src/share/vm/utilities/globalDefinitions.hpp

Fri, 05 Oct 2012 18:57:10 -0700

author
vlivanov
date
Fri, 05 Oct 2012 18:57:10 -0700
changeset 4154
c3e799c37717
parent 4037
da91efe96a93
child 4159
8e47bac5643a
permissions
-rw-r--r--

7177003: C1: LogCompilation support
Summary: add LogCompilation support in C1 - both client and tiered mode.
Reviewed-by: twisti, kvn

duke@435 1 /*
brutisso@3762 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@2314 26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
stefank@2314 27
dcubed@3202 28 #ifndef __STDC_FORMAT_MACROS
never@3156 29 #define __STDC_FORMAT_MACROS
dcubed@3202 30 #endif
never@3156 31
stefank@2314 32 #ifdef TARGET_COMPILER_gcc
stefank@2314 33 # include "utilities/globalDefinitions_gcc.hpp"
stefank@2314 34 #endif
stefank@2314 35 #ifdef TARGET_COMPILER_visCPP
stefank@2314 36 # include "utilities/globalDefinitions_visCPP.hpp"
stefank@2314 37 #endif
stefank@2314 38 #ifdef TARGET_COMPILER_sparcWorks
stefank@2314 39 # include "utilities/globalDefinitions_sparcWorks.hpp"
stefank@2314 40 #endif
stefank@2314 41
stefank@2314 42 #include "utilities/macros.hpp"
stefank@2314 43
duke@435 44 // This file holds all globally used constants & types, class (forward)
duke@435 45 // declarations and a few frequently used utility functions.
duke@435 46
duke@435 47 //----------------------------------------------------------------------------------------------------
duke@435 48 // Constants
duke@435 49
duke@435 50 const int LogBytesPerShort = 1;
duke@435 51 const int LogBytesPerInt = 2;
duke@435 52 #ifdef _LP64
duke@435 53 const int LogBytesPerWord = 3;
duke@435 54 #else
duke@435 55 const int LogBytesPerWord = 2;
duke@435 56 #endif
duke@435 57 const int LogBytesPerLong = 3;
duke@435 58
duke@435 59 const int BytesPerShort = 1 << LogBytesPerShort;
duke@435 60 const int BytesPerInt = 1 << LogBytesPerInt;
duke@435 61 const int BytesPerWord = 1 << LogBytesPerWord;
duke@435 62 const int BytesPerLong = 1 << LogBytesPerLong;
duke@435 63
duke@435 64 const int LogBitsPerByte = 3;
duke@435 65 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
duke@435 66 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
duke@435 67 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
duke@435 68 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
duke@435 69
duke@435 70 const int BitsPerByte = 1 << LogBitsPerByte;
duke@435 71 const int BitsPerShort = 1 << LogBitsPerShort;
duke@435 72 const int BitsPerInt = 1 << LogBitsPerInt;
duke@435 73 const int BitsPerWord = 1 << LogBitsPerWord;
duke@435 74 const int BitsPerLong = 1 << LogBitsPerLong;
duke@435 75
duke@435 76 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
duke@435 77 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
duke@435 78
duke@435 79 const int WordsPerLong = 2; // Number of stack entries for longs
duke@435 80
coleenp@548 81 const int oopSize = sizeof(char*); // Full-width oop
coleenp@548 82 extern int heapOopSize; // Oop within a java object
duke@435 83 const int wordSize = sizeof(char*);
duke@435 84 const int longSize = sizeof(jlong);
duke@435 85 const int jintSize = sizeof(jint);
duke@435 86 const int size_tSize = sizeof(size_t);
duke@435 87
coleenp@548 88 const int BytesPerOop = BytesPerWord; // Full-width oop
duke@435 89
coleenp@548 90 extern int LogBytesPerHeapOop; // Oop within a java object
coleenp@548 91 extern int LogBitsPerHeapOop;
coleenp@548 92 extern int BytesPerHeapOop;
coleenp@548 93 extern int BitsPerHeapOop;
duke@435 94
kvn@1926 95 // Oop encoding heap max
kvn@1926 96 extern uint64_t OopEncodingHeapMax;
kvn@1926 97
duke@435 98 const int BitsPerJavaInteger = 32;
twisti@994 99 const int BitsPerJavaLong = 64;
duke@435 100 const int BitsPerSize_t = size_tSize * BitsPerByte;
duke@435 101
coleenp@548 102 // Size of a char[] needed to represent a jint as a string in decimal.
coleenp@548 103 const int jintAsStringSize = 12;
coleenp@548 104
duke@435 105 // In fact this should be
duke@435 106 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
duke@435 107 // see os::set_memory_serialize_page()
duke@435 108 #ifdef _LP64
duke@435 109 const int SerializePageShiftCount = 4;
duke@435 110 #else
duke@435 111 const int SerializePageShiftCount = 3;
duke@435 112 #endif
duke@435 113
duke@435 114 // An opaque struct of heap-word width, so that HeapWord* can be a generic
duke@435 115 // pointer into the heap. We require that object sizes be measured in
duke@435 116 // units of heap words, so that that
duke@435 117 // HeapWord* hw;
duke@435 118 // hw += oop(hw)->foo();
duke@435 119 // works, where foo is a method (like size or scavenge) that returns the
duke@435 120 // object size.
duke@435 121 class HeapWord {
duke@435 122 friend class VMStructs;
jmasa@698 123 private:
duke@435 124 char* i;
jmasa@796 125 #ifndef PRODUCT
jmasa@698 126 public:
jmasa@698 127 char* value() { return i; }
jmasa@698 128 #endif
duke@435 129 };
duke@435 130
coleenp@4037 131 // Analogous opaque struct for metadata allocated from
coleenp@4037 132 // metaspaces.
coleenp@4037 133 class MetaWord {
coleenp@4037 134 friend class VMStructs;
coleenp@4037 135 private:
coleenp@4037 136 char* i;
coleenp@4037 137 };
coleenp@4037 138
duke@435 139 // HeapWordSize must be 2^LogHeapWordSize.
coleenp@548 140 const int HeapWordSize = sizeof(HeapWord);
duke@435 141 #ifdef _LP64
coleenp@548 142 const int LogHeapWordSize = 3;
duke@435 143 #else
coleenp@548 144 const int LogHeapWordSize = 2;
duke@435 145 #endif
coleenp@548 146 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
coleenp@548 147 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
duke@435 148
duke@435 149 // The larger HeapWordSize for 64bit requires larger heaps
duke@435 150 // for the same application running in 64bit. See bug 4967770.
duke@435 151 // The minimum alignment to a heap word size is done. Other
duke@435 152 // parts of the memory system may required additional alignment
duke@435 153 // and are responsible for those alignments.
duke@435 154 #ifdef _LP64
duke@435 155 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
duke@435 156 #else
duke@435 157 #define ScaleForWordSize(x) (x)
duke@435 158 #endif
duke@435 159
duke@435 160 // The minimum number of native machine words necessary to contain "byte_size"
duke@435 161 // bytes.
duke@435 162 inline size_t heap_word_size(size_t byte_size) {
duke@435 163 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
duke@435 164 }
duke@435 165
duke@435 166
duke@435 167 const size_t K = 1024;
duke@435 168 const size_t M = K*K;
duke@435 169 const size_t G = M*K;
duke@435 170 const size_t HWperKB = K / sizeof(HeapWord);
duke@435 171
duke@435 172 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
duke@435 173 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
duke@435 174
duke@435 175 // Constants for converting from a base unit to milli-base units. For
duke@435 176 // example from seconds to milliseconds and microseconds
duke@435 177
duke@435 178 const int MILLIUNITS = 1000; // milli units per base unit
duke@435 179 const int MICROUNITS = 1000000; // micro units per base unit
duke@435 180 const int NANOUNITS = 1000000000; // nano units per base unit
duke@435 181
johnc@3339 182 const jlong NANOSECS_PER_SEC = CONST64(1000000000);
johnc@3339 183 const jint NANOSECS_PER_MILLISEC = 1000000;
johnc@3339 184
duke@435 185 inline const char* proper_unit_for_byte_size(size_t s) {
brutisso@3766 186 #ifdef _LP64
brutisso@3766 187 if (s >= 10*G) {
brutisso@3766 188 return "G";
brutisso@3766 189 }
brutisso@3766 190 #endif
duke@435 191 if (s >= 10*M) {
duke@435 192 return "M";
duke@435 193 } else if (s >= 10*K) {
duke@435 194 return "K";
duke@435 195 } else {
duke@435 196 return "B";
duke@435 197 }
duke@435 198 }
duke@435 199
brutisso@3762 200 template <class T>
brutisso@3762 201 inline T byte_size_in_proper_unit(T s) {
brutisso@3766 202 #ifdef _LP64
brutisso@3766 203 if (s >= 10*G) {
brutisso@3766 204 return (T)(s/G);
brutisso@3766 205 }
brutisso@3766 206 #endif
duke@435 207 if (s >= 10*M) {
brutisso@3762 208 return (T)(s/M);
duke@435 209 } else if (s >= 10*K) {
brutisso@3762 210 return (T)(s/K);
duke@435 211 } else {
duke@435 212 return s;
duke@435 213 }
duke@435 214 }
duke@435 215
duke@435 216 //----------------------------------------------------------------------------------------------------
duke@435 217 // VM type definitions
duke@435 218
duke@435 219 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
duke@435 220 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
duke@435 221
duke@435 222 typedef intptr_t intx;
duke@435 223 typedef uintptr_t uintx;
duke@435 224
duke@435 225 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
duke@435 226 const intx max_intx = (uintx)min_intx - 1;
duke@435 227 const uintx max_uintx = (uintx)-1;
duke@435 228
duke@435 229 // Table of values:
duke@435 230 // sizeof intx 4 8
duke@435 231 // min_intx 0x80000000 0x8000000000000000
duke@435 232 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
duke@435 233 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
duke@435 234
duke@435 235 typedef unsigned int uint; NEEDS_CLEANUP
duke@435 236
duke@435 237
duke@435 238 //----------------------------------------------------------------------------------------------------
duke@435 239 // Java type definitions
duke@435 240
duke@435 241 // All kinds of 'plain' byte addresses
duke@435 242 typedef signed char s_char;
duke@435 243 typedef unsigned char u_char;
duke@435 244 typedef u_char* address;
duke@435 245 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
duke@435 246 // except for some implementations of a C++
duke@435 247 // linkage pointer to function. Should never
duke@435 248 // need one of those to be placed in this
duke@435 249 // type anyway.
duke@435 250
duke@435 251 // Utility functions to "portably" (?) bit twiddle pointers
duke@435 252 // Where portable means keep ANSI C++ compilers quiet
duke@435 253
duke@435 254 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
duke@435 255 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
duke@435 256
duke@435 257 // Utility functions to "portably" make cast to/from function pointers.
duke@435 258
duke@435 259 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
duke@435 260 inline address_word castable_address(address x) { return address_word(x) ; }
duke@435 261 inline address_word castable_address(void* x) { return address_word(x) ; }
duke@435 262
duke@435 263 // Pointer subtraction.
duke@435 264 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
duke@435 265 // the range we might need to find differences from one end of the heap
duke@435 266 // to the other.
duke@435 267 // A typical use might be:
duke@435 268 // if (pointer_delta(end(), top()) >= size) {
duke@435 269 // // enough room for an object of size
duke@435 270 // ...
duke@435 271 // and then additions like
duke@435 272 // ... top() + size ...
duke@435 273 // are safe because we know that top() is at least size below end().
duke@435 274 inline size_t pointer_delta(const void* left,
duke@435 275 const void* right,
duke@435 276 size_t element_size) {
duke@435 277 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
duke@435 278 }
duke@435 279 // A version specialized for HeapWord*'s.
duke@435 280 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
duke@435 281 return pointer_delta(left, right, sizeof(HeapWord));
duke@435 282 }
coleenp@4037 283 // A version specialized for MetaWord*'s.
coleenp@4037 284 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
coleenp@4037 285 return pointer_delta(left, right, sizeof(MetaWord));
coleenp@4037 286 }
duke@435 287
duke@435 288 //
duke@435 289 // ANSI C++ does not allow casting from one pointer type to a function pointer
duke@435 290 // directly without at best a warning. This macro accomplishes it silently
duke@435 291 // In every case that is present at this point the value be cast is a pointer
duke@435 292 // to a C linkage function. In somecase the type used for the cast reflects
duke@435 293 // that linkage and a picky compiler would not complain. In other cases because
duke@435 294 // there is no convenient place to place a typedef with extern C linkage (i.e
duke@435 295 // a platform dependent header file) it doesn't. At this point no compiler seems
duke@435 296 // picky enough to catch these instances (which are few). It is possible that
duke@435 297 // using templates could fix these for all cases. This use of templates is likely
duke@435 298 // so far from the middle of the road that it is likely to be problematic in
duke@435 299 // many C++ compilers.
duke@435 300 //
duke@435 301 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
duke@435 302 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
duke@435 303
duke@435 304 // Unsigned byte types for os and stream.hpp
duke@435 305
duke@435 306 // Unsigned one, two, four and eigth byte quantities used for describing
duke@435 307 // the .class file format. See JVM book chapter 4.
duke@435 308
duke@435 309 typedef jubyte u1;
duke@435 310 typedef jushort u2;
duke@435 311 typedef juint u4;
duke@435 312 typedef julong u8;
duke@435 313
duke@435 314 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
duke@435 315 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
duke@435 316 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
duke@435 317 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
duke@435 318
phh@3427 319 typedef jbyte s1;
phh@3427 320 typedef jshort s2;
phh@3427 321 typedef jint s4;
phh@3427 322 typedef jlong s8;
phh@3427 323
duke@435 324 //----------------------------------------------------------------------------------------------------
duke@435 325 // JVM spec restrictions
duke@435 326
duke@435 327 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
duke@435 328
duke@435 329
duke@435 330 //----------------------------------------------------------------------------------------------------
duke@435 331 // HotSwap - for JVMTI aka Class File Replacement and PopFrame
duke@435 332 //
duke@435 333 // Determines whether on-the-fly class replacement and frame popping are enabled.
duke@435 334
duke@435 335 #define HOTSWAP
duke@435 336
duke@435 337 //----------------------------------------------------------------------------------------------------
duke@435 338 // Object alignment, in units of HeapWords.
duke@435 339 //
duke@435 340 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
duke@435 341 // reference fields can be naturally aligned.
duke@435 342
kvn@1926 343 extern int MinObjAlignment;
kvn@1926 344 extern int MinObjAlignmentInBytes;
kvn@1926 345 extern int MinObjAlignmentInBytesMask;
duke@435 346
kvn@1926 347 extern int LogMinObjAlignment;
kvn@1926 348 extern int LogMinObjAlignmentInBytes;
coleenp@548 349
duke@435 350 // Machine dependent stuff
duke@435 351
stefank@2314 352 #ifdef TARGET_ARCH_x86
stefank@2314 353 # include "globalDefinitions_x86.hpp"
stefank@2314 354 #endif
stefank@2314 355 #ifdef TARGET_ARCH_sparc
stefank@2314 356 # include "globalDefinitions_sparc.hpp"
stefank@2314 357 #endif
stefank@2314 358 #ifdef TARGET_ARCH_zero
stefank@2314 359 # include "globalDefinitions_zero.hpp"
stefank@2314 360 #endif
bobv@2508 361 #ifdef TARGET_ARCH_arm
bobv@2508 362 # include "globalDefinitions_arm.hpp"
bobv@2508 363 #endif
bobv@2508 364 #ifdef TARGET_ARCH_ppc
bobv@2508 365 # include "globalDefinitions_ppc.hpp"
bobv@2508 366 #endif
stefank@2314 367
duke@435 368
duke@435 369 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
duke@435 370 // Note: this value must be a power of 2
duke@435 371
duke@435 372 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
duke@435 373
duke@435 374 // Signed variants of alignment helpers. There are two versions of each, a macro
duke@435 375 // for use in places like enum definitions that require compile-time constant
duke@435 376 // expressions and a function for all other places so as to get type checking.
duke@435 377
duke@435 378 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
duke@435 379
duke@435 380 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
duke@435 381 return align_size_up_(size, alignment);
duke@435 382 }
duke@435 383
duke@435 384 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
duke@435 385
duke@435 386 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
duke@435 387 return align_size_down_(size, alignment);
duke@435 388 }
duke@435 389
duke@435 390 // Align objects by rounding up their size, in HeapWord units.
duke@435 391
duke@435 392 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
duke@435 393
duke@435 394 inline intptr_t align_object_size(intptr_t size) {
duke@435 395 return align_size_up(size, MinObjAlignment);
duke@435 396 }
duke@435 397
kvn@1926 398 inline bool is_object_aligned(intptr_t addr) {
kvn@1926 399 return addr == align_object_size(addr);
kvn@1926 400 }
kvn@1926 401
duke@435 402 // Pad out certain offsets to jlong alignment, in HeapWord units.
duke@435 403
duke@435 404 inline intptr_t align_object_offset(intptr_t offset) {
duke@435 405 return align_size_up(offset, HeapWordsPerLong);
duke@435 406 }
duke@435 407
jcoomes@2020 408 // The expected size in bytes of a cache line, used to pad data structures.
jcoomes@2020 409 #define DEFAULT_CACHE_LINE_SIZE 64
jcoomes@2020 410
jcoomes@2020 411 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
jcoomes@2020 412 // expected cache line size (a power of two). The first addend avoids sharing
jcoomes@2020 413 // when the start address is not a multiple of alignment; the second maintains
jcoomes@2020 414 // alignment of starting addresses that happen to be a multiple.
jcoomes@2020 415 #define PADDING_SIZE(type, alignment) \
jcoomes@2020 416 ((alignment) + align_size_up_(sizeof(type), alignment))
jcoomes@2020 417
jcoomes@2020 418 // Templates to create a subclass padded to avoid cache line sharing. These are
jcoomes@2020 419 // effective only when applied to derived-most (leaf) classes.
jcoomes@2020 420
jcoomes@2020 421 // When no args are passed to the base ctor.
jcoomes@2020 422 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
jcoomes@2020 423 class Padded: public T {
jcoomes@2020 424 private:
jcoomes@2020 425 char _pad_buf_[PADDING_SIZE(T, alignment)];
jcoomes@2020 426 };
jcoomes@2020 427
jcoomes@2020 428 // When either 0 or 1 args may be passed to the base ctor.
jcoomes@2020 429 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
jcoomes@2020 430 class Padded01: public T {
jcoomes@2020 431 public:
jcoomes@2020 432 Padded01(): T() { }
jcoomes@2020 433 Padded01(Arg1T arg1): T(arg1) { }
jcoomes@2020 434 private:
jcoomes@2020 435 char _pad_buf_[PADDING_SIZE(T, alignment)];
jcoomes@2020 436 };
duke@435 437
duke@435 438 //----------------------------------------------------------------------------------------------------
duke@435 439 // Utility macros for compilers
duke@435 440 // used to silence compiler warnings
duke@435 441
duke@435 442 #define Unused_Variable(var) var
duke@435 443
duke@435 444
duke@435 445 //----------------------------------------------------------------------------------------------------
duke@435 446 // Miscellaneous
duke@435 447
duke@435 448 // 6302670 Eliminate Hotspot __fabsf dependency
duke@435 449 // All fabs() callers should call this function instead, which will implicitly
duke@435 450 // convert the operand to double, avoiding a dependency on __fabsf which
duke@435 451 // doesn't exist in early versions of Solaris 8.
duke@435 452 inline double fabsd(double value) {
duke@435 453 return fabs(value);
duke@435 454 }
duke@435 455
duke@435 456 inline jint low (jlong value) { return jint(value); }
duke@435 457 inline jint high(jlong value) { return jint(value >> 32); }
duke@435 458
duke@435 459 // the fancy casts are a hopefully portable way
duke@435 460 // to do unsigned 32 to 64 bit type conversion
duke@435 461 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
duke@435 462 *value |= (jlong)(julong)(juint)low; }
duke@435 463
duke@435 464 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
duke@435 465 *value |= (jlong)high << 32; }
duke@435 466
duke@435 467 inline jlong jlong_from(jint h, jint l) {
duke@435 468 jlong result = 0; // initialization to avoid warning
duke@435 469 set_high(&result, h);
duke@435 470 set_low(&result, l);
duke@435 471 return result;
duke@435 472 }
duke@435 473
duke@435 474 union jlong_accessor {
duke@435 475 jint words[2];
duke@435 476 jlong long_value;
duke@435 477 };
duke@435 478
coleenp@548 479 void basic_types_init(); // cannot define here; uses assert
duke@435 480
duke@435 481
duke@435 482 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 483 enum BasicType {
duke@435 484 T_BOOLEAN = 4,
duke@435 485 T_CHAR = 5,
duke@435 486 T_FLOAT = 6,
duke@435 487 T_DOUBLE = 7,
duke@435 488 T_BYTE = 8,
duke@435 489 T_SHORT = 9,
duke@435 490 T_INT = 10,
duke@435 491 T_LONG = 11,
duke@435 492 T_OBJECT = 12,
duke@435 493 T_ARRAY = 13,
duke@435 494 T_VOID = 14,
duke@435 495 T_ADDRESS = 15,
coleenp@548 496 T_NARROWOOP= 16,
coleenp@4037 497 T_METADATA = 17,
coleenp@4037 498 T_CONFLICT = 18, // for stack value type with conflicting contents
duke@435 499 T_ILLEGAL = 99
duke@435 500 };
duke@435 501
kvn@464 502 inline bool is_java_primitive(BasicType t) {
kvn@464 503 return T_BOOLEAN <= t && t <= T_LONG;
kvn@464 504 }
kvn@464 505
jrose@1145 506 inline bool is_subword_type(BasicType t) {
jrose@1145 507 // these guys are processed exactly like T_INT in calling sequences:
jrose@1145 508 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
jrose@1145 509 }
jrose@1145 510
jrose@1145 511 inline bool is_signed_subword_type(BasicType t) {
jrose@1145 512 return (t == T_BYTE || t == T_SHORT);
jrose@1145 513 }
jrose@1145 514
duke@435 515 // Convert a char from a classfile signature to a BasicType
duke@435 516 inline BasicType char2type(char c) {
duke@435 517 switch( c ) {
duke@435 518 case 'B': return T_BYTE;
duke@435 519 case 'C': return T_CHAR;
duke@435 520 case 'D': return T_DOUBLE;
duke@435 521 case 'F': return T_FLOAT;
duke@435 522 case 'I': return T_INT;
duke@435 523 case 'J': return T_LONG;
duke@435 524 case 'S': return T_SHORT;
duke@435 525 case 'Z': return T_BOOLEAN;
duke@435 526 case 'V': return T_VOID;
duke@435 527 case 'L': return T_OBJECT;
duke@435 528 case '[': return T_ARRAY;
duke@435 529 }
duke@435 530 return T_ILLEGAL;
duke@435 531 }
duke@435 532
duke@435 533 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 534 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
duke@435 535 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
duke@435 536 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
duke@435 537 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
duke@435 538 extern BasicType name2type(const char* name);
duke@435 539
duke@435 540 // Auxilary math routines
duke@435 541 // least common multiple
duke@435 542 extern size_t lcm(size_t a, size_t b);
duke@435 543
duke@435 544
duke@435 545 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
duke@435 546 enum BasicTypeSize {
duke@435 547 T_BOOLEAN_size = 1,
duke@435 548 T_CHAR_size = 1,
duke@435 549 T_FLOAT_size = 1,
duke@435 550 T_DOUBLE_size = 2,
duke@435 551 T_BYTE_size = 1,
duke@435 552 T_SHORT_size = 1,
duke@435 553 T_INT_size = 1,
duke@435 554 T_LONG_size = 2,
duke@435 555 T_OBJECT_size = 1,
duke@435 556 T_ARRAY_size = 1,
coleenp@548 557 T_NARROWOOP_size = 1,
duke@435 558 T_VOID_size = 0
duke@435 559 };
duke@435 560
duke@435 561
duke@435 562 // maps a BasicType to its instance field storage type:
duke@435 563 // all sub-word integral types are widened to T_INT
duke@435 564 extern BasicType type2field[T_CONFLICT+1];
duke@435 565 extern BasicType type2wfield[T_CONFLICT+1];
duke@435 566
duke@435 567
duke@435 568 // size in bytes
duke@435 569 enum ArrayElementSize {
duke@435 570 T_BOOLEAN_aelem_bytes = 1,
duke@435 571 T_CHAR_aelem_bytes = 2,
duke@435 572 T_FLOAT_aelem_bytes = 4,
duke@435 573 T_DOUBLE_aelem_bytes = 8,
duke@435 574 T_BYTE_aelem_bytes = 1,
duke@435 575 T_SHORT_aelem_bytes = 2,
duke@435 576 T_INT_aelem_bytes = 4,
duke@435 577 T_LONG_aelem_bytes = 8,
duke@435 578 #ifdef _LP64
duke@435 579 T_OBJECT_aelem_bytes = 8,
duke@435 580 T_ARRAY_aelem_bytes = 8,
duke@435 581 #else
duke@435 582 T_OBJECT_aelem_bytes = 4,
duke@435 583 T_ARRAY_aelem_bytes = 4,
duke@435 584 #endif
coleenp@548 585 T_NARROWOOP_aelem_bytes = 4,
duke@435 586 T_VOID_aelem_bytes = 0
duke@435 587 };
duke@435 588
kvn@464 589 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
kvn@464 590 #ifdef ASSERT
kvn@464 591 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
kvn@464 592 #else
never@2118 593 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
kvn@464 594 #endif
duke@435 595
duke@435 596
duke@435 597 // JavaValue serves as a container for arbitrary Java values.
duke@435 598
duke@435 599 class JavaValue {
duke@435 600
duke@435 601 public:
duke@435 602 typedef union JavaCallValue {
duke@435 603 jfloat f;
duke@435 604 jdouble d;
duke@435 605 jint i;
duke@435 606 jlong l;
duke@435 607 jobject h;
duke@435 608 } JavaCallValue;
duke@435 609
duke@435 610 private:
duke@435 611 BasicType _type;
duke@435 612 JavaCallValue _value;
duke@435 613
duke@435 614 public:
duke@435 615 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
duke@435 616
duke@435 617 JavaValue(jfloat value) {
duke@435 618 _type = T_FLOAT;
duke@435 619 _value.f = value;
duke@435 620 }
duke@435 621
duke@435 622 JavaValue(jdouble value) {
duke@435 623 _type = T_DOUBLE;
duke@435 624 _value.d = value;
duke@435 625 }
duke@435 626
duke@435 627 jfloat get_jfloat() const { return _value.f; }
duke@435 628 jdouble get_jdouble() const { return _value.d; }
duke@435 629 jint get_jint() const { return _value.i; }
duke@435 630 jlong get_jlong() const { return _value.l; }
duke@435 631 jobject get_jobject() const { return _value.h; }
duke@435 632 JavaCallValue* get_value_addr() { return &_value; }
duke@435 633 BasicType get_type() const { return _type; }
duke@435 634
duke@435 635 void set_jfloat(jfloat f) { _value.f = f;}
duke@435 636 void set_jdouble(jdouble d) { _value.d = d;}
duke@435 637 void set_jint(jint i) { _value.i = i;}
duke@435 638 void set_jlong(jlong l) { _value.l = l;}
duke@435 639 void set_jobject(jobject h) { _value.h = h;}
duke@435 640 void set_type(BasicType t) { _type = t; }
duke@435 641
duke@435 642 jboolean get_jboolean() const { return (jboolean) (_value.i);}
duke@435 643 jbyte get_jbyte() const { return (jbyte) (_value.i);}
duke@435 644 jchar get_jchar() const { return (jchar) (_value.i);}
duke@435 645 jshort get_jshort() const { return (jshort) (_value.i);}
duke@435 646
duke@435 647 };
duke@435 648
duke@435 649
duke@435 650 #define STACK_BIAS 0
duke@435 651 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
duke@435 652 // in order to extend the reach of the stack pointer.
duke@435 653 #if defined(SPARC) && defined(_LP64)
duke@435 654 #undef STACK_BIAS
duke@435 655 #define STACK_BIAS 0x7ff
duke@435 656 #endif
duke@435 657
duke@435 658
duke@435 659 // TosState describes the top-of-stack state before and after the execution of
duke@435 660 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
duke@435 661 // registers. The TosState corresponds to the 'machine represention' of this cached
duke@435 662 // value. There's 4 states corresponding to the JAVA types int, long, float & double
duke@435 663 // as well as a 5th state in case the top-of-stack value is actually on the top
duke@435 664 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
duke@435 665 // state when it comes to machine representation but is used separately for (oop)
duke@435 666 // type specific operations (e.g. verification code).
duke@435 667
duke@435 668 enum TosState { // describes the tos cache contents
duke@435 669 btos = 0, // byte, bool tos cached
jrose@1161 670 ctos = 1, // char tos cached
jrose@1161 671 stos = 2, // short tos cached
duke@435 672 itos = 3, // int tos cached
duke@435 673 ltos = 4, // long tos cached
duke@435 674 ftos = 5, // float tos cached
duke@435 675 dtos = 6, // double tos cached
duke@435 676 atos = 7, // object cached
duke@435 677 vtos = 8, // tos not cached
duke@435 678 number_of_states,
duke@435 679 ilgl // illegal state: should not occur
duke@435 680 };
duke@435 681
duke@435 682
duke@435 683 inline TosState as_TosState(BasicType type) {
duke@435 684 switch (type) {
duke@435 685 case T_BYTE : return btos;
jrose@1161 686 case T_BOOLEAN: return btos; // FIXME: Add ztos
duke@435 687 case T_CHAR : return ctos;
duke@435 688 case T_SHORT : return stos;
duke@435 689 case T_INT : return itos;
duke@435 690 case T_LONG : return ltos;
duke@435 691 case T_FLOAT : return ftos;
duke@435 692 case T_DOUBLE : return dtos;
duke@435 693 case T_VOID : return vtos;
duke@435 694 case T_ARRAY : // fall through
duke@435 695 case T_OBJECT : return atos;
duke@435 696 }
duke@435 697 return ilgl;
duke@435 698 }
duke@435 699
jrose@1161 700 inline BasicType as_BasicType(TosState state) {
jrose@1161 701 switch (state) {
jrose@1161 702 //case ztos: return T_BOOLEAN;//FIXME
jrose@1161 703 case btos : return T_BYTE;
jrose@1161 704 case ctos : return T_CHAR;
jrose@1161 705 case stos : return T_SHORT;
jrose@1161 706 case itos : return T_INT;
jrose@1161 707 case ltos : return T_LONG;
jrose@1161 708 case ftos : return T_FLOAT;
jrose@1161 709 case dtos : return T_DOUBLE;
jrose@1161 710 case atos : return T_OBJECT;
jrose@1161 711 case vtos : return T_VOID;
jrose@1161 712 }
jrose@1161 713 return T_ILLEGAL;
jrose@1161 714 }
jrose@1161 715
duke@435 716
duke@435 717 // Helper function to convert BasicType info into TosState
duke@435 718 // Note: Cannot define here as it uses global constant at the time being.
duke@435 719 TosState as_TosState(BasicType type);
duke@435 720
duke@435 721
duke@435 722 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
duke@435 723
duke@435 724 enum ReferenceType {
duke@435 725 REF_NONE, // Regular class
duke@435 726 REF_OTHER, // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
duke@435 727 REF_SOFT, // Subclass of java/lang/ref/SoftReference
duke@435 728 REF_WEAK, // Subclass of java/lang/ref/WeakReference
duke@435 729 REF_FINAL, // Subclass of java/lang/ref/FinalReference
duke@435 730 REF_PHANTOM // Subclass of java/lang/ref/PhantomReference
duke@435 731 };
duke@435 732
duke@435 733
duke@435 734 // JavaThreadState keeps track of which part of the code a thread is executing in. This
duke@435 735 // information is needed by the safepoint code.
duke@435 736 //
duke@435 737 // There are 4 essential states:
duke@435 738 //
duke@435 739 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
duke@435 740 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
duke@435 741 // _thread_in_vm : Executing in the vm
duke@435 742 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
duke@435 743 //
duke@435 744 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
duke@435 745 // a transition from one state to another. These extra states makes it possible for the safepoint code to
duke@435 746 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
duke@435 747 //
duke@435 748 // Given a state, the xxx_trans state can always be found by adding 1.
duke@435 749 //
duke@435 750 enum JavaThreadState {
duke@435 751 _thread_uninitialized = 0, // should never happen (missing initialization)
duke@435 752 _thread_new = 2, // just starting up, i.e., in process of being initialized
duke@435 753 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
duke@435 754 _thread_in_native = 4, // running in native code
duke@435 755 _thread_in_native_trans = 5, // corresponding transition state
duke@435 756 _thread_in_vm = 6, // running in VM
duke@435 757 _thread_in_vm_trans = 7, // corresponding transition state
duke@435 758 _thread_in_Java = 8, // running in Java or in stub code
duke@435 759 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
duke@435 760 _thread_blocked = 10, // blocked in vm
duke@435 761 _thread_blocked_trans = 11, // corresponding transition state
duke@435 762 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
duke@435 763 };
duke@435 764
duke@435 765
duke@435 766 // Handy constants for deciding which compiler mode to use.
duke@435 767 enum MethodCompilation {
duke@435 768 InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation
duke@435 769 InvalidOSREntryBci = -2
duke@435 770 };
duke@435 771
duke@435 772 // Enumeration to distinguish tiers of compilation
duke@435 773 enum CompLevel {
iveresov@2138 774 CompLevel_any = -1,
iveresov@2138 775 CompLevel_all = -1,
iveresov@2138 776 CompLevel_none = 0, // Interpreter
iveresov@2138 777 CompLevel_simple = 1, // C1
iveresov@2138 778 CompLevel_limited_profile = 2, // C1, invocation & backedge counters
iveresov@2138 779 CompLevel_full_profile = 3, // C1, invocation & backedge counters + mdo
twisti@2729 780 CompLevel_full_optimization = 4, // C2 or Shark
duke@435 781
twisti@2729 782 #if defined(COMPILER2) || defined(SHARK)
iveresov@2138 783 CompLevel_highest_tier = CompLevel_full_optimization, // pure C2 and tiered
iveresov@2138 784 #elif defined(COMPILER1)
iveresov@2138 785 CompLevel_highest_tier = CompLevel_simple, // pure C1
duke@435 786 #else
iveresov@2138 787 CompLevel_highest_tier = CompLevel_none,
iveresov@2138 788 #endif
iveresov@2138 789
iveresov@2138 790 #if defined(TIERED)
iveresov@2138 791 CompLevel_initial_compile = CompLevel_full_profile // tiered
iveresov@2138 792 #elif defined(COMPILER1)
iveresov@2138 793 CompLevel_initial_compile = CompLevel_simple // pure C1
twisti@2729 794 #elif defined(COMPILER2) || defined(SHARK)
iveresov@2138 795 CompLevel_initial_compile = CompLevel_full_optimization // pure C2
iveresov@2138 796 #else
iveresov@2138 797 CompLevel_initial_compile = CompLevel_none
iveresov@2138 798 #endif
duke@435 799 };
duke@435 800
iveresov@2138 801 inline bool is_c1_compile(int comp_level) {
iveresov@2138 802 return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
duke@435 803 }
iveresov@2138 804
iveresov@2138 805 inline bool is_c2_compile(int comp_level) {
duke@435 806 return comp_level == CompLevel_full_optimization;
duke@435 807 }
iveresov@2138 808
duke@435 809 inline bool is_highest_tier_compile(int comp_level) {
duke@435 810 return comp_level == CompLevel_highest_tier;
duke@435 811 }
duke@435 812
duke@435 813 //----------------------------------------------------------------------------------------------------
duke@435 814 // 'Forward' declarations of frequently used classes
duke@435 815 // (in order to reduce interface dependencies & reduce
duke@435 816 // number of unnecessary compilations after changes)
duke@435 817
duke@435 818 class symbolTable;
duke@435 819 class ClassFileStream;
duke@435 820
duke@435 821 class Event;
duke@435 822
duke@435 823 class Thread;
duke@435 824 class VMThread;
duke@435 825 class JavaThread;
duke@435 826 class Threads;
duke@435 827
duke@435 828 class VM_Operation;
duke@435 829 class VMOperationQueue;
duke@435 830
duke@435 831 class CodeBlob;
duke@435 832 class nmethod;
duke@435 833 class OSRAdapter;
duke@435 834 class I2CAdapter;
duke@435 835 class C2IAdapter;
duke@435 836 class CompiledIC;
duke@435 837 class relocInfo;
duke@435 838 class ScopeDesc;
duke@435 839 class PcDesc;
duke@435 840
duke@435 841 class Recompiler;
duke@435 842 class Recompilee;
duke@435 843 class RecompilationPolicy;
duke@435 844 class RFrame;
duke@435 845 class CompiledRFrame;
duke@435 846 class InterpretedRFrame;
duke@435 847
duke@435 848 class frame;
duke@435 849
duke@435 850 class vframe;
duke@435 851 class javaVFrame;
duke@435 852 class interpretedVFrame;
duke@435 853 class compiledVFrame;
duke@435 854 class deoptimizedVFrame;
duke@435 855 class externalVFrame;
duke@435 856 class entryVFrame;
duke@435 857
duke@435 858 class RegisterMap;
duke@435 859
duke@435 860 class Mutex;
duke@435 861 class Monitor;
duke@435 862 class BasicLock;
duke@435 863 class BasicObjectLock;
duke@435 864
duke@435 865 class PeriodicTask;
duke@435 866
duke@435 867 class JavaCallWrapper;
duke@435 868
duke@435 869 class oopDesc;
coleenp@4037 870 class metaDataOopDesc;
duke@435 871
duke@435 872 class NativeCall;
duke@435 873
duke@435 874 class zone;
duke@435 875
duke@435 876 class StubQueue;
duke@435 877
duke@435 878 class outputStream;
duke@435 879
duke@435 880 class ResourceArea;
duke@435 881
duke@435 882 class DebugInformationRecorder;
duke@435 883 class ScopeValue;
duke@435 884 class CompressedStream;
duke@435 885 class DebugInfoReadStream;
duke@435 886 class DebugInfoWriteStream;
duke@435 887 class LocationValue;
duke@435 888 class ConstantValue;
duke@435 889 class IllegalValue;
duke@435 890
duke@435 891 class PrivilegedElement;
duke@435 892 class MonitorArray;
duke@435 893
duke@435 894 class MonitorInfo;
duke@435 895
duke@435 896 class OffsetClosure;
duke@435 897 class OopMapCache;
duke@435 898 class InterpreterOopMap;
duke@435 899 class OopMapCacheEntry;
duke@435 900 class OSThread;
duke@435 901
duke@435 902 typedef int (*OSThreadStartFunc)(void*);
duke@435 903
duke@435 904 class Space;
duke@435 905
duke@435 906 class JavaValue;
duke@435 907 class methodHandle;
duke@435 908 class JavaCallArguments;
duke@435 909
duke@435 910 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
duke@435 911
duke@435 912 extern void basic_fatal(const char* msg);
duke@435 913
duke@435 914
duke@435 915 //----------------------------------------------------------------------------------------------------
duke@435 916 // Special constants for debugging
duke@435 917
duke@435 918 const jint badInt = -3; // generic "bad int" value
duke@435 919 const long badAddressVal = -2; // generic "bad address" value
duke@435 920 const long badOopVal = -1; // generic "bad oop" value
duke@435 921 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
duke@435 922 const int badHandleValue = 0xBC; // value used to zap vm handle area
duke@435 923 const int badResourceValue = 0xAB; // value used to zap resource area
duke@435 924 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
duke@435 925 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
duke@435 926 const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
duke@435 927 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
coleenp@4037 928 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC
duke@435 929 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
duke@435 930 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
duke@435 931
duke@435 932
duke@435 933 // (These must be implemented as #defines because C++ compilers are
duke@435 934 // not obligated to inline non-integral constants!)
duke@435 935 #define badAddress ((address)::badAddressVal)
duke@435 936 #define badOop ((oop)::badOopVal)
duke@435 937 #define badHeapWord (::badHeapWordVal)
duke@435 938 #define badJNIHandle ((oop)::badJNIHandleVal)
duke@435 939
jcoomes@1746 940 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
jcoomes@1746 941 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
duke@435 942
duke@435 943 //----------------------------------------------------------------------------------------------------
duke@435 944 // Utility functions for bitfield manipulations
duke@435 945
duke@435 946 const intptr_t AllBits = ~0; // all bits set in a word
duke@435 947 const intptr_t NoBits = 0; // no bits set in a word
duke@435 948 const jlong NoLongBits = 0; // no bits set in a long
duke@435 949 const intptr_t OneBit = 1; // only right_most bit set in a word
duke@435 950
duke@435 951 // get a word with the n.th or the right-most or left-most n bits set
duke@435 952 // (note: #define used only so that they can be used in enum constant definitions)
duke@435 953 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n))
duke@435 954 #define right_n_bits(n) (nth_bit(n) - 1)
duke@435 955 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
duke@435 956
duke@435 957 // bit-operations using a mask m
duke@435 958 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
duke@435 959 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
duke@435 960 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
duke@435 961 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
duke@435 962 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
duke@435 963
duke@435 964 // bit-operations using the n.th bit
duke@435 965 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
duke@435 966 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
duke@435 967 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
duke@435 968
duke@435 969 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
duke@435 970 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
duke@435 971 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
duke@435 972 }
duke@435 973
duke@435 974
duke@435 975 //----------------------------------------------------------------------------------------------------
duke@435 976 // Utility functions for integers
duke@435 977
duke@435 978 // Avoid use of global min/max macros which may cause unwanted double
duke@435 979 // evaluation of arguments.
duke@435 980 #ifdef max
duke@435 981 #undef max
duke@435 982 #endif
duke@435 983
duke@435 984 #ifdef min
duke@435 985 #undef min
duke@435 986 #endif
duke@435 987
duke@435 988 #define max(a,b) Do_not_use_max_use_MAX2_instead
duke@435 989 #define min(a,b) Do_not_use_min_use_MIN2_instead
duke@435 990
duke@435 991 // It is necessary to use templates here. Having normal overloaded
duke@435 992 // functions does not work because it is necessary to provide both 32-
duke@435 993 // and 64-bit overloaded functions, which does not work, and having
duke@435 994 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
duke@435 995 // will be even more error-prone than macros.
duke@435 996 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
duke@435 997 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
duke@435 998 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
duke@435 999 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
duke@435 1000 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
duke@435 1001 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
duke@435 1002
duke@435 1003 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
duke@435 1004
duke@435 1005 // true if x is a power of 2, false otherwise
duke@435 1006 inline bool is_power_of_2(intptr_t x) {
duke@435 1007 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
duke@435 1008 }
duke@435 1009
duke@435 1010 // long version of is_power_of_2
duke@435 1011 inline bool is_power_of_2_long(jlong x) {
duke@435 1012 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
duke@435 1013 }
duke@435 1014
duke@435 1015 //* largest i such that 2^i <= x
duke@435 1016 // A negative value of 'x' will return '31'
duke@435 1017 inline int log2_intptr(intptr_t x) {
duke@435 1018 int i = -1;
duke@435 1019 uintptr_t p = 1;
duke@435 1020 while (p != 0 && p <= (uintptr_t)x) {
duke@435 1021 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 1022 i++; p *= 2;
duke@435 1023 }
duke@435 1024 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 1025 // (if p = 0 then overflow occurred and i = 31)
duke@435 1026 return i;
duke@435 1027 }
duke@435 1028
duke@435 1029 //* largest i such that 2^i <= x
duke@435 1030 // A negative value of 'x' will return '63'
duke@435 1031 inline int log2_long(jlong x) {
duke@435 1032 int i = -1;
duke@435 1033 julong p = 1;
duke@435 1034 while (p != 0 && p <= (julong)x) {
duke@435 1035 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
duke@435 1036 i++; p *= 2;
duke@435 1037 }
duke@435 1038 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
twisti@1040 1039 // (if p = 0 then overflow occurred and i = 63)
duke@435 1040 return i;
duke@435 1041 }
duke@435 1042
duke@435 1043 //* the argument must be exactly a power of 2
duke@435 1044 inline int exact_log2(intptr_t x) {
duke@435 1045 #ifdef ASSERT
duke@435 1046 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
duke@435 1047 #endif
duke@435 1048 return log2_intptr(x);
duke@435 1049 }
duke@435 1050
twisti@1003 1051 //* the argument must be exactly a power of 2
twisti@1003 1052 inline int exact_log2_long(jlong x) {
twisti@1003 1053 #ifdef ASSERT
twisti@1003 1054 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
twisti@1003 1055 #endif
twisti@1003 1056 return log2_long(x);
twisti@1003 1057 }
twisti@1003 1058
duke@435 1059
duke@435 1060 // returns integer round-up to the nearest multiple of s (s must be a power of two)
duke@435 1061 inline intptr_t round_to(intptr_t x, uintx s) {
duke@435 1062 #ifdef ASSERT
duke@435 1063 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 1064 #endif
duke@435 1065 const uintx m = s - 1;
duke@435 1066 return mask_bits(x + m, ~m);
duke@435 1067 }
duke@435 1068
duke@435 1069 // returns integer round-down to the nearest multiple of s (s must be a power of two)
duke@435 1070 inline intptr_t round_down(intptr_t x, uintx s) {
duke@435 1071 #ifdef ASSERT
duke@435 1072 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
duke@435 1073 #endif
duke@435 1074 const uintx m = s - 1;
duke@435 1075 return mask_bits(x, ~m);
duke@435 1076 }
duke@435 1077
duke@435 1078
duke@435 1079 inline bool is_odd (intx x) { return x & 1; }
duke@435 1080 inline bool is_even(intx x) { return !is_odd(x); }
duke@435 1081
duke@435 1082 // "to" should be greater than "from."
duke@435 1083 inline intx byte_size(void* from, void* to) {
duke@435 1084 return (address)to - (address)from;
duke@435 1085 }
duke@435 1086
duke@435 1087 //----------------------------------------------------------------------------------------------------
duke@435 1088 // Avoid non-portable casts with these routines (DEPRECATED)
duke@435 1089
duke@435 1090 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
duke@435 1091 // Bytes is optimized machine-specifically and may be much faster then the portable routines below.
duke@435 1092
duke@435 1093 // Given sequence of four bytes, build into a 32-bit word
duke@435 1094 // following the conventions used in class files.
duke@435 1095 // On the 386, this could be realized with a simple address cast.
duke@435 1096 //
duke@435 1097
duke@435 1098 // This routine takes eight bytes:
duke@435 1099 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@2144 1100 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 ))
twisti@2144 1101 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 ))
twisti@2144 1102 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 ))
twisti@2144 1103 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 ))
twisti@2144 1104 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 ))
twisti@2144 1105 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 ))
twisti@2144 1106 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 ))
twisti@2144 1107 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 ));
duke@435 1108 }
duke@435 1109
duke@435 1110 // This routine takes four bytes:
duke@435 1111 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
twisti@2144 1112 return (( u4(c1) << 24 ) & 0xff000000)
twisti@2144 1113 | (( u4(c2) << 16 ) & 0x00ff0000)
twisti@2144 1114 | (( u4(c3) << 8 ) & 0x0000ff00)
twisti@2144 1115 | (( u4(c4) << 0 ) & 0x000000ff);
duke@435 1116 }
duke@435 1117
duke@435 1118 // And this one works if the four bytes are contiguous in memory:
duke@435 1119 inline u4 build_u4_from( u1* p ) {
duke@435 1120 return build_u4_from( p[0], p[1], p[2], p[3] );
duke@435 1121 }
duke@435 1122
duke@435 1123 // Ditto for two-byte ints:
duke@435 1124 inline u2 build_u2_from( u1 c1, u1 c2 ) {
twisti@2144 1125 return u2((( u2(c1) << 8 ) & 0xff00)
twisti@2144 1126 | (( u2(c2) << 0 ) & 0x00ff));
duke@435 1127 }
duke@435 1128
duke@435 1129 // And this one works if the two bytes are contiguous in memory:
duke@435 1130 inline u2 build_u2_from( u1* p ) {
duke@435 1131 return build_u2_from( p[0], p[1] );
duke@435 1132 }
duke@435 1133
duke@435 1134 // Ditto for floats:
duke@435 1135 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
duke@435 1136 u4 u = build_u4_from( c1, c2, c3, c4 );
duke@435 1137 return *(jfloat*)&u;
duke@435 1138 }
duke@435 1139
duke@435 1140 inline jfloat build_float_from( u1* p ) {
duke@435 1141 u4 u = build_u4_from( p );
duke@435 1142 return *(jfloat*)&u;
duke@435 1143 }
duke@435 1144
duke@435 1145
duke@435 1146 // now (64-bit) longs
duke@435 1147
duke@435 1148 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
twisti@2144 1149 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 ))
twisti@2144 1150 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 ))
twisti@2144 1151 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 ))
twisti@2144 1152 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 ))
twisti@2144 1153 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 ))
twisti@2144 1154 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 ))
twisti@2144 1155 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 ))
twisti@2144 1156 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 ));
duke@435 1157 }
duke@435 1158
duke@435 1159 inline jlong build_long_from( u1* p ) {
duke@435 1160 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
duke@435 1161 }
duke@435 1162
duke@435 1163
duke@435 1164 // Doubles, too!
duke@435 1165 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
duke@435 1166 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
duke@435 1167 return *(jdouble*)&u;
duke@435 1168 }
duke@435 1169
duke@435 1170 inline jdouble build_double_from( u1* p ) {
duke@435 1171 jlong u = build_long_from( p );
duke@435 1172 return *(jdouble*)&u;
duke@435 1173 }
duke@435 1174
duke@435 1175
duke@435 1176 // Portable routines to go the other way:
duke@435 1177
duke@435 1178 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
duke@435 1179 c1 = u1(x >> 8);
duke@435 1180 c2 = u1(x);
duke@435 1181 }
duke@435 1182
duke@435 1183 inline void explode_short_to( u2 x, u1* p ) {
duke@435 1184 explode_short_to( x, p[0], p[1]);
duke@435 1185 }
duke@435 1186
duke@435 1187 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
duke@435 1188 c1 = u1(x >> 24);
duke@435 1189 c2 = u1(x >> 16);
duke@435 1190 c3 = u1(x >> 8);
duke@435 1191 c4 = u1(x);
duke@435 1192 }
duke@435 1193
duke@435 1194 inline void explode_int_to( u4 x, u1* p ) {
duke@435 1195 explode_int_to( x, p[0], p[1], p[2], p[3]);
duke@435 1196 }
duke@435 1197
duke@435 1198
duke@435 1199 // Pack and extract shorts to/from ints:
duke@435 1200
duke@435 1201 inline int extract_low_short_from_int(jint x) {
duke@435 1202 return x & 0xffff;
duke@435 1203 }
duke@435 1204
duke@435 1205 inline int extract_high_short_from_int(jint x) {
duke@435 1206 return (x >> 16) & 0xffff;
duke@435 1207 }
duke@435 1208
duke@435 1209 inline int build_int_from_shorts( jushort low, jushort high ) {
duke@435 1210 return ((int)((unsigned int)high << 16) | (unsigned int)low);
duke@435 1211 }
duke@435 1212
duke@435 1213 // Printf-style formatters for fixed- and variable-width types as pointers and
never@3156 1214 // integers. These are derived from the definitions in inttypes.h. If the platform
never@3156 1215 // doesn't provide appropriate definitions, they should be provided in
never@3156 1216 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
duke@435 1217
tonyp@2643 1218 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
tonyp@2472 1219
duke@435 1220 // Format 32-bit quantities.
never@3156 1221 #define INT32_FORMAT "%" PRId32
never@3156 1222 #define UINT32_FORMAT "%" PRIu32
never@3156 1223 #define INT32_FORMAT_W(width) "%" #width PRId32
never@3156 1224 #define UINT32_FORMAT_W(width) "%" #width PRIu32
duke@435 1225
never@3156 1226 #define PTR32_FORMAT "0x%08" PRIx32
duke@435 1227
duke@435 1228 // Format 64-bit quantities.
never@3156 1229 #define INT64_FORMAT "%" PRId64
never@3156 1230 #define UINT64_FORMAT "%" PRIu64
never@3156 1231 #define INT64_FORMAT_W(width) "%" #width PRId64
never@3156 1232 #define UINT64_FORMAT_W(width) "%" #width PRIu64
duke@435 1233
never@3156 1234 #define PTR64_FORMAT "0x%016" PRIx64
duke@435 1235
never@3156 1236 // Format pointers which change size between 32- and 64-bit.
duke@435 1237 #ifdef _LP64
never@3156 1238 #define INTPTR_FORMAT "0x%016" PRIxPTR
never@3156 1239 #define PTR_FORMAT "0x%016" PRIxPTR
duke@435 1240 #else // !_LP64
never@3156 1241 #define INTPTR_FORMAT "0x%08" PRIxPTR
never@3156 1242 #define PTR_FORMAT "0x%08" PRIxPTR
duke@435 1243 #endif // _LP64
duke@435 1244
never@3156 1245 #define SSIZE_FORMAT "%" PRIdPTR
never@3156 1246 #define SIZE_FORMAT "%" PRIuPTR
never@3156 1247 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
never@3156 1248 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR
never@3156 1249
never@3156 1250 #define INTX_FORMAT "%" PRIdPTR
never@3156 1251 #define UINTX_FORMAT "%" PRIuPTR
never@3156 1252 #define INTX_FORMAT_W(width) "%" #width PRIdPTR
never@3156 1253 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
never@3156 1254
duke@435 1255
duke@435 1256 // Enable zap-a-lot if in debug version.
duke@435 1257
duke@435 1258 # ifdef ASSERT
duke@435 1259 # ifdef COMPILER2
duke@435 1260 # define ENABLE_ZAP_DEAD_LOCALS
duke@435 1261 #endif /* COMPILER2 */
duke@435 1262 # endif /* ASSERT */
duke@435 1263
duke@435 1264 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
stefank@2314 1265
stefank@2314 1266 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial