src/share/vm/memory/collectorPolicy.cpp

Fri, 16 Aug 2013 13:22:32 +0200

author
stefank
date
Fri, 16 Aug 2013 13:22:32 +0200
changeset 5578
4c84d351cca9
parent 5125
2958af1d8c5a
child 5701
40136aa2cdb1
permissions
-rw-r--r--

8007074: SIGSEGV at ParMarkBitMap::verify_clear()
Summary: Replace the broken large pages implementation on Linux. New flag: -XX:+UseTransparentHugePages - Linux specific flag to turn on transparent huge page hinting with madvise(..., MAP_HUGETLB). Changed behavior: -XX:+UseLargePages - tries to use -XX:+UseTransparentHugePages before trying other large pages implementations (on Linux). Changed behavior: -XX:+UseHugeTLBFS - Use upfront allocation of Large Pages instead of using the broken implementation to dynamically committing large pages. Changed behavior: -XX:LargePageSizeInBytes - Turned off the ability to use this flag on Linux and provides warning to user if set to a value different than the OS chosen large page size. Changed behavior: Setting no large page size - Now defaults to use -XX:UseTransparentHugePages if the OS supports it. Previously, -XX:+UseHugeTLBFS was chosen if the OS was configured to use large pages.
Reviewed-by: tschatzl, dcubed, brutisso

duke@435 1 /*
jwilhelm@4554 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
stefank@2314 27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
stefank@2314 28 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 29 #include "memory/cardTableRS.hpp"
stefank@2314 30 #include "memory/collectorPolicy.hpp"
stefank@2314 31 #include "memory/gcLocker.inline.hpp"
stefank@2314 32 #include "memory/genCollectedHeap.hpp"
stefank@2314 33 #include "memory/generationSpec.hpp"
stefank@2314 34 #include "memory/space.hpp"
stefank@2314 35 #include "memory/universe.hpp"
stefank@2314 36 #include "runtime/arguments.hpp"
stefank@2314 37 #include "runtime/globals_extension.hpp"
stefank@2314 38 #include "runtime/handles.inline.hpp"
stefank@2314 39 #include "runtime/java.hpp"
stefank@4299 40 #include "runtime/thread.inline.hpp"
stefank@2314 41 #include "runtime/vmThread.hpp"
jprovino@4542 42 #include "utilities/macros.hpp"
jprovino@4542 43 #if INCLUDE_ALL_GCS
stefank@2314 44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
stefank@2314 45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
jprovino@4542 46 #endif // INCLUDE_ALL_GCS
duke@435 47
duke@435 48 // CollectorPolicy methods.
duke@435 49
duke@435 50 void CollectorPolicy::initialize_flags() {
brutisso@5071 51 assert(max_alignment() >= min_alignment(),
brutisso@5071 52 err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
brutisso@5071 53 max_alignment(), min_alignment()));
brutisso@5071 54 assert(max_alignment() % min_alignment() == 0,
brutisso@5071 55 err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
brutisso@5071 56 max_alignment(), min_alignment()));
brutisso@5071 57
tschatzl@5073 58 if (MaxHeapSize < InitialHeapSize) {
tschatzl@5073 59 vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
tschatzl@5073 60 }
tschatzl@5073 61
coleenp@4037 62 if (MetaspaceSize > MaxMetaspaceSize) {
coleenp@4037 63 MaxMetaspaceSize = MetaspaceSize;
duke@435 64 }
coleenp@4037 65 MetaspaceSize = MAX2(min_alignment(), align_size_down_(MetaspaceSize, min_alignment()));
coleenp@4037 66 // Don't increase Metaspace size limit above specified.
coleenp@4037 67 MaxMetaspaceSize = align_size_down(MaxMetaspaceSize, max_alignment());
coleenp@4037 68 if (MetaspaceSize > MaxMetaspaceSize) {
coleenp@4037 69 MetaspaceSize = MaxMetaspaceSize;
kvn@2150 70 }
duke@435 71
coleenp@4037 72 MinMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MinMetaspaceExpansion, min_alignment()));
coleenp@4037 73 MaxMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MaxMetaspaceExpansion, min_alignment()));
duke@435 74
duke@435 75 MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
duke@435 76
coleenp@4037 77 assert(MetaspaceSize % min_alignment() == 0, "metapace alignment");
coleenp@4037 78 assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
coleenp@4037 79 if (MetaspaceSize < 256*K) {
coleenp@4037 80 vm_exit_during_initialization("Too small initial Metaspace size");
duke@435 81 }
duke@435 82 }
duke@435 83
duke@435 84 void CollectorPolicy::initialize_size_info() {
tschatzl@5073 85 // User inputs from -mx and ms must be aligned
tschatzl@5073 86 set_min_heap_byte_size(align_size_up(Arguments::min_heap_size(), min_alignment()));
tschatzl@5073 87 set_initial_heap_byte_size(align_size_up(InitialHeapSize, min_alignment()));
ysr@777 88 set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
duke@435 89
duke@435 90 // Check heap parameter properties
jmasa@448 91 if (initial_heap_byte_size() < M) {
duke@435 92 vm_exit_during_initialization("Too small initial heap");
duke@435 93 }
duke@435 94 // Check heap parameter properties
jmasa@448 95 if (min_heap_byte_size() < M) {
duke@435 96 vm_exit_during_initialization("Too small minimum heap");
duke@435 97 }
jmasa@448 98 if (initial_heap_byte_size() <= NewSize) {
duke@435 99 // make sure there is at least some room in old space
duke@435 100 vm_exit_during_initialization("Too small initial heap for new size specified");
duke@435 101 }
jmasa@448 102 if (max_heap_byte_size() < min_heap_byte_size()) {
duke@435 103 vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
duke@435 104 }
jmasa@448 105 if (initial_heap_byte_size() < min_heap_byte_size()) {
duke@435 106 vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
duke@435 107 }
jmasa@448 108 if (max_heap_byte_size() < initial_heap_byte_size()) {
duke@435 109 vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
duke@435 110 }
jmasa@448 111
jmasa@448 112 if (PrintGCDetails && Verbose) {
jmasa@448 113 gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT " Initial heap "
jmasa@448 114 SIZE_FORMAT " Maximum heap " SIZE_FORMAT,
jmasa@448 115 min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
jmasa@448 116 }
duke@435 117 }
duke@435 118
jmasa@1822 119 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
jmasa@1822 120 bool result = _should_clear_all_soft_refs;
jmasa@1822 121 set_should_clear_all_soft_refs(false);
jmasa@1822 122 return result;
jmasa@1822 123 }
duke@435 124
duke@435 125 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
duke@435 126 int max_covered_regions) {
duke@435 127 switch (rem_set_name()) {
duke@435 128 case GenRemSet::CardTable: {
duke@435 129 CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
duke@435 130 return res;
duke@435 131 }
duke@435 132 default:
duke@435 133 guarantee(false, "unrecognized GenRemSet::Name");
duke@435 134 return NULL;
duke@435 135 }
duke@435 136 }
duke@435 137
jmasa@1822 138 void CollectorPolicy::cleared_all_soft_refs() {
jmasa@1822 139 // If near gc overhear limit, continue to clear SoftRefs. SoftRefs may
jmasa@1822 140 // have been cleared in the last collection but if the gc overhear
jmasa@1822 141 // limit continues to be near, SoftRefs should still be cleared.
jmasa@1822 142 if (size_policy() != NULL) {
jmasa@1822 143 _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
jmasa@1822 144 }
jmasa@1822 145 _all_soft_refs_clear = true;
jmasa@1822 146 }
jmasa@1822 147
jmasa@1822 148
duke@435 149 // GenCollectorPolicy methods.
duke@435 150
jmasa@448 151 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
jmasa@448 152 size_t x = base_size / (NewRatio+1);
jmasa@448 153 size_t new_gen_size = x > min_alignment() ?
jmasa@448 154 align_size_down(x, min_alignment()) :
jmasa@448 155 min_alignment();
jmasa@448 156 return new_gen_size;
jmasa@448 157 }
jmasa@448 158
jmasa@448 159 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
jmasa@448 160 size_t maximum_size) {
jmasa@448 161 size_t alignment = min_alignment();
jmasa@448 162 size_t max_minus = maximum_size - alignment;
jmasa@448 163 return desired_size < max_minus ? desired_size : max_minus;
jmasa@448 164 }
jmasa@448 165
jmasa@448 166
duke@435 167 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
duke@435 168 size_t init_promo_size,
duke@435 169 size_t init_survivor_size) {
tamao@4613 170 const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
duke@435 171 _size_policy = new AdaptiveSizePolicy(init_eden_size,
duke@435 172 init_promo_size,
duke@435 173 init_survivor_size,
tamao@4613 174 max_gc_pause_sec,
duke@435 175 GCTimeRatio);
duke@435 176 }
duke@435 177
duke@435 178 size_t GenCollectorPolicy::compute_max_alignment() {
duke@435 179 // The card marking array and the offset arrays for old generations are
duke@435 180 // committed in os pages as well. Make sure they are entirely full (to
duke@435 181 // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
duke@435 182 // byte entry and the os page size is 4096, the maximum heap size should
duke@435 183 // be 512*4096 = 2MB aligned.
duke@435 184 size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
duke@435 185
duke@435 186 // Parallel GC does its own alignment of the generations to avoid requiring a
duke@435 187 // large page (256M on some platforms) for the permanent generation. The
duke@435 188 // other collectors should also be updated to do their own alignment and then
duke@435 189 // this use of lcm() should be removed.
duke@435 190 if (UseLargePages && !UseParallelGC) {
duke@435 191 // in presence of large pages we have to make sure that our
duke@435 192 // alignment is large page aware
duke@435 193 alignment = lcm(os::large_page_size(), alignment);
duke@435 194 }
duke@435 195
stefank@5578 196 assert(alignment >= min_alignment(), "Must be");
stefank@5578 197
duke@435 198 return alignment;
duke@435 199 }
duke@435 200
duke@435 201 void GenCollectorPolicy::initialize_flags() {
duke@435 202 // All sizes must be multiples of the generation granularity.
duke@435 203 set_min_alignment((uintx) Generation::GenGrain);
duke@435 204 set_max_alignment(compute_max_alignment());
duke@435 205
duke@435 206 CollectorPolicy::initialize_flags();
duke@435 207
duke@435 208 // All generational heaps have a youngest gen; handle those flags here.
duke@435 209
duke@435 210 // Adjust max size parameters
duke@435 211 if (NewSize > MaxNewSize) {
duke@435 212 MaxNewSize = NewSize;
duke@435 213 }
duke@435 214 NewSize = align_size_down(NewSize, min_alignment());
duke@435 215 MaxNewSize = align_size_down(MaxNewSize, min_alignment());
duke@435 216
duke@435 217 // Check validity of heap flags
duke@435 218 assert(NewSize % min_alignment() == 0, "eden space alignment");
duke@435 219 assert(MaxNewSize % min_alignment() == 0, "survivor space alignment");
duke@435 220
duke@435 221 if (NewSize < 3*min_alignment()) {
duke@435 222 // make sure there room for eden and two survivor spaces
duke@435 223 vm_exit_during_initialization("Too small new size specified");
duke@435 224 }
duke@435 225 if (SurvivorRatio < 1 || NewRatio < 1) {
duke@435 226 vm_exit_during_initialization("Invalid heap ratio specified");
duke@435 227 }
duke@435 228 }
duke@435 229
duke@435 230 void TwoGenerationCollectorPolicy::initialize_flags() {
duke@435 231 GenCollectorPolicy::initialize_flags();
duke@435 232
duke@435 233 OldSize = align_size_down(OldSize, min_alignment());
jwilhelm@4554 234
jwilhelm@4554 235 if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
jwilhelm@4554 236 // NewRatio will be used later to set the young generation size so we use
jwilhelm@4554 237 // it to calculate how big the heap should be based on the requested OldSize
jwilhelm@4554 238 // and NewRatio.
jwilhelm@4554 239 assert(NewRatio > 0, "NewRatio should have been set up earlier");
jwilhelm@4554 240 size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
jwilhelm@4554 241
jwilhelm@4554 242 calculated_heapsize = align_size_up(calculated_heapsize, max_alignment());
jwilhelm@4554 243 MaxHeapSize = calculated_heapsize;
jwilhelm@4554 244 InitialHeapSize = calculated_heapsize;
jwilhelm@4554 245 }
duke@435 246 MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
duke@435 247
tschatzl@5073 248 // adjust max heap size if necessary
tschatzl@5073 249 if (NewSize + OldSize > MaxHeapSize) {
tschatzl@5073 250 if (FLAG_IS_CMDLINE(MaxHeapSize)) {
tschatzl@5073 251 // somebody set a maximum heap size with the intention that we should not
tschatzl@5073 252 // exceed it. Adjust New/OldSize as necessary.
tschatzl@5073 253 uintx calculated_size = NewSize + OldSize;
tschatzl@5073 254 double shrink_factor = (double) MaxHeapSize / calculated_size;
tschatzl@5073 255 // align
tschatzl@5073 256 NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
tschatzl@5073 257 // OldSize is already aligned because above we aligned MaxHeapSize to
tschatzl@5073 258 // max_alignment(), and we just made sure that NewSize is aligned to
tschatzl@5073 259 // min_alignment(). In initialize_flags() we verified that max_alignment()
tschatzl@5073 260 // is a multiple of min_alignment().
tschatzl@5073 261 OldSize = MaxHeapSize - NewSize;
tschatzl@5073 262 } else {
tschatzl@5073 263 MaxHeapSize = NewSize + OldSize;
tschatzl@5073 264 }
tschatzl@5073 265 }
tschatzl@5073 266 // need to do this again
tschatzl@5073 267 MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
tschatzl@5073 268
tschatzl@5116 269 // adjust max heap size if necessary
tschatzl@5116 270 if (NewSize + OldSize > MaxHeapSize) {
tschatzl@5116 271 if (FLAG_IS_CMDLINE(MaxHeapSize)) {
tschatzl@5116 272 // somebody set a maximum heap size with the intention that we should not
tschatzl@5116 273 // exceed it. Adjust New/OldSize as necessary.
tschatzl@5116 274 uintx calculated_size = NewSize + OldSize;
tschatzl@5116 275 double shrink_factor = (double) MaxHeapSize / calculated_size;
tschatzl@5116 276 // align
tschatzl@5116 277 NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
tschatzl@5116 278 // OldSize is already aligned because above we aligned MaxHeapSize to
tschatzl@5116 279 // max_alignment(), and we just made sure that NewSize is aligned to
tschatzl@5116 280 // min_alignment(). In initialize_flags() we verified that max_alignment()
tschatzl@5116 281 // is a multiple of min_alignment().
tschatzl@5116 282 OldSize = MaxHeapSize - NewSize;
tschatzl@5116 283 } else {
tschatzl@5116 284 MaxHeapSize = NewSize + OldSize;
tschatzl@5116 285 }
tschatzl@5116 286 }
tschatzl@5116 287 // need to do this again
tschatzl@5116 288 MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
tschatzl@5116 289
duke@435 290 always_do_update_barrier = UseConcMarkSweepGC;
duke@435 291
duke@435 292 // Check validity of heap flags
duke@435 293 assert(OldSize % min_alignment() == 0, "old space alignment");
duke@435 294 assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
duke@435 295 }
duke@435 296
jmasa@448 297 // Values set on the command line win over any ergonomically
jmasa@448 298 // set command line parameters.
jmasa@448 299 // Ergonomic choice of parameters are done before this
jmasa@448 300 // method is called. Values for command line parameters such as NewSize
jmasa@448 301 // and MaxNewSize feed those ergonomic choices into this method.
jmasa@448 302 // This method makes the final generation sizings consistent with
jmasa@448 303 // themselves and with overall heap sizings.
jmasa@448 304 // In the absence of explicitly set command line flags, policies
jmasa@448 305 // such as the use of NewRatio are used to size the generation.
duke@435 306 void GenCollectorPolicy::initialize_size_info() {
duke@435 307 CollectorPolicy::initialize_size_info();
duke@435 308
jmasa@448 309 // min_alignment() is used for alignment within a generation.
jmasa@448 310 // There is additional alignment done down stream for some
jmasa@448 311 // collectors that sometimes causes unwanted rounding up of
jmasa@448 312 // generations sizes.
jmasa@448 313
jmasa@448 314 // Determine maximum size of gen0
jmasa@448 315
jmasa@448 316 size_t max_new_size = 0;
ysr@2650 317 if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
jmasa@448 318 if (MaxNewSize < min_alignment()) {
jmasa@448 319 max_new_size = min_alignment();
ysr@2650 320 }
ysr@2650 321 if (MaxNewSize >= max_heap_byte_size()) {
jmasa@448 322 max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
jmasa@448 323 min_alignment());
jmasa@448 324 warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
jmasa@448 325 "greater than the entire heap (" SIZE_FORMAT "k). A "
jmasa@448 326 "new generation size of " SIZE_FORMAT "k will be used.",
jmasa@448 327 MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
jmasa@448 328 } else {
jmasa@448 329 max_new_size = align_size_down(MaxNewSize, min_alignment());
jmasa@448 330 }
jmasa@448 331
jmasa@448 332 // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
jmasa@448 333 // specially at this point to just use an ergonomically set
jmasa@448 334 // MaxNewSize to set max_new_size. For cases with small
jmasa@448 335 // heaps such a policy often did not work because the MaxNewSize
jmasa@448 336 // was larger than the entire heap. The interpretation given
jmasa@448 337 // to ergonomically set flags is that the flags are set
jmasa@448 338 // by different collectors for their own special needs but
jmasa@448 339 // are not allowed to badly shape the heap. This allows the
jmasa@448 340 // different collectors to decide what's best for themselves
jmasa@448 341 // without having to factor in the overall heap shape. It
jmasa@448 342 // can be the case in the future that the collectors would
jmasa@448 343 // only make "wise" ergonomics choices and this policy could
jmasa@448 344 // just accept those choices. The choices currently made are
jmasa@448 345 // not always "wise".
duke@435 346 } else {
jmasa@448 347 max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
jmasa@448 348 // Bound the maximum size by NewSize below (since it historically
duke@435 349 // would have been NewSize and because the NewRatio calculation could
duke@435 350 // yield a size that is too small) and bound it by MaxNewSize above.
jmasa@448 351 // Ergonomics plays here by previously calculating the desired
jmasa@448 352 // NewSize and MaxNewSize.
jmasa@448 353 max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
jmasa@448 354 }
jmasa@448 355 assert(max_new_size > 0, "All paths should set max_new_size");
jmasa@448 356
jmasa@448 357 // Given the maximum gen0 size, determine the initial and
ysr@2650 358 // minimum gen0 sizes.
jmasa@448 359
jmasa@448 360 if (max_heap_byte_size() == min_heap_byte_size()) {
jmasa@448 361 // The maximum and minimum heap sizes are the same so
jmasa@448 362 // the generations minimum and initial must be the
jmasa@448 363 // same as its maximum.
jmasa@448 364 set_min_gen0_size(max_new_size);
jmasa@448 365 set_initial_gen0_size(max_new_size);
jmasa@448 366 set_max_gen0_size(max_new_size);
jmasa@448 367 } else {
jmasa@448 368 size_t desired_new_size = 0;
jmasa@448 369 if (!FLAG_IS_DEFAULT(NewSize)) {
jmasa@448 370 // If NewSize is set ergonomically (for example by cms), it
jmasa@448 371 // would make sense to use it. If it is used, also use it
jmasa@448 372 // to set the initial size. Although there is no reason
jmasa@448 373 // the minimum size and the initial size have to be the same,
jmasa@448 374 // the current implementation gets into trouble during the calculation
jmasa@448 375 // of the tenured generation sizes if they are different.
jmasa@448 376 // Note that this makes the initial size and the minimum size
jmasa@448 377 // generally small compared to the NewRatio calculation.
jmasa@448 378 _min_gen0_size = NewSize;
jmasa@448 379 desired_new_size = NewSize;
jmasa@448 380 max_new_size = MAX2(max_new_size, NewSize);
jmasa@448 381 } else {
jmasa@448 382 // For the case where NewSize is the default, use NewRatio
jmasa@448 383 // to size the minimum and initial generation sizes.
jmasa@448 384 // Use the default NewSize as the floor for these values. If
jmasa@448 385 // NewRatio is overly large, the resulting sizes can be too
jmasa@448 386 // small.
jmasa@448 387 _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
jmasa@448 388 NewSize);
jmasa@448 389 desired_new_size =
jmasa@448 390 MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
jmasa@448 391 NewSize);
jmasa@448 392 }
jmasa@448 393
jmasa@448 394 assert(_min_gen0_size > 0, "Sanity check");
jmasa@448 395 set_initial_gen0_size(desired_new_size);
jmasa@448 396 set_max_gen0_size(max_new_size);
jmasa@448 397
jmasa@448 398 // At this point the desirable initial and minimum sizes have been
jmasa@448 399 // determined without regard to the maximum sizes.
jmasa@448 400
jmasa@448 401 // Bound the sizes by the corresponding overall heap sizes.
jmasa@448 402 set_min_gen0_size(
jmasa@448 403 bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
jmasa@448 404 set_initial_gen0_size(
jmasa@448 405 bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
jmasa@448 406 set_max_gen0_size(
jmasa@448 407 bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
jmasa@448 408
jmasa@448 409 // At this point all three sizes have been checked against the
jmasa@448 410 // maximum sizes but have not been checked for consistency
ysr@777 411 // among the three.
jmasa@448 412
jmasa@448 413 // Final check min <= initial <= max
jmasa@448 414 set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
jmasa@448 415 set_initial_gen0_size(
jmasa@448 416 MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
jmasa@448 417 set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
duke@435 418 }
duke@435 419
jmasa@448 420 if (PrintGCDetails && Verbose) {
ysr@2650 421 gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 422 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 423 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 424 }
jmasa@448 425 }
duke@435 426
jmasa@448 427 // Call this method during the sizing of the gen1 to make
jmasa@448 428 // adjustments to gen0 because of gen1 sizing policy. gen0 initially has
jmasa@448 429 // the most freedom in sizing because it is done before the
jmasa@448 430 // policy for gen1 is applied. Once gen1 policies have been applied,
jmasa@448 431 // there may be conflicts in the shape of the heap and this method
jmasa@448 432 // is used to make the needed adjustments. The application of the
jmasa@448 433 // policies could be more sophisticated (iterative for example) but
jmasa@448 434 // keeping it simple also seems a worthwhile goal.
jmasa@448 435 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
jmasa@448 436 size_t* gen1_size_ptr,
jwilhelm@4554 437 const size_t heap_size,
jwilhelm@4554 438 const size_t min_gen1_size) {
jmasa@448 439 bool result = false;
jwilhelm@4554 440
jmasa@448 441 if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
jwilhelm@4554 442 if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
jwilhelm@4554 443 (heap_size >= min_gen1_size + min_alignment())) {
jwilhelm@4554 444 // Adjust gen0 down to accommodate min_gen1_size
jwilhelm@4554 445 *gen0_size_ptr = heap_size - min_gen1_size;
jmasa@448 446 *gen0_size_ptr =
jmasa@448 447 MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
jmasa@448 448 min_alignment());
jmasa@448 449 assert(*gen0_size_ptr > 0, "Min gen0 is too large");
jmasa@448 450 result = true;
jmasa@448 451 } else {
jmasa@448 452 *gen1_size_ptr = heap_size - *gen0_size_ptr;
jmasa@448 453 *gen1_size_ptr =
jmasa@448 454 MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
jmasa@448 455 min_alignment());
jmasa@448 456 }
jmasa@448 457 }
jmasa@448 458 return result;
jmasa@448 459 }
duke@435 460
jmasa@448 461 // Minimum sizes of the generations may be different than
jmasa@448 462 // the initial sizes. An inconsistently is permitted here
jmasa@448 463 // in the total size that can be specified explicitly by
jmasa@448 464 // command line specification of OldSize and NewSize and
jmasa@448 465 // also a command line specification of -Xms. Issue a warning
jmasa@448 466 // but allow the values to pass.
duke@435 467
duke@435 468 void TwoGenerationCollectorPolicy::initialize_size_info() {
duke@435 469 GenCollectorPolicy::initialize_size_info();
duke@435 470
jmasa@448 471 // At this point the minimum, initial and maximum sizes
jmasa@448 472 // of the overall heap and of gen0 have been determined.
jmasa@448 473 // The maximum gen1 size can be determined from the maximum gen0
ysr@2650 474 // and maximum heap size since no explicit flags exits
jmasa@448 475 // for setting the gen1 maximum.
jmasa@448 476 _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
jmasa@448 477 _max_gen1_size =
jmasa@448 478 MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
jmasa@448 479 min_alignment());
jmasa@448 480 // If no explicit command line flag has been set for the
jmasa@448 481 // gen1 size, use what is left for gen1.
jmasa@448 482 if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
jmasa@448 483 // The user has not specified any value or ergonomics
jmasa@448 484 // has chosen a value (which may or may not be consistent
jmasa@448 485 // with the overall heap size). In either case make
jmasa@448 486 // the minimum, maximum and initial sizes consistent
jmasa@448 487 // with the gen0 sizes and the overall heap sizes.
jmasa@448 488 assert(min_heap_byte_size() > _min_gen0_size,
jmasa@448 489 "gen0 has an unexpected minimum size");
jmasa@448 490 set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
jmasa@448 491 set_min_gen1_size(
jmasa@448 492 MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
jmasa@448 493 min_alignment()));
jmasa@448 494 set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
jmasa@448 495 set_initial_gen1_size(
jmasa@448 496 MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
jmasa@448 497 min_alignment()));
jmasa@448 498
jmasa@448 499 } else {
jmasa@448 500 // It's been explicitly set on the command line. Use the
jmasa@448 501 // OldSize and then determine the consequences.
jmasa@448 502 set_min_gen1_size(OldSize);
jmasa@448 503 set_initial_gen1_size(OldSize);
jmasa@448 504
jmasa@448 505 // If the user has explicitly set an OldSize that is inconsistent
jmasa@448 506 // with other command line flags, issue a warning.
duke@435 507 // The generation minimums and the overall heap mimimum should
duke@435 508 // be within one heap alignment.
jmasa@448 509 if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
jmasa@448 510 min_heap_byte_size()) {
duke@435 511 warning("Inconsistency between minimum heap size and minimum "
jmasa@448 512 "generation sizes: using minimum heap = " SIZE_FORMAT,
jmasa@448 513 min_heap_byte_size());
duke@435 514 }
jmasa@448 515 if ((OldSize > _max_gen1_size)) {
jmasa@448 516 warning("Inconsistency between maximum heap size and maximum "
jmasa@448 517 "generation sizes: using maximum heap = " SIZE_FORMAT
jmasa@448 518 " -XX:OldSize flag is being ignored",
jmasa@448 519 max_heap_byte_size());
ysr@2650 520 }
jmasa@448 521 // If there is an inconsistency between the OldSize and the minimum and/or
jmasa@448 522 // initial size of gen0, since OldSize was explicitly set, OldSize wins.
jmasa@448 523 if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
jmasa@448 524 min_heap_byte_size(), OldSize)) {
jmasa@448 525 if (PrintGCDetails && Verbose) {
ysr@2650 526 gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 527 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 528 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 529 }
jmasa@448 530 }
jmasa@448 531 // Initial size
jmasa@448 532 if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
jmasa@448 533 initial_heap_byte_size(), OldSize)) {
jmasa@448 534 if (PrintGCDetails && Verbose) {
ysr@2650 535 gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 536 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jmasa@448 537 min_gen0_size(), initial_gen0_size(), max_gen0_size());
jmasa@448 538 }
jmasa@448 539 }
jmasa@448 540 }
jmasa@448 541 // Enforce the maximum gen1 size.
jmasa@448 542 set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
duke@435 543
jmasa@448 544 // Check that min gen1 <= initial gen1 <= max gen1
jmasa@448 545 set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
jmasa@448 546 set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
jmasa@448 547
jmasa@448 548 if (PrintGCDetails && Verbose) {
jmasa@448 549 gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT " Initial gen1 "
jmasa@448 550 SIZE_FORMAT " Maximum gen1 " SIZE_FORMAT,
jmasa@448 551 min_gen1_size(), initial_gen1_size(), max_gen1_size());
jmasa@448 552 }
duke@435 553 }
duke@435 554
duke@435 555 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
duke@435 556 bool is_tlab,
duke@435 557 bool* gc_overhead_limit_was_exceeded) {
duke@435 558 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 559
duke@435 560 debug_only(gch->check_for_valid_allocation_state());
duke@435 561 assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
jmasa@1822 562
jmasa@1822 563 // In general gc_overhead_limit_was_exceeded should be false so
jmasa@1822 564 // set it so here and reset it to true only if the gc time
jmasa@1822 565 // limit is being exceeded as checked below.
jmasa@1822 566 *gc_overhead_limit_was_exceeded = false;
jmasa@1822 567
duke@435 568 HeapWord* result = NULL;
duke@435 569
duke@435 570 // Loop until the allocation is satisified,
duke@435 571 // or unsatisfied after GC.
mgerdin@4853 572 for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
duke@435 573 HandleMark hm; // discard any handles allocated in each iteration
duke@435 574
duke@435 575 // First allocation attempt is lock-free.
duke@435 576 Generation *gen0 = gch->get_gen(0);
duke@435 577 assert(gen0->supports_inline_contig_alloc(),
duke@435 578 "Otherwise, must do alloc within heap lock");
duke@435 579 if (gen0->should_allocate(size, is_tlab)) {
duke@435 580 result = gen0->par_allocate(size, is_tlab);
duke@435 581 if (result != NULL) {
duke@435 582 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 583 return result;
duke@435 584 }
duke@435 585 }
duke@435 586 unsigned int gc_count_before; // read inside the Heap_lock locked region
duke@435 587 {
duke@435 588 MutexLocker ml(Heap_lock);
duke@435 589 if (PrintGC && Verbose) {
duke@435 590 gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
duke@435 591 " attempting locked slow path allocation");
duke@435 592 }
duke@435 593 // Note that only large objects get a shot at being
duke@435 594 // allocated in later generations.
duke@435 595 bool first_only = ! should_try_older_generation_allocation(size);
duke@435 596
duke@435 597 result = gch->attempt_allocation(size, is_tlab, first_only);
duke@435 598 if (result != NULL) {
duke@435 599 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 600 return result;
duke@435 601 }
duke@435 602
duke@435 603 if (GC_locker::is_active_and_needs_gc()) {
duke@435 604 if (is_tlab) {
duke@435 605 return NULL; // Caller will retry allocating individual object
duke@435 606 }
duke@435 607 if (!gch->is_maximal_no_gc()) {
duke@435 608 // Try and expand heap to satisfy request
duke@435 609 result = expand_heap_and_allocate(size, is_tlab);
duke@435 610 // result could be null if we are out of space
duke@435 611 if (result != NULL) {
duke@435 612 return result;
duke@435 613 }
duke@435 614 }
duke@435 615
mgerdin@4853 616 if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
mgerdin@4853 617 return NULL; // we didn't get to do a GC and we didn't get any memory
mgerdin@4853 618 }
mgerdin@4853 619
duke@435 620 // If this thread is not in a jni critical section, we stall
duke@435 621 // the requestor until the critical section has cleared and
duke@435 622 // GC allowed. When the critical section clears, a GC is
duke@435 623 // initiated by the last thread exiting the critical section; so
duke@435 624 // we retry the allocation sequence from the beginning of the loop,
duke@435 625 // rather than causing more, now probably unnecessary, GC attempts.
duke@435 626 JavaThread* jthr = JavaThread::current();
duke@435 627 if (!jthr->in_critical()) {
duke@435 628 MutexUnlocker mul(Heap_lock);
duke@435 629 // Wait for JNI critical section to be exited
duke@435 630 GC_locker::stall_until_clear();
mgerdin@4853 631 gclocker_stalled_count += 1;
duke@435 632 continue;
duke@435 633 } else {
duke@435 634 if (CheckJNICalls) {
duke@435 635 fatal("Possible deadlock due to allocating while"
duke@435 636 " in jni critical section");
duke@435 637 }
duke@435 638 return NULL;
duke@435 639 }
duke@435 640 }
duke@435 641
duke@435 642 // Read the gc count while the heap lock is held.
duke@435 643 gc_count_before = Universe::heap()->total_collections();
duke@435 644 }
duke@435 645
duke@435 646 VM_GenCollectForAllocation op(size,
duke@435 647 is_tlab,
duke@435 648 gc_count_before);
duke@435 649 VMThread::execute(&op);
duke@435 650 if (op.prologue_succeeded()) {
duke@435 651 result = op.result();
duke@435 652 if (op.gc_locked()) {
duke@435 653 assert(result == NULL, "must be NULL if gc_locked() is true");
duke@435 654 continue; // retry and/or stall as necessary
duke@435 655 }
jmasa@1822 656
jmasa@1822 657 // Allocation has failed and a collection
jmasa@1822 658 // has been done. If the gc time limit was exceeded the
jmasa@1822 659 // this time, return NULL so that an out-of-memory
jmasa@1822 660 // will be thrown. Clear gc_overhead_limit_exceeded
jmasa@1822 661 // so that the overhead exceeded does not persist.
jmasa@1822 662
jmasa@1822 663 const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
jmasa@1822 664 const bool softrefs_clear = all_soft_refs_clear();
jmasa@4743 665
jmasa@1822 666 if (limit_exceeded && softrefs_clear) {
jmasa@1822 667 *gc_overhead_limit_was_exceeded = true;
jmasa@1822 668 size_policy()->set_gc_overhead_limit_exceeded(false);
jmasa@1822 669 if (op.result() != NULL) {
jmasa@1822 670 CollectedHeap::fill_with_object(op.result(), size);
jmasa@1822 671 }
jmasa@1822 672 return NULL;
jmasa@1822 673 }
duke@435 674 assert(result == NULL || gch->is_in_reserved(result),
duke@435 675 "result not in heap");
duke@435 676 return result;
duke@435 677 }
duke@435 678
duke@435 679 // Give a warning if we seem to be looping forever.
duke@435 680 if ((QueuedAllocationWarningCount > 0) &&
duke@435 681 (try_count % QueuedAllocationWarningCount == 0)) {
duke@435 682 warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
duke@435 683 " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
duke@435 684 }
duke@435 685 }
duke@435 686 }
duke@435 687
duke@435 688 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
duke@435 689 bool is_tlab) {
duke@435 690 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 691 HeapWord* result = NULL;
duke@435 692 for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
duke@435 693 Generation *gen = gch->get_gen(i);
duke@435 694 if (gen->should_allocate(size, is_tlab)) {
duke@435 695 result = gen->expand_and_allocate(size, is_tlab);
duke@435 696 }
duke@435 697 }
duke@435 698 assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
duke@435 699 return result;
duke@435 700 }
duke@435 701
duke@435 702 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
duke@435 703 bool is_tlab) {
duke@435 704 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 705 GCCauseSetter x(gch, GCCause::_allocation_failure);
duke@435 706 HeapWord* result = NULL;
duke@435 707
duke@435 708 assert(size != 0, "Precondition violated");
duke@435 709 if (GC_locker::is_active_and_needs_gc()) {
duke@435 710 // GC locker is active; instead of a collection we will attempt
duke@435 711 // to expand the heap, if there's room for expansion.
duke@435 712 if (!gch->is_maximal_no_gc()) {
duke@435 713 result = expand_heap_and_allocate(size, is_tlab);
duke@435 714 }
duke@435 715 return result; // could be null if we are out of space
ysr@2336 716 } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
duke@435 717 // Do an incremental collection.
duke@435 718 gch->do_collection(false /* full */,
duke@435 719 false /* clear_all_soft_refs */,
duke@435 720 size /* size */,
duke@435 721 is_tlab /* is_tlab */,
duke@435 722 number_of_generations() - 1 /* max_level */);
duke@435 723 } else {
ysr@2336 724 if (Verbose && PrintGCDetails) {
ysr@2336 725 gclog_or_tty->print(" :: Trying full because partial may fail :: ");
ysr@2336 726 }
duke@435 727 // Try a full collection; see delta for bug id 6266275
duke@435 728 // for the original code and why this has been simplified
duke@435 729 // with from-space allocation criteria modified and
duke@435 730 // such allocation moved out of the safepoint path.
duke@435 731 gch->do_collection(true /* full */,
duke@435 732 false /* clear_all_soft_refs */,
duke@435 733 size /* size */,
duke@435 734 is_tlab /* is_tlab */,
duke@435 735 number_of_generations() - 1 /* max_level */);
duke@435 736 }
duke@435 737
duke@435 738 result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
duke@435 739
duke@435 740 if (result != NULL) {
duke@435 741 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 742 return result;
duke@435 743 }
duke@435 744
duke@435 745 // OK, collection failed, try expansion.
duke@435 746 result = expand_heap_and_allocate(size, is_tlab);
duke@435 747 if (result != NULL) {
duke@435 748 return result;
duke@435 749 }
duke@435 750
duke@435 751 // If we reach this point, we're really out of memory. Try every trick
duke@435 752 // we can to reclaim memory. Force collection of soft references. Force
duke@435 753 // a complete compaction of the heap. Any additional methods for finding
duke@435 754 // free memory should be here, especially if they are expensive. If this
duke@435 755 // attempt fails, an OOM exception will be thrown.
duke@435 756 {
tschatzl@5119 757 UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
duke@435 758
duke@435 759 gch->do_collection(true /* full */,
duke@435 760 true /* clear_all_soft_refs */,
duke@435 761 size /* size */,
duke@435 762 is_tlab /* is_tlab */,
duke@435 763 number_of_generations() - 1 /* max_level */);
duke@435 764 }
duke@435 765
duke@435 766 result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
duke@435 767 if (result != NULL) {
duke@435 768 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 769 return result;
duke@435 770 }
duke@435 771
jmasa@1822 772 assert(!should_clear_all_soft_refs(),
jmasa@1822 773 "Flag should have been handled and cleared prior to this point");
jmasa@1822 774
duke@435 775 // What else? We might try synchronous finalization later. If the total
duke@435 776 // space available is large enough for the allocation, then a more
duke@435 777 // complete compaction phase than we've tried so far might be
duke@435 778 // appropriate.
duke@435 779 return NULL;
duke@435 780 }
duke@435 781
coleenp@4037 782 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
coleenp@4037 783 ClassLoaderData* loader_data,
coleenp@4037 784 size_t word_size,
coleenp@4037 785 Metaspace::MetadataType mdtype) {
coleenp@4037 786 uint loop_count = 0;
coleenp@4037 787 uint gc_count = 0;
coleenp@4037 788 uint full_gc_count = 0;
coleenp@4037 789
jmasa@4234 790 assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
jmasa@4234 791
coleenp@4037 792 do {
jmasa@4064 793 MetaWord* result = NULL;
jmasa@4064 794 if (GC_locker::is_active_and_needs_gc()) {
jmasa@4064 795 // If the GC_locker is active, just expand and allocate.
jmasa@4064 796 // If that does not succeed, wait if this thread is not
jmasa@4064 797 // in a critical section itself.
jmasa@4064 798 result =
jmasa@4064 799 loader_data->metaspace_non_null()->expand_and_allocate(word_size,
jmasa@4064 800 mdtype);
jmasa@4064 801 if (result != NULL) {
jmasa@4064 802 return result;
jmasa@4064 803 }
jmasa@4064 804 JavaThread* jthr = JavaThread::current();
jmasa@4064 805 if (!jthr->in_critical()) {
jmasa@4064 806 // Wait for JNI critical section to be exited
jmasa@4064 807 GC_locker::stall_until_clear();
jmasa@4064 808 // The GC invoked by the last thread leaving the critical
jmasa@4064 809 // section will be a young collection and a full collection
jmasa@4064 810 // is (currently) needed for unloading classes so continue
jmasa@4064 811 // to the next iteration to get a full GC.
jmasa@4064 812 continue;
jmasa@4064 813 } else {
jmasa@4064 814 if (CheckJNICalls) {
jmasa@4064 815 fatal("Possible deadlock due to allocating while"
jmasa@4064 816 " in jni critical section");
jmasa@4064 817 }
jmasa@4064 818 return NULL;
jmasa@4064 819 }
jmasa@4064 820 }
jmasa@4064 821
coleenp@4037 822 { // Need lock to get self consistent gc_count's
coleenp@4037 823 MutexLocker ml(Heap_lock);
coleenp@4037 824 gc_count = Universe::heap()->total_collections();
coleenp@4037 825 full_gc_count = Universe::heap()->total_full_collections();
coleenp@4037 826 }
coleenp@4037 827
coleenp@4037 828 // Generate a VM operation
coleenp@4037 829 VM_CollectForMetadataAllocation op(loader_data,
coleenp@4037 830 word_size,
coleenp@4037 831 mdtype,
coleenp@4037 832 gc_count,
coleenp@4037 833 full_gc_count,
coleenp@4037 834 GCCause::_metadata_GC_threshold);
coleenp@4037 835 VMThread::execute(&op);
jmasa@4382 836
jmasa@4382 837 // If GC was locked out, try again. Check
jmasa@4382 838 // before checking success because the prologue
jmasa@4382 839 // could have succeeded and the GC still have
jmasa@4382 840 // been locked out.
jmasa@4382 841 if (op.gc_locked()) {
jmasa@4382 842 continue;
jmasa@4382 843 }
jmasa@4382 844
coleenp@4037 845 if (op.prologue_succeeded()) {
coleenp@4037 846 return op.result();
coleenp@4037 847 }
coleenp@4037 848 loop_count++;
coleenp@4037 849 if ((QueuedAllocationWarningCount > 0) &&
coleenp@4037 850 (loop_count % QueuedAllocationWarningCount == 0)) {
coleenp@4037 851 warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
coleenp@4037 852 " size=%d", loop_count, word_size);
coleenp@4037 853 }
coleenp@4037 854 } while (true); // Until a GC is done
coleenp@4037 855 }
coleenp@4037 856
duke@435 857 // Return true if any of the following is true:
duke@435 858 // . the allocation won't fit into the current young gen heap
duke@435 859 // . gc locker is occupied (jni critical section)
duke@435 860 // . heap memory is tight -- the most recent previous collection
duke@435 861 // was a full collection because a partial collection (would
duke@435 862 // have) failed and is likely to fail again
duke@435 863 bool GenCollectorPolicy::should_try_older_generation_allocation(
duke@435 864 size_t word_size) const {
duke@435 865 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 866 size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
duke@435 867 return (word_size > heap_word_size(gen0_capacity))
ysr@2243 868 || GC_locker::is_active_and_needs_gc()
ysr@2243 869 || gch->incremental_collection_failed();
duke@435 870 }
duke@435 871
duke@435 872
duke@435 873 //
duke@435 874 // MarkSweepPolicy methods
duke@435 875 //
duke@435 876
duke@435 877 MarkSweepPolicy::MarkSweepPolicy() {
duke@435 878 initialize_all();
duke@435 879 }
duke@435 880
duke@435 881 void MarkSweepPolicy::initialize_generations() {
minqi@5103 882 _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
duke@435 883 if (_generations == NULL)
duke@435 884 vm_exit_during_initialization("Unable to allocate gen spec");
duke@435 885
brutisso@4387 886 if (UseParNewGC) {
duke@435 887 _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
duke@435 888 } else {
duke@435 889 _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
duke@435 890 }
duke@435 891 _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
duke@435 892
duke@435 893 if (_generations[0] == NULL || _generations[1] == NULL)
duke@435 894 vm_exit_during_initialization("Unable to allocate gen spec");
duke@435 895 }
duke@435 896
duke@435 897 void MarkSweepPolicy::initialize_gc_policy_counters() {
duke@435 898 // initialize the policy counters - 2 collectors, 3 generations
brutisso@4387 899 if (UseParNewGC) {
duke@435 900 _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
brutisso@4387 901 } else {
duke@435 902 _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
duke@435 903 }
duke@435 904 }

mercurial