src/share/vm/opto/buildOopMap.cpp

Wed, 07 Aug 2013 17:56:19 +0200

author
adlertz
date
Wed, 07 Aug 2013 17:56:19 +0200
changeset 5509
d1034bd8cefc
parent 2708
1d1603768966
child 5539
adb9a7d94cb5
permissions
-rw-r--r--

8022284: Hide internal data structure in PhaseCFG
Summary: Hide private node to block mapping using public interface
Reviewed-by: kvn, roland

duke@435 1 /*
trims@2708 2 * Copyright (c) 2002, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/oopMap.hpp"
stefank@2314 27 #include "opto/addnode.hpp"
stefank@2314 28 #include "opto/callnode.hpp"
stefank@2314 29 #include "opto/compile.hpp"
stefank@2314 30 #include "opto/machnode.hpp"
stefank@2314 31 #include "opto/matcher.hpp"
stefank@2314 32 #include "opto/phase.hpp"
stefank@2314 33 #include "opto/regalloc.hpp"
stefank@2314 34 #include "opto/rootnode.hpp"
stefank@2314 35 #ifdef TARGET_ARCH_x86
stefank@2314 36 # include "vmreg_x86.inline.hpp"
stefank@2314 37 #endif
stefank@2314 38 #ifdef TARGET_ARCH_sparc
stefank@2314 39 # include "vmreg_sparc.inline.hpp"
stefank@2314 40 #endif
stefank@2314 41 #ifdef TARGET_ARCH_zero
stefank@2314 42 # include "vmreg_zero.inline.hpp"
stefank@2314 43 #endif
bobv@2508 44 #ifdef TARGET_ARCH_arm
bobv@2508 45 # include "vmreg_arm.inline.hpp"
bobv@2508 46 #endif
bobv@2508 47 #ifdef TARGET_ARCH_ppc
bobv@2508 48 # include "vmreg_ppc.inline.hpp"
bobv@2508 49 #endif
duke@435 50
duke@435 51 // The functions in this file builds OopMaps after all scheduling is done.
duke@435 52 //
duke@435 53 // OopMaps contain a list of all registers and stack-slots containing oops (so
duke@435 54 // they can be updated by GC). OopMaps also contain a list of derived-pointer
duke@435 55 // base-pointer pairs. When the base is moved, the derived pointer moves to
duke@435 56 // follow it. Finally, any registers holding callee-save values are also
duke@435 57 // recorded. These might contain oops, but only the caller knows.
duke@435 58 //
duke@435 59 // BuildOopMaps implements a simple forward reaching-defs solution. At each
duke@435 60 // GC point we'll have the reaching-def Nodes. If the reaching Nodes are
duke@435 61 // typed as pointers (no offset), then they are oops. Pointers+offsets are
duke@435 62 // derived pointers, and bases can be found from them. Finally, we'll also
duke@435 63 // track reaching callee-save values. Note that a copy of a callee-save value
duke@435 64 // "kills" it's source, so that only 1 copy of a callee-save value is alive at
duke@435 65 // a time.
duke@435 66 //
duke@435 67 // We run a simple bitvector liveness pass to help trim out dead oops. Due to
duke@435 68 // irreducible loops, we can have a reaching def of an oop that only reaches
duke@435 69 // along one path and no way to know if it's valid or not on the other path.
duke@435 70 // The bitvectors are quite dense and the liveness pass is fast.
duke@435 71 //
duke@435 72 // At GC points, we consult this information to build OopMaps. All reaching
duke@435 73 // defs typed as oops are added to the OopMap. Only 1 instance of a
duke@435 74 // callee-save register can be recorded. For derived pointers, we'll have to
duke@435 75 // find and record the register holding the base.
duke@435 76 //
duke@435 77 // The reaching def's is a simple 1-pass worklist approach. I tried a clever
duke@435 78 // breadth-first approach but it was worse (showed O(n^2) in the
duke@435 79 // pick-next-block code).
duke@435 80 //
twisti@1040 81 // The relevant data is kept in a struct of arrays (it could just as well be
duke@435 82 // an array of structs, but the struct-of-arrays is generally a little more
duke@435 83 // efficient). The arrays are indexed by register number (including
duke@435 84 // stack-slots as registers) and so is bounded by 200 to 300 elements in
duke@435 85 // practice. One array will map to a reaching def Node (or NULL for
duke@435 86 // conflict/dead). The other array will map to a callee-saved register or
duke@435 87 // OptoReg::Bad for not-callee-saved.
duke@435 88
duke@435 89
duke@435 90 //------------------------------OopFlow----------------------------------------
duke@435 91 // Structure to pass around
duke@435 92 struct OopFlow : public ResourceObj {
duke@435 93 short *_callees; // Array mapping register to callee-saved
duke@435 94 Node **_defs; // array mapping register to reaching def
duke@435 95 // or NULL if dead/conflict
duke@435 96 // OopFlow structs, when not being actively modified, describe the _end_ of
duke@435 97 // this block.
duke@435 98 Block *_b; // Block for this struct
duke@435 99 OopFlow *_next; // Next free OopFlow
kvn@1268 100 // or NULL if dead/conflict
kvn@1268 101 Compile* C;
duke@435 102
kvn@1268 103 OopFlow( short *callees, Node **defs, Compile* c ) : _callees(callees), _defs(defs),
kvn@1268 104 _b(NULL), _next(NULL), C(c) { }
duke@435 105
duke@435 106 // Given reaching-defs for this block start, compute it for this block end
duke@435 107 void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );
duke@435 108
duke@435 109 // Merge these two OopFlows into the 'this' pointer.
duke@435 110 void merge( OopFlow *flow, int max_reg );
duke@435 111
duke@435 112 // Copy a 'flow' over an existing flow
duke@435 113 void clone( OopFlow *flow, int max_size);
duke@435 114
duke@435 115 // Make a new OopFlow from scratch
kvn@1268 116 static OopFlow *make( Arena *A, int max_size, Compile* C );
duke@435 117
duke@435 118 // Build an oopmap from the current flow info
duke@435 119 OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
duke@435 120 };
duke@435 121
duke@435 122 //------------------------------compute_reach----------------------------------
duke@435 123 // Given reaching-defs for this block start, compute it for this block end
duke@435 124 void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
duke@435 125
duke@435 126 for( uint i=0; i<_b->_nodes.size(); i++ ) {
duke@435 127 Node *n = _b->_nodes[i];
duke@435 128
duke@435 129 if( n->jvms() ) { // Build an OopMap here?
duke@435 130 JVMState *jvms = n->jvms();
duke@435 131 // no map needed for leaf calls
duke@435 132 if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
duke@435 133 int *live = (int*) (*safehash)[n];
duke@435 134 assert( live, "must find live" );
duke@435 135 n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
duke@435 136 }
duke@435 137 }
duke@435 138
duke@435 139 // Assign new reaching def's.
duke@435 140 // Note that I padded the _defs and _callees arrays so it's legal
duke@435 141 // to index at _defs[OptoReg::Bad].
duke@435 142 OptoReg::Name first = regalloc->get_reg_first(n);
duke@435 143 OptoReg::Name second = regalloc->get_reg_second(n);
duke@435 144 _defs[first] = n;
duke@435 145 _defs[second] = n;
duke@435 146
duke@435 147 // Pass callee-save info around copies
duke@435 148 int idx = n->is_Copy();
duke@435 149 if( idx ) { // Copies move callee-save info
duke@435 150 OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
duke@435 151 OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
duke@435 152 int tmp_first = _callees[old_first];
duke@435 153 int tmp_second = _callees[old_second];
duke@435 154 _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
duke@435 155 _callees[old_second] = OptoReg::Bad;
duke@435 156 _callees[first] = tmp_first;
duke@435 157 _callees[second] = tmp_second;
duke@435 158 } else if( n->is_Phi() ) { // Phis do not mod callee-saves
duke@435 159 assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
duke@435 160 assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
duke@435 161 assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
duke@435 162 assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
duke@435 163 } else {
duke@435 164 _callees[first] = OptoReg::Bad; // No longer holding a callee-save value
duke@435 165 _callees[second] = OptoReg::Bad;
duke@435 166
duke@435 167 // Find base case for callee saves
duke@435 168 if( n->is_Proj() && n->in(0)->is_Start() ) {
duke@435 169 if( OptoReg::is_reg(first) &&
duke@435 170 regalloc->_matcher.is_save_on_entry(first) )
duke@435 171 _callees[first] = first;
duke@435 172 if( OptoReg::is_reg(second) &&
duke@435 173 regalloc->_matcher.is_save_on_entry(second) )
duke@435 174 _callees[second] = second;
duke@435 175 }
duke@435 176 }
duke@435 177 }
duke@435 178 }
duke@435 179
duke@435 180 //------------------------------merge------------------------------------------
duke@435 181 // Merge the given flow into the 'this' flow
duke@435 182 void OopFlow::merge( OopFlow *flow, int max_reg ) {
duke@435 183 assert( _b == NULL, "merging into a happy flow" );
duke@435 184 assert( flow->_b, "this flow is still alive" );
duke@435 185 assert( flow != this, "no self flow" );
duke@435 186
duke@435 187 // Do the merge. If there are any differences, drop to 'bottom' which
duke@435 188 // is OptoReg::Bad or NULL depending.
duke@435 189 for( int i=0; i<max_reg; i++ ) {
duke@435 190 // Merge the callee-save's
duke@435 191 if( _callees[i] != flow->_callees[i] )
duke@435 192 _callees[i] = OptoReg::Bad;
duke@435 193 // Merge the reaching defs
duke@435 194 if( _defs[i] != flow->_defs[i] )
duke@435 195 _defs[i] = NULL;
duke@435 196 }
duke@435 197
duke@435 198 }
duke@435 199
duke@435 200 //------------------------------clone------------------------------------------
duke@435 201 void OopFlow::clone( OopFlow *flow, int max_size ) {
duke@435 202 _b = flow->_b;
duke@435 203 memcpy( _callees, flow->_callees, sizeof(short)*max_size);
duke@435 204 memcpy( _defs , flow->_defs , sizeof(Node*)*max_size);
duke@435 205 }
duke@435 206
duke@435 207 //------------------------------make-------------------------------------------
kvn@1268 208 OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) {
duke@435 209 short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
duke@435 210 Node **defs = NEW_ARENA_ARRAY(A,Node*,max_size+1);
duke@435 211 debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
kvn@1268 212 OopFlow *flow = new (A) OopFlow(callees+1, defs+1, C);
duke@435 213 assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
duke@435 214 assert( &flow->_defs [OptoReg::Bad] == defs , "Ok to index at OptoReg::Bad" );
duke@435 215 return flow;
duke@435 216 }
duke@435 217
duke@435 218 //------------------------------bit twiddlers----------------------------------
duke@435 219 static int get_live_bit( int *live, int reg ) {
duke@435 220 return live[reg>>LogBitsPerInt] & (1<<(reg&(BitsPerInt-1))); }
duke@435 221 static void set_live_bit( int *live, int reg ) {
duke@435 222 live[reg>>LogBitsPerInt] |= (1<<(reg&(BitsPerInt-1))); }
duke@435 223 static void clr_live_bit( int *live, int reg ) {
duke@435 224 live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
duke@435 225
duke@435 226 //------------------------------build_oop_map----------------------------------
duke@435 227 // Build an oopmap from the current flow info
duke@435 228 OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
duke@435 229 int framesize = regalloc->_framesize;
duke@435 230 int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
duke@435 231 debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0());
duke@435 232 memset(dup_check,0,OptoReg::stack0()) );
duke@435 233
duke@435 234 OopMap *omap = new OopMap( framesize, max_inarg_slot );
duke@435 235 MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : NULL;
duke@435 236 JVMState* jvms = n->jvms();
duke@435 237
duke@435 238 // For all registers do...
duke@435 239 for( int reg=0; reg<max_reg; reg++ ) {
duke@435 240 if( get_live_bit(live,reg) == 0 )
duke@435 241 continue; // Ignore if not live
duke@435 242
duke@435 243 // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
duke@435 244 // register in that case we'll get an non-concrete register for the second
duke@435 245 // half. We only need to tell the map the register once!
duke@435 246 //
duke@435 247 // However for the moment we disable this change and leave things as they
duke@435 248 // were.
duke@435 249
duke@435 250 VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);
duke@435 251
duke@435 252 if (false && r->is_reg() && !r->is_concrete()) {
duke@435 253 continue;
duke@435 254 }
duke@435 255
duke@435 256 // See if dead (no reaching def).
duke@435 257 Node *def = _defs[reg]; // Get reaching def
duke@435 258 assert( def, "since live better have reaching def" );
duke@435 259
duke@435 260 // Classify the reaching def as oop, derived, callee-save, dead, or other
duke@435 261 const Type *t = def->bottom_type();
duke@435 262 if( t->isa_oop_ptr() ) { // Oop or derived?
duke@435 263 assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
duke@435 264 #ifdef _LP64
duke@435 265 // 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
duke@435 266 // Make sure both are record from the same reaching def, but do not
duke@435 267 // put both into the oopmap.
duke@435 268 if( (reg&1) == 1 ) { // High half of oop-pair?
duke@435 269 assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
duke@435 270 continue; // Do not record high parts in oopmap
duke@435 271 }
duke@435 272 #endif
duke@435 273
duke@435 274 // Check for a legal reg name in the oopMap and bailout if it is not.
duke@435 275 if (!omap->legal_vm_reg_name(r)) {
duke@435 276 regalloc->C->record_method_not_compilable("illegal oopMap register name");
duke@435 277 continue;
duke@435 278 }
duke@435 279 if( t->is_ptr()->_offset == 0 ) { // Not derived?
duke@435 280 if( mcall ) {
duke@435 281 // Outgoing argument GC mask responsibility belongs to the callee,
duke@435 282 // not the caller. Inspect the inputs to the call, to see if
duke@435 283 // this live-range is one of them.
duke@435 284 uint cnt = mcall->tf()->domain()->cnt();
duke@435 285 uint j;
duke@435 286 for( j = TypeFunc::Parms; j < cnt; j++)
duke@435 287 if( mcall->in(j) == def )
duke@435 288 break; // reaching def is an argument oop
duke@435 289 if( j < cnt ) // arg oops dont go in GC map
duke@435 290 continue; // Continue on to the next register
duke@435 291 }
duke@435 292 omap->set_oop(r);
duke@435 293 } else { // Else it's derived.
duke@435 294 // Find the base of the derived value.
duke@435 295 uint i;
duke@435 296 // Fast, common case, scan
duke@435 297 for( i = jvms->oopoff(); i < n->req(); i+=2 )
duke@435 298 if( n->in(i) == def ) break; // Common case
duke@435 299 if( i == n->req() ) { // Missed, try a more generous scan
duke@435 300 // Scan again, but this time peek through copies
duke@435 301 for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
duke@435 302 Node *m = n->in(i); // Get initial derived value
duke@435 303 while( 1 ) {
duke@435 304 Node *d = def; // Get initial reaching def
duke@435 305 while( 1 ) { // Follow copies of reaching def to end
duke@435 306 if( m == d ) goto found; // breaks 3 loops
duke@435 307 int idx = d->is_Copy();
duke@435 308 if( !idx ) break;
duke@435 309 d = d->in(idx); // Link through copy
duke@435 310 }
duke@435 311 int idx = m->is_Copy();
duke@435 312 if( !idx ) break;
duke@435 313 m = m->in(idx);
duke@435 314 }
duke@435 315 }
kvn@1268 316 guarantee( 0, "must find derived/base pair" );
duke@435 317 }
duke@435 318 found: ;
duke@435 319 Node *base = n->in(i+1); // Base is other half of pair
duke@435 320 int breg = regalloc->get_reg_first(base);
duke@435 321 VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);
duke@435 322
duke@435 323 // I record liveness at safepoints BEFORE I make the inputs
duke@435 324 // live. This is because argument oops are NOT live at a
duke@435 325 // safepoint (or at least they cannot appear in the oopmap).
duke@435 326 // Thus bases of base/derived pairs might not be in the
duke@435 327 // liveness data but they need to appear in the oopmap.
duke@435 328 if( get_live_bit(live,breg) == 0 ) {// Not live?
duke@435 329 // Flag it, so next derived pointer won't re-insert into oopmap
duke@435 330 set_live_bit(live,breg);
duke@435 331 // Already missed our turn?
duke@435 332 if( breg < reg ) {
duke@435 333 if (b->is_stack() || b->is_concrete() || true ) {
duke@435 334 omap->set_oop( b);
duke@435 335 }
duke@435 336 }
duke@435 337 }
duke@435 338 if (b->is_stack() || b->is_concrete() || true ) {
duke@435 339 omap->set_derived_oop( r, b);
duke@435 340 }
duke@435 341 }
duke@435 342
coleenp@548 343 } else if( t->isa_narrowoop() ) {
coleenp@548 344 assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
coleenp@548 345 // Check for a legal reg name in the oopMap and bailout if it is not.
coleenp@548 346 if (!omap->legal_vm_reg_name(r)) {
coleenp@548 347 regalloc->C->record_method_not_compilable("illegal oopMap register name");
coleenp@548 348 continue;
coleenp@548 349 }
coleenp@548 350 if( mcall ) {
coleenp@548 351 // Outgoing argument GC mask responsibility belongs to the callee,
coleenp@548 352 // not the caller. Inspect the inputs to the call, to see if
coleenp@548 353 // this live-range is one of them.
coleenp@548 354 uint cnt = mcall->tf()->domain()->cnt();
coleenp@548 355 uint j;
coleenp@548 356 for( j = TypeFunc::Parms; j < cnt; j++)
coleenp@548 357 if( mcall->in(j) == def )
coleenp@548 358 break; // reaching def is an argument oop
coleenp@548 359 if( j < cnt ) // arg oops dont go in GC map
coleenp@548 360 continue; // Continue on to the next register
coleenp@548 361 }
coleenp@548 362 omap->set_narrowoop(r);
duke@435 363 } else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
duke@435 364 // It's a callee-save value
duke@435 365 assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
duke@435 366 debug_only( dup_check[_callees[reg]]=1; )
duke@435 367 VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
duke@435 368 if ( callee->is_concrete() || true ) {
duke@435 369 omap->set_callee_saved( r, callee);
duke@435 370 }
duke@435 371
duke@435 372 } else {
duke@435 373 // Other - some reaching non-oop value
duke@435 374 omap->set_value( r);
kvn@1268 375 #ifdef ASSERT
kvn@1268 376 if( t->isa_rawptr() && C->cfg()->_raw_oops.member(def) ) {
kvn@1268 377 def->dump();
kvn@1268 378 n->dump();
kvn@1268 379 assert(false, "there should be a oop in OopMap instead of a live raw oop at safepoint");
kvn@1268 380 }
kvn@1268 381 #endif
duke@435 382 }
duke@435 383
duke@435 384 }
duke@435 385
duke@435 386 #ifdef ASSERT
duke@435 387 /* Nice, Intel-only assert
duke@435 388 int cnt_callee_saves=0;
duke@435 389 int reg2 = 0;
duke@435 390 while (OptoReg::is_reg(reg2)) {
duke@435 391 if( dup_check[reg2] != 0) cnt_callee_saves++;
duke@435 392 assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
duke@435 393 reg2++;
duke@435 394 }
duke@435 395 */
duke@435 396 #endif
duke@435 397
kvn@1164 398 #ifdef ASSERT
kvn@1164 399 for( OopMapStream oms1(omap, OopMapValue::derived_oop_value); !oms1.is_done(); oms1.next()) {
kvn@1164 400 OopMapValue omv1 = oms1.current();
kvn@1164 401 bool found = false;
kvn@1164 402 for( OopMapStream oms2(omap,OopMapValue::oop_value); !oms2.is_done(); oms2.next()) {
kvn@1164 403 if( omv1.content_reg() == oms2.current().reg() ) {
kvn@1164 404 found = true;
kvn@1164 405 break;
kvn@1164 406 }
kvn@1164 407 }
kvn@1164 408 assert( found, "derived with no base in oopmap" );
kvn@1164 409 }
kvn@1164 410 #endif
kvn@1164 411
duke@435 412 return omap;
duke@435 413 }
duke@435 414
duke@435 415 //------------------------------do_liveness------------------------------------
duke@435 416 // Compute backwards liveness on registers
duke@435 417 static void do_liveness( PhaseRegAlloc *regalloc, PhaseCFG *cfg, Block_List *worklist, int max_reg_ints, Arena *A, Dict *safehash ) {
duke@435 418 int *live = NEW_ARENA_ARRAY(A, int, (cfg->_num_blocks+1) * max_reg_ints);
duke@435 419 int *tmp_live = &live[cfg->_num_blocks * max_reg_ints];
duke@435 420 Node *root = cfg->C->root();
duke@435 421 // On CISC platforms, get the node representing the stack pointer that regalloc
duke@435 422 // used for spills
duke@435 423 Node *fp = NodeSentinel;
duke@435 424 if (UseCISCSpill && root->req() > 1) {
duke@435 425 fp = root->in(1)->in(TypeFunc::FramePtr);
duke@435 426 }
duke@435 427 memset( live, 0, cfg->_num_blocks * (max_reg_ints<<LogBytesPerInt) );
duke@435 428 // Push preds onto worklist
adlertz@5509 429 for (uint i = 1; i < root->req(); i++) {
adlertz@5509 430 Block* block = cfg->get_block_for_node(root->in(i));
adlertz@5509 431 worklist->push(block);
adlertz@5509 432 }
duke@435 433
duke@435 434 // ZKM.jar includes tiny infinite loops which are unreached from below.
duke@435 435 // If we missed any blocks, we'll retry here after pushing all missed
duke@435 436 // blocks on the worklist. Normally this outer loop never trips more
duke@435 437 // than once.
adlertz@5509 438 while (1) {
duke@435 439
duke@435 440 while( worklist->size() ) { // Standard worklist algorithm
duke@435 441 Block *b = worklist->rpop();
duke@435 442
duke@435 443 // Copy first successor into my tmp_live space
duke@435 444 int s0num = b->_succs[0]->_pre_order;
duke@435 445 int *t = &live[s0num*max_reg_ints];
duke@435 446 for( int i=0; i<max_reg_ints; i++ )
duke@435 447 tmp_live[i] = t[i];
duke@435 448
duke@435 449 // OR in the remaining live registers
duke@435 450 for( uint j=1; j<b->_num_succs; j++ ) {
duke@435 451 uint sjnum = b->_succs[j]->_pre_order;
duke@435 452 int *t = &live[sjnum*max_reg_ints];
duke@435 453 for( int i=0; i<max_reg_ints; i++ )
duke@435 454 tmp_live[i] |= t[i];
duke@435 455 }
duke@435 456
duke@435 457 // Now walk tmp_live up the block backwards, computing live
duke@435 458 for( int k=b->_nodes.size()-1; k>=0; k-- ) {
duke@435 459 Node *n = b->_nodes[k];
duke@435 460 // KILL def'd bits
duke@435 461 int first = regalloc->get_reg_first(n);
duke@435 462 int second = regalloc->get_reg_second(n);
duke@435 463 if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
duke@435 464 if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);
duke@435 465
duke@435 466 MachNode *m = n->is_Mach() ? n->as_Mach() : NULL;
duke@435 467
duke@435 468 // Check if m is potentially a CISC alternate instruction (i.e, possibly
duke@435 469 // synthesized by RegAlloc from a conventional instruction and a
duke@435 470 // spilled input)
duke@435 471 bool is_cisc_alternate = false;
duke@435 472 if (UseCISCSpill && m) {
duke@435 473 is_cisc_alternate = m->is_cisc_alternate();
duke@435 474 }
duke@435 475
duke@435 476 // GEN use'd bits
duke@435 477 for( uint l=1; l<n->req(); l++ ) {
duke@435 478 Node *def = n->in(l);
duke@435 479 assert(def != 0, "input edge required");
duke@435 480 int first = regalloc->get_reg_first(def);
duke@435 481 int second = regalloc->get_reg_second(def);
duke@435 482 if( OptoReg::is_valid(first) ) set_live_bit(tmp_live,first);
duke@435 483 if( OptoReg::is_valid(second) ) set_live_bit(tmp_live,second);
duke@435 484 // If we use the stack pointer in a cisc-alternative instruction,
duke@435 485 // check for use as a memory operand. Then reconstruct the RegName
duke@435 486 // for this stack location, and set the appropriate bit in the
duke@435 487 // live vector 4987749.
duke@435 488 if (is_cisc_alternate && def == fp) {
duke@435 489 const TypePtr *adr_type = NULL;
duke@435 490 intptr_t offset;
duke@435 491 const Node* base = m->get_base_and_disp(offset, adr_type);
duke@435 492 if (base == NodeSentinel) {
duke@435 493 // Machnode has multiple memory inputs. We are unable to reason
duke@435 494 // with these, but are presuming (with trepidation) that not any of
duke@435 495 // them are oops. This can be fixed by making get_base_and_disp()
duke@435 496 // look at a specific input instead of all inputs.
duke@435 497 assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
duke@435 498 } else if (base != fp || offset == Type::OffsetBot) {
duke@435 499 // Do nothing: the fp operand is either not from a memory use
duke@435 500 // (base == NULL) OR the fp is used in a non-memory context
duke@435 501 // (base is some other register) OR the offset is not constant,
duke@435 502 // so it is not a stack slot.
duke@435 503 } else {
duke@435 504 assert(offset >= 0, "unexpected negative offset");
duke@435 505 offset -= (offset % jintSize); // count the whole word
duke@435 506 int stack_reg = regalloc->offset2reg(offset);
duke@435 507 if (OptoReg::is_stack(stack_reg)) {
duke@435 508 set_live_bit(tmp_live, stack_reg);
duke@435 509 } else {
duke@435 510 assert(false, "stack_reg not on stack?");
duke@435 511 }
duke@435 512 }
duke@435 513 }
duke@435 514 }
duke@435 515
duke@435 516 if( n->jvms() ) { // Record liveness at safepoint
duke@435 517
duke@435 518 // This placement of this stanza means inputs to calls are
duke@435 519 // considered live at the callsite's OopMap. Argument oops are
duke@435 520 // hence live, but NOT included in the oopmap. See cutout in
duke@435 521 // build_oop_map. Debug oops are live (and in OopMap).
duke@435 522 int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
duke@435 523 for( int l=0; l<max_reg_ints; l++ )
duke@435 524 n_live[l] = tmp_live[l];
duke@435 525 safehash->Insert(n,n_live);
duke@435 526 }
duke@435 527
duke@435 528 }
duke@435 529
duke@435 530 // Now at block top, see if we have any changes. If so, propagate
duke@435 531 // to prior blocks.
duke@435 532 int *old_live = &live[b->_pre_order*max_reg_ints];
duke@435 533 int l;
duke@435 534 for( l=0; l<max_reg_ints; l++ )
duke@435 535 if( tmp_live[l] != old_live[l] )
duke@435 536 break;
duke@435 537 if( l<max_reg_ints ) { // Change!
duke@435 538 // Copy in new value
duke@435 539 for( l=0; l<max_reg_ints; l++ )
duke@435 540 old_live[l] = tmp_live[l];
duke@435 541 // Push preds onto worklist
adlertz@5509 542 for (l = 1; l < (int)b->num_preds(); l++) {
adlertz@5509 543 Block* block = cfg->get_block_for_node(b->pred(l));
adlertz@5509 544 worklist->push(block);
adlertz@5509 545 }
duke@435 546 }
duke@435 547 }
duke@435 548
duke@435 549 // Scan for any missing safepoints. Happens to infinite loops
duke@435 550 // ala ZKM.jar
duke@435 551 uint i;
duke@435 552 for( i=1; i<cfg->_num_blocks; i++ ) {
duke@435 553 Block *b = cfg->_blocks[i];
duke@435 554 uint j;
duke@435 555 for( j=1; j<b->_nodes.size(); j++ )
duke@435 556 if( b->_nodes[j]->jvms() &&
duke@435 557 (*safehash)[b->_nodes[j]] == NULL )
duke@435 558 break;
duke@435 559 if( j<b->_nodes.size() ) break;
duke@435 560 }
duke@435 561 if( i == cfg->_num_blocks )
duke@435 562 break; // Got 'em all
duke@435 563 #ifndef PRODUCT
duke@435 564 if( PrintOpto && Verbose )
duke@435 565 tty->print_cr("retripping live calc");
duke@435 566 #endif
duke@435 567 // Force the issue (expensively): recheck everybody
duke@435 568 for( i=1; i<cfg->_num_blocks; i++ )
duke@435 569 worklist->push(cfg->_blocks[i]);
duke@435 570 }
duke@435 571
duke@435 572 }
duke@435 573
duke@435 574 //------------------------------BuildOopMaps-----------------------------------
duke@435 575 // Collect GC mask info - where are all the OOPs?
duke@435 576 void Compile::BuildOopMaps() {
duke@435 577 NOT_PRODUCT( TracePhase t3("bldOopMaps", &_t_buildOopMaps, TimeCompiler); )
duke@435 578 // Can't resource-mark because I need to leave all those OopMaps around,
duke@435 579 // or else I need to resource-mark some arena other than the default.
duke@435 580 // ResourceMark rm; // Reclaim all OopFlows when done
duke@435 581 int max_reg = _regalloc->_max_reg; // Current array extent
duke@435 582
duke@435 583 Arena *A = Thread::current()->resource_area();
duke@435 584 Block_List worklist; // Worklist of pending blocks
duke@435 585
duke@435 586 int max_reg_ints = round_to(max_reg, BitsPerInt)>>LogBitsPerInt;
duke@435 587 Dict *safehash = NULL; // Used for assert only
duke@435 588 // Compute a backwards liveness per register. Needs a bitarray of
duke@435 589 // #blocks x (#registers, rounded up to ints)
duke@435 590 safehash = new Dict(cmpkey,hashkey,A);
duke@435 591 do_liveness( _regalloc, _cfg, &worklist, max_reg_ints, A, safehash );
duke@435 592 OopFlow *free_list = NULL; // Free, unused
duke@435 593
duke@435 594 // Array mapping blocks to completed oopflows
duke@435 595 OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->_num_blocks);
duke@435 596 memset( flows, 0, _cfg->_num_blocks*sizeof(OopFlow*) );
duke@435 597
duke@435 598
duke@435 599 // Do the first block 'by hand' to prime the worklist
duke@435 600 Block *entry = _cfg->_blocks[1];
kvn@1268 601 OopFlow *rootflow = OopFlow::make(A,max_reg,this);
duke@435 602 // Initialize to 'bottom' (not 'top')
duke@435 603 memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
duke@435 604 memset( rootflow->_defs , 0, max_reg*sizeof(Node*) );
duke@435 605 flows[entry->_pre_order] = rootflow;
duke@435 606
duke@435 607 // Do the first block 'by hand' to prime the worklist
duke@435 608 rootflow->_b = entry;
duke@435 609 rootflow->compute_reach( _regalloc, max_reg, safehash );
duke@435 610 for( uint i=0; i<entry->_num_succs; i++ )
duke@435 611 worklist.push(entry->_succs[i]);
duke@435 612
duke@435 613 // Now worklist contains blocks which have some, but perhaps not all,
duke@435 614 // predecessors visited.
duke@435 615 while( worklist.size() ) {
duke@435 616 // Scan for a block with all predecessors visited, or any randoms slob
duke@435 617 // otherwise. All-preds-visited order allows me to recycle OopFlow
duke@435 618 // structures rapidly and cut down on the memory footprint.
duke@435 619 // Note: not all predecessors might be visited yet (must happen for
duke@435 620 // irreducible loops). This is OK, since every live value must have the
duke@435 621 // SAME reaching def for the block, so any reaching def is OK.
duke@435 622 uint i;
duke@435 623
duke@435 624 Block *b = worklist.pop();
duke@435 625 // Ignore root block
duke@435 626 if( b == _cfg->_broot ) continue;
duke@435 627 // Block is already done? Happens if block has several predecessors,
duke@435 628 // he can get on the worklist more than once.
duke@435 629 if( flows[b->_pre_order] ) continue;
duke@435 630
duke@435 631 // If this block has a visited predecessor AND that predecessor has this
duke@435 632 // last block as his only undone child, we can move the OopFlow from the
duke@435 633 // pred to this block. Otherwise we have to grab a new OopFlow.
duke@435 634 OopFlow *flow = NULL; // Flag for finding optimized flow
duke@435 635 Block *pred = (Block*)0xdeadbeef;
duke@435 636 // Scan this block's preds to find a done predecessor
adlertz@5509 637 for (uint j = 1; j < b->num_preds(); j++) {
adlertz@5509 638 Block* p = _cfg->get_block_for_node(b->pred(j));
duke@435 639 OopFlow *p_flow = flows[p->_pre_order];
duke@435 640 if( p_flow ) { // Predecessor is done
duke@435 641 assert( p_flow->_b == p, "cross check" );
duke@435 642 pred = p; // Record some predecessor
duke@435 643 // If all successors of p are done except for 'b', then we can carry
duke@435 644 // p_flow forward to 'b' without copying, otherwise we have to draw
duke@435 645 // from the free_list and clone data.
duke@435 646 uint k;
duke@435 647 for( k=0; k<p->_num_succs; k++ )
duke@435 648 if( !flows[p->_succs[k]->_pre_order] &&
duke@435 649 p->_succs[k] != b )
duke@435 650 break;
duke@435 651
duke@435 652 // Either carry-forward the now-unused OopFlow for b's use
duke@435 653 // or draw a new one from the free list
duke@435 654 if( k==p->_num_succs ) {
duke@435 655 flow = p_flow;
duke@435 656 break; // Found an ideal pred, use him
duke@435 657 }
duke@435 658 }
duke@435 659 }
duke@435 660
duke@435 661 if( flow ) {
duke@435 662 // We have an OopFlow that's the last-use of a predecessor.
duke@435 663 // Carry it forward.
duke@435 664 } else { // Draw a new OopFlow from the freelist
duke@435 665 if( !free_list )
kvn@1268 666 free_list = OopFlow::make(A,max_reg,C);
duke@435 667 flow = free_list;
duke@435 668 assert( flow->_b == NULL, "oopFlow is not free" );
duke@435 669 free_list = flow->_next;
duke@435 670 flow->_next = NULL;
duke@435 671
duke@435 672 // Copy/clone over the data
duke@435 673 flow->clone(flows[pred->_pre_order], max_reg);
duke@435 674 }
duke@435 675
duke@435 676 // Mark flow for block. Blocks can only be flowed over once,
duke@435 677 // because after the first time they are guarded from entering
duke@435 678 // this code again.
duke@435 679 assert( flow->_b == pred, "have some prior flow" );
duke@435 680 flow->_b = NULL;
duke@435 681
duke@435 682 // Now push flow forward
duke@435 683 flows[b->_pre_order] = flow;// Mark flow for this block
duke@435 684 flow->_b = b;
duke@435 685 flow->compute_reach( _regalloc, max_reg, safehash );
duke@435 686
duke@435 687 // Now push children onto worklist
duke@435 688 for( i=0; i<b->_num_succs; i++ )
duke@435 689 worklist.push(b->_succs[i]);
duke@435 690
duke@435 691 }
duke@435 692 }

mercurial