), rax);
never@739 671 #endif /* ASSERT */
never@739 672 __ movptr(Address(rsp, next_off), r);
never@739 673 } else {
never@739 674 __ movptr(Address(rsp, st_off), r);
never@739 675 }
duke@435 676 }
duke@435 677 } else {
duke@435 678 assert(r_1->is_XMMRegister(), "");
duke@435 679 if (!r_2->is_valid()) {
duke@435 680 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
duke@435 681 } else {
duke@435 682 assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
duke@435 683 move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
duke@435 684 }
duke@435 685 }
duke@435 686 }
duke@435 687
duke@435 688 // Schedule the branch target address early.
coleenp@4037 689 __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
duke@435 690 // And repush original return address
never@739 691 __ push(rax);
duke@435 692 __ jmp(rcx);
duke@435 693 }
duke@435 694
duke@435 695
duke@435 696 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
twisti@1861 697 int next_val_off = ld_off - Interpreter::stackElementSize;
twisti@1861 698 __ movdbl(r, Address(saved_sp, next_val_off));
duke@435 699 }
duke@435 700
twisti@3969 701 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
twisti@3969 702 address code_start, address code_end,
twisti@3969 703 Label& L_ok) {
twisti@3969 704 Label L_fail;
twisti@3969 705 __ lea(temp_reg, ExternalAddress(code_start));
twisti@3969 706 __ cmpptr(pc_reg, temp_reg);
twisti@3969 707 __ jcc(Assembler::belowEqual, L_fail);
twisti@3969 708 __ lea(temp_reg, ExternalAddress(code_end));
twisti@3969 709 __ cmpptr(pc_reg, temp_reg);
twisti@3969 710 __ jcc(Assembler::below, L_ok);
twisti@3969 711 __ bind(L_fail);
twisti@3969 712 }
twisti@3969 713
duke@435 714 static void gen_i2c_adapter(MacroAssembler *masm,
duke@435 715 int total_args_passed,
duke@435 716 int comp_args_on_stack,
duke@435 717 const BasicType *sig_bt,
duke@435 718 const VMRegPair *regs) {
duke@435 719
duke@435 720 // Note: rsi contains the senderSP on entry. We must preserve it since
duke@435 721 // we may do a i2c -> c2i transition if we lose a race where compiled
duke@435 722 // code goes non-entrant while we get args ready.
duke@435 723
twisti@3969 724 // Adapters can be frameless because they do not require the caller
twisti@3969 725 // to perform additional cleanup work, such as correcting the stack pointer.
twisti@3969 726 // An i2c adapter is frameless because the *caller* frame, which is interpreted,
twisti@3969 727 // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
twisti@3969 728 // even if a callee has modified the stack pointer.
twisti@3969 729 // A c2i adapter is frameless because the *callee* frame, which is interpreted,
twisti@3969 730 // routinely repairs its caller's stack pointer (from sender_sp, which is set
twisti@3969 731 // up via the senderSP register).
twisti@3969 732 // In other words, if *either* the caller or callee is interpreted, we can
twisti@3969 733 // get the stack pointer repaired after a call.
twisti@3969 734 // This is why c2i and i2c adapters cannot be indefinitely composed.
twisti@3969 735 // In particular, if a c2i adapter were to somehow call an i2c adapter,
twisti@3969 736 // both caller and callee would be compiled methods, and neither would
twisti@3969 737 // clean up the stack pointer changes performed by the two adapters.
twisti@3969 738 // If this happens, control eventually transfers back to the compiled
twisti@3969 739 // caller, but with an uncorrected stack, causing delayed havoc.
twisti@3969 740
duke@435 741 // Pick up the return address
never@739 742 __ movptr(rax, Address(rsp, 0));
duke@435 743
twisti@3969 744 if (VerifyAdapterCalls &&
twisti@3969 745 (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
twisti@3969 746 // So, let's test for cascading c2i/i2c adapters right now.
twisti@3969 747 // assert(Interpreter::contains($return_addr) ||
twisti@3969 748 // StubRoutines::contains($return_addr),
twisti@3969 749 // "i2c adapter must return to an interpreter frame");
twisti@3969 750 __ block_comment("verify_i2c { ");
twisti@3969 751 Label L_ok;
twisti@3969 752 if (Interpreter::code() != NULL)
twisti@3969 753 range_check(masm, rax, rdi,
twisti@3969 754 Interpreter::code()->code_start(), Interpreter::code()->code_end(),
twisti@3969 755 L_ok);
twisti@3969 756 if (StubRoutines::code1() != NULL)
twisti@3969 757 range_check(masm, rax, rdi,
twisti@3969 758 StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
twisti@3969 759 L_ok);
twisti@3969 760 if (StubRoutines::code2() != NULL)
twisti@3969 761 range_check(masm, rax, rdi,
twisti@3969 762 StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
twisti@3969 763 L_ok);
twisti@3969 764 const char* msg = "i2c adapter must return to an interpreter frame";
twisti@3969 765 __ block_comment(msg);
twisti@3969 766 __ stop(msg);
twisti@3969 767 __ bind(L_ok);
twisti@3969 768 __ block_comment("} verify_i2ce ");
twisti@3969 769 }
twisti@3969 770
duke@435 771 // Must preserve original SP for loading incoming arguments because
duke@435 772 // we need to align the outgoing SP for compiled code.
never@739 773 __ movptr(rdi, rsp);
duke@435 774
duke@435 775 // Cut-out for having no stack args. Since up to 2 int/oop args are passed
duke@435 776 // in registers, we will occasionally have no stack args.
duke@435 777 int comp_words_on_stack = 0;
duke@435 778 if (comp_args_on_stack) {
duke@435 779 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
duke@435 780 // registers are below. By subtracting stack0, we either get a negative
duke@435 781 // number (all values in registers) or the maximum stack slot accessed.
duke@435 782 // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
duke@435 783 // Convert 4-byte stack slots to words.
duke@435 784 comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
duke@435 785 // Round up to miminum stack alignment, in wordSize
duke@435 786 comp_words_on_stack = round_to(comp_words_on_stack, 2);
never@739 787 __ subptr(rsp, comp_words_on_stack * wordSize);
duke@435 788 }
duke@435 789
duke@435 790 // Align the outgoing SP
never@739 791 __ andptr(rsp, -(StackAlignmentInBytes));
duke@435 792
duke@435 793 // push the return address on the stack (note that pushing, rather
duke@435 794 // than storing it, yields the correct frame alignment for the callee)
never@739 795 __ push(rax);
duke@435 796
duke@435 797 // Put saved SP in another register
duke@435 798 const Register saved_sp = rax;
never@739 799 __ movptr(saved_sp, rdi);
duke@435 800
duke@435 801
duke@435 802 // Will jump to the compiled code just as if compiled code was doing it.
duke@435 803 // Pre-load the register-jump target early, to schedule it better.
coleenp@4037 804 __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
duke@435 805
duke@435 806 // Now generate the shuffle code. Pick up all register args and move the
duke@435 807 // rest through the floating point stack top.
duke@435 808 for (int i = 0; i < total_args_passed; i++) {
duke@435 809 if (sig_bt[i] == T_VOID) {
duke@435 810 // Longs and doubles are passed in native word order, but misaligned
duke@435 811 // in the 32-bit build.
duke@435 812 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 813 continue;
duke@435 814 }
duke@435 815
duke@435 816 // Pick up 0, 1 or 2 words from SP+offset.
duke@435 817
duke@435 818 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
duke@435 819 "scrambled load targets?");
duke@435 820 // Load in argument order going down.
twisti@1861 821 int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
duke@435 822 // Point to interpreter value (vs. tag)
twisti@1861 823 int next_off = ld_off - Interpreter::stackElementSize;
duke@435 824 //
duke@435 825 //
duke@435 826 //
duke@435 827 VMReg r_1 = regs[i].first();
duke@435 828 VMReg r_2 = regs[i].second();
duke@435 829 if (!r_1->is_valid()) {
duke@435 830 assert(!r_2->is_valid(), "");
duke@435 831 continue;
duke@435 832 }
duke@435 833 if (r_1->is_stack()) {
duke@435 834 // Convert stack slot to an SP offset (+ wordSize to account for return address )
duke@435 835 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
duke@435 836
duke@435 837 // We can use rsi as a temp here because compiled code doesn't need rsi as an input
duke@435 838 // and if we end up going thru a c2i because of a miss a reasonable value of rsi
duke@435 839 // we be generated.
duke@435 840 if (!r_2->is_valid()) {
duke@435 841 // __ fld_s(Address(saved_sp, ld_off));
duke@435 842 // __ fstp_s(Address(rsp, st_off));
duke@435 843 __ movl(rsi, Address(saved_sp, ld_off));
never@739 844 __ movptr(Address(rsp, st_off), rsi);
duke@435 845 } else {
duke@435 846 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
duke@435 847 // are accessed as negative so LSW is at LOW address
duke@435 848
duke@435 849 // ld_off is MSW so get LSW
duke@435 850 // st_off is LSW (i.e. reg.first())
duke@435 851 // __ fld_d(Address(saved_sp, next_off));
duke@435 852 // __ fstp_d(Address(rsp, st_off));
never@739 853 //
never@739 854 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
never@739 855 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
never@739 856 // So we must adjust where to pick up the data to match the interpreter.
never@739 857 //
never@739 858 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
never@739 859 // are accessed as negative so LSW is at LOW address
never@739 860
never@739 861 // ld_off is MSW so get LSW
never@739 862 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
never@739 863 next_off : ld_off;
never@739 864 __ movptr(rsi, Address(saved_sp, offset));
never@739 865 __ movptr(Address(rsp, st_off), rsi);
never@739 866 #ifndef _LP64
never@739 867 __ movptr(rsi, Address(saved_sp, ld_off));
never@739 868 __ movptr(Address(rsp, st_off + wordSize), rsi);
never@739 869 #endif // _LP64
duke@435 870 }
duke@435 871 } else if (r_1->is_Register()) { // Register argument
duke@435 872 Register r = r_1->as_Register();
duke@435 873 assert(r != rax, "must be different");
duke@435 874 if (r_2->is_valid()) {
never@739 875 //
never@739 876 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
never@739 877 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
never@739 878 // So we must adjust where to pick up the data to match the interpreter.
never@739 879
never@739 880 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
never@739 881 next_off : ld_off;
never@739 882
never@739 883 // this can be a misaligned move
never@739 884 __ movptr(r, Address(saved_sp, offset));
never@739 885 #ifndef _LP64
duke@435 886 assert(r_2->as_Register() != rax, "need another temporary register");
duke@435 887 // Remember r_1 is low address (and LSB on x86)
duke@435 888 // So r_2 gets loaded from high address regardless of the platform
never@739 889 __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
never@739 890 #endif // _LP64
duke@435 891 } else {
duke@435 892 __ movl(r, Address(saved_sp, ld_off));
duke@435 893 }
duke@435 894 } else {
duke@435 895 assert(r_1->is_XMMRegister(), "");
duke@435 896 if (!r_2->is_valid()) {
duke@435 897 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
duke@435 898 } else {
duke@435 899 move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
duke@435 900 }
duke@435 901 }
duke@435 902 }
duke@435 903
duke@435 904 // 6243940 We might end up in handle_wrong_method if
duke@435 905 // the callee is deoptimized as we race thru here. If that
duke@435 906 // happens we don't want to take a safepoint because the
duke@435 907 // caller frame will look interpreted and arguments are now
duke@435 908 // "compiled" so it is much better to make this transition
duke@435 909 // invisible to the stack walking code. Unfortunately if
duke@435 910 // we try and find the callee by normal means a safepoint
duke@435 911 // is possible. So we stash the desired callee in the thread
duke@435 912 // and the vm will find there should this case occur.
duke@435 913
duke@435 914 __ get_thread(rax);
never@739 915 __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
duke@435 916
coleenp@4037 917 // move Method* to rax, in case we end up in an c2i adapter.
coleenp@4037 918 // the c2i adapters expect Method* in rax, (c2) because c2's
duke@435 919 // resolve stubs return the result (the method) in rax,.
duke@435 920 // I'd love to fix this.
never@739 921 __ mov(rax, rbx);
duke@435 922
duke@435 923 __ jmp(rdi);
duke@435 924 }
duke@435 925
duke@435 926 // ---------------------------------------------------------------
duke@435 927 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
duke@435 928 int total_args_passed,
duke@435 929 int comp_args_on_stack,
duke@435 930 const BasicType *sig_bt,
never@1622 931 const VMRegPair *regs,
never@1622 932 AdapterFingerPrint* fingerprint) {
duke@435 933 address i2c_entry = __ pc();
duke@435 934
duke@435 935 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
duke@435 936
duke@435 937 // -------------------------------------------------------------------------
coleenp@4037 938 // Generate a C2I adapter. On entry we know rbx, holds the Method* during calls
duke@435 939 // to the interpreter. The args start out packed in the compiled layout. They
duke@435 940 // need to be unpacked into the interpreter layout. This will almost always
duke@435 941 // require some stack space. We grow the current (compiled) stack, then repack
duke@435 942 // the args. We finally end in a jump to the generic interpreter entry point.
duke@435 943 // On exit from the interpreter, the interpreter will restore our SP (lest the
duke@435 944 // compiled code, which relys solely on SP and not EBP, get sick).
duke@435 945
duke@435 946 address c2i_unverified_entry = __ pc();
duke@435 947 Label skip_fixup;
duke@435 948
duke@435 949 Register holder = rax;
duke@435 950 Register receiver = rcx;
duke@435 951 Register temp = rbx;
duke@435 952
duke@435 953 {
duke@435 954
duke@435 955 Label missed;
never@739 956 __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
coleenp@4037 957 __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
coleenp@4037 958 __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset()));
duke@435 959 __ jcc(Assembler::notEqual, missed);
duke@435 960 // Method might have been compiled since the call site was patched to
duke@435 961 // interpreted if that is the case treat it as a miss so we can get
duke@435 962 // the call site corrected.
coleenp@4037 963 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
duke@435 964 __ jcc(Assembler::equal, skip_fixup);
duke@435 965
duke@435 966 __ bind(missed);
duke@435 967 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 968 }
duke@435 969
duke@435 970 address c2i_entry = __ pc();
duke@435 971
duke@435 972 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
duke@435 973
duke@435 974 __ flush();
never@1622 975 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
duke@435 976 }
duke@435 977
duke@435 978 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
duke@435 979 VMRegPair *regs,
duke@435 980 int total_args_passed) {
duke@435 981 // We return the amount of VMRegImpl stack slots we need to reserve for all
duke@435 982 // the arguments NOT counting out_preserve_stack_slots.
duke@435 983
duke@435 984 uint stack = 0; // All arguments on stack
duke@435 985
duke@435 986 for( int i = 0; i < total_args_passed; i++) {
duke@435 987 // From the type and the argument number (count) compute the location
duke@435 988 switch( sig_bt[i] ) {
duke@435 989 case T_BOOLEAN:
duke@435 990 case T_CHAR:
duke@435 991 case T_FLOAT:
duke@435 992 case T_BYTE:
duke@435 993 case T_SHORT:
duke@435 994 case T_INT:
duke@435 995 case T_OBJECT:
duke@435 996 case T_ARRAY:
duke@435 997 case T_ADDRESS:
roland@4051 998 case T_METADATA:
duke@435 999 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 1000 break;
duke@435 1001 case T_LONG:
duke@435 1002 case T_DOUBLE: // The stack numbering is reversed from Java
duke@435 1003 // Since C arguments do not get reversed, the ordering for
duke@435 1004 // doubles on the stack must be opposite the Java convention
duke@435 1005 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 1006 regs[i].set2(VMRegImpl::stack2reg(stack));
duke@435 1007 stack += 2;
duke@435 1008 break;
duke@435 1009 case T_VOID: regs[i].set_bad(); break;
duke@435 1010 default:
duke@435 1011 ShouldNotReachHere();
duke@435 1012 break;
duke@435 1013 }
duke@435 1014 }
duke@435 1015 return stack;
duke@435 1016 }
duke@435 1017
duke@435 1018 // A simple move of integer like type
duke@435 1019 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1020 if (src.first()->is_stack()) {
duke@435 1021 if (dst.first()->is_stack()) {
duke@435 1022 // stack to stack
duke@435 1023 // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
duke@435 1024 // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
never@739 1025 __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1026 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1027 } else {
duke@435 1028 // stack to reg
never@739 1029 __ movl2ptr(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
duke@435 1030 }
duke@435 1031 } else if (dst.first()->is_stack()) {
duke@435 1032 // reg to stack
never@739 1033 // no need to sign extend on 64bit
never@739 1034 __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
duke@435 1035 } else {
never@739 1036 if (dst.first() != src.first()) {
never@739 1037 __ mov(dst.first()->as_Register(), src.first()->as_Register());
never@739 1038 }
duke@435 1039 }
duke@435 1040 }
duke@435 1041
duke@435 1042 // An oop arg. Must pass a handle not the oop itself
duke@435 1043 static void object_move(MacroAssembler* masm,
duke@435 1044 OopMap* map,
duke@435 1045 int oop_handle_offset,
duke@435 1046 int framesize_in_slots,
duke@435 1047 VMRegPair src,
duke@435 1048 VMRegPair dst,
duke@435 1049 bool is_receiver,
duke@435 1050 int* receiver_offset) {
duke@435 1051
duke@435 1052 // Because of the calling conventions we know that src can be a
duke@435 1053 // register or a stack location. dst can only be a stack location.
duke@435 1054
duke@435 1055 assert(dst.first()->is_stack(), "must be stack");
duke@435 1056 // must pass a handle. First figure out the location we use as a handle
duke@435 1057
duke@435 1058 if (src.first()->is_stack()) {
duke@435 1059 // Oop is already on the stack as an argument
duke@435 1060 Register rHandle = rax;
duke@435 1061 Label nil;
never@739 1062 __ xorptr(rHandle, rHandle);
never@739 1063 __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
duke@435 1064 __ jcc(Assembler::equal, nil);
never@739 1065 __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
duke@435 1066 __ bind(nil);
never@739 1067 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 1068
duke@435 1069 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
duke@435 1070 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
duke@435 1071 if (is_receiver) {
duke@435 1072 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
duke@435 1073 }
duke@435 1074 } else {
duke@435 1075 // Oop is in an a register we must store it to the space we reserve
duke@435 1076 // on the stack for oop_handles
duke@435 1077 const Register rOop = src.first()->as_Register();
duke@435 1078 const Register rHandle = rax;
duke@435 1079 int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
duke@435 1080 int offset = oop_slot*VMRegImpl::stack_slot_size;
duke@435 1081 Label skip;
never@739 1082 __ movptr(Address(rsp, offset), rOop);
duke@435 1083 map->set_oop(VMRegImpl::stack2reg(oop_slot));
never@739 1084 __ xorptr(rHandle, rHandle);
never@739 1085 __ cmpptr(rOop, (int32_t)NULL_WORD);
duke@435 1086 __ jcc(Assembler::equal, skip);
never@739 1087 __ lea(rHandle, Address(rsp, offset));
duke@435 1088 __ bind(skip);
duke@435 1089 // Store the handle parameter
never@739 1090 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 1091 if (is_receiver) {
duke@435 1092 *receiver_offset = offset;
duke@435 1093 }
duke@435 1094 }
duke@435 1095 }
duke@435 1096
duke@435 1097 // A float arg may have to do float reg int reg conversion
duke@435 1098 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1099 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
duke@435 1100
duke@435 1101 // Because of the calling convention we know that src is either a stack location
duke@435 1102 // or an xmm register. dst can only be a stack location.
duke@435 1103
duke@435 1104 assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
duke@435 1105
duke@435 1106 if (src.first()->is_stack()) {
duke@435 1107 __ movl(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1108 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1109 } else {
duke@435 1110 // reg to stack
duke@435 1111 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1112 }
duke@435 1113 }
duke@435 1114
duke@435 1115 // A long move
duke@435 1116 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1117
duke@435 1118 // The only legal possibility for a long_move VMRegPair is:
duke@435 1119 // 1: two stack slots (possibly unaligned)
duke@435 1120 // as neither the java or C calling convention will use registers
duke@435 1121 // for longs.
duke@435 1122
duke@435 1123 if (src.first()->is_stack() && dst.first()->is_stack()) {
duke@435 1124 assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
never@739 1125 __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1126 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
never@739 1127 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
never@739 1128 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
duke@435 1129 } else {
duke@435 1130 ShouldNotReachHere();
duke@435 1131 }
duke@435 1132 }
duke@435 1133
duke@435 1134 // A double move
duke@435 1135 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1136
duke@435 1137 // The only legal possibilities for a double_move VMRegPair are:
duke@435 1138 // The painful thing here is that like long_move a VMRegPair might be
duke@435 1139
duke@435 1140 // Because of the calling convention we know that src is either
duke@435 1141 // 1: a single physical register (xmm registers only)
duke@435 1142 // 2: two stack slots (possibly unaligned)
duke@435 1143 // dst can only be a pair of stack slots.
duke@435 1144
duke@435 1145 assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
duke@435 1146
duke@435 1147 if (src.first()->is_stack()) {
duke@435 1148 // source is all stack
never@739 1149 __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1150 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
never@739 1151 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
never@739 1152 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
duke@435 1153 } else {
duke@435 1154 // reg to stack
duke@435 1155 // No worries about stack alignment
duke@435 1156 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1157 }
duke@435 1158 }
duke@435 1159
duke@435 1160
duke@435 1161 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1162 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1163 // which by this time is free to use
duke@435 1164 switch (ret_type) {
duke@435 1165 case T_FLOAT:
duke@435 1166 __ fstp_s(Address(rbp, -wordSize));
duke@435 1167 break;
duke@435 1168 case T_DOUBLE:
duke@435 1169 __ fstp_d(Address(rbp, -2*wordSize));
duke@435 1170 break;
duke@435 1171 case T_VOID: break;
duke@435 1172 case T_LONG:
never@739 1173 __ movptr(Address(rbp, -wordSize), rax);
never@739 1174 NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
duke@435 1175 break;
duke@435 1176 default: {
never@739 1177 __ movptr(Address(rbp, -wordSize), rax);
duke@435 1178 }
duke@435 1179 }
duke@435 1180 }
duke@435 1181
duke@435 1182 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1183 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1184 // which by this time is free to use
duke@435 1185 switch (ret_type) {
duke@435 1186 case T_FLOAT:
duke@435 1187 __ fld_s(Address(rbp, -wordSize));
duke@435 1188 break;
duke@435 1189 case T_DOUBLE:
duke@435 1190 __ fld_d(Address(rbp, -2*wordSize));
duke@435 1191 break;
duke@435 1192 case T_LONG:
never@739 1193 __ movptr(rax, Address(rbp, -wordSize));
never@739 1194 NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
duke@435 1195 break;
duke@435 1196 case T_VOID: break;
duke@435 1197 default: {
never@739 1198 __ movptr(rax, Address(rbp, -wordSize));
duke@435 1199 }
duke@435 1200 }
duke@435 1201 }
duke@435 1202
never@3500 1203
never@3500 1204 static void save_or_restore_arguments(MacroAssembler* masm,
never@3500 1205 const int stack_slots,
never@3500 1206 const int total_in_args,
never@3500 1207 const int arg_save_area,
never@3500 1208 OopMap* map,
never@3500 1209 VMRegPair* in_regs,
never@3500 1210 BasicType* in_sig_bt) {
never@3500 1211 // if map is non-NULL then the code should store the values,
never@3500 1212 // otherwise it should load them.
never@3500 1213 int handle_index = 0;
never@3500 1214 // Save down double word first
never@3500 1215 for ( int i = 0; i < total_in_args; i++) {
never@3500 1216 if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
never@3500 1217 int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
never@3500 1218 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1219 handle_index += 2;
never@3500 1220 assert(handle_index <= stack_slots, "overflow");
never@3500 1221 if (map != NULL) {
never@3500 1222 __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
never@3500 1223 } else {
never@3500 1224 __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
never@3500 1225 }
never@3500 1226 }
never@3500 1227 if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
never@3500 1228 int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
never@3500 1229 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1230 handle_index += 2;
never@3500 1231 assert(handle_index <= stack_slots, "overflow");
never@3500 1232 if (map != NULL) {
never@3500 1233 __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
never@3500 1234 if (in_regs[i].second()->is_Register()) {
never@3500 1235 __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
never@3500 1236 }
never@3500 1237 } else {
never@3500 1238 __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
never@3500 1239 if (in_regs[i].second()->is_Register()) {
never@3500 1240 __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
never@3500 1241 }
never@3500 1242 }
never@3500 1243 }
never@3500 1244 }
never@3500 1245 // Save or restore single word registers
never@3500 1246 for ( int i = 0; i < total_in_args; i++) {
never@3500 1247 if (in_regs[i].first()->is_Register()) {
never@3500 1248 int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
never@3500 1249 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1250 assert(handle_index <= stack_slots, "overflow");
never@3500 1251 if (in_sig_bt[i] == T_ARRAY && map != NULL) {
never@3500 1252 map->set_oop(VMRegImpl::stack2reg(slot));;
never@3500 1253 }
never@3500 1254
never@3500 1255 // Value is in an input register pass we must flush it to the stack
never@3500 1256 const Register reg = in_regs[i].first()->as_Register();
never@3500 1257 switch (in_sig_bt[i]) {
never@3500 1258 case T_ARRAY:
never@3500 1259 if (map != NULL) {
never@3500 1260 __ movptr(Address(rsp, offset), reg);
never@3500 1261 } else {
never@3500 1262 __ movptr(reg, Address(rsp, offset));
never@3500 1263 }
never@3500 1264 break;
never@3500 1265 case T_BOOLEAN:
never@3500 1266 case T_CHAR:
never@3500 1267 case T_BYTE:
never@3500 1268 case T_SHORT:
never@3500 1269 case T_INT:
never@3500 1270 if (map != NULL) {
never@3500 1271 __ movl(Address(rsp, offset), reg);
never@3500 1272 } else {
never@3500 1273 __ movl(reg, Address(rsp, offset));
never@3500 1274 }
never@3500 1275 break;
never@3500 1276 case T_OBJECT:
never@3500 1277 default: ShouldNotReachHere();
never@3500 1278 }
never@3500 1279 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1280 if (in_sig_bt[i] == T_FLOAT) {
never@3500 1281 int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
never@3500 1282 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1283 assert(handle_index <= stack_slots, "overflow");
never@3500 1284 if (map != NULL) {
never@3500 1285 __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
never@3500 1286 } else {
never@3500 1287 __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
never@3500 1288 }
never@3500 1289 }
never@3500 1290 } else if (in_regs[i].first()->is_stack()) {
never@3500 1291 if (in_sig_bt[i] == T_ARRAY && map != NULL) {
never@3500 1292 int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
never@3500 1293 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
never@3500 1294 }
never@3500 1295 }
never@3500 1296 }
never@3500 1297 }
never@3500 1298
never@3500 1299 // Check GC_locker::needs_gc and enter the runtime if it's true. This
never@3500 1300 // keeps a new JNI critical region from starting until a GC has been
never@3500 1301 // forced. Save down any oops in registers and describe them in an
never@3500 1302 // OopMap.
never@3500 1303 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
never@3500 1304 Register thread,
never@3500 1305 int stack_slots,
never@3500 1306 int total_c_args,
never@3500 1307 int total_in_args,
never@3500 1308 int arg_save_area,
never@3500 1309 OopMapSet* oop_maps,
never@3500 1310 VMRegPair* in_regs,
never@3500 1311 BasicType* in_sig_bt) {
never@3500 1312 __ block_comment("check GC_locker::needs_gc");
never@3500 1313 Label cont;
never@3500 1314 __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
never@3500 1315 __ jcc(Assembler::equal, cont);
never@3500 1316
never@3500 1317 // Save down any incoming oops and call into the runtime to halt for a GC
never@3500 1318
never@3500 1319 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
never@3500 1320
never@3500 1321 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1322 arg_save_area, map, in_regs, in_sig_bt);
never@3500 1323
never@3500 1324 address the_pc = __ pc();
never@3500 1325 oop_maps->add_gc_map( __ offset(), map);
never@3500 1326 __ set_last_Java_frame(thread, rsp, noreg, the_pc);
never@3500 1327
never@3500 1328 __ block_comment("block_for_jni_critical");
never@3500 1329 __ push(thread);
never@3500 1330 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
never@3500 1331 __ increment(rsp, wordSize);
never@3500 1332
never@3500 1333 __ get_thread(thread);
never@3500 1334 __ reset_last_Java_frame(thread, false, true);
never@3500 1335
never@3500 1336 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1337 arg_save_area, NULL, in_regs, in_sig_bt);
never@3500 1338
never@3500 1339 __ bind(cont);
never@3500 1340 #ifdef ASSERT
never@3500 1341 if (StressCriticalJNINatives) {
never@3500 1342 // Stress register saving
never@3500 1343 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
never@3500 1344 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1345 arg_save_area, map, in_regs, in_sig_bt);
never@3500 1346 // Destroy argument registers
never@3500 1347 for (int i = 0; i < total_in_args - 1; i++) {
never@3500 1348 if (in_regs[i].first()->is_Register()) {
never@3500 1349 const Register reg = in_regs[i].first()->as_Register();
never@3500 1350 __ xorptr(reg, reg);
never@3500 1351 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1352 __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
never@3500 1353 } else if (in_regs[i].first()->is_FloatRegister()) {
never@3500 1354 ShouldNotReachHere();
never@3500 1355 } else if (in_regs[i].first()->is_stack()) {
never@3500 1356 // Nothing to do
never@3500 1357 } else {
never@3500 1358 ShouldNotReachHere();
never@3500 1359 }
never@3500 1360 if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
never@3500 1361 i++;
never@3500 1362 }
never@3500 1363 }
never@3500 1364
never@3500 1365 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1366 arg_save_area, NULL, in_regs, in_sig_bt);
never@3500 1367 }
never@3500 1368 #endif
never@3500 1369 }
never@3500 1370
never@3500 1371 // Unpack an array argument into a pointer to the body and the length
never@3500 1372 // if the array is non-null, otherwise pass 0 for both.
never@3500 1373 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
never@3500 1374 Register tmp_reg = rax;
never@3500 1375 assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
never@3500 1376 "possible collision");
never@3500 1377 assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
never@3500 1378 "possible collision");
never@3500 1379
never@3500 1380 // Pass the length, ptr pair
never@3500 1381 Label is_null, done;
never@3500 1382 VMRegPair tmp(tmp_reg->as_VMReg());
never@3500 1383 if (reg.first()->is_stack()) {
never@3500 1384 // Load the arg up from the stack
never@3500 1385 simple_move32(masm, reg, tmp);
never@3500 1386 reg = tmp;
never@3500 1387 }
never@3500 1388 __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
never@3500 1389 __ jccb(Assembler::equal, is_null);
never@3500 1390 __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
never@3500 1391 simple_move32(masm, tmp, body_arg);
never@3500 1392 // load the length relative to the body.
never@3500 1393 __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
never@3500 1394 arrayOopDesc::base_offset_in_bytes(in_elem_type)));
never@3500 1395 simple_move32(masm, tmp, length_arg);
never@3500 1396 __ jmpb(done);
never@3500 1397 __ bind(is_null);
never@3500 1398 // Pass zeros
never@3500 1399 __ xorptr(tmp_reg, tmp_reg);
never@3500 1400 simple_move32(masm, tmp, body_arg);
never@3500 1401 simple_move32(masm, tmp, length_arg);
never@3500 1402 __ bind(done);
never@3500 1403 }
never@3500 1404
twisti@3969 1405 static void verify_oop_args(MacroAssembler* masm,
twisti@4101 1406 methodHandle method,
twisti@3969 1407 const BasicType* sig_bt,
twisti@3969 1408 const VMRegPair* regs) {
twisti@3969 1409 Register temp_reg = rbx; // not part of any compiled calling seq
twisti@3969 1410 if (VerifyOops) {
twisti@4101 1411 for (int i = 0; i < method->size_of_parameters(); i++) {
twisti@3969 1412 if (sig_bt[i] == T_OBJECT ||
twisti@3969 1413 sig_bt[i] == T_ARRAY) {
twisti@3969 1414 VMReg r = regs[i].first();
twisti@3969 1415 assert(r->is_valid(), "bad oop arg");
twisti@3969 1416 if (r->is_stack()) {
twisti@3969 1417 __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1418 __ verify_oop(temp_reg);
twisti@3969 1419 } else {
twisti@3969 1420 __ verify_oop(r->as_Register());
twisti@3969 1421 }
twisti@3969 1422 }
twisti@3969 1423 }
twisti@3969 1424 }
twisti@3969 1425 }
twisti@3969 1426
twisti@3969 1427 static void gen_special_dispatch(MacroAssembler* masm,
twisti@4101 1428 methodHandle method,
twisti@3969 1429 const BasicType* sig_bt,
twisti@3969 1430 const VMRegPair* regs) {
twisti@4101 1431 verify_oop_args(masm, method, sig_bt, regs);
twisti@4101 1432 vmIntrinsics::ID iid = method->intrinsic_id();
twisti@3969 1433
twisti@3969 1434 // Now write the args into the outgoing interpreter space
twisti@3969 1435 bool has_receiver = false;
twisti@3969 1436 Register receiver_reg = noreg;
twisti@3969 1437 int member_arg_pos = -1;
twisti@3969 1438 Register member_reg = noreg;
twisti@4101 1439 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
twisti@3969 1440 if (ref_kind != 0) {
twisti@4101 1441 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument
twisti@3969 1442 member_reg = rbx; // known to be free at this point
twisti@3969 1443 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
twisti@4101 1444 } else if (iid == vmIntrinsics::_invokeBasic) {
twisti@3969 1445 has_receiver = true;
twisti@3969 1446 } else {
twisti@4101 1447 fatal(err_msg_res("unexpected intrinsic id %d", iid));
twisti@3969 1448 }
twisti@3969 1449
twisti@3969 1450 if (member_reg != noreg) {
twisti@3969 1451 // Load the member_arg into register, if necessary.
twisti@4101 1452 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
twisti@3969 1453 VMReg r = regs[member_arg_pos].first();
twisti@3969 1454 if (r->is_stack()) {
twisti@3969 1455 __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1456 } else {
twisti@3969 1457 // no data motion is needed
twisti@3969 1458 member_reg = r->as_Register();
twisti@3969 1459 }
twisti@3969 1460 }
twisti@3969 1461
twisti@3969 1462 if (has_receiver) {
twisti@3969 1463 // Make sure the receiver is loaded into a register.
twisti@4101 1464 assert(method->size_of_parameters() > 0, "oob");
twisti@3969 1465 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
twisti@3969 1466 VMReg r = regs[0].first();
twisti@3969 1467 assert(r->is_valid(), "bad receiver arg");
twisti@3969 1468 if (r->is_stack()) {
twisti@3969 1469 // Porting note: This assumes that compiled calling conventions always
twisti@3969 1470 // pass the receiver oop in a register. If this is not true on some
twisti@3969 1471 // platform, pick a temp and load the receiver from stack.
twisti@4101 1472 fatal("receiver always in a register");
twisti@3969 1473 receiver_reg = rcx; // known to be free at this point
twisti@3969 1474 __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1475 } else {
twisti@3969 1476 // no data motion is needed
twisti@3969 1477 receiver_reg = r->as_Register();
twisti@3969 1478 }
twisti@3969 1479 }
twisti@3969 1480
twisti@3969 1481 // Figure out which address we are really jumping to:
twisti@4101 1482 MethodHandles::generate_method_handle_dispatch(masm, iid,
twisti@3969 1483 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
twisti@3969 1484 }
never@3500 1485
duke@435 1486 // ---------------------------------------------------------------------------
duke@435 1487 // Generate a native wrapper for a given method. The method takes arguments
duke@435 1488 // in the Java compiled code convention, marshals them to the native
duke@435 1489 // convention (handlizes oops, etc), transitions to native, makes the call,
duke@435 1490 // returns to java state (possibly blocking), unhandlizes any result and
duke@435 1491 // returns.
never@3500 1492 //
never@3500 1493 // Critical native functions are a shorthand for the use of
never@3500 1494 // GetPrimtiveArrayCritical and disallow the use of any other JNI
never@3500 1495 // functions. The wrapper is expected to unpack the arguments before
never@3500 1496 // passing them to the callee and perform checks before and after the
never@3500 1497 // native call to ensure that they GC_locker
never@3500 1498 // lock_critical/unlock_critical semantics are followed. Some other
never@3500 1499 // parts of JNI setup are skipped like the tear down of the JNI handle
never@3500 1500 // block and the check for pending exceptions it's impossible for them
never@3500 1501 // to be thrown.
never@3500 1502 //
never@3500 1503 // They are roughly structured like this:
never@3500 1504 // if (GC_locker::needs_gc())
never@3500 1505 // SharedRuntime::block_for_jni_critical();
never@3500 1506 // tranistion to thread_in_native
never@3500 1507 // unpack arrray arguments and call native entry point
never@3500 1508 // check for safepoint in progress
never@3500 1509 // check if any thread suspend flags are set
never@3500 1510 // call into JVM and possible unlock the JNI critical
never@3500 1511 // if a GC was suppressed while in the critical native.
never@3500 1512 // transition back to thread_in_Java
never@3500 1513 // return to caller
never@3500 1514 //
twisti@3969 1515 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
duke@435 1516 methodHandle method,
twisti@2687 1517 int compile_id,
twisti@3969 1518 BasicType* in_sig_bt,
twisti@3969 1519 VMRegPair* in_regs,
duke@435 1520 BasicType ret_type) {
twisti@3969 1521 if (method->is_method_handle_intrinsic()) {
twisti@3969 1522 vmIntrinsics::ID iid = method->intrinsic_id();
twisti@3969 1523 intptr_t start = (intptr_t)__ pc();
twisti@3969 1524 int vep_offset = ((intptr_t)__ pc()) - start;
twisti@3969 1525 gen_special_dispatch(masm,
twisti@4101 1526 method,
twisti@3969 1527 in_sig_bt,
twisti@3969 1528 in_regs);
twisti@3969 1529 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
twisti@3969 1530 __ flush();
twisti@3969 1531 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
twisti@3969 1532 return nmethod::new_native_nmethod(method,
twisti@3969 1533 compile_id,
twisti@3969 1534 masm->code(),
twisti@3969 1535 vep_offset,
twisti@3969 1536 frame_complete,
twisti@3969 1537 stack_slots / VMRegImpl::slots_per_word,
twisti@3969 1538 in_ByteSize(-1),
twisti@3969 1539 in_ByteSize(-1),
twisti@3969 1540 (OopMapSet*)NULL);
twisti@3969 1541 }
never@3500 1542 bool is_critical_native = true;
never@3500 1543 address native_func = method->critical_native_function();
never@3500 1544 if (native_func == NULL) {
never@3500 1545 native_func = method->native_function();
never@3500 1546 is_critical_native = false;
never@3500 1547 }
never@3500 1548 assert(native_func != NULL, "must have function");
duke@435 1549
duke@435 1550 // An OopMap for lock (and class if static)
duke@435 1551 OopMapSet *oop_maps = new OopMapSet();
duke@435 1552
duke@435 1553 // We have received a description of where all the java arg are located
duke@435 1554 // on entry to the wrapper. We need to convert these args to where
duke@435 1555 // the jni function will expect them. To figure out where they go
duke@435 1556 // we convert the java signature to a C signature by inserting
duke@435 1557 // the hidden arguments as arg[0] and possibly arg[1] (static method)
duke@435 1558
twisti@4101 1559 const int total_in_args = method->size_of_parameters();
never@3500 1560 int total_c_args = total_in_args;
never@3500 1561 if (!is_critical_native) {
never@3500 1562 total_c_args += 1;
never@3500 1563 if (method->is_static()) {
never@3500 1564 total_c_args++;
never@3500 1565 }
never@3500 1566 } else {
never@3500 1567 for (int i = 0; i < total_in_args; i++) {
never@3500 1568 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1569 total_c_args++;
never@3500 1570 }
never@3500 1571 }
duke@435 1572 }
duke@435 1573
duke@435 1574 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
never@3500 1575 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
never@3500 1576 BasicType* in_elem_bt = NULL;
duke@435 1577
duke@435 1578 int argc = 0;
never@3500 1579 if (!is_critical_native) {
never@3500 1580 out_sig_bt[argc++] = T_ADDRESS;
never@3500 1581 if (method->is_static()) {
never@3500 1582 out_sig_bt[argc++] = T_OBJECT;
never@3500 1583 }
never@3500 1584
never@3500 1585 for (int i = 0; i < total_in_args ; i++ ) {
never@3500 1586 out_sig_bt[argc++] = in_sig_bt[i];
never@3500 1587 }
never@3500 1588 } else {
never@3500 1589 Thread* THREAD = Thread::current();
never@3500 1590 in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
never@3500 1591 SignatureStream ss(method->signature());
never@3500 1592 for (int i = 0; i < total_in_args ; i++ ) {
never@3500 1593 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1594 // Arrays are passed as int, elem* pair
never@3500 1595 out_sig_bt[argc++] = T_INT;
never@3500 1596 out_sig_bt[argc++] = T_ADDRESS;
never@3500 1597 Symbol* atype = ss.as_symbol(CHECK_NULL);
never@3500 1598 const char* at = atype->as_C_string();
never@3500 1599 if (strlen(at) == 2) {
never@3500 1600 assert(at[0] == '[', "must be");
never@3500 1601 switch (at[1]) {
never@3500 1602 case 'B': in_elem_bt[i] = T_BYTE; break;
never@3500 1603 case 'C': in_elem_bt[i] = T_CHAR; break;
never@3500 1604 case 'D': in_elem_bt[i] = T_DOUBLE; break;
never@3500 1605 case 'F': in_elem_bt[i] = T_FLOAT; break;
never@3500 1606 case 'I': in_elem_bt[i] = T_INT; break;
never@3500 1607 case 'J': in_elem_bt[i] = T_LONG; break;
never@3500 1608 case 'S': in_elem_bt[i] = T_SHORT; break;
never@3500 1609 case 'Z': in_elem_bt[i] = T_BOOLEAN; break;
never@3500 1610 default: ShouldNotReachHere();
never@3500 1611 }
never@3500 1612 }
never@3500 1613 } else {
never@3500 1614 out_sig_bt[argc++] = in_sig_bt[i];
never@3500 1615 in_elem_bt[i] = T_VOID;
never@3500 1616 }
never@3500 1617 if (in_sig_bt[i] != T_VOID) {
never@3500 1618 assert(in_sig_bt[i] == ss.type(), "must match");
never@3500 1619 ss.next();
never@3500 1620 }
never@3500 1621 }
duke@435 1622 }
duke@435 1623
duke@435 1624 // Now figure out where the args must be stored and how much stack space
never@3500 1625 // they require.
duke@435 1626 int out_arg_slots;
duke@435 1627 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
duke@435 1628
duke@435 1629 // Compute framesize for the wrapper. We need to handlize all oops in
duke@435 1630 // registers a max of 2 on x86.
duke@435 1631
duke@435 1632 // Calculate the total number of stack slots we will need.
duke@435 1633
duke@435 1634 // First count the abi requirement plus all of the outgoing args
duke@435 1635 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
duke@435 1636
duke@435 1637 // Now the space for the inbound oop handle area
never@3500 1638 int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
never@3500 1639 if (is_critical_native) {
never@3500 1640 // Critical natives may have to call out so they need a save area
never@3500 1641 // for register arguments.
never@3500 1642 int double_slots = 0;
never@3500 1643 int single_slots = 0;
never@3500 1644 for ( int i = 0; i < total_in_args; i++) {
never@3500 1645 if (in_regs[i].first()->is_Register()) {
never@3500 1646 const Register reg = in_regs[i].first()->as_Register();
never@3500 1647 switch (in_sig_bt[i]) {
twisti@3969 1648 case T_ARRAY: // critical array (uses 2 slots on LP64)
never@3500 1649 case T_BOOLEAN:
never@3500 1650 case T_BYTE:
never@3500 1651 case T_SHORT:
never@3500 1652 case T_CHAR:
never@3500 1653 case T_INT: single_slots++; break;
never@3500 1654 case T_LONG: double_slots++; break;
never@3500 1655 default: ShouldNotReachHere();
never@3500 1656 }
never@3500 1657 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1658 switch (in_sig_bt[i]) {
never@3500 1659 case T_FLOAT: single_slots++; break;
never@3500 1660 case T_DOUBLE: double_slots++; break;
never@3500 1661 default: ShouldNotReachHere();
never@3500 1662 }
never@3500 1663 } else if (in_regs[i].first()->is_FloatRegister()) {
never@3500 1664 ShouldNotReachHere();
never@3500 1665 }
never@3500 1666 }
never@3500 1667 total_save_slots = double_slots * 2 + single_slots;
never@3500 1668 // align the save area
never@3500 1669 if (double_slots != 0) {
never@3500 1670 stack_slots = round_to(stack_slots, 2);
never@3500 1671 }
never@3500 1672 }
duke@435 1673
duke@435 1674 int oop_handle_offset = stack_slots;
never@3500 1675 stack_slots += total_save_slots;
duke@435 1676
duke@435 1677 // Now any space we need for handlizing a klass if static method
duke@435 1678
duke@435 1679 int klass_slot_offset = 0;
duke@435 1680 int klass_offset = -1;
duke@435 1681 int lock_slot_offset = 0;
duke@435 1682 bool is_static = false;
duke@435 1683
duke@435 1684 if (method->is_static()) {
duke@435 1685 klass_slot_offset = stack_slots;
duke@435 1686 stack_slots += VMRegImpl::slots_per_word;
duke@435 1687 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
duke@435 1688 is_static = true;
duke@435 1689 }
duke@435 1690
duke@435 1691 // Plus a lock if needed
duke@435 1692
duke@435 1693 if (method->is_synchronized()) {
duke@435 1694 lock_slot_offset = stack_slots;
duke@435 1695 stack_slots += VMRegImpl::slots_per_word;
duke@435 1696 }
duke@435 1697
duke@435 1698 // Now a place (+2) to save return values or temp during shuffling
duke@435 1699 // + 2 for return address (which we own) and saved rbp,
duke@435 1700 stack_slots += 4;
duke@435 1701
duke@435 1702 // Ok The space we have allocated will look like:
duke@435 1703 //
duke@435 1704 //
duke@435 1705 // FP-> | |
duke@435 1706 // |---------------------|
duke@435 1707 // | 2 slots for moves |
duke@435 1708 // |---------------------|
duke@435 1709 // | lock box (if sync) |
duke@435 1710 // |---------------------| <- lock_slot_offset (-lock_slot_rbp_offset)
duke@435 1711 // | klass (if static) |
duke@435 1712 // |---------------------| <- klass_slot_offset
duke@435 1713 // | oopHandle area |
duke@435 1714 // |---------------------| <- oop_handle_offset (a max of 2 registers)
duke@435 1715 // | outbound memory |
duke@435 1716 // | based arguments |
duke@435 1717 // | |
duke@435 1718 // |---------------------|
duke@435 1719 // | |
duke@435 1720 // SP-> | out_preserved_slots |
duke@435 1721 //
duke@435 1722 //
duke@435 1723 // ****************************************************************************
duke@435 1724 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 1725 // arguments off of the stack after the jni call. Before the call we can use
duke@435 1726 // instructions that are SP relative. After the jni call we switch to FP
duke@435 1727 // relative instructions instead of re-adjusting the stack on windows.
duke@435 1728 // ****************************************************************************
duke@435 1729
duke@435 1730
duke@435 1731 // Now compute actual number of stack words we need rounding to make
duke@435 1732 // stack properly aligned.
xlu@959 1733 stack_slots = round_to(stack_slots, StackAlignmentInSlots);
duke@435 1734
duke@435 1735 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
duke@435 1736
duke@435 1737 intptr_t start = (intptr_t)__ pc();
duke@435 1738
duke@435 1739 // First thing make an ic check to see if we should even be here
duke@435 1740
duke@435 1741 // We are free to use all registers as temps without saving them and
never@3500 1742 // restoring them except rbp. rbp is the only callee save register
duke@435 1743 // as far as the interpreter and the compiler(s) are concerned.
duke@435 1744
duke@435 1745
duke@435 1746 const Register ic_reg = rax;
duke@435 1747 const Register receiver = rcx;
duke@435 1748 Label hit;
duke@435 1749 Label exception_pending;
duke@435 1750
duke@435 1751 __ verify_oop(receiver);
never@739 1752 __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
duke@435 1753 __ jcc(Assembler::equal, hit);
duke@435 1754
duke@435 1755 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 1756
duke@435 1757 // verified entry must be aligned for code patching.
duke@435 1758 // and the first 5 bytes must be in the same cache line
duke@435 1759 // if we align at 8 then we will be sure 5 bytes are in the same line
duke@435 1760 __ align(8);
duke@435 1761
duke@435 1762 __ bind(hit);
duke@435 1763
duke@435 1764 int vep_offset = ((intptr_t)__ pc()) - start;
duke@435 1765
duke@435 1766 #ifdef COMPILER1
duke@435 1767 if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
duke@435 1768 // Object.hashCode can pull the hashCode from the header word
duke@435 1769 // instead of doing a full VM transition once it's been computed.
duke@435 1770 // Since hashCode is usually polymorphic at call sites we can't do
duke@435 1771 // this optimization at the call site without a lot of work.
duke@435 1772 Label slowCase;
duke@435 1773 Register receiver = rcx;
duke@435 1774 Register result = rax;
never@739 1775 __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
duke@435 1776
duke@435 1777 // check if locked
never@739 1778 __ testptr(result, markOopDesc::unlocked_value);
duke@435 1779 __ jcc (Assembler::zero, slowCase);
duke@435 1780
duke@435 1781 if (UseBiasedLocking) {
duke@435 1782 // Check if biased and fall through to runtime if so
never@739 1783 __ testptr(result, markOopDesc::biased_lock_bit_in_place);
duke@435 1784 __ jcc (Assembler::notZero, slowCase);
duke@435 1785 }
duke@435 1786
duke@435 1787 // get hash
never@739 1788 __ andptr(result, markOopDesc::hash_mask_in_place);
duke@435 1789 // test if hashCode exists
duke@435 1790 __ jcc (Assembler::zero, slowCase);
never@739 1791 __ shrptr(result, markOopDesc::hash_shift);
duke@435 1792 __ ret(0);
duke@435 1793 __ bind (slowCase);
duke@435 1794 }
duke@435 1795 #endif // COMPILER1
duke@435 1796
duke@435 1797 // The instruction at the verified entry point must be 5 bytes or longer
duke@435 1798 // because it can be patched on the fly by make_non_entrant. The stack bang
duke@435 1799 // instruction fits that requirement.
duke@435 1800
duke@435 1801 // Generate stack overflow check
duke@435 1802
duke@435 1803 if (UseStackBanging) {
duke@435 1804 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
duke@435 1805 } else {
duke@435 1806 // need a 5 byte instruction to allow MT safe patching to non-entrant
duke@435 1807 __ fat_nop();
duke@435 1808 }
duke@435 1809
duke@435 1810 // Generate a new frame for the wrapper.
duke@435 1811 __ enter();
never@3500 1812 // -2 because return address is already present and so is saved rbp
never@739 1813 __ subptr(rsp, stack_size - 2*wordSize);
duke@435 1814
never@3500 1815 // Frame is now completed as far as size and linkage.
duke@435 1816 int frame_complete = ((intptr_t)__ pc()) - start;
duke@435 1817
duke@435 1818 // Calculate the difference between rsp and rbp,. We need to know it
duke@435 1819 // after the native call because on windows Java Natives will pop
duke@435 1820 // the arguments and it is painful to do rsp relative addressing
duke@435 1821 // in a platform independent way. So after the call we switch to
duke@435 1822 // rbp, relative addressing.
duke@435 1823
duke@435 1824 int fp_adjustment = stack_size - 2*wordSize;
duke@435 1825
duke@435 1826 #ifdef COMPILER2
duke@435 1827 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 1828 if (UseSSE >= 2) {
duke@435 1829 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 1830 } else {
duke@435 1831 __ empty_FPU_stack();
duke@435 1832 }
duke@435 1833 #endif /* COMPILER2 */
duke@435 1834
duke@435 1835 // Compute the rbp, offset for any slots used after the jni call
duke@435 1836
duke@435 1837 int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
duke@435 1838
duke@435 1839 // We use rdi as a thread pointer because it is callee save and
duke@435 1840 // if we load it once it is usable thru the entire wrapper
duke@435 1841 const Register thread = rdi;
duke@435 1842
duke@435 1843 // We use rsi as the oop handle for the receiver/klass
duke@435 1844 // It is callee save so it survives the call to native
duke@435 1845
duke@435 1846 const Register oop_handle_reg = rsi;
duke@435 1847
duke@435 1848 __ get_thread(thread);
duke@435 1849
never@3500 1850 if (is_critical_native) {
never@3500 1851 check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
never@3500 1852 oop_handle_offset, oop_maps, in_regs, in_sig_bt);
never@3500 1853 }
duke@435 1854
duke@435 1855 //
duke@435 1856 // We immediately shuffle the arguments so that any vm call we have to
duke@435 1857 // make from here on out (sync slow path, jvmti, etc.) we will have
duke@435 1858 // captured the oops from our caller and have a valid oopMap for
duke@435 1859 // them.
duke@435 1860
duke@435 1861 // -----------------
duke@435 1862 // The Grand Shuffle
duke@435 1863 //
duke@435 1864 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
duke@435 1865 // and, if static, the class mirror instead of a receiver. This pretty much
duke@435 1866 // guarantees that register layout will not match (and x86 doesn't use reg
duke@435 1867 // parms though amd does). Since the native abi doesn't use register args
duke@435 1868 // and the java conventions does we don't have to worry about collisions.
duke@435 1869 // All of our moved are reg->stack or stack->stack.
duke@435 1870 // We ignore the extra arguments during the shuffle and handle them at the
duke@435 1871 // last moment. The shuffle is described by the two calling convention
duke@435 1872 // vectors we have in our possession. We simply walk the java vector to
duke@435 1873 // get the source locations and the c vector to get the destinations.
duke@435 1874
never@3500 1875 int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
duke@435 1876
duke@435 1877 // Record rsp-based slot for receiver on stack for non-static methods
duke@435 1878 int receiver_offset = -1;
duke@435 1879
duke@435 1880 // This is a trick. We double the stack slots so we can claim
duke@435 1881 // the oops in the caller's frame. Since we are sure to have
duke@435 1882 // more args than the caller doubling is enough to make
duke@435 1883 // sure we can capture all the incoming oop args from the
duke@435 1884 // caller.
duke@435 1885 //
duke@435 1886 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
duke@435 1887
duke@435 1888 // Mark location of rbp,
duke@435 1889 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
duke@435 1890
duke@435 1891 // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
duke@435 1892 // Are free to temporaries if we have to do stack to steck moves.
duke@435 1893 // All inbound args are referenced based on rbp, and all outbound args via rsp.
duke@435 1894
never@3500 1895 for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
duke@435 1896 switch (in_sig_bt[i]) {
duke@435 1897 case T_ARRAY:
never@3500 1898 if (is_critical_native) {
never@3500 1899 unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
never@3500 1900 c_arg++;
never@3500 1901 break;
never@3500 1902 }
duke@435 1903 case T_OBJECT:
never@3500 1904 assert(!is_critical_native, "no oop arguments");
duke@435 1905 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
duke@435 1906 ((i == 0) && (!is_static)),
duke@435 1907 &receiver_offset);
duke@435 1908 break;
duke@435 1909 case T_VOID:
duke@435 1910 break;
duke@435 1911
duke@435 1912 case T_FLOAT:
duke@435 1913 float_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1914 break;
duke@435 1915
duke@435 1916 case T_DOUBLE:
duke@435 1917 assert( i + 1 < total_in_args &&
duke@435 1918 in_sig_bt[i + 1] == T_VOID &&
duke@435 1919 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
duke@435 1920 double_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1921 break;
duke@435 1922
duke@435 1923 case T_LONG :
duke@435 1924 long_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1925 break;
duke@435 1926
duke@435 1927 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
duke@435 1928
duke@435 1929 default:
duke@435 1930 simple_move32(masm, in_regs[i], out_regs[c_arg]);
duke@435 1931 }
duke@435 1932 }
duke@435 1933
duke@435 1934 // Pre-load a static method's oop into rsi. Used both by locking code and
duke@435 1935 // the normal JNI call code.
never@3500 1936 if (method->is_static() && !is_critical_native) {
duke@435 1937
duke@435 1938 // load opp into a register
duke@435 1939 __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
duke@435 1940
duke@435 1941 // Now handlize the static class mirror it's known not-null.
never@739 1942 __ movptr(Address(rsp, klass_offset), oop_handle_reg);
duke@435 1943 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
duke@435 1944
duke@435 1945 // Now get the handle
never@739 1946 __ lea(oop_handle_reg, Address(rsp, klass_offset));
duke@435 1947 // store the klass handle as second argument
never@739 1948 __ movptr(Address(rsp, wordSize), oop_handle_reg);
duke@435 1949 }
duke@435 1950
duke@435 1951 // Change state to native (we save the return address in the thread, since it might not
duke@435 1952 // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
duke@435 1953 // points into the right code segment. It does not have to be the correct return pc.
duke@435 1954 // We use the same pc/oopMap repeatedly when we call out
duke@435 1955
duke@435 1956 intptr_t the_pc = (intptr_t) __ pc();
duke@435 1957 oop_maps->add_gc_map(the_pc - start, map);
duke@435 1958
duke@435 1959 __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
duke@435 1960
duke@435 1961
duke@435 1962 // We have all of the arguments setup at this point. We must not touch any register
duke@435 1963 // argument registers at this point (what if we save/restore them there are no oop?
duke@435 1964
duke@435 1965 {
duke@435 1966 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
coleenp@4037 1967 __ mov_metadata(rax, method());
duke@435 1968 __ call_VM_leaf(
duke@435 1969 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 1970 thread, rax);
duke@435 1971 }
duke@435 1972
dcubed@1045 1973 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 1974 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
coleenp@4037 1975 __ mov_metadata(rax, method());
dcubed@1045 1976 __ call_VM_leaf(
dcubed@1045 1977 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 1978 thread, rax);
dcubed@1045 1979 }
dcubed@1045 1980
duke@435 1981 // These are register definitions we need for locking/unlocking
duke@435 1982 const Register swap_reg = rax; // Must use rax, for cmpxchg instruction
duke@435 1983 const Register obj_reg = rcx; // Will contain the oop
duke@435 1984 const Register lock_reg = rdx; // Address of compiler lock object (BasicLock)
duke@435 1985
duke@435 1986 Label slow_path_lock;
duke@435 1987 Label lock_done;
duke@435 1988
duke@435 1989 // Lock a synchronized method
duke@435 1990 if (method->is_synchronized()) {
never@3500 1991 assert(!is_critical_native, "unhandled");
duke@435 1992
duke@435 1993
duke@435 1994 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
duke@435 1995
duke@435 1996 // Get the handle (the 2nd argument)
never@739 1997 __ movptr(oop_handle_reg, Address(rsp, wordSize));
duke@435 1998
duke@435 1999 // Get address of the box
duke@435 2000
never@739 2001 __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
duke@435 2002
duke@435 2003 // Load the oop from the handle
never@739 2004 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 2005
duke@435 2006 if (UseBiasedLocking) {
duke@435 2007 // Note that oop_handle_reg is trashed during this call
duke@435 2008 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
duke@435 2009 }
duke@435 2010
duke@435 2011 // Load immediate 1 into swap_reg %rax,
never@739 2012 __ movptr(swap_reg, 1);
duke@435 2013
duke@435 2014 // Load (object->mark() | 1) into swap_reg %rax,
never@739 2015 __ orptr(swap_reg, Address(obj_reg, 0));
duke@435 2016
duke@435 2017 // Save (object->mark() | 1) into BasicLock's displaced header
never@739 2018 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 2019
duke@435 2020 if (os::is_MP()) {
duke@435 2021 __ lock();
duke@435 2022 }
duke@435 2023
duke@435 2024 // src -> dest iff dest == rax, else rax, <- dest
duke@435 2025 // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
never@739 2026 __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
duke@435 2027 __ jcc(Assembler::equal, lock_done);
duke@435 2028
duke@435 2029 // Test if the oopMark is an obvious stack pointer, i.e.,
duke@435 2030 // 1) (mark & 3) == 0, and
duke@435 2031 // 2) rsp <= mark < mark + os::pagesize()
duke@435 2032 // These 3 tests can be done by evaluating the following
duke@435 2033 // expression: ((mark - rsp) & (3 - os::vm_page_size())),
duke@435 2034 // assuming both stack pointer and pagesize have their
duke@435 2035 // least significant 2 bits clear.
duke@435 2036 // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
duke@435 2037
never@739 2038 __ subptr(swap_reg, rsp);
never@739 2039 __ andptr(swap_reg, 3 - os::vm_page_size());
duke@435 2040
duke@435 2041 // Save the test result, for recursive case, the result is zero
never@739 2042 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 2043 __ jcc(Assembler::notEqual, slow_path_lock);
duke@435 2044 // Slow path will re-enter here
duke@435 2045 __ bind(lock_done);
duke@435 2046
duke@435 2047 if (UseBiasedLocking) {
duke@435 2048 // Re-fetch oop_handle_reg as we trashed it above
never@739 2049 __ movptr(oop_handle_reg, Address(rsp, wordSize));
duke@435 2050 }
duke@435 2051 }
duke@435 2052
duke@435 2053
duke@435 2054 // Finally just about ready to make the JNI call
duke@435 2055
duke@435 2056
duke@435 2057 // get JNIEnv* which is first argument to native
never@3500 2058 if (!is_critical_native) {
never@3500 2059 __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
never@3500 2060 __ movptr(Address(rsp, 0), rdx);
never@3500 2061 }
duke@435 2062
duke@435 2063 // Now set thread in native
duke@435 2064 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
duke@435 2065
never@3500 2066 __ call(RuntimeAddress(native_func));
duke@435 2067
duke@435 2068 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 2069 // arguments off of the stack. We could just re-adjust the stack pointer here
duke@435 2070 // and continue to do SP relative addressing but we instead switch to FP
duke@435 2071 // relative addressing.
duke@435 2072
duke@435 2073 // Unpack native results.
duke@435 2074 switch (ret_type) {
duke@435 2075 case T_BOOLEAN: __ c2bool(rax); break;
never@739 2076 case T_CHAR : __ andptr(rax, 0xFFFF); break;
duke@435 2077 case T_BYTE : __ sign_extend_byte (rax); break;
duke@435 2078 case T_SHORT : __ sign_extend_short(rax); break;
duke@435 2079 case T_INT : /* nothing to do */ break;
duke@435 2080 case T_DOUBLE :
duke@435 2081 case T_FLOAT :
duke@435 2082 // Result is in st0 we'll save as needed
duke@435 2083 break;
duke@435 2084 case T_ARRAY: // Really a handle
duke@435 2085 case T_OBJECT: // Really a handle
duke@435 2086 break; // can't de-handlize until after safepoint check
duke@435 2087 case T_VOID: break;
duke@435 2088 case T_LONG: break;
duke@435 2089 default : ShouldNotReachHere();
duke@435 2090 }
duke@435 2091
duke@435 2092 // Switch thread to "native transition" state before reading the synchronization state.
duke@435 2093 // This additional state is necessary because reading and testing the synchronization
duke@435 2094 // state is not atomic w.r.t. GC, as this scenario demonstrates:
duke@435 2095 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
duke@435 2096 // VM thread changes sync state to synchronizing and suspends threads for GC.
duke@435 2097 // Thread A is resumed to finish this native method, but doesn't block here since it
duke@435 2098 // didn't see any synchronization is progress, and escapes.
duke@435 2099 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
duke@435 2100
duke@435 2101 if(os::is_MP()) {
duke@435 2102 if (UseMembar) {
never@739 2103 // Force this write out before the read below
never@739 2104 __ membar(Assembler::Membar_mask_bits(
never@739 2105 Assembler::LoadLoad | Assembler::LoadStore |
never@739 2106 Assembler::StoreLoad | Assembler::StoreStore));
duke@435 2107 } else {
duke@435 2108 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 2109 // We use the current thread pointer to calculate a thread specific
duke@435 2110 // offset to write to within the page. This minimizes bus traffic
duke@435 2111 // due to cache line collision.
duke@435 2112 __ serialize_memory(thread, rcx);
duke@435 2113 }
duke@435 2114 }
duke@435 2115
duke@435 2116 if (AlwaysRestoreFPU) {
duke@435 2117 // Make sure the control word is correct.
duke@435 2118 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 2119 }
duke@435 2120
never@3500 2121 Label after_transition;
never@3500 2122
duke@435 2123 // check for safepoint operation in progress and/or pending suspend requests
duke@435 2124 { Label Continue;
duke@435 2125
duke@435 2126 __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
duke@435 2127 SafepointSynchronize::_not_synchronized);
duke@435 2128
duke@435 2129 Label L;
duke@435 2130 __ jcc(Assembler::notEqual, L);
duke@435 2131 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
duke@435 2132 __ jcc(Assembler::equal, Continue);
duke@435 2133 __ bind(L);
duke@435 2134
duke@435 2135 // Don't use call_VM as it will see a possible pending exception and forward it
duke@435 2136 // and never return here preventing us from clearing _last_native_pc down below.
duke@435 2137 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
duke@435 2138 // preserved and correspond to the bcp/locals pointers. So we do a runtime call
duke@435 2139 // by hand.
duke@435 2140 //
duke@435 2141 save_native_result(masm, ret_type, stack_slots);
never@739 2142 __ push(thread);
never@3500 2143 if (!is_critical_native) {
never@3500 2144 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
never@3500 2145 JavaThread::check_special_condition_for_native_trans)));
never@3500 2146 } else {
never@3500 2147 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
never@3500 2148 JavaThread::check_special_condition_for_native_trans_and_transition)));
never@3500 2149 }
duke@435 2150 __ increment(rsp, wordSize);
duke@435 2151 // Restore any method result value
duke@435 2152 restore_native_result(masm, ret_type, stack_slots);
duke@435 2153
never@3500 2154 if (is_critical_native) {
never@3500 2155 // The call above performed the transition to thread_in_Java so
never@3500 2156 // skip the transition logic below.
never@3500 2157 __ jmpb(after_transition);
never@3500 2158 }
never@3500 2159
duke@435 2160 __ bind(Continue);
duke@435 2161 }
duke@435 2162
duke@435 2163 // change thread state
duke@435 2164 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
never@3500 2165 __ bind(after_transition);
duke@435 2166
duke@435 2167 Label reguard;
duke@435 2168 Label reguard_done;
duke@435 2169 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
duke@435 2170 __ jcc(Assembler::equal, reguard);
duke@435 2171
duke@435 2172 // slow path reguard re-enters here
duke@435 2173 __ bind(reguard_done);
duke@435 2174
duke@435 2175 // Handle possible exception (will unlock if necessary)
duke@435 2176
duke@435 2177 // native result if any is live
duke@435 2178
duke@435 2179 // Unlock
duke@435 2180 Label slow_path_unlock;
duke@435 2181 Label unlock_done;
duke@435 2182 if (method->is_synchronized()) {
duke@435 2183
duke@435 2184 Label done;
duke@435 2185
duke@435 2186 // Get locked oop from the handle we passed to jni
never@739 2187 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 2188
duke@435 2189 if (UseBiasedLocking) {
duke@435 2190 __ biased_locking_exit(obj_reg, rbx, done);
duke@435 2191 }
duke@435 2192
duke@435 2193 // Simple recursive lock?
duke@435 2194
never@739 2195 __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
duke@435 2196 __ jcc(Assembler::equal, done);
duke@435 2197
duke@435 2198 // Must save rax, if if it is live now because cmpxchg must use it
duke@435 2199 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 2200 save_native_result(masm, ret_type, stack_slots);
duke@435 2201 }
duke@435 2202
duke@435 2203 // get old displaced header
never@739 2204 __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
duke@435 2205
duke@435 2206 // get address of the stack lock
never@739 2207 __ lea(rax, Address(rbp, lock_slot_rbp_offset));
duke@435 2208
duke@435 2209 // Atomic swap old header if oop still contains the stack lock
duke@435 2210 if (os::is_MP()) {
duke@435 2211 __ lock();
duke@435 2212 }
duke@435 2213
duke@435 2214 // src -> dest iff dest == rax, else rax, <- dest
duke@435 2215 // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
never@739 2216 __ cmpxchgptr(rbx, Address(obj_reg, 0));
duke@435 2217 __ jcc(Assembler::notEqual, slow_path_unlock);
duke@435 2218
duke@435 2219 // slow path re-enters here
duke@435 2220 __ bind(unlock_done);
duke@435 2221 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 2222 restore_native_result(masm, ret_type, stack_slots);
duke@435 2223 }
duke@435 2224
duke@435 2225 __ bind(done);
duke@435 2226
duke@435 2227 }
duke@435 2228
duke@435 2229 {
duke@435 2230 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
duke@435 2231 // Tell dtrace about this method exit
duke@435 2232 save_native_result(masm, ret_type, stack_slots);
coleenp@4037 2233 __ mov_metadata(rax, method());
duke@435 2234 __ call_VM_leaf(
duke@435 2235 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2236 thread, rax);
duke@435 2237 restore_native_result(masm, ret_type, stack_slots);
duke@435 2238 }
duke@435 2239
duke@435 2240 // We can finally stop using that last_Java_frame we setup ages ago
duke@435 2241
duke@435 2242 __ reset_last_Java_frame(thread, false, true);
duke@435 2243
duke@435 2244 // Unpack oop result
duke@435 2245 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
duke@435 2246 Label L;
never@739 2247 __ cmpptr(rax, (int32_t)NULL_WORD);
duke@435 2248 __ jcc(Assembler::equal, L);
never@739 2249 __ movptr(rax, Address(rax, 0));
duke@435 2250 __ bind(L);
duke@435 2251 __ verify_oop(rax);
duke@435 2252 }
duke@435 2253
never@3500 2254 if (!is_critical_native) {
never@3500 2255 // reset handle block
never@3500 2256 __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
never@3500 2257 __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
never@3500 2258
never@3500 2259 // Any exception pending?
never@3500 2260 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
never@3500 2261 __ jcc(Assembler::notEqual, exception_pending);
never@3500 2262 }
duke@435 2263
duke@435 2264 // no exception, we're almost done
duke@435 2265
duke@435 2266 // check that only result value is on FPU stack
duke@435 2267 __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
duke@435 2268
duke@435 2269 // Fixup floating pointer results so that result looks like a return from a compiled method
duke@435 2270 if (ret_type == T_FLOAT) {
duke@435 2271 if (UseSSE >= 1) {
duke@435 2272 // Pop st0 and store as float and reload into xmm register
duke@435 2273 __ fstp_s(Address(rbp, -4));
duke@435 2274 __ movflt(xmm0, Address(rbp, -4));
duke@435 2275 }
duke@435 2276 } else if (ret_type == T_DOUBLE) {
duke@435 2277 if (UseSSE >= 2) {
duke@435 2278 // Pop st0 and store as double and reload into xmm register
duke@435 2279 __ fstp_d(Address(rbp, -8));
duke@435 2280 __ movdbl(xmm0, Address(rbp, -8));
duke@435 2281 }
duke@435 2282 }
duke@435 2283
duke@435 2284 // Return
duke@435 2285
duke@435 2286 __ leave();
duke@435 2287 __ ret(0);
duke@435 2288
duke@435 2289 // Unexpected paths are out of line and go here
duke@435 2290
duke@435 2291 // Slow path locking & unlocking
duke@435 2292 if (method->is_synchronized()) {
duke@435 2293
duke@435 2294 // BEGIN Slow path lock
duke@435 2295
duke@435 2296 __ bind(slow_path_lock);
duke@435 2297
duke@435 2298 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
duke@435 2299 // args are (oop obj, BasicLock* lock, JavaThread* thread)
never@739 2300 __ push(thread);
never@739 2301 __ push(lock_reg);
never@739 2302 __ push(obj_reg);
duke@435 2303 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
never@739 2304 __ addptr(rsp, 3*wordSize);
duke@435 2305
duke@435 2306 #ifdef ASSERT
duke@435 2307 { Label L;
never@739 2308 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
duke@435 2309 __ jcc(Assembler::equal, L);
duke@435 2310 __ stop("no pending exception allowed on exit from monitorenter");
duke@435 2311 __ bind(L);
duke@435 2312 }
duke@435 2313 #endif
duke@435 2314 __ jmp(lock_done);
duke@435 2315
duke@435 2316 // END Slow path lock
duke@435 2317
duke@435 2318 // BEGIN Slow path unlock
duke@435 2319 __ bind(slow_path_unlock);
duke@435 2320
duke@435 2321 // Slow path unlock
duke@435 2322
duke@435 2323 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 2324 save_native_result(masm, ret_type, stack_slots);
duke@435 2325 }
duke@435 2326 // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
duke@435 2327
never@739 2328 __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
xlu@947 2329 __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
duke@435 2330
duke@435 2331
duke@435 2332 // should be a peal
duke@435 2333 // +wordSize because of the push above
never@739 2334 __ lea(rax, Address(rbp, lock_slot_rbp_offset));
never@739 2335 __ push(rax);
never@739 2336
never@739 2337 __ push(obj_reg);
duke@435 2338 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
never@739 2339 __ addptr(rsp, 2*wordSize);
duke@435 2340 #ifdef ASSERT
duke@435 2341 {
duke@435 2342 Label L;
never@739 2343 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 2344 __ jcc(Assembler::equal, L);
duke@435 2345 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
duke@435 2346 __ bind(L);
duke@435 2347 }
duke@435 2348 #endif /* ASSERT */
duke@435 2349
never@739 2350 __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
duke@435 2351
duke@435 2352 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 2353 restore_native_result(masm, ret_type, stack_slots);
duke@435 2354 }
duke@435 2355 __ jmp(unlock_done);
duke@435 2356 // END Slow path unlock
duke@435 2357
duke@435 2358 }
duke@435 2359
duke@435 2360 // SLOW PATH Reguard the stack if needed
duke@435 2361
duke@435 2362 __ bind(reguard);
duke@435 2363 save_native_result(masm, ret_type, stack_slots);
duke@435 2364 {
duke@435 2365 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
duke@435 2366 }
duke@435 2367 restore_native_result(masm, ret_type, stack_slots);
duke@435 2368 __ jmp(reguard_done);
duke@435 2369
duke@435 2370
duke@435 2371 // BEGIN EXCEPTION PROCESSING
duke@435 2372
never@3500 2373 if (!is_critical_native) {
never@3500 2374 // Forward the exception
never@3500 2375 __ bind(exception_pending);
never@3500 2376
never@3500 2377 // remove possible return value from FPU register stack
never@3500 2378 __ empty_FPU_stack();
never@3500 2379
never@3500 2380 // pop our frame
never@3500 2381 __ leave();
never@3500 2382 // and forward the exception
never@3500 2383 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
never@3500 2384 }
duke@435 2385
duke@435 2386 __ flush();
duke@435 2387
duke@435 2388 nmethod *nm = nmethod::new_native_nmethod(method,
twisti@2687 2389 compile_id,
duke@435 2390 masm->code(),
duke@435 2391 vep_offset,
duke@435 2392 frame_complete,
duke@435 2393 stack_slots / VMRegImpl::slots_per_word,
duke@435 2394 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
duke@435 2395 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
duke@435 2396 oop_maps);
never@3500 2397
never@3500 2398 if (is_critical_native) {
never@3500 2399 nm->set_lazy_critical_native(true);
never@3500 2400 }
never@3500 2401
duke@435 2402 return nm;
duke@435 2403
duke@435 2404 }
duke@435 2405
kamg@551 2406 #ifdef HAVE_DTRACE_H
kamg@551 2407 // ---------------------------------------------------------------------------
kamg@551 2408 // Generate a dtrace nmethod for a given signature. The method takes arguments
kamg@551 2409 // in the Java compiled code convention, marshals them to the native
kamg@551 2410 // abi and then leaves nops at the position you would expect to call a native
kamg@551 2411 // function. When the probe is enabled the nops are replaced with a trap
kamg@551 2412 // instruction that dtrace inserts and the trace will cause a notification
kamg@551 2413 // to dtrace.
kamg@551 2414 //
kamg@551 2415 // The probes are only able to take primitive types and java/lang/String as
kamg@551 2416 // arguments. No other java types are allowed. Strings are converted to utf8
kamg@551 2417 // strings so that from dtrace point of view java strings are converted to C
kamg@551 2418 // strings. There is an arbitrary fixed limit on the total space that a method
kamg@551 2419 // can use for converting the strings. (256 chars per string in the signature).
kamg@551 2420 // So any java string larger then this is truncated.
kamg@551 2421
kamg@551 2422 nmethod *SharedRuntime::generate_dtrace_nmethod(
kamg@551 2423 MacroAssembler *masm, methodHandle method) {
kamg@551 2424
kamg@551 2425 // generate_dtrace_nmethod is guarded by a mutex so we are sure to
kamg@551 2426 // be single threaded in this method.
kamg@551 2427 assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
kamg@551 2428
kamg@551 2429 // Fill in the signature array, for the calling-convention call.
kamg@551 2430 int total_args_passed = method->size_of_parameters();
kamg@551 2431
kamg@551 2432 BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
kamg@551 2433 VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kamg@551 2434
kamg@551 2435 // The signature we are going to use for the trap that dtrace will see
kamg@551 2436 // java/lang/String is converted. We drop "this" and any other object
kamg@551 2437 // is converted to NULL. (A one-slot java/lang/Long object reference
kamg@551 2438 // is converted to a two-slot long, which is why we double the allocation).
kamg@551 2439 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
kamg@551 2440 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
kamg@551 2441
kamg@551 2442 int i=0;
kamg@551 2443 int total_strings = 0;
kamg@551 2444 int first_arg_to_pass = 0;
kamg@551 2445 int total_c_args = 0;
kamg@551 2446
kamg@551 2447 if( !method->is_static() ) { // Pass in receiver first
kamg@551 2448 in_sig_bt[i++] = T_OBJECT;
kamg@551 2449 first_arg_to_pass = 1;
kamg@551 2450 }
kamg@551 2451
kamg@551 2452 // We need to convert the java args to where a native (non-jni) function
kamg@551 2453 // would expect them. To figure out where they go we convert the java
kamg@551 2454 // signature to a C signature.
kamg@551 2455
kamg@551 2456 SignatureStream ss(method->signature());
kamg@551 2457 for ( ; !ss.at_return_type(); ss.next()) {
kamg@551 2458 BasicType bt = ss.type();
kamg@551 2459 in_sig_bt[i++] = bt; // Collect remaining bits of signature
kamg@551 2460 out_sig_bt[total_c_args++] = bt;
kamg@551 2461 if( bt == T_OBJECT) {
coleenp@2497 2462 Symbol* s = ss.as_symbol_or_null(); // symbol is created
kamg@551 2463 if (s == vmSymbols::java_lang_String()) {
kamg@551 2464 total_strings++;
kamg@551 2465 out_sig_bt[total_c_args-1] = T_ADDRESS;
kamg@551 2466 } else if (s == vmSymbols::java_lang_Boolean() ||
kamg@551 2467 s == vmSymbols::java_lang_Character() ||
kamg@551 2468 s == vmSymbols::java_lang_Byte() ||
kamg@551 2469 s == vmSymbols::java_lang_Short() ||
kamg@551 2470 s == vmSymbols::java_lang_Integer() ||
kamg@551 2471 s == vmSymbols::java_lang_Float()) {
kamg@551 2472 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 2473 } else if (s == vmSymbols::java_lang_Long() ||
kamg@551 2474 s == vmSymbols::java_lang_Double()) {
kamg@551 2475 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 2476 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2477 }
kamg@551 2478 } else if ( bt == T_LONG || bt == T_DOUBLE ) {
kamg@551 2479 in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kamg@551 2480 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2481 }
kamg@551 2482 }
kamg@551 2483
kamg@551 2484 assert(i==total_args_passed, "validly parsed signature");
kamg@551 2485
kamg@551 2486 // Now get the compiled-Java layout as input arguments
kamg@551 2487 int comp_args_on_stack;
kamg@551 2488 comp_args_on_stack = SharedRuntime::java_calling_convention(
kamg@551 2489 in_sig_bt, in_regs, total_args_passed, false);
kamg@551 2490
kamg@551 2491 // Now figure out where the args must be stored and how much stack space
kamg@551 2492 // they require (neglecting out_preserve_stack_slots).
kamg@551 2493
kamg@551 2494 int out_arg_slots;
kamg@551 2495 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
kamg@551 2496
kamg@551 2497 // Calculate the total number of stack slots we will need.
kamg@551 2498
kamg@551 2499 // First count the abi requirement plus all of the outgoing args
kamg@551 2500 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
kamg@551 2501
kamg@551 2502 // Now space for the string(s) we must convert
kamg@551 2503
kamg@551 2504 int* string_locs = NEW_RESOURCE_ARRAY(int, total_strings + 1);
kamg@551 2505 for (i = 0; i < total_strings ; i++) {
kamg@551 2506 string_locs[i] = stack_slots;
kamg@551 2507 stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
kamg@551 2508 }
kamg@551 2509
kamg@551 2510 // + 2 for return address (which we own) and saved rbp,
kamg@551 2511
kamg@551 2512 stack_slots += 2;
kamg@551 2513
kamg@551 2514 // Ok The space we have allocated will look like:
kamg@551 2515 //
kamg@551 2516 //
kamg@551 2517 // FP-> | |
kamg@551 2518 // |---------------------|
kamg@551 2519 // | string[n] |
kamg@551 2520 // |---------------------| <- string_locs[n]
kamg@551 2521 // | string[n-1] |
kamg@551 2522 // |---------------------| <- string_locs[n-1]
kamg@551 2523 // | ... |
kamg@551 2524 // | ... |
kamg@551 2525 // |---------------------| <- string_locs[1]
kamg@551 2526 // | string[0] |
kamg@551 2527 // |---------------------| <- string_locs[0]
kamg@551 2528 // | outbound memory |
kamg@551 2529 // | based arguments |
kamg@551 2530 // | |
kamg@551 2531 // |---------------------|
kamg@551 2532 // | |
kamg@551 2533 // SP-> | out_preserved_slots |
kamg@551 2534 //
kamg@551 2535 //
kamg@551 2536
kamg@551 2537 // Now compute actual number of stack words we need rounding to make
kamg@551 2538 // stack properly aligned.
kamg@551 2539 stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
kamg@551 2540
kamg@551 2541 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
kamg@551 2542
kamg@551 2543 intptr_t start = (intptr_t)__ pc();
kamg@551 2544
kamg@551 2545 // First thing make an ic check to see if we should even be here
kamg@551 2546
kamg@551 2547 // We are free to use all registers as temps without saving them and
kamg@551 2548 // restoring them except rbp. rbp, is the only callee save register
kamg@551 2549 // as far as the interpreter and the compiler(s) are concerned.
kamg@551 2550
kamg@551 2551 const Register ic_reg = rax;
kamg@551 2552 const Register receiver = rcx;
kamg@551 2553 Label hit;
kamg@551 2554 Label exception_pending;
kamg@551 2555
kamg@551 2556
kamg@551 2557 __ verify_oop(receiver);
kamg@551 2558 __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
kamg@551 2559 __ jcc(Assembler::equal, hit);
kamg@551 2560
kamg@551 2561 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
kamg@551 2562
kamg@551 2563 // verified entry must be aligned for code patching.
kamg@551 2564 // and the first 5 bytes must be in the same cache line
kamg@551 2565 // if we align at 8 then we will be sure 5 bytes are in the same line
kamg@551 2566 __ align(8);
kamg@551 2567
kamg@551 2568 __ bind(hit);
kamg@551 2569
kamg@551 2570 int vep_offset = ((intptr_t)__ pc()) - start;
kamg@551 2571
kamg@551 2572
kamg@551 2573 // The instruction at the verified entry point must be 5 bytes or longer
kamg@551 2574 // because it can be patched on the fly by make_non_entrant. The stack bang
kamg@551 2575 // instruction fits that requirement.
kamg@551 2576
kamg@551 2577 // Generate stack overflow check
kamg@551 2578
kamg@551 2579
kamg@551 2580 if (UseStackBanging) {
kamg@551 2581 if (stack_size <= StackShadowPages*os::vm_page_size()) {
kamg@551 2582 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
kamg@551 2583 } else {
kamg@551 2584 __ movl(rax, stack_size);
kamg@551 2585 __ bang_stack_size(rax, rbx);
kamg@551 2586 }
kamg@551 2587 } else {
kamg@551 2588 // need a 5 byte instruction to allow MT safe patching to non-entrant
kamg@551 2589 __ fat_nop();
kamg@551 2590 }
kamg@551 2591
kamg@551 2592 assert(((int)__ pc() - start - vep_offset) >= 5,
kamg@551 2593 "valid size for make_non_entrant");
kamg@551 2594
kamg@551 2595 // Generate a new frame for the wrapper.
kamg@551 2596 __ enter();
kamg@551 2597
kamg@551 2598 // -2 because return address is already present and so is saved rbp,
kamg@551 2599 if (stack_size - 2*wordSize != 0) {
kamg@551 2600 __ subl(rsp, stack_size - 2*wordSize);
kamg@551 2601 }
kamg@551 2602
kamg@551 2603 // Frame is now completed as far a size and linkage.
kamg@551 2604
kamg@551 2605 int frame_complete = ((intptr_t)__ pc()) - start;
kamg@551 2606
kamg@551 2607 // First thing we do store all the args as if we are doing the call.
kamg@551 2608 // Since the C calling convention is stack based that ensures that
kamg@551 2609 // all the Java register args are stored before we need to convert any
kamg@551 2610 // string we might have.
kamg@551 2611
kamg@551 2612 int sid = 0;
kamg@551 2613 int c_arg, j_arg;
kamg@551 2614 int string_reg = 0;
kamg@551 2615
kamg@551 2616 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2617 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2618
kamg@551 2619 VMRegPair src = in_regs[j_arg];
kamg@551 2620 VMRegPair dst = out_regs[c_arg];
kamg@551 2621 assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
kamg@551 2622 "stack based abi assumed");
kamg@551 2623
kamg@551 2624 switch (in_sig_bt[j_arg]) {
kamg@551 2625
kamg@551 2626 case T_ARRAY:
kamg@551 2627 case T_OBJECT:
kamg@551 2628 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2629 // Any register based arg for a java string after the first
kamg@551 2630 // will be destroyed by the call to get_utf so we store
kamg@551 2631 // the original value in the location the utf string address
kamg@551 2632 // will eventually be stored.
kamg@551 2633 if (src.first()->is_reg()) {
kamg@551 2634 if (string_reg++ != 0) {
kamg@551 2635 simple_move32(masm, src, dst);
kamg@551 2636 }
kamg@551 2637 }
kamg@551 2638 } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 2639 // need to unbox a one-word value
kamg@551 2640 Register in_reg = rax;
kamg@551 2641 if ( src.first()->is_reg() ) {
kamg@551 2642 in_reg = src.first()->as_Register();
kamg@551 2643 } else {
kamg@551 2644 simple_move32(masm, src, in_reg->as_VMReg());
kamg@551 2645 }
kamg@551 2646 Label skipUnbox;
kamg@551 2647 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
kamg@551 2648 if ( out_sig_bt[c_arg] == T_LONG ) {
kamg@551 2649 __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
kamg@551 2650 }
kamg@551 2651 __ testl(in_reg, in_reg);
kamg@551 2652 __ jcc(Assembler::zero, skipUnbox);
kamg@551 2653 assert(dst.first()->is_stack() &&
kamg@551 2654 (!dst.second()->is_valid() || dst.second()->is_stack()),
kamg@551 2655 "value(s) must go into stack slots");
kvn@600 2656
kvn@600 2657 BasicType bt = out_sig_bt[c_arg];
kvn@600 2658 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kvn@600 2659 if ( bt == T_LONG ) {
kamg@551 2660 __ movl(rbx, Address(in_reg,
kamg@551 2661 box_offset + VMRegImpl::stack_slot_size));
kamg@551 2662 __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
kamg@551 2663 }
kamg@551 2664 __ movl(in_reg, Address(in_reg, box_offset));
kamg@551 2665 __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
kamg@551 2666 __ bind(skipUnbox);
kamg@551 2667 } else {
kamg@551 2668 // Convert the arg to NULL
kamg@551 2669 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
kamg@551 2670 }
kamg@551 2671 if (out_sig_bt[c_arg] == T_LONG) {
kamg@551 2672 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2673 ++c_arg; // Move over the T_VOID To keep the loop indices in sync
kamg@551 2674 }
kamg@551 2675 break;
kamg@551 2676
kamg@551 2677 case T_VOID:
kamg@551 2678 break;
kamg@551 2679
kamg@551 2680 case T_FLOAT:
kamg@551 2681 float_move(masm, src, dst);
kamg@551 2682 break;
kamg@551 2683
kamg@551 2684 case T_DOUBLE:
kamg@551 2685 assert( j_arg + 1 < total_args_passed &&
kamg@551 2686 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
kamg@551 2687 double_move(masm, src, dst);
kamg@551 2688 break;
kamg@551 2689
kamg@551 2690 case T_LONG :
kamg@551 2691 long_move(masm, src, dst);
kamg@551 2692 break;
kamg@551 2693
kamg@551 2694 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
kamg@551 2695
kamg@551 2696 default:
kamg@551 2697 simple_move32(masm, src, dst);
kamg@551 2698 }
kamg@551 2699 }
kamg@551 2700
kamg@551 2701 // Now we must convert any string we have to utf8
kamg@551 2702 //
kamg@551 2703
kamg@551 2704 for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2705 sid < total_strings ; j_arg++, c_arg++ ) {
kamg@551 2706
kamg@551 2707 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2708
kamg@551 2709 Address utf8_addr = Address(
kamg@551 2710 rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
kamg@551 2711 __ leal(rax, utf8_addr);
kamg@551 2712
kamg@551 2713 // The first string we find might still be in the original java arg
kamg@551 2714 // register
kamg@551 2715 VMReg orig_loc = in_regs[j_arg].first();
kamg@551 2716 Register string_oop;
kamg@551 2717
kamg@551 2718 // This is where the argument will eventually reside
kamg@551 2719 Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
kamg@551 2720
kamg@551 2721 if (sid == 1 && orig_loc->is_reg()) {
kamg@551 2722 string_oop = orig_loc->as_Register();
kamg@551 2723 assert(string_oop != rax, "smashed arg");
kamg@551 2724 } else {
kamg@551 2725
kamg@551 2726 if (orig_loc->is_reg()) {
kamg@551 2727 // Get the copy of the jls object
kamg@551 2728 __ movl(rcx, dest);
kamg@551 2729 } else {
kamg@551 2730 // arg is still in the original location
kamg@551 2731 __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
kamg@551 2732 }
kamg@551 2733 string_oop = rcx;
kamg@551 2734
kamg@551 2735 }
kamg@551 2736 Label nullString;
kamg@551 2737 __ movl(dest, NULL_WORD);
kamg@551 2738 __ testl(string_oop, string_oop);
kamg@551 2739 __ jcc(Assembler::zero, nullString);
kamg@551 2740
kamg@551 2741 // Now we can store the address of the utf string as the argument
kamg@551 2742 __ movl(dest, rax);
kamg@551 2743
kamg@551 2744 // And do the conversion
kamg@551 2745 __ call_VM_leaf(CAST_FROM_FN_PTR(
kamg@551 2746 address, SharedRuntime::get_utf), string_oop, rax);
kamg@551 2747 __ bind(nullString);
kamg@551 2748 }
kamg@551 2749
kamg@551 2750 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 2751 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2752 ++c_arg; // Move over the T_VOID To keep the loop indices in sync
kamg@551 2753 }
kamg@551 2754 }
kamg@551 2755
kamg@551 2756
kamg@551 2757 // Ok now we are done. Need to place the nop that dtrace wants in order to
kamg@551 2758 // patch in the trap
kamg@551 2759
kamg@551 2760 int patch_offset = ((intptr_t)__ pc()) - start;
kamg@551 2761
kamg@551 2762 __ nop();
kamg@551 2763
kamg@551 2764
kamg@551 2765 // Return
kamg@551 2766
kamg@551 2767 __ leave();
kamg@551 2768 __ ret(0);
kamg@551 2769
kamg@551 2770 __ flush();
kamg@551 2771
kamg@551 2772 nmethod *nm = nmethod::new_dtrace_nmethod(
kamg@551 2773 method, masm->code(), vep_offset, patch_offset, frame_complete,
kamg@551 2774 stack_slots / VMRegImpl::slots_per_word);
kamg@551 2775 return nm;
kamg@551 2776
kamg@551 2777 }
kamg@551 2778
kamg@551 2779 #endif // HAVE_DTRACE_H
kamg@551 2780
duke@435 2781 // this function returns the adjust size (in number of words) to a c2i adapter
duke@435 2782 // activation for use during deoptimization
duke@435 2783 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
twisti@1861 2784 return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
duke@435 2785 }
duke@435 2786
duke@435 2787
duke@435 2788 uint SharedRuntime::out_preserve_stack_slots() {
duke@435 2789 return 0;
duke@435 2790 }
duke@435 2791
duke@435 2792 //------------------------------generate_deopt_blob----------------------------
duke@435 2793 void SharedRuntime::generate_deopt_blob() {
duke@435 2794 // allocate space for the code
duke@435 2795 ResourceMark rm;
duke@435 2796 // setup code generation tools
duke@435 2797 CodeBuffer buffer("deopt_blob", 1024, 1024);
duke@435 2798 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2799 int frame_size_in_words;
duke@435 2800 OopMap* map = NULL;
duke@435 2801 // Account for the extra args we place on the stack
duke@435 2802 // by the time we call fetch_unroll_info
duke@435 2803 const int additional_words = 2; // deopt kind, thread
duke@435 2804
duke@435 2805 OopMapSet *oop_maps = new OopMapSet();
duke@435 2806
duke@435 2807 // -------------
duke@435 2808 // This code enters when returning to a de-optimized nmethod. A return
duke@435 2809 // address has been pushed on the the stack, and return values are in
duke@435 2810 // registers.
duke@435 2811 // If we are doing a normal deopt then we were called from the patched
duke@435 2812 // nmethod from the point we returned to the nmethod. So the return
duke@435 2813 // address on the stack is wrong by NativeCall::instruction_size
duke@435 2814 // We will adjust the value to it looks like we have the original return
duke@435 2815 // address on the stack (like when we eagerly deoptimized).
duke@435 2816 // In the case of an exception pending with deoptimized then we enter
duke@435 2817 // with a return address on the stack that points after the call we patched
duke@435 2818 // into the exception handler. We have the following register state:
duke@435 2819 // rax,: exception
duke@435 2820 // rbx,: exception handler
duke@435 2821 // rdx: throwing pc
duke@435 2822 // So in this case we simply jam rdx into the useless return address and
duke@435 2823 // the stack looks just like we want.
duke@435 2824 //
duke@435 2825 // At this point we need to de-opt. We save the argument return
duke@435 2826 // registers. We call the first C routine, fetch_unroll_info(). This
duke@435 2827 // routine captures the return values and returns a structure which
duke@435 2828 // describes the current frame size and the sizes of all replacement frames.
duke@435 2829 // The current frame is compiled code and may contain many inlined
duke@435 2830 // functions, each with their own JVM state. We pop the current frame, then
duke@435 2831 // push all the new frames. Then we call the C routine unpack_frames() to
duke@435 2832 // populate these frames. Finally unpack_frames() returns us the new target
duke@435 2833 // address. Notice that callee-save registers are BLOWN here; they have
duke@435 2834 // already been captured in the vframeArray at the time the return PC was
duke@435 2835 // patched.
duke@435 2836 address start = __ pc();
duke@435 2837 Label cont;
duke@435 2838
duke@435 2839 // Prolog for non exception case!
duke@435 2840
duke@435 2841 // Save everything in sight.
duke@435 2842
cfang@1361 2843 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2844 // Normal deoptimization
never@739 2845 __ push(Deoptimization::Unpack_deopt);
duke@435 2846 __ jmp(cont);
duke@435 2847
duke@435 2848 int reexecute_offset = __ pc() - start;
duke@435 2849
duke@435 2850 // Reexecute case
duke@435 2851 // return address is the pc describes what bci to do re-execute at
duke@435 2852
duke@435 2853 // No need to update map as each call to save_live_registers will produce identical oopmap
cfang@1361 2854 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2855
never@739 2856 __ push(Deoptimization::Unpack_reexecute);
duke@435 2857 __ jmp(cont);
duke@435 2858
duke@435 2859 int exception_offset = __ pc() - start;
duke@435 2860
duke@435 2861 // Prolog for exception case
duke@435 2862
duke@435 2863 // all registers are dead at this entry point, except for rax, and
duke@435 2864 // rdx which contain the exception oop and exception pc
duke@435 2865 // respectively. Set them in TLS and fall thru to the
duke@435 2866 // unpack_with_exception_in_tls entry point.
duke@435 2867
duke@435 2868 __ get_thread(rdi);
never@739 2869 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
never@739 2870 __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
duke@435 2871
duke@435 2872 int exception_in_tls_offset = __ pc() - start;
duke@435 2873
duke@435 2874 // new implementation because exception oop is now passed in JavaThread
duke@435 2875
duke@435 2876 // Prolog for exception case
duke@435 2877 // All registers must be preserved because they might be used by LinearScan
duke@435 2878 // Exceptiop oop and throwing PC are passed in JavaThread
duke@435 2879 // tos: stack at point of call to method that threw the exception (i.e. only
duke@435 2880 // args are on the stack, no return address)
duke@435 2881
duke@435 2882 // make room on stack for the return address
duke@435 2883 // It will be patched later with the throwing pc. The correct value is not
duke@435 2884 // available now because loading it from memory would destroy registers.
never@739 2885 __ push(0);
duke@435 2886
duke@435 2887 // Save everything in sight.
duke@435 2888
duke@435 2889 // No need to update map as each call to save_live_registers will produce identical oopmap
cfang@1361 2890 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2891
duke@435 2892 // Now it is safe to overwrite any register
duke@435 2893
duke@435 2894 // store the correct deoptimization type
never@739 2895 __ push(Deoptimization::Unpack_exception);
duke@435 2896
duke@435 2897 // load throwing pc from JavaThread and patch it as the return address
duke@435 2898 // of the current frame. Then clear the field in JavaThread
duke@435 2899 __ get_thread(rdi);
never@739 2900 __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
never@739 2901 __ movptr(Address(rbp, wordSize), rdx);
xlu@947 2902 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
duke@435 2903
duke@435 2904 #ifdef ASSERT
duke@435 2905 // verify that there is really an exception oop in JavaThread
never@739 2906 __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
duke@435 2907 __ verify_oop(rax);
duke@435 2908
duke@435 2909 // verify that there is no pending exception
duke@435 2910 Label no_pending_exception;
never@739 2911 __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
never@739 2912 __ testptr(rax, rax);
duke@435 2913 __ jcc(Assembler::zero, no_pending_exception);
duke@435 2914 __ stop("must not have pending exception here");
duke@435 2915 __ bind(no_pending_exception);
duke@435 2916 #endif
duke@435 2917
duke@435 2918 __ bind(cont);
duke@435 2919
duke@435 2920 // Compiled code leaves the floating point stack dirty, empty it.
duke@435 2921 __ empty_FPU_stack();
duke@435 2922
duke@435 2923
duke@435 2924 // Call C code. Need thread and this frame, but NOT official VM entry
duke@435 2925 // crud. We cannot block on this call, no GC can happen.
duke@435 2926 __ get_thread(rcx);
never@739 2927 __ push(rcx);
duke@435 2928 // fetch_unroll_info needs to call last_java_frame()
duke@435 2929 __ set_last_Java_frame(rcx, noreg, noreg, NULL);
duke@435 2930
duke@435 2931 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
duke@435 2932
duke@435 2933 // Need to have an oopmap that tells fetch_unroll_info where to
duke@435 2934 // find any register it might need.
duke@435 2935
duke@435 2936 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 2937
duke@435 2938 // Discard arg to fetch_unroll_info
never@739 2939 __ pop(rcx);
duke@435 2940
duke@435 2941 __ get_thread(rcx);
duke@435 2942 __ reset_last_Java_frame(rcx, false, false);
duke@435 2943
duke@435 2944 // Load UnrollBlock into EDI
never@739 2945 __ mov(rdi, rax);
duke@435 2946
duke@435 2947 // Move the unpack kind to a safe place in the UnrollBlock because
duke@435 2948 // we are very short of registers
duke@435 2949
duke@435 2950 Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
duke@435 2951 // retrieve the deopt kind from where we left it.
never@739 2952 __ pop(rax);
duke@435 2953 __ movl(unpack_kind, rax); // save the unpack_kind value
duke@435 2954
duke@435 2955 Label noException;
duke@435 2956 __ cmpl(rax, Deoptimization::Unpack_exception); // Was exception pending?
duke@435 2957 __ jcc(Assembler::notEqual, noException);
never@739 2958 __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
never@739 2959 __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
xlu@947 2960 __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
xlu@947 2961 __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
duke@435 2962
duke@435 2963 __ verify_oop(rax);
duke@435 2964
duke@435 2965 // Overwrite the result registers with the exception results.
never@739 2966 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
never@739 2967 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 2968
duke@435 2969 __ bind(noException);
duke@435 2970
duke@435 2971 // Stack is back to only having register save data on the stack.
duke@435 2972 // Now restore the result registers. Everything else is either dead or captured
duke@435 2973 // in the vframeArray.
duke@435 2974
duke@435 2975 RegisterSaver::restore_result_registers(masm);
duke@435 2976
cfang@1361 2977 // Non standard control word may be leaked out through a safepoint blob, and we can
cfang@1361 2978 // deopt at a poll point with the non standard control word. However, we should make
cfang@1361 2979 // sure the control word is correct after restore_result_registers.
cfang@1361 2980 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
cfang@1361 2981
duke@435 2982 // All of the register save area has been popped of the stack. Only the
duke@435 2983 // return address remains.
duke@435 2984
duke@435 2985 // Pop all the frames we must move/replace.
duke@435 2986 //
duke@435 2987 // Frame picture (youngest to oldest)
duke@435 2988 // 1: self-frame (no frame link)
duke@435 2989 // 2: deopting frame (no frame link)
duke@435 2990 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 2991 //
duke@435 2992 // Note: by leaving the return address of self-frame on the stack
duke@435 2993 // and using the size of frame 2 to adjust the stack
duke@435 2994 // when we are done the return to frame 3 will still be on the stack.
duke@435 2995
duke@435 2996 // Pop deoptimized frame
never@739 2997 __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
duke@435 2998
duke@435 2999 // sp should be pointing at the return address to the caller (3)
duke@435 3000
duke@435 3001 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 3002 if (UseStackBanging) {
duke@435 3003 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 3004 __ bang_stack_size(rbx, rcx);
duke@435 3005 }
duke@435 3006
duke@435 3007 // Load array of frame pcs into ECX
never@739 3008 __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
never@739 3009
never@739 3010 __ pop(rsi); // trash the old pc
duke@435 3011
duke@435 3012 // Load array of frame sizes into ESI
never@739 3013 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 3014
duke@435 3015 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 3016
duke@435 3017 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 3018 __ movl(counter, rbx);
duke@435 3019
duke@435 3020 // Pick up the initial fp we should save
bdelsart@3130 3021 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
duke@435 3022
duke@435 3023 // Now adjust the caller's stack to make up for the extra locals
duke@435 3024 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 3025 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 3026 // value and not the "real" sp value.
duke@435 3027
duke@435 3028 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
never@739 3029 __ movptr(sp_temp, rsp);
never@739 3030 __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
never@739 3031 __ subptr(rsp, rbx);
duke@435 3032
duke@435 3033 // Push interpreter frames in a loop
duke@435 3034 Label loop;
duke@435 3035 __ bind(loop);
never@739 3036 __ movptr(rbx, Address(rsi, 0)); // Load frame size
duke@435 3037 #ifdef CC_INTERP
never@739 3038 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 3039 #ifdef ASSERT
never@739 3040 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 3041 __ push(0xDEADDEAD);
duke@435 3042 #else /* ASSERT */
never@739 3043 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 3044 #endif /* ASSERT */
duke@435 3045 #else /* CC_INTERP */
never@739 3046 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 3047 #endif /* CC_INTERP */
never@739 3048 __ pushptr(Address(rcx, 0)); // save return address
duke@435 3049 __ enter(); // save old & set new rbp,
never@739 3050 __ subptr(rsp, rbx); // Prolog!
never@739 3051 __ movptr(rbx, sp_temp); // sender's sp
duke@435 3052 #ifdef CC_INTERP
never@739 3053 __ movptr(Address(rbp,
duke@435 3054 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 3055 rbx); // Make it walkable
duke@435 3056 #else /* CC_INTERP */
duke@435 3057 // This value is corrected by layout_activation_impl
xlu@947 3058 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
never@739 3059 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 3060 #endif /* CC_INTERP */
never@739 3061 __ movptr(sp_temp, rsp); // pass to next frame
never@739 3062 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 3063 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 3064 __ decrementl(counter); // decrement counter
duke@435 3065 __ jcc(Assembler::notZero, loop);
never@739 3066 __ pushptr(Address(rcx, 0)); // save final return address
duke@435 3067
duke@435 3068 // Re-push self-frame
duke@435 3069 __ enter(); // save old & set new rbp,
duke@435 3070
duke@435 3071 // Return address and rbp, are in place
duke@435 3072 // We'll push additional args later. Just allocate a full sized
duke@435 3073 // register save area
never@739 3074 __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
duke@435 3075
duke@435 3076 // Restore frame locals after moving the frame
never@739 3077 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
never@739 3078 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 3079 __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize)); // Pop float stack and store in local
duke@435 3080 if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 3081 if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 3082
duke@435 3083 // Set up the args to unpack_frame
duke@435 3084
duke@435 3085 __ pushl(unpack_kind); // get the unpack_kind value
duke@435 3086 __ get_thread(rcx);
never@739 3087 __ push(rcx);
duke@435 3088
duke@435 3089 // set last_Java_sp, last_Java_fp
duke@435 3090 __ set_last_Java_frame(rcx, noreg, rbp, NULL);
duke@435 3091
duke@435 3092 // Call C code. Need thread but NOT official VM entry
duke@435 3093 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3094 // restore return values to their stack-slots with the new SP.
duke@435 3095 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 3096 // Set an oopmap for the call site
duke@435 3097 oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
duke@435 3098
duke@435 3099 // rax, contains the return result type
never@739 3100 __ push(rax);
duke@435 3101
duke@435 3102 __ get_thread(rcx);
duke@435 3103 __ reset_last_Java_frame(rcx, false, false);
duke@435 3104
duke@435 3105 // Collect return values
never@739 3106 __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
never@739 3107 __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
duke@435 3108
duke@435 3109 // Clear floating point stack before returning to interpreter
duke@435 3110 __ empty_FPU_stack();
duke@435 3111
duke@435 3112 // Check if we should push the float or double return value.
duke@435 3113 Label results_done, yes_double_value;
duke@435 3114 __ cmpl(Address(rsp, 0), T_DOUBLE);
duke@435 3115 __ jcc (Assembler::zero, yes_double_value);
duke@435 3116 __ cmpl(Address(rsp, 0), T_FLOAT);
duke@435 3117 __ jcc (Assembler::notZero, results_done);
duke@435 3118
duke@435 3119 // return float value as expected by interpreter
duke@435 3120 if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 3121 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 3122 __ jmp(results_done);
duke@435 3123
duke@435 3124 // return double value as expected by interpreter
duke@435 3125 __ bind(yes_double_value);
duke@435 3126 if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 3127 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 3128
duke@435 3129 __ bind(results_done);
duke@435 3130
duke@435 3131 // Pop self-frame.
duke@435 3132 __ leave(); // Epilog!
duke@435 3133
duke@435 3134 // Jump to interpreter
duke@435 3135 __ ret(0);
duke@435 3136
duke@435 3137 // -------------
duke@435 3138 // make sure all code is generated
duke@435 3139 masm->flush();
duke@435 3140
duke@435 3141 _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
duke@435 3142 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
duke@435 3143 }
duke@435 3144
duke@435 3145
duke@435 3146 #ifdef COMPILER2
duke@435 3147 //------------------------------generate_uncommon_trap_blob--------------------
duke@435 3148 void SharedRuntime::generate_uncommon_trap_blob() {
duke@435 3149 // allocate space for the code
duke@435 3150 ResourceMark rm;
duke@435 3151 // setup code generation tools
duke@435 3152 CodeBuffer buffer("uncommon_trap_blob", 512, 512);
duke@435 3153 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3154
duke@435 3155 enum frame_layout {
duke@435 3156 arg0_off, // thread sp + 0 // Arg location for
duke@435 3157 arg1_off, // unloaded_class_index sp + 1 // calling C
duke@435 3158 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 3159 // will override any oopMap setting for it. We must therefore force the layout
duke@435 3160 // so that it agrees with the frame sender code.
duke@435 3161 rbp_off, // callee saved register sp + 2
duke@435 3162 return_off, // slot for return address sp + 3
duke@435 3163 framesize
duke@435 3164 };
duke@435 3165
duke@435 3166 address start = __ pc();
duke@435 3167 // Push self-frame.
never@739 3168 __ subptr(rsp, return_off*wordSize); // Epilog!
duke@435 3169
duke@435 3170 // rbp, is an implicitly saved callee saved register (i.e. the calling
duke@435 3171 // convention will save restore it in prolog/epilog) Other than that
duke@435 3172 // there are no callee save registers no that adapter frames are gone.
never@739 3173 __ movptr(Address(rsp, rbp_off*wordSize), rbp);
duke@435 3174
duke@435 3175 // Clear the floating point exception stack
duke@435 3176 __ empty_FPU_stack();
duke@435 3177
duke@435 3178 // set last_Java_sp
duke@435 3179 __ get_thread(rdx);
duke@435 3180 __ set_last_Java_frame(rdx, noreg, noreg, NULL);
duke@435 3181
duke@435 3182 // Call C code. Need thread but NOT official VM entry
duke@435 3183 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3184 // capture callee-saved registers as well as return values.
never@739 3185 __ movptr(Address(rsp, arg0_off*wordSize), rdx);
duke@435 3186 // argument already in ECX
duke@435 3187 __ movl(Address(rsp, arg1_off*wordSize),rcx);
duke@435 3188 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
duke@435 3189
duke@435 3190 // Set an oopmap for the call site
duke@435 3191 OopMapSet *oop_maps = new OopMapSet();
duke@435 3192 OopMap* map = new OopMap( framesize, 0 );
duke@435 3193 // No oopMap for rbp, it is known implicitly
duke@435 3194
duke@435 3195 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 3196
duke@435 3197 __ get_thread(rcx);
duke@435 3198
duke@435 3199 __ reset_last_Java_frame(rcx, false, false);
duke@435 3200
duke@435 3201 // Load UnrollBlock into EDI
never@739 3202 __ movptr(rdi, rax);
duke@435 3203
duke@435 3204 // Pop all the frames we must move/replace.
duke@435 3205 //
duke@435 3206 // Frame picture (youngest to oldest)
duke@435 3207 // 1: self-frame (no frame link)
duke@435 3208 // 2: deopting frame (no frame link)
duke@435 3209 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 3210
duke@435 3211 // Pop self-frame. We have no frame, and must rely only on EAX and ESP.
never@739 3212 __ addptr(rsp,(framesize-1)*wordSize); // Epilog!
duke@435 3213
duke@435 3214 // Pop deoptimized frame
never@739 3215 __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
never@739 3216 __ addptr(rsp, rcx);
duke@435 3217
duke@435 3218 // sp should be pointing at the return address to the caller (3)
duke@435 3219
duke@435 3220 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 3221 if (UseStackBanging) {
duke@435 3222 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 3223 __ bang_stack_size(rbx, rcx);
duke@435 3224 }
duke@435 3225
duke@435 3226
duke@435 3227 // Load array of frame pcs into ECX
duke@435 3228 __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 3229
never@739 3230 __ pop(rsi); // trash the pc
duke@435 3231
duke@435 3232 // Load array of frame sizes into ESI
never@739 3233 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 3234
duke@435 3235 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 3236
duke@435 3237 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 3238 __ movl(counter, rbx);
duke@435 3239
duke@435 3240 // Pick up the initial fp we should save
bdelsart@3130 3241 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
duke@435 3242
duke@435 3243 // Now adjust the caller's stack to make up for the extra locals
duke@435 3244 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 3245 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 3246 // value and not the "real" sp value.
duke@435 3247
duke@435 3248 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
never@739 3249 __ movptr(sp_temp, rsp);
never@739 3250 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
never@739 3251 __ subptr(rsp, rbx);
duke@435 3252
duke@435 3253 // Push interpreter frames in a loop
duke@435 3254 Label loop;
duke@435 3255 __ bind(loop);
never@739 3256 __ movptr(rbx, Address(rsi, 0)); // Load frame size
duke@435 3257 #ifdef CC_INTERP
never@739 3258 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 3259 #ifdef ASSERT
never@739 3260 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 3261 __ push(0xDEADDEAD); // (parm to RecursiveInterpreter...)
duke@435 3262 #else /* ASSERT */
never@739 3263 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 3264 #endif /* ASSERT */
duke@435 3265 #else /* CC_INTERP */
never@739 3266 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 3267 #endif /* CC_INTERP */
never@739 3268 __ pushptr(Address(rcx, 0)); // save return address
duke@435 3269 __ enter(); // save old & set new rbp,
never@739 3270 __ subptr(rsp, rbx); // Prolog!
never@739 3271 __ movptr(rbx, sp_temp); // sender's sp
duke@435 3272 #ifdef CC_INTERP
never@739 3273 __ movptr(Address(rbp,
duke@435 3274 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 3275 rbx); // Make it walkable
duke@435 3276 #else /* CC_INTERP */
duke@435 3277 // This value is corrected by layout_activation_impl
xlu@947 3278 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
never@739 3279 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 3280 #endif /* CC_INTERP */
never@739 3281 __ movptr(sp_temp, rsp); // pass to next frame
never@739 3282 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 3283 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 3284 __ decrementl(counter); // decrement counter
duke@435 3285 __ jcc(Assembler::notZero, loop);
never@739 3286 __ pushptr(Address(rcx, 0)); // save final return address
duke@435 3287
duke@435 3288 // Re-push self-frame
duke@435 3289 __ enter(); // save old & set new rbp,
never@739 3290 __ subptr(rsp, (framesize-2) * wordSize); // Prolog!
duke@435 3291
duke@435 3292
duke@435 3293 // set last_Java_sp, last_Java_fp
duke@435 3294 __ get_thread(rdi);
duke@435 3295 __ set_last_Java_frame(rdi, noreg, rbp, NULL);
duke@435 3296
duke@435 3297 // Call C code. Need thread but NOT official VM entry
duke@435 3298 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3299 // restore return values to their stack-slots with the new SP.
never@739 3300 __ movptr(Address(rsp,arg0_off*wordSize),rdi);
duke@435 3301 __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
duke@435 3302 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 3303 // Set an oopmap for the call site
duke@435 3304 oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
duke@435 3305
duke@435 3306 __ get_thread(rdi);
duke@435 3307 __ reset_last_Java_frame(rdi, true, false);
duke@435 3308
duke@435 3309 // Pop self-frame.
duke@435 3310 __ leave(); // Epilog!
duke@435 3311
duke@435 3312 // Jump to interpreter
duke@435 3313 __ ret(0);
duke@435 3314
duke@435 3315 // -------------
duke@435 3316 // make sure all code is generated
duke@435 3317 masm->flush();
duke@435 3318
duke@435 3319 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
duke@435 3320 }
duke@435 3321 #endif // COMPILER2
duke@435 3322
duke@435 3323 //------------------------------generate_handler_blob------
duke@435 3324 //
duke@435 3325 // Generate a special Compile2Runtime blob that saves all registers,
duke@435 3326 // setup oopmap, and calls safepoint code to stop the compiled code for
duke@435 3327 // a safepoint.
duke@435 3328 //
kvn@4103 3329 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
duke@435 3330
duke@435 3331 // Account for thread arg in our frame
duke@435 3332 const int additional_words = 1;
duke@435 3333 int frame_size_in_words;
duke@435 3334
duke@435 3335 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 3336
duke@435 3337 ResourceMark rm;
duke@435 3338 OopMapSet *oop_maps = new OopMapSet();
duke@435 3339 OopMap* map;
duke@435 3340
duke@435 3341 // allocate space for the code
duke@435 3342 // setup code generation tools
duke@435 3343 CodeBuffer buffer("handler_blob", 1024, 512);
duke@435 3344 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3345
duke@435 3346 const Register java_thread = rdi; // callee-saved for VC++
duke@435 3347 address start = __ pc();
duke@435 3348 address call_pc = NULL;
kvn@4103 3349 bool cause_return = (poll_type == POLL_AT_RETURN);
kvn@4103 3350 bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
duke@435 3351 // If cause_return is true we are at a poll_return and there is
duke@435 3352 // the return address on the stack to the caller on the nmethod
duke@435 3353 // that is safepoint. We can leave this return on the stack and
duke@435 3354 // effectively complete the return and safepoint in the caller.
duke@435 3355 // Otherwise we push space for a return address that the safepoint
duke@435 3356 // handler will install later to make the stack walking sensible.
kvn@4103 3357 if (!cause_return)
kvn@4103 3358 __ push(rbx); // Make room for return address (or push it again)
kvn@4103 3359
kvn@4103 3360 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
duke@435 3361
duke@435 3362 // The following is basically a call_VM. However, we need the precise
duke@435 3363 // address of the call in order to generate an oopmap. Hence, we do all the
duke@435 3364 // work ourselves.
duke@435 3365
duke@435 3366 // Push thread argument and setup last_Java_sp
duke@435 3367 __ get_thread(java_thread);
never@739 3368 __ push(java_thread);
duke@435 3369 __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
duke@435 3370
duke@435 3371 // if this was not a poll_return then we need to correct the return address now.
kvn@4103 3372 if (!cause_return) {
never@739 3373 __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
never@739 3374 __ movptr(Address(rbp, wordSize), rax);
duke@435 3375 }
duke@435 3376
duke@435 3377 // do the call
duke@435 3378 __ call(RuntimeAddress(call_ptr));
duke@435 3379
duke@435 3380 // Set an oopmap for the call site. This oopmap will map all
duke@435 3381 // oop-registers and debug-info registers as callee-saved. This
duke@435 3382 // will allow deoptimization at this safepoint to find all possible
duke@435 3383 // debug-info recordings, as well as let GC find all oops.
duke@435 3384
duke@435 3385 oop_maps->add_gc_map( __ pc() - start, map);
duke@435 3386
duke@435 3387 // Discard arg
never@739 3388 __ pop(rcx);
duke@435 3389
duke@435 3390 Label noException;
duke@435 3391
duke@435 3392 // Clear last_Java_sp again
duke@435 3393 __ get_thread(java_thread);
duke@435 3394 __ reset_last_Java_frame(java_thread, false, false);
duke@435 3395
never@739 3396 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3397 __ jcc(Assembler::equal, noException);
duke@435 3398
duke@435 3399 // Exception pending
kvn@4103 3400 RegisterSaver::restore_live_registers(masm, save_vectors);
duke@435 3401
duke@435 3402 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3403
duke@435 3404 __ bind(noException);
duke@435 3405
duke@435 3406 // Normal exit, register restoring and exit
kvn@4103 3407 RegisterSaver::restore_live_registers(masm, save_vectors);
duke@435 3408
duke@435 3409 __ ret(0);
duke@435 3410
duke@435 3411 // make sure all code is generated
duke@435 3412 masm->flush();
duke@435 3413
duke@435 3414 // Fill-out other meta info
duke@435 3415 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
duke@435 3416 }
duke@435 3417
duke@435 3418 //
duke@435 3419 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
duke@435 3420 //
duke@435 3421 // Generate a stub that calls into vm to find out the proper destination
duke@435 3422 // of a java call. All the argument registers are live at this point
duke@435 3423 // but since this is generic code we don't know what they are and the caller
duke@435 3424 // must do any gc of the args.
duke@435 3425 //
never@2950 3426 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
duke@435 3427 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 3428
duke@435 3429 // allocate space for the code
duke@435 3430 ResourceMark rm;
duke@435 3431
duke@435 3432 CodeBuffer buffer(name, 1000, 512);
duke@435 3433 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3434
duke@435 3435 int frame_size_words;
duke@435 3436 enum frame_layout {
duke@435 3437 thread_off,
duke@435 3438 extra_words };
duke@435 3439
duke@435 3440 OopMapSet *oop_maps = new OopMapSet();
duke@435 3441 OopMap* map = NULL;
duke@435 3442
duke@435 3443 int start = __ offset();
duke@435 3444
duke@435 3445 map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
duke@435 3446
duke@435 3447 int frame_complete = __ offset();
duke@435 3448
duke@435 3449 const Register thread = rdi;
duke@435 3450 __ get_thread(rdi);
duke@435 3451
never@739 3452 __ push(thread);
duke@435 3453 __ set_last_Java_frame(thread, noreg, rbp, NULL);
duke@435 3454
duke@435 3455 __ call(RuntimeAddress(destination));
duke@435 3456
duke@435 3457
duke@435 3458 // Set an oopmap for the call site.
duke@435 3459 // We need this not only for callee-saved registers, but also for volatile
duke@435 3460 // registers that the compiler might be keeping live across a safepoint.
duke@435 3461
duke@435 3462 oop_maps->add_gc_map( __ offset() - start, map);
duke@435 3463
duke@435 3464 // rax, contains the address we are going to jump to assuming no exception got installed
duke@435 3465
never@739 3466 __ addptr(rsp, wordSize);
duke@435 3467
duke@435 3468 // clear last_Java_sp
duke@435 3469 __ reset_last_Java_frame(thread, true, false);
duke@435 3470 // check for pending exceptions
duke@435 3471 Label pending;
never@739 3472 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3473 __ jcc(Assembler::notEqual, pending);
duke@435 3474
coleenp@4037 3475 // get the returned Method*
coleenp@4037 3476 __ get_vm_result_2(rbx, thread);
never@739 3477 __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
never@739 3478
never@739 3479 __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
duke@435 3480
duke@435 3481 RegisterSaver::restore_live_registers(masm);
duke@435 3482
duke@435 3483 // We are back the the original state on entry and ready to go.
duke@435 3484
duke@435 3485 __ jmp(rax);
duke@435 3486
duke@435 3487 // Pending exception after the safepoint
duke@435 3488
duke@435 3489 __ bind(pending);
duke@435 3490
duke@435 3491 RegisterSaver::restore_live_registers(masm);
duke@435 3492
duke@435 3493 // exception pending => remove activation and forward to exception handler
duke@435 3494
duke@435 3495 __ get_thread(thread);
xlu@947 3496 __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
never@739 3497 __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
duke@435 3498 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3499
duke@435 3500 // -------------
duke@435 3501 // make sure all code is generated
duke@435 3502 masm->flush();
duke@435 3503
duke@435 3504 // return the blob
duke@435 3505 // frame_size_words or bytes??
duke@435 3506 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
duke@435 3507 }

mercurial