src/share/vm/runtime/deoptimization.cpp

Wed, 02 Jul 2008 12:55:16 -0700

author
xdono
date
Wed, 02 Jul 2008 12:55:16 -0700
changeset 631
d1605aabd0a1
parent 518
d3cd40645d0d
child 1253
b109e761e927
permissions
-rw-r--r--

6719955: Update copyright year
Summary: Update copyright year for files that have been modified in 2008
Reviewed-by: ohair, tbell

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_deoptimization.cpp.incl"
duke@435 27
duke@435 28 bool DeoptimizationMarker::_is_active = false;
duke@435 29
duke@435 30 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame,
duke@435 31 int caller_adjustment,
duke@435 32 int number_of_frames,
duke@435 33 intptr_t* frame_sizes,
duke@435 34 address* frame_pcs,
duke@435 35 BasicType return_type) {
duke@435 36 _size_of_deoptimized_frame = size_of_deoptimized_frame;
duke@435 37 _caller_adjustment = caller_adjustment;
duke@435 38 _number_of_frames = number_of_frames;
duke@435 39 _frame_sizes = frame_sizes;
duke@435 40 _frame_pcs = frame_pcs;
duke@435 41 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
duke@435 42 _return_type = return_type;
duke@435 43 // PD (x86 only)
duke@435 44 _counter_temp = 0;
duke@435 45 _initial_fp = 0;
duke@435 46 _unpack_kind = 0;
duke@435 47 _sender_sp_temp = 0;
duke@435 48
duke@435 49 _total_frame_sizes = size_of_frames();
duke@435 50 }
duke@435 51
duke@435 52
duke@435 53 Deoptimization::UnrollBlock::~UnrollBlock() {
duke@435 54 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
duke@435 55 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
duke@435 56 FREE_C_HEAP_ARRAY(intptr_t, _register_block);
duke@435 57 }
duke@435 58
duke@435 59
duke@435 60 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
duke@435 61 assert(register_number < RegisterMap::reg_count, "checking register number");
duke@435 62 return &_register_block[register_number * 2];
duke@435 63 }
duke@435 64
duke@435 65
duke@435 66
duke@435 67 int Deoptimization::UnrollBlock::size_of_frames() const {
duke@435 68 // Acount first for the adjustment of the initial frame
duke@435 69 int result = _caller_adjustment;
duke@435 70 for (int index = 0; index < number_of_frames(); index++) {
duke@435 71 result += frame_sizes()[index];
duke@435 72 }
duke@435 73 return result;
duke@435 74 }
duke@435 75
duke@435 76
duke@435 77 void Deoptimization::UnrollBlock::print() {
duke@435 78 ttyLocker ttyl;
duke@435 79 tty->print_cr("UnrollBlock");
duke@435 80 tty->print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
duke@435 81 tty->print( " frame_sizes: ");
duke@435 82 for (int index = 0; index < number_of_frames(); index++) {
duke@435 83 tty->print("%d ", frame_sizes()[index]);
duke@435 84 }
duke@435 85 tty->cr();
duke@435 86 }
duke@435 87
duke@435 88
duke@435 89 // In order to make fetch_unroll_info work properly with escape
duke@435 90 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
duke@435 91 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
duke@435 92 // of previously eliminated objects occurs in realloc_objects, which is
duke@435 93 // called from the method fetch_unroll_info_helper below.
duke@435 94 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
duke@435 95 // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
duke@435 96 // but makes the entry a little slower. There is however a little dance we have to
duke@435 97 // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
duke@435 98
duke@435 99 // fetch_unroll_info() is called at the beginning of the deoptimization
duke@435 100 // handler. Note this fact before we start generating temporary frames
duke@435 101 // that can confuse an asynchronous stack walker. This counter is
duke@435 102 // decremented at the end of unpack_frames().
duke@435 103 thread->inc_in_deopt_handler();
duke@435 104
duke@435 105 return fetch_unroll_info_helper(thread);
duke@435 106 JRT_END
duke@435 107
duke@435 108
duke@435 109 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
duke@435 110 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
duke@435 111
duke@435 112 // Note: there is a safepoint safety issue here. No matter whether we enter
duke@435 113 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
duke@435 114 // the vframeArray is created.
duke@435 115 //
duke@435 116
duke@435 117 // Allocate our special deoptimization ResourceMark
duke@435 118 DeoptResourceMark* dmark = new DeoptResourceMark(thread);
duke@435 119 assert(thread->deopt_mark() == NULL, "Pending deopt!");
duke@435 120 thread->set_deopt_mark(dmark);
duke@435 121
duke@435 122 frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
duke@435 123 RegisterMap map(thread, true);
duke@435 124 RegisterMap dummy_map(thread, false);
duke@435 125 // Now get the deoptee with a valid map
duke@435 126 frame deoptee = stub_frame.sender(&map);
duke@435 127
duke@435 128 // Create a growable array of VFrames where each VFrame represents an inlined
duke@435 129 // Java frame. This storage is allocated with the usual system arena.
duke@435 130 assert(deoptee.is_compiled_frame(), "Wrong frame type");
duke@435 131 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
duke@435 132 vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
duke@435 133 while (!vf->is_top()) {
duke@435 134 assert(vf->is_compiled_frame(), "Wrong frame type");
duke@435 135 chunk->push(compiledVFrame::cast(vf));
duke@435 136 vf = vf->sender();
duke@435 137 }
duke@435 138 assert(vf->is_compiled_frame(), "Wrong frame type");
duke@435 139 chunk->push(compiledVFrame::cast(vf));
duke@435 140
duke@435 141 #ifdef COMPILER2
duke@435 142 // Reallocate the non-escaping objects and restore their fields. Then
duke@435 143 // relock objects if synchronization on them was eliminated.
kvn@479 144 if (DoEscapeAnalysis) {
kvn@479 145 if (EliminateAllocations) {
kvn@518 146 assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
kvn@479 147 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
kvn@479 148 bool reallocated = false;
kvn@479 149 if (objects != NULL) {
kvn@479 150 JRT_BLOCK
kvn@479 151 reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
kvn@479 152 JRT_END
duke@435 153 }
kvn@479 154 if (reallocated) {
kvn@479 155 reassign_fields(&deoptee, &map, objects);
duke@435 156 #ifndef PRODUCT
duke@435 157 if (TraceDeoptimization) {
duke@435 158 ttyLocker ttyl;
kvn@479 159 tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
kvn@479 160 print_objects(objects);
kvn@479 161 }
kvn@479 162 #endif
kvn@479 163 }
kvn@479 164 }
kvn@479 165 if (EliminateLocks) {
kvn@518 166 #ifndef PRODUCT
kvn@518 167 bool first = true;
kvn@518 168 #endif
kvn@479 169 for (int i = 0; i < chunk->length(); i++) {
kvn@518 170 compiledVFrame* cvf = chunk->at(i);
kvn@518 171 assert (cvf->scope() != NULL,"expect only compiled java frames");
kvn@518 172 GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
kvn@518 173 if (monitors->is_nonempty()) {
kvn@518 174 relock_objects(monitors, thread);
kvn@479 175 #ifndef PRODUCT
kvn@479 176 if (TraceDeoptimization) {
kvn@479 177 ttyLocker ttyl;
kvn@479 178 for (int j = 0; j < monitors->length(); j++) {
kvn@518 179 MonitorInfo* mi = monitors->at(j);
kvn@518 180 if (mi->eliminated()) {
kvn@518 181 if (first) {
kvn@518 182 first = false;
kvn@518 183 tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
kvn@518 184 }
kvn@518 185 tty->print_cr(" object <" INTPTR_FORMAT "> locked", mi->owner());
kvn@479 186 }
duke@435 187 }
duke@435 188 }
kvn@479 189 #endif
duke@435 190 }
duke@435 191 }
duke@435 192 }
duke@435 193 }
duke@435 194 #endif // COMPILER2
duke@435 195 // Ensure that no safepoint is taken after pointers have been stored
duke@435 196 // in fields of rematerialized objects. If a safepoint occurs from here on
duke@435 197 // out the java state residing in the vframeArray will be missed.
duke@435 198 No_Safepoint_Verifier no_safepoint;
duke@435 199
duke@435 200 vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
duke@435 201
duke@435 202 assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
duke@435 203 thread->set_vframe_array_head(array);
duke@435 204
duke@435 205 // Now that the vframeArray has been created if we have any deferred local writes
duke@435 206 // added by jvmti then we can free up that structure as the data is now in the
duke@435 207 // vframeArray
duke@435 208
duke@435 209 if (thread->deferred_locals() != NULL) {
duke@435 210 GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
duke@435 211 int i = 0;
duke@435 212 do {
duke@435 213 // Because of inlining we could have multiple vframes for a single frame
duke@435 214 // and several of the vframes could have deferred writes. Find them all.
duke@435 215 if (list->at(i)->id() == array->original().id()) {
duke@435 216 jvmtiDeferredLocalVariableSet* dlv = list->at(i);
duke@435 217 list->remove_at(i);
duke@435 218 // individual jvmtiDeferredLocalVariableSet are CHeapObj's
duke@435 219 delete dlv;
duke@435 220 } else {
duke@435 221 i++;
duke@435 222 }
duke@435 223 } while ( i < list->length() );
duke@435 224 if (list->length() == 0) {
duke@435 225 thread->set_deferred_locals(NULL);
duke@435 226 // free the list and elements back to C heap.
duke@435 227 delete list;
duke@435 228 }
duke@435 229
duke@435 230 }
duke@435 231
duke@435 232 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
duke@435 233 CodeBlob* cb = stub_frame.cb();
duke@435 234 // Verify we have the right vframeArray
duke@435 235 assert(cb->frame_size() >= 0, "Unexpected frame size");
duke@435 236 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
duke@435 237
duke@435 238 #ifdef ASSERT
duke@435 239 assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
duke@435 240 Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
duke@435 241 #endif
duke@435 242 // This is a guarantee instead of an assert because if vframe doesn't match
duke@435 243 // we will unpack the wrong deoptimized frame and wind up in strange places
duke@435 244 // where it will be very difficult to figure out what went wrong. Better
duke@435 245 // to die an early death here than some very obscure death later when the
duke@435 246 // trail is cold.
duke@435 247 // Note: on ia64 this guarantee can be fooled by frames with no memory stack
duke@435 248 // in that it will fail to detect a problem when there is one. This needs
duke@435 249 // more work in tiger timeframe.
duke@435 250 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
duke@435 251
duke@435 252 int number_of_frames = array->frames();
duke@435 253
duke@435 254 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost
duke@435 255 // virtual activation, which is the reverse of the elements in the vframes array.
duke@435 256 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
duke@435 257 // +1 because we always have an interpreter return address for the final slot.
duke@435 258 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
duke@435 259 int callee_parameters = 0;
duke@435 260 int callee_locals = 0;
duke@435 261 int popframe_extra_args = 0;
duke@435 262 // Create an interpreter return address for the stub to use as its return
duke@435 263 // address so the skeletal frames are perfectly walkable
duke@435 264 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
duke@435 265
duke@435 266 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
duke@435 267 // activation be put back on the expression stack of the caller for reexecution
duke@435 268 if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
duke@435 269 popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
duke@435 270 }
duke@435 271
duke@435 272 //
duke@435 273 // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
duke@435 274 // frame_sizes/frame_pcs[1] next oldest frame (int)
duke@435 275 // frame_sizes/frame_pcs[n] youngest frame (int)
duke@435 276 //
duke@435 277 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
duke@435 278 // owns the space for the return address to it's caller). Confusing ain't it.
duke@435 279 //
duke@435 280 // The vframe array can address vframes with indices running from
duke@435 281 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame.
duke@435 282 // When we create the skeletal frames we need the oldest frame to be in the zero slot
duke@435 283 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
duke@435 284 // so things look a little strange in this loop.
duke@435 285 //
duke@435 286 for (int index = 0; index < array->frames(); index++ ) {
duke@435 287 // frame[number_of_frames - 1 ] = on_stack_size(youngest)
duke@435 288 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
duke@435 289 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
duke@435 290 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
duke@435 291 callee_locals,
duke@435 292 index == 0,
duke@435 293 popframe_extra_args);
duke@435 294 // This pc doesn't have to be perfect just good enough to identify the frame
duke@435 295 // as interpreted so the skeleton frame will be walkable
duke@435 296 // The correct pc will be set when the skeleton frame is completely filled out
duke@435 297 // The final pc we store in the loop is wrong and will be overwritten below
duke@435 298 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
duke@435 299
duke@435 300 callee_parameters = array->element(index)->method()->size_of_parameters();
duke@435 301 callee_locals = array->element(index)->method()->max_locals();
duke@435 302 popframe_extra_args = 0;
duke@435 303 }
duke@435 304
duke@435 305 // Compute whether the root vframe returns a float or double value.
duke@435 306 BasicType return_type;
duke@435 307 {
duke@435 308 HandleMark hm;
duke@435 309 methodHandle method(thread, array->element(0)->method());
duke@435 310 Bytecode_invoke* invoke = Bytecode_invoke_at_check(method, array->element(0)->bci());
duke@435 311 return_type = (invoke != NULL) ? invoke->result_type(thread) : T_ILLEGAL;
duke@435 312 }
duke@435 313
duke@435 314 // Compute information for handling adapters and adjusting the frame size of the caller.
duke@435 315 int caller_adjustment = 0;
duke@435 316
duke@435 317 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
duke@435 318 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
duke@435 319 // than simply use array->sender.pc(). This requires us to walk the current set of frames
duke@435 320 //
duke@435 321 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
duke@435 322 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller
duke@435 323
duke@435 324 // Compute the amount the oldest interpreter frame will have to adjust
duke@435 325 // its caller's stack by. If the caller is a compiled frame then
duke@435 326 // we pretend that the callee has no parameters so that the
duke@435 327 // extension counts for the full amount of locals and not just
duke@435 328 // locals-parms. This is because without a c2i adapter the parm
duke@435 329 // area as created by the compiled frame will not be usable by
duke@435 330 // the interpreter. (Depending on the calling convention there
duke@435 331 // may not even be enough space).
duke@435 332
duke@435 333 // QQQ I'd rather see this pushed down into last_frame_adjust
duke@435 334 // and have it take the sender (aka caller).
duke@435 335
duke@435 336 if (deopt_sender.is_compiled_frame()) {
duke@435 337 caller_adjustment = last_frame_adjust(0, callee_locals);
duke@435 338 } else if (callee_locals > callee_parameters) {
duke@435 339 // The caller frame may need extending to accommodate
duke@435 340 // non-parameter locals of the first unpacked interpreted frame.
duke@435 341 // Compute that adjustment.
duke@435 342 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
duke@435 343 }
duke@435 344
duke@435 345
duke@435 346 // If the sender is deoptimized the we must retrieve the address of the handler
duke@435 347 // since the frame will "magically" show the original pc before the deopt
duke@435 348 // and we'd undo the deopt.
duke@435 349
duke@435 350 frame_pcs[0] = deopt_sender.raw_pc();
duke@435 351
duke@435 352 assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
duke@435 353
duke@435 354 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
duke@435 355 caller_adjustment * BytesPerWord,
duke@435 356 number_of_frames,
duke@435 357 frame_sizes,
duke@435 358 frame_pcs,
duke@435 359 return_type);
duke@435 360 #if defined(IA32) || defined(AMD64)
duke@435 361 // We need a way to pass fp to the unpacking code so the skeletal frames
duke@435 362 // come out correct. This is only needed for x86 because of c2 using ebp
duke@435 363 // as an allocatable register. So this update is useless (and harmless)
duke@435 364 // on the other platforms. It would be nice to do this in a different
duke@435 365 // way but even the old style deoptimization had a problem with deriving
duke@435 366 // this value. NEEDS_CLEANUP
duke@435 367 // Note: now that c1 is using c2's deopt blob we must do this on all
duke@435 368 // x86 based platforms
duke@435 369 intptr_t** fp_addr = (intptr_t**) (((address)info) + info->initial_fp_offset_in_bytes());
duke@435 370 *fp_addr = array->sender().fp(); // was adapter_caller
duke@435 371 #endif /* IA32 || AMD64 */
duke@435 372
duke@435 373 if (array->frames() > 1) {
duke@435 374 if (VerifyStack && TraceDeoptimization) {
duke@435 375 tty->print_cr("Deoptimizing method containing inlining");
duke@435 376 }
duke@435 377 }
duke@435 378
duke@435 379 array->set_unroll_block(info);
duke@435 380 return info;
duke@435 381 }
duke@435 382
duke@435 383 // Called to cleanup deoptimization data structures in normal case
duke@435 384 // after unpacking to stack and when stack overflow error occurs
duke@435 385 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
duke@435 386 vframeArray *array) {
duke@435 387
duke@435 388 // Get array if coming from exception
duke@435 389 if (array == NULL) {
duke@435 390 array = thread->vframe_array_head();
duke@435 391 }
duke@435 392 thread->set_vframe_array_head(NULL);
duke@435 393
duke@435 394 // Free the previous UnrollBlock
duke@435 395 vframeArray* old_array = thread->vframe_array_last();
duke@435 396 thread->set_vframe_array_last(array);
duke@435 397
duke@435 398 if (old_array != NULL) {
duke@435 399 UnrollBlock* old_info = old_array->unroll_block();
duke@435 400 old_array->set_unroll_block(NULL);
duke@435 401 delete old_info;
duke@435 402 delete old_array;
duke@435 403 }
duke@435 404
duke@435 405 // Deallocate any resource creating in this routine and any ResourceObjs allocated
duke@435 406 // inside the vframeArray (StackValueCollections)
duke@435 407
duke@435 408 delete thread->deopt_mark();
duke@435 409 thread->set_deopt_mark(NULL);
duke@435 410
duke@435 411
duke@435 412 if (JvmtiExport::can_pop_frame()) {
duke@435 413 #ifndef CC_INTERP
duke@435 414 // Regardless of whether we entered this routine with the pending
duke@435 415 // popframe condition bit set, we should always clear it now
duke@435 416 thread->clear_popframe_condition();
duke@435 417 #else
duke@435 418 // C++ interpeter will clear has_pending_popframe when it enters
duke@435 419 // with method_resume. For deopt_resume2 we clear it now.
duke@435 420 if (thread->popframe_forcing_deopt_reexecution())
duke@435 421 thread->clear_popframe_condition();
duke@435 422 #endif /* CC_INTERP */
duke@435 423 }
duke@435 424
duke@435 425 // unpack_frames() is called at the end of the deoptimization handler
duke@435 426 // and (in C2) at the end of the uncommon trap handler. Note this fact
duke@435 427 // so that an asynchronous stack walker can work again. This counter is
duke@435 428 // incremented at the beginning of fetch_unroll_info() and (in C2) at
duke@435 429 // the beginning of uncommon_trap().
duke@435 430 thread->dec_in_deopt_handler();
duke@435 431 }
duke@435 432
duke@435 433
duke@435 434 // Return BasicType of value being returned
duke@435 435 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
duke@435 436
duke@435 437 // We are already active int he special DeoptResourceMark any ResourceObj's we
duke@435 438 // allocate will be freed at the end of the routine.
duke@435 439
duke@435 440 // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
duke@435 441 // but makes the entry a little slower. There is however a little dance we have to
duke@435 442 // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
duke@435 443 ResetNoHandleMark rnhm; // No-op in release/product versions
duke@435 444 HandleMark hm;
duke@435 445
duke@435 446 frame stub_frame = thread->last_frame();
duke@435 447
duke@435 448 // Since the frame to unpack is the top frame of this thread, the vframe_array_head
duke@435 449 // must point to the vframeArray for the unpack frame.
duke@435 450 vframeArray* array = thread->vframe_array_head();
duke@435 451
duke@435 452 #ifndef PRODUCT
duke@435 453 if (TraceDeoptimization) {
duke@435 454 tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
duke@435 455 }
duke@435 456 #endif
duke@435 457
duke@435 458 UnrollBlock* info = array->unroll_block();
duke@435 459
duke@435 460 // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
duke@435 461 array->unpack_to_stack(stub_frame, exec_mode);
duke@435 462
duke@435 463 BasicType bt = info->return_type();
duke@435 464
duke@435 465 // If we have an exception pending, claim that the return type is an oop
duke@435 466 // so the deopt_blob does not overwrite the exception_oop.
duke@435 467
duke@435 468 if (exec_mode == Unpack_exception)
duke@435 469 bt = T_OBJECT;
duke@435 470
duke@435 471 // Cleanup thread deopt data
duke@435 472 cleanup_deopt_info(thread, array);
duke@435 473
duke@435 474 #ifndef PRODUCT
duke@435 475 if (VerifyStack) {
duke@435 476 ResourceMark res_mark;
duke@435 477
duke@435 478 // Verify that the just-unpacked frames match the interpreter's
duke@435 479 // notions of expression stack and locals
duke@435 480 vframeArray* cur_array = thread->vframe_array_last();
duke@435 481 RegisterMap rm(thread, false);
duke@435 482 rm.set_include_argument_oops(false);
duke@435 483 bool is_top_frame = true;
duke@435 484 int callee_size_of_parameters = 0;
duke@435 485 int callee_max_locals = 0;
duke@435 486 for (int i = 0; i < cur_array->frames(); i++) {
duke@435 487 vframeArrayElement* el = cur_array->element(i);
duke@435 488 frame* iframe = el->iframe();
duke@435 489 guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
duke@435 490
duke@435 491 // Get the oop map for this bci
duke@435 492 InterpreterOopMap mask;
duke@435 493 int cur_invoke_parameter_size = 0;
duke@435 494 bool try_next_mask = false;
duke@435 495 int next_mask_expression_stack_size = -1;
duke@435 496 int top_frame_expression_stack_adjustment = 0;
duke@435 497 methodHandle mh(thread, iframe->interpreter_frame_method());
duke@435 498 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
duke@435 499 BytecodeStream str(mh);
duke@435 500 str.set_start(iframe->interpreter_frame_bci());
duke@435 501 int max_bci = mh->code_size();
duke@435 502 // Get to the next bytecode if possible
duke@435 503 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
duke@435 504 // Check to see if we can grab the number of outgoing arguments
duke@435 505 // at an uncommon trap for an invoke (where the compiler
duke@435 506 // generates debug info before the invoke has executed)
duke@435 507 Bytecodes::Code cur_code = str.next();
duke@435 508 if (cur_code == Bytecodes::_invokevirtual ||
duke@435 509 cur_code == Bytecodes::_invokespecial ||
duke@435 510 cur_code == Bytecodes::_invokestatic ||
duke@435 511 cur_code == Bytecodes::_invokeinterface) {
duke@435 512 Bytecode_invoke* invoke = Bytecode_invoke_at(mh, iframe->interpreter_frame_bci());
duke@435 513 symbolHandle signature(thread, invoke->signature());
duke@435 514 ArgumentSizeComputer asc(signature);
duke@435 515 cur_invoke_parameter_size = asc.size();
duke@435 516 if (cur_code != Bytecodes::_invokestatic) {
duke@435 517 // Add in receiver
duke@435 518 ++cur_invoke_parameter_size;
duke@435 519 }
duke@435 520 }
duke@435 521 if (str.bci() < max_bci) {
duke@435 522 Bytecodes::Code bc = str.next();
duke@435 523 if (bc >= 0) {
duke@435 524 // The interpreter oop map generator reports results before
duke@435 525 // the current bytecode has executed except in the case of
duke@435 526 // calls. It seems to be hard to tell whether the compiler
duke@435 527 // has emitted debug information matching the "state before"
duke@435 528 // a given bytecode or the state after, so we try both
duke@435 529 switch (cur_code) {
duke@435 530 case Bytecodes::_invokevirtual:
duke@435 531 case Bytecodes::_invokespecial:
duke@435 532 case Bytecodes::_invokestatic:
duke@435 533 case Bytecodes::_invokeinterface:
duke@435 534 case Bytecodes::_athrow:
duke@435 535 break;
duke@435 536 default: {
duke@435 537 InterpreterOopMap next_mask;
duke@435 538 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
duke@435 539 next_mask_expression_stack_size = next_mask.expression_stack_size();
duke@435 540 // Need to subtract off the size of the result type of
duke@435 541 // the bytecode because this is not described in the
duke@435 542 // debug info but returned to the interpreter in the TOS
duke@435 543 // caching register
duke@435 544 BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
duke@435 545 if (bytecode_result_type != T_ILLEGAL) {
duke@435 546 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
duke@435 547 }
duke@435 548 assert(top_frame_expression_stack_adjustment >= 0, "");
duke@435 549 try_next_mask = true;
duke@435 550 break;
duke@435 551 }
duke@435 552 }
duke@435 553 }
duke@435 554 }
duke@435 555
duke@435 556 // Verify stack depth and oops in frame
duke@435 557 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
duke@435 558 if (!(
duke@435 559 /* SPARC */
duke@435 560 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
duke@435 561 /* x86 */
duke@435 562 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
duke@435 563 (try_next_mask &&
duke@435 564 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
duke@435 565 top_frame_expression_stack_adjustment))) ||
duke@435 566 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
duke@435 567 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
duke@435 568 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
duke@435 569 )) {
duke@435 570 ttyLocker ttyl;
duke@435 571
duke@435 572 // Print out some information that will help us debug the problem
duke@435 573 tty->print_cr("Wrong number of expression stack elements during deoptimization");
duke@435 574 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
duke@435 575 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements",
duke@435 576 iframe->interpreter_frame_expression_stack_size());
duke@435 577 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
duke@435 578 tty->print_cr(" try_next_mask = %d", try_next_mask);
duke@435 579 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
duke@435 580 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters);
duke@435 581 tty->print_cr(" callee_max_locals = %d", callee_max_locals);
duke@435 582 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
duke@435 583 tty->print_cr(" exec_mode = %d", exec_mode);
duke@435 584 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
duke@435 585 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
duke@435 586 tty->print_cr(" Interpreted frames:");
duke@435 587 for (int k = 0; k < cur_array->frames(); k++) {
duke@435 588 vframeArrayElement* el = cur_array->element(k);
duke@435 589 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
duke@435 590 }
duke@435 591 cur_array->print_on_2(tty);
duke@435 592 guarantee(false, "wrong number of expression stack elements during deopt");
duke@435 593 }
duke@435 594 VerifyOopClosure verify;
duke@435 595 iframe->oops_interpreted_do(&verify, &rm, false);
duke@435 596 callee_size_of_parameters = mh->size_of_parameters();
duke@435 597 callee_max_locals = mh->max_locals();
duke@435 598 is_top_frame = false;
duke@435 599 }
duke@435 600 }
duke@435 601 #endif /* !PRODUCT */
duke@435 602
duke@435 603
duke@435 604 return bt;
duke@435 605 JRT_END
duke@435 606
duke@435 607
duke@435 608 int Deoptimization::deoptimize_dependents() {
duke@435 609 Threads::deoptimized_wrt_marked_nmethods();
duke@435 610 return 0;
duke@435 611 }
duke@435 612
duke@435 613
duke@435 614 #ifdef COMPILER2
duke@435 615 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
duke@435 616 Handle pending_exception(thread->pending_exception());
duke@435 617 const char* exception_file = thread->exception_file();
duke@435 618 int exception_line = thread->exception_line();
duke@435 619 thread->clear_pending_exception();
duke@435 620
duke@435 621 for (int i = 0; i < objects->length(); i++) {
duke@435 622 assert(objects->at(i)->is_object(), "invalid debug information");
duke@435 623 ObjectValue* sv = (ObjectValue*) objects->at(i);
duke@435 624
duke@435 625 KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
duke@435 626 oop obj = NULL;
duke@435 627
duke@435 628 if (k->oop_is_instance()) {
duke@435 629 instanceKlass* ik = instanceKlass::cast(k());
duke@435 630 obj = ik->allocate_instance(CHECK_(false));
duke@435 631 } else if (k->oop_is_typeArray()) {
duke@435 632 typeArrayKlass* ak = typeArrayKlass::cast(k());
duke@435 633 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
duke@435 634 int len = sv->field_size() / type2size[ak->element_type()];
duke@435 635 obj = ak->allocate(len, CHECK_(false));
duke@435 636 } else if (k->oop_is_objArray()) {
duke@435 637 objArrayKlass* ak = objArrayKlass::cast(k());
duke@435 638 obj = ak->allocate(sv->field_size(), CHECK_(false));
duke@435 639 }
duke@435 640
duke@435 641 assert(obj != NULL, "allocation failed");
duke@435 642 assert(sv->value().is_null(), "redundant reallocation");
duke@435 643 sv->set_value(obj);
duke@435 644 }
duke@435 645
duke@435 646 if (pending_exception.not_null()) {
duke@435 647 thread->set_pending_exception(pending_exception(), exception_file, exception_line);
duke@435 648 }
duke@435 649
duke@435 650 return true;
duke@435 651 }
duke@435 652
duke@435 653 // This assumes that the fields are stored in ObjectValue in the same order
duke@435 654 // they are yielded by do_nonstatic_fields.
duke@435 655 class FieldReassigner: public FieldClosure {
duke@435 656 frame* _fr;
duke@435 657 RegisterMap* _reg_map;
duke@435 658 ObjectValue* _sv;
duke@435 659 instanceKlass* _ik;
duke@435 660 oop _obj;
duke@435 661
duke@435 662 int _i;
duke@435 663 public:
duke@435 664 FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
duke@435 665 _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
duke@435 666
duke@435 667 int i() const { return _i; }
duke@435 668
duke@435 669
duke@435 670 void do_field(fieldDescriptor* fd) {
kvn@479 671 intptr_t val;
duke@435 672 StackValue* value =
duke@435 673 StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
duke@435 674 int offset = fd->offset();
duke@435 675 switch (fd->field_type()) {
duke@435 676 case T_OBJECT: case T_ARRAY:
duke@435 677 assert(value->type() == T_OBJECT, "Agreement.");
duke@435 678 _obj->obj_field_put(offset, value->get_obj()());
duke@435 679 break;
duke@435 680
duke@435 681 case T_LONG: case T_DOUBLE: {
duke@435 682 assert(value->type() == T_INT, "Agreement.");
duke@435 683 StackValue* low =
duke@435 684 StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
kvn@479 685 #ifdef _LP64
kvn@479 686 jlong res = (jlong)low->get_int();
kvn@479 687 #else
kvn@479 688 #ifdef SPARC
kvn@479 689 // For SPARC we have to swap high and low words.
kvn@479 690 jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
kvn@479 691 #else
duke@435 692 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
kvn@479 693 #endif //SPARC
kvn@479 694 #endif
duke@435 695 _obj->long_field_put(offset, res);
duke@435 696 break;
duke@435 697 }
kvn@479 698 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
duke@435 699 case T_INT: case T_FLOAT: // 4 bytes.
duke@435 700 assert(value->type() == T_INT, "Agreement.");
kvn@479 701 val = value->get_int();
kvn@479 702 _obj->int_field_put(offset, (jint)*((jint*)&val));
duke@435 703 break;
duke@435 704
duke@435 705 case T_SHORT: case T_CHAR: // 2 bytes
duke@435 706 assert(value->type() == T_INT, "Agreement.");
kvn@479 707 val = value->get_int();
kvn@479 708 _obj->short_field_put(offset, (jshort)*((jint*)&val));
duke@435 709 break;
duke@435 710
kvn@479 711 case T_BOOLEAN: case T_BYTE: // 1 byte
duke@435 712 assert(value->type() == T_INT, "Agreement.");
kvn@479 713 val = value->get_int();
kvn@479 714 _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
duke@435 715 break;
duke@435 716
duke@435 717 default:
duke@435 718 ShouldNotReachHere();
duke@435 719 }
duke@435 720 _i++;
duke@435 721 }
duke@435 722 };
duke@435 723
duke@435 724 // restore elements of an eliminated type array
duke@435 725 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
duke@435 726 int index = 0;
kvn@479 727 intptr_t val;
duke@435 728
duke@435 729 for (int i = 0; i < sv->field_size(); i++) {
duke@435 730 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
duke@435 731 switch(type) {
kvn@479 732 case T_LONG: case T_DOUBLE: {
kvn@479 733 assert(value->type() == T_INT, "Agreement.");
kvn@479 734 StackValue* low =
kvn@479 735 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
kvn@479 736 #ifdef _LP64
kvn@479 737 jlong res = (jlong)low->get_int();
kvn@479 738 #else
kvn@479 739 #ifdef SPARC
kvn@479 740 // For SPARC we have to swap high and low words.
kvn@479 741 jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
kvn@479 742 #else
kvn@479 743 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
kvn@479 744 #endif //SPARC
kvn@479 745 #endif
kvn@479 746 obj->long_at_put(index, res);
kvn@479 747 break;
kvn@479 748 }
kvn@479 749
kvn@479 750 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
kvn@479 751 case T_INT: case T_FLOAT: // 4 bytes.
kvn@479 752 assert(value->type() == T_INT, "Agreement.");
kvn@479 753 val = value->get_int();
kvn@479 754 obj->int_at_put(index, (jint)*((jint*)&val));
kvn@479 755 break;
kvn@479 756
kvn@479 757 case T_SHORT: case T_CHAR: // 2 bytes
kvn@479 758 assert(value->type() == T_INT, "Agreement.");
kvn@479 759 val = value->get_int();
kvn@479 760 obj->short_at_put(index, (jshort)*((jint*)&val));
kvn@479 761 break;
kvn@479 762
kvn@479 763 case T_BOOLEAN: case T_BYTE: // 1 byte
kvn@479 764 assert(value->type() == T_INT, "Agreement.");
kvn@479 765 val = value->get_int();
kvn@479 766 obj->bool_at_put(index, (jboolean)*((jint*)&val));
kvn@479 767 break;
kvn@479 768
duke@435 769 default:
duke@435 770 ShouldNotReachHere();
duke@435 771 }
duke@435 772 index++;
duke@435 773 }
duke@435 774 }
duke@435 775
duke@435 776
duke@435 777 // restore fields of an eliminated object array
duke@435 778 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
duke@435 779 for (int i = 0; i < sv->field_size(); i++) {
duke@435 780 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
duke@435 781 assert(value->type() == T_OBJECT, "object element expected");
duke@435 782 obj->obj_at_put(i, value->get_obj()());
duke@435 783 }
duke@435 784 }
duke@435 785
duke@435 786
duke@435 787 // restore fields of all eliminated objects and arrays
duke@435 788 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
duke@435 789 for (int i = 0; i < objects->length(); i++) {
duke@435 790 ObjectValue* sv = (ObjectValue*) objects->at(i);
duke@435 791 KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
duke@435 792 Handle obj = sv->value();
duke@435 793 assert(obj.not_null(), "reallocation was missed");
duke@435 794
duke@435 795 if (k->oop_is_instance()) {
duke@435 796 instanceKlass* ik = instanceKlass::cast(k());
duke@435 797 FieldReassigner reassign(fr, reg_map, sv, obj());
duke@435 798 ik->do_nonstatic_fields(&reassign);
duke@435 799 } else if (k->oop_is_typeArray()) {
duke@435 800 typeArrayKlass* ak = typeArrayKlass::cast(k());
duke@435 801 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
duke@435 802 } else if (k->oop_is_objArray()) {
duke@435 803 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
duke@435 804 }
duke@435 805 }
duke@435 806 }
duke@435 807
duke@435 808
duke@435 809 // relock objects for which synchronization was eliminated
kvn@518 810 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
duke@435 811 for (int i = 0; i < monitors->length(); i++) {
kvn@518 812 MonitorInfo* mon_info = monitors->at(i);
kvn@518 813 if (mon_info->eliminated()) {
kvn@518 814 assert(mon_info->owner() != NULL, "reallocation was missed");
kvn@518 815 Handle obj = Handle(mon_info->owner());
kvn@518 816 markOop mark = obj->mark();
kvn@518 817 if (UseBiasedLocking && mark->has_bias_pattern()) {
kvn@518 818 // New allocated objects may have the mark set to anonymously biased.
kvn@518 819 // Also the deoptimized method may called methods with synchronization
kvn@518 820 // where the thread-local object is bias locked to the current thread.
kvn@518 821 assert(mark->is_biased_anonymously() ||
kvn@518 822 mark->biased_locker() == thread, "should be locked to current thread");
kvn@518 823 // Reset mark word to unbiased prototype.
kvn@518 824 markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
kvn@518 825 obj->set_mark(unbiased_prototype);
kvn@518 826 }
kvn@518 827 BasicLock* lock = mon_info->lock();
kvn@518 828 ObjectSynchronizer::slow_enter(obj, lock, thread);
duke@435 829 }
kvn@518 830 assert(mon_info->owner()->is_locked(), "object must be locked now");
duke@435 831 }
duke@435 832 }
duke@435 833
duke@435 834
duke@435 835 #ifndef PRODUCT
duke@435 836 // print information about reallocated objects
duke@435 837 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
duke@435 838 fieldDescriptor fd;
duke@435 839
duke@435 840 for (int i = 0; i < objects->length(); i++) {
duke@435 841 ObjectValue* sv = (ObjectValue*) objects->at(i);
duke@435 842 KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
duke@435 843 Handle obj = sv->value();
duke@435 844
duke@435 845 tty->print(" object <" INTPTR_FORMAT "> of type ", sv->value()());
duke@435 846 k->as_klassOop()->print_value();
duke@435 847 tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
duke@435 848 tty->cr();
duke@435 849
duke@435 850 if (Verbose) {
duke@435 851 k->oop_print_on(obj(), tty);
duke@435 852 }
duke@435 853 }
duke@435 854 }
duke@435 855 #endif
duke@435 856 #endif // COMPILER2
duke@435 857
duke@435 858 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
duke@435 859
duke@435 860 #ifndef PRODUCT
duke@435 861 if (TraceDeoptimization) {
duke@435 862 ttyLocker ttyl;
duke@435 863 tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
duke@435 864 fr.print_on(tty);
duke@435 865 tty->print_cr(" Virtual frames (innermost first):");
duke@435 866 for (int index = 0; index < chunk->length(); index++) {
duke@435 867 compiledVFrame* vf = chunk->at(index);
duke@435 868 tty->print(" %2d - ", index);
duke@435 869 vf->print_value();
duke@435 870 int bci = chunk->at(index)->raw_bci();
duke@435 871 const char* code_name;
duke@435 872 if (bci == SynchronizationEntryBCI) {
duke@435 873 code_name = "sync entry";
duke@435 874 } else {
duke@435 875 Bytecodes::Code code = Bytecodes::code_at(vf->method(), bci);
duke@435 876 code_name = Bytecodes::name(code);
duke@435 877 }
duke@435 878 tty->print(" - %s", code_name);
duke@435 879 tty->print_cr(" @ bci %d ", bci);
duke@435 880 if (Verbose) {
duke@435 881 vf->print();
duke@435 882 tty->cr();
duke@435 883 }
duke@435 884 }
duke@435 885 }
duke@435 886 #endif
duke@435 887
duke@435 888 // Register map for next frame (used for stack crawl). We capture
duke@435 889 // the state of the deopt'ing frame's caller. Thus if we need to
duke@435 890 // stuff a C2I adapter we can properly fill in the callee-save
duke@435 891 // register locations.
duke@435 892 frame caller = fr.sender(reg_map);
duke@435 893 int frame_size = caller.sp() - fr.sp();
duke@435 894
duke@435 895 frame sender = caller;
duke@435 896
duke@435 897 // Since the Java thread being deoptimized will eventually adjust it's own stack,
duke@435 898 // the vframeArray containing the unpacking information is allocated in the C heap.
duke@435 899 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
duke@435 900 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
duke@435 901
duke@435 902 // Compare the vframeArray to the collected vframes
duke@435 903 assert(array->structural_compare(thread, chunk), "just checking");
duke@435 904 Events::log("# vframes = %d", (intptr_t)chunk->length());
duke@435 905
duke@435 906 #ifndef PRODUCT
duke@435 907 if (TraceDeoptimization) {
duke@435 908 ttyLocker ttyl;
duke@435 909 tty->print_cr(" Created vframeArray " INTPTR_FORMAT, array);
duke@435 910 if (Verbose) {
duke@435 911 int count = 0;
duke@435 912 // this used to leak deoptimizedVFrame like it was going out of style!!!
duke@435 913 for (int index = 0; index < array->frames(); index++ ) {
duke@435 914 vframeArrayElement* e = array->element(index);
duke@435 915 e->print(tty);
duke@435 916
duke@435 917 /*
duke@435 918 No printing yet.
duke@435 919 array->vframe_at(index)->print_activation(count++);
duke@435 920 // better as...
duke@435 921 array->print_activation_for(index, count++);
duke@435 922 */
duke@435 923 }
duke@435 924 }
duke@435 925 }
duke@435 926 #endif // PRODUCT
duke@435 927
duke@435 928 return array;
duke@435 929 }
duke@435 930
duke@435 931
duke@435 932 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
duke@435 933 GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
duke@435 934 for (int i = 0; i < monitors->length(); i++) {
duke@435 935 MonitorInfo* mon_info = monitors->at(i);
kvn@518 936 if (mon_info->owner() != NULL && !mon_info->eliminated()) {
duke@435 937 objects_to_revoke->append(Handle(mon_info->owner()));
duke@435 938 }
duke@435 939 }
duke@435 940 }
duke@435 941
duke@435 942
duke@435 943 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
duke@435 944 if (!UseBiasedLocking) {
duke@435 945 return;
duke@435 946 }
duke@435 947
duke@435 948 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
duke@435 949
duke@435 950 // Unfortunately we don't have a RegisterMap available in most of
duke@435 951 // the places we want to call this routine so we need to walk the
duke@435 952 // stack again to update the register map.
duke@435 953 if (map == NULL || !map->update_map()) {
duke@435 954 StackFrameStream sfs(thread, true);
duke@435 955 bool found = false;
duke@435 956 while (!found && !sfs.is_done()) {
duke@435 957 frame* cur = sfs.current();
duke@435 958 sfs.next();
duke@435 959 found = cur->id() == fr.id();
duke@435 960 }
duke@435 961 assert(found, "frame to be deoptimized not found on target thread's stack");
duke@435 962 map = sfs.register_map();
duke@435 963 }
duke@435 964
duke@435 965 vframe* vf = vframe::new_vframe(&fr, map, thread);
duke@435 966 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 967 // Revoke monitors' biases in all scopes
duke@435 968 while (!cvf->is_top()) {
duke@435 969 collect_monitors(cvf, objects_to_revoke);
duke@435 970 cvf = compiledVFrame::cast(cvf->sender());
duke@435 971 }
duke@435 972 collect_monitors(cvf, objects_to_revoke);
duke@435 973
duke@435 974 if (SafepointSynchronize::is_at_safepoint()) {
duke@435 975 BiasedLocking::revoke_at_safepoint(objects_to_revoke);
duke@435 976 } else {
duke@435 977 BiasedLocking::revoke(objects_to_revoke);
duke@435 978 }
duke@435 979 }
duke@435 980
duke@435 981
duke@435 982 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
duke@435 983 if (!UseBiasedLocking) {
duke@435 984 return;
duke@435 985 }
duke@435 986
duke@435 987 assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
duke@435 988 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
duke@435 989 for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
duke@435 990 if (jt->has_last_Java_frame()) {
duke@435 991 StackFrameStream sfs(jt, true);
duke@435 992 while (!sfs.is_done()) {
duke@435 993 frame* cur = sfs.current();
duke@435 994 if (cb->contains(cur->pc())) {
duke@435 995 vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
duke@435 996 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 997 // Revoke monitors' biases in all scopes
duke@435 998 while (!cvf->is_top()) {
duke@435 999 collect_monitors(cvf, objects_to_revoke);
duke@435 1000 cvf = compiledVFrame::cast(cvf->sender());
duke@435 1001 }
duke@435 1002 collect_monitors(cvf, objects_to_revoke);
duke@435 1003 }
duke@435 1004 sfs.next();
duke@435 1005 }
duke@435 1006 }
duke@435 1007 }
duke@435 1008 BiasedLocking::revoke_at_safepoint(objects_to_revoke);
duke@435 1009 }
duke@435 1010
duke@435 1011
duke@435 1012 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
duke@435 1013 assert(fr.can_be_deoptimized(), "checking frame type");
duke@435 1014
duke@435 1015 gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
duke@435 1016
duke@435 1017 EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
duke@435 1018
duke@435 1019 // Patch the nmethod so that when execution returns to it we will
duke@435 1020 // deopt the execution state and return to the interpreter.
duke@435 1021 fr.deoptimize(thread);
duke@435 1022 }
duke@435 1023
duke@435 1024 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
duke@435 1025 // Deoptimize only if the frame comes from compile code.
duke@435 1026 // Do not deoptimize the frame which is already patched
duke@435 1027 // during the execution of the loops below.
duke@435 1028 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
duke@435 1029 return;
duke@435 1030 }
duke@435 1031 ResourceMark rm;
duke@435 1032 DeoptimizationMarker dm;
duke@435 1033 if (UseBiasedLocking) {
duke@435 1034 revoke_biases_of_monitors(thread, fr, map);
duke@435 1035 }
duke@435 1036 deoptimize_single_frame(thread, fr);
duke@435 1037
duke@435 1038 }
duke@435 1039
duke@435 1040
duke@435 1041 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
duke@435 1042 // Compute frame and register map based on thread and sp.
duke@435 1043 RegisterMap reg_map(thread, UseBiasedLocking);
duke@435 1044 frame fr = thread->last_frame();
duke@435 1045 while (fr.id() != id) {
duke@435 1046 fr = fr.sender(&reg_map);
duke@435 1047 }
duke@435 1048 deoptimize(thread, fr, &reg_map);
duke@435 1049 }
duke@435 1050
duke@435 1051
duke@435 1052 // JVMTI PopFrame support
duke@435 1053 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
duke@435 1054 {
duke@435 1055 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
duke@435 1056 }
duke@435 1057 JRT_END
duke@435 1058
duke@435 1059
duke@435 1060 #ifdef COMPILER2
duke@435 1061 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
duke@435 1062 // in case of an unresolved klass entry, load the class.
duke@435 1063 if (constant_pool->tag_at(index).is_unresolved_klass()) {
duke@435 1064 klassOop tk = constant_pool->klass_at(index, CHECK);
duke@435 1065 return;
duke@435 1066 }
duke@435 1067
duke@435 1068 if (!constant_pool->tag_at(index).is_symbol()) return;
duke@435 1069
duke@435 1070 Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
duke@435 1071 symbolHandle symbol (THREAD, constant_pool->symbol_at(index));
duke@435 1072
duke@435 1073 // class name?
duke@435 1074 if (symbol->byte_at(0) != '(') {
duke@435 1075 Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
duke@435 1076 SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
duke@435 1077 return;
duke@435 1078 }
duke@435 1079
duke@435 1080 // then it must be a signature!
duke@435 1081 for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
duke@435 1082 if (ss.is_object()) {
duke@435 1083 symbolOop s = ss.as_symbol(CHECK);
duke@435 1084 symbolHandle class_name (THREAD, s);
duke@435 1085 Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
duke@435 1086 SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
duke@435 1087 }
duke@435 1088 }
duke@435 1089 }
duke@435 1090
duke@435 1091
duke@435 1092 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
duke@435 1093 EXCEPTION_MARK;
duke@435 1094 load_class_by_index(constant_pool, index, THREAD);
duke@435 1095 if (HAS_PENDING_EXCEPTION) {
duke@435 1096 // Exception happened during classloading. We ignore the exception here, since it
duke@435 1097 // is going to be rethrown since the current activation is going to be deoptimzied and
duke@435 1098 // the interpreter will re-execute the bytecode.
duke@435 1099 CLEAR_PENDING_EXCEPTION;
duke@435 1100 }
duke@435 1101 }
duke@435 1102
duke@435 1103 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
duke@435 1104 HandleMark hm;
duke@435 1105
duke@435 1106 // uncommon_trap() is called at the beginning of the uncommon trap
duke@435 1107 // handler. Note this fact before we start generating temporary frames
duke@435 1108 // that can confuse an asynchronous stack walker. This counter is
duke@435 1109 // decremented at the end of unpack_frames().
duke@435 1110 thread->inc_in_deopt_handler();
duke@435 1111
duke@435 1112 // We need to update the map if we have biased locking.
duke@435 1113 RegisterMap reg_map(thread, UseBiasedLocking);
duke@435 1114 frame stub_frame = thread->last_frame();
duke@435 1115 frame fr = stub_frame.sender(&reg_map);
duke@435 1116 // Make sure the calling nmethod is not getting deoptimized and removed
duke@435 1117 // before we are done with it.
duke@435 1118 nmethodLocker nl(fr.pc());
duke@435 1119
duke@435 1120 {
duke@435 1121 ResourceMark rm;
duke@435 1122
duke@435 1123 // Revoke biases of any monitors in the frame to ensure we can migrate them
duke@435 1124 revoke_biases_of_monitors(thread, fr, &reg_map);
duke@435 1125
duke@435 1126 DeoptReason reason = trap_request_reason(trap_request);
duke@435 1127 DeoptAction action = trap_request_action(trap_request);
duke@435 1128 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
duke@435 1129
duke@435 1130 Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
duke@435 1131 vframe* vf = vframe::new_vframe(&fr, &reg_map, thread);
duke@435 1132 compiledVFrame* cvf = compiledVFrame::cast(vf);
duke@435 1133
duke@435 1134 nmethod* nm = cvf->code();
duke@435 1135
duke@435 1136 ScopeDesc* trap_scope = cvf->scope();
duke@435 1137 methodHandle trap_method = trap_scope->method();
duke@435 1138 int trap_bci = trap_scope->bci();
duke@435 1139 Bytecodes::Code trap_bc = Bytecode_at(trap_method->bcp_from(trap_bci))->java_code();
duke@435 1140
duke@435 1141 // Record this event in the histogram.
duke@435 1142 gather_statistics(reason, action, trap_bc);
duke@435 1143
duke@435 1144 // Ensure that we can record deopt. history:
duke@435 1145 bool create_if_missing = ProfileTraps;
duke@435 1146
duke@435 1147 methodDataHandle trap_mdo
duke@435 1148 (THREAD, get_method_data(thread, trap_method, create_if_missing));
duke@435 1149
duke@435 1150 // Print a bunch of diagnostics, if requested.
duke@435 1151 if (TraceDeoptimization || LogCompilation) {
duke@435 1152 ResourceMark rm;
duke@435 1153 ttyLocker ttyl;
duke@435 1154 char buf[100];
duke@435 1155 if (xtty != NULL) {
duke@435 1156 xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
duke@435 1157 os::current_thread_id(),
duke@435 1158 format_trap_request(buf, sizeof(buf), trap_request));
duke@435 1159 nm->log_identity(xtty);
duke@435 1160 }
duke@435 1161 symbolHandle class_name;
duke@435 1162 bool unresolved = false;
duke@435 1163 if (unloaded_class_index >= 0) {
duke@435 1164 constantPoolHandle constants (THREAD, trap_method->constants());
duke@435 1165 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
duke@435 1166 class_name = symbolHandle(THREAD,
duke@435 1167 constants->klass_name_at(unloaded_class_index));
duke@435 1168 unresolved = true;
duke@435 1169 if (xtty != NULL)
duke@435 1170 xtty->print(" unresolved='1'");
duke@435 1171 } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
duke@435 1172 class_name = symbolHandle(THREAD,
duke@435 1173 constants->symbol_at(unloaded_class_index));
duke@435 1174 }
duke@435 1175 if (xtty != NULL)
duke@435 1176 xtty->name(class_name);
duke@435 1177 }
duke@435 1178 if (xtty != NULL && trap_mdo.not_null()) {
duke@435 1179 // Dump the relevant MDO state.
duke@435 1180 // This is the deopt count for the current reason, any previous
duke@435 1181 // reasons or recompiles seen at this point.
duke@435 1182 int dcnt = trap_mdo->trap_count(reason);
duke@435 1183 if (dcnt != 0)
duke@435 1184 xtty->print(" count='%d'", dcnt);
duke@435 1185 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
duke@435 1186 int dos = (pdata == NULL)? 0: pdata->trap_state();
duke@435 1187 if (dos != 0) {
duke@435 1188 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
duke@435 1189 if (trap_state_is_recompiled(dos)) {
duke@435 1190 int recnt2 = trap_mdo->overflow_recompile_count();
duke@435 1191 if (recnt2 != 0)
duke@435 1192 xtty->print(" recompiles2='%d'", recnt2);
duke@435 1193 }
duke@435 1194 }
duke@435 1195 }
duke@435 1196 if (xtty != NULL) {
duke@435 1197 xtty->stamp();
duke@435 1198 xtty->end_head();
duke@435 1199 }
duke@435 1200 if (TraceDeoptimization) { // make noise on the tty
duke@435 1201 tty->print("Uncommon trap occurred in");
duke@435 1202 nm->method()->print_short_name(tty);
duke@435 1203 tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
duke@435 1204 fr.pc(),
duke@435 1205 (int) os::current_thread_id(),
duke@435 1206 trap_reason_name(reason),
duke@435 1207 trap_action_name(action),
duke@435 1208 unloaded_class_index);
duke@435 1209 if (class_name.not_null()) {
duke@435 1210 tty->print(unresolved ? " unresolved class: " : " symbol: ");
duke@435 1211 class_name->print_symbol_on(tty);
duke@435 1212 }
duke@435 1213 tty->cr();
duke@435 1214 }
duke@435 1215 if (xtty != NULL) {
duke@435 1216 // Log the precise location of the trap.
duke@435 1217 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
duke@435 1218 xtty->begin_elem("jvms bci='%d'", sd->bci());
duke@435 1219 xtty->method(sd->method());
duke@435 1220 xtty->end_elem();
duke@435 1221 if (sd->is_top()) break;
duke@435 1222 }
duke@435 1223 xtty->tail("uncommon_trap");
duke@435 1224 }
duke@435 1225 }
duke@435 1226 // (End diagnostic printout.)
duke@435 1227
duke@435 1228 // Load class if necessary
duke@435 1229 if (unloaded_class_index >= 0) {
duke@435 1230 constantPoolHandle constants(THREAD, trap_method->constants());
duke@435 1231 load_class_by_index(constants, unloaded_class_index);
duke@435 1232 }
duke@435 1233
duke@435 1234 // Flush the nmethod if necessary and desirable.
duke@435 1235 //
duke@435 1236 // We need to avoid situations where we are re-flushing the nmethod
duke@435 1237 // because of a hot deoptimization site. Repeated flushes at the same
duke@435 1238 // point need to be detected by the compiler and avoided. If the compiler
duke@435 1239 // cannot avoid them (or has a bug and "refuses" to avoid them), this
duke@435 1240 // module must take measures to avoid an infinite cycle of recompilation
duke@435 1241 // and deoptimization. There are several such measures:
duke@435 1242 //
duke@435 1243 // 1. If a recompilation is ordered a second time at some site X
duke@435 1244 // and for the same reason R, the action is adjusted to 'reinterpret',
duke@435 1245 // to give the interpreter time to exercise the method more thoroughly.
duke@435 1246 // If this happens, the method's overflow_recompile_count is incremented.
duke@435 1247 //
duke@435 1248 // 2. If the compiler fails to reduce the deoptimization rate, then
duke@435 1249 // the method's overflow_recompile_count will begin to exceed the set
duke@435 1250 // limit PerBytecodeRecompilationCutoff. If this happens, the action
duke@435 1251 // is adjusted to 'make_not_compilable', and the method is abandoned
duke@435 1252 // to the interpreter. This is a performance hit for hot methods,
duke@435 1253 // but is better than a disastrous infinite cycle of recompilations.
duke@435 1254 // (Actually, only the method containing the site X is abandoned.)
duke@435 1255 //
duke@435 1256 // 3. In parallel with the previous measures, if the total number of
duke@435 1257 // recompilations of a method exceeds the much larger set limit
duke@435 1258 // PerMethodRecompilationCutoff, the method is abandoned.
duke@435 1259 // This should only happen if the method is very large and has
duke@435 1260 // many "lukewarm" deoptimizations. The code which enforces this
duke@435 1261 // limit is elsewhere (class nmethod, class methodOopDesc).
duke@435 1262 //
duke@435 1263 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
duke@435 1264 // to recompile at each bytecode independently of the per-BCI cutoff.
duke@435 1265 //
duke@435 1266 // The decision to update code is up to the compiler, and is encoded
duke@435 1267 // in the Action_xxx code. If the compiler requests Action_none
duke@435 1268 // no trap state is changed, no compiled code is changed, and the
duke@435 1269 // computation suffers along in the interpreter.
duke@435 1270 //
duke@435 1271 // The other action codes specify various tactics for decompilation
duke@435 1272 // and recompilation. Action_maybe_recompile is the loosest, and
duke@435 1273 // allows the compiled code to stay around until enough traps are seen,
duke@435 1274 // and until the compiler gets around to recompiling the trapping method.
duke@435 1275 //
duke@435 1276 // The other actions cause immediate removal of the present code.
duke@435 1277
duke@435 1278 bool update_trap_state = true;
duke@435 1279 bool make_not_entrant = false;
duke@435 1280 bool make_not_compilable = false;
duke@435 1281 bool reset_counters = false;
duke@435 1282 switch (action) {
duke@435 1283 case Action_none:
duke@435 1284 // Keep the old code.
duke@435 1285 update_trap_state = false;
duke@435 1286 break;
duke@435 1287 case Action_maybe_recompile:
duke@435 1288 // Do not need to invalidate the present code, but we can
duke@435 1289 // initiate another
duke@435 1290 // Start compiler without (necessarily) invalidating the nmethod.
duke@435 1291 // The system will tolerate the old code, but new code should be
duke@435 1292 // generated when possible.
duke@435 1293 break;
duke@435 1294 case Action_reinterpret:
duke@435 1295 // Go back into the interpreter for a while, and then consider
duke@435 1296 // recompiling form scratch.
duke@435 1297 make_not_entrant = true;
duke@435 1298 // Reset invocation counter for outer most method.
duke@435 1299 // This will allow the interpreter to exercise the bytecodes
duke@435 1300 // for a while before recompiling.
duke@435 1301 // By contrast, Action_make_not_entrant is immediate.
duke@435 1302 //
duke@435 1303 // Note that the compiler will track null_check, null_assert,
duke@435 1304 // range_check, and class_check events and log them as if they
duke@435 1305 // had been traps taken from compiled code. This will update
duke@435 1306 // the MDO trap history so that the next compilation will
duke@435 1307 // properly detect hot trap sites.
duke@435 1308 reset_counters = true;
duke@435 1309 break;
duke@435 1310 case Action_make_not_entrant:
duke@435 1311 // Request immediate recompilation, and get rid of the old code.
duke@435 1312 // Make them not entrant, so next time they are called they get
duke@435 1313 // recompiled. Unloaded classes are loaded now so recompile before next
duke@435 1314 // time they are called. Same for uninitialized. The interpreter will
duke@435 1315 // link the missing class, if any.
duke@435 1316 make_not_entrant = true;
duke@435 1317 break;
duke@435 1318 case Action_make_not_compilable:
duke@435 1319 // Give up on compiling this method at all.
duke@435 1320 make_not_entrant = true;
duke@435 1321 make_not_compilable = true;
duke@435 1322 break;
duke@435 1323 default:
duke@435 1324 ShouldNotReachHere();
duke@435 1325 }
duke@435 1326
duke@435 1327 // Setting +ProfileTraps fixes the following, on all platforms:
duke@435 1328 // 4852688: ProfileInterpreter is off by default for ia64. The result is
duke@435 1329 // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
duke@435 1330 // recompile relies on a methodDataOop to record heroic opt failures.
duke@435 1331
duke@435 1332 // Whether the interpreter is producing MDO data or not, we also need
duke@435 1333 // to use the MDO to detect hot deoptimization points and control
duke@435 1334 // aggressive optimization.
duke@435 1335 if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
duke@435 1336 assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
duke@435 1337 uint this_trap_count = 0;
duke@435 1338 bool maybe_prior_trap = false;
duke@435 1339 bool maybe_prior_recompile = false;
duke@435 1340 ProfileData* pdata
duke@435 1341 = query_update_method_data(trap_mdo, trap_bci, reason,
duke@435 1342 //outputs:
duke@435 1343 this_trap_count,
duke@435 1344 maybe_prior_trap,
duke@435 1345 maybe_prior_recompile);
duke@435 1346 // Because the interpreter also counts null, div0, range, and class
duke@435 1347 // checks, these traps from compiled code are double-counted.
duke@435 1348 // This is harmless; it just means that the PerXTrapLimit values
duke@435 1349 // are in effect a little smaller than they look.
duke@435 1350
duke@435 1351 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
duke@435 1352 if (per_bc_reason != Reason_none) {
duke@435 1353 // Now take action based on the partially known per-BCI history.
duke@435 1354 if (maybe_prior_trap
duke@435 1355 && this_trap_count >= (uint)PerBytecodeTrapLimit) {
duke@435 1356 // If there are too many traps at this BCI, force a recompile.
duke@435 1357 // This will allow the compiler to see the limit overflow, and
duke@435 1358 // take corrective action, if possible. The compiler generally
duke@435 1359 // does not use the exact PerBytecodeTrapLimit value, but instead
duke@435 1360 // changes its tactics if it sees any traps at all. This provides
duke@435 1361 // a little hysteresis, delaying a recompile until a trap happens
duke@435 1362 // several times.
duke@435 1363 //
duke@435 1364 // Actually, since there is only one bit of counter per BCI,
duke@435 1365 // the possible per-BCI counts are {0,1,(per-method count)}.
duke@435 1366 // This produces accurate results if in fact there is only
duke@435 1367 // one hot trap site, but begins to get fuzzy if there are
duke@435 1368 // many sites. For example, if there are ten sites each
duke@435 1369 // trapping two or more times, they each get the blame for
duke@435 1370 // all of their traps.
duke@435 1371 make_not_entrant = true;
duke@435 1372 }
duke@435 1373
duke@435 1374 // Detect repeated recompilation at the same BCI, and enforce a limit.
duke@435 1375 if (make_not_entrant && maybe_prior_recompile) {
duke@435 1376 // More than one recompile at this point.
duke@435 1377 trap_mdo->inc_overflow_recompile_count();
duke@435 1378 if (maybe_prior_trap
duke@435 1379 && ((uint)trap_mdo->overflow_recompile_count()
duke@435 1380 > (uint)PerBytecodeRecompilationCutoff)) {
duke@435 1381 // Give up on the method containing the bad BCI.
duke@435 1382 if (trap_method() == nm->method()) {
duke@435 1383 make_not_compilable = true;
duke@435 1384 } else {
duke@435 1385 trap_method->set_not_compilable();
duke@435 1386 // But give grace to the enclosing nm->method().
duke@435 1387 }
duke@435 1388 }
duke@435 1389 }
duke@435 1390 } else {
duke@435 1391 // For reasons which are not recorded per-bytecode, we simply
duke@435 1392 // force recompiles unconditionally.
duke@435 1393 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
duke@435 1394 make_not_entrant = true;
duke@435 1395 }
duke@435 1396
duke@435 1397 // Go back to the compiler if there are too many traps in this method.
duke@435 1398 if (this_trap_count >= (uint)PerMethodTrapLimit) {
duke@435 1399 // If there are too many traps in this method, force a recompile.
duke@435 1400 // This will allow the compiler to see the limit overflow, and
duke@435 1401 // take corrective action, if possible.
duke@435 1402 // (This condition is an unlikely backstop only, because the
duke@435 1403 // PerBytecodeTrapLimit is more likely to take effect first,
duke@435 1404 // if it is applicable.)
duke@435 1405 make_not_entrant = true;
duke@435 1406 }
duke@435 1407
duke@435 1408 // Here's more hysteresis: If there has been a recompile at
duke@435 1409 // this trap point already, run the method in the interpreter
duke@435 1410 // for a while to exercise it more thoroughly.
duke@435 1411 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
duke@435 1412 reset_counters = true;
duke@435 1413 }
duke@435 1414
duke@435 1415 if (make_not_entrant && pdata != NULL) {
duke@435 1416 // Record the recompilation event, if any.
duke@435 1417 int tstate0 = pdata->trap_state();
duke@435 1418 int tstate1 = trap_state_set_recompiled(tstate0, true);
duke@435 1419 if (tstate1 != tstate0)
duke@435 1420 pdata->set_trap_state(tstate1);
duke@435 1421 }
duke@435 1422 }
duke@435 1423
duke@435 1424 // Take requested actions on the method:
duke@435 1425
duke@435 1426 // Reset invocation counters
duke@435 1427 if (reset_counters) {
duke@435 1428 if (nm->is_osr_method())
duke@435 1429 reset_invocation_counter(trap_scope, CompileThreshold);
duke@435 1430 else
duke@435 1431 reset_invocation_counter(trap_scope);
duke@435 1432 }
duke@435 1433
duke@435 1434 // Recompile
duke@435 1435 if (make_not_entrant) {
duke@435 1436 nm->make_not_entrant();
duke@435 1437 }
duke@435 1438
duke@435 1439 // Give up compiling
duke@435 1440 if (make_not_compilable) {
duke@435 1441 assert(make_not_entrant, "consistent");
duke@435 1442 nm->method()->set_not_compilable();
duke@435 1443 }
duke@435 1444
duke@435 1445 } // Free marked resources
duke@435 1446
duke@435 1447 }
duke@435 1448 JRT_END
duke@435 1449
duke@435 1450 methodDataOop
duke@435 1451 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
duke@435 1452 bool create_if_missing) {
duke@435 1453 Thread* THREAD = thread;
duke@435 1454 methodDataOop mdo = m()->method_data();
duke@435 1455 if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
duke@435 1456 // Build an MDO. Ignore errors like OutOfMemory;
duke@435 1457 // that simply means we won't have an MDO to update.
duke@435 1458 methodOopDesc::build_interpreter_method_data(m, THREAD);
duke@435 1459 if (HAS_PENDING_EXCEPTION) {
duke@435 1460 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
duke@435 1461 CLEAR_PENDING_EXCEPTION;
duke@435 1462 }
duke@435 1463 mdo = m()->method_data();
duke@435 1464 }
duke@435 1465 return mdo;
duke@435 1466 }
duke@435 1467
duke@435 1468 ProfileData*
duke@435 1469 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
duke@435 1470 int trap_bci,
duke@435 1471 Deoptimization::DeoptReason reason,
duke@435 1472 //outputs:
duke@435 1473 uint& ret_this_trap_count,
duke@435 1474 bool& ret_maybe_prior_trap,
duke@435 1475 bool& ret_maybe_prior_recompile) {
duke@435 1476 uint prior_trap_count = trap_mdo->trap_count(reason);
duke@435 1477 uint this_trap_count = trap_mdo->inc_trap_count(reason);
duke@435 1478
duke@435 1479 // If the runtime cannot find a place to store trap history,
duke@435 1480 // it is estimated based on the general condition of the method.
duke@435 1481 // If the method has ever been recompiled, or has ever incurred
duke@435 1482 // a trap with the present reason , then this BCI is assumed
duke@435 1483 // (pessimistically) to be the culprit.
duke@435 1484 bool maybe_prior_trap = (prior_trap_count != 0);
duke@435 1485 bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
duke@435 1486 ProfileData* pdata = NULL;
duke@435 1487
duke@435 1488
duke@435 1489 // For reasons which are recorded per bytecode, we check per-BCI data.
duke@435 1490 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
duke@435 1491 if (per_bc_reason != Reason_none) {
duke@435 1492 // Find the profile data for this BCI. If there isn't one,
duke@435 1493 // try to allocate one from the MDO's set of spares.
duke@435 1494 // This will let us detect a repeated trap at this point.
duke@435 1495 pdata = trap_mdo->allocate_bci_to_data(trap_bci);
duke@435 1496
duke@435 1497 if (pdata != NULL) {
duke@435 1498 // Query the trap state of this profile datum.
duke@435 1499 int tstate0 = pdata->trap_state();
duke@435 1500 if (!trap_state_has_reason(tstate0, per_bc_reason))
duke@435 1501 maybe_prior_trap = false;
duke@435 1502 if (!trap_state_is_recompiled(tstate0))
duke@435 1503 maybe_prior_recompile = false;
duke@435 1504
duke@435 1505 // Update the trap state of this profile datum.
duke@435 1506 int tstate1 = tstate0;
duke@435 1507 // Record the reason.
duke@435 1508 tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
duke@435 1509 // Store the updated state on the MDO, for next time.
duke@435 1510 if (tstate1 != tstate0)
duke@435 1511 pdata->set_trap_state(tstate1);
duke@435 1512 } else {
duke@435 1513 if (LogCompilation && xtty != NULL)
duke@435 1514 // Missing MDP? Leave a small complaint in the log.
duke@435 1515 xtty->elem("missing_mdp bci='%d'", trap_bci);
duke@435 1516 }
duke@435 1517 }
duke@435 1518
duke@435 1519 // Return results:
duke@435 1520 ret_this_trap_count = this_trap_count;
duke@435 1521 ret_maybe_prior_trap = maybe_prior_trap;
duke@435 1522 ret_maybe_prior_recompile = maybe_prior_recompile;
duke@435 1523 return pdata;
duke@435 1524 }
duke@435 1525
duke@435 1526 void
duke@435 1527 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
duke@435 1528 ResourceMark rm;
duke@435 1529 // Ignored outputs:
duke@435 1530 uint ignore_this_trap_count;
duke@435 1531 bool ignore_maybe_prior_trap;
duke@435 1532 bool ignore_maybe_prior_recompile;
duke@435 1533 query_update_method_data(trap_mdo, trap_bci,
duke@435 1534 (DeoptReason)reason,
duke@435 1535 ignore_this_trap_count,
duke@435 1536 ignore_maybe_prior_trap,
duke@435 1537 ignore_maybe_prior_recompile);
duke@435 1538 }
duke@435 1539
duke@435 1540 void Deoptimization::reset_invocation_counter(ScopeDesc* trap_scope, jint top_count) {
duke@435 1541 ScopeDesc* sd = trap_scope;
duke@435 1542 for (; !sd->is_top(); sd = sd->sender()) {
duke@435 1543 // Reset ICs of inlined methods, since they can trigger compilations also.
duke@435 1544 sd->method()->invocation_counter()->reset();
duke@435 1545 }
duke@435 1546 InvocationCounter* c = sd->method()->invocation_counter();
duke@435 1547 if (top_count != _no_count) {
duke@435 1548 // It was an OSR method, so bump the count higher.
duke@435 1549 c->set(c->state(), top_count);
duke@435 1550 } else {
duke@435 1551 c->reset();
duke@435 1552 }
duke@435 1553 sd->method()->backedge_counter()->reset();
duke@435 1554 }
duke@435 1555
duke@435 1556 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
duke@435 1557
duke@435 1558 // Still in Java no safepoints
duke@435 1559 {
duke@435 1560 // This enters VM and may safepoint
duke@435 1561 uncommon_trap_inner(thread, trap_request);
duke@435 1562 }
duke@435 1563 return fetch_unroll_info_helper(thread);
duke@435 1564 }
duke@435 1565
duke@435 1566 // Local derived constants.
duke@435 1567 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
duke@435 1568 const int DS_REASON_MASK = DataLayout::trap_mask >> 1;
duke@435 1569 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
duke@435 1570
duke@435 1571 //---------------------------trap_state_reason---------------------------------
duke@435 1572 Deoptimization::DeoptReason
duke@435 1573 Deoptimization::trap_state_reason(int trap_state) {
duke@435 1574 // This assert provides the link between the width of DataLayout::trap_bits
duke@435 1575 // and the encoding of "recorded" reasons. It ensures there are enough
duke@435 1576 // bits to store all needed reasons in the per-BCI MDO profile.
duke@435 1577 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
duke@435 1578 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1579 trap_state -= recompile_bit;
duke@435 1580 if (trap_state == DS_REASON_MASK) {
duke@435 1581 return Reason_many;
duke@435 1582 } else {
duke@435 1583 assert((int)Reason_none == 0, "state=0 => Reason_none");
duke@435 1584 return (DeoptReason)trap_state;
duke@435 1585 }
duke@435 1586 }
duke@435 1587 //-------------------------trap_state_has_reason-------------------------------
duke@435 1588 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
duke@435 1589 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
duke@435 1590 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
duke@435 1591 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1592 trap_state -= recompile_bit;
duke@435 1593 if (trap_state == DS_REASON_MASK) {
duke@435 1594 return -1; // true, unspecifically (bottom of state lattice)
duke@435 1595 } else if (trap_state == reason) {
duke@435 1596 return 1; // true, definitely
duke@435 1597 } else if (trap_state == 0) {
duke@435 1598 return 0; // false, definitely (top of state lattice)
duke@435 1599 } else {
duke@435 1600 return 0; // false, definitely
duke@435 1601 }
duke@435 1602 }
duke@435 1603 //-------------------------trap_state_add_reason-------------------------------
duke@435 1604 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
duke@435 1605 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
duke@435 1606 int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
duke@435 1607 trap_state -= recompile_bit;
duke@435 1608 if (trap_state == DS_REASON_MASK) {
duke@435 1609 return trap_state + recompile_bit; // already at state lattice bottom
duke@435 1610 } else if (trap_state == reason) {
duke@435 1611 return trap_state + recompile_bit; // the condition is already true
duke@435 1612 } else if (trap_state == 0) {
duke@435 1613 return reason + recompile_bit; // no condition has yet been true
duke@435 1614 } else {
duke@435 1615 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom
duke@435 1616 }
duke@435 1617 }
duke@435 1618 //-----------------------trap_state_is_recompiled------------------------------
duke@435 1619 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
duke@435 1620 return (trap_state & DS_RECOMPILE_BIT) != 0;
duke@435 1621 }
duke@435 1622 //-----------------------trap_state_set_recompiled-----------------------------
duke@435 1623 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
duke@435 1624 if (z) return trap_state | DS_RECOMPILE_BIT;
duke@435 1625 else return trap_state & ~DS_RECOMPILE_BIT;
duke@435 1626 }
duke@435 1627 //---------------------------format_trap_state---------------------------------
duke@435 1628 // This is used for debugging and diagnostics, including hotspot.log output.
duke@435 1629 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
duke@435 1630 int trap_state) {
duke@435 1631 DeoptReason reason = trap_state_reason(trap_state);
duke@435 1632 bool recomp_flag = trap_state_is_recompiled(trap_state);
duke@435 1633 // Re-encode the state from its decoded components.
duke@435 1634 int decoded_state = 0;
duke@435 1635 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
duke@435 1636 decoded_state = trap_state_add_reason(decoded_state, reason);
duke@435 1637 if (recomp_flag)
duke@435 1638 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
duke@435 1639 // If the state re-encodes properly, format it symbolically.
duke@435 1640 // Because this routine is used for debugging and diagnostics,
duke@435 1641 // be robust even if the state is a strange value.
duke@435 1642 size_t len;
duke@435 1643 if (decoded_state != trap_state) {
duke@435 1644 // Random buggy state that doesn't decode??
duke@435 1645 len = jio_snprintf(buf, buflen, "#%d", trap_state);
duke@435 1646 } else {
duke@435 1647 len = jio_snprintf(buf, buflen, "%s%s",
duke@435 1648 trap_reason_name(reason),
duke@435 1649 recomp_flag ? " recompiled" : "");
duke@435 1650 }
duke@435 1651 if (len >= buflen)
duke@435 1652 buf[buflen-1] = '\0';
duke@435 1653 return buf;
duke@435 1654 }
duke@435 1655
duke@435 1656
duke@435 1657 //--------------------------------statics--------------------------------------
duke@435 1658 Deoptimization::DeoptAction Deoptimization::_unloaded_action
duke@435 1659 = Deoptimization::Action_reinterpret;
duke@435 1660 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
duke@435 1661 // Note: Keep this in sync. with enum DeoptReason.
duke@435 1662 "none",
duke@435 1663 "null_check",
duke@435 1664 "null_assert",
duke@435 1665 "range_check",
duke@435 1666 "class_check",
duke@435 1667 "array_check",
duke@435 1668 "intrinsic",
duke@435 1669 "unloaded",
duke@435 1670 "uninitialized",
duke@435 1671 "unreached",
duke@435 1672 "unhandled",
duke@435 1673 "constraint",
duke@435 1674 "div0_check",
duke@435 1675 "age"
duke@435 1676 };
duke@435 1677 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
duke@435 1678 // Note: Keep this in sync. with enum DeoptAction.
duke@435 1679 "none",
duke@435 1680 "maybe_recompile",
duke@435 1681 "reinterpret",
duke@435 1682 "make_not_entrant",
duke@435 1683 "make_not_compilable"
duke@435 1684 };
duke@435 1685
duke@435 1686 const char* Deoptimization::trap_reason_name(int reason) {
duke@435 1687 if (reason == Reason_many) return "many";
duke@435 1688 if ((uint)reason < Reason_LIMIT)
duke@435 1689 return _trap_reason_name[reason];
duke@435 1690 static char buf[20];
duke@435 1691 sprintf(buf, "reason%d", reason);
duke@435 1692 return buf;
duke@435 1693 }
duke@435 1694 const char* Deoptimization::trap_action_name(int action) {
duke@435 1695 if ((uint)action < Action_LIMIT)
duke@435 1696 return _trap_action_name[action];
duke@435 1697 static char buf[20];
duke@435 1698 sprintf(buf, "action%d", action);
duke@435 1699 return buf;
duke@435 1700 }
duke@435 1701
duke@435 1702 // This is used for debugging and diagnostics, including hotspot.log output.
duke@435 1703 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
duke@435 1704 int trap_request) {
duke@435 1705 jint unloaded_class_index = trap_request_index(trap_request);
duke@435 1706 const char* reason = trap_reason_name(trap_request_reason(trap_request));
duke@435 1707 const char* action = trap_action_name(trap_request_action(trap_request));
duke@435 1708 size_t len;
duke@435 1709 if (unloaded_class_index < 0) {
duke@435 1710 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
duke@435 1711 reason, action);
duke@435 1712 } else {
duke@435 1713 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
duke@435 1714 reason, action, unloaded_class_index);
duke@435 1715 }
duke@435 1716 if (len >= buflen)
duke@435 1717 buf[buflen-1] = '\0';
duke@435 1718 return buf;
duke@435 1719 }
duke@435 1720
duke@435 1721 juint Deoptimization::_deoptimization_hist
duke@435 1722 [Deoptimization::Reason_LIMIT]
duke@435 1723 [1 + Deoptimization::Action_LIMIT]
duke@435 1724 [Deoptimization::BC_CASE_LIMIT]
duke@435 1725 = {0};
duke@435 1726
duke@435 1727 enum {
duke@435 1728 LSB_BITS = 8,
duke@435 1729 LSB_MASK = right_n_bits(LSB_BITS)
duke@435 1730 };
duke@435 1731
duke@435 1732 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
duke@435 1733 Bytecodes::Code bc) {
duke@435 1734 assert(reason >= 0 && reason < Reason_LIMIT, "oob");
duke@435 1735 assert(action >= 0 && action < Action_LIMIT, "oob");
duke@435 1736 _deoptimization_hist[Reason_none][0][0] += 1; // total
duke@435 1737 _deoptimization_hist[reason][0][0] += 1; // per-reason total
duke@435 1738 juint* cases = _deoptimization_hist[reason][1+action];
duke@435 1739 juint* bc_counter_addr = NULL;
duke@435 1740 juint bc_counter = 0;
duke@435 1741 // Look for an unused counter, or an exact match to this BC.
duke@435 1742 if (bc != Bytecodes::_illegal) {
duke@435 1743 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
duke@435 1744 juint* counter_addr = &cases[bc_case];
duke@435 1745 juint counter = *counter_addr;
duke@435 1746 if ((counter == 0 && bc_counter_addr == NULL)
duke@435 1747 || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
duke@435 1748 // this counter is either free or is already devoted to this BC
duke@435 1749 bc_counter_addr = counter_addr;
duke@435 1750 bc_counter = counter | bc;
duke@435 1751 }
duke@435 1752 }
duke@435 1753 }
duke@435 1754 if (bc_counter_addr == NULL) {
duke@435 1755 // Overflow, or no given bytecode.
duke@435 1756 bc_counter_addr = &cases[BC_CASE_LIMIT-1];
duke@435 1757 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB
duke@435 1758 }
duke@435 1759 *bc_counter_addr = bc_counter + (1 << LSB_BITS);
duke@435 1760 }
duke@435 1761
duke@435 1762 jint Deoptimization::total_deoptimization_count() {
duke@435 1763 return _deoptimization_hist[Reason_none][0][0];
duke@435 1764 }
duke@435 1765
duke@435 1766 jint Deoptimization::deoptimization_count(DeoptReason reason) {
duke@435 1767 assert(reason >= 0 && reason < Reason_LIMIT, "oob");
duke@435 1768 return _deoptimization_hist[reason][0][0];
duke@435 1769 }
duke@435 1770
duke@435 1771 void Deoptimization::print_statistics() {
duke@435 1772 juint total = total_deoptimization_count();
duke@435 1773 juint account = total;
duke@435 1774 if (total != 0) {
duke@435 1775 ttyLocker ttyl;
duke@435 1776 if (xtty != NULL) xtty->head("statistics type='deoptimization'");
duke@435 1777 tty->print_cr("Deoptimization traps recorded:");
duke@435 1778 #define PRINT_STAT_LINE(name, r) \
duke@435 1779 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
duke@435 1780 PRINT_STAT_LINE("total", total);
duke@435 1781 // For each non-zero entry in the histogram, print the reason,
duke@435 1782 // the action, and (if specifically known) the type of bytecode.
duke@435 1783 for (int reason = 0; reason < Reason_LIMIT; reason++) {
duke@435 1784 for (int action = 0; action < Action_LIMIT; action++) {
duke@435 1785 juint* cases = _deoptimization_hist[reason][1+action];
duke@435 1786 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
duke@435 1787 juint counter = cases[bc_case];
duke@435 1788 if (counter != 0) {
duke@435 1789 char name[1*K];
duke@435 1790 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
duke@435 1791 if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
duke@435 1792 bc = Bytecodes::_illegal;
duke@435 1793 sprintf(name, "%s/%s/%s",
duke@435 1794 trap_reason_name(reason),
duke@435 1795 trap_action_name(action),
duke@435 1796 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
duke@435 1797 juint r = counter >> LSB_BITS;
duke@435 1798 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
duke@435 1799 account -= r;
duke@435 1800 }
duke@435 1801 }
duke@435 1802 }
duke@435 1803 }
duke@435 1804 if (account != 0) {
duke@435 1805 PRINT_STAT_LINE("unaccounted", account);
duke@435 1806 }
duke@435 1807 #undef PRINT_STAT_LINE
duke@435 1808 if (xtty != NULL) xtty->tail("statistics");
duke@435 1809 }
duke@435 1810 }
duke@435 1811 #else // COMPILER2
duke@435 1812
duke@435 1813
duke@435 1814 // Stubs for C1 only system.
duke@435 1815 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
duke@435 1816 return false;
duke@435 1817 }
duke@435 1818
duke@435 1819 const char* Deoptimization::trap_reason_name(int reason) {
duke@435 1820 return "unknown";
duke@435 1821 }
duke@435 1822
duke@435 1823 void Deoptimization::print_statistics() {
duke@435 1824 // no output
duke@435 1825 }
duke@435 1826
duke@435 1827 void
duke@435 1828 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
duke@435 1829 // no udpate
duke@435 1830 }
duke@435 1831
duke@435 1832 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
duke@435 1833 return 0;
duke@435 1834 }
duke@435 1835
duke@435 1836 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
duke@435 1837 Bytecodes::Code bc) {
duke@435 1838 // no update
duke@435 1839 }
duke@435 1840
duke@435 1841 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
duke@435 1842 int trap_state) {
duke@435 1843 jio_snprintf(buf, buflen, "#%d", trap_state);
duke@435 1844 return buf;
duke@435 1845 }
duke@435 1846
duke@435 1847 #endif // COMPILER2

mercurial