src/share/vm/memory/collectorPolicy.cpp

Tue, 18 Sep 2012 14:15:06 -0700

author
jmasa
date
Tue, 18 Sep 2012 14:15:06 -0700
changeset 4064
8da5e203b993
parent 4037
da91efe96a93
child 4234
3fadc0e8cffe
permissions
-rw-r--r--

7197557: NPG: nsk/sysdict/vm/stress/chain/chain004 hangs intermittently
Reviewed-by: johnc, ysr

duke@435 1 /*
coleenp@4037 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
stefank@2314 27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
stefank@2314 28 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 29 #include "memory/cardTableRS.hpp"
stefank@2314 30 #include "memory/collectorPolicy.hpp"
stefank@2314 31 #include "memory/gcLocker.inline.hpp"
stefank@2314 32 #include "memory/genCollectedHeap.hpp"
stefank@2314 33 #include "memory/generationSpec.hpp"
stefank@2314 34 #include "memory/space.hpp"
stefank@2314 35 #include "memory/universe.hpp"
stefank@2314 36 #include "runtime/arguments.hpp"
stefank@2314 37 #include "runtime/globals_extension.hpp"
stefank@2314 38 #include "runtime/handles.inline.hpp"
stefank@2314 39 #include "runtime/java.hpp"
stefank@2314 40 #include "runtime/vmThread.hpp"
stefank@2314 41 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 42 # include "thread_linux.inline.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 45 # include "thread_solaris.inline.hpp"
stefank@2314 46 #endif
stefank@2314 47 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 48 # include "thread_windows.inline.hpp"
stefank@2314 49 #endif
never@3156 50 #ifdef TARGET_OS_FAMILY_bsd
never@3156 51 # include "thread_bsd.inline.hpp"
never@3156 52 #endif
stefank@2314 53 #ifndef SERIALGC
stefank@2314 54 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
stefank@2314 55 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
stefank@2314 56 #endif
duke@435 57
duke@435 58 // CollectorPolicy methods.
duke@435 59
duke@435 60 void CollectorPolicy::initialize_flags() {
coleenp@4037 61 if (MetaspaceSize > MaxMetaspaceSize) {
coleenp@4037 62 MaxMetaspaceSize = MetaspaceSize;
duke@435 63 }
coleenp@4037 64 MetaspaceSize = MAX2(min_alignment(), align_size_down_(MetaspaceSize, min_alignment()));
coleenp@4037 65 // Don't increase Metaspace size limit above specified.
coleenp@4037 66 MaxMetaspaceSize = align_size_down(MaxMetaspaceSize, max_alignment());
coleenp@4037 67 if (MetaspaceSize > MaxMetaspaceSize) {
coleenp@4037 68 MetaspaceSize = MaxMetaspaceSize;
kvn@2150 69 }
duke@435 70
coleenp@4037 71 MinMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MinMetaspaceExpansion, min_alignment()));
coleenp@4037 72 MaxMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MaxMetaspaceExpansion, min_alignment()));
duke@435 73
duke@435 74 MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
duke@435 75
coleenp@4037 76 assert(MetaspaceSize % min_alignment() == 0, "metapace alignment");
coleenp@4037 77 assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
coleenp@4037 78 if (MetaspaceSize < 256*K) {
coleenp@4037 79 vm_exit_during_initialization("Too small initial Metaspace size");
duke@435 80 }
duke@435 81 }
duke@435 82
duke@435 83 void CollectorPolicy::initialize_size_info() {
duke@435 84 // User inputs from -mx and ms are aligned
phh@1499 85 set_initial_heap_byte_size(InitialHeapSize);
jmasa@448 86 if (initial_heap_byte_size() == 0) {
jmasa@448 87 set_initial_heap_byte_size(NewSize + OldSize);
duke@435 88 }
ysr@777 89 set_initial_heap_byte_size(align_size_up(_initial_heap_byte_size,
ysr@777 90 min_alignment()));
ysr@777 91
ysr@777 92 set_min_heap_byte_size(Arguments::min_heap_size());
jmasa@448 93 if (min_heap_byte_size() == 0) {
jmasa@448 94 set_min_heap_byte_size(NewSize + OldSize);
duke@435 95 }
ysr@777 96 set_min_heap_byte_size(align_size_up(_min_heap_byte_size,
ysr@777 97 min_alignment()));
ysr@777 98
ysr@777 99 set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
duke@435 100
duke@435 101 // Check heap parameter properties
jmasa@448 102 if (initial_heap_byte_size() < M) {
duke@435 103 vm_exit_during_initialization("Too small initial heap");
duke@435 104 }
duke@435 105 // Check heap parameter properties
jmasa@448 106 if (min_heap_byte_size() < M) {
duke@435 107 vm_exit_during_initialization("Too small minimum heap");
duke@435 108 }
jmasa@448 109 if (initial_heap_byte_size() <= NewSize) {
duke@435 110 // make sure there is at least some room in old space
duke@435 111 vm_exit_during_initialization("Too small initial heap for new size specified");
duke@435 112 }
jmasa@448 113 if (max_heap_byte_size() < min_heap_byte_size()) {
duke@435 114 vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
duke@435 115 }
jmasa@448 116 if (initial_heap_byte_size() < min_heap_byte_size()) {
duke@435 117 vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
duke@435 118 }
jmasa@448 119 if (max_heap_byte_size() < initial_heap_byte_size()) {
duke@435 120 vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
duke@435 121 }
jmasa@448 122
jmasa@448 123 if (PrintGCDetails && Verbose) {
jmasa@448 124 gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT " Initial heap "
jmasa@448 125 SIZE_FORMAT " Maximum heap " SIZE_FORMAT,
jmasa@448 126 min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
jmasa@448 127 }
duke@435 128 }
duke@435 129
jmasa@1822 130 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
jmasa@1822 131 bool result = _should_clear_all_soft_refs;
jmasa@1822 132 set_should_clear_all_soft_refs(false);
jmasa@1822 133 return result;
jmasa@1822 134 }
duke@435 135
duke@435 136 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
duke@435 137 int max_covered_regions) {
duke@435 138 switch (rem_set_name()) {
duke@435 139 case GenRemSet::CardTable: {
duke@435 140 CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
duke@435 141 return res;
duke@435 142 }
duke@435 143 default:
duke@435 144 guarantee(false, "unrecognized GenRemSet::Name");
duke@435 145 return NULL;
duke@435 146 }
duke@435 147 }
duke@435 148
jmasa@1822 149 void CollectorPolicy::cleared_all_soft_refs() {
jmasa@1822 150 // If near gc overhear limit, continue to clear SoftRefs. SoftRefs may
jmasa@1822 151 // have been cleared in the last collection but if the gc overhear
jmasa@1822 152 // limit continues to be near, SoftRefs should still be cleared.
jmasa@1822 153 if (size_policy() != NULL) {
jmasa@1822 154 _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
jmasa@1822 155 }
jmasa@1822 156 _all_soft_refs_clear = true;
jmasa@1822 157 }
jmasa@1822 158
jmasa@1822 159
duke@435 160 // GenCollectorPolicy methods.
duke@435 161
jmasa@448 162 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
jmasa@448 163 size_t x = base_size / (NewRatio+1);
jmasa@448 164 size_t new_gen_size = x > min_alignment() ?
jmasa@448 165 align_size_down(x, min_alignment()) :
jmasa@448 166 min_alignment();
jmasa@448 167 return new_gen_size;
jmasa@448 168 }
jmasa@448 169
jmasa@448 170 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
jmasa@448 171 size_t maximum_size) {
jmasa@448 172 size_t alignment = min_alignment();
jmasa@448 173 size_t max_minus = maximum_size - alignment;
jmasa@448 174 return desired_size < max_minus ? desired_size : max_minus;
jmasa@448 175 }
jmasa@448 176
jmasa@448 177
duke@435 178 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
duke@435 179 size_t init_promo_size,
duke@435 180 size_t init_survivor_size) {
jmasa@448 181 const double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
duke@435 182 _size_policy = new AdaptiveSizePolicy(init_eden_size,
duke@435 183 init_promo_size,
duke@435 184 init_survivor_size,
duke@435 185 max_gc_minor_pause_sec,
duke@435 186 GCTimeRatio);
duke@435 187 }
duke@435 188
duke@435 189 size_t GenCollectorPolicy::compute_max_alignment() {
duke@435 190 // The card marking array and the offset arrays for old generations are
duke@435 191 // committed in os pages as well. Make sure they are entirely full (to
duke@435 192 // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
duke@435 193 // byte entry and the os page size is 4096, the maximum heap size should
duke@435 194 // be 512*4096 = 2MB aligned.
duke@435 195 size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
duke@435 196
duke@435 197 // Parallel GC does its own alignment of the generations to avoid requiring a
duke@435 198 // large page (256M on some platforms) for the permanent generation. The
duke@435 199 // other collectors should also be updated to do their own alignment and then
duke@435 200 // this use of lcm() should be removed.
duke@435 201 if (UseLargePages && !UseParallelGC) {
duke@435 202 // in presence of large pages we have to make sure that our
duke@435 203 // alignment is large page aware
duke@435 204 alignment = lcm(os::large_page_size(), alignment);
duke@435 205 }
duke@435 206
duke@435 207 return alignment;
duke@435 208 }
duke@435 209
duke@435 210 void GenCollectorPolicy::initialize_flags() {
duke@435 211 // All sizes must be multiples of the generation granularity.
duke@435 212 set_min_alignment((uintx) Generation::GenGrain);
duke@435 213 set_max_alignment(compute_max_alignment());
duke@435 214 assert(max_alignment() >= min_alignment() &&
duke@435 215 max_alignment() % min_alignment() == 0,
duke@435 216 "invalid alignment constraints");
duke@435 217
duke@435 218 CollectorPolicy::initialize_flags();
duke@435 219
duke@435 220 // All generational heaps have a youngest gen; handle those flags here.
duke@435 221
duke@435 222 // Adjust max size parameters
duke@435 223 if (NewSize > MaxNewSize) {
duke@435 224 MaxNewSize = NewSize;
duke@435 225 }
duke@435 226 NewSize = align_size_down(NewSize, min_alignment());
duke@435 227 MaxNewSize = align_size_down(MaxNewSize, min_alignment());
duke@435 228
duke@435 229 // Check validity of heap flags
duke@435 230 assert(NewSize % min_alignment() == 0, "eden space alignment");
duke@435 231 assert(MaxNewSize % min_alignment() == 0, "survivor space alignment");
duke@435 232
duke@435 233 if (NewSize < 3*min_alignment()) {
duke@435 234 // make sure there room for eden and two survivor spaces
duke@435 235 vm_exit_during_initialization("Too small new size specified");
duke@435 236 }
duke@435 237 if (SurvivorRatio < 1 || NewRatio < 1) {
duke@435 238 vm_exit_during_initialization("Invalid heap ratio specified");
duke@435 239 }
duke@435 240 }
duke@435 241
duke@435 242 void TwoGenerationCollectorPolicy::initialize_flags() {
duke@435 243 GenCollectorPolicy::initialize_flags();
duke@435 244
duke@435 245 OldSize = align_size_down(OldSize, min_alignment());
duke@435 246 if (NewSize + OldSize > MaxHeapSize) {
duke@435 247 MaxHeapSize = NewSize + OldSize;
duke@435 248 }
duke@435 249 MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
duke@435 250
duke@435 251 always_do_update_barrier = UseConcMarkSweepGC;
duke@435 252
duke@435 253 // Check validity of heap flags
duke@435 254 assert(OldSize % min_alignment() == 0, "old space alignment");
duke@435 255 assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
duke@435 256 }
duke@435 257
jmasa@448 258 // Values set on the command line win over any ergonomically
jmasa@448 259 // set command line parameters.
jmasa@448 260 // Ergonomic choice of parameters are done before this
jmasa@448 261 // method is called. Values for command line parameters such as NewSize
jmasa@448 262 // and MaxNewSize feed those ergonomic choices into this method.
jmasa@448 263 // This method makes the final generation sizings consistent with
jmasa@448 264 // themselves and with overall heap sizings.
jmasa@448 265 // In the absence of explicitly set command line flags, policies
jmasa@448 266 // such as the use of NewRatio are used to size the generation.
duke@435 267 void GenCollectorPolicy::initialize_size_info() {
duke@435 268 CollectorPolicy::initialize_size_info();
duke@435 269
jmasa@448 270 // min_alignment() is used for alignment within a generation.
jmasa@448 271 // There is additional alignment done down stream for some
jmasa@448 272 // collectors that sometimes causes unwanted rounding up of
jmasa@448 273 // generations sizes.
jmasa@448 274
jmasa@448 275 // Determine maximum size of gen0
jmasa@448 276
jmasa@448 277 size_t max_new_size = 0;
ysr@2650 278 if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
jmasa@448 279 if (MaxNewSize < min_alignment()) {
jmasa@448 280 max_new_size = min_alignment();
ysr@2650 281 }
ysr@2650 282 if (MaxNewSize >= max_heap_byte_size()) {
jmasa@448 283 max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
jmasa@448 284 min_alignment());
jmasa@448 285 warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
jmasa@448 286 "greater than the entire heap (" SIZE_FORMAT "k). A "
jmasa@448 287 "new generation size of " SIZE_FORMAT "k will be used.",
jmasa@448 288 MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
jmasa@448 289 } else {
jmasa@448 290 max_new_size = align_size_down(MaxNewSize, min_alignment());
jmasa@448 291 }
jmasa@448 292
jmasa@448 293 // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
jmasa@448 294 // specially at this point to just use an ergonomically set
jmasa@448 295 // MaxNewSize to set max_new_size. For cases with small
jmasa@448 296 // heaps such a policy often did not work because the MaxNewSize
jmasa@448 297 // was larger than the entire heap. The interpretation given
jmasa@448 298 // to ergonomically set flags is that the flags are set
jmasa@448 299 // by different collectors for their own special needs but
jmasa@448 300 // are not allowed to badly shape the heap. This allows the
jmasa@448 301 // different collectors to decide what's best for themselves
jmasa@448 302 // without having to factor in the overall heap shape. It
jmasa@448 303 // can be the case in the future that the collectors would
jmasa@448 304 // only make "wise" ergonomics choices and this policy could
jmasa@448 305 // just accept those choices. The choices currently made are
jmasa@448 306 // not always "wise".
duke@435 307 } else {
jmasa@448 308 max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
jmasa@448 309 // Bound the maximum size by NewSize below (since it historically
duke@435 310 // would have been NewSize and because the NewRatio calculation could
duke@435 311 // yield a size that is too small) and bound it by MaxNewSize above.
jmasa@448 312 // Ergonomics plays here by previously calculating the desired
jmasa@448 313 // NewSize and MaxNewSize.
jmasa@448 314 max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
jmasa@448 315 }
jmasa@448 316 assert(max_new_size > 0, "All paths should set max_new_size");
jmasa@448 317
jmasa@448 318 // Given the maximum gen0 size, determine the initial and
ysr@2650 319 // minimum gen0 sizes.
jmasa@448 320
jmasa@448 321 if (max_heap_byte_size() == min_heap_byte_size()) {
jmasa@448 322 // The maximum and minimum heap sizes are the same so
jmasa@448 323 // the generations minimum and initial must be the
jmasa@448 324 // same as its maximum.
jmasa@448 325 set_min_gen0_size(max_new_size);
jmasa@448 326 set_initial_gen0_size(max_new_size);
jmasa@448 327 set_max_gen0_size(max_new_size);
jmasa@448 328 } else {
jmasa@448 329 size_t desired_new_size = 0;
jmasa@448 330 if (!FLAG_IS_DEFAULT(NewSize)) {
jmasa@448 331 // If NewSize is set ergonomically (for example by cms), it
jmasa@448 332 // would make sense to use it. If it is used, also use it
jmasa@448 333 // to set the initial size. Although there is no reason
jmasa@448 334 // the minimum size and the initial size have to be the same,
jmasa@448 335 // the current implementation gets into trouble during the calculation
jmasa@448 336 // of the tenured generation sizes if they are different.
jmasa@448 337 // Note that this makes the initial size and the minimum size
jmasa@448 338 // generally small compared to the NewRatio calculation.
jmasa@448 339 _min_gen0_size = NewSize;
jmasa@448 340 desired_new_size = NewSize;
jmasa@448 341 max_new_size = MAX2(max_new_size, NewSize);
jmasa@448 342 } else {
jmasa@448 343 // For the case where NewSize is the default, use NewRatio
jmasa@448 344 // to size the minimum and initial generation sizes.
jmasa@448 345 // Use the default NewSize as the floor for these values. If
jmasa@448 346 // NewRatio is overly large, the resulting sizes can be too
jmasa@448 347 // small.
jmasa@448 348 _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
jmasa@448 349 NewSize);
jmasa@448 350 desired_new_size =
jmasa@448 351 MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
jmasa@448 352 NewSize);
jmasa@448 353 }
jmasa@448 354
jmasa@448 355 assert(_min_gen0_size > 0, "Sanity check");
jmasa@448 356 set_initial_gen0_size(desired_new_size);
jmasa@448 357 set_max_gen0_size(max_new_size);
jmasa@448 358
jmasa@448 359 // At this point the desirable initial and minimum sizes have been
jmasa@448 360 // determined without regard to the maximum sizes.
jmasa@448 361
jmasa@448 362 // Bound the sizes by the corresponding overall heap sizes.
jmasa@448 363 set_min_gen0_size(
jmasa@448 364 bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
jmasa@448 365 set_initial_gen0_size(
jmasa@448 366 bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
jmasa@448 367 set_max_gen0_size(
jmasa@448 368 bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
jmasa@448 369
jmasa@448 370 // At this point all three sizes have been checked against the
jmasa@448 371 // maximum sizes but have not been checked for consistency
ysr@777 372 // among the three.
jmasa@448 373
jmasa@448 374 // Final check min <= initial <= max
jmasa@448 375 set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
jmasa@448 376 set_initial_gen0_size(
jmasa@448 377 MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
jmasa@448 378 set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
duke@435 379 }
duke@435 380
jmasa@448 381 if (PrintGCDetails && Verbose) {
ysr@2650 382 gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 383 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 384 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 385 }
jmasa@448 386 }
duke@435 387
jmasa@448 388 // Call this method during the sizing of the gen1 to make
jmasa@448 389 // adjustments to gen0 because of gen1 sizing policy. gen0 initially has
jmasa@448 390 // the most freedom in sizing because it is done before the
jmasa@448 391 // policy for gen1 is applied. Once gen1 policies have been applied,
jmasa@448 392 // there may be conflicts in the shape of the heap and this method
jmasa@448 393 // is used to make the needed adjustments. The application of the
jmasa@448 394 // policies could be more sophisticated (iterative for example) but
jmasa@448 395 // keeping it simple also seems a worthwhile goal.
jmasa@448 396 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
jmasa@448 397 size_t* gen1_size_ptr,
jmasa@448 398 size_t heap_size,
jmasa@448 399 size_t min_gen0_size) {
jmasa@448 400 bool result = false;
jmasa@448 401 if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
jmasa@448 402 if (((*gen0_size_ptr + OldSize) > heap_size) &&
jmasa@448 403 (heap_size - min_gen0_size) >= min_alignment()) {
jmasa@448 404 // Adjust gen0 down to accomodate OldSize
jmasa@448 405 *gen0_size_ptr = heap_size - min_gen0_size;
jmasa@448 406 *gen0_size_ptr =
jmasa@448 407 MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
jmasa@448 408 min_alignment());
jmasa@448 409 assert(*gen0_size_ptr > 0, "Min gen0 is too large");
jmasa@448 410 result = true;
jmasa@448 411 } else {
jmasa@448 412 *gen1_size_ptr = heap_size - *gen0_size_ptr;
jmasa@448 413 *gen1_size_ptr =
jmasa@448 414 MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
jmasa@448 415 min_alignment());
jmasa@448 416 }
jmasa@448 417 }
jmasa@448 418 return result;
jmasa@448 419 }
duke@435 420
jmasa@448 421 // Minimum sizes of the generations may be different than
jmasa@448 422 // the initial sizes. An inconsistently is permitted here
jmasa@448 423 // in the total size that can be specified explicitly by
jmasa@448 424 // command line specification of OldSize and NewSize and
jmasa@448 425 // also a command line specification of -Xms. Issue a warning
jmasa@448 426 // but allow the values to pass.
duke@435 427
duke@435 428 void TwoGenerationCollectorPolicy::initialize_size_info() {
duke@435 429 GenCollectorPolicy::initialize_size_info();
duke@435 430
jmasa@448 431 // At this point the minimum, initial and maximum sizes
jmasa@448 432 // of the overall heap and of gen0 have been determined.
jmasa@448 433 // The maximum gen1 size can be determined from the maximum gen0
ysr@2650 434 // and maximum heap size since no explicit flags exits
jmasa@448 435 // for setting the gen1 maximum.
jmasa@448 436 _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
jmasa@448 437 _max_gen1_size =
jmasa@448 438 MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
jmasa@448 439 min_alignment());
jmasa@448 440 // If no explicit command line flag has been set for the
jmasa@448 441 // gen1 size, use what is left for gen1.
jmasa@448 442 if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
jmasa@448 443 // The user has not specified any value or ergonomics
jmasa@448 444 // has chosen a value (which may or may not be consistent
jmasa@448 445 // with the overall heap size). In either case make
jmasa@448 446 // the minimum, maximum and initial sizes consistent
jmasa@448 447 // with the gen0 sizes and the overall heap sizes.
jmasa@448 448 assert(min_heap_byte_size() > _min_gen0_size,
jmasa@448 449 "gen0 has an unexpected minimum size");
jmasa@448 450 set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
jmasa@448 451 set_min_gen1_size(
jmasa@448 452 MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
jmasa@448 453 min_alignment()));
jmasa@448 454 set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
jmasa@448 455 set_initial_gen1_size(
jmasa@448 456 MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
jmasa@448 457 min_alignment()));
jmasa@448 458
jmasa@448 459 } else {
jmasa@448 460 // It's been explicitly set on the command line. Use the
jmasa@448 461 // OldSize and then determine the consequences.
jmasa@448 462 set_min_gen1_size(OldSize);
jmasa@448 463 set_initial_gen1_size(OldSize);
jmasa@448 464
jmasa@448 465 // If the user has explicitly set an OldSize that is inconsistent
jmasa@448 466 // with other command line flags, issue a warning.
duke@435 467 // The generation minimums and the overall heap mimimum should
duke@435 468 // be within one heap alignment.
jmasa@448 469 if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
jmasa@448 470 min_heap_byte_size()) {
duke@435 471 warning("Inconsistency between minimum heap size and minimum "
jmasa@448 472 "generation sizes: using minimum heap = " SIZE_FORMAT,
jmasa@448 473 min_heap_byte_size());
duke@435 474 }
jmasa@448 475 if ((OldSize > _max_gen1_size)) {
jmasa@448 476 warning("Inconsistency between maximum heap size and maximum "
jmasa@448 477 "generation sizes: using maximum heap = " SIZE_FORMAT
jmasa@448 478 " -XX:OldSize flag is being ignored",
jmasa@448 479 max_heap_byte_size());
ysr@2650 480 }
jmasa@448 481 // If there is an inconsistency between the OldSize and the minimum and/or
jmasa@448 482 // initial size of gen0, since OldSize was explicitly set, OldSize wins.
jmasa@448 483 if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
jmasa@448 484 min_heap_byte_size(), OldSize)) {
jmasa@448 485 if (PrintGCDetails && Verbose) {
ysr@2650 486 gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 487 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 488 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 489 }
jmasa@448 490 }
jmasa@448 491 // Initial size
jmasa@448 492 if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
jmasa@448 493 initial_heap_byte_size(), OldSize)) {
jmasa@448 494 if (PrintGCDetails && Verbose) {
ysr@2650 495 gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 496 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 497 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 498 }
jmasa@448 499 }
jmasa@448 500 }
jmasa@448 501 // Enforce the maximum gen1 size.
jmasa@448 502 set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
duke@435 503
jmasa@448 504 // Check that min gen1 <= initial gen1 <= max gen1
jmasa@448 505 set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
jmasa@448 506 set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
jmasa@448 507
jmasa@448 508 if (PrintGCDetails && Verbose) {
jmasa@448 509 gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT " Initial gen1 "
jmasa@448 510 SIZE_FORMAT " Maximum gen1 " SIZE_FORMAT,
jmasa@448 511 min_gen1_size(), initial_gen1_size(), max_gen1_size());
jmasa@448 512 }
duke@435 513 }
duke@435 514
duke@435 515 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
duke@435 516 bool is_tlab,
duke@435 517 bool* gc_overhead_limit_was_exceeded) {
duke@435 518 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 519
duke@435 520 debug_only(gch->check_for_valid_allocation_state());
duke@435 521 assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
jmasa@1822 522
jmasa@1822 523 // In general gc_overhead_limit_was_exceeded should be false so
jmasa@1822 524 // set it so here and reset it to true only if the gc time
jmasa@1822 525 // limit is being exceeded as checked below.
jmasa@1822 526 *gc_overhead_limit_was_exceeded = false;
jmasa@1822 527
duke@435 528 HeapWord* result = NULL;
duke@435 529
duke@435 530 // Loop until the allocation is satisified,
duke@435 531 // or unsatisfied after GC.
duke@435 532 for (int try_count = 1; /* return or throw */; try_count += 1) {
duke@435 533 HandleMark hm; // discard any handles allocated in each iteration
duke@435 534
duke@435 535 // First allocation attempt is lock-free.
duke@435 536 Generation *gen0 = gch->get_gen(0);
duke@435 537 assert(gen0->supports_inline_contig_alloc(),
duke@435 538 "Otherwise, must do alloc within heap lock");
duke@435 539 if (gen0->should_allocate(size, is_tlab)) {
duke@435 540 result = gen0->par_allocate(size, is_tlab);
duke@435 541 if (result != NULL) {
duke@435 542 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 543 return result;
duke@435 544 }
duke@435 545 }
duke@435 546 unsigned int gc_count_before; // read inside the Heap_lock locked region
duke@435 547 {
duke@435 548 MutexLocker ml(Heap_lock);
duke@435 549 if (PrintGC && Verbose) {
duke@435 550 gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
duke@435 551 " attempting locked slow path allocation");
duke@435 552 }
duke@435 553 // Note that only large objects get a shot at being
duke@435 554 // allocated in later generations.
duke@435 555 bool first_only = ! should_try_older_generation_allocation(size);
duke@435 556
duke@435 557 result = gch->attempt_allocation(size, is_tlab, first_only);
duke@435 558 if (result != NULL) {
duke@435 559 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 560 return result;
duke@435 561 }
duke@435 562
duke@435 563 if (GC_locker::is_active_and_needs_gc()) {
duke@435 564 if (is_tlab) {
duke@435 565 return NULL; // Caller will retry allocating individual object
duke@435 566 }
duke@435 567 if (!gch->is_maximal_no_gc()) {
duke@435 568 // Try and expand heap to satisfy request
duke@435 569 result = expand_heap_and_allocate(size, is_tlab);
duke@435 570 // result could be null if we are out of space
duke@435 571 if (result != NULL) {
duke@435 572 return result;
duke@435 573 }
duke@435 574 }
duke@435 575
duke@435 576 // If this thread is not in a jni critical section, we stall
duke@435 577 // the requestor until the critical section has cleared and
duke@435 578 // GC allowed. When the critical section clears, a GC is
duke@435 579 // initiated by the last thread exiting the critical section; so
duke@435 580 // we retry the allocation sequence from the beginning of the loop,
duke@435 581 // rather than causing more, now probably unnecessary, GC attempts.
duke@435 582 JavaThread* jthr = JavaThread::current();
duke@435 583 if (!jthr->in_critical()) {
duke@435 584 MutexUnlocker mul(Heap_lock);
duke@435 585 // Wait for JNI critical section to be exited
duke@435 586 GC_locker::stall_until_clear();
duke@435 587 continue;
duke@435 588 } else {
duke@435 589 if (CheckJNICalls) {
duke@435 590 fatal("Possible deadlock due to allocating while"
duke@435 591 " in jni critical section");
duke@435 592 }
duke@435 593 return NULL;
duke@435 594 }
duke@435 595 }
duke@435 596
duke@435 597 // Read the gc count while the heap lock is held.
duke@435 598 gc_count_before = Universe::heap()->total_collections();
duke@435 599 }
duke@435 600
duke@435 601 VM_GenCollectForAllocation op(size,
duke@435 602 is_tlab,
duke@435 603 gc_count_before);
duke@435 604 VMThread::execute(&op);
duke@435 605 if (op.prologue_succeeded()) {
duke@435 606 result = op.result();
duke@435 607 if (op.gc_locked()) {
duke@435 608 assert(result == NULL, "must be NULL if gc_locked() is true");
duke@435 609 continue; // retry and/or stall as necessary
duke@435 610 }
jmasa@1822 611
jmasa@1822 612 // Allocation has failed and a collection
jmasa@1822 613 // has been done. If the gc time limit was exceeded the
jmasa@1822 614 // this time, return NULL so that an out-of-memory
jmasa@1822 615 // will be thrown. Clear gc_overhead_limit_exceeded
jmasa@1822 616 // so that the overhead exceeded does not persist.
jmasa@1822 617
jmasa@1822 618 const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
jmasa@1822 619 const bool softrefs_clear = all_soft_refs_clear();
jmasa@1822 620 assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
jmasa@1822 621 if (limit_exceeded && softrefs_clear) {
jmasa@1822 622 *gc_overhead_limit_was_exceeded = true;
jmasa@1822 623 size_policy()->set_gc_overhead_limit_exceeded(false);
jmasa@1822 624 if (op.result() != NULL) {
jmasa@1822 625 CollectedHeap::fill_with_object(op.result(), size);
jmasa@1822 626 }
jmasa@1822 627 return NULL;
jmasa@1822 628 }
duke@435 629 assert(result == NULL || gch->is_in_reserved(result),
duke@435 630 "result not in heap");
duke@435 631 return result;
duke@435 632 }
duke@435 633
duke@435 634 // Give a warning if we seem to be looping forever.
duke@435 635 if ((QueuedAllocationWarningCount > 0) &&
duke@435 636 (try_count % QueuedAllocationWarningCount == 0)) {
duke@435 637 warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
duke@435 638 " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
duke@435 639 }
duke@435 640 }
duke@435 641 }
duke@435 642
duke@435 643 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
duke@435 644 bool is_tlab) {
duke@435 645 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 646 HeapWord* result = NULL;
duke@435 647 for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
duke@435 648 Generation *gen = gch->get_gen(i);
duke@435 649 if (gen->should_allocate(size, is_tlab)) {
duke@435 650 result = gen->expand_and_allocate(size, is_tlab);
duke@435 651 }
duke@435 652 }
duke@435 653 assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
duke@435 654 return result;
duke@435 655 }
duke@435 656
duke@435 657 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
duke@435 658 bool is_tlab) {
duke@435 659 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 660 GCCauseSetter x(gch, GCCause::_allocation_failure);
duke@435 661 HeapWord* result = NULL;
duke@435 662
duke@435 663 assert(size != 0, "Precondition violated");
duke@435 664 if (GC_locker::is_active_and_needs_gc()) {
duke@435 665 // GC locker is active; instead of a collection we will attempt
duke@435 666 // to expand the heap, if there's room for expansion.
duke@435 667 if (!gch->is_maximal_no_gc()) {
duke@435 668 result = expand_heap_and_allocate(size, is_tlab);
duke@435 669 }
duke@435 670 return result; // could be null if we are out of space
ysr@2336 671 } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
duke@435 672 // Do an incremental collection.
duke@435 673 gch->do_collection(false /* full */,
duke@435 674 false /* clear_all_soft_refs */,
duke@435 675 size /* size */,
duke@435 676 is_tlab /* is_tlab */,
duke@435 677 number_of_generations() - 1 /* max_level */);
duke@435 678 } else {
ysr@2336 679 if (Verbose && PrintGCDetails) {
ysr@2336 680 gclog_or_tty->print(" :: Trying full because partial may fail :: ");
ysr@2336 681 }
duke@435 682 // Try a full collection; see delta for bug id 6266275
duke@435 683 // for the original code and why this has been simplified
duke@435 684 // with from-space allocation criteria modified and
duke@435 685 // such allocation moved out of the safepoint path.
duke@435 686 gch->do_collection(true /* full */,
duke@435 687 false /* clear_all_soft_refs */,
duke@435 688 size /* size */,
duke@435 689 is_tlab /* is_tlab */,
duke@435 690 number_of_generations() - 1 /* max_level */);
duke@435 691 }
duke@435 692
duke@435 693 result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
duke@435 694
duke@435 695 if (result != NULL) {
duke@435 696 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 697 return result;
duke@435 698 }
duke@435 699
duke@435 700 // OK, collection failed, try expansion.
duke@435 701 result = expand_heap_and_allocate(size, is_tlab);
duke@435 702 if (result != NULL) {
duke@435 703 return result;
duke@435 704 }
duke@435 705
duke@435 706 // If we reach this point, we're really out of memory. Try every trick
duke@435 707 // we can to reclaim memory. Force collection of soft references. Force
duke@435 708 // a complete compaction of the heap. Any additional methods for finding
duke@435 709 // free memory should be here, especially if they are expensive. If this
duke@435 710 // attempt fails, an OOM exception will be thrown.
duke@435 711 {
duke@435 712 IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
duke@435 713
duke@435 714 gch->do_collection(true /* full */,
duke@435 715 true /* clear_all_soft_refs */,
duke@435 716 size /* size */,
duke@435 717 is_tlab /* is_tlab */,
duke@435 718 number_of_generations() - 1 /* max_level */);
duke@435 719 }
duke@435 720
duke@435 721 result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
duke@435 722 if (result != NULL) {
duke@435 723 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 724 return result;
duke@435 725 }
duke@435 726
jmasa@1822 727 assert(!should_clear_all_soft_refs(),
jmasa@1822 728 "Flag should have been handled and cleared prior to this point");
jmasa@1822 729
duke@435 730 // What else? We might try synchronous finalization later. If the total
duke@435 731 // space available is large enough for the allocation, then a more
duke@435 732 // complete compaction phase than we've tried so far might be
duke@435 733 // appropriate.
duke@435 734 return NULL;
duke@435 735 }
duke@435 736
coleenp@4037 737 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
coleenp@4037 738 ClassLoaderData* loader_data,
coleenp@4037 739 size_t word_size,
coleenp@4037 740 Metaspace::MetadataType mdtype) {
coleenp@4037 741 uint loop_count = 0;
coleenp@4037 742 uint gc_count = 0;
coleenp@4037 743 uint full_gc_count = 0;
coleenp@4037 744
coleenp@4037 745 do {
jmasa@4064 746 MetaWord* result = NULL;
jmasa@4064 747 if (GC_locker::is_active_and_needs_gc()) {
jmasa@4064 748 // If the GC_locker is active, just expand and allocate.
jmasa@4064 749 // If that does not succeed, wait if this thread is not
jmasa@4064 750 // in a critical section itself.
jmasa@4064 751 result =
jmasa@4064 752 loader_data->metaspace_non_null()->expand_and_allocate(word_size,
jmasa@4064 753 mdtype);
jmasa@4064 754 if (result != NULL) {
jmasa@4064 755 return result;
jmasa@4064 756 }
jmasa@4064 757 JavaThread* jthr = JavaThread::current();
jmasa@4064 758 if (!jthr->in_critical()) {
jmasa@4064 759 MutexUnlocker mul(Heap_lock);
jmasa@4064 760 // Wait for JNI critical section to be exited
jmasa@4064 761 GC_locker::stall_until_clear();
jmasa@4064 762 // The GC invoked by the last thread leaving the critical
jmasa@4064 763 // section will be a young collection and a full collection
jmasa@4064 764 // is (currently) needed for unloading classes so continue
jmasa@4064 765 // to the next iteration to get a full GC.
jmasa@4064 766 continue;
jmasa@4064 767 } else {
jmasa@4064 768 if (CheckJNICalls) {
jmasa@4064 769 fatal("Possible deadlock due to allocating while"
jmasa@4064 770 " in jni critical section");
jmasa@4064 771 }
jmasa@4064 772 return NULL;
jmasa@4064 773 }
jmasa@4064 774 }
jmasa@4064 775
coleenp@4037 776 { // Need lock to get self consistent gc_count's
coleenp@4037 777 MutexLocker ml(Heap_lock);
coleenp@4037 778 gc_count = Universe::heap()->total_collections();
coleenp@4037 779 full_gc_count = Universe::heap()->total_full_collections();
coleenp@4037 780 }
coleenp@4037 781
coleenp@4037 782 // Generate a VM operation
coleenp@4037 783 VM_CollectForMetadataAllocation op(loader_data,
coleenp@4037 784 word_size,
coleenp@4037 785 mdtype,
coleenp@4037 786 gc_count,
coleenp@4037 787 full_gc_count,
coleenp@4037 788 GCCause::_metadata_GC_threshold);
coleenp@4037 789 VMThread::execute(&op);
coleenp@4037 790 if (op.prologue_succeeded()) {
coleenp@4037 791 return op.result();
coleenp@4037 792 }
coleenp@4037 793 loop_count++;
coleenp@4037 794 if ((QueuedAllocationWarningCount > 0) &&
coleenp@4037 795 (loop_count % QueuedAllocationWarningCount == 0)) {
coleenp@4037 796 warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
coleenp@4037 797 " size=%d", loop_count, word_size);
coleenp@4037 798 }
coleenp@4037 799 } while (true); // Until a GC is done
coleenp@4037 800 }
coleenp@4037 801
duke@435 802 // Return true if any of the following is true:
duke@435 803 // . the allocation won't fit into the current young gen heap
duke@435 804 // . gc locker is occupied (jni critical section)
duke@435 805 // . heap memory is tight -- the most recent previous collection
duke@435 806 // was a full collection because a partial collection (would
duke@435 807 // have) failed and is likely to fail again
duke@435 808 bool GenCollectorPolicy::should_try_older_generation_allocation(
duke@435 809 size_t word_size) const {
duke@435 810 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 811 size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
duke@435 812 return (word_size > heap_word_size(gen0_capacity))
ysr@2243 813 || GC_locker::is_active_and_needs_gc()
ysr@2243 814 || gch->incremental_collection_failed();
duke@435 815 }
duke@435 816
duke@435 817
duke@435 818 //
duke@435 819 // MarkSweepPolicy methods
duke@435 820 //
duke@435 821
duke@435 822 MarkSweepPolicy::MarkSweepPolicy() {
duke@435 823 initialize_all();
duke@435 824 }
duke@435 825
duke@435 826 void MarkSweepPolicy::initialize_generations() {
duke@435 827 _generations = new GenerationSpecPtr[number_of_generations()];
duke@435 828 if (_generations == NULL)
duke@435 829 vm_exit_during_initialization("Unable to allocate gen spec");
duke@435 830
duke@435 831 if (UseParNewGC && ParallelGCThreads > 0) {
duke@435 832 _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
duke@435 833 } else {
duke@435 834 _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
duke@435 835 }
duke@435 836 _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
duke@435 837
duke@435 838 if (_generations[0] == NULL || _generations[1] == NULL)
duke@435 839 vm_exit_during_initialization("Unable to allocate gen spec");
duke@435 840 }
duke@435 841
duke@435 842 void MarkSweepPolicy::initialize_gc_policy_counters() {
duke@435 843 // initialize the policy counters - 2 collectors, 3 generations
duke@435 844 if (UseParNewGC && ParallelGCThreads > 0) {
duke@435 845 _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
duke@435 846 }
duke@435 847 else {
duke@435 848 _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
duke@435 849 }
duke@435 850 }

mercurial