duke@435: /* xdono@631: * Copyright 2000-2008 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: * duke@435: */ duke@435: duke@435: // This kind of "BarrierSet" allows a "CollectedHeap" to detect and duke@435: // enumerate ref fields that have been modified (since the last duke@435: // enumeration.) duke@435: duke@435: // As it currently stands, this barrier is *imprecise*: when a ref field in duke@435: // an object "o" is modified, the card table entry for the card containing duke@435: // the head of "o" is dirtied, not necessarily the card containing the duke@435: // modified field itself. For object arrays, however, the barrier *is* duke@435: // precise; only the card containing the modified element is dirtied. duke@435: // Any MemRegionClosures used to scan dirty cards should take these duke@435: // considerations into account. duke@435: duke@435: class Generation; duke@435: class OopsInGenClosure; duke@435: class DirtyCardToOopClosure; duke@435: duke@435: class CardTableModRefBS: public ModRefBarrierSet { duke@435: // Some classes get to look at some private stuff. duke@435: friend class BytecodeInterpreter; duke@435: friend class VMStructs; duke@435: friend class CardTableRS; duke@435: friend class CheckForUnmarkedOops; // Needs access to raw card bytes. duke@435: #ifndef PRODUCT duke@435: // For debugging. duke@435: friend class GuaranteeNotModClosure; duke@435: #endif duke@435: protected: duke@435: duke@435: enum CardValues { duke@435: clean_card = -1, duke@435: dirty_card = 0, duke@435: precleaned_card = 1, duke@435: last_card = 4, duke@435: CT_MR_BS_last_reserved = 10 duke@435: }; duke@435: duke@435: // dirty and precleaned are equivalent wrt younger_refs_iter. duke@435: static bool card_is_dirty_wrt_gen_iter(jbyte cv) { duke@435: return cv == dirty_card || cv == precleaned_card; duke@435: } duke@435: duke@435: // Returns "true" iff the value "cv" will cause the card containing it duke@435: // to be scanned in the current traversal. May be overridden by duke@435: // subtypes. duke@435: virtual bool card_will_be_scanned(jbyte cv) { duke@435: return CardTableModRefBS::card_is_dirty_wrt_gen_iter(cv); duke@435: } duke@435: duke@435: // Returns "true" iff the value "cv" may have represented a dirty card at duke@435: // some point. duke@435: virtual bool card_may_have_been_dirty(jbyte cv) { duke@435: return card_is_dirty_wrt_gen_iter(cv); duke@435: } duke@435: duke@435: // The declaration order of these const fields is important; see the duke@435: // constructor before changing. duke@435: const MemRegion _whole_heap; // the region covered by the card table duke@435: const size_t _guard_index; // index of very last element in the card duke@435: // table; it is set to a guard value duke@435: // (last_card) and should never be modified duke@435: const size_t _last_valid_index; // index of the last valid element duke@435: const size_t _page_size; // page size used when mapping _byte_map duke@435: const size_t _byte_map_size; // in bytes duke@435: jbyte* _byte_map; // the card marking array duke@435: duke@435: int _cur_covered_regions; duke@435: // The covered regions should be in address order. duke@435: MemRegion* _covered; duke@435: // The committed regions correspond one-to-one to the covered regions. duke@435: // They represent the card-table memory that has been committed to service duke@435: // the corresponding covered region. It may be that committed region for duke@435: // one covered region corresponds to a larger region because of page-size duke@435: // roundings. Thus, a committed region for one covered region may duke@435: // actually extend onto the card-table space for the next covered region. duke@435: MemRegion* _committed; duke@435: duke@435: // The last card is a guard card, and we commit the page for it so duke@435: // we can use the card for verification purposes. We make sure we never duke@435: // uncommit the MemRegion for that page. duke@435: MemRegion _guard_region; duke@435: duke@435: protected: duke@435: // Initialization utilities; covered_words is the size of the covered region duke@435: // in, um, words. duke@435: inline size_t cards_required(size_t covered_words); duke@435: inline size_t compute_byte_map_size(); duke@435: duke@435: // Finds and return the index of the region, if any, to which the given duke@435: // region would be contiguous. If none exists, assign a new region and duke@435: // returns its index. Requires that no more than the maximum number of duke@435: // covered regions defined in the constructor are ever in use. duke@435: int find_covering_region_by_base(HeapWord* base); duke@435: duke@435: // Same as above, but finds the region containing the given address duke@435: // instead of starting at a given base address. duke@435: int find_covering_region_containing(HeapWord* addr); duke@435: duke@435: // Resize one of the regions covered by the remembered set. duke@435: void resize_covered_region(MemRegion new_region); duke@435: duke@435: // Returns the leftmost end of a committed region corresponding to a duke@435: // covered region before covered region "ind", or else "NULL" if "ind" is duke@435: // the first covered region. duke@435: HeapWord* largest_prev_committed_end(int ind) const; duke@435: duke@435: // Returns the part of the region mr that doesn't intersect with duke@435: // any committed region other than self. Used to prevent uncommitting duke@435: // regions that are also committed by other regions. Also protects duke@435: // against uncommitting the guard region. duke@435: MemRegion committed_unique_to_self(int self, MemRegion mr) const; duke@435: duke@435: // Mapping from address to card marking array entry duke@435: jbyte* byte_for(const void* p) const { duke@435: assert(_whole_heap.contains(p), duke@435: "out of bounds access to card marking array"); duke@435: jbyte* result = &byte_map_base[uintptr_t(p) >> card_shift]; duke@435: assert(result >= _byte_map && result < _byte_map + _byte_map_size, duke@435: "out of bounds accessor for card marking array"); duke@435: return result; duke@435: } duke@435: duke@435: // The card table byte one after the card marking array duke@435: // entry for argument address. Typically used for higher bounds duke@435: // for loops iterating through the card table. duke@435: jbyte* byte_after(const void* p) const { duke@435: return byte_for(p) + 1; duke@435: } duke@435: duke@435: // Mapping from card marking array entry to address of first word duke@435: HeapWord* addr_for(const jbyte* p) const { duke@435: assert(p >= _byte_map && p < _byte_map + _byte_map_size, duke@435: "out of bounds access to card marking array"); duke@435: size_t delta = pointer_delta(p, byte_map_base, sizeof(jbyte)); duke@435: HeapWord* result = (HeapWord*) (delta << card_shift); duke@435: assert(_whole_heap.contains(result), duke@435: "out of bounds accessor from card marking array"); duke@435: return result; duke@435: } duke@435: duke@435: // Iterate over the portion of the card-table which covers the given duke@435: // region mr in the given space and apply cl to any dirty sub-regions duke@435: // of mr. cl and dcto_cl must either be the same closure or cl must duke@435: // wrap dcto_cl. Both are required - neither may be NULL. Also, dcto_cl duke@435: // may be modified. Note that this function will operate in a parallel duke@435: // mode if worker threads are available. duke@435: void non_clean_card_iterate(Space* sp, MemRegion mr, duke@435: DirtyCardToOopClosure* dcto_cl, duke@435: MemRegionClosure* cl, duke@435: bool clear); duke@435: duke@435: // Utility function used to implement the other versions below. duke@435: void non_clean_card_iterate_work(MemRegion mr, MemRegionClosure* cl, duke@435: bool clear); duke@435: duke@435: void par_non_clean_card_iterate_work(Space* sp, MemRegion mr, duke@435: DirtyCardToOopClosure* dcto_cl, duke@435: MemRegionClosure* cl, duke@435: bool clear, duke@435: int n_threads); duke@435: duke@435: // Dirty the bytes corresponding to "mr" (not all of which must be duke@435: // covered.) duke@435: void dirty_MemRegion(MemRegion mr); duke@435: duke@435: // Clear (to clean_card) the bytes entirely contained within "mr" (not duke@435: // all of which must be covered.) duke@435: void clear_MemRegion(MemRegion mr); duke@435: duke@435: // *** Support for parallel card scanning. duke@435: duke@435: enum SomeConstantsForParallelism { duke@435: StridesPerThread = 2, duke@435: CardsPerStrideChunk = 256 duke@435: }; duke@435: duke@435: // This is an array, one element per covered region of the card table. duke@435: // Each entry is itself an array, with one element per chunk in the duke@435: // covered region. Each entry of these arrays is the lowest non-clean duke@435: // card of the corresponding chunk containing part of an object from the duke@435: // previous chunk, or else NULL. duke@435: typedef jbyte* CardPtr; duke@435: typedef CardPtr* CardArr; duke@435: CardArr* _lowest_non_clean; duke@435: size_t* _lowest_non_clean_chunk_size; duke@435: uintptr_t* _lowest_non_clean_base_chunk_index; duke@435: int* _last_LNC_resizing_collection; duke@435: duke@435: // Initializes "lowest_non_clean" to point to the array for the region duke@435: // covering "sp", and "lowest_non_clean_base_chunk_index" to the chunk duke@435: // index of the corresponding to the first element of that array. duke@435: // Ensures that these arrays are of sufficient size, allocating if necessary. duke@435: // May be called by several threads concurrently. duke@435: void get_LNC_array_for_space(Space* sp, duke@435: jbyte**& lowest_non_clean, duke@435: uintptr_t& lowest_non_clean_base_chunk_index, duke@435: size_t& lowest_non_clean_chunk_size); duke@435: duke@435: // Returns the number of chunks necessary to cover "mr". duke@435: size_t chunks_to_cover(MemRegion mr) { duke@435: return (size_t)(addr_to_chunk_index(mr.last()) - duke@435: addr_to_chunk_index(mr.start()) + 1); duke@435: } duke@435: duke@435: // Returns the index of the chunk in a stride which duke@435: // covers the given address. duke@435: uintptr_t addr_to_chunk_index(const void* addr) { duke@435: uintptr_t card = (uintptr_t) byte_for(addr); duke@435: return card / CardsPerStrideChunk; duke@435: } duke@435: duke@435: // Apply cl, which must either itself apply dcto_cl or be dcto_cl, duke@435: // to the cards in the stride (of n_strides) within the given space. duke@435: void process_stride(Space* sp, duke@435: MemRegion used, duke@435: jint stride, int n_strides, duke@435: DirtyCardToOopClosure* dcto_cl, duke@435: MemRegionClosure* cl, duke@435: bool clear, duke@435: jbyte** lowest_non_clean, duke@435: uintptr_t lowest_non_clean_base_chunk_index, duke@435: size_t lowest_non_clean_chunk_size); duke@435: duke@435: // Makes sure that chunk boundaries are handled appropriately, by duke@435: // adjusting the min_done of dcto_cl, and by using a special card-table duke@435: // value to indicate how min_done should be set. duke@435: void process_chunk_boundaries(Space* sp, duke@435: DirtyCardToOopClosure* dcto_cl, duke@435: MemRegion chunk_mr, duke@435: MemRegion used, duke@435: jbyte** lowest_non_clean, duke@435: uintptr_t lowest_non_clean_base_chunk_index, duke@435: size_t lowest_non_clean_chunk_size); duke@435: duke@435: public: duke@435: // Constants duke@435: enum SomePublicConstants { duke@435: card_shift = 9, duke@435: card_size = 1 << card_shift, duke@435: card_size_in_words = card_size / sizeof(HeapWord) duke@435: }; duke@435: duke@435: // For RTTI simulation. duke@435: BarrierSet::Name kind() { return BarrierSet::CardTableModRef; } duke@435: bool is_a(BarrierSet::Name bsn) { duke@435: return bsn == BarrierSet::CardTableModRef || bsn == BarrierSet::ModRef; duke@435: } duke@435: duke@435: CardTableModRefBS(MemRegion whole_heap, int max_covered_regions); duke@435: duke@435: // *** Barrier set functions. duke@435: coleenp@548: inline bool write_ref_needs_barrier(void* field, oop new_val) { duke@435: // Note that this assumes the perm gen is the highest generation duke@435: // in the address space duke@435: return new_val != NULL && !new_val->is_perm(); duke@435: } duke@435: duke@435: // Record a reference update. Note that these versions are precise! duke@435: // The scanning code has to handle the fact that the write barrier may be duke@435: // either precise or imprecise. We make non-virtual inline variants of duke@435: // these functions here for performance. duke@435: protected: duke@435: void write_ref_field_work(oop obj, size_t offset, oop newVal); coleenp@548: void write_ref_field_work(void* field, oop newVal); duke@435: public: duke@435: duke@435: bool has_write_ref_array_opt() { return true; } duke@435: bool has_write_region_opt() { return true; } duke@435: duke@435: inline void inline_write_region(MemRegion mr) { duke@435: dirty_MemRegion(mr); duke@435: } duke@435: protected: duke@435: void write_region_work(MemRegion mr) { duke@435: inline_write_region(mr); duke@435: } duke@435: public: duke@435: duke@435: inline void inline_write_ref_array(MemRegion mr) { duke@435: dirty_MemRegion(mr); duke@435: } duke@435: protected: duke@435: void write_ref_array_work(MemRegion mr) { duke@435: inline_write_ref_array(mr); duke@435: } duke@435: public: duke@435: duke@435: bool is_aligned(HeapWord* addr) { duke@435: return is_card_aligned(addr); duke@435: } duke@435: duke@435: // *** Card-table-barrier-specific things. duke@435: coleenp@548: inline void inline_write_ref_field(void* field, oop newVal) { duke@435: jbyte* byte = byte_for(field); duke@435: *byte = dirty_card; duke@435: } duke@435: duke@435: // Card marking array base (adjusted for heap low boundary) duke@435: // This would be the 0th element of _byte_map, if the heap started at 0x0. duke@435: // But since the heap starts at some higher address, this points to somewhere duke@435: // before the beginning of the actual _byte_map. duke@435: jbyte* byte_map_base; duke@435: duke@435: // Return true if "p" is at the start of a card. duke@435: bool is_card_aligned(HeapWord* p) { duke@435: jbyte* pcard = byte_for(p); duke@435: return (addr_for(pcard) == p); duke@435: } duke@435: duke@435: // The kinds of precision a CardTableModRefBS may offer. duke@435: enum PrecisionStyle { duke@435: Precise, duke@435: ObjHeadPreciseArray duke@435: }; duke@435: duke@435: // Tells what style of precision this card table offers. duke@435: PrecisionStyle precision() { duke@435: return ObjHeadPreciseArray; // Only one supported for now. duke@435: } duke@435: duke@435: // ModRefBS functions. duke@435: void invalidate(MemRegion mr); duke@435: void clear(MemRegion mr); duke@435: void mod_oop_in_space_iterate(Space* sp, OopClosure* cl, duke@435: bool clear = false, duke@435: bool before_save_marks = false); duke@435: duke@435: // *** Card-table-RemSet-specific things. duke@435: duke@435: // Invoke "cl.do_MemRegion" on a set of MemRegions that collectively duke@435: // includes all the modified cards (expressing each card as a duke@435: // MemRegion). Thus, several modified cards may be lumped into one duke@435: // region. The regions are non-overlapping, and are visited in duke@435: // *decreasing* address order. (This order aids with imprecise card duke@435: // marking, where a dirty card may cause scanning, and summarization duke@435: // marking, of objects that extend onto subsequent cards.) duke@435: // If "clear" is true, the card is (conceptually) marked unmodified before duke@435: // applying the closure. duke@435: void mod_card_iterate(MemRegionClosure* cl, bool clear = false) { duke@435: non_clean_card_iterate_work(_whole_heap, cl, clear); duke@435: } duke@435: duke@435: // Like the "mod_cards_iterate" above, except only invokes the closure duke@435: // for cards within the MemRegion "mr" (which is required to be duke@435: // card-aligned and sized.) duke@435: void mod_card_iterate(MemRegion mr, MemRegionClosure* cl, duke@435: bool clear = false) { duke@435: non_clean_card_iterate_work(mr, cl, clear); duke@435: } duke@435: duke@435: static uintx ct_max_alignment_constraint(); duke@435: duke@435: // Apply closure cl to the dirty cards lying completely duke@435: // within MemRegion mr, setting the cards to precleaned. duke@435: void dirty_card_iterate(MemRegion mr, MemRegionClosure* cl); duke@435: duke@435: // Return the MemRegion corresponding to the first maximal run duke@435: // of dirty cards lying completely within MemRegion mr, after duke@435: // marking those cards precleaned. duke@435: MemRegion dirty_card_range_after_preclean(MemRegion mr); duke@435: duke@435: // Set all the dirty cards in the given region to precleaned state. duke@435: void preclean_dirty_cards(MemRegion mr); duke@435: duke@435: // Mapping from address to card marking array index. duke@435: int index_for(void* p) { duke@435: assert(_whole_heap.contains(p), duke@435: "out of bounds access to card marking array"); duke@435: return byte_for(p) - _byte_map; duke@435: } duke@435: duke@435: void verify(); duke@435: void verify_guard(); duke@435: duke@435: void verify_clean_region(MemRegion mr) PRODUCT_RETURN; duke@435: duke@435: static size_t par_chunk_heapword_alignment() { duke@435: return CardsPerStrideChunk * card_size_in_words; duke@435: } duke@435: }; duke@435: duke@435: class CardTableRS; duke@435: duke@435: // A specialization for the CardTableRS gen rem set. duke@435: class CardTableModRefBSForCTRS: public CardTableModRefBS { duke@435: CardTableRS* _rs; duke@435: protected: duke@435: bool card_will_be_scanned(jbyte cv); duke@435: bool card_may_have_been_dirty(jbyte cv); duke@435: public: duke@435: CardTableModRefBSForCTRS(MemRegion whole_heap, duke@435: int max_covered_regions) : duke@435: CardTableModRefBS(whole_heap, max_covered_regions) {} duke@435: duke@435: void set_CTRS(CardTableRS* rs) { _rs = rs; } duke@435: };