src/share/vm/memory/collectorPolicy.cpp

Thu, 23 May 2013 12:44:18 +0100

author
chegar
date
Thu, 23 May 2013 12:44:18 +0100
changeset 5249
ce9ecec70f99
parent 5125
2958af1d8c5a
child 5578
4c84d351cca9
permissions
-rw-r--r--

Merge

duke@435 1 /*
jwilhelm@4554 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
stefank@2314 27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
stefank@2314 28 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 29 #include "memory/cardTableRS.hpp"
stefank@2314 30 #include "memory/collectorPolicy.hpp"
stefank@2314 31 #include "memory/gcLocker.inline.hpp"
stefank@2314 32 #include "memory/genCollectedHeap.hpp"
stefank@2314 33 #include "memory/generationSpec.hpp"
stefank@2314 34 #include "memory/space.hpp"
stefank@2314 35 #include "memory/universe.hpp"
stefank@2314 36 #include "runtime/arguments.hpp"
stefank@2314 37 #include "runtime/globals_extension.hpp"
stefank@2314 38 #include "runtime/handles.inline.hpp"
stefank@2314 39 #include "runtime/java.hpp"
stefank@4299 40 #include "runtime/thread.inline.hpp"
stefank@2314 41 #include "runtime/vmThread.hpp"
jprovino@4542 42 #include "utilities/macros.hpp"
jprovino@4542 43 #if INCLUDE_ALL_GCS
stefank@2314 44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
stefank@2314 45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
jprovino@4542 46 #endif // INCLUDE_ALL_GCS
duke@435 47
duke@435 48 // CollectorPolicy methods.
duke@435 49
duke@435 50 void CollectorPolicy::initialize_flags() {
brutisso@5071 51 assert(max_alignment() >= min_alignment(),
brutisso@5071 52 err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
brutisso@5071 53 max_alignment(), min_alignment()));
brutisso@5071 54 assert(max_alignment() % min_alignment() == 0,
brutisso@5071 55 err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
brutisso@5071 56 max_alignment(), min_alignment()));
brutisso@5071 57
tschatzl@5073 58 if (MaxHeapSize < InitialHeapSize) {
tschatzl@5073 59 vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
tschatzl@5073 60 }
tschatzl@5073 61
coleenp@4037 62 if (MetaspaceSize > MaxMetaspaceSize) {
coleenp@4037 63 MaxMetaspaceSize = MetaspaceSize;
duke@435 64 }
coleenp@4037 65 MetaspaceSize = MAX2(min_alignment(), align_size_down_(MetaspaceSize, min_alignment()));
coleenp@4037 66 // Don't increase Metaspace size limit above specified.
coleenp@4037 67 MaxMetaspaceSize = align_size_down(MaxMetaspaceSize, max_alignment());
coleenp@4037 68 if (MetaspaceSize > MaxMetaspaceSize) {
coleenp@4037 69 MetaspaceSize = MaxMetaspaceSize;
kvn@2150 70 }
duke@435 71
coleenp@4037 72 MinMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MinMetaspaceExpansion, min_alignment()));
coleenp@4037 73 MaxMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MaxMetaspaceExpansion, min_alignment()));
duke@435 74
duke@435 75 MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
duke@435 76
coleenp@4037 77 assert(MetaspaceSize % min_alignment() == 0, "metapace alignment");
coleenp@4037 78 assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
coleenp@4037 79 if (MetaspaceSize < 256*K) {
coleenp@4037 80 vm_exit_during_initialization("Too small initial Metaspace size");
duke@435 81 }
duke@435 82 }
duke@435 83
duke@435 84 void CollectorPolicy::initialize_size_info() {
tschatzl@5073 85 // User inputs from -mx and ms must be aligned
tschatzl@5073 86 set_min_heap_byte_size(align_size_up(Arguments::min_heap_size(), min_alignment()));
tschatzl@5073 87 set_initial_heap_byte_size(align_size_up(InitialHeapSize, min_alignment()));
ysr@777 88 set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
duke@435 89
duke@435 90 // Check heap parameter properties
jmasa@448 91 if (initial_heap_byte_size() < M) {
duke@435 92 vm_exit_during_initialization("Too small initial heap");
duke@435 93 }
duke@435 94 // Check heap parameter properties
jmasa@448 95 if (min_heap_byte_size() < M) {
duke@435 96 vm_exit_during_initialization("Too small minimum heap");
duke@435 97 }
jmasa@448 98 if (initial_heap_byte_size() <= NewSize) {
duke@435 99 // make sure there is at least some room in old space
duke@435 100 vm_exit_during_initialization("Too small initial heap for new size specified");
duke@435 101 }
jmasa@448 102 if (max_heap_byte_size() < min_heap_byte_size()) {
duke@435 103 vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
duke@435 104 }
jmasa@448 105 if (initial_heap_byte_size() < min_heap_byte_size()) {
duke@435 106 vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
duke@435 107 }
jmasa@448 108 if (max_heap_byte_size() < initial_heap_byte_size()) {
duke@435 109 vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
duke@435 110 }
jmasa@448 111
jmasa@448 112 if (PrintGCDetails && Verbose) {
jmasa@448 113 gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT " Initial heap "
jmasa@448 114 SIZE_FORMAT " Maximum heap " SIZE_FORMAT,
jmasa@448 115 min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
jmasa@448 116 }
duke@435 117 }
duke@435 118
jmasa@1822 119 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
jmasa@1822 120 bool result = _should_clear_all_soft_refs;
jmasa@1822 121 set_should_clear_all_soft_refs(false);
jmasa@1822 122 return result;
jmasa@1822 123 }
duke@435 124
duke@435 125 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
duke@435 126 int max_covered_regions) {
duke@435 127 switch (rem_set_name()) {
duke@435 128 case GenRemSet::CardTable: {
duke@435 129 CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
duke@435 130 return res;
duke@435 131 }
duke@435 132 default:
duke@435 133 guarantee(false, "unrecognized GenRemSet::Name");
duke@435 134 return NULL;
duke@435 135 }
duke@435 136 }
duke@435 137
jmasa@1822 138 void CollectorPolicy::cleared_all_soft_refs() {
jmasa@1822 139 // If near gc overhear limit, continue to clear SoftRefs. SoftRefs may
jmasa@1822 140 // have been cleared in the last collection but if the gc overhear
jmasa@1822 141 // limit continues to be near, SoftRefs should still be cleared.
jmasa@1822 142 if (size_policy() != NULL) {
jmasa@1822 143 _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
jmasa@1822 144 }
jmasa@1822 145 _all_soft_refs_clear = true;
jmasa@1822 146 }
jmasa@1822 147
jmasa@1822 148
duke@435 149 // GenCollectorPolicy methods.
duke@435 150
jmasa@448 151 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
jmasa@448 152 size_t x = base_size / (NewRatio+1);
jmasa@448 153 size_t new_gen_size = x > min_alignment() ?
jmasa@448 154 align_size_down(x, min_alignment()) :
jmasa@448 155 min_alignment();
jmasa@448 156 return new_gen_size;
jmasa@448 157 }
jmasa@448 158
jmasa@448 159 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
jmasa@448 160 size_t maximum_size) {
jmasa@448 161 size_t alignment = min_alignment();
jmasa@448 162 size_t max_minus = maximum_size - alignment;
jmasa@448 163 return desired_size < max_minus ? desired_size : max_minus;
jmasa@448 164 }
jmasa@448 165
jmasa@448 166
duke@435 167 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
duke@435 168 size_t init_promo_size,
duke@435 169 size_t init_survivor_size) {
tamao@4613 170 const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
duke@435 171 _size_policy = new AdaptiveSizePolicy(init_eden_size,
duke@435 172 init_promo_size,
duke@435 173 init_survivor_size,
tamao@4613 174 max_gc_pause_sec,
duke@435 175 GCTimeRatio);
duke@435 176 }
duke@435 177
duke@435 178 size_t GenCollectorPolicy::compute_max_alignment() {
duke@435 179 // The card marking array and the offset arrays for old generations are
duke@435 180 // committed in os pages as well. Make sure they are entirely full (to
duke@435 181 // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
duke@435 182 // byte entry and the os page size is 4096, the maximum heap size should
duke@435 183 // be 512*4096 = 2MB aligned.
duke@435 184 size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
duke@435 185
duke@435 186 // Parallel GC does its own alignment of the generations to avoid requiring a
duke@435 187 // large page (256M on some platforms) for the permanent generation. The
duke@435 188 // other collectors should also be updated to do their own alignment and then
duke@435 189 // this use of lcm() should be removed.
duke@435 190 if (UseLargePages && !UseParallelGC) {
duke@435 191 // in presence of large pages we have to make sure that our
duke@435 192 // alignment is large page aware
duke@435 193 alignment = lcm(os::large_page_size(), alignment);
duke@435 194 }
duke@435 195
duke@435 196 return alignment;
duke@435 197 }
duke@435 198
duke@435 199 void GenCollectorPolicy::initialize_flags() {
duke@435 200 // All sizes must be multiples of the generation granularity.
duke@435 201 set_min_alignment((uintx) Generation::GenGrain);
duke@435 202 set_max_alignment(compute_max_alignment());
duke@435 203
duke@435 204 CollectorPolicy::initialize_flags();
duke@435 205
duke@435 206 // All generational heaps have a youngest gen; handle those flags here.
duke@435 207
duke@435 208 // Adjust max size parameters
duke@435 209 if (NewSize > MaxNewSize) {
duke@435 210 MaxNewSize = NewSize;
duke@435 211 }
duke@435 212 NewSize = align_size_down(NewSize, min_alignment());
duke@435 213 MaxNewSize = align_size_down(MaxNewSize, min_alignment());
duke@435 214
duke@435 215 // Check validity of heap flags
duke@435 216 assert(NewSize % min_alignment() == 0, "eden space alignment");
duke@435 217 assert(MaxNewSize % min_alignment() == 0, "survivor space alignment");
duke@435 218
duke@435 219 if (NewSize < 3*min_alignment()) {
duke@435 220 // make sure there room for eden and two survivor spaces
duke@435 221 vm_exit_during_initialization("Too small new size specified");
duke@435 222 }
duke@435 223 if (SurvivorRatio < 1 || NewRatio < 1) {
duke@435 224 vm_exit_during_initialization("Invalid heap ratio specified");
duke@435 225 }
duke@435 226 }
duke@435 227
duke@435 228 void TwoGenerationCollectorPolicy::initialize_flags() {
duke@435 229 GenCollectorPolicy::initialize_flags();
duke@435 230
duke@435 231 OldSize = align_size_down(OldSize, min_alignment());
jwilhelm@4554 232
jwilhelm@4554 233 if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
jwilhelm@4554 234 // NewRatio will be used later to set the young generation size so we use
jwilhelm@4554 235 // it to calculate how big the heap should be based on the requested OldSize
jwilhelm@4554 236 // and NewRatio.
jwilhelm@4554 237 assert(NewRatio > 0, "NewRatio should have been set up earlier");
jwilhelm@4554 238 size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
jwilhelm@4554 239
jwilhelm@4554 240 calculated_heapsize = align_size_up(calculated_heapsize, max_alignment());
jwilhelm@4554 241 MaxHeapSize = calculated_heapsize;
jwilhelm@4554 242 InitialHeapSize = calculated_heapsize;
jwilhelm@4554 243 }
duke@435 244 MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
duke@435 245
tschatzl@5073 246 // adjust max heap size if necessary
tschatzl@5073 247 if (NewSize + OldSize > MaxHeapSize) {
tschatzl@5073 248 if (FLAG_IS_CMDLINE(MaxHeapSize)) {
tschatzl@5073 249 // somebody set a maximum heap size with the intention that we should not
tschatzl@5073 250 // exceed it. Adjust New/OldSize as necessary.
tschatzl@5073 251 uintx calculated_size = NewSize + OldSize;
tschatzl@5073 252 double shrink_factor = (double) MaxHeapSize / calculated_size;
tschatzl@5073 253 // align
tschatzl@5073 254 NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
tschatzl@5073 255 // OldSize is already aligned because above we aligned MaxHeapSize to
tschatzl@5073 256 // max_alignment(), and we just made sure that NewSize is aligned to
tschatzl@5073 257 // min_alignment(). In initialize_flags() we verified that max_alignment()
tschatzl@5073 258 // is a multiple of min_alignment().
tschatzl@5073 259 OldSize = MaxHeapSize - NewSize;
tschatzl@5073 260 } else {
tschatzl@5073 261 MaxHeapSize = NewSize + OldSize;
tschatzl@5073 262 }
tschatzl@5073 263 }
tschatzl@5073 264 // need to do this again
tschatzl@5073 265 MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
tschatzl@5073 266
tschatzl@5116 267 // adjust max heap size if necessary
tschatzl@5116 268 if (NewSize + OldSize > MaxHeapSize) {
tschatzl@5116 269 if (FLAG_IS_CMDLINE(MaxHeapSize)) {
tschatzl@5116 270 // somebody set a maximum heap size with the intention that we should not
tschatzl@5116 271 // exceed it. Adjust New/OldSize as necessary.
tschatzl@5116 272 uintx calculated_size = NewSize + OldSize;
tschatzl@5116 273 double shrink_factor = (double) MaxHeapSize / calculated_size;
tschatzl@5116 274 // align
tschatzl@5116 275 NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
tschatzl@5116 276 // OldSize is already aligned because above we aligned MaxHeapSize to
tschatzl@5116 277 // max_alignment(), and we just made sure that NewSize is aligned to
tschatzl@5116 278 // min_alignment(). In initialize_flags() we verified that max_alignment()
tschatzl@5116 279 // is a multiple of min_alignment().
tschatzl@5116 280 OldSize = MaxHeapSize - NewSize;
tschatzl@5116 281 } else {
tschatzl@5116 282 MaxHeapSize = NewSize + OldSize;
tschatzl@5116 283 }
tschatzl@5116 284 }
tschatzl@5116 285 // need to do this again
tschatzl@5116 286 MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
tschatzl@5116 287
duke@435 288 always_do_update_barrier = UseConcMarkSweepGC;
duke@435 289
duke@435 290 // Check validity of heap flags
duke@435 291 assert(OldSize % min_alignment() == 0, "old space alignment");
duke@435 292 assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
duke@435 293 }
duke@435 294
jmasa@448 295 // Values set on the command line win over any ergonomically
jmasa@448 296 // set command line parameters.
jmasa@448 297 // Ergonomic choice of parameters are done before this
jmasa@448 298 // method is called. Values for command line parameters such as NewSize
jmasa@448 299 // and MaxNewSize feed those ergonomic choices into this method.
jmasa@448 300 // This method makes the final generation sizings consistent with
jmasa@448 301 // themselves and with overall heap sizings.
jmasa@448 302 // In the absence of explicitly set command line flags, policies
jmasa@448 303 // such as the use of NewRatio are used to size the generation.
duke@435 304 void GenCollectorPolicy::initialize_size_info() {
duke@435 305 CollectorPolicy::initialize_size_info();
duke@435 306
jmasa@448 307 // min_alignment() is used for alignment within a generation.
jmasa@448 308 // There is additional alignment done down stream for some
jmasa@448 309 // collectors that sometimes causes unwanted rounding up of
jmasa@448 310 // generations sizes.
jmasa@448 311
jmasa@448 312 // Determine maximum size of gen0
jmasa@448 313
jmasa@448 314 size_t max_new_size = 0;
ysr@2650 315 if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
jmasa@448 316 if (MaxNewSize < min_alignment()) {
jmasa@448 317 max_new_size = min_alignment();
ysr@2650 318 }
ysr@2650 319 if (MaxNewSize >= max_heap_byte_size()) {
jmasa@448 320 max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
jmasa@448 321 min_alignment());
jmasa@448 322 warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
jmasa@448 323 "greater than the entire heap (" SIZE_FORMAT "k). A "
jmasa@448 324 "new generation size of " SIZE_FORMAT "k will be used.",
jmasa@448 325 MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
jmasa@448 326 } else {
jmasa@448 327 max_new_size = align_size_down(MaxNewSize, min_alignment());
jmasa@448 328 }
jmasa@448 329
jmasa@448 330 // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
jmasa@448 331 // specially at this point to just use an ergonomically set
jmasa@448 332 // MaxNewSize to set max_new_size. For cases with small
jmasa@448 333 // heaps such a policy often did not work because the MaxNewSize
jmasa@448 334 // was larger than the entire heap. The interpretation given
jmasa@448 335 // to ergonomically set flags is that the flags are set
jmasa@448 336 // by different collectors for their own special needs but
jmasa@448 337 // are not allowed to badly shape the heap. This allows the
jmasa@448 338 // different collectors to decide what's best for themselves
jmasa@448 339 // without having to factor in the overall heap shape. It
jmasa@448 340 // can be the case in the future that the collectors would
jmasa@448 341 // only make "wise" ergonomics choices and this policy could
jmasa@448 342 // just accept those choices. The choices currently made are
jmasa@448 343 // not always "wise".
duke@435 344 } else {
jmasa@448 345 max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
jmasa@448 346 // Bound the maximum size by NewSize below (since it historically
duke@435 347 // would have been NewSize and because the NewRatio calculation could
duke@435 348 // yield a size that is too small) and bound it by MaxNewSize above.
jmasa@448 349 // Ergonomics plays here by previously calculating the desired
jmasa@448 350 // NewSize and MaxNewSize.
jmasa@448 351 max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
jmasa@448 352 }
jmasa@448 353 assert(max_new_size > 0, "All paths should set max_new_size");
jmasa@448 354
jmasa@448 355 // Given the maximum gen0 size, determine the initial and
ysr@2650 356 // minimum gen0 sizes.
jmasa@448 357
jmasa@448 358 if (max_heap_byte_size() == min_heap_byte_size()) {
jmasa@448 359 // The maximum and minimum heap sizes are the same so
jmasa@448 360 // the generations minimum and initial must be the
jmasa@448 361 // same as its maximum.
jmasa@448 362 set_min_gen0_size(max_new_size);
jmasa@448 363 set_initial_gen0_size(max_new_size);
jmasa@448 364 set_max_gen0_size(max_new_size);
jmasa@448 365 } else {
jmasa@448 366 size_t desired_new_size = 0;
jmasa@448 367 if (!FLAG_IS_DEFAULT(NewSize)) {
jmasa@448 368 // If NewSize is set ergonomically (for example by cms), it
jmasa@448 369 // would make sense to use it. If it is used, also use it
jmasa@448 370 // to set the initial size. Although there is no reason
jmasa@448 371 // the minimum size and the initial size have to be the same,
jmasa@448 372 // the current implementation gets into trouble during the calculation
jmasa@448 373 // of the tenured generation sizes if they are different.
jmasa@448 374 // Note that this makes the initial size and the minimum size
jmasa@448 375 // generally small compared to the NewRatio calculation.
jmasa@448 376 _min_gen0_size = NewSize;
jmasa@448 377 desired_new_size = NewSize;
jmasa@448 378 max_new_size = MAX2(max_new_size, NewSize);
jmasa@448 379 } else {
jmasa@448 380 // For the case where NewSize is the default, use NewRatio
jmasa@448 381 // to size the minimum and initial generation sizes.
jmasa@448 382 // Use the default NewSize as the floor for these values. If
jmasa@448 383 // NewRatio is overly large, the resulting sizes can be too
jmasa@448 384 // small.
jmasa@448 385 _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
jmasa@448 386 NewSize);
jmasa@448 387 desired_new_size =
jmasa@448 388 MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
jmasa@448 389 NewSize);
jmasa@448 390 }
jmasa@448 391
jmasa@448 392 assert(_min_gen0_size > 0, "Sanity check");
jmasa@448 393 set_initial_gen0_size(desired_new_size);
jmasa@448 394 set_max_gen0_size(max_new_size);
jmasa@448 395
jmasa@448 396 // At this point the desirable initial and minimum sizes have been
jmasa@448 397 // determined without regard to the maximum sizes.
jmasa@448 398
jmasa@448 399 // Bound the sizes by the corresponding overall heap sizes.
jmasa@448 400 set_min_gen0_size(
jmasa@448 401 bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
jmasa@448 402 set_initial_gen0_size(
jmasa@448 403 bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
jmasa@448 404 set_max_gen0_size(
jmasa@448 405 bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
jmasa@448 406
jmasa@448 407 // At this point all three sizes have been checked against the
jmasa@448 408 // maximum sizes but have not been checked for consistency
ysr@777 409 // among the three.
jmasa@448 410
jmasa@448 411 // Final check min <= initial <= max
jmasa@448 412 set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
jmasa@448 413 set_initial_gen0_size(
jmasa@448 414 MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
jmasa@448 415 set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
duke@435 416 }
duke@435 417
jmasa@448 418 if (PrintGCDetails && Verbose) {
ysr@2650 419 gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 420 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 421 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 422 }
jmasa@448 423 }
duke@435 424
jmasa@448 425 // Call this method during the sizing of the gen1 to make
jmasa@448 426 // adjustments to gen0 because of gen1 sizing policy. gen0 initially has
jmasa@448 427 // the most freedom in sizing because it is done before the
jmasa@448 428 // policy for gen1 is applied. Once gen1 policies have been applied,
jmasa@448 429 // there may be conflicts in the shape of the heap and this method
jmasa@448 430 // is used to make the needed adjustments. The application of the
jmasa@448 431 // policies could be more sophisticated (iterative for example) but
jmasa@448 432 // keeping it simple also seems a worthwhile goal.
jmasa@448 433 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
jmasa@448 434 size_t* gen1_size_ptr,
jwilhelm@4554 435 const size_t heap_size,
jwilhelm@4554 436 const size_t min_gen1_size) {
jmasa@448 437 bool result = false;
jwilhelm@4554 438
jmasa@448 439 if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
jwilhelm@4554 440 if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
jwilhelm@4554 441 (heap_size >= min_gen1_size + min_alignment())) {
jwilhelm@4554 442 // Adjust gen0 down to accommodate min_gen1_size
jwilhelm@4554 443 *gen0_size_ptr = heap_size - min_gen1_size;
jmasa@448 444 *gen0_size_ptr =
jmasa@448 445 MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
jmasa@448 446 min_alignment());
jmasa@448 447 assert(*gen0_size_ptr > 0, "Min gen0 is too large");
jmasa@448 448 result = true;
jmasa@448 449 } else {
jmasa@448 450 *gen1_size_ptr = heap_size - *gen0_size_ptr;
jmasa@448 451 *gen1_size_ptr =
jmasa@448 452 MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
jmasa@448 453 min_alignment());
jmasa@448 454 }
jmasa@448 455 }
jmasa@448 456 return result;
jmasa@448 457 }
duke@435 458
jmasa@448 459 // Minimum sizes of the generations may be different than
jmasa@448 460 // the initial sizes. An inconsistently is permitted here
jmasa@448 461 // in the total size that can be specified explicitly by
jmasa@448 462 // command line specification of OldSize and NewSize and
jmasa@448 463 // also a command line specification of -Xms. Issue a warning
jmasa@448 464 // but allow the values to pass.
duke@435 465
duke@435 466 void TwoGenerationCollectorPolicy::initialize_size_info() {
duke@435 467 GenCollectorPolicy::initialize_size_info();
duke@435 468
jmasa@448 469 // At this point the minimum, initial and maximum sizes
jmasa@448 470 // of the overall heap and of gen0 have been determined.
jmasa@448 471 // The maximum gen1 size can be determined from the maximum gen0
ysr@2650 472 // and maximum heap size since no explicit flags exits
jmasa@448 473 // for setting the gen1 maximum.
jmasa@448 474 _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
jmasa@448 475 _max_gen1_size =
jmasa@448 476 MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
jmasa@448 477 min_alignment());
jmasa@448 478 // If no explicit command line flag has been set for the
jmasa@448 479 // gen1 size, use what is left for gen1.
jmasa@448 480 if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
jmasa@448 481 // The user has not specified any value or ergonomics
jmasa@448 482 // has chosen a value (which may or may not be consistent
jmasa@448 483 // with the overall heap size). In either case make
jmasa@448 484 // the minimum, maximum and initial sizes consistent
jmasa@448 485 // with the gen0 sizes and the overall heap sizes.
jmasa@448 486 assert(min_heap_byte_size() > _min_gen0_size,
jmasa@448 487 "gen0 has an unexpected minimum size");
jmasa@448 488 set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
jmasa@448 489 set_min_gen1_size(
jmasa@448 490 MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
jmasa@448 491 min_alignment()));
jmasa@448 492 set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
jmasa@448 493 set_initial_gen1_size(
jmasa@448 494 MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
jmasa@448 495 min_alignment()));
jmasa@448 496
jmasa@448 497 } else {
jmasa@448 498 // It's been explicitly set on the command line. Use the
jmasa@448 499 // OldSize and then determine the consequences.
jmasa@448 500 set_min_gen1_size(OldSize);
jmasa@448 501 set_initial_gen1_size(OldSize);
jmasa@448 502
jmasa@448 503 // If the user has explicitly set an OldSize that is inconsistent
jmasa@448 504 // with other command line flags, issue a warning.
duke@435 505 // The generation minimums and the overall heap mimimum should
duke@435 506 // be within one heap alignment.
jmasa@448 507 if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
jmasa@448 508 min_heap_byte_size()) {
duke@435 509 warning("Inconsistency between minimum heap size and minimum "
jmasa@448 510 "generation sizes: using minimum heap = " SIZE_FORMAT,
jmasa@448 511 min_heap_byte_size());
duke@435 512 }
jmasa@448 513 if ((OldSize > _max_gen1_size)) {
jmasa@448 514 warning("Inconsistency between maximum heap size and maximum "
jmasa@448 515 "generation sizes: using maximum heap = " SIZE_FORMAT
jmasa@448 516 " -XX:OldSize flag is being ignored",
jmasa@448 517 max_heap_byte_size());
ysr@2650 518 }
jmasa@448 519 // If there is an inconsistency between the OldSize and the minimum and/or
jmasa@448 520 // initial size of gen0, since OldSize was explicitly set, OldSize wins.
jmasa@448 521 if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
jmasa@448 522 min_heap_byte_size(), OldSize)) {
jmasa@448 523 if (PrintGCDetails && Verbose) {
ysr@2650 524 gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 525 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 526 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 527 }
jmasa@448 528 }
jmasa@448 529 // Initial size
jmasa@448 530 if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
jmasa@448 531 initial_heap_byte_size(), OldSize)) {
jmasa@448 532 if (PrintGCDetails && Verbose) {
ysr@2650 533 gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 534 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 535 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 536 }
jmasa@448 537 }
jmasa@448 538 }
jmasa@448 539 // Enforce the maximum gen1 size.
jmasa@448 540 set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
duke@435 541
jmasa@448 542 // Check that min gen1 <= initial gen1 <= max gen1
jmasa@448 543 set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
jmasa@448 544 set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
jmasa@448 545
jmasa@448 546 if (PrintGCDetails && Verbose) {
jmasa@448 547 gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT " Initial gen1 "
jmasa@448 548 SIZE_FORMAT " Maximum gen1 " SIZE_FORMAT,
jmasa@448 549 min_gen1_size(), initial_gen1_size(), max_gen1_size());
jmasa@448 550 }
duke@435 551 }
duke@435 552
duke@435 553 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
duke@435 554 bool is_tlab,
duke@435 555 bool* gc_overhead_limit_was_exceeded) {
duke@435 556 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 557
duke@435 558 debug_only(gch->check_for_valid_allocation_state());
duke@435 559 assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
jmasa@1822 560
jmasa@1822 561 // In general gc_overhead_limit_was_exceeded should be false so
jmasa@1822 562 // set it so here and reset it to true only if the gc time
jmasa@1822 563 // limit is being exceeded as checked below.
jmasa@1822 564 *gc_overhead_limit_was_exceeded = false;
jmasa@1822 565
duke@435 566 HeapWord* result = NULL;
duke@435 567
duke@435 568 // Loop until the allocation is satisified,
duke@435 569 // or unsatisfied after GC.
mgerdin@4853 570 for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
duke@435 571 HandleMark hm; // discard any handles allocated in each iteration
duke@435 572
duke@435 573 // First allocation attempt is lock-free.
duke@435 574 Generation *gen0 = gch->get_gen(0);
duke@435 575 assert(gen0->supports_inline_contig_alloc(),
duke@435 576 "Otherwise, must do alloc within heap lock");
duke@435 577 if (gen0->should_allocate(size, is_tlab)) {
duke@435 578 result = gen0->par_allocate(size, is_tlab);
duke@435 579 if (result != NULL) {
duke@435 580 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 581 return result;
duke@435 582 }
duke@435 583 }
duke@435 584 unsigned int gc_count_before; // read inside the Heap_lock locked region
duke@435 585 {
duke@435 586 MutexLocker ml(Heap_lock);
duke@435 587 if (PrintGC && Verbose) {
duke@435 588 gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
duke@435 589 " attempting locked slow path allocation");
duke@435 590 }
duke@435 591 // Note that only large objects get a shot at being
duke@435 592 // allocated in later generations.
duke@435 593 bool first_only = ! should_try_older_generation_allocation(size);
duke@435 594
duke@435 595 result = gch->attempt_allocation(size, is_tlab, first_only);
duke@435 596 if (result != NULL) {
duke@435 597 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 598 return result;
duke@435 599 }
duke@435 600
duke@435 601 if (GC_locker::is_active_and_needs_gc()) {
duke@435 602 if (is_tlab) {
duke@435 603 return NULL; // Caller will retry allocating individual object
duke@435 604 }
duke@435 605 if (!gch->is_maximal_no_gc()) {
duke@435 606 // Try and expand heap to satisfy request
duke@435 607 result = expand_heap_and_allocate(size, is_tlab);
duke@435 608 // result could be null if we are out of space
duke@435 609 if (result != NULL) {
duke@435 610 return result;
duke@435 611 }
duke@435 612 }
duke@435 613
mgerdin@4853 614 if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
mgerdin@4853 615 return NULL; // we didn't get to do a GC and we didn't get any memory
mgerdin@4853 616 }
mgerdin@4853 617
duke@435 618 // If this thread is not in a jni critical section, we stall
duke@435 619 // the requestor until the critical section has cleared and
duke@435 620 // GC allowed. When the critical section clears, a GC is
duke@435 621 // initiated by the last thread exiting the critical section; so
duke@435 622 // we retry the allocation sequence from the beginning of the loop,
duke@435 623 // rather than causing more, now probably unnecessary, GC attempts.
duke@435 624 JavaThread* jthr = JavaThread::current();
duke@435 625 if (!jthr->in_critical()) {
duke@435 626 MutexUnlocker mul(Heap_lock);
duke@435 627 // Wait for JNI critical section to be exited
duke@435 628 GC_locker::stall_until_clear();
mgerdin@4853 629 gclocker_stalled_count += 1;
duke@435 630 continue;
duke@435 631 } else {
duke@435 632 if (CheckJNICalls) {
duke@435 633 fatal("Possible deadlock due to allocating while"
duke@435 634 " in jni critical section");
duke@435 635 }
duke@435 636 return NULL;
duke@435 637 }
duke@435 638 }
duke@435 639
duke@435 640 // Read the gc count while the heap lock is held.
duke@435 641 gc_count_before = Universe::heap()->total_collections();
duke@435 642 }
duke@435 643
duke@435 644 VM_GenCollectForAllocation op(size,
duke@435 645 is_tlab,
duke@435 646 gc_count_before);
duke@435 647 VMThread::execute(&op);
duke@435 648 if (op.prologue_succeeded()) {
duke@435 649 result = op.result();
duke@435 650 if (op.gc_locked()) {
duke@435 651 assert(result == NULL, "must be NULL if gc_locked() is true");
duke@435 652 continue; // retry and/or stall as necessary
duke@435 653 }
jmasa@1822 654
jmasa@1822 655 // Allocation has failed and a collection
jmasa@1822 656 // has been done. If the gc time limit was exceeded the
jmasa@1822 657 // this time, return NULL so that an out-of-memory
jmasa@1822 658 // will be thrown. Clear gc_overhead_limit_exceeded
jmasa@1822 659 // so that the overhead exceeded does not persist.
jmasa@1822 660
jmasa@1822 661 const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
jmasa@1822 662 const bool softrefs_clear = all_soft_refs_clear();
jmasa@4743 663
jmasa@1822 664 if (limit_exceeded && softrefs_clear) {
jmasa@1822 665 *gc_overhead_limit_was_exceeded = true;
jmasa@1822 666 size_policy()->set_gc_overhead_limit_exceeded(false);
jmasa@1822 667 if (op.result() != NULL) {
jmasa@1822 668 CollectedHeap::fill_with_object(op.result(), size);
jmasa@1822 669 }
jmasa@1822 670 return NULL;
jmasa@1822 671 }
duke@435 672 assert(result == NULL || gch->is_in_reserved(result),
duke@435 673 "result not in heap");
duke@435 674 return result;
duke@435 675 }
duke@435 676
duke@435 677 // Give a warning if we seem to be looping forever.
duke@435 678 if ((QueuedAllocationWarningCount > 0) &&
duke@435 679 (try_count % QueuedAllocationWarningCount == 0)) {
duke@435 680 warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
duke@435 681 " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
duke@435 682 }
duke@435 683 }
duke@435 684 }
duke@435 685
duke@435 686 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
duke@435 687 bool is_tlab) {
duke@435 688 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 689 HeapWord* result = NULL;
duke@435 690 for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
duke@435 691 Generation *gen = gch->get_gen(i);
duke@435 692 if (gen->should_allocate(size, is_tlab)) {
duke@435 693 result = gen->expand_and_allocate(size, is_tlab);
duke@435 694 }
duke@435 695 }
duke@435 696 assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
duke@435 697 return result;
duke@435 698 }
duke@435 699
duke@435 700 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
duke@435 701 bool is_tlab) {
duke@435 702 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 703 GCCauseSetter x(gch, GCCause::_allocation_failure);
duke@435 704 HeapWord* result = NULL;
duke@435 705
duke@435 706 assert(size != 0, "Precondition violated");
duke@435 707 if (GC_locker::is_active_and_needs_gc()) {
duke@435 708 // GC locker is active; instead of a collection we will attempt
duke@435 709 // to expand the heap, if there's room for expansion.
duke@435 710 if (!gch->is_maximal_no_gc()) {
duke@435 711 result = expand_heap_and_allocate(size, is_tlab);
duke@435 712 }
duke@435 713 return result; // could be null if we are out of space
ysr@2336 714 } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
duke@435 715 // Do an incremental collection.
duke@435 716 gch->do_collection(false /* full */,
duke@435 717 false /* clear_all_soft_refs */,
duke@435 718 size /* size */,
duke@435 719 is_tlab /* is_tlab */,
duke@435 720 number_of_generations() - 1 /* max_level */);
duke@435 721 } else {
ysr@2336 722 if (Verbose && PrintGCDetails) {
ysr@2336 723 gclog_or_tty->print(" :: Trying full because partial may fail :: ");
ysr@2336 724 }
duke@435 725 // Try a full collection; see delta for bug id 6266275
duke@435 726 // for the original code and why this has been simplified
duke@435 727 // with from-space allocation criteria modified and
duke@435 728 // such allocation moved out of the safepoint path.
duke@435 729 gch->do_collection(true /* full */,
duke@435 730 false /* clear_all_soft_refs */,
duke@435 731 size /* size */,
duke@435 732 is_tlab /* is_tlab */,
duke@435 733 number_of_generations() - 1 /* max_level */);
duke@435 734 }
duke@435 735
duke@435 736 result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
duke@435 737
duke@435 738 if (result != NULL) {
duke@435 739 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 740 return result;
duke@435 741 }
duke@435 742
duke@435 743 // OK, collection failed, try expansion.
duke@435 744 result = expand_heap_and_allocate(size, is_tlab);
duke@435 745 if (result != NULL) {
duke@435 746 return result;
duke@435 747 }
duke@435 748
duke@435 749 // If we reach this point, we're really out of memory. Try every trick
duke@435 750 // we can to reclaim memory. Force collection of soft references. Force
duke@435 751 // a complete compaction of the heap. Any additional methods for finding
duke@435 752 // free memory should be here, especially if they are expensive. If this
duke@435 753 // attempt fails, an OOM exception will be thrown.
duke@435 754 {
tschatzl@5119 755 UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
duke@435 756
duke@435 757 gch->do_collection(true /* full */,
duke@435 758 true /* clear_all_soft_refs */,
duke@435 759 size /* size */,
duke@435 760 is_tlab /* is_tlab */,
duke@435 761 number_of_generations() - 1 /* max_level */);
duke@435 762 }
duke@435 763
duke@435 764 result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
duke@435 765 if (result != NULL) {
duke@435 766 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 767 return result;
duke@435 768 }
duke@435 769
jmasa@1822 770 assert(!should_clear_all_soft_refs(),
jmasa@1822 771 "Flag should have been handled and cleared prior to this point");
jmasa@1822 772
duke@435 773 // What else? We might try synchronous finalization later. If the total
duke@435 774 // space available is large enough for the allocation, then a more
duke@435 775 // complete compaction phase than we've tried so far might be
duke@435 776 // appropriate.
duke@435 777 return NULL;
duke@435 778 }
duke@435 779
coleenp@4037 780 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
coleenp@4037 781 ClassLoaderData* loader_data,
coleenp@4037 782 size_t word_size,
coleenp@4037 783 Metaspace::MetadataType mdtype) {
coleenp@4037 784 uint loop_count = 0;
coleenp@4037 785 uint gc_count = 0;
coleenp@4037 786 uint full_gc_count = 0;
coleenp@4037 787
jmasa@4234 788 assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
jmasa@4234 789
coleenp@4037 790 do {
jmasa@4064 791 MetaWord* result = NULL;
jmasa@4064 792 if (GC_locker::is_active_and_needs_gc()) {
jmasa@4064 793 // If the GC_locker is active, just expand and allocate.
jmasa@4064 794 // If that does not succeed, wait if this thread is not
jmasa@4064 795 // in a critical section itself.
jmasa@4064 796 result =
jmasa@4064 797 loader_data->metaspace_non_null()->expand_and_allocate(word_size,
jmasa@4064 798 mdtype);
jmasa@4064 799 if (result != NULL) {
jmasa@4064 800 return result;
jmasa@4064 801 }
jmasa@4064 802 JavaThread* jthr = JavaThread::current();
jmasa@4064 803 if (!jthr->in_critical()) {
jmasa@4064 804 // Wait for JNI critical section to be exited
jmasa@4064 805 GC_locker::stall_until_clear();
jmasa@4064 806 // The GC invoked by the last thread leaving the critical
jmasa@4064 807 // section will be a young collection and a full collection
jmasa@4064 808 // is (currently) needed for unloading classes so continue
jmasa@4064 809 // to the next iteration to get a full GC.
jmasa@4064 810 continue;
jmasa@4064 811 } else {
jmasa@4064 812 if (CheckJNICalls) {
jmasa@4064 813 fatal("Possible deadlock due to allocating while"
jmasa@4064 814 " in jni critical section");
jmasa@4064 815 }
jmasa@4064 816 return NULL;
jmasa@4064 817 }
jmasa@4064 818 }
jmasa@4064 819
coleenp@4037 820 { // Need lock to get self consistent gc_count's
coleenp@4037 821 MutexLocker ml(Heap_lock);
coleenp@4037 822 gc_count = Universe::heap()->total_collections();
coleenp@4037 823 full_gc_count = Universe::heap()->total_full_collections();
coleenp@4037 824 }
coleenp@4037 825
coleenp@4037 826 // Generate a VM operation
coleenp@4037 827 VM_CollectForMetadataAllocation op(loader_data,
coleenp@4037 828 word_size,
coleenp@4037 829 mdtype,
coleenp@4037 830 gc_count,
coleenp@4037 831 full_gc_count,
coleenp@4037 832 GCCause::_metadata_GC_threshold);
coleenp@4037 833 VMThread::execute(&op);
jmasa@4382 834
jmasa@4382 835 // If GC was locked out, try again. Check
jmasa@4382 836 // before checking success because the prologue
jmasa@4382 837 // could have succeeded and the GC still have
jmasa@4382 838 // been locked out.
jmasa@4382 839 if (op.gc_locked()) {
jmasa@4382 840 continue;
jmasa@4382 841 }
jmasa@4382 842
coleenp@4037 843 if (op.prologue_succeeded()) {
coleenp@4037 844 return op.result();
coleenp@4037 845 }
coleenp@4037 846 loop_count++;
coleenp@4037 847 if ((QueuedAllocationWarningCount > 0) &&
coleenp@4037 848 (loop_count % QueuedAllocationWarningCount == 0)) {
coleenp@4037 849 warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
coleenp@4037 850 " size=%d", loop_count, word_size);
coleenp@4037 851 }
coleenp@4037 852 } while (true); // Until a GC is done
coleenp@4037 853 }
coleenp@4037 854
duke@435 855 // Return true if any of the following is true:
duke@435 856 // . the allocation won't fit into the current young gen heap
duke@435 857 // . gc locker is occupied (jni critical section)
duke@435 858 // . heap memory is tight -- the most recent previous collection
duke@435 859 // was a full collection because a partial collection (would
duke@435 860 // have) failed and is likely to fail again
duke@435 861 bool GenCollectorPolicy::should_try_older_generation_allocation(
duke@435 862 size_t word_size) const {
duke@435 863 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 864 size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
duke@435 865 return (word_size > heap_word_size(gen0_capacity))
ysr@2243 866 || GC_locker::is_active_and_needs_gc()
ysr@2243 867 || gch->incremental_collection_failed();
duke@435 868 }
duke@435 869
duke@435 870
duke@435 871 //
duke@435 872 // MarkSweepPolicy methods
duke@435 873 //
duke@435 874
duke@435 875 MarkSweepPolicy::MarkSweepPolicy() {
duke@435 876 initialize_all();
duke@435 877 }
duke@435 878
duke@435 879 void MarkSweepPolicy::initialize_generations() {
minqi@5103 880 _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
duke@435 881 if (_generations == NULL)
duke@435 882 vm_exit_during_initialization("Unable to allocate gen spec");
duke@435 883
brutisso@4387 884 if (UseParNewGC) {
duke@435 885 _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
duke@435 886 } else {
duke@435 887 _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
duke@435 888 }
duke@435 889 _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
duke@435 890
duke@435 891 if (_generations[0] == NULL || _generations[1] == NULL)
duke@435 892 vm_exit_during_initialization("Unable to allocate gen spec");
duke@435 893 }
duke@435 894
duke@435 895 void MarkSweepPolicy::initialize_gc_policy_counters() {
duke@435 896 // initialize the policy counters - 2 collectors, 3 generations
brutisso@4387 897 if (UseParNewGC) {
duke@435 898 _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
brutisso@4387 899 } else {
duke@435 900 _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
duke@435 901 }
duke@435 902 }

mercurial