src/share/vm/memory/cardTableModRefBS.hpp

Wed, 02 Jul 2008 12:55:16 -0700

author
xdono
date
Wed, 02 Jul 2008 12:55:16 -0700
changeset 631
d1605aabd0a1
parent 548
ba764ed4b6f2
child 791
1ee8caae33af
permissions
-rw-r--r--

6719955: Update copyright year
Summary: Update copyright year for files that have been modified in 2008
Reviewed-by: ohair, tbell

duke@435 1 /*
xdono@631 2 * Copyright 2000-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
duke@435 26 // enumerate ref fields that have been modified (since the last
duke@435 27 // enumeration.)
duke@435 28
duke@435 29 // As it currently stands, this barrier is *imprecise*: when a ref field in
duke@435 30 // an object "o" is modified, the card table entry for the card containing
duke@435 31 // the head of "o" is dirtied, not necessarily the card containing the
duke@435 32 // modified field itself. For object arrays, however, the barrier *is*
duke@435 33 // precise; only the card containing the modified element is dirtied.
duke@435 34 // Any MemRegionClosures used to scan dirty cards should take these
duke@435 35 // considerations into account.
duke@435 36
duke@435 37 class Generation;
duke@435 38 class OopsInGenClosure;
duke@435 39 class DirtyCardToOopClosure;
duke@435 40
duke@435 41 class CardTableModRefBS: public ModRefBarrierSet {
duke@435 42 // Some classes get to look at some private stuff.
duke@435 43 friend class BytecodeInterpreter;
duke@435 44 friend class VMStructs;
duke@435 45 friend class CardTableRS;
duke@435 46 friend class CheckForUnmarkedOops; // Needs access to raw card bytes.
duke@435 47 #ifndef PRODUCT
duke@435 48 // For debugging.
duke@435 49 friend class GuaranteeNotModClosure;
duke@435 50 #endif
duke@435 51 protected:
duke@435 52
duke@435 53 enum CardValues {
duke@435 54 clean_card = -1,
duke@435 55 dirty_card = 0,
duke@435 56 precleaned_card = 1,
duke@435 57 last_card = 4,
duke@435 58 CT_MR_BS_last_reserved = 10
duke@435 59 };
duke@435 60
duke@435 61 // dirty and precleaned are equivalent wrt younger_refs_iter.
duke@435 62 static bool card_is_dirty_wrt_gen_iter(jbyte cv) {
duke@435 63 return cv == dirty_card || cv == precleaned_card;
duke@435 64 }
duke@435 65
duke@435 66 // Returns "true" iff the value "cv" will cause the card containing it
duke@435 67 // to be scanned in the current traversal. May be overridden by
duke@435 68 // subtypes.
duke@435 69 virtual bool card_will_be_scanned(jbyte cv) {
duke@435 70 return CardTableModRefBS::card_is_dirty_wrt_gen_iter(cv);
duke@435 71 }
duke@435 72
duke@435 73 // Returns "true" iff the value "cv" may have represented a dirty card at
duke@435 74 // some point.
duke@435 75 virtual bool card_may_have_been_dirty(jbyte cv) {
duke@435 76 return card_is_dirty_wrt_gen_iter(cv);
duke@435 77 }
duke@435 78
duke@435 79 // The declaration order of these const fields is important; see the
duke@435 80 // constructor before changing.
duke@435 81 const MemRegion _whole_heap; // the region covered by the card table
duke@435 82 const size_t _guard_index; // index of very last element in the card
duke@435 83 // table; it is set to a guard value
duke@435 84 // (last_card) and should never be modified
duke@435 85 const size_t _last_valid_index; // index of the last valid element
duke@435 86 const size_t _page_size; // page size used when mapping _byte_map
duke@435 87 const size_t _byte_map_size; // in bytes
duke@435 88 jbyte* _byte_map; // the card marking array
duke@435 89
duke@435 90 int _cur_covered_regions;
duke@435 91 // The covered regions should be in address order.
duke@435 92 MemRegion* _covered;
duke@435 93 // The committed regions correspond one-to-one to the covered regions.
duke@435 94 // They represent the card-table memory that has been committed to service
duke@435 95 // the corresponding covered region. It may be that committed region for
duke@435 96 // one covered region corresponds to a larger region because of page-size
duke@435 97 // roundings. Thus, a committed region for one covered region may
duke@435 98 // actually extend onto the card-table space for the next covered region.
duke@435 99 MemRegion* _committed;
duke@435 100
duke@435 101 // The last card is a guard card, and we commit the page for it so
duke@435 102 // we can use the card for verification purposes. We make sure we never
duke@435 103 // uncommit the MemRegion for that page.
duke@435 104 MemRegion _guard_region;
duke@435 105
duke@435 106 protected:
duke@435 107 // Initialization utilities; covered_words is the size of the covered region
duke@435 108 // in, um, words.
duke@435 109 inline size_t cards_required(size_t covered_words);
duke@435 110 inline size_t compute_byte_map_size();
duke@435 111
duke@435 112 // Finds and return the index of the region, if any, to which the given
duke@435 113 // region would be contiguous. If none exists, assign a new region and
duke@435 114 // returns its index. Requires that no more than the maximum number of
duke@435 115 // covered regions defined in the constructor are ever in use.
duke@435 116 int find_covering_region_by_base(HeapWord* base);
duke@435 117
duke@435 118 // Same as above, but finds the region containing the given address
duke@435 119 // instead of starting at a given base address.
duke@435 120 int find_covering_region_containing(HeapWord* addr);
duke@435 121
duke@435 122 // Resize one of the regions covered by the remembered set.
duke@435 123 void resize_covered_region(MemRegion new_region);
duke@435 124
duke@435 125 // Returns the leftmost end of a committed region corresponding to a
duke@435 126 // covered region before covered region "ind", or else "NULL" if "ind" is
duke@435 127 // the first covered region.
duke@435 128 HeapWord* largest_prev_committed_end(int ind) const;
duke@435 129
duke@435 130 // Returns the part of the region mr that doesn't intersect with
duke@435 131 // any committed region other than self. Used to prevent uncommitting
duke@435 132 // regions that are also committed by other regions. Also protects
duke@435 133 // against uncommitting the guard region.
duke@435 134 MemRegion committed_unique_to_self(int self, MemRegion mr) const;
duke@435 135
duke@435 136 // Mapping from address to card marking array entry
duke@435 137 jbyte* byte_for(const void* p) const {
duke@435 138 assert(_whole_heap.contains(p),
duke@435 139 "out of bounds access to card marking array");
duke@435 140 jbyte* result = &byte_map_base[uintptr_t(p) >> card_shift];
duke@435 141 assert(result >= _byte_map && result < _byte_map + _byte_map_size,
duke@435 142 "out of bounds accessor for card marking array");
duke@435 143 return result;
duke@435 144 }
duke@435 145
duke@435 146 // The card table byte one after the card marking array
duke@435 147 // entry for argument address. Typically used for higher bounds
duke@435 148 // for loops iterating through the card table.
duke@435 149 jbyte* byte_after(const void* p) const {
duke@435 150 return byte_for(p) + 1;
duke@435 151 }
duke@435 152
duke@435 153 // Mapping from card marking array entry to address of first word
duke@435 154 HeapWord* addr_for(const jbyte* p) const {
duke@435 155 assert(p >= _byte_map && p < _byte_map + _byte_map_size,
duke@435 156 "out of bounds access to card marking array");
duke@435 157 size_t delta = pointer_delta(p, byte_map_base, sizeof(jbyte));
duke@435 158 HeapWord* result = (HeapWord*) (delta << card_shift);
duke@435 159 assert(_whole_heap.contains(result),
duke@435 160 "out of bounds accessor from card marking array");
duke@435 161 return result;
duke@435 162 }
duke@435 163
duke@435 164 // Iterate over the portion of the card-table which covers the given
duke@435 165 // region mr in the given space and apply cl to any dirty sub-regions
duke@435 166 // of mr. cl and dcto_cl must either be the same closure or cl must
duke@435 167 // wrap dcto_cl. Both are required - neither may be NULL. Also, dcto_cl
duke@435 168 // may be modified. Note that this function will operate in a parallel
duke@435 169 // mode if worker threads are available.
duke@435 170 void non_clean_card_iterate(Space* sp, MemRegion mr,
duke@435 171 DirtyCardToOopClosure* dcto_cl,
duke@435 172 MemRegionClosure* cl,
duke@435 173 bool clear);
duke@435 174
duke@435 175 // Utility function used to implement the other versions below.
duke@435 176 void non_clean_card_iterate_work(MemRegion mr, MemRegionClosure* cl,
duke@435 177 bool clear);
duke@435 178
duke@435 179 void par_non_clean_card_iterate_work(Space* sp, MemRegion mr,
duke@435 180 DirtyCardToOopClosure* dcto_cl,
duke@435 181 MemRegionClosure* cl,
duke@435 182 bool clear,
duke@435 183 int n_threads);
duke@435 184
duke@435 185 // Dirty the bytes corresponding to "mr" (not all of which must be
duke@435 186 // covered.)
duke@435 187 void dirty_MemRegion(MemRegion mr);
duke@435 188
duke@435 189 // Clear (to clean_card) the bytes entirely contained within "mr" (not
duke@435 190 // all of which must be covered.)
duke@435 191 void clear_MemRegion(MemRegion mr);
duke@435 192
duke@435 193 // *** Support for parallel card scanning.
duke@435 194
duke@435 195 enum SomeConstantsForParallelism {
duke@435 196 StridesPerThread = 2,
duke@435 197 CardsPerStrideChunk = 256
duke@435 198 };
duke@435 199
duke@435 200 // This is an array, one element per covered region of the card table.
duke@435 201 // Each entry is itself an array, with one element per chunk in the
duke@435 202 // covered region. Each entry of these arrays is the lowest non-clean
duke@435 203 // card of the corresponding chunk containing part of an object from the
duke@435 204 // previous chunk, or else NULL.
duke@435 205 typedef jbyte* CardPtr;
duke@435 206 typedef CardPtr* CardArr;
duke@435 207 CardArr* _lowest_non_clean;
duke@435 208 size_t* _lowest_non_clean_chunk_size;
duke@435 209 uintptr_t* _lowest_non_clean_base_chunk_index;
duke@435 210 int* _last_LNC_resizing_collection;
duke@435 211
duke@435 212 // Initializes "lowest_non_clean" to point to the array for the region
duke@435 213 // covering "sp", and "lowest_non_clean_base_chunk_index" to the chunk
duke@435 214 // index of the corresponding to the first element of that array.
duke@435 215 // Ensures that these arrays are of sufficient size, allocating if necessary.
duke@435 216 // May be called by several threads concurrently.
duke@435 217 void get_LNC_array_for_space(Space* sp,
duke@435 218 jbyte**& lowest_non_clean,
duke@435 219 uintptr_t& lowest_non_clean_base_chunk_index,
duke@435 220 size_t& lowest_non_clean_chunk_size);
duke@435 221
duke@435 222 // Returns the number of chunks necessary to cover "mr".
duke@435 223 size_t chunks_to_cover(MemRegion mr) {
duke@435 224 return (size_t)(addr_to_chunk_index(mr.last()) -
duke@435 225 addr_to_chunk_index(mr.start()) + 1);
duke@435 226 }
duke@435 227
duke@435 228 // Returns the index of the chunk in a stride which
duke@435 229 // covers the given address.
duke@435 230 uintptr_t addr_to_chunk_index(const void* addr) {
duke@435 231 uintptr_t card = (uintptr_t) byte_for(addr);
duke@435 232 return card / CardsPerStrideChunk;
duke@435 233 }
duke@435 234
duke@435 235 // Apply cl, which must either itself apply dcto_cl or be dcto_cl,
duke@435 236 // to the cards in the stride (of n_strides) within the given space.
duke@435 237 void process_stride(Space* sp,
duke@435 238 MemRegion used,
duke@435 239 jint stride, int n_strides,
duke@435 240 DirtyCardToOopClosure* dcto_cl,
duke@435 241 MemRegionClosure* cl,
duke@435 242 bool clear,
duke@435 243 jbyte** lowest_non_clean,
duke@435 244 uintptr_t lowest_non_clean_base_chunk_index,
duke@435 245 size_t lowest_non_clean_chunk_size);
duke@435 246
duke@435 247 // Makes sure that chunk boundaries are handled appropriately, by
duke@435 248 // adjusting the min_done of dcto_cl, and by using a special card-table
duke@435 249 // value to indicate how min_done should be set.
duke@435 250 void process_chunk_boundaries(Space* sp,
duke@435 251 DirtyCardToOopClosure* dcto_cl,
duke@435 252 MemRegion chunk_mr,
duke@435 253 MemRegion used,
duke@435 254 jbyte** lowest_non_clean,
duke@435 255 uintptr_t lowest_non_clean_base_chunk_index,
duke@435 256 size_t lowest_non_clean_chunk_size);
duke@435 257
duke@435 258 public:
duke@435 259 // Constants
duke@435 260 enum SomePublicConstants {
duke@435 261 card_shift = 9,
duke@435 262 card_size = 1 << card_shift,
duke@435 263 card_size_in_words = card_size / sizeof(HeapWord)
duke@435 264 };
duke@435 265
duke@435 266 // For RTTI simulation.
duke@435 267 BarrierSet::Name kind() { return BarrierSet::CardTableModRef; }
duke@435 268 bool is_a(BarrierSet::Name bsn) {
duke@435 269 return bsn == BarrierSet::CardTableModRef || bsn == BarrierSet::ModRef;
duke@435 270 }
duke@435 271
duke@435 272 CardTableModRefBS(MemRegion whole_heap, int max_covered_regions);
duke@435 273
duke@435 274 // *** Barrier set functions.
duke@435 275
coleenp@548 276 inline bool write_ref_needs_barrier(void* field, oop new_val) {
duke@435 277 // Note that this assumes the perm gen is the highest generation
duke@435 278 // in the address space
duke@435 279 return new_val != NULL && !new_val->is_perm();
duke@435 280 }
duke@435 281
duke@435 282 // Record a reference update. Note that these versions are precise!
duke@435 283 // The scanning code has to handle the fact that the write barrier may be
duke@435 284 // either precise or imprecise. We make non-virtual inline variants of
duke@435 285 // these functions here for performance.
duke@435 286 protected:
duke@435 287 void write_ref_field_work(oop obj, size_t offset, oop newVal);
coleenp@548 288 void write_ref_field_work(void* field, oop newVal);
duke@435 289 public:
duke@435 290
duke@435 291 bool has_write_ref_array_opt() { return true; }
duke@435 292 bool has_write_region_opt() { return true; }
duke@435 293
duke@435 294 inline void inline_write_region(MemRegion mr) {
duke@435 295 dirty_MemRegion(mr);
duke@435 296 }
duke@435 297 protected:
duke@435 298 void write_region_work(MemRegion mr) {
duke@435 299 inline_write_region(mr);
duke@435 300 }
duke@435 301 public:
duke@435 302
duke@435 303 inline void inline_write_ref_array(MemRegion mr) {
duke@435 304 dirty_MemRegion(mr);
duke@435 305 }
duke@435 306 protected:
duke@435 307 void write_ref_array_work(MemRegion mr) {
duke@435 308 inline_write_ref_array(mr);
duke@435 309 }
duke@435 310 public:
duke@435 311
duke@435 312 bool is_aligned(HeapWord* addr) {
duke@435 313 return is_card_aligned(addr);
duke@435 314 }
duke@435 315
duke@435 316 // *** Card-table-barrier-specific things.
duke@435 317
coleenp@548 318 inline void inline_write_ref_field(void* field, oop newVal) {
duke@435 319 jbyte* byte = byte_for(field);
duke@435 320 *byte = dirty_card;
duke@435 321 }
duke@435 322
duke@435 323 // Card marking array base (adjusted for heap low boundary)
duke@435 324 // This would be the 0th element of _byte_map, if the heap started at 0x0.
duke@435 325 // But since the heap starts at some higher address, this points to somewhere
duke@435 326 // before the beginning of the actual _byte_map.
duke@435 327 jbyte* byte_map_base;
duke@435 328
duke@435 329 // Return true if "p" is at the start of a card.
duke@435 330 bool is_card_aligned(HeapWord* p) {
duke@435 331 jbyte* pcard = byte_for(p);
duke@435 332 return (addr_for(pcard) == p);
duke@435 333 }
duke@435 334
duke@435 335 // The kinds of precision a CardTableModRefBS may offer.
duke@435 336 enum PrecisionStyle {
duke@435 337 Precise,
duke@435 338 ObjHeadPreciseArray
duke@435 339 };
duke@435 340
duke@435 341 // Tells what style of precision this card table offers.
duke@435 342 PrecisionStyle precision() {
duke@435 343 return ObjHeadPreciseArray; // Only one supported for now.
duke@435 344 }
duke@435 345
duke@435 346 // ModRefBS functions.
duke@435 347 void invalidate(MemRegion mr);
duke@435 348 void clear(MemRegion mr);
duke@435 349 void mod_oop_in_space_iterate(Space* sp, OopClosure* cl,
duke@435 350 bool clear = false,
duke@435 351 bool before_save_marks = false);
duke@435 352
duke@435 353 // *** Card-table-RemSet-specific things.
duke@435 354
duke@435 355 // Invoke "cl.do_MemRegion" on a set of MemRegions that collectively
duke@435 356 // includes all the modified cards (expressing each card as a
duke@435 357 // MemRegion). Thus, several modified cards may be lumped into one
duke@435 358 // region. The regions are non-overlapping, and are visited in
duke@435 359 // *decreasing* address order. (This order aids with imprecise card
duke@435 360 // marking, where a dirty card may cause scanning, and summarization
duke@435 361 // marking, of objects that extend onto subsequent cards.)
duke@435 362 // If "clear" is true, the card is (conceptually) marked unmodified before
duke@435 363 // applying the closure.
duke@435 364 void mod_card_iterate(MemRegionClosure* cl, bool clear = false) {
duke@435 365 non_clean_card_iterate_work(_whole_heap, cl, clear);
duke@435 366 }
duke@435 367
duke@435 368 // Like the "mod_cards_iterate" above, except only invokes the closure
duke@435 369 // for cards within the MemRegion "mr" (which is required to be
duke@435 370 // card-aligned and sized.)
duke@435 371 void mod_card_iterate(MemRegion mr, MemRegionClosure* cl,
duke@435 372 bool clear = false) {
duke@435 373 non_clean_card_iterate_work(mr, cl, clear);
duke@435 374 }
duke@435 375
duke@435 376 static uintx ct_max_alignment_constraint();
duke@435 377
duke@435 378 // Apply closure cl to the dirty cards lying completely
duke@435 379 // within MemRegion mr, setting the cards to precleaned.
duke@435 380 void dirty_card_iterate(MemRegion mr, MemRegionClosure* cl);
duke@435 381
duke@435 382 // Return the MemRegion corresponding to the first maximal run
duke@435 383 // of dirty cards lying completely within MemRegion mr, after
duke@435 384 // marking those cards precleaned.
duke@435 385 MemRegion dirty_card_range_after_preclean(MemRegion mr);
duke@435 386
duke@435 387 // Set all the dirty cards in the given region to precleaned state.
duke@435 388 void preclean_dirty_cards(MemRegion mr);
duke@435 389
duke@435 390 // Mapping from address to card marking array index.
duke@435 391 int index_for(void* p) {
duke@435 392 assert(_whole_heap.contains(p),
duke@435 393 "out of bounds access to card marking array");
duke@435 394 return byte_for(p) - _byte_map;
duke@435 395 }
duke@435 396
duke@435 397 void verify();
duke@435 398 void verify_guard();
duke@435 399
duke@435 400 void verify_clean_region(MemRegion mr) PRODUCT_RETURN;
duke@435 401
duke@435 402 static size_t par_chunk_heapword_alignment() {
duke@435 403 return CardsPerStrideChunk * card_size_in_words;
duke@435 404 }
duke@435 405 };
duke@435 406
duke@435 407 class CardTableRS;
duke@435 408
duke@435 409 // A specialization for the CardTableRS gen rem set.
duke@435 410 class CardTableModRefBSForCTRS: public CardTableModRefBS {
duke@435 411 CardTableRS* _rs;
duke@435 412 protected:
duke@435 413 bool card_will_be_scanned(jbyte cv);
duke@435 414 bool card_may_have_been_dirty(jbyte cv);
duke@435 415 public:
duke@435 416 CardTableModRefBSForCTRS(MemRegion whole_heap,
duke@435 417 int max_covered_regions) :
duke@435 418 CardTableModRefBS(whole_heap, max_covered_regions) {}
duke@435 419
duke@435 420 void set_CTRS(CardTableRS* rs) { _rs = rs; }
duke@435 421 };

mercurial