src/share/vm/opto/loopnode.hpp

Wed, 03 Feb 2016 10:58:50 +0100

author
roland
date
Wed, 03 Feb 2016 10:58:50 +0100
changeset 8311
c9035b8e388b
parent 8195
cf93dd06db0f
child 8604
04d83ba48607
child 8797
37ba410ffd43
permissions
-rw-r--r--

8147645: get_ctrl_no_update() code is wrong
Summary: Array.fill intrinsification code doesn't mark replaced control as dead
Reviewed-by: kvn

duke@435 1 /*
aeriksso@8195 2 * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_LOOPNODE_HPP
stefank@2314 26 #define SHARE_VM_OPTO_LOOPNODE_HPP
stefank@2314 27
stefank@2314 28 #include "opto/cfgnode.hpp"
stefank@2314 29 #include "opto/multnode.hpp"
stefank@2314 30 #include "opto/phaseX.hpp"
stefank@2314 31 #include "opto/subnode.hpp"
stefank@2314 32 #include "opto/type.hpp"
stefank@2314 33
duke@435 34 class CmpNode;
duke@435 35 class CountedLoopEndNode;
duke@435 36 class CountedLoopNode;
duke@435 37 class IdealLoopTree;
duke@435 38 class LoopNode;
duke@435 39 class Node;
duke@435 40 class PhaseIdealLoop;
duke@435 41 class VectorSet;
cfang@1607 42 class Invariance;
duke@435 43 struct small_cache;
duke@435 44
duke@435 45 //
duke@435 46 // I D E A L I Z E D L O O P S
duke@435 47 //
duke@435 48 // Idealized loops are the set of loops I perform more interesting
duke@435 49 // transformations on, beyond simple hoisting.
duke@435 50
duke@435 51 //------------------------------LoopNode---------------------------------------
duke@435 52 // Simple loop header. Fall in path on left, loop-back path on right.
duke@435 53 class LoopNode : public RegionNode {
duke@435 54 // Size is bigger to hold the flags. However, the flags do not change
duke@435 55 // the semantics so it does not appear in the hash & cmp functions.
duke@435 56 virtual uint size_of() const { return sizeof(*this); }
duke@435 57 protected:
duke@435 58 short _loop_flags;
duke@435 59 // Names for flag bitfields
kvn@2747 60 enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
kvn@2747 61 MainHasNoPreLoop=4,
kvn@2747 62 HasExactTripCount=8,
kvn@2747 63 InnerLoop=16,
kvn@2747 64 PartialPeelLoop=32,
kvn@2747 65 PartialPeelFailed=64 };
duke@435 66 char _unswitch_count;
duke@435 67 enum { _unswitch_max=3 };
duke@435 68
duke@435 69 public:
duke@435 70 // Names for edge indices
duke@435 71 enum { Self=0, EntryControl, LoopBackControl };
duke@435 72
kvn@2747 73 int is_inner_loop() const { return _loop_flags & InnerLoop; }
kvn@2747 74 void set_inner_loop() { _loop_flags |= InnerLoop; }
duke@435 75
kvn@2747 76 int is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
kvn@2747 77 void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
kvn@2747 78 int partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
kvn@2747 79 void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
duke@435 80
duke@435 81 int unswitch_max() { return _unswitch_max; }
duke@435 82 int unswitch_count() { return _unswitch_count; }
duke@435 83 void set_unswitch_count(int val) {
duke@435 84 assert (val <= unswitch_max(), "too many unswitches");
duke@435 85 _unswitch_count = val;
duke@435 86 }
duke@435 87
duke@435 88 LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
duke@435 89 init_class_id(Class_Loop);
duke@435 90 init_req(EntryControl, entry);
duke@435 91 init_req(LoopBackControl, backedge);
duke@435 92 }
duke@435 93
duke@435 94 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 95 virtual int Opcode() const;
duke@435 96 bool can_be_counted_loop(PhaseTransform* phase) const {
duke@435 97 return req() == 3 && in(0) != NULL &&
duke@435 98 in(1) != NULL && phase->type(in(1)) != Type::TOP &&
duke@435 99 in(2) != NULL && phase->type(in(2)) != Type::TOP;
duke@435 100 }
kvn@2665 101 bool is_valid_counted_loop() const;
duke@435 102 #ifndef PRODUCT
duke@435 103 virtual void dump_spec(outputStream *st) const;
duke@435 104 #endif
duke@435 105 };
duke@435 106
duke@435 107 //------------------------------Counted Loops----------------------------------
duke@435 108 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
duke@435 109 // path (and maybe some other exit paths). The trip-counter exit is always
kvn@2665 110 // last in the loop. The trip-counter have to stride by a constant;
kvn@2665 111 // the exit value is also loop invariant.
duke@435 112
duke@435 113 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs. The
duke@435 114 // CountedLoopNode has the incoming loop control and the loop-back-control
duke@435 115 // which is always the IfTrue before the matching CountedLoopEndNode. The
duke@435 116 // CountedLoopEndNode has an incoming control (possibly not the
duke@435 117 // CountedLoopNode if there is control flow in the loop), the post-increment
duke@435 118 // trip-counter value, and the limit. The trip-counter value is always of
duke@435 119 // the form (Op old-trip-counter stride). The old-trip-counter is produced
kvn@2665 120 // by a Phi connected to the CountedLoopNode. The stride is constant.
duke@435 121 // The Op is any commutable opcode, including Add, Mul, Xor. The
duke@435 122 // CountedLoopEndNode also takes in the loop-invariant limit value.
duke@435 123
duke@435 124 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
duke@435 125 // loop-back control. From CountedLoopEndNodes I can reach CountedLoopNodes
duke@435 126 // via the old-trip-counter from the Op node.
duke@435 127
duke@435 128 //------------------------------CountedLoopNode--------------------------------
duke@435 129 // CountedLoopNodes head simple counted loops. CountedLoopNodes have as
duke@435 130 // inputs the incoming loop-start control and the loop-back control, so they
duke@435 131 // act like RegionNodes. They also take in the initial trip counter, the
duke@435 132 // loop-invariant stride and the loop-invariant limit value. CountedLoopNodes
duke@435 133 // produce a loop-body control and the trip counter value. Since
duke@435 134 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
duke@435 135
duke@435 136 class CountedLoopNode : public LoopNode {
duke@435 137 // Size is bigger to hold _main_idx. However, _main_idx does not change
duke@435 138 // the semantics so it does not appear in the hash & cmp functions.
duke@435 139 virtual uint size_of() const { return sizeof(*this); }
duke@435 140
duke@435 141 // For Pre- and Post-loops during debugging ONLY, this holds the index of
duke@435 142 // the Main CountedLoop. Used to assert that we understand the graph shape.
duke@435 143 node_idx_t _main_idx;
duke@435 144
kvn@2747 145 // Known trip count calculated by compute_exact_trip_count()
kvn@2747 146 uint _trip_count;
duke@435 147
duke@435 148 // Expected trip count from profile data
duke@435 149 float _profile_trip_cnt;
duke@435 150
duke@435 151 // Log2 of original loop bodies in unrolled loop
duke@435 152 int _unrolled_count_log2;
duke@435 153
duke@435 154 // Node count prior to last unrolling - used to decide if
duke@435 155 // unroll,optimize,unroll,optimize,... is making progress
duke@435 156 int _node_count_before_unroll;
duke@435 157
duke@435 158 public:
duke@435 159 CountedLoopNode( Node *entry, Node *backedge )
kvn@2747 160 : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
duke@435 161 _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
duke@435 162 _node_count_before_unroll(0) {
duke@435 163 init_class_id(Class_CountedLoop);
duke@435 164 // Initialize _trip_count to the largest possible value.
duke@435 165 // Will be reset (lower) if the loop's trip count is known.
duke@435 166 }
duke@435 167
duke@435 168 virtual int Opcode() const;
duke@435 169 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 170
duke@435 171 Node *init_control() const { return in(EntryControl); }
duke@435 172 Node *back_control() const { return in(LoopBackControl); }
duke@435 173 CountedLoopEndNode *loopexit() const;
duke@435 174 Node *init_trip() const;
duke@435 175 Node *stride() const;
duke@435 176 int stride_con() const;
duke@435 177 bool stride_is_con() const;
duke@435 178 Node *limit() const;
duke@435 179 Node *incr() const;
duke@435 180 Node *phi() const;
duke@435 181
duke@435 182 // Match increment with optional truncation
duke@435 183 static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
duke@435 184
duke@435 185 // A 'main' loop has a pre-loop and a post-loop. The 'main' loop
duke@435 186 // can run short a few iterations and may start a few iterations in.
duke@435 187 // It will be RCE'd and unrolled and aligned.
duke@435 188
duke@435 189 // A following 'post' loop will run any remaining iterations. Used
duke@435 190 // during Range Check Elimination, the 'post' loop will do any final
duke@435 191 // iterations with full checks. Also used by Loop Unrolling, where
duke@435 192 // the 'post' loop will do any epilog iterations needed. Basically,
duke@435 193 // a 'post' loop can not profitably be further unrolled or RCE'd.
duke@435 194
duke@435 195 // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
duke@435 196 // it may do under-flow checks for RCE and may do alignment iterations
duke@435 197 // so the following main loop 'knows' that it is striding down cache
duke@435 198 // lines.
duke@435 199
duke@435 200 // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
duke@435 201 // Aligned, may be missing it's pre-loop.
kvn@2747 202 int is_normal_loop() const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
kvn@2747 203 int is_pre_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Pre; }
kvn@2747 204 int is_main_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Main; }
kvn@2747 205 int is_post_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Post; }
kvn@2747 206 int is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
kvn@2747 207 void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
duke@435 208
never@802 209 int main_idx() const { return _main_idx; }
never@802 210
duke@435 211
duke@435 212 void set_pre_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
duke@435 213 void set_main_loop ( ) { assert(is_normal_loop(),""); _loop_flags |= Main; }
duke@435 214 void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
kvn@2747 215 void set_normal_loop( ) { _loop_flags &= ~PreMainPostFlagsMask; }
duke@435 216
kvn@2747 217 void set_trip_count(uint tc) { _trip_count = tc; }
kvn@2747 218 uint trip_count() { return _trip_count; }
kvn@2747 219
kvn@2747 220 bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
kvn@2747 221 void set_exact_trip_count(uint tc) {
kvn@2747 222 _trip_count = tc;
kvn@2747 223 _loop_flags |= HasExactTripCount;
kvn@2747 224 }
kvn@2747 225 void set_nonexact_trip_count() {
kvn@2747 226 _loop_flags &= ~HasExactTripCount;
kvn@2747 227 }
duke@435 228
duke@435 229 void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
duke@435 230 float profile_trip_cnt() { return _profile_trip_cnt; }
duke@435 231
duke@435 232 void double_unrolled_count() { _unrolled_count_log2++; }
duke@435 233 int unrolled_count() { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
duke@435 234
duke@435 235 void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; }
duke@435 236 int node_count_before_unroll() { return _node_count_before_unroll; }
duke@435 237
duke@435 238 #ifndef PRODUCT
duke@435 239 virtual void dump_spec(outputStream *st) const;
duke@435 240 #endif
duke@435 241 };
duke@435 242
duke@435 243 //------------------------------CountedLoopEndNode-----------------------------
duke@435 244 // CountedLoopEndNodes end simple trip counted loops. They act much like
duke@435 245 // IfNodes.
duke@435 246 class CountedLoopEndNode : public IfNode {
duke@435 247 public:
duke@435 248 enum { TestControl, TestValue };
duke@435 249
duke@435 250 CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
duke@435 251 : IfNode( control, test, prob, cnt) {
duke@435 252 init_class_id(Class_CountedLoopEnd);
duke@435 253 }
duke@435 254 virtual int Opcode() const;
duke@435 255
duke@435 256 Node *cmp_node() const { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
duke@435 257 Node *incr() const { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
duke@435 258 Node *limit() const { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
duke@435 259 Node *stride() const { Node *tmp = incr (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
duke@435 260 Node *phi() const { Node *tmp = incr (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
duke@435 261 Node *init_trip() const { Node *tmp = phi (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
duke@435 262 int stride_con() const;
duke@435 263 bool stride_is_con() const { Node *tmp = stride (); return (tmp != NULL && tmp->is_Con()); }
duke@435 264 BoolTest::mask test_trip() const { return in(TestValue)->as_Bool()->_test._test; }
duke@435 265 CountedLoopNode *loopnode() const {
roland@4589 266 // The CountedLoopNode that goes with this CountedLoopEndNode may
roland@4589 267 // have been optimized out by the IGVN so be cautious with the
roland@4589 268 // pattern matching on the graph
roland@4589 269 if (phi() == NULL) {
roland@4589 270 return NULL;
roland@4589 271 }
duke@435 272 Node *ln = phi()->in(0);
roland@4589 273 if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit() == this) {
roland@4589 274 return (CountedLoopNode*)ln;
roland@4589 275 }
roland@4589 276 return NULL;
roland@4589 277 }
duke@435 278
duke@435 279 #ifndef PRODUCT
duke@435 280 virtual void dump_spec(outputStream *st) const;
duke@435 281 #endif
duke@435 282 };
duke@435 283
duke@435 284
duke@435 285 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
duke@435 286 Node *bc = back_control();
duke@435 287 if( bc == NULL ) return NULL;
duke@435 288 Node *le = bc->in(0);
duke@435 289 if( le->Opcode() != Op_CountedLoopEnd )
duke@435 290 return NULL;
duke@435 291 return (CountedLoopEndNode*)le;
duke@435 292 }
duke@435 293 inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
duke@435 294 inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
duke@435 295 inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
duke@435 296 inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
duke@435 297 inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
duke@435 298 inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
duke@435 299 inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
duke@435 300
kvn@2877 301 //------------------------------LoopLimitNode-----------------------------
kvn@2877 302 // Counted Loop limit node which represents exact final iterator value:
kvn@2877 303 // trip_count = (limit - init_trip + stride - 1)/stride
kvn@2877 304 // final_value= trip_count * stride + init_trip.
kvn@2877 305 // Use HW instructions to calculate it when it can overflow in integer.
kvn@2877 306 // Note, final_value should fit into integer since counted loop has
kvn@2877 307 // limit check: limit <= max_int-stride.
kvn@2877 308 class LoopLimitNode : public Node {
kvn@2877 309 enum { Init=1, Limit=2, Stride=3 };
kvn@2877 310 public:
kvn@2877 311 LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
kvn@2877 312 // Put it on the Macro nodes list to optimize during macro nodes expansion.
kvn@2877 313 init_flags(Flag_is_macro);
kvn@2877 314 C->add_macro_node(this);
kvn@2877 315 }
kvn@2877 316 virtual int Opcode() const;
kvn@2877 317 virtual const Type *bottom_type() const { return TypeInt::INT; }
kvn@2877 318 virtual uint ideal_reg() const { return Op_RegI; }
kvn@2877 319 virtual const Type *Value( PhaseTransform *phase ) const;
kvn@2877 320 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@2877 321 virtual Node *Identity( PhaseTransform *phase );
kvn@2877 322 };
duke@435 323
duke@435 324 // -----------------------------IdealLoopTree----------------------------------
duke@435 325 class IdealLoopTree : public ResourceObj {
duke@435 326 public:
duke@435 327 IdealLoopTree *_parent; // Parent in loop tree
duke@435 328 IdealLoopTree *_next; // Next sibling in loop tree
duke@435 329 IdealLoopTree *_child; // First child in loop tree
duke@435 330
duke@435 331 // The head-tail backedge defines the loop.
duke@435 332 // If tail is NULL then this loop has multiple backedges as part of the
duke@435 333 // same loop. During cleanup I'll peel off the multiple backedges; merge
duke@435 334 // them at the loop bottom and flow 1 real backedge into the loop.
duke@435 335 Node *_head; // Head of loop
duke@435 336 Node *_tail; // Tail of loop
duke@435 337 inline Node *tail(); // Handle lazy update of _tail field
duke@435 338 PhaseIdealLoop* _phase;
duke@435 339
duke@435 340 Node_List _body; // Loop body for inner loops
duke@435 341
duke@435 342 uint8 _nest; // Nesting depth
duke@435 343 uint8 _irreducible:1, // True if irreducible
duke@435 344 _has_call:1, // True if has call safepoint
duke@435 345 _has_sfpt:1, // True if has non-call safepoint
duke@435 346 _rce_candidate:1; // True if candidate for range check elimination
duke@435 347
kvn@4023 348 Node_List* _safepts; // List of safepoints in this loop
kvn@474 349 Node_List* _required_safept; // A inner loop cannot delete these safepts;
kvn@474 350 bool _allow_optimizations; // Allow loop optimizations
duke@435 351
duke@435 352 IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
duke@435 353 : _parent(0), _next(0), _child(0),
duke@435 354 _head(head), _tail(tail),
duke@435 355 _phase(phase),
kvn@4023 356 _safepts(NULL),
duke@435 357 _required_safept(NULL),
kvn@474 358 _allow_optimizations(true),
duke@435 359 _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0)
duke@435 360 { }
duke@435 361
duke@435 362 // Is 'l' a member of 'this'?
duke@435 363 int is_member( const IdealLoopTree *l ) const; // Test for nested membership
duke@435 364
duke@435 365 // Set loop nesting depth. Accumulate has_call bits.
duke@435 366 int set_nest( uint depth );
duke@435 367
duke@435 368 // Split out multiple fall-in edges from the loop header. Move them to a
duke@435 369 // private RegionNode before the loop. This becomes the loop landing pad.
duke@435 370 void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
duke@435 371
duke@435 372 // Split out the outermost loop from this shared header.
duke@435 373 void split_outer_loop( PhaseIdealLoop *phase );
duke@435 374
duke@435 375 // Merge all the backedges from the shared header into a private Region.
duke@435 376 // Feed that region as the one backedge to this loop.
duke@435 377 void merge_many_backedges( PhaseIdealLoop *phase );
duke@435 378
duke@435 379 // Split shared headers and insert loop landing pads.
duke@435 380 // Insert a LoopNode to replace the RegionNode.
duke@435 381 // Returns TRUE if loop tree is structurally changed.
duke@435 382 bool beautify_loops( PhaseIdealLoop *phase );
duke@435 383
cfang@1607 384 // Perform optimization to use the loop predicates for null checks and range checks.
cfang@1607 385 // Applies to any loop level (not just the innermost one)
cfang@1607 386 bool loop_predication( PhaseIdealLoop *phase);
cfang@1607 387
never@836 388 // Perform iteration-splitting on inner loops. Split iterations to
never@836 389 // avoid range checks or one-shot null checks. Returns false if the
never@836 390 // current round of loop opts should stop.
never@836 391 bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
duke@435 392
never@836 393 // Driver for various flavors of iteration splitting. Returns false
never@836 394 // if the current round of loop opts should stop.
never@836 395 bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
duke@435 396
duke@435 397 // Given dominators, try to find loops with calls that must always be
duke@435 398 // executed (call dominates loop tail). These loops do not need non-call
duke@435 399 // safepoints (ncsfpt).
duke@435 400 void check_safepts(VectorSet &visited, Node_List &stack);
duke@435 401
duke@435 402 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
duke@435 403 // encountered.
duke@435 404 void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
duke@435 405
aeriksso@8195 406 // Remove safepoints from loop. Optionally keeping one.
aeriksso@8195 407 void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
aeriksso@8195 408
duke@435 409 // Convert to counted loops where possible
duke@435 410 void counted_loop( PhaseIdealLoop *phase );
duke@435 411
duke@435 412 // Check for Node being a loop-breaking test
duke@435 413 Node *is_loop_exit(Node *iff) const;
duke@435 414
duke@435 415 // Returns true if ctrl is executed on every complete iteration
duke@435 416 bool dominates_backedge(Node* ctrl);
duke@435 417
duke@435 418 // Remove simplistic dead code from loop body
duke@435 419 void DCE_loop_body();
duke@435 420
duke@435 421 // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
duke@435 422 // Replace with a 1-in-10 exit guess.
duke@435 423 void adjust_loop_exit_prob( PhaseIdealLoop *phase );
duke@435 424
duke@435 425 // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
duke@435 426 // Useful for unrolling loops with NO array accesses.
duke@435 427 bool policy_peel_only( PhaseIdealLoop *phase ) const;
duke@435 428
duke@435 429 // Return TRUE or FALSE if the loop should be unswitched -- clone
duke@435 430 // loop with an invariant test
duke@435 431 bool policy_unswitching( PhaseIdealLoop *phase ) const;
duke@435 432
duke@435 433 // Micro-benchmark spamming. Remove empty loops.
duke@435 434 bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
duke@435 435
kvn@2747 436 // Convert one iteration loop into normal code.
kvn@2747 437 bool policy_do_one_iteration_loop( PhaseIdealLoop *phase );
kvn@2747 438
duke@435 439 // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
duke@435 440 // make some loop-invariant test (usually a null-check) happen before the
duke@435 441 // loop.
duke@435 442 bool policy_peeling( PhaseIdealLoop *phase ) const;
duke@435 443
duke@435 444 // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
duke@435 445 // known trip count in the counted loop node.
duke@435 446 bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
duke@435 447
duke@435 448 // Return TRUE or FALSE if the loop should be unrolled or not. Unroll if
duke@435 449 // the loop is a CountedLoop and the body is small enough.
duke@435 450 bool policy_unroll( PhaseIdealLoop *phase ) const;
duke@435 451
duke@435 452 // Return TRUE or FALSE if the loop should be range-check-eliminated.
duke@435 453 // Gather a list of IF tests that are dominated by iteration splitting;
duke@435 454 // also gather the end of the first split and the start of the 2nd split.
duke@435 455 bool policy_range_check( PhaseIdealLoop *phase ) const;
duke@435 456
duke@435 457 // Return TRUE or FALSE if the loop should be cache-line aligned.
duke@435 458 // Gather the expression that does the alignment. Note that only
twisti@1040 459 // one array base can be aligned in a loop (unless the VM guarantees
duke@435 460 // mutual alignment). Note that if we vectorize short memory ops
duke@435 461 // into longer memory ops, we may want to increase alignment.
duke@435 462 bool policy_align( PhaseIdealLoop *phase ) const;
duke@435 463
cfang@1607 464 // Return TRUE if "iff" is a range check.
cfang@1607 465 bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
cfang@1607 466
kvn@2747 467 // Compute loop exact trip count if possible
kvn@2747 468 void compute_exact_trip_count( PhaseIdealLoop *phase );
kvn@2747 469
duke@435 470 // Compute loop trip count from profile data
duke@435 471 void compute_profile_trip_cnt( PhaseIdealLoop *phase );
duke@435 472
duke@435 473 // Reassociate invariant expressions.
duke@435 474 void reassociate_invariants(PhaseIdealLoop *phase);
duke@435 475 // Reassociate invariant add and subtract expressions.
duke@435 476 Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
duke@435 477 // Return nonzero index of invariant operand if invariant and variant
twisti@1040 478 // are combined with an Add or Sub. Helper for reassociate_invariants.
duke@435 479 int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
duke@435 480
duke@435 481 // Return true if n is invariant
duke@435 482 bool is_invariant(Node* n) const;
duke@435 483
duke@435 484 // Put loop body on igvn work list
duke@435 485 void record_for_igvn();
duke@435 486
duke@435 487 bool is_loop() { return !_irreducible && _tail && !_tail->is_top(); }
duke@435 488 bool is_inner() { return is_loop() && _child == NULL; }
duke@435 489 bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
duke@435 490
duke@435 491 #ifndef PRODUCT
duke@435 492 void dump_head( ) const; // Dump loop head only
duke@435 493 void dump() const; // Dump this loop recursively
duke@435 494 void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
duke@435 495 #endif
duke@435 496
duke@435 497 };
duke@435 498
duke@435 499 // -----------------------------PhaseIdealLoop---------------------------------
duke@435 500 // Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees into a
duke@435 501 // loop tree. Drives the loop-based transformations on the ideal graph.
duke@435 502 class PhaseIdealLoop : public PhaseTransform {
duke@435 503 friend class IdealLoopTree;
duke@435 504 friend class SuperWord;
duke@435 505 // Pre-computed def-use info
duke@435 506 PhaseIterGVN &_igvn;
duke@435 507
duke@435 508 // Head of loop tree
duke@435 509 IdealLoopTree *_ltree_root;
duke@435 510
duke@435 511 // Array of pre-order numbers, plus post-visited bit.
duke@435 512 // ZERO for not pre-visited. EVEN for pre-visited but not post-visited.
duke@435 513 // ODD for post-visited. Other bits are the pre-order number.
duke@435 514 uint *_preorders;
duke@435 515 uint _max_preorder;
duke@435 516
never@1356 517 const PhaseIdealLoop* _verify_me;
never@1356 518 bool _verify_only;
never@1356 519
duke@435 520 // Allocate _preorders[] array
duke@435 521 void allocate_preorders() {
duke@435 522 _max_preorder = C->unique()+8;
duke@435 523 _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
duke@435 524 memset(_preorders, 0, sizeof(uint) * _max_preorder);
duke@435 525 }
duke@435 526
duke@435 527 // Allocate _preorders[] array
duke@435 528 void reallocate_preorders() {
duke@435 529 if ( _max_preorder < C->unique() ) {
duke@435 530 _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
duke@435 531 _max_preorder = C->unique();
duke@435 532 }
duke@435 533 memset(_preorders, 0, sizeof(uint) * _max_preorder);
duke@435 534 }
duke@435 535
duke@435 536 // Check to grow _preorders[] array for the case when build_loop_tree_impl()
duke@435 537 // adds new nodes.
duke@435 538 void check_grow_preorders( ) {
duke@435 539 if ( _max_preorder < C->unique() ) {
duke@435 540 uint newsize = _max_preorder<<1; // double size of array
duke@435 541 _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
duke@435 542 memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
duke@435 543 _max_preorder = newsize;
duke@435 544 }
duke@435 545 }
duke@435 546 // Check for pre-visited. Zero for NOT visited; non-zero for visited.
duke@435 547 int is_visited( Node *n ) const { return _preorders[n->_idx]; }
duke@435 548 // Pre-order numbers are written to the Nodes array as low-bit-set values.
duke@435 549 void set_preorder_visited( Node *n, int pre_order ) {
duke@435 550 assert( !is_visited( n ), "already set" );
duke@435 551 _preorders[n->_idx] = (pre_order<<1);
duke@435 552 };
duke@435 553 // Return pre-order number.
duke@435 554 int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
duke@435 555
duke@435 556 // Check for being post-visited.
duke@435 557 // Should be previsited already (checked with assert(is_visited(n))).
duke@435 558 int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
duke@435 559
duke@435 560 // Mark as post visited
duke@435 561 void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
duke@435 562
duke@435 563 // Set/get control node out. Set lower bit to distinguish from IdealLoopTree
duke@435 564 // Returns true if "n" is a data node, false if it's a control node.
duke@435 565 bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
duke@435 566
duke@435 567 // clear out dead code after build_loop_late
duke@435 568 Node_List _deadlist;
duke@435 569
duke@435 570 // Support for faster execution of get_late_ctrl()/dom_lca()
duke@435 571 // when a node has many uses and dominator depth is deep.
duke@435 572 Node_Array _dom_lca_tags;
duke@435 573 void init_dom_lca_tags();
duke@435 574 void clear_dom_lca_tags();
never@1356 575
never@1356 576 // Helper for debugging bad dominance relationships
never@1356 577 bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
never@1356 578
never@1356 579 Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
never@1356 580
duke@435 581 // Inline wrapper for frequent cases:
duke@435 582 // 1) only one use
duke@435 583 // 2) a use is the same as the current LCA passed as 'n1'
duke@435 584 Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
duke@435 585 assert( n->is_CFG(), "" );
duke@435 586 // Fast-path NULL lca
duke@435 587 if( lca != NULL && lca != n ) {
duke@435 588 assert( lca->is_CFG(), "" );
duke@435 589 // find LCA of all uses
duke@435 590 n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
duke@435 591 }
duke@435 592 return find_non_split_ctrl(n);
duke@435 593 }
duke@435 594 Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
never@1356 595
duke@435 596 // Helper function for directing control inputs away from CFG split
duke@435 597 // points.
duke@435 598 Node *find_non_split_ctrl( Node *ctrl ) const {
duke@435 599 if (ctrl != NULL) {
duke@435 600 if (ctrl->is_MultiBranch()) {
duke@435 601 ctrl = ctrl->in(0);
duke@435 602 }
duke@435 603 assert(ctrl->is_CFG(), "CFG");
duke@435 604 }
duke@435 605 return ctrl;
duke@435 606 }
duke@435 607
roland@7394 608 bool cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
roland@7394 609
duke@435 610 public:
morris@4774 611 bool has_node( Node* n ) const {
morris@4774 612 guarantee(n != NULL, "No Node.");
morris@4774 613 return _nodes[n->_idx] != NULL;
morris@4774 614 }
duke@435 615 // check if transform created new nodes that need _ctrl recorded
duke@435 616 Node *get_late_ctrl( Node *n, Node *early );
duke@435 617 Node *get_early_ctrl( Node *n );
roland@4589 618 Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
duke@435 619 void set_early_ctrl( Node *n );
duke@435 620 void set_subtree_ctrl( Node *root );
duke@435 621 void set_ctrl( Node *n, Node *ctrl ) {
duke@435 622 assert( !has_node(n) || has_ctrl(n), "" );
duke@435 623 assert( ctrl->in(0), "cannot set dead control node" );
duke@435 624 assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
duke@435 625 _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
duke@435 626 }
duke@435 627 // Set control and update loop membership
duke@435 628 void set_ctrl_and_loop(Node* n, Node* ctrl) {
duke@435 629 IdealLoopTree* old_loop = get_loop(get_ctrl(n));
duke@435 630 IdealLoopTree* new_loop = get_loop(ctrl);
duke@435 631 if (old_loop != new_loop) {
duke@435 632 if (old_loop->_child == NULL) old_loop->_body.yank(n);
duke@435 633 if (new_loop->_child == NULL) new_loop->_body.push(n);
duke@435 634 }
duke@435 635 set_ctrl(n, ctrl);
duke@435 636 }
duke@435 637 // Control nodes can be replaced or subsumed. During this pass they
duke@435 638 // get their replacement Node in slot 1. Instead of updating the block
duke@435 639 // location of all Nodes in the subsumed block, we lazily do it. As we
duke@435 640 // pull such a subsumed block out of the array, we write back the final
duke@435 641 // correct block.
duke@435 642 Node *get_ctrl( Node *i ) {
duke@435 643 assert(has_node(i), "");
duke@435 644 Node *n = get_ctrl_no_update(i);
duke@435 645 _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
duke@435 646 assert(has_node(i) && has_ctrl(i), "");
duke@435 647 assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
duke@435 648 return n;
duke@435 649 }
cfang@1607 650 // true if CFG node d dominates CFG node n
cfang@1607 651 bool is_dominator(Node *d, Node *n);
cfang@1607 652 // return get_ctrl for a data node and self(n) for a CFG node
cfang@1607 653 Node* ctrl_or_self(Node* n) {
cfang@1607 654 if (has_ctrl(n))
cfang@1607 655 return get_ctrl(n);
cfang@1607 656 else {
cfang@1607 657 assert (n->is_CFG(), "must be a CFG node");
cfang@1607 658 return n;
cfang@1607 659 }
cfang@1607 660 }
duke@435 661
duke@435 662 private:
roland@8311 663 Node *get_ctrl_no_update_helper(Node *i) const {
roland@8311 664 assert(has_ctrl(i), "should be control, not loop");
roland@8311 665 return (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
roland@8311 666 }
roland@8311 667
roland@8311 668 Node *get_ctrl_no_update(Node *i) const {
duke@435 669 assert( has_ctrl(i), "" );
roland@8311 670 Node *n = get_ctrl_no_update_helper(i);
duke@435 671 if (!n->in(0)) {
duke@435 672 // Skip dead CFG nodes
duke@435 673 do {
roland@8311 674 n = get_ctrl_no_update_helper(n);
duke@435 675 } while (!n->in(0));
duke@435 676 n = find_non_split_ctrl(n);
duke@435 677 }
duke@435 678 return n;
duke@435 679 }
duke@435 680
duke@435 681 // Check for loop being set
duke@435 682 // "n" must be a control node. Returns true if "n" is known to be in a loop.
duke@435 683 bool has_loop( Node *n ) const {
duke@435 684 assert(!has_node(n) || !has_ctrl(n), "");
duke@435 685 return has_node(n);
duke@435 686 }
duke@435 687 // Set loop
duke@435 688 void set_loop( Node *n, IdealLoopTree *loop ) {
duke@435 689 _nodes.map(n->_idx, (Node*)loop);
duke@435 690 }
duke@435 691 // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms. Replace
duke@435 692 // the 'old_node' with 'new_node'. Kill old-node. Add a reference
duke@435 693 // from old_node to new_node to support the lazy update. Reference
cfang@1607 694 // replaces loop reference, since that is not needed for dead node.
duke@435 695 public:
roland@8311 696 void lazy_update(Node *old_node, Node *new_node) {
roland@8311 697 assert(old_node != new_node, "no cycles please");
roland@8311 698 // Re-use the side array slot for this node to provide the
roland@8311 699 // forwarding pointer.
roland@8311 700 _nodes.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
duke@435 701 }
roland@8311 702 void lazy_replace(Node *old_node, Node *new_node) {
roland@8311 703 _igvn.replace_node(old_node, new_node);
roland@8311 704 lazy_update(old_node, new_node);
duke@435 705 }
duke@435 706
duke@435 707 private:
duke@435 708
duke@435 709 // Place 'n' in some loop nest, where 'n' is a CFG node
duke@435 710 void build_loop_tree();
duke@435 711 int build_loop_tree_impl( Node *n, int pre_order );
duke@435 712 // Insert loop into the existing loop tree. 'innermost' is a leaf of the
duke@435 713 // loop tree, not the root.
duke@435 714 IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
duke@435 715
duke@435 716 // Place Data nodes in some loop nest
never@1356 717 void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
never@1356 718 void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
never@1356 719 void build_loop_late_post ( Node* n );
duke@435 720
duke@435 721 // Array of immediate dominance info for each CFG node indexed by node idx
duke@435 722 private:
duke@435 723 uint _idom_size;
duke@435 724 Node **_idom; // Array of immediate dominators
duke@435 725 uint *_dom_depth; // Used for fast LCA test
duke@435 726 GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
duke@435 727
duke@435 728 Node* idom_no_update(Node* d) const {
duke@435 729 assert(d->_idx < _idom_size, "oob");
duke@435 730 Node* n = _idom[d->_idx];
duke@435 731 assert(n != NULL,"Bad immediate dominator info.");
duke@435 732 while (n->in(0) == NULL) { // Skip dead CFG nodes
duke@435 733 //n = n->in(1);
duke@435 734 n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
duke@435 735 assert(n != NULL,"Bad immediate dominator info.");
duke@435 736 }
duke@435 737 return n;
duke@435 738 }
duke@435 739 Node *idom(Node* d) const {
duke@435 740 uint didx = d->_idx;
duke@435 741 Node *n = idom_no_update(d);
duke@435 742 _idom[didx] = n; // Lazily remove dead CFG nodes from table.
duke@435 743 return n;
duke@435 744 }
duke@435 745 uint dom_depth(Node* d) const {
morris@4774 746 guarantee(d != NULL, "Null dominator info.");
morris@4774 747 guarantee(d->_idx < _idom_size, "");
duke@435 748 return _dom_depth[d->_idx];
duke@435 749 }
duke@435 750 void set_idom(Node* d, Node* n, uint dom_depth);
duke@435 751 // Locally compute IDOM using dom_lca call
duke@435 752 Node *compute_idom( Node *region ) const;
duke@435 753 // Recompute dom_depth
duke@435 754 void recompute_dom_depth();
duke@435 755
duke@435 756 // Is safept not required by an outer loop?
duke@435 757 bool is_deleteable_safept(Node* sfpt);
duke@435 758
kvn@2665 759 // Replace parallel induction variable (parallel to trip counter)
kvn@2665 760 void replace_parallel_iv(IdealLoopTree *loop);
kvn@2665 761
never@1356 762 // Perform verification that the graph is valid.
never@1356 763 PhaseIdealLoop( PhaseIterGVN &igvn) :
never@1356 764 PhaseTransform(Ideal_Loop),
never@1356 765 _igvn(igvn),
kvn@2555 766 _dom_lca_tags(arena()), // Thread::resource_area
never@1356 767 _verify_me(NULL),
never@1356 768 _verify_only(true) {
kvn@3260 769 build_and_optimize(false, false);
never@1356 770 }
never@1356 771
never@1356 772 // build the loop tree and perform any requested optimizations
kvn@3260 773 void build_and_optimize(bool do_split_if, bool skip_loop_opts);
never@1356 774
duke@435 775 public:
duke@435 776 // Dominators for the sea of nodes
duke@435 777 void Dominators();
duke@435 778 Node *dom_lca( Node *n1, Node *n2 ) const {
duke@435 779 return find_non_split_ctrl(dom_lca_internal(n1, n2));
duke@435 780 }
duke@435 781 Node *dom_lca_internal( Node *n1, Node *n2 ) const;
duke@435 782
duke@435 783 // Compute the Ideal Node to Loop mapping
kvn@3260 784 PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool skip_loop_opts = false) :
never@1356 785 PhaseTransform(Ideal_Loop),
never@1356 786 _igvn(igvn),
kvn@2555 787 _dom_lca_tags(arena()), // Thread::resource_area
never@1356 788 _verify_me(NULL),
never@1356 789 _verify_only(false) {
kvn@3260 790 build_and_optimize(do_split_ifs, skip_loop_opts);
never@1356 791 }
never@1356 792
never@1356 793 // Verify that verify_me made the same decisions as a fresh run.
never@1356 794 PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
never@1356 795 PhaseTransform(Ideal_Loop),
never@1356 796 _igvn(igvn),
kvn@2555 797 _dom_lca_tags(arena()), // Thread::resource_area
never@1356 798 _verify_me(verify_me),
never@1356 799 _verify_only(false) {
kvn@3260 800 build_and_optimize(false, false);
never@1356 801 }
never@1356 802
never@1356 803 // Build and verify the loop tree without modifying the graph. This
never@1356 804 // is useful to verify that all inputs properly dominate their uses.
never@1356 805 static void verify(PhaseIterGVN& igvn) {
never@1356 806 #ifdef ASSERT
never@1356 807 PhaseIdealLoop v(igvn);
never@1356 808 #endif
never@1356 809 }
duke@435 810
duke@435 811 // True if the method has at least 1 irreducible loop
duke@435 812 bool _has_irreducible_loops;
duke@435 813
duke@435 814 // Per-Node transform
duke@435 815 virtual Node *transform( Node *a_node ) { return 0; }
duke@435 816
kvn@2665 817 bool is_counted_loop( Node *x, IdealLoopTree *loop );
duke@435 818
kvn@2877 819 Node* exact_limit( IdealLoopTree *loop );
kvn@2877 820
duke@435 821 // Return a post-walked LoopNode
duke@435 822 IdealLoopTree *get_loop( Node *n ) const {
duke@435 823 // Dead nodes have no loop, so return the top level loop instead
duke@435 824 if (!has_node(n)) return _ltree_root;
duke@435 825 assert(!has_ctrl(n), "");
duke@435 826 return (IdealLoopTree*)_nodes[n->_idx];
duke@435 827 }
duke@435 828
duke@435 829 // Is 'n' a (nested) member of 'loop'?
duke@435 830 int is_member( const IdealLoopTree *loop, Node *n ) const {
duke@435 831 return loop->is_member(get_loop(n)); }
duke@435 832
duke@435 833 // This is the basic building block of the loop optimizations. It clones an
duke@435 834 // entire loop body. It makes an old_new loop body mapping; with this
duke@435 835 // mapping you can find the new-loop equivalent to an old-loop node. All
duke@435 836 // new-loop nodes are exactly equal to their old-loop counterparts, all
duke@435 837 // edges are the same. All exits from the old-loop now have a RegionNode
duke@435 838 // that merges the equivalent new-loop path. This is true even for the
duke@435 839 // normal "loop-exit" condition. All uses of loop-invariant old-loop values
duke@435 840 // now come from (one or more) Phis that merge their new-loop equivalents.
duke@435 841 // Parameter side_by_side_idom:
duke@435 842 // When side_by_size_idom is NULL, the dominator tree is constructed for
duke@435 843 // the clone loop to dominate the original. Used in construction of
duke@435 844 // pre-main-post loop sequence.
duke@435 845 // When nonnull, the clone and original are side-by-side, both are
duke@435 846 // dominated by the passed in side_by_side_idom node. Used in
duke@435 847 // construction of unswitched loops.
duke@435 848 void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
duke@435 849 Node* side_by_side_idom = NULL);
duke@435 850
duke@435 851 // If we got the effect of peeling, either by actually peeling or by
duke@435 852 // making a pre-loop which must execute at least once, we can remove
duke@435 853 // all loop-invariant dominated tests in the main body.
duke@435 854 void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
duke@435 855
duke@435 856 // Generate code to do a loop peel for the given loop (and body).
duke@435 857 // old_new is a temp array.
duke@435 858 void do_peeling( IdealLoopTree *loop, Node_List &old_new );
duke@435 859
duke@435 860 // Add pre and post loops around the given loop. These loops are used
duke@435 861 // during RCE, unrolling and aligning loops.
duke@435 862 void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
duke@435 863 // If Node n lives in the back_ctrl block, we clone a private version of n
duke@435 864 // in preheader_ctrl block and return that, otherwise return n.
kvn@2985 865 Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
duke@435 866
duke@435 867 // Take steps to maximally unroll the loop. Peel any odd iterations, then
duke@435 868 // unroll to do double iterations. The next round of major loop transforms
duke@435 869 // will repeat till the doubled loop body does all remaining iterations in 1
duke@435 870 // pass.
duke@435 871 void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
duke@435 872
duke@435 873 // Unroll the loop body one step - make each trip do 2 iterations.
duke@435 874 void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
duke@435 875
duke@435 876 // Return true if exp is a constant times an induction var
duke@435 877 bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
duke@435 878
duke@435 879 // Return true if exp is a scaled induction var plus (or minus) constant
duke@435 880 bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
duke@435 881
cfang@1607 882 // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
kvn@2665 883 ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
kvn@2665 884 Deoptimization::DeoptReason reason);
kvn@2665 885 void register_control(Node* n, IdealLoopTree *loop, Node* pred);
kvn@2665 886
kvn@2727 887 // Clone loop predicates to cloned loops (peeled, unswitched)
kvn@2727 888 static ProjNode* clone_predicate(ProjNode* predicate_proj, Node* new_entry,
kvn@2727 889 Deoptimization::DeoptReason reason,
kvn@2727 890 PhaseIdealLoop* loop_phase,
kvn@2727 891 PhaseIterGVN* igvn);
kvn@3043 892
kvn@2727 893 static Node* clone_loop_predicates(Node* old_entry, Node* new_entry,
kvn@2877 894 bool clone_limit_check,
kvn@2727 895 PhaseIdealLoop* loop_phase,
kvn@2727 896 PhaseIterGVN* igvn);
kvn@2877 897 Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
kvn@2727 898
kvn@2727 899 static Node* skip_loop_predicates(Node* entry);
kvn@2727 900
kvn@2727 901 // Find a good location to insert a predicate
kvn@2665 902 static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason);
kvn@2665 903 // Find a predicate
kvn@2665 904 static Node* find_predicate(Node* entry);
cfang@1607 905 // Construct a range check for a predicate if
kvn@2877 906 BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl,
cfang@1607 907 int scale, Node* offset,
cfang@1607 908 Node* init, Node* limit, Node* stride,
never@1738 909 Node* range, bool upper);
cfang@1607 910
cfang@1607 911 // Implementation of the loop predication to promote checks outside the loop
cfang@1607 912 bool loop_predication_impl(IdealLoopTree *loop);
cfang@1607 913
cfang@1607 914 // Helper function to collect predicate for eliminating the useless ones
cfang@1607 915 void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
cfang@1607 916 void eliminate_useless_predicates();
cfang@1607 917
roland@4589 918 // Change the control input of expensive nodes to allow commoning by
roland@4589 919 // IGVN when it is guaranteed to not result in a more frequent
roland@4589 920 // execution of the expensive node. Return true if progress.
roland@4589 921 bool process_expensive_nodes();
roland@4589 922
roland@4589 923 // Check whether node has become unreachable
roland@4589 924 bool is_node_unreachable(Node *n) const {
roland@4589 925 return !has_node(n) || n->is_unreachable(_igvn);
roland@4589 926 }
roland@4589 927
duke@435 928 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
duke@435 929 void do_range_check( IdealLoopTree *loop, Node_List &old_new );
duke@435 930
duke@435 931 // Create a slow version of the loop by cloning the loop
duke@435 932 // and inserting an if to select fast-slow versions.
duke@435 933 ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
duke@435 934 Node_List &old_new);
duke@435 935
duke@435 936 // Clone loop with an invariant test (that does not exit) and
duke@435 937 // insert a clone of the test that selects which version to
duke@435 938 // execute.
duke@435 939 void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
duke@435 940
duke@435 941 // Find candidate "if" for unswitching
duke@435 942 IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
duke@435 943
duke@435 944 // Range Check Elimination uses this function!
duke@435 945 // Constrain the main loop iterations so the affine function:
kvn@2877 946 // low_limit <= scale_con * I + offset < upper_limit
duke@435 947 // always holds true. That is, either increase the number of iterations in
duke@435 948 // the pre-loop or the post-loop until the condition holds true in the main
duke@435 949 // loop. Scale_con, offset and limit are all loop invariant.
kvn@2877 950 void add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
kvn@2915 951 // Helper function for add_constraint().
kvn@2915 952 Node* adjust_limit( int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl );
duke@435 953
duke@435 954 // Partially peel loop up through last_peel node.
duke@435 955 bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
duke@435 956
duke@435 957 // Create a scheduled list of nodes control dependent on ctrl set.
duke@435 958 void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
duke@435 959 // Has a use in the vector set
duke@435 960 bool has_use_in_set( Node* n, VectorSet& vset );
duke@435 961 // Has use internal to the vector set (ie. not in a phi at the loop head)
duke@435 962 bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
duke@435 963 // clone "n" for uses that are outside of loop
kvn@5154 964 int clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
duke@435 965 // clone "n" for special uses that are in the not_peeled region
duke@435 966 void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
duke@435 967 VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
duke@435 968 // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
duke@435 969 void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
duke@435 970 #ifdef ASSERT
duke@435 971 // Validate the loop partition sets: peel and not_peel
duke@435 972 bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
duke@435 973 // Ensure that uses outside of loop are of the right form
duke@435 974 bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
duke@435 975 uint orig_exit_idx, uint clone_exit_idx);
duke@435 976 bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
duke@435 977 #endif
duke@435 978
duke@435 979 // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
duke@435 980 int stride_of_possible_iv( Node* iff );
duke@435 981 bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
duke@435 982 // Return the (unique) control output node that's in the loop (if it exists.)
duke@435 983 Node* stay_in_loop( Node* n, IdealLoopTree *loop);
duke@435 984 // Insert a signed compare loop exit cloned from an unsigned compare.
duke@435 985 IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
duke@435 986 void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
duke@435 987 // Utility to register node "n" with PhaseIdealLoop
duke@435 988 void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
duke@435 989 // Utility to create an if-projection
duke@435 990 ProjNode* proj_clone(ProjNode* p, IfNode* iff);
duke@435 991 // Force the iff control output to be the live_proj
duke@435 992 Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
duke@435 993 // Insert a region before an if projection
duke@435 994 RegionNode* insert_region_before_proj(ProjNode* proj);
duke@435 995 // Insert a new if before an if projection
duke@435 996 ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
duke@435 997
duke@435 998 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
duke@435 999 // "Nearly" because all Nodes have been cloned from the original in the loop,
duke@435 1000 // but the fall-in edges to the Cmp are different. Clone bool/Cmp pairs
duke@435 1001 // through the Phi recursively, and return a Bool.
duke@435 1002 BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
duke@435 1003 CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
duke@435 1004
duke@435 1005
duke@435 1006 // Rework addressing expressions to get the most loop-invariant stuff
duke@435 1007 // moved out. We'd like to do all associative operators, but it's especially
duke@435 1008 // important (common) to do address expressions.
duke@435 1009 Node *remix_address_expressions( Node *n );
duke@435 1010
duke@435 1011 // Attempt to use a conditional move instead of a phi/branch
duke@435 1012 Node *conditional_move( Node *n );
duke@435 1013
duke@435 1014 // Reorganize offset computations to lower register pressure.
duke@435 1015 // Mostly prevent loop-fallout uses of the pre-incremented trip counter
duke@435 1016 // (which are then alive with the post-incremented trip counter
duke@435 1017 // forcing an extra register move)
duke@435 1018 void reorg_offsets( IdealLoopTree *loop );
duke@435 1019
duke@435 1020 // Check for aggressive application of 'split-if' optimization,
duke@435 1021 // using basic block level info.
duke@435 1022 void split_if_with_blocks ( VectorSet &visited, Node_Stack &nstack );
duke@435 1023 Node *split_if_with_blocks_pre ( Node *n );
duke@435 1024 void split_if_with_blocks_post( Node *n );
duke@435 1025 Node *has_local_phi_input( Node *n );
duke@435 1026 // Mark an IfNode as being dominated by a prior test,
duke@435 1027 // without actually altering the CFG (and hence IDOM info).
kvn@3038 1028 void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false );
duke@435 1029
duke@435 1030 // Split Node 'n' through merge point
duke@435 1031 Node *split_thru_region( Node *n, Node *region );
duke@435 1032 // Split Node 'n' through merge point if there is enough win.
duke@435 1033 Node *split_thru_phi( Node *n, Node *region, int policy );
duke@435 1034 // Found an If getting its condition-code input from a Phi in the
duke@435 1035 // same block. Split thru the Region.
duke@435 1036 void do_split_if( Node *iff );
duke@435 1037
never@2118 1038 // Conversion of fill/copy patterns into intrisic versions
never@2118 1039 bool do_intrinsify_fill();
never@2118 1040 bool intrinsify_fill(IdealLoopTree* lpt);
never@2118 1041 bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
never@2118 1042 Node*& shift, Node*& offset);
never@2118 1043
duke@435 1044 private:
duke@435 1045 // Return a type based on condition control flow
duke@435 1046 const TypeInt* filtered_type( Node *n, Node* n_ctrl);
duke@435 1047 const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
duke@435 1048 // Helpers for filtered type
duke@435 1049 const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
duke@435 1050
duke@435 1051 // Helper functions
duke@435 1052 Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
duke@435 1053 Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
duke@435 1054 void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
duke@435 1055 bool split_up( Node *n, Node *blk1, Node *blk2 );
duke@435 1056 void sink_use( Node *use, Node *post_loop );
duke@435 1057 Node *place_near_use( Node *useblock ) const;
duke@435 1058
duke@435 1059 bool _created_loop_node;
duke@435 1060 public:
duke@435 1061 void set_created_loop_node() { _created_loop_node = true; }
duke@435 1062 bool created_loop_node() { return _created_loop_node; }
cfang@1607 1063 void register_new_node( Node *n, Node *blk );
duke@435 1064
kvn@3408 1065 #ifdef ASSERT
roland@4589 1066 void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
kvn@3408 1067 #endif
kvn@3408 1068
duke@435 1069 #ifndef PRODUCT
duke@435 1070 void dump( ) const;
duke@435 1071 void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
duke@435 1072 void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
duke@435 1073 void verify() const; // Major slow :-)
duke@435 1074 void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
duke@435 1075 IdealLoopTree *get_loop_idx(Node* n) const {
duke@435 1076 // Dead nodes have no loop, so return the top level loop instead
duke@435 1077 return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
duke@435 1078 }
duke@435 1079 // Print some stats
duke@435 1080 static void print_statistics();
duke@435 1081 static int _loop_invokes; // Count of PhaseIdealLoop invokes
duke@435 1082 static int _loop_work; // Sum of PhaseIdealLoop x _unique
duke@435 1083 #endif
duke@435 1084 };
duke@435 1085
duke@435 1086 inline Node* IdealLoopTree::tail() {
duke@435 1087 // Handle lazy update of _tail field
duke@435 1088 Node *n = _tail;
duke@435 1089 //while( !n->in(0) ) // Skip dead CFG nodes
duke@435 1090 //n = n->in(1);
duke@435 1091 if (n->in(0) == NULL)
duke@435 1092 n = _phase->get_ctrl(n);
duke@435 1093 _tail = n;
duke@435 1094 return n;
duke@435 1095 }
duke@435 1096
duke@435 1097
duke@435 1098 // Iterate over the loop tree using a preorder, left-to-right traversal.
duke@435 1099 //
duke@435 1100 // Example that visits all counted loops from within PhaseIdealLoop
duke@435 1101 //
duke@435 1102 // for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
duke@435 1103 // IdealLoopTree* lpt = iter.current();
duke@435 1104 // if (!lpt->is_counted()) continue;
duke@435 1105 // ...
duke@435 1106 class LoopTreeIterator : public StackObj {
duke@435 1107 private:
duke@435 1108 IdealLoopTree* _root;
duke@435 1109 IdealLoopTree* _curnt;
duke@435 1110
duke@435 1111 public:
duke@435 1112 LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
duke@435 1113
duke@435 1114 bool done() { return _curnt == NULL; } // Finished iterating?
duke@435 1115
duke@435 1116 void next(); // Advance to next loop tree
duke@435 1117
duke@435 1118 IdealLoopTree* current() { return _curnt; } // Return current value of iterator.
duke@435 1119 };
stefank@2314 1120
stefank@2314 1121 #endif // SHARE_VM_OPTO_LOOPNODE_HPP

mercurial