src/share/vm/opto/loopnode.hpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 836
ee8f06bfb27c
child 1356
046932b72aa2
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

duke@435 1 /*
xdono@631 2 * Copyright 1998-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class CmpNode;
duke@435 26 class CountedLoopEndNode;
duke@435 27 class CountedLoopNode;
duke@435 28 class IdealLoopTree;
duke@435 29 class LoopNode;
duke@435 30 class Node;
duke@435 31 class PhaseIdealLoop;
duke@435 32 class VectorSet;
duke@435 33 struct small_cache;
duke@435 34
duke@435 35 //
duke@435 36 // I D E A L I Z E D L O O P S
duke@435 37 //
duke@435 38 // Idealized loops are the set of loops I perform more interesting
duke@435 39 // transformations on, beyond simple hoisting.
duke@435 40
duke@435 41 //------------------------------LoopNode---------------------------------------
duke@435 42 // Simple loop header. Fall in path on left, loop-back path on right.
duke@435 43 class LoopNode : public RegionNode {
duke@435 44 // Size is bigger to hold the flags. However, the flags do not change
duke@435 45 // the semantics so it does not appear in the hash & cmp functions.
duke@435 46 virtual uint size_of() const { return sizeof(*this); }
duke@435 47 protected:
duke@435 48 short _loop_flags;
duke@435 49 // Names for flag bitfields
duke@435 50 enum { pre_post_main=0, inner_loop=8, partial_peel_loop=16, partial_peel_failed=32 };
duke@435 51 char _unswitch_count;
duke@435 52 enum { _unswitch_max=3 };
duke@435 53
duke@435 54 public:
duke@435 55 // Names for edge indices
duke@435 56 enum { Self=0, EntryControl, LoopBackControl };
duke@435 57
duke@435 58 int is_inner_loop() const { return _loop_flags & inner_loop; }
duke@435 59 void set_inner_loop() { _loop_flags |= inner_loop; }
duke@435 60
duke@435 61 int is_partial_peel_loop() const { return _loop_flags & partial_peel_loop; }
duke@435 62 void set_partial_peel_loop() { _loop_flags |= partial_peel_loop; }
duke@435 63 int partial_peel_has_failed() const { return _loop_flags & partial_peel_failed; }
duke@435 64 void mark_partial_peel_failed() { _loop_flags |= partial_peel_failed; }
duke@435 65
duke@435 66 int unswitch_max() { return _unswitch_max; }
duke@435 67 int unswitch_count() { return _unswitch_count; }
duke@435 68 void set_unswitch_count(int val) {
duke@435 69 assert (val <= unswitch_max(), "too many unswitches");
duke@435 70 _unswitch_count = val;
duke@435 71 }
duke@435 72
duke@435 73 LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
duke@435 74 init_class_id(Class_Loop);
duke@435 75 init_req(EntryControl, entry);
duke@435 76 init_req(LoopBackControl, backedge);
duke@435 77 }
duke@435 78
duke@435 79 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 80 virtual int Opcode() const;
duke@435 81 bool can_be_counted_loop(PhaseTransform* phase) const {
duke@435 82 return req() == 3 && in(0) != NULL &&
duke@435 83 in(1) != NULL && phase->type(in(1)) != Type::TOP &&
duke@435 84 in(2) != NULL && phase->type(in(2)) != Type::TOP;
duke@435 85 }
duke@435 86 #ifndef PRODUCT
duke@435 87 virtual void dump_spec(outputStream *st) const;
duke@435 88 #endif
duke@435 89 };
duke@435 90
duke@435 91 //------------------------------Counted Loops----------------------------------
duke@435 92 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
duke@435 93 // path (and maybe some other exit paths). The trip-counter exit is always
duke@435 94 // last in the loop. The trip-counter does not have to stride by a constant,
duke@435 95 // but it does have to stride by a loop-invariant amount; the exit value is
duke@435 96 // also loop invariant.
duke@435 97
duke@435 98 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs. The
duke@435 99 // CountedLoopNode has the incoming loop control and the loop-back-control
duke@435 100 // which is always the IfTrue before the matching CountedLoopEndNode. The
duke@435 101 // CountedLoopEndNode has an incoming control (possibly not the
duke@435 102 // CountedLoopNode if there is control flow in the loop), the post-increment
duke@435 103 // trip-counter value, and the limit. The trip-counter value is always of
duke@435 104 // the form (Op old-trip-counter stride). The old-trip-counter is produced
duke@435 105 // by a Phi connected to the CountedLoopNode. The stride is loop invariant.
duke@435 106 // The Op is any commutable opcode, including Add, Mul, Xor. The
duke@435 107 // CountedLoopEndNode also takes in the loop-invariant limit value.
duke@435 108
duke@435 109 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
duke@435 110 // loop-back control. From CountedLoopEndNodes I can reach CountedLoopNodes
duke@435 111 // via the old-trip-counter from the Op node.
duke@435 112
duke@435 113 //------------------------------CountedLoopNode--------------------------------
duke@435 114 // CountedLoopNodes head simple counted loops. CountedLoopNodes have as
duke@435 115 // inputs the incoming loop-start control and the loop-back control, so they
duke@435 116 // act like RegionNodes. They also take in the initial trip counter, the
duke@435 117 // loop-invariant stride and the loop-invariant limit value. CountedLoopNodes
duke@435 118 // produce a loop-body control and the trip counter value. Since
duke@435 119 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
duke@435 120
duke@435 121 class CountedLoopNode : public LoopNode {
duke@435 122 // Size is bigger to hold _main_idx. However, _main_idx does not change
duke@435 123 // the semantics so it does not appear in the hash & cmp functions.
duke@435 124 virtual uint size_of() const { return sizeof(*this); }
duke@435 125
duke@435 126 // For Pre- and Post-loops during debugging ONLY, this holds the index of
duke@435 127 // the Main CountedLoop. Used to assert that we understand the graph shape.
duke@435 128 node_idx_t _main_idx;
duke@435 129
duke@435 130 // Known trip count calculated by policy_maximally_unroll
duke@435 131 int _trip_count;
duke@435 132
duke@435 133 // Expected trip count from profile data
duke@435 134 float _profile_trip_cnt;
duke@435 135
duke@435 136 // Log2 of original loop bodies in unrolled loop
duke@435 137 int _unrolled_count_log2;
duke@435 138
duke@435 139 // Node count prior to last unrolling - used to decide if
duke@435 140 // unroll,optimize,unroll,optimize,... is making progress
duke@435 141 int _node_count_before_unroll;
duke@435 142
duke@435 143 public:
duke@435 144 CountedLoopNode( Node *entry, Node *backedge )
duke@435 145 : LoopNode(entry, backedge), _trip_count(max_jint),
duke@435 146 _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
duke@435 147 _node_count_before_unroll(0) {
duke@435 148 init_class_id(Class_CountedLoop);
duke@435 149 // Initialize _trip_count to the largest possible value.
duke@435 150 // Will be reset (lower) if the loop's trip count is known.
duke@435 151 }
duke@435 152
duke@435 153 virtual int Opcode() const;
duke@435 154 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 155
duke@435 156 Node *init_control() const { return in(EntryControl); }
duke@435 157 Node *back_control() const { return in(LoopBackControl); }
duke@435 158 CountedLoopEndNode *loopexit() const;
duke@435 159 Node *init_trip() const;
duke@435 160 Node *stride() const;
duke@435 161 int stride_con() const;
duke@435 162 bool stride_is_con() const;
duke@435 163 Node *limit() const;
duke@435 164 Node *incr() const;
duke@435 165 Node *phi() const;
duke@435 166
duke@435 167 // Match increment with optional truncation
duke@435 168 static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
duke@435 169
duke@435 170 // A 'main' loop has a pre-loop and a post-loop. The 'main' loop
duke@435 171 // can run short a few iterations and may start a few iterations in.
duke@435 172 // It will be RCE'd and unrolled and aligned.
duke@435 173
duke@435 174 // A following 'post' loop will run any remaining iterations. Used
duke@435 175 // during Range Check Elimination, the 'post' loop will do any final
duke@435 176 // iterations with full checks. Also used by Loop Unrolling, where
duke@435 177 // the 'post' loop will do any epilog iterations needed. Basically,
duke@435 178 // a 'post' loop can not profitably be further unrolled or RCE'd.
duke@435 179
duke@435 180 // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
duke@435 181 // it may do under-flow checks for RCE and may do alignment iterations
duke@435 182 // so the following main loop 'knows' that it is striding down cache
duke@435 183 // lines.
duke@435 184
duke@435 185 // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
duke@435 186 // Aligned, may be missing it's pre-loop.
duke@435 187 enum { Normal=0, Pre=1, Main=2, Post=3, PrePostFlagsMask=3, Main_Has_No_Pre_Loop=4 };
duke@435 188 int is_normal_loop() const { return (_loop_flags&PrePostFlagsMask) == Normal; }
duke@435 189 int is_pre_loop () const { return (_loop_flags&PrePostFlagsMask) == Pre; }
duke@435 190 int is_main_loop () const { return (_loop_flags&PrePostFlagsMask) == Main; }
duke@435 191 int is_post_loop () const { return (_loop_flags&PrePostFlagsMask) == Post; }
duke@435 192 int is_main_no_pre_loop() const { return _loop_flags & Main_Has_No_Pre_Loop; }
duke@435 193 void set_main_no_pre_loop() { _loop_flags |= Main_Has_No_Pre_Loop; }
duke@435 194
never@802 195 int main_idx() const { return _main_idx; }
never@802 196
duke@435 197
duke@435 198 void set_pre_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
duke@435 199 void set_main_loop ( ) { assert(is_normal_loop(),""); _loop_flags |= Main; }
duke@435 200 void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
duke@435 201 void set_normal_loop( ) { _loop_flags &= ~PrePostFlagsMask; }
duke@435 202
duke@435 203 void set_trip_count(int tc) { _trip_count = tc; }
duke@435 204 int trip_count() { return _trip_count; }
duke@435 205
duke@435 206 void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
duke@435 207 float profile_trip_cnt() { return _profile_trip_cnt; }
duke@435 208
duke@435 209 void double_unrolled_count() { _unrolled_count_log2++; }
duke@435 210 int unrolled_count() { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
duke@435 211
duke@435 212 void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; }
duke@435 213 int node_count_before_unroll() { return _node_count_before_unroll; }
duke@435 214
duke@435 215 #ifndef PRODUCT
duke@435 216 virtual void dump_spec(outputStream *st) const;
duke@435 217 #endif
duke@435 218 };
duke@435 219
duke@435 220 //------------------------------CountedLoopEndNode-----------------------------
duke@435 221 // CountedLoopEndNodes end simple trip counted loops. They act much like
duke@435 222 // IfNodes.
duke@435 223 class CountedLoopEndNode : public IfNode {
duke@435 224 public:
duke@435 225 enum { TestControl, TestValue };
duke@435 226
duke@435 227 CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
duke@435 228 : IfNode( control, test, prob, cnt) {
duke@435 229 init_class_id(Class_CountedLoopEnd);
duke@435 230 }
duke@435 231 virtual int Opcode() const;
duke@435 232
duke@435 233 Node *cmp_node() const { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
duke@435 234 Node *incr() const { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
duke@435 235 Node *limit() const { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
duke@435 236 Node *stride() const { Node *tmp = incr (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
duke@435 237 Node *phi() const { Node *tmp = incr (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
duke@435 238 Node *init_trip() const { Node *tmp = phi (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
duke@435 239 int stride_con() const;
duke@435 240 bool stride_is_con() const { Node *tmp = stride (); return (tmp != NULL && tmp->is_Con()); }
duke@435 241 BoolTest::mask test_trip() const { return in(TestValue)->as_Bool()->_test._test; }
duke@435 242 CountedLoopNode *loopnode() const {
duke@435 243 Node *ln = phi()->in(0);
duke@435 244 assert( ln->Opcode() == Op_CountedLoop, "malformed loop" );
duke@435 245 return (CountedLoopNode*)ln; }
duke@435 246
duke@435 247 #ifndef PRODUCT
duke@435 248 virtual void dump_spec(outputStream *st) const;
duke@435 249 #endif
duke@435 250 };
duke@435 251
duke@435 252
duke@435 253 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
duke@435 254 Node *bc = back_control();
duke@435 255 if( bc == NULL ) return NULL;
duke@435 256 Node *le = bc->in(0);
duke@435 257 if( le->Opcode() != Op_CountedLoopEnd )
duke@435 258 return NULL;
duke@435 259 return (CountedLoopEndNode*)le;
duke@435 260 }
duke@435 261 inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
duke@435 262 inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
duke@435 263 inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
duke@435 264 inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
duke@435 265 inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
duke@435 266 inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
duke@435 267 inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
duke@435 268
duke@435 269
duke@435 270 // -----------------------------IdealLoopTree----------------------------------
duke@435 271 class IdealLoopTree : public ResourceObj {
duke@435 272 public:
duke@435 273 IdealLoopTree *_parent; // Parent in loop tree
duke@435 274 IdealLoopTree *_next; // Next sibling in loop tree
duke@435 275 IdealLoopTree *_child; // First child in loop tree
duke@435 276
duke@435 277 // The head-tail backedge defines the loop.
duke@435 278 // If tail is NULL then this loop has multiple backedges as part of the
duke@435 279 // same loop. During cleanup I'll peel off the multiple backedges; merge
duke@435 280 // them at the loop bottom and flow 1 real backedge into the loop.
duke@435 281 Node *_head; // Head of loop
duke@435 282 Node *_tail; // Tail of loop
duke@435 283 inline Node *tail(); // Handle lazy update of _tail field
duke@435 284 PhaseIdealLoop* _phase;
duke@435 285
duke@435 286 Node_List _body; // Loop body for inner loops
duke@435 287
duke@435 288 uint8 _nest; // Nesting depth
duke@435 289 uint8 _irreducible:1, // True if irreducible
duke@435 290 _has_call:1, // True if has call safepoint
duke@435 291 _has_sfpt:1, // True if has non-call safepoint
duke@435 292 _rce_candidate:1; // True if candidate for range check elimination
duke@435 293
kvn@474 294 Node_List* _required_safept; // A inner loop cannot delete these safepts;
kvn@474 295 bool _allow_optimizations; // Allow loop optimizations
duke@435 296
duke@435 297 IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
duke@435 298 : _parent(0), _next(0), _child(0),
duke@435 299 _head(head), _tail(tail),
duke@435 300 _phase(phase),
duke@435 301 _required_safept(NULL),
kvn@474 302 _allow_optimizations(true),
duke@435 303 _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0)
duke@435 304 { }
duke@435 305
duke@435 306 // Is 'l' a member of 'this'?
duke@435 307 int is_member( const IdealLoopTree *l ) const; // Test for nested membership
duke@435 308
duke@435 309 // Set loop nesting depth. Accumulate has_call bits.
duke@435 310 int set_nest( uint depth );
duke@435 311
duke@435 312 // Split out multiple fall-in edges from the loop header. Move them to a
duke@435 313 // private RegionNode before the loop. This becomes the loop landing pad.
duke@435 314 void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
duke@435 315
duke@435 316 // Split out the outermost loop from this shared header.
duke@435 317 void split_outer_loop( PhaseIdealLoop *phase );
duke@435 318
duke@435 319 // Merge all the backedges from the shared header into a private Region.
duke@435 320 // Feed that region as the one backedge to this loop.
duke@435 321 void merge_many_backedges( PhaseIdealLoop *phase );
duke@435 322
duke@435 323 // Split shared headers and insert loop landing pads.
duke@435 324 // Insert a LoopNode to replace the RegionNode.
duke@435 325 // Returns TRUE if loop tree is structurally changed.
duke@435 326 bool beautify_loops( PhaseIdealLoop *phase );
duke@435 327
never@836 328 // Perform iteration-splitting on inner loops. Split iterations to
never@836 329 // avoid range checks or one-shot null checks. Returns false if the
never@836 330 // current round of loop opts should stop.
never@836 331 bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
duke@435 332
never@836 333 // Driver for various flavors of iteration splitting. Returns false
never@836 334 // if the current round of loop opts should stop.
never@836 335 bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
duke@435 336
duke@435 337 // Given dominators, try to find loops with calls that must always be
duke@435 338 // executed (call dominates loop tail). These loops do not need non-call
duke@435 339 // safepoints (ncsfpt).
duke@435 340 void check_safepts(VectorSet &visited, Node_List &stack);
duke@435 341
duke@435 342 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
duke@435 343 // encountered.
duke@435 344 void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
duke@435 345
duke@435 346 // Convert to counted loops where possible
duke@435 347 void counted_loop( PhaseIdealLoop *phase );
duke@435 348
duke@435 349 // Check for Node being a loop-breaking test
duke@435 350 Node *is_loop_exit(Node *iff) const;
duke@435 351
duke@435 352 // Returns true if ctrl is executed on every complete iteration
duke@435 353 bool dominates_backedge(Node* ctrl);
duke@435 354
duke@435 355 // Remove simplistic dead code from loop body
duke@435 356 void DCE_loop_body();
duke@435 357
duke@435 358 // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
duke@435 359 // Replace with a 1-in-10 exit guess.
duke@435 360 void adjust_loop_exit_prob( PhaseIdealLoop *phase );
duke@435 361
duke@435 362 // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
duke@435 363 // Useful for unrolling loops with NO array accesses.
duke@435 364 bool policy_peel_only( PhaseIdealLoop *phase ) const;
duke@435 365
duke@435 366 // Return TRUE or FALSE if the loop should be unswitched -- clone
duke@435 367 // loop with an invariant test
duke@435 368 bool policy_unswitching( PhaseIdealLoop *phase ) const;
duke@435 369
duke@435 370 // Micro-benchmark spamming. Remove empty loops.
duke@435 371 bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
duke@435 372
duke@435 373 // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
duke@435 374 // make some loop-invariant test (usually a null-check) happen before the
duke@435 375 // loop.
duke@435 376 bool policy_peeling( PhaseIdealLoop *phase ) const;
duke@435 377
duke@435 378 // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
duke@435 379 // known trip count in the counted loop node.
duke@435 380 bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
duke@435 381
duke@435 382 // Return TRUE or FALSE if the loop should be unrolled or not. Unroll if
duke@435 383 // the loop is a CountedLoop and the body is small enough.
duke@435 384 bool policy_unroll( PhaseIdealLoop *phase ) const;
duke@435 385
duke@435 386 // Return TRUE or FALSE if the loop should be range-check-eliminated.
duke@435 387 // Gather a list of IF tests that are dominated by iteration splitting;
duke@435 388 // also gather the end of the first split and the start of the 2nd split.
duke@435 389 bool policy_range_check( PhaseIdealLoop *phase ) const;
duke@435 390
duke@435 391 // Return TRUE or FALSE if the loop should be cache-line aligned.
duke@435 392 // Gather the expression that does the alignment. Note that only
twisti@1040 393 // one array base can be aligned in a loop (unless the VM guarantees
duke@435 394 // mutual alignment). Note that if we vectorize short memory ops
duke@435 395 // into longer memory ops, we may want to increase alignment.
duke@435 396 bool policy_align( PhaseIdealLoop *phase ) const;
duke@435 397
duke@435 398 // Compute loop trip count from profile data
duke@435 399 void compute_profile_trip_cnt( PhaseIdealLoop *phase );
duke@435 400
duke@435 401 // Reassociate invariant expressions.
duke@435 402 void reassociate_invariants(PhaseIdealLoop *phase);
duke@435 403 // Reassociate invariant add and subtract expressions.
duke@435 404 Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
duke@435 405 // Return nonzero index of invariant operand if invariant and variant
twisti@1040 406 // are combined with an Add or Sub. Helper for reassociate_invariants.
duke@435 407 int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
duke@435 408
duke@435 409 // Return true if n is invariant
duke@435 410 bool is_invariant(Node* n) const;
duke@435 411
duke@435 412 // Put loop body on igvn work list
duke@435 413 void record_for_igvn();
duke@435 414
duke@435 415 bool is_loop() { return !_irreducible && _tail && !_tail->is_top(); }
duke@435 416 bool is_inner() { return is_loop() && _child == NULL; }
duke@435 417 bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
duke@435 418
duke@435 419 #ifndef PRODUCT
duke@435 420 void dump_head( ) const; // Dump loop head only
duke@435 421 void dump() const; // Dump this loop recursively
duke@435 422 void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
duke@435 423 #endif
duke@435 424
duke@435 425 };
duke@435 426
duke@435 427 // -----------------------------PhaseIdealLoop---------------------------------
duke@435 428 // Computes the mapping from Nodes to IdealLoopTrees. Organizes IdealLoopTrees into a
duke@435 429 // loop tree. Drives the loop-based transformations on the ideal graph.
duke@435 430 class PhaseIdealLoop : public PhaseTransform {
duke@435 431 friend class IdealLoopTree;
duke@435 432 friend class SuperWord;
duke@435 433 // Pre-computed def-use info
duke@435 434 PhaseIterGVN &_igvn;
duke@435 435
duke@435 436 // Head of loop tree
duke@435 437 IdealLoopTree *_ltree_root;
duke@435 438
duke@435 439 // Array of pre-order numbers, plus post-visited bit.
duke@435 440 // ZERO for not pre-visited. EVEN for pre-visited but not post-visited.
duke@435 441 // ODD for post-visited. Other bits are the pre-order number.
duke@435 442 uint *_preorders;
duke@435 443 uint _max_preorder;
duke@435 444
duke@435 445 // Allocate _preorders[] array
duke@435 446 void allocate_preorders() {
duke@435 447 _max_preorder = C->unique()+8;
duke@435 448 _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
duke@435 449 memset(_preorders, 0, sizeof(uint) * _max_preorder);
duke@435 450 }
duke@435 451
duke@435 452 // Allocate _preorders[] array
duke@435 453 void reallocate_preorders() {
duke@435 454 if ( _max_preorder < C->unique() ) {
duke@435 455 _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
duke@435 456 _max_preorder = C->unique();
duke@435 457 }
duke@435 458 memset(_preorders, 0, sizeof(uint) * _max_preorder);
duke@435 459 }
duke@435 460
duke@435 461 // Check to grow _preorders[] array for the case when build_loop_tree_impl()
duke@435 462 // adds new nodes.
duke@435 463 void check_grow_preorders( ) {
duke@435 464 if ( _max_preorder < C->unique() ) {
duke@435 465 uint newsize = _max_preorder<<1; // double size of array
duke@435 466 _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
duke@435 467 memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
duke@435 468 _max_preorder = newsize;
duke@435 469 }
duke@435 470 }
duke@435 471 // Check for pre-visited. Zero for NOT visited; non-zero for visited.
duke@435 472 int is_visited( Node *n ) const { return _preorders[n->_idx]; }
duke@435 473 // Pre-order numbers are written to the Nodes array as low-bit-set values.
duke@435 474 void set_preorder_visited( Node *n, int pre_order ) {
duke@435 475 assert( !is_visited( n ), "already set" );
duke@435 476 _preorders[n->_idx] = (pre_order<<1);
duke@435 477 };
duke@435 478 // Return pre-order number.
duke@435 479 int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
duke@435 480
duke@435 481 // Check for being post-visited.
duke@435 482 // Should be previsited already (checked with assert(is_visited(n))).
duke@435 483 int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
duke@435 484
duke@435 485 // Mark as post visited
duke@435 486 void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
duke@435 487
duke@435 488 // Set/get control node out. Set lower bit to distinguish from IdealLoopTree
duke@435 489 // Returns true if "n" is a data node, false if it's a control node.
duke@435 490 bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
duke@435 491
duke@435 492 // clear out dead code after build_loop_late
duke@435 493 Node_List _deadlist;
duke@435 494
duke@435 495 // Support for faster execution of get_late_ctrl()/dom_lca()
duke@435 496 // when a node has many uses and dominator depth is deep.
duke@435 497 Node_Array _dom_lca_tags;
duke@435 498 void init_dom_lca_tags();
duke@435 499 void clear_dom_lca_tags();
duke@435 500 // Inline wrapper for frequent cases:
duke@435 501 // 1) only one use
duke@435 502 // 2) a use is the same as the current LCA passed as 'n1'
duke@435 503 Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
duke@435 504 assert( n->is_CFG(), "" );
duke@435 505 // Fast-path NULL lca
duke@435 506 if( lca != NULL && lca != n ) {
duke@435 507 assert( lca->is_CFG(), "" );
duke@435 508 // find LCA of all uses
duke@435 509 n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
duke@435 510 }
duke@435 511 return find_non_split_ctrl(n);
duke@435 512 }
duke@435 513 Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
duke@435 514 // true if CFG node d dominates CFG node n
duke@435 515 bool is_dominator(Node *d, Node *n);
duke@435 516
duke@435 517 // Helper function for directing control inputs away from CFG split
duke@435 518 // points.
duke@435 519 Node *find_non_split_ctrl( Node *ctrl ) const {
duke@435 520 if (ctrl != NULL) {
duke@435 521 if (ctrl->is_MultiBranch()) {
duke@435 522 ctrl = ctrl->in(0);
duke@435 523 }
duke@435 524 assert(ctrl->is_CFG(), "CFG");
duke@435 525 }
duke@435 526 return ctrl;
duke@435 527 }
duke@435 528
duke@435 529 public:
duke@435 530 bool has_node( Node* n ) const { return _nodes[n->_idx] != NULL; }
duke@435 531 // check if transform created new nodes that need _ctrl recorded
duke@435 532 Node *get_late_ctrl( Node *n, Node *early );
duke@435 533 Node *get_early_ctrl( Node *n );
duke@435 534 void set_early_ctrl( Node *n );
duke@435 535 void set_subtree_ctrl( Node *root );
duke@435 536 void set_ctrl( Node *n, Node *ctrl ) {
duke@435 537 assert( !has_node(n) || has_ctrl(n), "" );
duke@435 538 assert( ctrl->in(0), "cannot set dead control node" );
duke@435 539 assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
duke@435 540 _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
duke@435 541 }
duke@435 542 // Set control and update loop membership
duke@435 543 void set_ctrl_and_loop(Node* n, Node* ctrl) {
duke@435 544 IdealLoopTree* old_loop = get_loop(get_ctrl(n));
duke@435 545 IdealLoopTree* new_loop = get_loop(ctrl);
duke@435 546 if (old_loop != new_loop) {
duke@435 547 if (old_loop->_child == NULL) old_loop->_body.yank(n);
duke@435 548 if (new_loop->_child == NULL) new_loop->_body.push(n);
duke@435 549 }
duke@435 550 set_ctrl(n, ctrl);
duke@435 551 }
duke@435 552 // Control nodes can be replaced or subsumed. During this pass they
duke@435 553 // get their replacement Node in slot 1. Instead of updating the block
duke@435 554 // location of all Nodes in the subsumed block, we lazily do it. As we
duke@435 555 // pull such a subsumed block out of the array, we write back the final
duke@435 556 // correct block.
duke@435 557 Node *get_ctrl( Node *i ) {
duke@435 558 assert(has_node(i), "");
duke@435 559 Node *n = get_ctrl_no_update(i);
duke@435 560 _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
duke@435 561 assert(has_node(i) && has_ctrl(i), "");
duke@435 562 assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
duke@435 563 return n;
duke@435 564 }
duke@435 565
duke@435 566 private:
duke@435 567 Node *get_ctrl_no_update( Node *i ) const {
duke@435 568 assert( has_ctrl(i), "" );
duke@435 569 Node *n = (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
duke@435 570 if (!n->in(0)) {
duke@435 571 // Skip dead CFG nodes
duke@435 572 do {
duke@435 573 n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
duke@435 574 } while (!n->in(0));
duke@435 575 n = find_non_split_ctrl(n);
duke@435 576 }
duke@435 577 return n;
duke@435 578 }
duke@435 579
duke@435 580 // Check for loop being set
duke@435 581 // "n" must be a control node. Returns true if "n" is known to be in a loop.
duke@435 582 bool has_loop( Node *n ) const {
duke@435 583 assert(!has_node(n) || !has_ctrl(n), "");
duke@435 584 return has_node(n);
duke@435 585 }
duke@435 586 // Set loop
duke@435 587 void set_loop( Node *n, IdealLoopTree *loop ) {
duke@435 588 _nodes.map(n->_idx, (Node*)loop);
duke@435 589 }
duke@435 590 // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms. Replace
duke@435 591 // the 'old_node' with 'new_node'. Kill old-node. Add a reference
duke@435 592 // from old_node to new_node to support the lazy update. Reference
duke@435 593 // replaces loop reference, since that is not neede for dead node.
duke@435 594 public:
duke@435 595 void lazy_update( Node *old_node, Node *new_node ) {
duke@435 596 assert( old_node != new_node, "no cycles please" );
duke@435 597 //old_node->set_req( 1, new_node /*NO DU INFO*/ );
duke@435 598 // Nodes always have DU info now, so re-use the side array slot
duke@435 599 // for this node to provide the forwarding pointer.
duke@435 600 _nodes.map( old_node->_idx, (Node*)((intptr_t)new_node + 1) );
duke@435 601 }
duke@435 602 void lazy_replace( Node *old_node, Node *new_node ) {
duke@435 603 _igvn.hash_delete(old_node);
duke@435 604 _igvn.subsume_node( old_node, new_node );
duke@435 605 lazy_update( old_node, new_node );
duke@435 606 }
duke@435 607 void lazy_replace_proj( Node *old_node, Node *new_node ) {
duke@435 608 assert( old_node->req() == 1, "use this for Projs" );
duke@435 609 _igvn.hash_delete(old_node); // Must hash-delete before hacking edges
duke@435 610 old_node->add_req( NULL );
duke@435 611 lazy_replace( old_node, new_node );
duke@435 612 }
duke@435 613
duke@435 614 private:
duke@435 615
duke@435 616 // Place 'n' in some loop nest, where 'n' is a CFG node
duke@435 617 void build_loop_tree();
duke@435 618 int build_loop_tree_impl( Node *n, int pre_order );
duke@435 619 // Insert loop into the existing loop tree. 'innermost' is a leaf of the
duke@435 620 // loop tree, not the root.
duke@435 621 IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
duke@435 622
duke@435 623 // Place Data nodes in some loop nest
duke@435 624 void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me );
duke@435 625 void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me );
duke@435 626 void build_loop_late_post ( Node* n, const PhaseIdealLoop *verify_me );
duke@435 627
duke@435 628 // Array of immediate dominance info for each CFG node indexed by node idx
duke@435 629 private:
duke@435 630 uint _idom_size;
duke@435 631 Node **_idom; // Array of immediate dominators
duke@435 632 uint *_dom_depth; // Used for fast LCA test
duke@435 633 GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
duke@435 634
duke@435 635 Node* idom_no_update(Node* d) const {
duke@435 636 assert(d->_idx < _idom_size, "oob");
duke@435 637 Node* n = _idom[d->_idx];
duke@435 638 assert(n != NULL,"Bad immediate dominator info.");
duke@435 639 while (n->in(0) == NULL) { // Skip dead CFG nodes
duke@435 640 //n = n->in(1);
duke@435 641 n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
duke@435 642 assert(n != NULL,"Bad immediate dominator info.");
duke@435 643 }
duke@435 644 return n;
duke@435 645 }
duke@435 646 Node *idom(Node* d) const {
duke@435 647 uint didx = d->_idx;
duke@435 648 Node *n = idom_no_update(d);
duke@435 649 _idom[didx] = n; // Lazily remove dead CFG nodes from table.
duke@435 650 return n;
duke@435 651 }
duke@435 652 uint dom_depth(Node* d) const {
duke@435 653 assert(d->_idx < _idom_size, "");
duke@435 654 return _dom_depth[d->_idx];
duke@435 655 }
duke@435 656 void set_idom(Node* d, Node* n, uint dom_depth);
duke@435 657 // Locally compute IDOM using dom_lca call
duke@435 658 Node *compute_idom( Node *region ) const;
duke@435 659 // Recompute dom_depth
duke@435 660 void recompute_dom_depth();
duke@435 661
duke@435 662 // Is safept not required by an outer loop?
duke@435 663 bool is_deleteable_safept(Node* sfpt);
duke@435 664
duke@435 665 public:
duke@435 666 // Dominators for the sea of nodes
duke@435 667 void Dominators();
duke@435 668 Node *dom_lca( Node *n1, Node *n2 ) const {
duke@435 669 return find_non_split_ctrl(dom_lca_internal(n1, n2));
duke@435 670 }
duke@435 671 Node *dom_lca_internal( Node *n1, Node *n2 ) const;
duke@435 672
duke@435 673 // Compute the Ideal Node to Loop mapping
duke@435 674 PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me, bool do_split_ifs );
duke@435 675
duke@435 676 // True if the method has at least 1 irreducible loop
duke@435 677 bool _has_irreducible_loops;
duke@435 678
duke@435 679 // Per-Node transform
duke@435 680 virtual Node *transform( Node *a_node ) { return 0; }
duke@435 681
duke@435 682 Node *is_counted_loop( Node *x, IdealLoopTree *loop );
duke@435 683
duke@435 684 // Return a post-walked LoopNode
duke@435 685 IdealLoopTree *get_loop( Node *n ) const {
duke@435 686 // Dead nodes have no loop, so return the top level loop instead
duke@435 687 if (!has_node(n)) return _ltree_root;
duke@435 688 assert(!has_ctrl(n), "");
duke@435 689 return (IdealLoopTree*)_nodes[n->_idx];
duke@435 690 }
duke@435 691
duke@435 692 // Is 'n' a (nested) member of 'loop'?
duke@435 693 int is_member( const IdealLoopTree *loop, Node *n ) const {
duke@435 694 return loop->is_member(get_loop(n)); }
duke@435 695
duke@435 696 // This is the basic building block of the loop optimizations. It clones an
duke@435 697 // entire loop body. It makes an old_new loop body mapping; with this
duke@435 698 // mapping you can find the new-loop equivalent to an old-loop node. All
duke@435 699 // new-loop nodes are exactly equal to their old-loop counterparts, all
duke@435 700 // edges are the same. All exits from the old-loop now have a RegionNode
duke@435 701 // that merges the equivalent new-loop path. This is true even for the
duke@435 702 // normal "loop-exit" condition. All uses of loop-invariant old-loop values
duke@435 703 // now come from (one or more) Phis that merge their new-loop equivalents.
duke@435 704 // Parameter side_by_side_idom:
duke@435 705 // When side_by_size_idom is NULL, the dominator tree is constructed for
duke@435 706 // the clone loop to dominate the original. Used in construction of
duke@435 707 // pre-main-post loop sequence.
duke@435 708 // When nonnull, the clone and original are side-by-side, both are
duke@435 709 // dominated by the passed in side_by_side_idom node. Used in
duke@435 710 // construction of unswitched loops.
duke@435 711 void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
duke@435 712 Node* side_by_side_idom = NULL);
duke@435 713
duke@435 714 // If we got the effect of peeling, either by actually peeling or by
duke@435 715 // making a pre-loop which must execute at least once, we can remove
duke@435 716 // all loop-invariant dominated tests in the main body.
duke@435 717 void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
duke@435 718
duke@435 719 // Generate code to do a loop peel for the given loop (and body).
duke@435 720 // old_new is a temp array.
duke@435 721 void do_peeling( IdealLoopTree *loop, Node_List &old_new );
duke@435 722
duke@435 723 // Add pre and post loops around the given loop. These loops are used
duke@435 724 // during RCE, unrolling and aligning loops.
duke@435 725 void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
duke@435 726 // If Node n lives in the back_ctrl block, we clone a private version of n
duke@435 727 // in preheader_ctrl block and return that, otherwise return n.
duke@435 728 Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n );
duke@435 729
duke@435 730 // Take steps to maximally unroll the loop. Peel any odd iterations, then
duke@435 731 // unroll to do double iterations. The next round of major loop transforms
duke@435 732 // will repeat till the doubled loop body does all remaining iterations in 1
duke@435 733 // pass.
duke@435 734 void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
duke@435 735
duke@435 736 // Unroll the loop body one step - make each trip do 2 iterations.
duke@435 737 void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
duke@435 738
duke@435 739 // Return true if exp is a constant times an induction var
duke@435 740 bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
duke@435 741
duke@435 742 // Return true if exp is a scaled induction var plus (or minus) constant
duke@435 743 bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
duke@435 744
duke@435 745 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
duke@435 746 void do_range_check( IdealLoopTree *loop, Node_List &old_new );
duke@435 747
duke@435 748 // Create a slow version of the loop by cloning the loop
duke@435 749 // and inserting an if to select fast-slow versions.
duke@435 750 ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
duke@435 751 Node_List &old_new);
duke@435 752
duke@435 753 // Clone loop with an invariant test (that does not exit) and
duke@435 754 // insert a clone of the test that selects which version to
duke@435 755 // execute.
duke@435 756 void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
duke@435 757
duke@435 758 // Find candidate "if" for unswitching
duke@435 759 IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
duke@435 760
duke@435 761 // Range Check Elimination uses this function!
duke@435 762 // Constrain the main loop iterations so the affine function:
duke@435 763 // scale_con * I + offset < limit
duke@435 764 // always holds true. That is, either increase the number of iterations in
duke@435 765 // the pre-loop or the post-loop until the condition holds true in the main
duke@435 766 // loop. Scale_con, offset and limit are all loop invariant.
duke@435 767 void add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
duke@435 768
duke@435 769 // Partially peel loop up through last_peel node.
duke@435 770 bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
duke@435 771
duke@435 772 // Create a scheduled list of nodes control dependent on ctrl set.
duke@435 773 void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
duke@435 774 // Has a use in the vector set
duke@435 775 bool has_use_in_set( Node* n, VectorSet& vset );
duke@435 776 // Has use internal to the vector set (ie. not in a phi at the loop head)
duke@435 777 bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
duke@435 778 // clone "n" for uses that are outside of loop
duke@435 779 void clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
duke@435 780 // clone "n" for special uses that are in the not_peeled region
duke@435 781 void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
duke@435 782 VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
duke@435 783 // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
duke@435 784 void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
duke@435 785 #ifdef ASSERT
duke@435 786 // Validate the loop partition sets: peel and not_peel
duke@435 787 bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
duke@435 788 // Ensure that uses outside of loop are of the right form
duke@435 789 bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
duke@435 790 uint orig_exit_idx, uint clone_exit_idx);
duke@435 791 bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
duke@435 792 #endif
duke@435 793
duke@435 794 // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
duke@435 795 int stride_of_possible_iv( Node* iff );
duke@435 796 bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
duke@435 797 // Return the (unique) control output node that's in the loop (if it exists.)
duke@435 798 Node* stay_in_loop( Node* n, IdealLoopTree *loop);
duke@435 799 // Insert a signed compare loop exit cloned from an unsigned compare.
duke@435 800 IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
duke@435 801 void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
duke@435 802 // Utility to register node "n" with PhaseIdealLoop
duke@435 803 void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
duke@435 804 // Utility to create an if-projection
duke@435 805 ProjNode* proj_clone(ProjNode* p, IfNode* iff);
duke@435 806 // Force the iff control output to be the live_proj
duke@435 807 Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
duke@435 808 // Insert a region before an if projection
duke@435 809 RegionNode* insert_region_before_proj(ProjNode* proj);
duke@435 810 // Insert a new if before an if projection
duke@435 811 ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
duke@435 812
duke@435 813 // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
duke@435 814 // "Nearly" because all Nodes have been cloned from the original in the loop,
duke@435 815 // but the fall-in edges to the Cmp are different. Clone bool/Cmp pairs
duke@435 816 // through the Phi recursively, and return a Bool.
duke@435 817 BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
duke@435 818 CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
duke@435 819
duke@435 820
duke@435 821 // Rework addressing expressions to get the most loop-invariant stuff
duke@435 822 // moved out. We'd like to do all associative operators, but it's especially
duke@435 823 // important (common) to do address expressions.
duke@435 824 Node *remix_address_expressions( Node *n );
duke@435 825
duke@435 826 // Attempt to use a conditional move instead of a phi/branch
duke@435 827 Node *conditional_move( Node *n );
duke@435 828
duke@435 829 // Reorganize offset computations to lower register pressure.
duke@435 830 // Mostly prevent loop-fallout uses of the pre-incremented trip counter
duke@435 831 // (which are then alive with the post-incremented trip counter
duke@435 832 // forcing an extra register move)
duke@435 833 void reorg_offsets( IdealLoopTree *loop );
duke@435 834
duke@435 835 // Check for aggressive application of 'split-if' optimization,
duke@435 836 // using basic block level info.
duke@435 837 void split_if_with_blocks ( VectorSet &visited, Node_Stack &nstack );
duke@435 838 Node *split_if_with_blocks_pre ( Node *n );
duke@435 839 void split_if_with_blocks_post( Node *n );
duke@435 840 Node *has_local_phi_input( Node *n );
duke@435 841 // Mark an IfNode as being dominated by a prior test,
duke@435 842 // without actually altering the CFG (and hence IDOM info).
duke@435 843 void dominated_by( Node *prevdom, Node *iff );
duke@435 844
duke@435 845 // Split Node 'n' through merge point
duke@435 846 Node *split_thru_region( Node *n, Node *region );
duke@435 847 // Split Node 'n' through merge point if there is enough win.
duke@435 848 Node *split_thru_phi( Node *n, Node *region, int policy );
duke@435 849 // Found an If getting its condition-code input from a Phi in the
duke@435 850 // same block. Split thru the Region.
duke@435 851 void do_split_if( Node *iff );
duke@435 852
duke@435 853 private:
duke@435 854 // Return a type based on condition control flow
duke@435 855 const TypeInt* filtered_type( Node *n, Node* n_ctrl);
duke@435 856 const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
duke@435 857 // Helpers for filtered type
duke@435 858 const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
duke@435 859
duke@435 860 // Helper functions
duke@435 861 void register_new_node( Node *n, Node *blk );
duke@435 862 Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
duke@435 863 Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
duke@435 864 void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
duke@435 865 bool split_up( Node *n, Node *blk1, Node *blk2 );
duke@435 866 void sink_use( Node *use, Node *post_loop );
duke@435 867 Node *place_near_use( Node *useblock ) const;
duke@435 868
duke@435 869 bool _created_loop_node;
duke@435 870 public:
duke@435 871 void set_created_loop_node() { _created_loop_node = true; }
duke@435 872 bool created_loop_node() { return _created_loop_node; }
duke@435 873
duke@435 874 #ifndef PRODUCT
duke@435 875 void dump( ) const;
duke@435 876 void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
duke@435 877 void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
duke@435 878 void verify() const; // Major slow :-)
duke@435 879 void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
duke@435 880 IdealLoopTree *get_loop_idx(Node* n) const {
duke@435 881 // Dead nodes have no loop, so return the top level loop instead
duke@435 882 return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
duke@435 883 }
duke@435 884 // Print some stats
duke@435 885 static void print_statistics();
duke@435 886 static int _loop_invokes; // Count of PhaseIdealLoop invokes
duke@435 887 static int _loop_work; // Sum of PhaseIdealLoop x _unique
duke@435 888 #endif
duke@435 889 };
duke@435 890
duke@435 891 inline Node* IdealLoopTree::tail() {
duke@435 892 // Handle lazy update of _tail field
duke@435 893 Node *n = _tail;
duke@435 894 //while( !n->in(0) ) // Skip dead CFG nodes
duke@435 895 //n = n->in(1);
duke@435 896 if (n->in(0) == NULL)
duke@435 897 n = _phase->get_ctrl(n);
duke@435 898 _tail = n;
duke@435 899 return n;
duke@435 900 }
duke@435 901
duke@435 902
duke@435 903 // Iterate over the loop tree using a preorder, left-to-right traversal.
duke@435 904 //
duke@435 905 // Example that visits all counted loops from within PhaseIdealLoop
duke@435 906 //
duke@435 907 // for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
duke@435 908 // IdealLoopTree* lpt = iter.current();
duke@435 909 // if (!lpt->is_counted()) continue;
duke@435 910 // ...
duke@435 911 class LoopTreeIterator : public StackObj {
duke@435 912 private:
duke@435 913 IdealLoopTree* _root;
duke@435 914 IdealLoopTree* _curnt;
duke@435 915
duke@435 916 public:
duke@435 917 LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
duke@435 918
duke@435 919 bool done() { return _curnt == NULL; } // Finished iterating?
duke@435 920
duke@435 921 void next(); // Advance to next loop tree
duke@435 922
duke@435 923 IdealLoopTree* current() { return _curnt; } // Return current value of iterator.
duke@435 924 };

mercurial