src/share/vm/opto/buildOopMap.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 631
d1605aabd0a1
child 1164
04fa5affa478
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

duke@435 1 /*
xdono@631 2 * Copyright 2002-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_buildOopMap.cpp.incl"
duke@435 27
duke@435 28 // The functions in this file builds OopMaps after all scheduling is done.
duke@435 29 //
duke@435 30 // OopMaps contain a list of all registers and stack-slots containing oops (so
duke@435 31 // they can be updated by GC). OopMaps also contain a list of derived-pointer
duke@435 32 // base-pointer pairs. When the base is moved, the derived pointer moves to
duke@435 33 // follow it. Finally, any registers holding callee-save values are also
duke@435 34 // recorded. These might contain oops, but only the caller knows.
duke@435 35 //
duke@435 36 // BuildOopMaps implements a simple forward reaching-defs solution. At each
duke@435 37 // GC point we'll have the reaching-def Nodes. If the reaching Nodes are
duke@435 38 // typed as pointers (no offset), then they are oops. Pointers+offsets are
duke@435 39 // derived pointers, and bases can be found from them. Finally, we'll also
duke@435 40 // track reaching callee-save values. Note that a copy of a callee-save value
duke@435 41 // "kills" it's source, so that only 1 copy of a callee-save value is alive at
duke@435 42 // a time.
duke@435 43 //
duke@435 44 // We run a simple bitvector liveness pass to help trim out dead oops. Due to
duke@435 45 // irreducible loops, we can have a reaching def of an oop that only reaches
duke@435 46 // along one path and no way to know if it's valid or not on the other path.
duke@435 47 // The bitvectors are quite dense and the liveness pass is fast.
duke@435 48 //
duke@435 49 // At GC points, we consult this information to build OopMaps. All reaching
duke@435 50 // defs typed as oops are added to the OopMap. Only 1 instance of a
duke@435 51 // callee-save register can be recorded. For derived pointers, we'll have to
duke@435 52 // find and record the register holding the base.
duke@435 53 //
duke@435 54 // The reaching def's is a simple 1-pass worklist approach. I tried a clever
duke@435 55 // breadth-first approach but it was worse (showed O(n^2) in the
duke@435 56 // pick-next-block code).
duke@435 57 //
twisti@1040 58 // The relevant data is kept in a struct of arrays (it could just as well be
duke@435 59 // an array of structs, but the struct-of-arrays is generally a little more
duke@435 60 // efficient). The arrays are indexed by register number (including
duke@435 61 // stack-slots as registers) and so is bounded by 200 to 300 elements in
duke@435 62 // practice. One array will map to a reaching def Node (or NULL for
duke@435 63 // conflict/dead). The other array will map to a callee-saved register or
duke@435 64 // OptoReg::Bad for not-callee-saved.
duke@435 65
duke@435 66
duke@435 67 //------------------------------OopFlow----------------------------------------
duke@435 68 // Structure to pass around
duke@435 69 struct OopFlow : public ResourceObj {
duke@435 70 short *_callees; // Array mapping register to callee-saved
duke@435 71 Node **_defs; // array mapping register to reaching def
duke@435 72 // or NULL if dead/conflict
duke@435 73 // OopFlow structs, when not being actively modified, describe the _end_ of
duke@435 74 // this block.
duke@435 75 Block *_b; // Block for this struct
duke@435 76 OopFlow *_next; // Next free OopFlow
duke@435 77
duke@435 78 OopFlow( short *callees, Node **defs ) : _callees(callees), _defs(defs),
duke@435 79 _b(NULL), _next(NULL) { }
duke@435 80
duke@435 81 // Given reaching-defs for this block start, compute it for this block end
duke@435 82 void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );
duke@435 83
duke@435 84 // Merge these two OopFlows into the 'this' pointer.
duke@435 85 void merge( OopFlow *flow, int max_reg );
duke@435 86
duke@435 87 // Copy a 'flow' over an existing flow
duke@435 88 void clone( OopFlow *flow, int max_size);
duke@435 89
duke@435 90 // Make a new OopFlow from scratch
duke@435 91 static OopFlow *make( Arena *A, int max_size );
duke@435 92
duke@435 93 // Build an oopmap from the current flow info
duke@435 94 OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
duke@435 95 };
duke@435 96
duke@435 97 //------------------------------compute_reach----------------------------------
duke@435 98 // Given reaching-defs for this block start, compute it for this block end
duke@435 99 void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
duke@435 100
duke@435 101 for( uint i=0; i<_b->_nodes.size(); i++ ) {
duke@435 102 Node *n = _b->_nodes[i];
duke@435 103
duke@435 104 if( n->jvms() ) { // Build an OopMap here?
duke@435 105 JVMState *jvms = n->jvms();
duke@435 106 // no map needed for leaf calls
duke@435 107 if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
duke@435 108 int *live = (int*) (*safehash)[n];
duke@435 109 assert( live, "must find live" );
duke@435 110 n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
duke@435 111 }
duke@435 112 }
duke@435 113
duke@435 114 // Assign new reaching def's.
duke@435 115 // Note that I padded the _defs and _callees arrays so it's legal
duke@435 116 // to index at _defs[OptoReg::Bad].
duke@435 117 OptoReg::Name first = regalloc->get_reg_first(n);
duke@435 118 OptoReg::Name second = regalloc->get_reg_second(n);
duke@435 119 _defs[first] = n;
duke@435 120 _defs[second] = n;
duke@435 121
duke@435 122 // Pass callee-save info around copies
duke@435 123 int idx = n->is_Copy();
duke@435 124 if( idx ) { // Copies move callee-save info
duke@435 125 OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
duke@435 126 OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
duke@435 127 int tmp_first = _callees[old_first];
duke@435 128 int tmp_second = _callees[old_second];
duke@435 129 _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
duke@435 130 _callees[old_second] = OptoReg::Bad;
duke@435 131 _callees[first] = tmp_first;
duke@435 132 _callees[second] = tmp_second;
duke@435 133 } else if( n->is_Phi() ) { // Phis do not mod callee-saves
duke@435 134 assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
duke@435 135 assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
duke@435 136 assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
duke@435 137 assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
duke@435 138 } else {
duke@435 139 _callees[first] = OptoReg::Bad; // No longer holding a callee-save value
duke@435 140 _callees[second] = OptoReg::Bad;
duke@435 141
duke@435 142 // Find base case for callee saves
duke@435 143 if( n->is_Proj() && n->in(0)->is_Start() ) {
duke@435 144 if( OptoReg::is_reg(first) &&
duke@435 145 regalloc->_matcher.is_save_on_entry(first) )
duke@435 146 _callees[first] = first;
duke@435 147 if( OptoReg::is_reg(second) &&
duke@435 148 regalloc->_matcher.is_save_on_entry(second) )
duke@435 149 _callees[second] = second;
duke@435 150 }
duke@435 151 }
duke@435 152 }
duke@435 153 }
duke@435 154
duke@435 155 //------------------------------merge------------------------------------------
duke@435 156 // Merge the given flow into the 'this' flow
duke@435 157 void OopFlow::merge( OopFlow *flow, int max_reg ) {
duke@435 158 assert( _b == NULL, "merging into a happy flow" );
duke@435 159 assert( flow->_b, "this flow is still alive" );
duke@435 160 assert( flow != this, "no self flow" );
duke@435 161
duke@435 162 // Do the merge. If there are any differences, drop to 'bottom' which
duke@435 163 // is OptoReg::Bad or NULL depending.
duke@435 164 for( int i=0; i<max_reg; i++ ) {
duke@435 165 // Merge the callee-save's
duke@435 166 if( _callees[i] != flow->_callees[i] )
duke@435 167 _callees[i] = OptoReg::Bad;
duke@435 168 // Merge the reaching defs
duke@435 169 if( _defs[i] != flow->_defs[i] )
duke@435 170 _defs[i] = NULL;
duke@435 171 }
duke@435 172
duke@435 173 }
duke@435 174
duke@435 175 //------------------------------clone------------------------------------------
duke@435 176 void OopFlow::clone( OopFlow *flow, int max_size ) {
duke@435 177 _b = flow->_b;
duke@435 178 memcpy( _callees, flow->_callees, sizeof(short)*max_size);
duke@435 179 memcpy( _defs , flow->_defs , sizeof(Node*)*max_size);
duke@435 180 }
duke@435 181
duke@435 182 //------------------------------make-------------------------------------------
duke@435 183 OopFlow *OopFlow::make( Arena *A, int max_size ) {
duke@435 184 short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
duke@435 185 Node **defs = NEW_ARENA_ARRAY(A,Node*,max_size+1);
duke@435 186 debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
duke@435 187 OopFlow *flow = new (A) OopFlow(callees+1, defs+1);
duke@435 188 assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
duke@435 189 assert( &flow->_defs [OptoReg::Bad] == defs , "Ok to index at OptoReg::Bad" );
duke@435 190 return flow;
duke@435 191 }
duke@435 192
duke@435 193 //------------------------------bit twiddlers----------------------------------
duke@435 194 static int get_live_bit( int *live, int reg ) {
duke@435 195 return live[reg>>LogBitsPerInt] & (1<<(reg&(BitsPerInt-1))); }
duke@435 196 static void set_live_bit( int *live, int reg ) {
duke@435 197 live[reg>>LogBitsPerInt] |= (1<<(reg&(BitsPerInt-1))); }
duke@435 198 static void clr_live_bit( int *live, int reg ) {
duke@435 199 live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
duke@435 200
duke@435 201 //------------------------------build_oop_map----------------------------------
duke@435 202 // Build an oopmap from the current flow info
duke@435 203 OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
duke@435 204 int framesize = regalloc->_framesize;
duke@435 205 int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
duke@435 206 debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0());
duke@435 207 memset(dup_check,0,OptoReg::stack0()) );
duke@435 208
duke@435 209 OopMap *omap = new OopMap( framesize, max_inarg_slot );
duke@435 210 MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : NULL;
duke@435 211 JVMState* jvms = n->jvms();
duke@435 212
duke@435 213 // For all registers do...
duke@435 214 for( int reg=0; reg<max_reg; reg++ ) {
duke@435 215 if( get_live_bit(live,reg) == 0 )
duke@435 216 continue; // Ignore if not live
duke@435 217
duke@435 218 // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
duke@435 219 // register in that case we'll get an non-concrete register for the second
duke@435 220 // half. We only need to tell the map the register once!
duke@435 221 //
duke@435 222 // However for the moment we disable this change and leave things as they
duke@435 223 // were.
duke@435 224
duke@435 225 VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);
duke@435 226
duke@435 227 if (false && r->is_reg() && !r->is_concrete()) {
duke@435 228 continue;
duke@435 229 }
duke@435 230
duke@435 231 // See if dead (no reaching def).
duke@435 232 Node *def = _defs[reg]; // Get reaching def
duke@435 233 assert( def, "since live better have reaching def" );
duke@435 234
duke@435 235 // Classify the reaching def as oop, derived, callee-save, dead, or other
duke@435 236 const Type *t = def->bottom_type();
duke@435 237 if( t->isa_oop_ptr() ) { // Oop or derived?
duke@435 238 assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
duke@435 239 #ifdef _LP64
duke@435 240 // 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
duke@435 241 // Make sure both are record from the same reaching def, but do not
duke@435 242 // put both into the oopmap.
duke@435 243 if( (reg&1) == 1 ) { // High half of oop-pair?
duke@435 244 assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
duke@435 245 continue; // Do not record high parts in oopmap
duke@435 246 }
duke@435 247 #endif
duke@435 248
duke@435 249 // Check for a legal reg name in the oopMap and bailout if it is not.
duke@435 250 if (!omap->legal_vm_reg_name(r)) {
duke@435 251 regalloc->C->record_method_not_compilable("illegal oopMap register name");
duke@435 252 continue;
duke@435 253 }
duke@435 254 if( t->is_ptr()->_offset == 0 ) { // Not derived?
duke@435 255 if( mcall ) {
duke@435 256 // Outgoing argument GC mask responsibility belongs to the callee,
duke@435 257 // not the caller. Inspect the inputs to the call, to see if
duke@435 258 // this live-range is one of them.
duke@435 259 uint cnt = mcall->tf()->domain()->cnt();
duke@435 260 uint j;
duke@435 261 for( j = TypeFunc::Parms; j < cnt; j++)
duke@435 262 if( mcall->in(j) == def )
duke@435 263 break; // reaching def is an argument oop
duke@435 264 if( j < cnt ) // arg oops dont go in GC map
duke@435 265 continue; // Continue on to the next register
duke@435 266 }
duke@435 267 omap->set_oop(r);
duke@435 268 } else { // Else it's derived.
duke@435 269 // Find the base of the derived value.
duke@435 270 uint i;
duke@435 271 // Fast, common case, scan
duke@435 272 for( i = jvms->oopoff(); i < n->req(); i+=2 )
duke@435 273 if( n->in(i) == def ) break; // Common case
duke@435 274 if( i == n->req() ) { // Missed, try a more generous scan
duke@435 275 // Scan again, but this time peek through copies
duke@435 276 for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
duke@435 277 Node *m = n->in(i); // Get initial derived value
duke@435 278 while( 1 ) {
duke@435 279 Node *d = def; // Get initial reaching def
duke@435 280 while( 1 ) { // Follow copies of reaching def to end
duke@435 281 if( m == d ) goto found; // breaks 3 loops
duke@435 282 int idx = d->is_Copy();
duke@435 283 if( !idx ) break;
duke@435 284 d = d->in(idx); // Link through copy
duke@435 285 }
duke@435 286 int idx = m->is_Copy();
duke@435 287 if( !idx ) break;
duke@435 288 m = m->in(idx);
duke@435 289 }
duke@435 290 }
duke@435 291 guarantee( 0, "must find derived/base pair" );
duke@435 292 }
duke@435 293 found: ;
duke@435 294 Node *base = n->in(i+1); // Base is other half of pair
duke@435 295 int breg = regalloc->get_reg_first(base);
duke@435 296 VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);
duke@435 297
duke@435 298 // I record liveness at safepoints BEFORE I make the inputs
duke@435 299 // live. This is because argument oops are NOT live at a
duke@435 300 // safepoint (or at least they cannot appear in the oopmap).
duke@435 301 // Thus bases of base/derived pairs might not be in the
duke@435 302 // liveness data but they need to appear in the oopmap.
duke@435 303 if( get_live_bit(live,breg) == 0 ) {// Not live?
duke@435 304 // Flag it, so next derived pointer won't re-insert into oopmap
duke@435 305 set_live_bit(live,breg);
duke@435 306 // Already missed our turn?
duke@435 307 if( breg < reg ) {
duke@435 308 if (b->is_stack() || b->is_concrete() || true ) {
duke@435 309 omap->set_oop( b);
duke@435 310 }
duke@435 311 }
duke@435 312 }
duke@435 313 if (b->is_stack() || b->is_concrete() || true ) {
duke@435 314 omap->set_derived_oop( r, b);
duke@435 315 }
duke@435 316 }
duke@435 317
coleenp@548 318 } else if( t->isa_narrowoop() ) {
coleenp@548 319 assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
coleenp@548 320 // Check for a legal reg name in the oopMap and bailout if it is not.
coleenp@548 321 if (!omap->legal_vm_reg_name(r)) {
coleenp@548 322 regalloc->C->record_method_not_compilable("illegal oopMap register name");
coleenp@548 323 continue;
coleenp@548 324 }
coleenp@548 325 if( mcall ) {
coleenp@548 326 // Outgoing argument GC mask responsibility belongs to the callee,
coleenp@548 327 // not the caller. Inspect the inputs to the call, to see if
coleenp@548 328 // this live-range is one of them.
coleenp@548 329 uint cnt = mcall->tf()->domain()->cnt();
coleenp@548 330 uint j;
coleenp@548 331 for( j = TypeFunc::Parms; j < cnt; j++)
coleenp@548 332 if( mcall->in(j) == def )
coleenp@548 333 break; // reaching def is an argument oop
coleenp@548 334 if( j < cnt ) // arg oops dont go in GC map
coleenp@548 335 continue; // Continue on to the next register
coleenp@548 336 }
coleenp@548 337 omap->set_narrowoop(r);
duke@435 338 } else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
duke@435 339 // It's a callee-save value
duke@435 340 assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
duke@435 341 debug_only( dup_check[_callees[reg]]=1; )
duke@435 342 VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
duke@435 343 if ( callee->is_concrete() || true ) {
duke@435 344 omap->set_callee_saved( r, callee);
duke@435 345 }
duke@435 346
duke@435 347 } else {
duke@435 348 // Other - some reaching non-oop value
duke@435 349 omap->set_value( r);
duke@435 350 }
duke@435 351
duke@435 352 }
duke@435 353
duke@435 354 #ifdef ASSERT
duke@435 355 /* Nice, Intel-only assert
duke@435 356 int cnt_callee_saves=0;
duke@435 357 int reg2 = 0;
duke@435 358 while (OptoReg::is_reg(reg2)) {
duke@435 359 if( dup_check[reg2] != 0) cnt_callee_saves++;
duke@435 360 assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
duke@435 361 reg2++;
duke@435 362 }
duke@435 363 */
duke@435 364 #endif
duke@435 365
duke@435 366 return omap;
duke@435 367 }
duke@435 368
duke@435 369 //------------------------------do_liveness------------------------------------
duke@435 370 // Compute backwards liveness on registers
duke@435 371 static void do_liveness( PhaseRegAlloc *regalloc, PhaseCFG *cfg, Block_List *worklist, int max_reg_ints, Arena *A, Dict *safehash ) {
duke@435 372 int *live = NEW_ARENA_ARRAY(A, int, (cfg->_num_blocks+1) * max_reg_ints);
duke@435 373 int *tmp_live = &live[cfg->_num_blocks * max_reg_ints];
duke@435 374 Node *root = cfg->C->root();
duke@435 375 // On CISC platforms, get the node representing the stack pointer that regalloc
duke@435 376 // used for spills
duke@435 377 Node *fp = NodeSentinel;
duke@435 378 if (UseCISCSpill && root->req() > 1) {
duke@435 379 fp = root->in(1)->in(TypeFunc::FramePtr);
duke@435 380 }
duke@435 381 memset( live, 0, cfg->_num_blocks * (max_reg_ints<<LogBytesPerInt) );
duke@435 382 // Push preds onto worklist
duke@435 383 for( uint i=1; i<root->req(); i++ )
duke@435 384 worklist->push(cfg->_bbs[root->in(i)->_idx]);
duke@435 385
duke@435 386 // ZKM.jar includes tiny infinite loops which are unreached from below.
duke@435 387 // If we missed any blocks, we'll retry here after pushing all missed
duke@435 388 // blocks on the worklist. Normally this outer loop never trips more
duke@435 389 // than once.
duke@435 390 while( 1 ) {
duke@435 391
duke@435 392 while( worklist->size() ) { // Standard worklist algorithm
duke@435 393 Block *b = worklist->rpop();
duke@435 394
duke@435 395 // Copy first successor into my tmp_live space
duke@435 396 int s0num = b->_succs[0]->_pre_order;
duke@435 397 int *t = &live[s0num*max_reg_ints];
duke@435 398 for( int i=0; i<max_reg_ints; i++ )
duke@435 399 tmp_live[i] = t[i];
duke@435 400
duke@435 401 // OR in the remaining live registers
duke@435 402 for( uint j=1; j<b->_num_succs; j++ ) {
duke@435 403 uint sjnum = b->_succs[j]->_pre_order;
duke@435 404 int *t = &live[sjnum*max_reg_ints];
duke@435 405 for( int i=0; i<max_reg_ints; i++ )
duke@435 406 tmp_live[i] |= t[i];
duke@435 407 }
duke@435 408
duke@435 409 // Now walk tmp_live up the block backwards, computing live
duke@435 410 for( int k=b->_nodes.size()-1; k>=0; k-- ) {
duke@435 411 Node *n = b->_nodes[k];
duke@435 412 // KILL def'd bits
duke@435 413 int first = regalloc->get_reg_first(n);
duke@435 414 int second = regalloc->get_reg_second(n);
duke@435 415 if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
duke@435 416 if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);
duke@435 417
duke@435 418 MachNode *m = n->is_Mach() ? n->as_Mach() : NULL;
duke@435 419
duke@435 420 // Check if m is potentially a CISC alternate instruction (i.e, possibly
duke@435 421 // synthesized by RegAlloc from a conventional instruction and a
duke@435 422 // spilled input)
duke@435 423 bool is_cisc_alternate = false;
duke@435 424 if (UseCISCSpill && m) {
duke@435 425 is_cisc_alternate = m->is_cisc_alternate();
duke@435 426 }
duke@435 427
duke@435 428 // GEN use'd bits
duke@435 429 for( uint l=1; l<n->req(); l++ ) {
duke@435 430 Node *def = n->in(l);
duke@435 431 assert(def != 0, "input edge required");
duke@435 432 int first = regalloc->get_reg_first(def);
duke@435 433 int second = regalloc->get_reg_second(def);
duke@435 434 if( OptoReg::is_valid(first) ) set_live_bit(tmp_live,first);
duke@435 435 if( OptoReg::is_valid(second) ) set_live_bit(tmp_live,second);
duke@435 436 // If we use the stack pointer in a cisc-alternative instruction,
duke@435 437 // check for use as a memory operand. Then reconstruct the RegName
duke@435 438 // for this stack location, and set the appropriate bit in the
duke@435 439 // live vector 4987749.
duke@435 440 if (is_cisc_alternate && def == fp) {
duke@435 441 const TypePtr *adr_type = NULL;
duke@435 442 intptr_t offset;
duke@435 443 const Node* base = m->get_base_and_disp(offset, adr_type);
duke@435 444 if (base == NodeSentinel) {
duke@435 445 // Machnode has multiple memory inputs. We are unable to reason
duke@435 446 // with these, but are presuming (with trepidation) that not any of
duke@435 447 // them are oops. This can be fixed by making get_base_and_disp()
duke@435 448 // look at a specific input instead of all inputs.
duke@435 449 assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
duke@435 450 } else if (base != fp || offset == Type::OffsetBot) {
duke@435 451 // Do nothing: the fp operand is either not from a memory use
duke@435 452 // (base == NULL) OR the fp is used in a non-memory context
duke@435 453 // (base is some other register) OR the offset is not constant,
duke@435 454 // so it is not a stack slot.
duke@435 455 } else {
duke@435 456 assert(offset >= 0, "unexpected negative offset");
duke@435 457 offset -= (offset % jintSize); // count the whole word
duke@435 458 int stack_reg = regalloc->offset2reg(offset);
duke@435 459 if (OptoReg::is_stack(stack_reg)) {
duke@435 460 set_live_bit(tmp_live, stack_reg);
duke@435 461 } else {
duke@435 462 assert(false, "stack_reg not on stack?");
duke@435 463 }
duke@435 464 }
duke@435 465 }
duke@435 466 }
duke@435 467
duke@435 468 if( n->jvms() ) { // Record liveness at safepoint
duke@435 469
duke@435 470 // This placement of this stanza means inputs to calls are
duke@435 471 // considered live at the callsite's OopMap. Argument oops are
duke@435 472 // hence live, but NOT included in the oopmap. See cutout in
duke@435 473 // build_oop_map. Debug oops are live (and in OopMap).
duke@435 474 int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
duke@435 475 for( int l=0; l<max_reg_ints; l++ )
duke@435 476 n_live[l] = tmp_live[l];
duke@435 477 safehash->Insert(n,n_live);
duke@435 478 }
duke@435 479
duke@435 480 }
duke@435 481
duke@435 482 // Now at block top, see if we have any changes. If so, propagate
duke@435 483 // to prior blocks.
duke@435 484 int *old_live = &live[b->_pre_order*max_reg_ints];
duke@435 485 int l;
duke@435 486 for( l=0; l<max_reg_ints; l++ )
duke@435 487 if( tmp_live[l] != old_live[l] )
duke@435 488 break;
duke@435 489 if( l<max_reg_ints ) { // Change!
duke@435 490 // Copy in new value
duke@435 491 for( l=0; l<max_reg_ints; l++ )
duke@435 492 old_live[l] = tmp_live[l];
duke@435 493 // Push preds onto worklist
duke@435 494 for( l=1; l<(int)b->num_preds(); l++ )
duke@435 495 worklist->push(cfg->_bbs[b->pred(l)->_idx]);
duke@435 496 }
duke@435 497 }
duke@435 498
duke@435 499 // Scan for any missing safepoints. Happens to infinite loops
duke@435 500 // ala ZKM.jar
duke@435 501 uint i;
duke@435 502 for( i=1; i<cfg->_num_blocks; i++ ) {
duke@435 503 Block *b = cfg->_blocks[i];
duke@435 504 uint j;
duke@435 505 for( j=1; j<b->_nodes.size(); j++ )
duke@435 506 if( b->_nodes[j]->jvms() &&
duke@435 507 (*safehash)[b->_nodes[j]] == NULL )
duke@435 508 break;
duke@435 509 if( j<b->_nodes.size() ) break;
duke@435 510 }
duke@435 511 if( i == cfg->_num_blocks )
duke@435 512 break; // Got 'em all
duke@435 513 #ifndef PRODUCT
duke@435 514 if( PrintOpto && Verbose )
duke@435 515 tty->print_cr("retripping live calc");
duke@435 516 #endif
duke@435 517 // Force the issue (expensively): recheck everybody
duke@435 518 for( i=1; i<cfg->_num_blocks; i++ )
duke@435 519 worklist->push(cfg->_blocks[i]);
duke@435 520 }
duke@435 521
duke@435 522 }
duke@435 523
duke@435 524 //------------------------------BuildOopMaps-----------------------------------
duke@435 525 // Collect GC mask info - where are all the OOPs?
duke@435 526 void Compile::BuildOopMaps() {
duke@435 527 NOT_PRODUCT( TracePhase t3("bldOopMaps", &_t_buildOopMaps, TimeCompiler); )
duke@435 528 // Can't resource-mark because I need to leave all those OopMaps around,
duke@435 529 // or else I need to resource-mark some arena other than the default.
duke@435 530 // ResourceMark rm; // Reclaim all OopFlows when done
duke@435 531 int max_reg = _regalloc->_max_reg; // Current array extent
duke@435 532
duke@435 533 Arena *A = Thread::current()->resource_area();
duke@435 534 Block_List worklist; // Worklist of pending blocks
duke@435 535
duke@435 536 int max_reg_ints = round_to(max_reg, BitsPerInt)>>LogBitsPerInt;
duke@435 537 Dict *safehash = NULL; // Used for assert only
duke@435 538 // Compute a backwards liveness per register. Needs a bitarray of
duke@435 539 // #blocks x (#registers, rounded up to ints)
duke@435 540 safehash = new Dict(cmpkey,hashkey,A);
duke@435 541 do_liveness( _regalloc, _cfg, &worklist, max_reg_ints, A, safehash );
duke@435 542 OopFlow *free_list = NULL; // Free, unused
duke@435 543
duke@435 544 // Array mapping blocks to completed oopflows
duke@435 545 OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->_num_blocks);
duke@435 546 memset( flows, 0, _cfg->_num_blocks*sizeof(OopFlow*) );
duke@435 547
duke@435 548
duke@435 549 // Do the first block 'by hand' to prime the worklist
duke@435 550 Block *entry = _cfg->_blocks[1];
duke@435 551 OopFlow *rootflow = OopFlow::make(A,max_reg);
duke@435 552 // Initialize to 'bottom' (not 'top')
duke@435 553 memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
duke@435 554 memset( rootflow->_defs , 0, max_reg*sizeof(Node*) );
duke@435 555 flows[entry->_pre_order] = rootflow;
duke@435 556
duke@435 557 // Do the first block 'by hand' to prime the worklist
duke@435 558 rootflow->_b = entry;
duke@435 559 rootflow->compute_reach( _regalloc, max_reg, safehash );
duke@435 560 for( uint i=0; i<entry->_num_succs; i++ )
duke@435 561 worklist.push(entry->_succs[i]);
duke@435 562
duke@435 563 // Now worklist contains blocks which have some, but perhaps not all,
duke@435 564 // predecessors visited.
duke@435 565 while( worklist.size() ) {
duke@435 566 // Scan for a block with all predecessors visited, or any randoms slob
duke@435 567 // otherwise. All-preds-visited order allows me to recycle OopFlow
duke@435 568 // structures rapidly and cut down on the memory footprint.
duke@435 569 // Note: not all predecessors might be visited yet (must happen for
duke@435 570 // irreducible loops). This is OK, since every live value must have the
duke@435 571 // SAME reaching def for the block, so any reaching def is OK.
duke@435 572 uint i;
duke@435 573
duke@435 574 Block *b = worklist.pop();
duke@435 575 // Ignore root block
duke@435 576 if( b == _cfg->_broot ) continue;
duke@435 577 // Block is already done? Happens if block has several predecessors,
duke@435 578 // he can get on the worklist more than once.
duke@435 579 if( flows[b->_pre_order] ) continue;
duke@435 580
duke@435 581 // If this block has a visited predecessor AND that predecessor has this
duke@435 582 // last block as his only undone child, we can move the OopFlow from the
duke@435 583 // pred to this block. Otherwise we have to grab a new OopFlow.
duke@435 584 OopFlow *flow = NULL; // Flag for finding optimized flow
duke@435 585 Block *pred = (Block*)0xdeadbeef;
duke@435 586 uint j;
duke@435 587 // Scan this block's preds to find a done predecessor
duke@435 588 for( j=1; j<b->num_preds(); j++ ) {
duke@435 589 Block *p = _cfg->_bbs[b->pred(j)->_idx];
duke@435 590 OopFlow *p_flow = flows[p->_pre_order];
duke@435 591 if( p_flow ) { // Predecessor is done
duke@435 592 assert( p_flow->_b == p, "cross check" );
duke@435 593 pred = p; // Record some predecessor
duke@435 594 // If all successors of p are done except for 'b', then we can carry
duke@435 595 // p_flow forward to 'b' without copying, otherwise we have to draw
duke@435 596 // from the free_list and clone data.
duke@435 597 uint k;
duke@435 598 for( k=0; k<p->_num_succs; k++ )
duke@435 599 if( !flows[p->_succs[k]->_pre_order] &&
duke@435 600 p->_succs[k] != b )
duke@435 601 break;
duke@435 602
duke@435 603 // Either carry-forward the now-unused OopFlow for b's use
duke@435 604 // or draw a new one from the free list
duke@435 605 if( k==p->_num_succs ) {
duke@435 606 flow = p_flow;
duke@435 607 break; // Found an ideal pred, use him
duke@435 608 }
duke@435 609 }
duke@435 610 }
duke@435 611
duke@435 612 if( flow ) {
duke@435 613 // We have an OopFlow that's the last-use of a predecessor.
duke@435 614 // Carry it forward.
duke@435 615 } else { // Draw a new OopFlow from the freelist
duke@435 616 if( !free_list )
duke@435 617 free_list = OopFlow::make(A,max_reg);
duke@435 618 flow = free_list;
duke@435 619 assert( flow->_b == NULL, "oopFlow is not free" );
duke@435 620 free_list = flow->_next;
duke@435 621 flow->_next = NULL;
duke@435 622
duke@435 623 // Copy/clone over the data
duke@435 624 flow->clone(flows[pred->_pre_order], max_reg);
duke@435 625 }
duke@435 626
duke@435 627 // Mark flow for block. Blocks can only be flowed over once,
duke@435 628 // because after the first time they are guarded from entering
duke@435 629 // this code again.
duke@435 630 assert( flow->_b == pred, "have some prior flow" );
duke@435 631 flow->_b = NULL;
duke@435 632
duke@435 633 // Now push flow forward
duke@435 634 flows[b->_pre_order] = flow;// Mark flow for this block
duke@435 635 flow->_b = b;
duke@435 636 flow->compute_reach( _regalloc, max_reg, safehash );
duke@435 637
duke@435 638 // Now push children onto worklist
duke@435 639 for( i=0; i<b->_num_succs; i++ )
duke@435 640 worklist.push(b->_succs[i]);
duke@435 641
duke@435 642 }
duke@435 643 }

mercurial