src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Tue, 12 Oct 2010 23:51:20 -0700

author
iveresov
date
Tue, 12 Oct 2010 23:51:20 -0700
changeset 2203
c393f046f4c5
parent 2187
22e4420d19f7
child 2314
f95d63e2154a
permissions
-rw-r--r--

6991512: G1 barriers fail with 64bit C1
Summary: Fix compare-and-swap intrinsic problem with G1 post-barriers and issue with branch ranges in G1 stubs on sparc
Reviewed-by: never, kvn

duke@435 1 /*
trims@1907 2 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
duke@435 27
duke@435 28
duke@435 29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
duke@435 30 // instructions, to allow sign-masking or sign-bit flipping. They allow
duke@435 31 // fast versions of NegF/NegD and AbsF/AbsD.
duke@435 32
duke@435 33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
duke@435 34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
duke@435 35 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
duke@435 36 // of 128-bits operands for SSE instructions.
duke@435 37 jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
duke@435 38 // Store the value to a 128-bits operand.
duke@435 39 operand[0] = lo;
duke@435 40 operand[1] = hi;
duke@435 41 return operand;
duke@435 42 }
duke@435 43
duke@435 44 // Buffer for 128-bits masks used by SSE instructions.
duke@435 45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
duke@435 46
duke@435 47 // Static initialization during VM startup.
duke@435 48 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
duke@435 49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
duke@435 50 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
duke@435 51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
duke@435 52
duke@435 53
duke@435 54
duke@435 55 NEEDS_CLEANUP // remove this definitions ?
duke@435 56 const Register IC_Klass = rax; // where the IC klass is cached
duke@435 57 const Register SYNC_header = rax; // synchronization header
duke@435 58 const Register SHIFT_count = rcx; // where count for shift operations must be
duke@435 59
duke@435 60 #define __ _masm->
duke@435 61
duke@435 62
duke@435 63 static void select_different_registers(Register preserve,
duke@435 64 Register extra,
duke@435 65 Register &tmp1,
duke@435 66 Register &tmp2) {
duke@435 67 if (tmp1 == preserve) {
duke@435 68 assert_different_registers(tmp1, tmp2, extra);
duke@435 69 tmp1 = extra;
duke@435 70 } else if (tmp2 == preserve) {
duke@435 71 assert_different_registers(tmp1, tmp2, extra);
duke@435 72 tmp2 = extra;
duke@435 73 }
duke@435 74 assert_different_registers(preserve, tmp1, tmp2);
duke@435 75 }
duke@435 76
duke@435 77
duke@435 78
duke@435 79 static void select_different_registers(Register preserve,
duke@435 80 Register extra,
duke@435 81 Register &tmp1,
duke@435 82 Register &tmp2,
duke@435 83 Register &tmp3) {
duke@435 84 if (tmp1 == preserve) {
duke@435 85 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 86 tmp1 = extra;
duke@435 87 } else if (tmp2 == preserve) {
duke@435 88 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 89 tmp2 = extra;
duke@435 90 } else if (tmp3 == preserve) {
duke@435 91 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 92 tmp3 = extra;
duke@435 93 }
duke@435 94 assert_different_registers(preserve, tmp1, tmp2, tmp3);
duke@435 95 }
duke@435 96
duke@435 97
duke@435 98
duke@435 99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 100 if (opr->is_constant()) {
duke@435 101 LIR_Const* constant = opr->as_constant_ptr();
duke@435 102 switch (constant->type()) {
duke@435 103 case T_INT: {
duke@435 104 return true;
duke@435 105 }
duke@435 106
duke@435 107 default:
duke@435 108 return false;
duke@435 109 }
duke@435 110 }
duke@435 111 return false;
duke@435 112 }
duke@435 113
duke@435 114
duke@435 115 LIR_Opr LIR_Assembler::receiverOpr() {
never@739 116 return FrameMap::receiver_opr;
duke@435 117 }
duke@435 118
duke@435 119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
duke@435 120 return receiverOpr();
duke@435 121 }
duke@435 122
duke@435 123 LIR_Opr LIR_Assembler::osrBufferPointer() {
never@739 124 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
duke@435 125 }
duke@435 126
duke@435 127 //--------------fpu register translations-----------------------
duke@435 128
duke@435 129
duke@435 130 address LIR_Assembler::float_constant(float f) {
duke@435 131 address const_addr = __ float_constant(f);
duke@435 132 if (const_addr == NULL) {
duke@435 133 bailout("const section overflow");
duke@435 134 return __ code()->consts()->start();
duke@435 135 } else {
duke@435 136 return const_addr;
duke@435 137 }
duke@435 138 }
duke@435 139
duke@435 140
duke@435 141 address LIR_Assembler::double_constant(double d) {
duke@435 142 address const_addr = __ double_constant(d);
duke@435 143 if (const_addr == NULL) {
duke@435 144 bailout("const section overflow");
duke@435 145 return __ code()->consts()->start();
duke@435 146 } else {
duke@435 147 return const_addr;
duke@435 148 }
duke@435 149 }
duke@435 150
duke@435 151
duke@435 152 void LIR_Assembler::set_24bit_FPU() {
duke@435 153 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
duke@435 154 }
duke@435 155
duke@435 156 void LIR_Assembler::reset_FPU() {
duke@435 157 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 158 }
duke@435 159
duke@435 160 void LIR_Assembler::fpop() {
duke@435 161 __ fpop();
duke@435 162 }
duke@435 163
duke@435 164 void LIR_Assembler::fxch(int i) {
duke@435 165 __ fxch(i);
duke@435 166 }
duke@435 167
duke@435 168 void LIR_Assembler::fld(int i) {
duke@435 169 __ fld_s(i);
duke@435 170 }
duke@435 171
duke@435 172 void LIR_Assembler::ffree(int i) {
duke@435 173 __ ffree(i);
duke@435 174 }
duke@435 175
duke@435 176 void LIR_Assembler::breakpoint() {
duke@435 177 __ int3();
duke@435 178 }
duke@435 179
duke@435 180 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 181 if (opr->is_single_cpu()) {
duke@435 182 __ push_reg(opr->as_register());
duke@435 183 } else if (opr->is_double_cpu()) {
never@739 184 NOT_LP64(__ push_reg(opr->as_register_hi()));
duke@435 185 __ push_reg(opr->as_register_lo());
duke@435 186 } else if (opr->is_stack()) {
duke@435 187 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
duke@435 188 } else if (opr->is_constant()) {
duke@435 189 LIR_Const* const_opr = opr->as_constant_ptr();
duke@435 190 if (const_opr->type() == T_OBJECT) {
duke@435 191 __ push_oop(const_opr->as_jobject());
duke@435 192 } else if (const_opr->type() == T_INT) {
duke@435 193 __ push_jint(const_opr->as_jint());
duke@435 194 } else {
duke@435 195 ShouldNotReachHere();
duke@435 196 }
duke@435 197
duke@435 198 } else {
duke@435 199 ShouldNotReachHere();
duke@435 200 }
duke@435 201 }
duke@435 202
duke@435 203 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 204 if (opr->is_single_cpu()) {
never@739 205 __ pop_reg(opr->as_register());
duke@435 206 } else {
duke@435 207 ShouldNotReachHere();
duke@435 208 }
duke@435 209 }
duke@435 210
never@739 211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
never@739 212 return addr->base()->is_illegal() && addr->index()->is_illegal();
never@739 213 }
never@739 214
duke@435 215 //-------------------------------------------
never@739 216
duke@435 217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
never@739 218 return as_Address(addr, rscratch1);
never@739 219 }
never@739 220
never@739 221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
duke@435 222 if (addr->base()->is_illegal()) {
duke@435 223 assert(addr->index()->is_illegal(), "must be illegal too");
never@739 224 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
never@739 225 if (! __ reachable(laddr)) {
never@739 226 __ movptr(tmp, laddr.addr());
never@739 227 Address res(tmp, 0);
never@739 228 return res;
never@739 229 } else {
never@739 230 return __ as_Address(laddr);
never@739 231 }
duke@435 232 }
duke@435 233
never@739 234 Register base = addr->base()->as_pointer_register();
duke@435 235
duke@435 236 if (addr->index()->is_illegal()) {
duke@435 237 return Address( base, addr->disp());
never@739 238 } else if (addr->index()->is_cpu_register()) {
never@739 239 Register index = addr->index()->as_pointer_register();
duke@435 240 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
duke@435 241 } else if (addr->index()->is_constant()) {
never@739 242 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
never@739 243 assert(Assembler::is_simm32(addr_offset), "must be");
duke@435 244
duke@435 245 return Address(base, addr_offset);
duke@435 246 } else {
duke@435 247 Unimplemented();
duke@435 248 return Address();
duke@435 249 }
duke@435 250 }
duke@435 251
duke@435 252
duke@435 253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 254 Address base = as_Address(addr);
duke@435 255 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
duke@435 256 }
duke@435 257
duke@435 258
duke@435 259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 260 return as_Address(addr);
duke@435 261 }
duke@435 262
duke@435 263
duke@435 264 void LIR_Assembler::osr_entry() {
duke@435 265 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 266 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 267 ValueStack* entry_state = osr_entry->state();
duke@435 268 int number_of_locks = entry_state->locks_size();
duke@435 269
duke@435 270 // we jump here if osr happens with the interpreter
duke@435 271 // state set up to continue at the beginning of the
duke@435 272 // loop that triggered osr - in particular, we have
duke@435 273 // the following registers setup:
duke@435 274 //
duke@435 275 // rcx: osr buffer
duke@435 276 //
duke@435 277
duke@435 278 // build frame
duke@435 279 ciMethod* m = compilation()->method();
duke@435 280 __ build_frame(initial_frame_size_in_bytes());
duke@435 281
duke@435 282 // OSR buffer is
duke@435 283 //
duke@435 284 // locals[nlocals-1..0]
duke@435 285 // monitors[0..number_of_locks]
duke@435 286 //
duke@435 287 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 288 // so first slot in the local array is the last local from the interpreter
duke@435 289 // and last slot is local[0] (receiver) from the interpreter
duke@435 290 //
duke@435 291 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 292 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 293 // in the interpreter frame (the method lock if a sync method)
duke@435 294
duke@435 295 // Initialize monitors in the compiled activation.
duke@435 296 // rcx: pointer to osr buffer
duke@435 297 //
duke@435 298 // All other registers are dead at this point and the locals will be
duke@435 299 // copied into place by code emitted in the IR.
duke@435 300
never@739 301 Register OSR_buf = osrBufferPointer()->as_pointer_register();
duke@435 302 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 303 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 304 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 305 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 306 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 307 // the oop.
duke@435 308 for (int i = 0; i < number_of_locks; i++) {
roland@1495 309 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 310 #ifdef ASSERT
duke@435 311 // verify the interpreter's monitor has a non-null object
duke@435 312 {
duke@435 313 Label L;
roland@1495 314 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
duke@435 315 __ jcc(Assembler::notZero, L);
duke@435 316 __ stop("locked object is NULL");
duke@435 317 __ bind(L);
duke@435 318 }
duke@435 319 #endif
roland@1495 320 __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
never@739 321 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
roland@1495 322 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
never@739 323 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
duke@435 324 }
duke@435 325 }
duke@435 326 }
duke@435 327
duke@435 328
duke@435 329 // inline cache check; done before the frame is built.
duke@435 330 int LIR_Assembler::check_icache() {
duke@435 331 Register receiver = FrameMap::receiver_opr->as_register();
duke@435 332 Register ic_klass = IC_Klass;
never@739 333 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
duke@435 334
duke@435 335 if (!VerifyOops) {
duke@435 336 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
never@739 337 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
duke@435 338 __ nop();
duke@435 339 }
duke@435 340 }
duke@435 341 int offset = __ offset();
duke@435 342 __ inline_cache_check(receiver, IC_Klass);
duke@435 343 assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
duke@435 344 if (VerifyOops) {
duke@435 345 // force alignment after the cache check.
duke@435 346 // It's been verified to be aligned if !VerifyOops
duke@435 347 __ align(CodeEntryAlignment);
duke@435 348 }
duke@435 349 return offset;
duke@435 350 }
duke@435 351
duke@435 352
duke@435 353 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
duke@435 354 jobject o = NULL;
duke@435 355 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
duke@435 356 __ movoop(reg, o);
duke@435 357 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 358 }
duke@435 359
duke@435 360
duke@435 361 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
duke@435 362 if (exception->is_valid()) {
duke@435 363 // preserve exception
duke@435 364 // note: the monitor_exit runtime call is a leaf routine
duke@435 365 // and cannot block => no GC can happen
duke@435 366 // The slow case (MonitorAccessStub) uses the first two stack slots
duke@435 367 // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
never@739 368 __ movptr (Address(rsp, 2*wordSize), exception);
duke@435 369 }
duke@435 370
duke@435 371 Register obj_reg = obj_opr->as_register();
duke@435 372 Register lock_reg = lock_opr->as_register();
duke@435 373
duke@435 374 // setup registers (lock_reg must be rax, for lock_object)
duke@435 375 assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
duke@435 376 Register hdr = lock_reg;
duke@435 377 assert(new_hdr == SYNC_header, "wrong register");
duke@435 378 lock_reg = new_hdr;
duke@435 379 // compute pointer to BasicLock
duke@435 380 Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
never@739 381 __ lea(lock_reg, lock_addr);
duke@435 382 // unlock object
duke@435 383 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
duke@435 384 // _slow_case_stubs->append(slow_case);
duke@435 385 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 386 _slow_case_stubs->append(slow_case);
duke@435 387 if (UseFastLocking) {
duke@435 388 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 389 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 390 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 391 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 392 } else {
duke@435 393 // always do slow unlocking
duke@435 394 // note: the slow unlocking code could be inlined here, however if we use
duke@435 395 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 396 // simpler and requires less duplicated code - additionally, the
duke@435 397 // slow unlocking code is the same in either case which simplifies
duke@435 398 // debugging
duke@435 399 __ jmp(*slow_case->entry());
duke@435 400 }
duke@435 401 // done
duke@435 402 __ bind(*slow_case->continuation());
duke@435 403
duke@435 404 if (exception->is_valid()) {
duke@435 405 // restore exception
never@739 406 __ movptr (exception, Address(rsp, 2 * wordSize));
duke@435 407 }
duke@435 408 }
duke@435 409
duke@435 410 // This specifies the rsp decrement needed to build the frame
duke@435 411 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 412 // if rounding, must let FrameMap know!
never@739 413
never@739 414 // The frame_map records size in slots (32bit word)
never@739 415
never@739 416 // subtract two words to account for return address and link
never@739 417 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
duke@435 418 }
duke@435 419
duke@435 420
twisti@1639 421 int LIR_Assembler::emit_exception_handler() {
duke@435 422 // if the last instruction is a call (typically to do a throw which
duke@435 423 // is coming at the end after block reordering) the return address
duke@435 424 // must still point into the code area in order to avoid assertion
duke@435 425 // failures when searching for the corresponding bci => add a nop
duke@435 426 // (was bug 5/14/1999 - gri)
duke@435 427 __ nop();
duke@435 428
duke@435 429 // generate code for exception handler
duke@435 430 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 431 if (handler_base == NULL) {
duke@435 432 // not enough space left for the handler
duke@435 433 bailout("exception handler overflow");
twisti@1639 434 return -1;
duke@435 435 }
twisti@1639 436
duke@435 437 int offset = code_offset();
duke@435 438
twisti@1730 439 // the exception oop and pc are in rax, and rdx
duke@435 440 // no other registers need to be preserved, so invalidate them
twisti@1730 441 __ invalidate_registers(false, true, true, false, true, true);
duke@435 442
duke@435 443 // check that there is really an exception
duke@435 444 __ verify_not_null_oop(rax);
duke@435 445
twisti@1730 446 // search an exception handler (rax: exception oop, rdx: throwing pc)
twisti@1730 447 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
twisti@1730 448
twisti@1730 449 __ stop("should not reach here");
twisti@1730 450
duke@435 451 assert(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 452 __ end_a_stub();
twisti@1639 453
twisti@1639 454 return offset;
duke@435 455 }
duke@435 456
twisti@1639 457
never@1813 458 // Emit the code to remove the frame from the stack in the exception
never@1813 459 // unwind path.
never@1813 460 int LIR_Assembler::emit_unwind_handler() {
never@1813 461 #ifndef PRODUCT
never@1813 462 if (CommentedAssembly) {
never@1813 463 _masm->block_comment("Unwind handler");
never@1813 464 }
never@1813 465 #endif
never@1813 466
never@1813 467 int offset = code_offset();
never@1813 468
never@1813 469 // Fetch the exception from TLS and clear out exception related thread state
never@1813 470 __ get_thread(rsi);
never@1813 471 __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
never@1813 472 __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
never@1813 473 __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
never@1813 474
never@1813 475 __ bind(_unwind_handler_entry);
never@1813 476 __ verify_not_null_oop(rax);
never@1813 477 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 478 __ mov(rsi, rax); // Preserve the exception
never@1813 479 }
never@1813 480
never@1813 481 // Preform needed unlocking
never@1813 482 MonitorExitStub* stub = NULL;
never@1813 483 if (method()->is_synchronized()) {
never@1813 484 monitor_address(0, FrameMap::rax_opr);
never@1813 485 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
never@1813 486 __ unlock_object(rdi, rbx, rax, *stub->entry());
never@1813 487 __ bind(*stub->continuation());
never@1813 488 }
never@1813 489
never@1813 490 if (compilation()->env()->dtrace_method_probes()) {
never@2185 491 __ get_thread(rax);
never@2185 492 __ movptr(Address(rsp, 0), rax);
never@2185 493 __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
never@1813 494 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
never@1813 495 }
never@1813 496
never@1813 497 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 498 __ mov(rax, rsi); // Restore the exception
never@1813 499 }
never@1813 500
never@1813 501 // remove the activation and dispatch to the unwind handler
never@1813 502 __ remove_frame(initial_frame_size_in_bytes());
never@1813 503 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
never@1813 504
never@1813 505 // Emit the slow path assembly
never@1813 506 if (stub != NULL) {
never@1813 507 stub->emit_code(this);
never@1813 508 }
never@1813 509
never@1813 510 return offset;
never@1813 511 }
never@1813 512
never@1813 513
twisti@1639 514 int LIR_Assembler::emit_deopt_handler() {
duke@435 515 // if the last instruction is a call (typically to do a throw which
duke@435 516 // is coming at the end after block reordering) the return address
duke@435 517 // must still point into the code area in order to avoid assertion
duke@435 518 // failures when searching for the corresponding bci => add a nop
duke@435 519 // (was bug 5/14/1999 - gri)
duke@435 520 __ nop();
duke@435 521
duke@435 522 // generate code for exception handler
duke@435 523 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 524 if (handler_base == NULL) {
duke@435 525 // not enough space left for the handler
duke@435 526 bailout("deopt handler overflow");
twisti@1639 527 return -1;
duke@435 528 }
twisti@1639 529
duke@435 530 int offset = code_offset();
duke@435 531 InternalAddress here(__ pc());
twisti@1730 532
duke@435 533 __ pushptr(here.addr());
duke@435 534 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
twisti@1730 535
duke@435 536 assert(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 537 __ end_a_stub();
duke@435 538
twisti@1639 539 return offset;
duke@435 540 }
duke@435 541
duke@435 542
duke@435 543 // This is the fast version of java.lang.String.compare; it has not
duke@435 544 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 545 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
never@739 546 __ movptr (rbx, rcx); // receiver is in rcx
never@739 547 __ movptr (rax, arg1->as_register());
duke@435 548
duke@435 549 // Get addresses of first characters from both Strings
never@739 550 __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
never@739 551 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
never@739 552 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 553
duke@435 554
duke@435 555 // rbx, may be NULL
duke@435 556 add_debug_info_for_null_check_here(info);
never@739 557 __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
never@739 558 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
never@739 559 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 560
duke@435 561 // compute minimum length (in rax) and difference of lengths (on top of stack)
duke@435 562 if (VM_Version::supports_cmov()) {
never@739 563 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 564 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 565 __ mov (rcx, rbx);
never@739 566 __ subptr (rbx, rax); // subtract lengths
never@739 567 __ push (rbx); // result
never@739 568 __ cmov (Assembler::lessEqual, rax, rcx);
duke@435 569 } else {
duke@435 570 Label L;
never@739 571 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
never@739 572 __ movl (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
never@739 573 __ mov (rax, rbx);
never@739 574 __ subptr (rbx, rcx);
never@739 575 __ push (rbx);
never@739 576 __ jcc (Assembler::lessEqual, L);
never@739 577 __ mov (rax, rcx);
duke@435 578 __ bind (L);
duke@435 579 }
duke@435 580 // is minimum length 0?
duke@435 581 Label noLoop, haveResult;
never@739 582 __ testptr (rax, rax);
duke@435 583 __ jcc (Assembler::zero, noLoop);
duke@435 584
duke@435 585 // compare first characters
jrose@1057 586 __ load_unsigned_short(rcx, Address(rdi, 0));
jrose@1057 587 __ load_unsigned_short(rbx, Address(rsi, 0));
duke@435 588 __ subl(rcx, rbx);
duke@435 589 __ jcc(Assembler::notZero, haveResult);
duke@435 590 // starting loop
duke@435 591 __ decrement(rax); // we already tested index: skip one
duke@435 592 __ jcc(Assembler::zero, noLoop);
duke@435 593
duke@435 594 // set rsi.edi to the end of the arrays (arrays have same length)
duke@435 595 // negate the index
duke@435 596
never@739 597 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 598 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 599 __ negptr(rax);
duke@435 600
duke@435 601 // compare the strings in a loop
duke@435 602
duke@435 603 Label loop;
duke@435 604 __ align(wordSize);
duke@435 605 __ bind(loop);
jrose@1057 606 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
jrose@1057 607 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
duke@435 608 __ subl(rcx, rbx);
duke@435 609 __ jcc(Assembler::notZero, haveResult);
duke@435 610 __ increment(rax);
duke@435 611 __ jcc(Assembler::notZero, loop);
duke@435 612
duke@435 613 // strings are equal up to min length
duke@435 614
duke@435 615 __ bind(noLoop);
never@739 616 __ pop(rax);
duke@435 617 return_op(LIR_OprFact::illegalOpr);
duke@435 618
duke@435 619 __ bind(haveResult);
duke@435 620 // leave instruction is going to discard the TOS value
never@739 621 __ mov (rax, rcx); // result of call is in rax,
duke@435 622 }
duke@435 623
duke@435 624
duke@435 625 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 626 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
duke@435 627 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
duke@435 628 assert(result->fpu() == 0, "result must already be on TOS");
duke@435 629 }
duke@435 630
duke@435 631 // Pop the stack before the safepoint code
twisti@1730 632 __ remove_frame(initial_frame_size_in_bytes());
duke@435 633
duke@435 634 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
duke@435 635
duke@435 636 // Note: we do not need to round double result; float result has the right precision
duke@435 637 // the poll sets the condition code, but no data registers
duke@435 638 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 639 relocInfo::poll_return_type);
never@739 640
never@739 641 // NOTE: the requires that the polling page be reachable else the reloc
never@739 642 // goes to the movq that loads the address and not the faulting instruction
never@739 643 // which breaks the signal handler code
never@739 644
duke@435 645 __ test32(rax, polling_page);
duke@435 646
duke@435 647 __ ret(0);
duke@435 648 }
duke@435 649
duke@435 650
duke@435 651 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 652 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 653 relocInfo::poll_type);
duke@435 654
duke@435 655 if (info != NULL) {
duke@435 656 add_debug_info_for_branch(info);
duke@435 657 } else {
duke@435 658 ShouldNotReachHere();
duke@435 659 }
duke@435 660
duke@435 661 int offset = __ offset();
never@739 662
never@739 663 // NOTE: the requires that the polling page be reachable else the reloc
never@739 664 // goes to the movq that loads the address and not the faulting instruction
never@739 665 // which breaks the signal handler code
never@739 666
duke@435 667 __ test32(rax, polling_page);
duke@435 668 return offset;
duke@435 669 }
duke@435 670
duke@435 671
duke@435 672 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
never@739 673 if (from_reg != to_reg) __ mov(to_reg, from_reg);
duke@435 674 }
duke@435 675
duke@435 676 void LIR_Assembler::swap_reg(Register a, Register b) {
never@739 677 __ xchgptr(a, b);
duke@435 678 }
duke@435 679
duke@435 680
duke@435 681 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 682 assert(src->is_constant(), "should not call otherwise");
duke@435 683 assert(dest->is_register(), "should not call otherwise");
duke@435 684 LIR_Const* c = src->as_constant_ptr();
duke@435 685
duke@435 686 switch (c->type()) {
roland@1732 687 case T_INT:
roland@1732 688 case T_ADDRESS: {
duke@435 689 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 690 __ movl(dest->as_register(), c->as_jint());
duke@435 691 break;
duke@435 692 }
duke@435 693
duke@435 694 case T_LONG: {
duke@435 695 assert(patch_code == lir_patch_none, "no patching handled here");
never@739 696 #ifdef _LP64
never@739 697 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
never@739 698 #else
never@739 699 __ movptr(dest->as_register_lo(), c->as_jint_lo());
never@739 700 __ movptr(dest->as_register_hi(), c->as_jint_hi());
never@739 701 #endif // _LP64
duke@435 702 break;
duke@435 703 }
duke@435 704
duke@435 705 case T_OBJECT: {
duke@435 706 if (patch_code != lir_patch_none) {
duke@435 707 jobject2reg_with_patching(dest->as_register(), info);
duke@435 708 } else {
duke@435 709 __ movoop(dest->as_register(), c->as_jobject());
duke@435 710 }
duke@435 711 break;
duke@435 712 }
duke@435 713
duke@435 714 case T_FLOAT: {
duke@435 715 if (dest->is_single_xmm()) {
duke@435 716 if (c->is_zero_float()) {
duke@435 717 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
duke@435 718 } else {
duke@435 719 __ movflt(dest->as_xmm_float_reg(),
duke@435 720 InternalAddress(float_constant(c->as_jfloat())));
duke@435 721 }
duke@435 722 } else {
duke@435 723 assert(dest->is_single_fpu(), "must be");
duke@435 724 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 725 if (c->is_zero_float()) {
duke@435 726 __ fldz();
duke@435 727 } else if (c->is_one_float()) {
duke@435 728 __ fld1();
duke@435 729 } else {
duke@435 730 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
duke@435 731 }
duke@435 732 }
duke@435 733 break;
duke@435 734 }
duke@435 735
duke@435 736 case T_DOUBLE: {
duke@435 737 if (dest->is_double_xmm()) {
duke@435 738 if (c->is_zero_double()) {
duke@435 739 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
duke@435 740 } else {
duke@435 741 __ movdbl(dest->as_xmm_double_reg(),
duke@435 742 InternalAddress(double_constant(c->as_jdouble())));
duke@435 743 }
duke@435 744 } else {
duke@435 745 assert(dest->is_double_fpu(), "must be");
duke@435 746 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 747 if (c->is_zero_double()) {
duke@435 748 __ fldz();
duke@435 749 } else if (c->is_one_double()) {
duke@435 750 __ fld1();
duke@435 751 } else {
duke@435 752 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
duke@435 753 }
duke@435 754 }
duke@435 755 break;
duke@435 756 }
duke@435 757
duke@435 758 default:
duke@435 759 ShouldNotReachHere();
duke@435 760 }
duke@435 761 }
duke@435 762
duke@435 763 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 764 assert(src->is_constant(), "should not call otherwise");
duke@435 765 assert(dest->is_stack(), "should not call otherwise");
duke@435 766 LIR_Const* c = src->as_constant_ptr();
duke@435 767
duke@435 768 switch (c->type()) {
duke@435 769 case T_INT: // fall through
duke@435 770 case T_FLOAT:
roland@1732 771 case T_ADDRESS:
duke@435 772 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
duke@435 773 break;
duke@435 774
duke@435 775 case T_OBJECT:
duke@435 776 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
duke@435 777 break;
duke@435 778
duke@435 779 case T_LONG: // fall through
duke@435 780 case T_DOUBLE:
never@739 781 #ifdef _LP64
never@739 782 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 783 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
never@739 784 #else
never@739 785 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 786 lo_word_offset_in_bytes), c->as_jint_lo_bits());
never@739 787 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 788 hi_word_offset_in_bytes), c->as_jint_hi_bits());
never@739 789 #endif // _LP64
duke@435 790 break;
duke@435 791
duke@435 792 default:
duke@435 793 ShouldNotReachHere();
duke@435 794 }
duke@435 795 }
duke@435 796
duke@435 797 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
duke@435 798 assert(src->is_constant(), "should not call otherwise");
duke@435 799 assert(dest->is_address(), "should not call otherwise");
duke@435 800 LIR_Const* c = src->as_constant_ptr();
duke@435 801 LIR_Address* addr = dest->as_address_ptr();
duke@435 802
never@739 803 int null_check_here = code_offset();
duke@435 804 switch (type) {
duke@435 805 case T_INT: // fall through
duke@435 806 case T_FLOAT:
roland@1732 807 case T_ADDRESS:
duke@435 808 __ movl(as_Address(addr), c->as_jint_bits());
duke@435 809 break;
duke@435 810
duke@435 811 case T_OBJECT: // fall through
duke@435 812 case T_ARRAY:
duke@435 813 if (c->as_jobject() == NULL) {
xlu@947 814 __ movptr(as_Address(addr), NULL_WORD);
duke@435 815 } else {
never@739 816 if (is_literal_address(addr)) {
never@739 817 ShouldNotReachHere();
never@739 818 __ movoop(as_Address(addr, noreg), c->as_jobject());
never@739 819 } else {
roland@1495 820 #ifdef _LP64
roland@1495 821 __ movoop(rscratch1, c->as_jobject());
roland@1495 822 null_check_here = code_offset();
roland@1495 823 __ movptr(as_Address_lo(addr), rscratch1);
roland@1495 824 #else
never@739 825 __ movoop(as_Address(addr), c->as_jobject());
roland@1495 826 #endif
never@739 827 }
duke@435 828 }
duke@435 829 break;
duke@435 830
duke@435 831 case T_LONG: // fall through
duke@435 832 case T_DOUBLE:
never@739 833 #ifdef _LP64
never@739 834 if (is_literal_address(addr)) {
never@739 835 ShouldNotReachHere();
never@739 836 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
never@739 837 } else {
never@739 838 __ movptr(r10, (intptr_t)c->as_jlong_bits());
never@739 839 null_check_here = code_offset();
never@739 840 __ movptr(as_Address_lo(addr), r10);
never@739 841 }
never@739 842 #else
never@739 843 // Always reachable in 32bit so this doesn't produce useless move literal
never@739 844 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
never@739 845 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
never@739 846 #endif // _LP64
duke@435 847 break;
duke@435 848
duke@435 849 case T_BOOLEAN: // fall through
duke@435 850 case T_BYTE:
duke@435 851 __ movb(as_Address(addr), c->as_jint() & 0xFF);
duke@435 852 break;
duke@435 853
duke@435 854 case T_CHAR: // fall through
duke@435 855 case T_SHORT:
duke@435 856 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
duke@435 857 break;
duke@435 858
duke@435 859 default:
duke@435 860 ShouldNotReachHere();
duke@435 861 };
never@739 862
never@739 863 if (info != NULL) {
never@739 864 add_debug_info_for_null_check(null_check_here, info);
never@739 865 }
duke@435 866 }
duke@435 867
duke@435 868
duke@435 869 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
duke@435 870 assert(src->is_register(), "should not call otherwise");
duke@435 871 assert(dest->is_register(), "should not call otherwise");
duke@435 872
duke@435 873 // move between cpu-registers
duke@435 874 if (dest->is_single_cpu()) {
never@739 875 #ifdef _LP64
never@739 876 if (src->type() == T_LONG) {
never@739 877 // Can do LONG -> OBJECT
never@739 878 move_regs(src->as_register_lo(), dest->as_register());
never@739 879 return;
never@739 880 }
never@739 881 #endif
duke@435 882 assert(src->is_single_cpu(), "must match");
duke@435 883 if (src->type() == T_OBJECT) {
duke@435 884 __ verify_oop(src->as_register());
duke@435 885 }
duke@435 886 move_regs(src->as_register(), dest->as_register());
duke@435 887
duke@435 888 } else if (dest->is_double_cpu()) {
never@739 889 #ifdef _LP64
never@739 890 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
never@739 891 // Surprising to me but we can see move of a long to t_object
never@739 892 __ verify_oop(src->as_register());
never@739 893 move_regs(src->as_register(), dest->as_register_lo());
never@739 894 return;
never@739 895 }
never@739 896 #endif
duke@435 897 assert(src->is_double_cpu(), "must match");
duke@435 898 Register f_lo = src->as_register_lo();
duke@435 899 Register f_hi = src->as_register_hi();
duke@435 900 Register t_lo = dest->as_register_lo();
duke@435 901 Register t_hi = dest->as_register_hi();
never@739 902 #ifdef _LP64
never@739 903 assert(f_hi == f_lo, "must be same");
never@739 904 assert(t_hi == t_lo, "must be same");
never@739 905 move_regs(f_lo, t_lo);
never@739 906 #else
duke@435 907 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
duke@435 908
never@739 909
duke@435 910 if (f_lo == t_hi && f_hi == t_lo) {
duke@435 911 swap_reg(f_lo, f_hi);
duke@435 912 } else if (f_hi == t_lo) {
duke@435 913 assert(f_lo != t_hi, "overwriting register");
duke@435 914 move_regs(f_hi, t_hi);
duke@435 915 move_regs(f_lo, t_lo);
duke@435 916 } else {
duke@435 917 assert(f_hi != t_lo, "overwriting register");
duke@435 918 move_regs(f_lo, t_lo);
duke@435 919 move_regs(f_hi, t_hi);
duke@435 920 }
never@739 921 #endif // LP64
duke@435 922
duke@435 923 // special moves from fpu-register to xmm-register
duke@435 924 // necessary for method results
duke@435 925 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
duke@435 926 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
duke@435 927 __ fld_s(Address(rsp, 0));
duke@435 928 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
duke@435 929 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
duke@435 930 __ fld_d(Address(rsp, 0));
duke@435 931 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
duke@435 932 __ fstp_s(Address(rsp, 0));
duke@435 933 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
duke@435 934 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
duke@435 935 __ fstp_d(Address(rsp, 0));
duke@435 936 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
duke@435 937
duke@435 938 // move between xmm-registers
duke@435 939 } else if (dest->is_single_xmm()) {
duke@435 940 assert(src->is_single_xmm(), "must match");
duke@435 941 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
duke@435 942 } else if (dest->is_double_xmm()) {
duke@435 943 assert(src->is_double_xmm(), "must match");
duke@435 944 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
duke@435 945
duke@435 946 // move between fpu-registers (no instruction necessary because of fpu-stack)
duke@435 947 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
duke@435 948 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
duke@435 949 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
duke@435 950 } else {
duke@435 951 ShouldNotReachHere();
duke@435 952 }
duke@435 953 }
duke@435 954
duke@435 955 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 956 assert(src->is_register(), "should not call otherwise");
duke@435 957 assert(dest->is_stack(), "should not call otherwise");
duke@435 958
duke@435 959 if (src->is_single_cpu()) {
duke@435 960 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 961 if (type == T_OBJECT || type == T_ARRAY) {
duke@435 962 __ verify_oop(src->as_register());
never@739 963 __ movptr (dst, src->as_register());
never@739 964 } else {
never@739 965 __ movl (dst, src->as_register());
duke@435 966 }
duke@435 967
duke@435 968 } else if (src->is_double_cpu()) {
duke@435 969 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 970 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
never@739 971 __ movptr (dstLO, src->as_register_lo());
never@739 972 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
duke@435 973
duke@435 974 } else if (src->is_single_xmm()) {
duke@435 975 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 976 __ movflt(dst_addr, src->as_xmm_float_reg());
duke@435 977
duke@435 978 } else if (src->is_double_xmm()) {
duke@435 979 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 980 __ movdbl(dst_addr, src->as_xmm_double_reg());
duke@435 981
duke@435 982 } else if (src->is_single_fpu()) {
duke@435 983 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 984 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 985 if (pop_fpu_stack) __ fstp_s (dst_addr);
duke@435 986 else __ fst_s (dst_addr);
duke@435 987
duke@435 988 } else if (src->is_double_fpu()) {
duke@435 989 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 990 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 991 if (pop_fpu_stack) __ fstp_d (dst_addr);
duke@435 992 else __ fst_d (dst_addr);
duke@435 993
duke@435 994 } else {
duke@435 995 ShouldNotReachHere();
duke@435 996 }
duke@435 997 }
duke@435 998
duke@435 999
duke@435 1000 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
duke@435 1001 LIR_Address* to_addr = dest->as_address_ptr();
duke@435 1002 PatchingStub* patch = NULL;
duke@435 1003
duke@435 1004 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 1005 __ verify_oop(src->as_register());
duke@435 1006 }
duke@435 1007 if (patch_code != lir_patch_none) {
duke@435 1008 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1009 Address toa = as_Address(to_addr);
never@739 1010 assert(toa.disp() != 0, "must have");
duke@435 1011 }
duke@435 1012 if (info != NULL) {
duke@435 1013 add_debug_info_for_null_check_here(info);
duke@435 1014 }
duke@435 1015
duke@435 1016 switch (type) {
duke@435 1017 case T_FLOAT: {
duke@435 1018 if (src->is_single_xmm()) {
duke@435 1019 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
duke@435 1020 } else {
duke@435 1021 assert(src->is_single_fpu(), "must be");
duke@435 1022 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 1023 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
duke@435 1024 else __ fst_s (as_Address(to_addr));
duke@435 1025 }
duke@435 1026 break;
duke@435 1027 }
duke@435 1028
duke@435 1029 case T_DOUBLE: {
duke@435 1030 if (src->is_double_xmm()) {
duke@435 1031 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
duke@435 1032 } else {
duke@435 1033 assert(src->is_double_fpu(), "must be");
duke@435 1034 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 1035 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
duke@435 1036 else __ fst_d (as_Address(to_addr));
duke@435 1037 }
duke@435 1038 break;
duke@435 1039 }
duke@435 1040
duke@435 1041 case T_ADDRESS: // fall through
duke@435 1042 case T_ARRAY: // fall through
duke@435 1043 case T_OBJECT: // fall through
never@739 1044 #ifdef _LP64
never@739 1045 __ movptr(as_Address(to_addr), src->as_register());
never@739 1046 break;
never@739 1047 #endif // _LP64
duke@435 1048 case T_INT:
duke@435 1049 __ movl(as_Address(to_addr), src->as_register());
duke@435 1050 break;
duke@435 1051
duke@435 1052 case T_LONG: {
duke@435 1053 Register from_lo = src->as_register_lo();
duke@435 1054 Register from_hi = src->as_register_hi();
never@739 1055 #ifdef _LP64
never@739 1056 __ movptr(as_Address_lo(to_addr), from_lo);
never@739 1057 #else
duke@435 1058 Register base = to_addr->base()->as_register();
duke@435 1059 Register index = noreg;
duke@435 1060 if (to_addr->index()->is_register()) {
duke@435 1061 index = to_addr->index()->as_register();
duke@435 1062 }
duke@435 1063 if (base == from_lo || index == from_lo) {
duke@435 1064 assert(base != from_hi, "can't be");
duke@435 1065 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
duke@435 1066 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1067 if (patch != NULL) {
duke@435 1068 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1069 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1070 patch_code = lir_patch_low;
duke@435 1071 }
duke@435 1072 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1073 } else {
duke@435 1074 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
duke@435 1075 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1076 if (patch != NULL) {
duke@435 1077 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1078 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1079 patch_code = lir_patch_high;
duke@435 1080 }
duke@435 1081 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1082 }
never@739 1083 #endif // _LP64
duke@435 1084 break;
duke@435 1085 }
duke@435 1086
duke@435 1087 case T_BYTE: // fall through
duke@435 1088 case T_BOOLEAN: {
duke@435 1089 Register src_reg = src->as_register();
duke@435 1090 Address dst_addr = as_Address(to_addr);
duke@435 1091 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1092 __ movb(dst_addr, src_reg);
duke@435 1093 break;
duke@435 1094 }
duke@435 1095
duke@435 1096 case T_CHAR: // fall through
duke@435 1097 case T_SHORT:
duke@435 1098 __ movw(as_Address(to_addr), src->as_register());
duke@435 1099 break;
duke@435 1100
duke@435 1101 default:
duke@435 1102 ShouldNotReachHere();
duke@435 1103 }
duke@435 1104
duke@435 1105 if (patch_code != lir_patch_none) {
duke@435 1106 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
duke@435 1107 }
duke@435 1108 }
duke@435 1109
duke@435 1110
duke@435 1111 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1112 assert(src->is_stack(), "should not call otherwise");
duke@435 1113 assert(dest->is_register(), "should not call otherwise");
duke@435 1114
duke@435 1115 if (dest->is_single_cpu()) {
duke@435 1116 if (type == T_ARRAY || type == T_OBJECT) {
never@739 1117 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1118 __ verify_oop(dest->as_register());
never@739 1119 } else {
never@739 1120 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1121 }
duke@435 1122
duke@435 1123 } else if (dest->is_double_cpu()) {
duke@435 1124 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1125 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1126 __ movptr(dest->as_register_lo(), src_addr_LO);
never@739 1127 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
duke@435 1128
duke@435 1129 } else if (dest->is_single_xmm()) {
duke@435 1130 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1131 __ movflt(dest->as_xmm_float_reg(), src_addr);
duke@435 1132
duke@435 1133 } else if (dest->is_double_xmm()) {
duke@435 1134 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1135 __ movdbl(dest->as_xmm_double_reg(), src_addr);
duke@435 1136
duke@435 1137 } else if (dest->is_single_fpu()) {
duke@435 1138 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1139 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1140 __ fld_s(src_addr);
duke@435 1141
duke@435 1142 } else if (dest->is_double_fpu()) {
duke@435 1143 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1144 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1145 __ fld_d(src_addr);
duke@435 1146
duke@435 1147 } else {
duke@435 1148 ShouldNotReachHere();
duke@435 1149 }
duke@435 1150 }
duke@435 1151
duke@435 1152
duke@435 1153 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1154 if (src->is_single_stack()) {
never@739 1155 if (type == T_OBJECT || type == T_ARRAY) {
never@739 1156 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1157 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
never@739 1158 } else {
roland@1495 1159 #ifndef _LP64
never@739 1160 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1161 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
roland@1495 1162 #else
roland@1495 1163 //no pushl on 64bits
roland@1495 1164 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
roland@1495 1165 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
roland@1495 1166 #endif
never@739 1167 }
duke@435 1168
duke@435 1169 } else if (src->is_double_stack()) {
never@739 1170 #ifdef _LP64
never@739 1171 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
never@739 1172 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
never@739 1173 #else
duke@435 1174 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
never@739 1175 // push and pop the part at src + wordSize, adding wordSize for the previous push
never@756 1176 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
never@756 1177 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
duke@435 1178 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
never@739 1179 #endif // _LP64
duke@435 1180
duke@435 1181 } else {
duke@435 1182 ShouldNotReachHere();
duke@435 1183 }
duke@435 1184 }
duke@435 1185
duke@435 1186
duke@435 1187 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
duke@435 1188 assert(src->is_address(), "should not call otherwise");
duke@435 1189 assert(dest->is_register(), "should not call otherwise");
duke@435 1190
duke@435 1191 LIR_Address* addr = src->as_address_ptr();
duke@435 1192 Address from_addr = as_Address(addr);
duke@435 1193
duke@435 1194 switch (type) {
duke@435 1195 case T_BOOLEAN: // fall through
duke@435 1196 case T_BYTE: // fall through
duke@435 1197 case T_CHAR: // fall through
duke@435 1198 case T_SHORT:
duke@435 1199 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
duke@435 1200 // on pre P6 processors we may get partial register stalls
duke@435 1201 // so blow away the value of to_rinfo before loading a
duke@435 1202 // partial word into it. Do it here so that it precedes
duke@435 1203 // the potential patch point below.
never@739 1204 __ xorptr(dest->as_register(), dest->as_register());
duke@435 1205 }
duke@435 1206 break;
duke@435 1207 }
duke@435 1208
duke@435 1209 PatchingStub* patch = NULL;
duke@435 1210 if (patch_code != lir_patch_none) {
duke@435 1211 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1212 assert(from_addr.disp() != 0, "must have");
duke@435 1213 }
duke@435 1214 if (info != NULL) {
duke@435 1215 add_debug_info_for_null_check_here(info);
duke@435 1216 }
duke@435 1217
duke@435 1218 switch (type) {
duke@435 1219 case T_FLOAT: {
duke@435 1220 if (dest->is_single_xmm()) {
duke@435 1221 __ movflt(dest->as_xmm_float_reg(), from_addr);
duke@435 1222 } else {
duke@435 1223 assert(dest->is_single_fpu(), "must be");
duke@435 1224 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1225 __ fld_s(from_addr);
duke@435 1226 }
duke@435 1227 break;
duke@435 1228 }
duke@435 1229
duke@435 1230 case T_DOUBLE: {
duke@435 1231 if (dest->is_double_xmm()) {
duke@435 1232 __ movdbl(dest->as_xmm_double_reg(), from_addr);
duke@435 1233 } else {
duke@435 1234 assert(dest->is_double_fpu(), "must be");
duke@435 1235 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1236 __ fld_d(from_addr);
duke@435 1237 }
duke@435 1238 break;
duke@435 1239 }
duke@435 1240
duke@435 1241 case T_ADDRESS: // fall through
duke@435 1242 case T_OBJECT: // fall through
duke@435 1243 case T_ARRAY: // fall through
never@739 1244 #ifdef _LP64
never@739 1245 __ movptr(dest->as_register(), from_addr);
never@739 1246 break;
never@739 1247 #endif // _L64
duke@435 1248 case T_INT:
iveresov@1833 1249 __ movl(dest->as_register(), from_addr);
duke@435 1250 break;
duke@435 1251
duke@435 1252 case T_LONG: {
duke@435 1253 Register to_lo = dest->as_register_lo();
duke@435 1254 Register to_hi = dest->as_register_hi();
never@739 1255 #ifdef _LP64
never@739 1256 __ movptr(to_lo, as_Address_lo(addr));
never@739 1257 #else
duke@435 1258 Register base = addr->base()->as_register();
duke@435 1259 Register index = noreg;
duke@435 1260 if (addr->index()->is_register()) {
duke@435 1261 index = addr->index()->as_register();
duke@435 1262 }
duke@435 1263 if ((base == to_lo && index == to_hi) ||
duke@435 1264 (base == to_hi && index == to_lo)) {
duke@435 1265 // addresses with 2 registers are only formed as a result of
duke@435 1266 // array access so this code will never have to deal with
duke@435 1267 // patches or null checks.
duke@435 1268 assert(info == NULL && patch == NULL, "must be");
never@739 1269 __ lea(to_hi, as_Address(addr));
duke@435 1270 __ movl(to_lo, Address(to_hi, 0));
duke@435 1271 __ movl(to_hi, Address(to_hi, BytesPerWord));
duke@435 1272 } else if (base == to_lo || index == to_lo) {
duke@435 1273 assert(base != to_hi, "can't be");
duke@435 1274 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
duke@435 1275 __ movl(to_hi, as_Address_hi(addr));
duke@435 1276 if (patch != NULL) {
duke@435 1277 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1278 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1279 patch_code = lir_patch_low;
duke@435 1280 }
duke@435 1281 __ movl(to_lo, as_Address_lo(addr));
duke@435 1282 } else {
duke@435 1283 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
duke@435 1284 __ movl(to_lo, as_Address_lo(addr));
duke@435 1285 if (patch != NULL) {
duke@435 1286 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1287 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1288 patch_code = lir_patch_high;
duke@435 1289 }
duke@435 1290 __ movl(to_hi, as_Address_hi(addr));
duke@435 1291 }
never@739 1292 #endif // _LP64
duke@435 1293 break;
duke@435 1294 }
duke@435 1295
duke@435 1296 case T_BOOLEAN: // fall through
duke@435 1297 case T_BYTE: {
duke@435 1298 Register dest_reg = dest->as_register();
duke@435 1299 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1300 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1301 __ movsbl(dest_reg, from_addr);
duke@435 1302 } else {
duke@435 1303 __ movb(dest_reg, from_addr);
duke@435 1304 __ shll(dest_reg, 24);
duke@435 1305 __ sarl(dest_reg, 24);
duke@435 1306 }
duke@435 1307 break;
duke@435 1308 }
duke@435 1309
duke@435 1310 case T_CHAR: {
duke@435 1311 Register dest_reg = dest->as_register();
duke@435 1312 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1313 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1314 __ movzwl(dest_reg, from_addr);
duke@435 1315 } else {
duke@435 1316 __ movw(dest_reg, from_addr);
duke@435 1317 }
duke@435 1318 break;
duke@435 1319 }
duke@435 1320
duke@435 1321 case T_SHORT: {
duke@435 1322 Register dest_reg = dest->as_register();
duke@435 1323 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1324 __ movswl(dest_reg, from_addr);
duke@435 1325 } else {
duke@435 1326 __ movw(dest_reg, from_addr);
duke@435 1327 __ shll(dest_reg, 16);
duke@435 1328 __ sarl(dest_reg, 16);
duke@435 1329 }
duke@435 1330 break;
duke@435 1331 }
duke@435 1332
duke@435 1333 default:
duke@435 1334 ShouldNotReachHere();
duke@435 1335 }
duke@435 1336
duke@435 1337 if (patch != NULL) {
duke@435 1338 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
duke@435 1339 }
duke@435 1340
duke@435 1341 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 1342 __ verify_oop(dest->as_register());
duke@435 1343 }
duke@435 1344 }
duke@435 1345
duke@435 1346
duke@435 1347 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1348 LIR_Address* addr = src->as_address_ptr();
duke@435 1349 Address from_addr = as_Address(addr);
duke@435 1350
duke@435 1351 if (VM_Version::supports_sse()) {
duke@435 1352 switch (ReadPrefetchInstr) {
duke@435 1353 case 0:
duke@435 1354 __ prefetchnta(from_addr); break;
duke@435 1355 case 1:
duke@435 1356 __ prefetcht0(from_addr); break;
duke@435 1357 case 2:
duke@435 1358 __ prefetcht2(from_addr); break;
duke@435 1359 default:
duke@435 1360 ShouldNotReachHere(); break;
duke@435 1361 }
duke@435 1362 } else if (VM_Version::supports_3dnow()) {
duke@435 1363 __ prefetchr(from_addr);
duke@435 1364 }
duke@435 1365 }
duke@435 1366
duke@435 1367
duke@435 1368 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1369 LIR_Address* addr = src->as_address_ptr();
duke@435 1370 Address from_addr = as_Address(addr);
duke@435 1371
duke@435 1372 if (VM_Version::supports_sse()) {
duke@435 1373 switch (AllocatePrefetchInstr) {
duke@435 1374 case 0:
duke@435 1375 __ prefetchnta(from_addr); break;
duke@435 1376 case 1:
duke@435 1377 __ prefetcht0(from_addr); break;
duke@435 1378 case 2:
duke@435 1379 __ prefetcht2(from_addr); break;
duke@435 1380 case 3:
duke@435 1381 __ prefetchw(from_addr); break;
duke@435 1382 default:
duke@435 1383 ShouldNotReachHere(); break;
duke@435 1384 }
duke@435 1385 } else if (VM_Version::supports_3dnow()) {
duke@435 1386 __ prefetchw(from_addr);
duke@435 1387 }
duke@435 1388 }
duke@435 1389
duke@435 1390
duke@435 1391 NEEDS_CLEANUP; // This could be static?
duke@435 1392 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
kvn@464 1393 int elem_size = type2aelembytes(type);
duke@435 1394 switch (elem_size) {
duke@435 1395 case 1: return Address::times_1;
duke@435 1396 case 2: return Address::times_2;
duke@435 1397 case 4: return Address::times_4;
duke@435 1398 case 8: return Address::times_8;
duke@435 1399 }
duke@435 1400 ShouldNotReachHere();
duke@435 1401 return Address::no_scale;
duke@435 1402 }
duke@435 1403
duke@435 1404
duke@435 1405 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 1406 switch (op->code()) {
duke@435 1407 case lir_idiv:
duke@435 1408 case lir_irem:
duke@435 1409 arithmetic_idiv(op->code(),
duke@435 1410 op->in_opr1(),
duke@435 1411 op->in_opr2(),
duke@435 1412 op->in_opr3(),
duke@435 1413 op->result_opr(),
duke@435 1414 op->info());
duke@435 1415 break;
duke@435 1416 default: ShouldNotReachHere(); break;
duke@435 1417 }
duke@435 1418 }
duke@435 1419
duke@435 1420 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 1421 #ifdef ASSERT
duke@435 1422 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 1423 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 1424 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 1425 #endif
duke@435 1426
duke@435 1427 if (op->cond() == lir_cond_always) {
duke@435 1428 if (op->info() != NULL) add_debug_info_for_branch(op->info());
duke@435 1429 __ jmp (*(op->label()));
duke@435 1430 } else {
duke@435 1431 Assembler::Condition acond = Assembler::zero;
duke@435 1432 if (op->code() == lir_cond_float_branch) {
duke@435 1433 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 1434 __ jcc(Assembler::parity, *(op->ublock()->label()));
duke@435 1435 switch(op->cond()) {
duke@435 1436 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1437 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1438 case lir_cond_less: acond = Assembler::below; break;
duke@435 1439 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
duke@435 1440 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
duke@435 1441 case lir_cond_greater: acond = Assembler::above; break;
duke@435 1442 default: ShouldNotReachHere();
duke@435 1443 }
duke@435 1444 } else {
duke@435 1445 switch (op->cond()) {
duke@435 1446 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1447 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1448 case lir_cond_less: acond = Assembler::less; break;
duke@435 1449 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1450 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
duke@435 1451 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1452 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
duke@435 1453 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
duke@435 1454 default: ShouldNotReachHere();
duke@435 1455 }
duke@435 1456 }
duke@435 1457 __ jcc(acond,*(op->label()));
duke@435 1458 }
duke@435 1459 }
duke@435 1460
duke@435 1461 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 1462 LIR_Opr src = op->in_opr();
duke@435 1463 LIR_Opr dest = op->result_opr();
duke@435 1464
duke@435 1465 switch (op->bytecode()) {
duke@435 1466 case Bytecodes::_i2l:
never@739 1467 #ifdef _LP64
never@739 1468 __ movl2ptr(dest->as_register_lo(), src->as_register());
never@739 1469 #else
duke@435 1470 move_regs(src->as_register(), dest->as_register_lo());
duke@435 1471 move_regs(src->as_register(), dest->as_register_hi());
duke@435 1472 __ sarl(dest->as_register_hi(), 31);
never@739 1473 #endif // LP64
duke@435 1474 break;
duke@435 1475
duke@435 1476 case Bytecodes::_l2i:
duke@435 1477 move_regs(src->as_register_lo(), dest->as_register());
duke@435 1478 break;
duke@435 1479
duke@435 1480 case Bytecodes::_i2b:
duke@435 1481 move_regs(src->as_register(), dest->as_register());
duke@435 1482 __ sign_extend_byte(dest->as_register());
duke@435 1483 break;
duke@435 1484
duke@435 1485 case Bytecodes::_i2c:
duke@435 1486 move_regs(src->as_register(), dest->as_register());
duke@435 1487 __ andl(dest->as_register(), 0xFFFF);
duke@435 1488 break;
duke@435 1489
duke@435 1490 case Bytecodes::_i2s:
duke@435 1491 move_regs(src->as_register(), dest->as_register());
duke@435 1492 __ sign_extend_short(dest->as_register());
duke@435 1493 break;
duke@435 1494
duke@435 1495
duke@435 1496 case Bytecodes::_f2d:
duke@435 1497 case Bytecodes::_d2f:
duke@435 1498 if (dest->is_single_xmm()) {
duke@435 1499 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
duke@435 1500 } else if (dest->is_double_xmm()) {
duke@435 1501 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
duke@435 1502 } else {
duke@435 1503 assert(src->fpu() == dest->fpu(), "register must be equal");
duke@435 1504 // do nothing (float result is rounded later through spilling)
duke@435 1505 }
duke@435 1506 break;
duke@435 1507
duke@435 1508 case Bytecodes::_i2f:
duke@435 1509 case Bytecodes::_i2d:
duke@435 1510 if (dest->is_single_xmm()) {
never@739 1511 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
duke@435 1512 } else if (dest->is_double_xmm()) {
never@739 1513 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
duke@435 1514 } else {
duke@435 1515 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1516 __ movl(Address(rsp, 0), src->as_register());
duke@435 1517 __ fild_s(Address(rsp, 0));
duke@435 1518 }
duke@435 1519 break;
duke@435 1520
duke@435 1521 case Bytecodes::_f2i:
duke@435 1522 case Bytecodes::_d2i:
duke@435 1523 if (src->is_single_xmm()) {
never@739 1524 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
duke@435 1525 } else if (src->is_double_xmm()) {
never@739 1526 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
duke@435 1527 } else {
duke@435 1528 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1529 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
duke@435 1530 __ fist_s(Address(rsp, 0));
duke@435 1531 __ movl(dest->as_register(), Address(rsp, 0));
duke@435 1532 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1533 }
duke@435 1534
duke@435 1535 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
duke@435 1536 assert(op->stub() != NULL, "stub required");
duke@435 1537 __ cmpl(dest->as_register(), 0x80000000);
duke@435 1538 __ jcc(Assembler::equal, *op->stub()->entry());
duke@435 1539 __ bind(*op->stub()->continuation());
duke@435 1540 break;
duke@435 1541
duke@435 1542 case Bytecodes::_l2f:
duke@435 1543 case Bytecodes::_l2d:
duke@435 1544 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
duke@435 1545 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1546
never@739 1547 __ movptr(Address(rsp, 0), src->as_register_lo());
never@739 1548 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
duke@435 1549 __ fild_d(Address(rsp, 0));
duke@435 1550 // float result is rounded later through spilling
duke@435 1551 break;
duke@435 1552
duke@435 1553 case Bytecodes::_f2l:
duke@435 1554 case Bytecodes::_d2l:
duke@435 1555 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
duke@435 1556 assert(src->fpu() == 0, "input must be on TOS");
never@739 1557 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
duke@435 1558
duke@435 1559 // instruction sequence too long to inline it here
duke@435 1560 {
duke@435 1561 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
duke@435 1562 }
duke@435 1563 break;
duke@435 1564
duke@435 1565 default: ShouldNotReachHere();
duke@435 1566 }
duke@435 1567 }
duke@435 1568
duke@435 1569 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 1570 if (op->init_check()) {
duke@435 1571 __ cmpl(Address(op->klass()->as_register(),
duke@435 1572 instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
duke@435 1573 instanceKlass::fully_initialized);
duke@435 1574 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 1575 __ jcc(Assembler::notEqual, *op->stub()->entry());
duke@435 1576 }
duke@435 1577 __ allocate_object(op->obj()->as_register(),
duke@435 1578 op->tmp1()->as_register(),
duke@435 1579 op->tmp2()->as_register(),
duke@435 1580 op->header_size(),
duke@435 1581 op->object_size(),
duke@435 1582 op->klass()->as_register(),
duke@435 1583 *op->stub()->entry());
duke@435 1584 __ bind(*op->stub()->continuation());
duke@435 1585 }
duke@435 1586
duke@435 1587 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 1588 if (UseSlowPath ||
duke@435 1589 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 1590 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 1591 __ jmp(*op->stub()->entry());
duke@435 1592 } else {
duke@435 1593 Register len = op->len()->as_register();
duke@435 1594 Register tmp1 = op->tmp1()->as_register();
duke@435 1595 Register tmp2 = op->tmp2()->as_register();
duke@435 1596 Register tmp3 = op->tmp3()->as_register();
duke@435 1597 if (len == tmp1) {
duke@435 1598 tmp1 = tmp3;
duke@435 1599 } else if (len == tmp2) {
duke@435 1600 tmp2 = tmp3;
duke@435 1601 } else if (len == tmp3) {
duke@435 1602 // everything is ok
duke@435 1603 } else {
never@739 1604 __ mov(tmp3, len);
duke@435 1605 }
duke@435 1606 __ allocate_array(op->obj()->as_register(),
duke@435 1607 len,
duke@435 1608 tmp1,
duke@435 1609 tmp2,
duke@435 1610 arrayOopDesc::header_size(op->type()),
duke@435 1611 array_element_size(op->type()),
duke@435 1612 op->klass()->as_register(),
duke@435 1613 *op->stub()->entry());
duke@435 1614 }
duke@435 1615 __ bind(*op->stub()->continuation());
duke@435 1616 }
duke@435 1617
iveresov@2138 1618 void LIR_Assembler::type_profile_helper(Register mdo,
iveresov@2138 1619 ciMethodData *md, ciProfileData *data,
iveresov@2138 1620 Register recv, Label* update_done) {
iveresov@2163 1621 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1622 Label next_test;
iveresov@2138 1623 // See if the receiver is receiver[n].
iveresov@2138 1624 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
iveresov@2138 1625 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1626 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
iveresov@2138 1627 __ addptr(data_addr, DataLayout::counter_increment);
iveresov@2146 1628 __ jmp(*update_done);
iveresov@2138 1629 __ bind(next_test);
iveresov@2138 1630 }
iveresov@2138 1631
iveresov@2138 1632 // Didn't find receiver; find next empty slot and fill it in
iveresov@2163 1633 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1634 Label next_test;
iveresov@2138 1635 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
iveresov@2138 1636 __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
iveresov@2138 1637 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1638 __ movptr(recv_addr, recv);
iveresov@2138 1639 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
iveresov@2146 1640 __ jmp(*update_done);
iveresov@2138 1641 __ bind(next_test);
iveresov@2138 1642 }
iveresov@2138 1643 }
iveresov@2138 1644
iveresov@2146 1645 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 1646 // we always need a stub for the failure case.
iveresov@2138 1647 CodeStub* stub = op->stub();
iveresov@2138 1648 Register obj = op->object()->as_register();
iveresov@2138 1649 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 1650 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 1651 Register dst = op->result_opr()->as_register();
iveresov@2138 1652 ciKlass* k = op->klass();
iveresov@2138 1653 Register Rtmp1 = noreg;
iveresov@2138 1654
iveresov@2138 1655 // check if it needs to be profiled
iveresov@2138 1656 ciMethodData* md;
iveresov@2138 1657 ciProfileData* data;
iveresov@2138 1658
iveresov@2138 1659 if (op->should_profile()) {
iveresov@2138 1660 ciMethod* method = op->profiled_method();
iveresov@2138 1661 assert(method != NULL, "Should have method");
iveresov@2138 1662 int bci = op->profiled_bci();
iveresov@2138 1663 md = method->method_data();
iveresov@2138 1664 if (md == NULL) {
iveresov@2138 1665 bailout("out of memory building methodDataOop");
iveresov@2138 1666 return;
iveresov@2138 1667 }
iveresov@2138 1668 data = md->bci_to_data(bci);
iveresov@2146 1669 assert(data != NULL, "need data for type check");
iveresov@2146 1670 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2138 1671 }
iveresov@2146 1672 Label profile_cast_success, profile_cast_failure;
iveresov@2146 1673 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2146 1674 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2138 1675
iveresov@2138 1676 if (obj == k_RInfo) {
iveresov@2138 1677 k_RInfo = dst;
iveresov@2138 1678 } else if (obj == klass_RInfo) {
iveresov@2138 1679 klass_RInfo = dst;
iveresov@2138 1680 }
iveresov@2138 1681 if (k->is_loaded()) {
iveresov@2138 1682 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
iveresov@2138 1683 } else {
iveresov@2138 1684 Rtmp1 = op->tmp3()->as_register();
iveresov@2138 1685 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
iveresov@2138 1686 }
iveresov@2138 1687
iveresov@2138 1688 assert_different_registers(obj, k_RInfo, klass_RInfo);
iveresov@2138 1689 if (!k->is_loaded()) {
iveresov@2138 1690 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@2138 1691 } else {
iveresov@2138 1692 #ifdef _LP64
iveresov@2138 1693 __ movoop(k_RInfo, k->constant_encoding());
iveresov@2138 1694 #endif // _LP64
iveresov@2138 1695 }
iveresov@2138 1696 assert(obj != k_RInfo, "must be different");
iveresov@2138 1697
iveresov@2138 1698 __ cmpptr(obj, (int32_t)NULL_WORD);
iveresov@2138 1699 if (op->should_profile()) {
iveresov@2146 1700 Label not_null;
iveresov@2146 1701 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1702 // Object is null; update MDO and exit
iveresov@2138 1703 Register mdo = klass_RInfo;
iveresov@2138 1704 __ movoop(mdo, md->constant_encoding());
iveresov@2138 1705 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2138 1706 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2138 1707 __ orl(data_addr, header_bits);
iveresov@2146 1708 __ jmp(*obj_is_null);
iveresov@2146 1709 __ bind(not_null);
iveresov@2138 1710 } else {
iveresov@2146 1711 __ jcc(Assembler::equal, *obj_is_null);
iveresov@2138 1712 }
iveresov@2138 1713 __ verify_oop(obj);
iveresov@2138 1714
iveresov@2138 1715 if (op->fast_check()) {
iveresov@2146 1716 // get object class
iveresov@2138 1717 // not a safepoint as obj null check happens earlier
iveresov@2138 1718 if (k->is_loaded()) {
iveresov@2138 1719 #ifdef _LP64
iveresov@2138 1720 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2138 1721 #else
iveresov@2138 1722 __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
iveresov@2138 1723 #endif // _LP64
iveresov@2138 1724 } else {
iveresov@2138 1725 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2138 1726 }
iveresov@2138 1727 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1728 // successful cast, fall through to profile or jump
iveresov@2138 1729 } else {
iveresov@2138 1730 // get object class
iveresov@2138 1731 // not a safepoint as obj null check happens earlier
iveresov@2138 1732 __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2138 1733 if (k->is_loaded()) {
iveresov@2138 1734 // See if we get an immediate positive hit
iveresov@2138 1735 #ifdef _LP64
iveresov@2138 1736 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
iveresov@2138 1737 #else
iveresov@2138 1738 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
iveresov@2138 1739 #endif // _LP64
iveresov@2138 1740 if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
iveresov@2138 1741 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1742 // successful cast, fall through to profile or jump
iveresov@2138 1743 } else {
iveresov@2138 1744 // See if we get an immediate positive hit
iveresov@2146 1745 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1746 // check for self
iveresov@2138 1747 #ifdef _LP64
iveresov@2138 1748 __ cmpptr(klass_RInfo, k_RInfo);
iveresov@2138 1749 #else
iveresov@2138 1750 __ cmpoop(klass_RInfo, k->constant_encoding());
iveresov@2138 1751 #endif // _LP64
iveresov@2146 1752 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1753
iveresov@2138 1754 __ push(klass_RInfo);
iveresov@2138 1755 #ifdef _LP64
iveresov@2138 1756 __ push(k_RInfo);
iveresov@2138 1757 #else
iveresov@2138 1758 __ pushoop(k->constant_encoding());
iveresov@2138 1759 #endif // _LP64
iveresov@2138 1760 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1761 __ pop(klass_RInfo);
iveresov@2138 1762 __ pop(klass_RInfo);
iveresov@2138 1763 // result is a boolean
iveresov@2138 1764 __ cmpl(klass_RInfo, 0);
iveresov@2138 1765 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1766 // successful cast, fall through to profile or jump
iveresov@2138 1767 }
iveresov@2138 1768 } else {
iveresov@2138 1769 // perform the fast part of the checking logic
iveresov@2146 1770 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
iveresov@2138 1771 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 1772 __ push(klass_RInfo);
iveresov@2138 1773 __ push(k_RInfo);
iveresov@2138 1774 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1775 __ pop(klass_RInfo);
iveresov@2138 1776 __ pop(k_RInfo);
iveresov@2138 1777 // result is a boolean
iveresov@2138 1778 __ cmpl(k_RInfo, 0);
iveresov@2138 1779 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1780 // successful cast, fall through to profile or jump
iveresov@2138 1781 }
iveresov@2138 1782 }
iveresov@2138 1783 if (op->should_profile()) {
iveresov@2138 1784 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1785 __ bind(profile_cast_success);
iveresov@2138 1786 __ movoop(mdo, md->constant_encoding());
iveresov@2138 1787 __ movptr(recv, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2138 1788 Label update_done;
iveresov@2146 1789 type_profile_helper(mdo, md, data, recv, success);
iveresov@2146 1790 __ jmp(*success);
iveresov@2138 1791
iveresov@2138 1792 __ bind(profile_cast_failure);
iveresov@2138 1793 __ movoop(mdo, md->constant_encoding());
iveresov@2138 1794 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2138 1795 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1796 __ jmp(*failure);
iveresov@2138 1797 }
iveresov@2146 1798 __ jmp(*success);
iveresov@2138 1799 }
duke@435 1800
iveresov@2146 1801
duke@435 1802 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 1803 LIR_Code code = op->code();
duke@435 1804 if (code == lir_store_check) {
duke@435 1805 Register value = op->object()->as_register();
duke@435 1806 Register array = op->array()->as_register();
duke@435 1807 Register k_RInfo = op->tmp1()->as_register();
duke@435 1808 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1809 Register Rtmp1 = op->tmp3()->as_register();
duke@435 1810
duke@435 1811 CodeStub* stub = op->stub();
iveresov@2146 1812
iveresov@2146 1813 // check if it needs to be profiled
iveresov@2146 1814 ciMethodData* md;
iveresov@2146 1815 ciProfileData* data;
iveresov@2146 1816
iveresov@2146 1817 if (op->should_profile()) {
iveresov@2146 1818 ciMethod* method = op->profiled_method();
iveresov@2146 1819 assert(method != NULL, "Should have method");
iveresov@2146 1820 int bci = op->profiled_bci();
iveresov@2146 1821 md = method->method_data();
iveresov@2146 1822 if (md == NULL) {
iveresov@2146 1823 bailout("out of memory building methodDataOop");
iveresov@2146 1824 return;
iveresov@2146 1825 }
iveresov@2146 1826 data = md->bci_to_data(bci);
iveresov@2146 1827 assert(data != NULL, "need data for type check");
iveresov@2146 1828 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 1829 }
iveresov@2146 1830 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 1831 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 1832 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 1833
never@739 1834 __ cmpptr(value, (int32_t)NULL_WORD);
iveresov@2146 1835 if (op->should_profile()) {
iveresov@2146 1836 Label not_null;
iveresov@2146 1837 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1838 // Object is null; update MDO and exit
iveresov@2146 1839 Register mdo = klass_RInfo;
iveresov@2146 1840 __ movoop(mdo, md->constant_encoding());
iveresov@2146 1841 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2146 1842 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2146 1843 __ orl(data_addr, header_bits);
iveresov@2146 1844 __ jmp(done);
iveresov@2146 1845 __ bind(not_null);
iveresov@2146 1846 } else {
iveresov@2146 1847 __ jcc(Assembler::equal, done);
iveresov@2146 1848 }
iveresov@2146 1849
duke@435 1850 add_debug_info_for_null_check_here(op->info_for_exception());
never@739 1851 __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
never@739 1852 __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
duke@435 1853
duke@435 1854 // get instance klass
never@739 1855 __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
jrose@1079 1856 // perform the fast part of the checking logic
iveresov@2146 1857 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
jrose@1079 1858 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1859 __ push(klass_RInfo);
never@739 1860 __ push(k_RInfo);
duke@435 1861 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1862 __ pop(klass_RInfo);
never@739 1863 __ pop(k_RInfo);
never@739 1864 // result is a boolean
duke@435 1865 __ cmpl(k_RInfo, 0);
iveresov@2146 1866 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1867 // fall through to the success case
iveresov@2146 1868
iveresov@2146 1869 if (op->should_profile()) {
iveresov@2146 1870 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1871 __ bind(profile_cast_success);
iveresov@2146 1872 __ movoop(mdo, md->constant_encoding());
iveresov@2146 1873 __ movptr(recv, Address(value, oopDesc::klass_offset_in_bytes()));
iveresov@2146 1874 Label update_done;
iveresov@2146 1875 type_profile_helper(mdo, md, data, recv, &done);
iveresov@2146 1876 __ jmpb(done);
iveresov@2146 1877
iveresov@2146 1878 __ bind(profile_cast_failure);
iveresov@2146 1879 __ movoop(mdo, md->constant_encoding());
iveresov@2146 1880 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2146 1881 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1882 __ jmp(*stub->entry());
iveresov@2146 1883 }
iveresov@2146 1884
duke@435 1885 __ bind(done);
iveresov@2146 1886 } else
iveresov@2146 1887 if (code == lir_checkcast) {
iveresov@2146 1888 Register obj = op->object()->as_register();
iveresov@2146 1889 Register dst = op->result_opr()->as_register();
iveresov@2146 1890 Label success;
iveresov@2146 1891 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 1892 __ bind(success);
iveresov@2146 1893 if (dst != obj) {
iveresov@2146 1894 __ mov(dst, obj);
iveresov@2146 1895 }
iveresov@2146 1896 } else
iveresov@2146 1897 if (code == lir_instanceof) {
iveresov@2146 1898 Register obj = op->object()->as_register();
iveresov@2146 1899 Register dst = op->result_opr()->as_register();
iveresov@2146 1900 Label success, failure, done;
iveresov@2146 1901 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 1902 __ bind(failure);
iveresov@2146 1903 __ xorptr(dst, dst);
iveresov@2146 1904 __ jmpb(done);
iveresov@2146 1905 __ bind(success);
iveresov@2146 1906 __ movptr(dst, 1);
iveresov@2146 1907 __ bind(done);
duke@435 1908 } else {
iveresov@2146 1909 ShouldNotReachHere();
duke@435 1910 }
duke@435 1911
duke@435 1912 }
duke@435 1913
duke@435 1914
duke@435 1915 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
never@739 1916 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
duke@435 1917 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
duke@435 1918 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
duke@435 1919 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
duke@435 1920 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
duke@435 1921 Register addr = op->addr()->as_register();
duke@435 1922 if (os::is_MP()) {
duke@435 1923 __ lock();
duke@435 1924 }
never@739 1925 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
never@739 1926
never@739 1927 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
never@739 1928 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
never@739 1929 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
duke@435 1930 Register newval = op->new_value()->as_register();
duke@435 1931 Register cmpval = op->cmp_value()->as_register();
duke@435 1932 assert(cmpval == rax, "wrong register");
duke@435 1933 assert(newval != NULL, "new val must be register");
duke@435 1934 assert(cmpval != newval, "cmp and new values must be in different registers");
duke@435 1935 assert(cmpval != addr, "cmp and addr must be in different registers");
duke@435 1936 assert(newval != addr, "new value and addr must be in different registers");
duke@435 1937 if (os::is_MP()) {
duke@435 1938 __ lock();
duke@435 1939 }
never@739 1940 if ( op->code() == lir_cas_obj) {
never@739 1941 __ cmpxchgptr(newval, Address(addr, 0));
never@739 1942 } else if (op->code() == lir_cas_int) {
never@739 1943 __ cmpxchgl(newval, Address(addr, 0));
never@739 1944 }
never@739 1945 #ifdef _LP64
never@739 1946 } else if (op->code() == lir_cas_long) {
never@739 1947 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
never@739 1948 Register newval = op->new_value()->as_register_lo();
never@739 1949 Register cmpval = op->cmp_value()->as_register_lo();
never@739 1950 assert(cmpval == rax, "wrong register");
never@739 1951 assert(newval != NULL, "new val must be register");
never@739 1952 assert(cmpval != newval, "cmp and new values must be in different registers");
never@739 1953 assert(cmpval != addr, "cmp and addr must be in different registers");
never@739 1954 assert(newval != addr, "new value and addr must be in different registers");
never@739 1955 if (os::is_MP()) {
never@739 1956 __ lock();
never@739 1957 }
never@739 1958 __ cmpxchgq(newval, Address(addr, 0));
never@739 1959 #endif // _LP64
duke@435 1960 } else {
duke@435 1961 Unimplemented();
duke@435 1962 }
duke@435 1963 }
duke@435 1964
duke@435 1965 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
duke@435 1966 Assembler::Condition acond, ncond;
duke@435 1967 switch (condition) {
duke@435 1968 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
duke@435 1969 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
duke@435 1970 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
duke@435 1971 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
duke@435 1972 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
duke@435 1973 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
duke@435 1974 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
duke@435 1975 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
duke@435 1976 default: ShouldNotReachHere();
duke@435 1977 }
duke@435 1978
duke@435 1979 if (opr1->is_cpu_register()) {
duke@435 1980 reg2reg(opr1, result);
duke@435 1981 } else if (opr1->is_stack()) {
duke@435 1982 stack2reg(opr1, result, result->type());
duke@435 1983 } else if (opr1->is_constant()) {
duke@435 1984 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1985 } else {
duke@435 1986 ShouldNotReachHere();
duke@435 1987 }
duke@435 1988
duke@435 1989 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
duke@435 1990 // optimized version that does not require a branch
duke@435 1991 if (opr2->is_single_cpu()) {
duke@435 1992 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
never@739 1993 __ cmov(ncond, result->as_register(), opr2->as_register());
duke@435 1994 } else if (opr2->is_double_cpu()) {
duke@435 1995 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 1996 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
never@739 1997 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
never@739 1998 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
duke@435 1999 } else if (opr2->is_single_stack()) {
duke@435 2000 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2001 } else if (opr2->is_double_stack()) {
never@739 2002 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
never@739 2003 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
duke@435 2004 } else {
duke@435 2005 ShouldNotReachHere();
duke@435 2006 }
duke@435 2007
duke@435 2008 } else {
duke@435 2009 Label skip;
duke@435 2010 __ jcc (acond, skip);
duke@435 2011 if (opr2->is_cpu_register()) {
duke@435 2012 reg2reg(opr2, result);
duke@435 2013 } else if (opr2->is_stack()) {
duke@435 2014 stack2reg(opr2, result, result->type());
duke@435 2015 } else if (opr2->is_constant()) {
duke@435 2016 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 2017 } else {
duke@435 2018 ShouldNotReachHere();
duke@435 2019 }
duke@435 2020 __ bind(skip);
duke@435 2021 }
duke@435 2022 }
duke@435 2023
duke@435 2024
duke@435 2025 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 2026 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
duke@435 2027
duke@435 2028 if (left->is_single_cpu()) {
duke@435 2029 assert(left == dest, "left and dest must be equal");
duke@435 2030 Register lreg = left->as_register();
duke@435 2031
duke@435 2032 if (right->is_single_cpu()) {
duke@435 2033 // cpu register - cpu register
duke@435 2034 Register rreg = right->as_register();
duke@435 2035 switch (code) {
duke@435 2036 case lir_add: __ addl (lreg, rreg); break;
duke@435 2037 case lir_sub: __ subl (lreg, rreg); break;
duke@435 2038 case lir_mul: __ imull(lreg, rreg); break;
duke@435 2039 default: ShouldNotReachHere();
duke@435 2040 }
duke@435 2041
duke@435 2042 } else if (right->is_stack()) {
duke@435 2043 // cpu register - stack
duke@435 2044 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2045 switch (code) {
duke@435 2046 case lir_add: __ addl(lreg, raddr); break;
duke@435 2047 case lir_sub: __ subl(lreg, raddr); break;
duke@435 2048 default: ShouldNotReachHere();
duke@435 2049 }
duke@435 2050
duke@435 2051 } else if (right->is_constant()) {
duke@435 2052 // cpu register - constant
duke@435 2053 jint c = right->as_constant_ptr()->as_jint();
duke@435 2054 switch (code) {
duke@435 2055 case lir_add: {
iveresov@2145 2056 __ incrementl(lreg, c);
duke@435 2057 break;
duke@435 2058 }
duke@435 2059 case lir_sub: {
iveresov@2145 2060 __ decrementl(lreg, c);
duke@435 2061 break;
duke@435 2062 }
duke@435 2063 default: ShouldNotReachHere();
duke@435 2064 }
duke@435 2065
duke@435 2066 } else {
duke@435 2067 ShouldNotReachHere();
duke@435 2068 }
duke@435 2069
duke@435 2070 } else if (left->is_double_cpu()) {
duke@435 2071 assert(left == dest, "left and dest must be equal");
duke@435 2072 Register lreg_lo = left->as_register_lo();
duke@435 2073 Register lreg_hi = left->as_register_hi();
duke@435 2074
duke@435 2075 if (right->is_double_cpu()) {
duke@435 2076 // cpu register - cpu register
duke@435 2077 Register rreg_lo = right->as_register_lo();
duke@435 2078 Register rreg_hi = right->as_register_hi();
never@739 2079 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
never@739 2080 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
duke@435 2081 switch (code) {
duke@435 2082 case lir_add:
never@739 2083 __ addptr(lreg_lo, rreg_lo);
never@739 2084 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
duke@435 2085 break;
duke@435 2086 case lir_sub:
never@739 2087 __ subptr(lreg_lo, rreg_lo);
never@739 2088 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
duke@435 2089 break;
duke@435 2090 case lir_mul:
never@739 2091 #ifdef _LP64
never@739 2092 __ imulq(lreg_lo, rreg_lo);
never@739 2093 #else
duke@435 2094 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
duke@435 2095 __ imull(lreg_hi, rreg_lo);
duke@435 2096 __ imull(rreg_hi, lreg_lo);
duke@435 2097 __ addl (rreg_hi, lreg_hi);
duke@435 2098 __ mull (rreg_lo);
duke@435 2099 __ addl (lreg_hi, rreg_hi);
never@739 2100 #endif // _LP64
duke@435 2101 break;
duke@435 2102 default:
duke@435 2103 ShouldNotReachHere();
duke@435 2104 }
duke@435 2105
duke@435 2106 } else if (right->is_constant()) {
duke@435 2107 // cpu register - constant
never@739 2108 #ifdef _LP64
never@739 2109 jlong c = right->as_constant_ptr()->as_jlong_bits();
never@739 2110 __ movptr(r10, (intptr_t) c);
never@739 2111 switch (code) {
never@739 2112 case lir_add:
never@739 2113 __ addptr(lreg_lo, r10);
never@739 2114 break;
never@739 2115 case lir_sub:
never@739 2116 __ subptr(lreg_lo, r10);
never@739 2117 break;
never@739 2118 default:
never@739 2119 ShouldNotReachHere();
never@739 2120 }
never@739 2121 #else
duke@435 2122 jint c_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2123 jint c_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2124 switch (code) {
duke@435 2125 case lir_add:
never@739 2126 __ addptr(lreg_lo, c_lo);
duke@435 2127 __ adcl(lreg_hi, c_hi);
duke@435 2128 break;
duke@435 2129 case lir_sub:
never@739 2130 __ subptr(lreg_lo, c_lo);
duke@435 2131 __ sbbl(lreg_hi, c_hi);
duke@435 2132 break;
duke@435 2133 default:
duke@435 2134 ShouldNotReachHere();
duke@435 2135 }
never@739 2136 #endif // _LP64
duke@435 2137
duke@435 2138 } else {
duke@435 2139 ShouldNotReachHere();
duke@435 2140 }
duke@435 2141
duke@435 2142 } else if (left->is_single_xmm()) {
duke@435 2143 assert(left == dest, "left and dest must be equal");
duke@435 2144 XMMRegister lreg = left->as_xmm_float_reg();
duke@435 2145
duke@435 2146 if (right->is_single_xmm()) {
duke@435 2147 XMMRegister rreg = right->as_xmm_float_reg();
duke@435 2148 switch (code) {
duke@435 2149 case lir_add: __ addss(lreg, rreg); break;
duke@435 2150 case lir_sub: __ subss(lreg, rreg); break;
duke@435 2151 case lir_mul_strictfp: // fall through
duke@435 2152 case lir_mul: __ mulss(lreg, rreg); break;
duke@435 2153 case lir_div_strictfp: // fall through
duke@435 2154 case lir_div: __ divss(lreg, rreg); break;
duke@435 2155 default: ShouldNotReachHere();
duke@435 2156 }
duke@435 2157 } else {
duke@435 2158 Address raddr;
duke@435 2159 if (right->is_single_stack()) {
duke@435 2160 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2161 } else if (right->is_constant()) {
duke@435 2162 // hack for now
duke@435 2163 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
duke@435 2164 } else {
duke@435 2165 ShouldNotReachHere();
duke@435 2166 }
duke@435 2167 switch (code) {
duke@435 2168 case lir_add: __ addss(lreg, raddr); break;
duke@435 2169 case lir_sub: __ subss(lreg, raddr); break;
duke@435 2170 case lir_mul_strictfp: // fall through
duke@435 2171 case lir_mul: __ mulss(lreg, raddr); break;
duke@435 2172 case lir_div_strictfp: // fall through
duke@435 2173 case lir_div: __ divss(lreg, raddr); break;
duke@435 2174 default: ShouldNotReachHere();
duke@435 2175 }
duke@435 2176 }
duke@435 2177
duke@435 2178 } else if (left->is_double_xmm()) {
duke@435 2179 assert(left == dest, "left and dest must be equal");
duke@435 2180
duke@435 2181 XMMRegister lreg = left->as_xmm_double_reg();
duke@435 2182 if (right->is_double_xmm()) {
duke@435 2183 XMMRegister rreg = right->as_xmm_double_reg();
duke@435 2184 switch (code) {
duke@435 2185 case lir_add: __ addsd(lreg, rreg); break;
duke@435 2186 case lir_sub: __ subsd(lreg, rreg); break;
duke@435 2187 case lir_mul_strictfp: // fall through
duke@435 2188 case lir_mul: __ mulsd(lreg, rreg); break;
duke@435 2189 case lir_div_strictfp: // fall through
duke@435 2190 case lir_div: __ divsd(lreg, rreg); break;
duke@435 2191 default: ShouldNotReachHere();
duke@435 2192 }
duke@435 2193 } else {
duke@435 2194 Address raddr;
duke@435 2195 if (right->is_double_stack()) {
duke@435 2196 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2197 } else if (right->is_constant()) {
duke@435 2198 // hack for now
duke@435 2199 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2200 } else {
duke@435 2201 ShouldNotReachHere();
duke@435 2202 }
duke@435 2203 switch (code) {
duke@435 2204 case lir_add: __ addsd(lreg, raddr); break;
duke@435 2205 case lir_sub: __ subsd(lreg, raddr); break;
duke@435 2206 case lir_mul_strictfp: // fall through
duke@435 2207 case lir_mul: __ mulsd(lreg, raddr); break;
duke@435 2208 case lir_div_strictfp: // fall through
duke@435 2209 case lir_div: __ divsd(lreg, raddr); break;
duke@435 2210 default: ShouldNotReachHere();
duke@435 2211 }
duke@435 2212 }
duke@435 2213
duke@435 2214 } else if (left->is_single_fpu()) {
duke@435 2215 assert(dest->is_single_fpu(), "fpu stack allocation required");
duke@435 2216
duke@435 2217 if (right->is_single_fpu()) {
duke@435 2218 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
duke@435 2219
duke@435 2220 } else {
duke@435 2221 assert(left->fpu_regnr() == 0, "left must be on TOS");
duke@435 2222 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
duke@435 2223
duke@435 2224 Address raddr;
duke@435 2225 if (right->is_single_stack()) {
duke@435 2226 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2227 } else if (right->is_constant()) {
duke@435 2228 address const_addr = float_constant(right->as_jfloat());
duke@435 2229 assert(const_addr != NULL, "incorrect float/double constant maintainance");
duke@435 2230 // hack for now
duke@435 2231 raddr = __ as_Address(InternalAddress(const_addr));
duke@435 2232 } else {
duke@435 2233 ShouldNotReachHere();
duke@435 2234 }
duke@435 2235
duke@435 2236 switch (code) {
duke@435 2237 case lir_add: __ fadd_s(raddr); break;
duke@435 2238 case lir_sub: __ fsub_s(raddr); break;
duke@435 2239 case lir_mul_strictfp: // fall through
duke@435 2240 case lir_mul: __ fmul_s(raddr); break;
duke@435 2241 case lir_div_strictfp: // fall through
duke@435 2242 case lir_div: __ fdiv_s(raddr); break;
duke@435 2243 default: ShouldNotReachHere();
duke@435 2244 }
duke@435 2245 }
duke@435 2246
duke@435 2247 } else if (left->is_double_fpu()) {
duke@435 2248 assert(dest->is_double_fpu(), "fpu stack allocation required");
duke@435 2249
duke@435 2250 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2251 // Double values require special handling for strictfp mul/div on x86
duke@435 2252 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
duke@435 2253 __ fmulp(left->fpu_regnrLo() + 1);
duke@435 2254 }
duke@435 2255
duke@435 2256 if (right->is_double_fpu()) {
duke@435 2257 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
duke@435 2258
duke@435 2259 } else {
duke@435 2260 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
duke@435 2261 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
duke@435 2262
duke@435 2263 Address raddr;
duke@435 2264 if (right->is_double_stack()) {
duke@435 2265 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2266 } else if (right->is_constant()) {
duke@435 2267 // hack for now
duke@435 2268 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2269 } else {
duke@435 2270 ShouldNotReachHere();
duke@435 2271 }
duke@435 2272
duke@435 2273 switch (code) {
duke@435 2274 case lir_add: __ fadd_d(raddr); break;
duke@435 2275 case lir_sub: __ fsub_d(raddr); break;
duke@435 2276 case lir_mul_strictfp: // fall through
duke@435 2277 case lir_mul: __ fmul_d(raddr); break;
duke@435 2278 case lir_div_strictfp: // fall through
duke@435 2279 case lir_div: __ fdiv_d(raddr); break;
duke@435 2280 default: ShouldNotReachHere();
duke@435 2281 }
duke@435 2282 }
duke@435 2283
duke@435 2284 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2285 // Double values require special handling for strictfp mul/div on x86
duke@435 2286 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
duke@435 2287 __ fmulp(dest->fpu_regnrLo() + 1);
duke@435 2288 }
duke@435 2289
duke@435 2290 } else if (left->is_single_stack() || left->is_address()) {
duke@435 2291 assert(left == dest, "left and dest must be equal");
duke@435 2292
duke@435 2293 Address laddr;
duke@435 2294 if (left->is_single_stack()) {
duke@435 2295 laddr = frame_map()->address_for_slot(left->single_stack_ix());
duke@435 2296 } else if (left->is_address()) {
duke@435 2297 laddr = as_Address(left->as_address_ptr());
duke@435 2298 } else {
duke@435 2299 ShouldNotReachHere();
duke@435 2300 }
duke@435 2301
duke@435 2302 if (right->is_single_cpu()) {
duke@435 2303 Register rreg = right->as_register();
duke@435 2304 switch (code) {
duke@435 2305 case lir_add: __ addl(laddr, rreg); break;
duke@435 2306 case lir_sub: __ subl(laddr, rreg); break;
duke@435 2307 default: ShouldNotReachHere();
duke@435 2308 }
duke@435 2309 } else if (right->is_constant()) {
duke@435 2310 jint c = right->as_constant_ptr()->as_jint();
duke@435 2311 switch (code) {
duke@435 2312 case lir_add: {
never@739 2313 __ incrementl(laddr, c);
duke@435 2314 break;
duke@435 2315 }
duke@435 2316 case lir_sub: {
never@739 2317 __ decrementl(laddr, c);
duke@435 2318 break;
duke@435 2319 }
duke@435 2320 default: ShouldNotReachHere();
duke@435 2321 }
duke@435 2322 } else {
duke@435 2323 ShouldNotReachHere();
duke@435 2324 }
duke@435 2325
duke@435 2326 } else {
duke@435 2327 ShouldNotReachHere();
duke@435 2328 }
duke@435 2329 }
duke@435 2330
duke@435 2331 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
duke@435 2332 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
duke@435 2333 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
duke@435 2334 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
duke@435 2335
duke@435 2336 bool left_is_tos = (left_index == 0);
duke@435 2337 bool dest_is_tos = (dest_index == 0);
duke@435 2338 int non_tos_index = (left_is_tos ? right_index : left_index);
duke@435 2339
duke@435 2340 switch (code) {
duke@435 2341 case lir_add:
duke@435 2342 if (pop_fpu_stack) __ faddp(non_tos_index);
duke@435 2343 else if (dest_is_tos) __ fadd (non_tos_index);
duke@435 2344 else __ fadda(non_tos_index);
duke@435 2345 break;
duke@435 2346
duke@435 2347 case lir_sub:
duke@435 2348 if (left_is_tos) {
duke@435 2349 if (pop_fpu_stack) __ fsubrp(non_tos_index);
duke@435 2350 else if (dest_is_tos) __ fsub (non_tos_index);
duke@435 2351 else __ fsubra(non_tos_index);
duke@435 2352 } else {
duke@435 2353 if (pop_fpu_stack) __ fsubp (non_tos_index);
duke@435 2354 else if (dest_is_tos) __ fsubr (non_tos_index);
duke@435 2355 else __ fsuba (non_tos_index);
duke@435 2356 }
duke@435 2357 break;
duke@435 2358
duke@435 2359 case lir_mul_strictfp: // fall through
duke@435 2360 case lir_mul:
duke@435 2361 if (pop_fpu_stack) __ fmulp(non_tos_index);
duke@435 2362 else if (dest_is_tos) __ fmul (non_tos_index);
duke@435 2363 else __ fmula(non_tos_index);
duke@435 2364 break;
duke@435 2365
duke@435 2366 case lir_div_strictfp: // fall through
duke@435 2367 case lir_div:
duke@435 2368 if (left_is_tos) {
duke@435 2369 if (pop_fpu_stack) __ fdivrp(non_tos_index);
duke@435 2370 else if (dest_is_tos) __ fdiv (non_tos_index);
duke@435 2371 else __ fdivra(non_tos_index);
duke@435 2372 } else {
duke@435 2373 if (pop_fpu_stack) __ fdivp (non_tos_index);
duke@435 2374 else if (dest_is_tos) __ fdivr (non_tos_index);
duke@435 2375 else __ fdiva (non_tos_index);
duke@435 2376 }
duke@435 2377 break;
duke@435 2378
duke@435 2379 case lir_rem:
duke@435 2380 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
duke@435 2381 __ fremr(noreg);
duke@435 2382 break;
duke@435 2383
duke@435 2384 default:
duke@435 2385 ShouldNotReachHere();
duke@435 2386 }
duke@435 2387 }
duke@435 2388
duke@435 2389
duke@435 2390 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
duke@435 2391 if (value->is_double_xmm()) {
duke@435 2392 switch(code) {
duke@435 2393 case lir_abs :
duke@435 2394 {
duke@435 2395 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
duke@435 2396 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
duke@435 2397 }
duke@435 2398 __ andpd(dest->as_xmm_double_reg(),
duke@435 2399 ExternalAddress((address)double_signmask_pool));
duke@435 2400 }
duke@435 2401 break;
duke@435 2402
duke@435 2403 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
duke@435 2404 // all other intrinsics are not available in the SSE instruction set, so FPU is used
duke@435 2405 default : ShouldNotReachHere();
duke@435 2406 }
duke@435 2407
duke@435 2408 } else if (value->is_double_fpu()) {
duke@435 2409 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
duke@435 2410 switch(code) {
duke@435 2411 case lir_log : __ flog() ; break;
duke@435 2412 case lir_log10 : __ flog10() ; break;
duke@435 2413 case lir_abs : __ fabs() ; break;
duke@435 2414 case lir_sqrt : __ fsqrt(); break;
duke@435 2415 case lir_sin :
duke@435 2416 // Should consider not saving rbx, if not necessary
duke@435 2417 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
duke@435 2418 break;
duke@435 2419 case lir_cos :
duke@435 2420 // Should consider not saving rbx, if not necessary
duke@435 2421 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
duke@435 2422 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
duke@435 2423 break;
duke@435 2424 case lir_tan :
duke@435 2425 // Should consider not saving rbx, if not necessary
duke@435 2426 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
duke@435 2427 break;
duke@435 2428 default : ShouldNotReachHere();
duke@435 2429 }
duke@435 2430 } else {
duke@435 2431 Unimplemented();
duke@435 2432 }
duke@435 2433 }
duke@435 2434
duke@435 2435 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
duke@435 2436 // assert(left->destroys_register(), "check");
duke@435 2437 if (left->is_single_cpu()) {
duke@435 2438 Register reg = left->as_register();
duke@435 2439 if (right->is_constant()) {
duke@435 2440 int val = right->as_constant_ptr()->as_jint();
duke@435 2441 switch (code) {
duke@435 2442 case lir_logic_and: __ andl (reg, val); break;
duke@435 2443 case lir_logic_or: __ orl (reg, val); break;
duke@435 2444 case lir_logic_xor: __ xorl (reg, val); break;
duke@435 2445 default: ShouldNotReachHere();
duke@435 2446 }
duke@435 2447 } else if (right->is_stack()) {
duke@435 2448 // added support for stack operands
duke@435 2449 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2450 switch (code) {
duke@435 2451 case lir_logic_and: __ andl (reg, raddr); break;
duke@435 2452 case lir_logic_or: __ orl (reg, raddr); break;
duke@435 2453 case lir_logic_xor: __ xorl (reg, raddr); break;
duke@435 2454 default: ShouldNotReachHere();
duke@435 2455 }
duke@435 2456 } else {
duke@435 2457 Register rright = right->as_register();
duke@435 2458 switch (code) {
never@739 2459 case lir_logic_and: __ andptr (reg, rright); break;
never@739 2460 case lir_logic_or : __ orptr (reg, rright); break;
never@739 2461 case lir_logic_xor: __ xorptr (reg, rright); break;
duke@435 2462 default: ShouldNotReachHere();
duke@435 2463 }
duke@435 2464 }
duke@435 2465 move_regs(reg, dst->as_register());
duke@435 2466 } else {
duke@435 2467 Register l_lo = left->as_register_lo();
duke@435 2468 Register l_hi = left->as_register_hi();
duke@435 2469 if (right->is_constant()) {
never@739 2470 #ifdef _LP64
never@739 2471 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
never@739 2472 switch (code) {
never@739 2473 case lir_logic_and:
never@739 2474 __ andq(l_lo, rscratch1);
never@739 2475 break;
never@739 2476 case lir_logic_or:
never@739 2477 __ orq(l_lo, rscratch1);
never@739 2478 break;
never@739 2479 case lir_logic_xor:
never@739 2480 __ xorq(l_lo, rscratch1);
never@739 2481 break;
never@739 2482 default: ShouldNotReachHere();
never@739 2483 }
never@739 2484 #else
duke@435 2485 int r_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2486 int r_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2487 switch (code) {
duke@435 2488 case lir_logic_and:
duke@435 2489 __ andl(l_lo, r_lo);
duke@435 2490 __ andl(l_hi, r_hi);
duke@435 2491 break;
duke@435 2492 case lir_logic_or:
duke@435 2493 __ orl(l_lo, r_lo);
duke@435 2494 __ orl(l_hi, r_hi);
duke@435 2495 break;
duke@435 2496 case lir_logic_xor:
duke@435 2497 __ xorl(l_lo, r_lo);
duke@435 2498 __ xorl(l_hi, r_hi);
duke@435 2499 break;
duke@435 2500 default: ShouldNotReachHere();
duke@435 2501 }
never@739 2502 #endif // _LP64
duke@435 2503 } else {
iveresov@1927 2504 #ifdef _LP64
iveresov@1927 2505 Register r_lo;
iveresov@1927 2506 if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
iveresov@1927 2507 r_lo = right->as_register();
iveresov@1927 2508 } else {
iveresov@1927 2509 r_lo = right->as_register_lo();
iveresov@1927 2510 }
iveresov@1927 2511 #else
duke@435 2512 Register r_lo = right->as_register_lo();
duke@435 2513 Register r_hi = right->as_register_hi();
duke@435 2514 assert(l_lo != r_hi, "overwriting registers");
iveresov@1927 2515 #endif
duke@435 2516 switch (code) {
duke@435 2517 case lir_logic_and:
never@739 2518 __ andptr(l_lo, r_lo);
never@739 2519 NOT_LP64(__ andptr(l_hi, r_hi);)
duke@435 2520 break;
duke@435 2521 case lir_logic_or:
never@739 2522 __ orptr(l_lo, r_lo);
never@739 2523 NOT_LP64(__ orptr(l_hi, r_hi);)
duke@435 2524 break;
duke@435 2525 case lir_logic_xor:
never@739 2526 __ xorptr(l_lo, r_lo);
never@739 2527 NOT_LP64(__ xorptr(l_hi, r_hi);)
duke@435 2528 break;
duke@435 2529 default: ShouldNotReachHere();
duke@435 2530 }
duke@435 2531 }
duke@435 2532
duke@435 2533 Register dst_lo = dst->as_register_lo();
duke@435 2534 Register dst_hi = dst->as_register_hi();
duke@435 2535
never@739 2536 #ifdef _LP64
never@739 2537 move_regs(l_lo, dst_lo);
never@739 2538 #else
duke@435 2539 if (dst_lo == l_hi) {
duke@435 2540 assert(dst_hi != l_lo, "overwriting registers");
duke@435 2541 move_regs(l_hi, dst_hi);
duke@435 2542 move_regs(l_lo, dst_lo);
duke@435 2543 } else {
duke@435 2544 assert(dst_lo != l_hi, "overwriting registers");
duke@435 2545 move_regs(l_lo, dst_lo);
duke@435 2546 move_regs(l_hi, dst_hi);
duke@435 2547 }
never@739 2548 #endif // _LP64
duke@435 2549 }
duke@435 2550 }
duke@435 2551
duke@435 2552
duke@435 2553 // we assume that rax, and rdx can be overwritten
duke@435 2554 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
duke@435 2555
duke@435 2556 assert(left->is_single_cpu(), "left must be register");
duke@435 2557 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
duke@435 2558 assert(result->is_single_cpu(), "result must be register");
duke@435 2559
duke@435 2560 // assert(left->destroys_register(), "check");
duke@435 2561 // assert(right->destroys_register(), "check");
duke@435 2562
duke@435 2563 Register lreg = left->as_register();
duke@435 2564 Register dreg = result->as_register();
duke@435 2565
duke@435 2566 if (right->is_constant()) {
duke@435 2567 int divisor = right->as_constant_ptr()->as_jint();
duke@435 2568 assert(divisor > 0 && is_power_of_2(divisor), "must be");
duke@435 2569 if (code == lir_idiv) {
duke@435 2570 assert(lreg == rax, "must be rax,");
duke@435 2571 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2572 __ cdql(); // sign extend into rdx:rax
duke@435 2573 if (divisor == 2) {
duke@435 2574 __ subl(lreg, rdx);
duke@435 2575 } else {
duke@435 2576 __ andl(rdx, divisor - 1);
duke@435 2577 __ addl(lreg, rdx);
duke@435 2578 }
duke@435 2579 __ sarl(lreg, log2_intptr(divisor));
duke@435 2580 move_regs(lreg, dreg);
duke@435 2581 } else if (code == lir_irem) {
duke@435 2582 Label done;
never@739 2583 __ mov(dreg, lreg);
duke@435 2584 __ andl(dreg, 0x80000000 | (divisor - 1));
duke@435 2585 __ jcc(Assembler::positive, done);
duke@435 2586 __ decrement(dreg);
duke@435 2587 __ orl(dreg, ~(divisor - 1));
duke@435 2588 __ increment(dreg);
duke@435 2589 __ bind(done);
duke@435 2590 } else {
duke@435 2591 ShouldNotReachHere();
duke@435 2592 }
duke@435 2593 } else {
duke@435 2594 Register rreg = right->as_register();
duke@435 2595 assert(lreg == rax, "left register must be rax,");
duke@435 2596 assert(rreg != rdx, "right register must not be rdx");
duke@435 2597 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2598
duke@435 2599 move_regs(lreg, rax);
duke@435 2600
duke@435 2601 int idivl_offset = __ corrected_idivl(rreg);
duke@435 2602 add_debug_info_for_div0(idivl_offset, info);
duke@435 2603 if (code == lir_irem) {
duke@435 2604 move_regs(rdx, dreg); // result is in rdx
duke@435 2605 } else {
duke@435 2606 move_regs(rax, dreg);
duke@435 2607 }
duke@435 2608 }
duke@435 2609 }
duke@435 2610
duke@435 2611
duke@435 2612 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 2613 if (opr1->is_single_cpu()) {
duke@435 2614 Register reg1 = opr1->as_register();
duke@435 2615 if (opr2->is_single_cpu()) {
duke@435 2616 // cpu register - cpu register
never@739 2617 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2618 __ cmpptr(reg1, opr2->as_register());
never@739 2619 } else {
never@739 2620 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
never@739 2621 __ cmpl(reg1, opr2->as_register());
never@739 2622 }
duke@435 2623 } else if (opr2->is_stack()) {
duke@435 2624 // cpu register - stack
never@739 2625 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2626 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2627 } else {
never@739 2628 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2629 }
duke@435 2630 } else if (opr2->is_constant()) {
duke@435 2631 // cpu register - constant
duke@435 2632 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2633 if (c->type() == T_INT) {
duke@435 2634 __ cmpl(reg1, c->as_jint());
never@739 2635 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2636 // In 64bit oops are single register
duke@435 2637 jobject o = c->as_jobject();
duke@435 2638 if (o == NULL) {
never@739 2639 __ cmpptr(reg1, (int32_t)NULL_WORD);
duke@435 2640 } else {
never@739 2641 #ifdef _LP64
never@739 2642 __ movoop(rscratch1, o);
never@739 2643 __ cmpptr(reg1, rscratch1);
never@739 2644 #else
duke@435 2645 __ cmpoop(reg1, c->as_jobject());
never@739 2646 #endif // _LP64
duke@435 2647 }
duke@435 2648 } else {
duke@435 2649 ShouldNotReachHere();
duke@435 2650 }
duke@435 2651 // cpu register - address
duke@435 2652 } else if (opr2->is_address()) {
duke@435 2653 if (op->info() != NULL) {
duke@435 2654 add_debug_info_for_null_check_here(op->info());
duke@435 2655 }
duke@435 2656 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2657 } else {
duke@435 2658 ShouldNotReachHere();
duke@435 2659 }
duke@435 2660
duke@435 2661 } else if(opr1->is_double_cpu()) {
duke@435 2662 Register xlo = opr1->as_register_lo();
duke@435 2663 Register xhi = opr1->as_register_hi();
duke@435 2664 if (opr2->is_double_cpu()) {
never@739 2665 #ifdef _LP64
never@739 2666 __ cmpptr(xlo, opr2->as_register_lo());
never@739 2667 #else
duke@435 2668 // cpu register - cpu register
duke@435 2669 Register ylo = opr2->as_register_lo();
duke@435 2670 Register yhi = opr2->as_register_hi();
duke@435 2671 __ subl(xlo, ylo);
duke@435 2672 __ sbbl(xhi, yhi);
duke@435 2673 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 2674 __ orl(xhi, xlo);
duke@435 2675 }
never@739 2676 #endif // _LP64
duke@435 2677 } else if (opr2->is_constant()) {
duke@435 2678 // cpu register - constant 0
duke@435 2679 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
never@739 2680 #ifdef _LP64
never@739 2681 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
never@739 2682 #else
duke@435 2683 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
duke@435 2684 __ orl(xhi, xlo);
never@739 2685 #endif // _LP64
duke@435 2686 } else {
duke@435 2687 ShouldNotReachHere();
duke@435 2688 }
duke@435 2689
duke@435 2690 } else if (opr1->is_single_xmm()) {
duke@435 2691 XMMRegister reg1 = opr1->as_xmm_float_reg();
duke@435 2692 if (opr2->is_single_xmm()) {
duke@435 2693 // xmm register - xmm register
duke@435 2694 __ ucomiss(reg1, opr2->as_xmm_float_reg());
duke@435 2695 } else if (opr2->is_stack()) {
duke@435 2696 // xmm register - stack
duke@435 2697 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2698 } else if (opr2->is_constant()) {
duke@435 2699 // xmm register - constant
duke@435 2700 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
duke@435 2701 } else if (opr2->is_address()) {
duke@435 2702 // xmm register - address
duke@435 2703 if (op->info() != NULL) {
duke@435 2704 add_debug_info_for_null_check_here(op->info());
duke@435 2705 }
duke@435 2706 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2707 } else {
duke@435 2708 ShouldNotReachHere();
duke@435 2709 }
duke@435 2710
duke@435 2711 } else if (opr1->is_double_xmm()) {
duke@435 2712 XMMRegister reg1 = opr1->as_xmm_double_reg();
duke@435 2713 if (opr2->is_double_xmm()) {
duke@435 2714 // xmm register - xmm register
duke@435 2715 __ ucomisd(reg1, opr2->as_xmm_double_reg());
duke@435 2716 } else if (opr2->is_stack()) {
duke@435 2717 // xmm register - stack
duke@435 2718 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
duke@435 2719 } else if (opr2->is_constant()) {
duke@435 2720 // xmm register - constant
duke@435 2721 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
duke@435 2722 } else if (opr2->is_address()) {
duke@435 2723 // xmm register - address
duke@435 2724 if (op->info() != NULL) {
duke@435 2725 add_debug_info_for_null_check_here(op->info());
duke@435 2726 }
duke@435 2727 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
duke@435 2728 } else {
duke@435 2729 ShouldNotReachHere();
duke@435 2730 }
duke@435 2731
duke@435 2732 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
duke@435 2733 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
duke@435 2734 assert(opr2->is_fpu_register(), "both must be registers");
duke@435 2735 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2736
duke@435 2737 } else if (opr1->is_address() && opr2->is_constant()) {
never@739 2738 LIR_Const* c = opr2->as_constant_ptr();
never@739 2739 #ifdef _LP64
never@739 2740 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2741 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
never@739 2742 __ movoop(rscratch1, c->as_jobject());
never@739 2743 }
never@739 2744 #endif // LP64
duke@435 2745 if (op->info() != NULL) {
duke@435 2746 add_debug_info_for_null_check_here(op->info());
duke@435 2747 }
duke@435 2748 // special case: address - constant
duke@435 2749 LIR_Address* addr = opr1->as_address_ptr();
duke@435 2750 if (c->type() == T_INT) {
duke@435 2751 __ cmpl(as_Address(addr), c->as_jint());
never@739 2752 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2753 #ifdef _LP64
never@739 2754 // %%% Make this explode if addr isn't reachable until we figure out a
never@739 2755 // better strategy by giving noreg as the temp for as_Address
never@739 2756 __ cmpptr(rscratch1, as_Address(addr, noreg));
never@739 2757 #else
duke@435 2758 __ cmpoop(as_Address(addr), c->as_jobject());
never@739 2759 #endif // _LP64
duke@435 2760 } else {
duke@435 2761 ShouldNotReachHere();
duke@435 2762 }
duke@435 2763
duke@435 2764 } else {
duke@435 2765 ShouldNotReachHere();
duke@435 2766 }
duke@435 2767 }
duke@435 2768
duke@435 2769 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
duke@435 2770 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 2771 if (left->is_single_xmm()) {
duke@435 2772 assert(right->is_single_xmm(), "must match");
duke@435 2773 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2774 } else if (left->is_double_xmm()) {
duke@435 2775 assert(right->is_double_xmm(), "must match");
duke@435 2776 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2777
duke@435 2778 } else {
duke@435 2779 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
duke@435 2780 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
duke@435 2781
duke@435 2782 assert(left->fpu() == 0, "left must be on TOS");
duke@435 2783 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
duke@435 2784 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2785 }
duke@435 2786 } else {
duke@435 2787 assert(code == lir_cmp_l2i, "check");
never@739 2788 #ifdef _LP64
iveresov@1804 2789 Label done;
iveresov@1804 2790 Register dest = dst->as_register();
iveresov@1804 2791 __ cmpptr(left->as_register_lo(), right->as_register_lo());
iveresov@1804 2792 __ movl(dest, -1);
iveresov@1804 2793 __ jccb(Assembler::less, done);
iveresov@1804 2794 __ set_byte_if_not_zero(dest);
iveresov@1804 2795 __ movzbl(dest, dest);
iveresov@1804 2796 __ bind(done);
never@739 2797 #else
duke@435 2798 __ lcmp2int(left->as_register_hi(),
duke@435 2799 left->as_register_lo(),
duke@435 2800 right->as_register_hi(),
duke@435 2801 right->as_register_lo());
duke@435 2802 move_regs(left->as_register_hi(), dst->as_register());
never@739 2803 #endif // _LP64
duke@435 2804 }
duke@435 2805 }
duke@435 2806
duke@435 2807
duke@435 2808 void LIR_Assembler::align_call(LIR_Code code) {
duke@435 2809 if (os::is_MP()) {
duke@435 2810 // make sure that the displacement word of the call ends up word aligned
duke@435 2811 int offset = __ offset();
duke@435 2812 switch (code) {
duke@435 2813 case lir_static_call:
duke@435 2814 case lir_optvirtual_call:
twisti@1730 2815 case lir_dynamic_call:
duke@435 2816 offset += NativeCall::displacement_offset;
duke@435 2817 break;
duke@435 2818 case lir_icvirtual_call:
duke@435 2819 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
duke@435 2820 break;
duke@435 2821 case lir_virtual_call: // currently, sparc-specific for niagara
duke@435 2822 default: ShouldNotReachHere();
duke@435 2823 }
duke@435 2824 while (offset++ % BytesPerWord != 0) {
duke@435 2825 __ nop();
duke@435 2826 }
duke@435 2827 }
duke@435 2828 }
duke@435 2829
duke@435 2830
twisti@1730 2831 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
duke@435 2832 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2833 "must be aligned");
twisti@1730 2834 __ call(AddressLiteral(op->addr(), rtype));
twisti@1919 2835 add_call_info(code_offset(), op->info());
duke@435 2836 }
duke@435 2837
duke@435 2838
twisti@1730 2839 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
duke@435 2840 RelocationHolder rh = virtual_call_Relocation::spec(pc());
duke@435 2841 __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
duke@435 2842 assert(!os::is_MP() ||
duke@435 2843 (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2844 "must be aligned");
twisti@1730 2845 __ call(AddressLiteral(op->addr(), rh));
twisti@1919 2846 add_call_info(code_offset(), op->info());
duke@435 2847 }
duke@435 2848
duke@435 2849
duke@435 2850 /* Currently, vtable-dispatch is only enabled for sparc platforms */
twisti@1730 2851 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
duke@435 2852 ShouldNotReachHere();
duke@435 2853 }
duke@435 2854
twisti@1730 2855
duke@435 2856 void LIR_Assembler::emit_static_call_stub() {
duke@435 2857 address call_pc = __ pc();
duke@435 2858 address stub = __ start_a_stub(call_stub_size);
duke@435 2859 if (stub == NULL) {
duke@435 2860 bailout("static call stub overflow");
duke@435 2861 return;
duke@435 2862 }
duke@435 2863
duke@435 2864 int start = __ offset();
duke@435 2865 if (os::is_MP()) {
duke@435 2866 // make sure that the displacement word of the call ends up word aligned
duke@435 2867 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
duke@435 2868 while (offset++ % BytesPerWord != 0) {
duke@435 2869 __ nop();
duke@435 2870 }
duke@435 2871 }
duke@435 2872 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 2873 __ movoop(rbx, (jobject)NULL);
duke@435 2874 // must be set to -1 at code generation time
duke@435 2875 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
never@739 2876 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
never@739 2877 __ jump(RuntimeAddress(__ pc()));
duke@435 2878
jcoomes@1844 2879 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 2880 __ end_a_stub();
duke@435 2881 }
duke@435 2882
duke@435 2883
never@1813 2884 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2885 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2886 assert(exceptionPC->as_register() == rdx, "must match");
duke@435 2887
duke@435 2888 // exception object is not added to oop map by LinearScan
duke@435 2889 // (LinearScan assumes that no oops are in fixed registers)
duke@435 2890 info->add_register_oop(exceptionOop);
duke@435 2891 Runtime1::StubID unwind_id;
duke@435 2892
never@1813 2893 // get current pc information
never@1813 2894 // pc is only needed if the method has an exception handler, the unwind code does not need it.
never@1813 2895 int pc_for_athrow_offset = __ offset();
never@1813 2896 InternalAddress pc_for_athrow(__ pc());
never@1813 2897 __ lea(exceptionPC->as_register(), pc_for_athrow);
never@1813 2898 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2899
never@1813 2900 __ verify_not_null_oop(rax);
never@1813 2901 // search an exception handler (rax: exception oop, rdx: throwing pc)
never@1813 2902 if (compilation()->has_fpu_code()) {
never@1813 2903 unwind_id = Runtime1::handle_exception_id;
duke@435 2904 } else {
never@1813 2905 unwind_id = Runtime1::handle_exception_nofpu_id;
duke@435 2906 }
never@1813 2907 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
duke@435 2908
duke@435 2909 // enough room for two byte trap
duke@435 2910 __ nop();
duke@435 2911 }
duke@435 2912
duke@435 2913
never@1813 2914 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2915 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2916
never@1813 2917 __ jmp(_unwind_handler_entry);
never@1813 2918 }
never@1813 2919
never@1813 2920
duke@435 2921 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2922
duke@435 2923 // optimized version for linear scan:
duke@435 2924 // * count must be already in ECX (guaranteed by LinearScan)
duke@435 2925 // * left and dest must be equal
duke@435 2926 // * tmp must be unused
duke@435 2927 assert(count->as_register() == SHIFT_count, "count must be in ECX");
duke@435 2928 assert(left == dest, "left and dest must be equal");
duke@435 2929 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
duke@435 2930
duke@435 2931 if (left->is_single_cpu()) {
duke@435 2932 Register value = left->as_register();
duke@435 2933 assert(value != SHIFT_count, "left cannot be ECX");
duke@435 2934
duke@435 2935 switch (code) {
duke@435 2936 case lir_shl: __ shll(value); break;
duke@435 2937 case lir_shr: __ sarl(value); break;
duke@435 2938 case lir_ushr: __ shrl(value); break;
duke@435 2939 default: ShouldNotReachHere();
duke@435 2940 }
duke@435 2941 } else if (left->is_double_cpu()) {
duke@435 2942 Register lo = left->as_register_lo();
duke@435 2943 Register hi = left->as_register_hi();
duke@435 2944 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
never@739 2945 #ifdef _LP64
never@739 2946 switch (code) {
never@739 2947 case lir_shl: __ shlptr(lo); break;
never@739 2948 case lir_shr: __ sarptr(lo); break;
never@739 2949 case lir_ushr: __ shrptr(lo); break;
never@739 2950 default: ShouldNotReachHere();
never@739 2951 }
never@739 2952 #else
duke@435 2953
duke@435 2954 switch (code) {
duke@435 2955 case lir_shl: __ lshl(hi, lo); break;
duke@435 2956 case lir_shr: __ lshr(hi, lo, true); break;
duke@435 2957 case lir_ushr: __ lshr(hi, lo, false); break;
duke@435 2958 default: ShouldNotReachHere();
duke@435 2959 }
never@739 2960 #endif // LP64
duke@435 2961 } else {
duke@435 2962 ShouldNotReachHere();
duke@435 2963 }
duke@435 2964 }
duke@435 2965
duke@435 2966
duke@435 2967 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2968 if (dest->is_single_cpu()) {
duke@435 2969 // first move left into dest so that left is not destroyed by the shift
duke@435 2970 Register value = dest->as_register();
duke@435 2971 count = count & 0x1F; // Java spec
duke@435 2972
duke@435 2973 move_regs(left->as_register(), value);
duke@435 2974 switch (code) {
duke@435 2975 case lir_shl: __ shll(value, count); break;
duke@435 2976 case lir_shr: __ sarl(value, count); break;
duke@435 2977 case lir_ushr: __ shrl(value, count); break;
duke@435 2978 default: ShouldNotReachHere();
duke@435 2979 }
duke@435 2980 } else if (dest->is_double_cpu()) {
never@739 2981 #ifndef _LP64
duke@435 2982 Unimplemented();
never@739 2983 #else
never@739 2984 // first move left into dest so that left is not destroyed by the shift
never@739 2985 Register value = dest->as_register_lo();
never@739 2986 count = count & 0x1F; // Java spec
never@739 2987
never@739 2988 move_regs(left->as_register_lo(), value);
never@739 2989 switch (code) {
never@739 2990 case lir_shl: __ shlptr(value, count); break;
never@739 2991 case lir_shr: __ sarptr(value, count); break;
never@739 2992 case lir_ushr: __ shrptr(value, count); break;
never@739 2993 default: ShouldNotReachHere();
never@739 2994 }
never@739 2995 #endif // _LP64
duke@435 2996 } else {
duke@435 2997 ShouldNotReachHere();
duke@435 2998 }
duke@435 2999 }
duke@435 3000
duke@435 3001
duke@435 3002 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
duke@435 3003 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3004 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3005 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3006 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
duke@435 3007 }
duke@435 3008
duke@435 3009
duke@435 3010 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
duke@435 3011 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3012 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3013 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3014 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
duke@435 3015 }
duke@435 3016
duke@435 3017
duke@435 3018 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
duke@435 3019 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3020 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3021 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 3022 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
duke@435 3023 }
duke@435 3024
duke@435 3025
duke@435 3026 // This code replaces a call to arraycopy; no exception may
duke@435 3027 // be thrown in this code, they must be thrown in the System.arraycopy
duke@435 3028 // activation frame; we could save some checks if this would not be the case
duke@435 3029 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 3030 ciArrayKlass* default_type = op->expected_type();
duke@435 3031 Register src = op->src()->as_register();
duke@435 3032 Register dst = op->dst()->as_register();
duke@435 3033 Register src_pos = op->src_pos()->as_register();
duke@435 3034 Register dst_pos = op->dst_pos()->as_register();
duke@435 3035 Register length = op->length()->as_register();
duke@435 3036 Register tmp = op->tmp()->as_register();
duke@435 3037
duke@435 3038 CodeStub* stub = op->stub();
duke@435 3039 int flags = op->flags();
duke@435 3040 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 3041 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 3042
duke@435 3043 // if we don't know anything or it's an object array, just go through the generic arraycopy
duke@435 3044 if (default_type == NULL) {
duke@435 3045 Label done;
duke@435 3046 // save outgoing arguments on stack in case call to System.arraycopy is needed
duke@435 3047 // HACK ALERT. This code used to push the parameters in a hardwired fashion
duke@435 3048 // for interpreter calling conventions. Now we have to do it in new style conventions.
duke@435 3049 // For the moment until C1 gets the new register allocator I just force all the
duke@435 3050 // args to the right place (except the register args) and then on the back side
duke@435 3051 // reload the register args properly if we go slow path. Yuck
duke@435 3052
duke@435 3053 // These are proper for the calling convention
duke@435 3054
duke@435 3055 store_parameter(length, 2);
duke@435 3056 store_parameter(dst_pos, 1);
duke@435 3057 store_parameter(dst, 0);
duke@435 3058
duke@435 3059 // these are just temporary placements until we need to reload
duke@435 3060 store_parameter(src_pos, 3);
duke@435 3061 store_parameter(src, 4);
never@739 3062 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
never@739 3063
never@739 3064 address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
duke@435 3065
duke@435 3066 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
never@739 3067 #ifdef _LP64
never@739 3068 // The arguments are in java calling convention so we can trivially shift them to C
never@739 3069 // convention
never@739 3070 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3071 __ mov(c_rarg0, j_rarg0);
never@739 3072 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3073 __ mov(c_rarg1, j_rarg1);
never@739 3074 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
never@739 3075 __ mov(c_rarg2, j_rarg2);
never@739 3076 assert_different_registers(c_rarg3, j_rarg4);
never@739 3077 __ mov(c_rarg3, j_rarg3);
never@739 3078 #ifdef _WIN64
never@739 3079 // Allocate abi space for args but be sure to keep stack aligned
never@739 3080 __ subptr(rsp, 6*wordSize);
never@739 3081 store_parameter(j_rarg4, 4);
never@739 3082 __ call(RuntimeAddress(entry));
never@739 3083 __ addptr(rsp, 6*wordSize);
never@739 3084 #else
never@739 3085 __ mov(c_rarg4, j_rarg4);
never@739 3086 __ call(RuntimeAddress(entry));
never@739 3087 #endif // _WIN64
never@739 3088 #else
never@739 3089 __ push(length);
never@739 3090 __ push(dst_pos);
never@739 3091 __ push(dst);
never@739 3092 __ push(src_pos);
never@739 3093 __ push(src);
duke@435 3094 __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
duke@435 3095
never@739 3096 #endif // _LP64
never@739 3097
duke@435 3098 __ cmpl(rax, 0);
duke@435 3099 __ jcc(Assembler::equal, *stub->continuation());
duke@435 3100
duke@435 3101 // Reload values from the stack so they are where the stub
duke@435 3102 // expects them.
never@739 3103 __ movptr (dst, Address(rsp, 0*BytesPerWord));
never@739 3104 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
never@739 3105 __ movptr (length, Address(rsp, 2*BytesPerWord));
never@739 3106 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
never@739 3107 __ movptr (src, Address(rsp, 4*BytesPerWord));
duke@435 3108 __ jmp(*stub->entry());
duke@435 3109
duke@435 3110 __ bind(*stub->continuation());
duke@435 3111 return;
duke@435 3112 }
duke@435 3113
duke@435 3114 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
duke@435 3115
kvn@464 3116 int elem_size = type2aelembytes(basic_type);
duke@435 3117 int shift_amount;
duke@435 3118 Address::ScaleFactor scale;
duke@435 3119
duke@435 3120 switch (elem_size) {
duke@435 3121 case 1 :
duke@435 3122 shift_amount = 0;
duke@435 3123 scale = Address::times_1;
duke@435 3124 break;
duke@435 3125 case 2 :
duke@435 3126 shift_amount = 1;
duke@435 3127 scale = Address::times_2;
duke@435 3128 break;
duke@435 3129 case 4 :
duke@435 3130 shift_amount = 2;
duke@435 3131 scale = Address::times_4;
duke@435 3132 break;
duke@435 3133 case 8 :
duke@435 3134 shift_amount = 3;
duke@435 3135 scale = Address::times_8;
duke@435 3136 break;
duke@435 3137 default:
duke@435 3138 ShouldNotReachHere();
duke@435 3139 }
duke@435 3140
duke@435 3141 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
duke@435 3142 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
duke@435 3143 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
duke@435 3144 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
duke@435 3145
never@739 3146 // length and pos's are all sign extended at this point on 64bit
never@739 3147
duke@435 3148 // test for NULL
duke@435 3149 if (flags & LIR_OpArrayCopy::src_null_check) {
never@739 3150 __ testptr(src, src);
duke@435 3151 __ jcc(Assembler::zero, *stub->entry());
duke@435 3152 }
duke@435 3153 if (flags & LIR_OpArrayCopy::dst_null_check) {
never@739 3154 __ testptr(dst, dst);
duke@435 3155 __ jcc(Assembler::zero, *stub->entry());
duke@435 3156 }
duke@435 3157
duke@435 3158 // check if negative
duke@435 3159 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 3160 __ testl(src_pos, src_pos);
duke@435 3161 __ jcc(Assembler::less, *stub->entry());
duke@435 3162 }
duke@435 3163 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 3164 __ testl(dst_pos, dst_pos);
duke@435 3165 __ jcc(Assembler::less, *stub->entry());
duke@435 3166 }
duke@435 3167 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 3168 __ testl(length, length);
duke@435 3169 __ jcc(Assembler::less, *stub->entry());
duke@435 3170 }
duke@435 3171
duke@435 3172 if (flags & LIR_OpArrayCopy::src_range_check) {
never@739 3173 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
duke@435 3174 __ cmpl(tmp, src_length_addr);
duke@435 3175 __ jcc(Assembler::above, *stub->entry());
duke@435 3176 }
duke@435 3177 if (flags & LIR_OpArrayCopy::dst_range_check) {
never@739 3178 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
duke@435 3179 __ cmpl(tmp, dst_length_addr);
duke@435 3180 __ jcc(Assembler::above, *stub->entry());
duke@435 3181 }
duke@435 3182
duke@435 3183 if (flags & LIR_OpArrayCopy::type_check) {
never@739 3184 __ movptr(tmp, src_klass_addr);
never@739 3185 __ cmpptr(tmp, dst_klass_addr);
duke@435 3186 __ jcc(Assembler::notEqual, *stub->entry());
duke@435 3187 }
duke@435 3188
duke@435 3189 #ifdef ASSERT
duke@435 3190 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 3191 // Sanity check the known type with the incoming class. For the
duke@435 3192 // primitive case the types must match exactly with src.klass and
duke@435 3193 // dst.klass each exactly matching the default type. For the
duke@435 3194 // object array case, if no type check is needed then either the
duke@435 3195 // dst type is exactly the expected type and the src type is a
duke@435 3196 // subtype which we can't check or src is the same array as dst
duke@435 3197 // but not necessarily exactly of type default_type.
duke@435 3198 Label known_ok, halt;
jrose@1424 3199 __ movoop(tmp, default_type->constant_encoding());
duke@435 3200 if (basic_type != T_OBJECT) {
never@739 3201 __ cmpptr(tmp, dst_klass_addr);
duke@435 3202 __ jcc(Assembler::notEqual, halt);
never@739 3203 __ cmpptr(tmp, src_klass_addr);
duke@435 3204 __ jcc(Assembler::equal, known_ok);
duke@435 3205 } else {
never@739 3206 __ cmpptr(tmp, dst_klass_addr);
duke@435 3207 __ jcc(Assembler::equal, known_ok);
never@739 3208 __ cmpptr(src, dst);
duke@435 3209 __ jcc(Assembler::equal, known_ok);
duke@435 3210 }
duke@435 3211 __ bind(halt);
duke@435 3212 __ stop("incorrect type information in arraycopy");
duke@435 3213 __ bind(known_ok);
duke@435 3214 }
duke@435 3215 #endif
duke@435 3216
never@739 3217 if (shift_amount > 0 && basic_type != T_OBJECT) {
never@739 3218 __ shlptr(length, shift_amount);
never@739 3219 }
never@739 3220
never@739 3221 #ifdef _LP64
never@739 3222 assert_different_registers(c_rarg0, dst, dst_pos, length);
roland@1495 3223 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
never@739 3224 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3225 assert_different_registers(c_rarg1, length);
roland@1495 3226 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
never@739 3227 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3228 __ mov(c_rarg2, length);
never@739 3229
never@739 3230 #else
never@739 3231 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3232 store_parameter(tmp, 0);
never@739 3233 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3234 store_parameter(tmp, 1);
duke@435 3235 store_parameter(length, 2);
never@739 3236 #endif // _LP64
duke@435 3237 if (basic_type == T_OBJECT) {
duke@435 3238 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
duke@435 3239 } else {
duke@435 3240 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
duke@435 3241 }
duke@435 3242
duke@435 3243 __ bind(*stub->continuation());
duke@435 3244 }
duke@435 3245
duke@435 3246
duke@435 3247 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 3248 Register obj = op->obj_opr()->as_register(); // may not be an oop
duke@435 3249 Register hdr = op->hdr_opr()->as_register();
duke@435 3250 Register lock = op->lock_opr()->as_register();
duke@435 3251 if (!UseFastLocking) {
duke@435 3252 __ jmp(*op->stub()->entry());
duke@435 3253 } else if (op->code() == lir_lock) {
duke@435 3254 Register scratch = noreg;
duke@435 3255 if (UseBiasedLocking) {
duke@435 3256 scratch = op->scratch_opr()->as_register();
duke@435 3257 }
duke@435 3258 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3259 // add debug info for NullPointerException only if one is possible
duke@435 3260 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
duke@435 3261 if (op->info() != NULL) {
duke@435 3262 add_debug_info_for_null_check(null_check_offset, op->info());
duke@435 3263 }
duke@435 3264 // done
duke@435 3265 } else if (op->code() == lir_unlock) {
duke@435 3266 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3267 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 3268 } else {
duke@435 3269 Unimplemented();
duke@435 3270 }
duke@435 3271 __ bind(*op->stub()->continuation());
duke@435 3272 }
duke@435 3273
duke@435 3274
duke@435 3275 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 3276 ciMethod* method = op->profiled_method();
duke@435 3277 int bci = op->profiled_bci();
duke@435 3278
duke@435 3279 // Update counter for all call types
duke@435 3280 ciMethodData* md = method->method_data();
duke@435 3281 if (md == NULL) {
duke@435 3282 bailout("out of memory building methodDataOop");
duke@435 3283 return;
duke@435 3284 }
duke@435 3285 ciProfileData* data = md->bci_to_data(bci);
duke@435 3286 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3287 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 3288 Register mdo = op->mdo()->as_register();
jrose@1424 3289 __ movoop(mdo, md->constant_encoding());
duke@435 3290 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
duke@435 3291 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 3292 // Perform additional virtual call profiling for invokevirtual and
duke@435 3293 // invokeinterface bytecodes
duke@435 3294 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
iveresov@2138 3295 C1ProfileVirtualCalls) {
duke@435 3296 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3297 Register recv = op->recv()->as_register();
duke@435 3298 assert_different_registers(mdo, recv);
duke@435 3299 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3300 ciKlass* known_klass = op->known_holder();
iveresov@2138 3301 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3302 // We know the type that will be seen at this call site; we can
duke@435 3303 // statically update the methodDataOop rather than needing to do
duke@435 3304 // dynamic tests on the receiver type
duke@435 3305
duke@435 3306 // NOTE: we should probably put a lock around this search to
duke@435 3307 // avoid collisions by concurrent compilations
duke@435 3308 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3309 uint i;
duke@435 3310 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3311 ciKlass* receiver = vc_data->receiver(i);
duke@435 3312 if (known_klass->equals(receiver)) {
duke@435 3313 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3314 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3315 return;
duke@435 3316 }
duke@435 3317 }
duke@435 3318
duke@435 3319 // Receiver type not found in profile data; select an empty slot
duke@435 3320
duke@435 3321 // Note that this is less efficient than it should be because it
duke@435 3322 // always does a write to the receiver part of the
duke@435 3323 // VirtualCallData rather than just the first time
duke@435 3324 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3325 ciKlass* receiver = vc_data->receiver(i);
duke@435 3326 if (receiver == NULL) {
duke@435 3327 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
jrose@1424 3328 __ movoop(recv_addr, known_klass->constant_encoding());
duke@435 3329 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3330 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3331 return;
duke@435 3332 }
duke@435 3333 }
duke@435 3334 } else {
never@739 3335 __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
duke@435 3336 Label update_done;
iveresov@2138 3337 type_profile_helper(mdo, md, data, recv, &update_done);
kvn@1641 3338 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3339 // Increment total counter to indicate polymorphic case.
iveresov@2138 3340 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3341
duke@435 3342 __ bind(update_done);
duke@435 3343 }
kvn@1641 3344 } else {
kvn@1641 3345 // Static call
iveresov@2138 3346 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3347 }
duke@435 3348 }
duke@435 3349
duke@435 3350 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
duke@435 3351 Unimplemented();
duke@435 3352 }
duke@435 3353
duke@435 3354
duke@435 3355 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
never@739 3356 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
duke@435 3357 }
duke@435 3358
duke@435 3359
duke@435 3360 void LIR_Assembler::align_backward_branch_target() {
duke@435 3361 __ align(BytesPerWord);
duke@435 3362 }
duke@435 3363
duke@435 3364
duke@435 3365 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3366 if (left->is_single_cpu()) {
duke@435 3367 __ negl(left->as_register());
duke@435 3368 move_regs(left->as_register(), dest->as_register());
duke@435 3369
duke@435 3370 } else if (left->is_double_cpu()) {
duke@435 3371 Register lo = left->as_register_lo();
never@739 3372 #ifdef _LP64
never@739 3373 Register dst = dest->as_register_lo();
never@739 3374 __ movptr(dst, lo);
never@739 3375 __ negptr(dst);
never@739 3376 #else
duke@435 3377 Register hi = left->as_register_hi();
duke@435 3378 __ lneg(hi, lo);
duke@435 3379 if (dest->as_register_lo() == hi) {
duke@435 3380 assert(dest->as_register_hi() != lo, "destroying register");
duke@435 3381 move_regs(hi, dest->as_register_hi());
duke@435 3382 move_regs(lo, dest->as_register_lo());
duke@435 3383 } else {
duke@435 3384 move_regs(lo, dest->as_register_lo());
duke@435 3385 move_regs(hi, dest->as_register_hi());
duke@435 3386 }
never@739 3387 #endif // _LP64
duke@435 3388
duke@435 3389 } else if (dest->is_single_xmm()) {
duke@435 3390 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
duke@435 3391 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
duke@435 3392 }
duke@435 3393 __ xorps(dest->as_xmm_float_reg(),
duke@435 3394 ExternalAddress((address)float_signflip_pool));
duke@435 3395
duke@435 3396 } else if (dest->is_double_xmm()) {
duke@435 3397 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
duke@435 3398 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
duke@435 3399 }
duke@435 3400 __ xorpd(dest->as_xmm_double_reg(),
duke@435 3401 ExternalAddress((address)double_signflip_pool));
duke@435 3402
duke@435 3403 } else if (left->is_single_fpu() || left->is_double_fpu()) {
duke@435 3404 assert(left->fpu() == 0, "arg must be on TOS");
duke@435 3405 assert(dest->fpu() == 0, "dest must be TOS");
duke@435 3406 __ fchs();
duke@435 3407
duke@435 3408 } else {
duke@435 3409 ShouldNotReachHere();
duke@435 3410 }
duke@435 3411 }
duke@435 3412
duke@435 3413
duke@435 3414 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
duke@435 3415 assert(addr->is_address() && dest->is_register(), "check");
never@739 3416 Register reg;
never@739 3417 reg = dest->as_pointer_register();
never@739 3418 __ lea(reg, as_Address(addr->as_address_ptr()));
duke@435 3419 }
duke@435 3420
duke@435 3421
duke@435 3422
duke@435 3423 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3424 assert(!tmp->is_valid(), "don't need temporary");
duke@435 3425 __ call(RuntimeAddress(dest));
duke@435 3426 if (info != NULL) {
duke@435 3427 add_call_info_here(info);
duke@435 3428 }
duke@435 3429 }
duke@435 3430
duke@435 3431
duke@435 3432 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3433 assert(type == T_LONG, "only for volatile long fields");
duke@435 3434
duke@435 3435 if (info != NULL) {
duke@435 3436 add_debug_info_for_null_check_here(info);
duke@435 3437 }
duke@435 3438
duke@435 3439 if (src->is_double_xmm()) {
duke@435 3440 if (dest->is_double_cpu()) {
never@739 3441 #ifdef _LP64
never@739 3442 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
never@739 3443 #else
never@739 3444 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
duke@435 3445 __ psrlq(src->as_xmm_double_reg(), 32);
never@739 3446 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
never@739 3447 #endif // _LP64
duke@435 3448 } else if (dest->is_double_stack()) {
duke@435 3449 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
duke@435 3450 } else if (dest->is_address()) {
duke@435 3451 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
duke@435 3452 } else {
duke@435 3453 ShouldNotReachHere();
duke@435 3454 }
duke@435 3455
duke@435 3456 } else if (dest->is_double_xmm()) {
duke@435 3457 if (src->is_double_stack()) {
duke@435 3458 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3459 } else if (src->is_address()) {
duke@435 3460 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
duke@435 3461 } else {
duke@435 3462 ShouldNotReachHere();
duke@435 3463 }
duke@435 3464
duke@435 3465 } else if (src->is_double_fpu()) {
duke@435 3466 assert(src->fpu_regnrLo() == 0, "must be TOS");
duke@435 3467 if (dest->is_double_stack()) {
duke@435 3468 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
duke@435 3469 } else if (dest->is_address()) {
duke@435 3470 __ fistp_d(as_Address(dest->as_address_ptr()));
duke@435 3471 } else {
duke@435 3472 ShouldNotReachHere();
duke@435 3473 }
duke@435 3474
duke@435 3475 } else if (dest->is_double_fpu()) {
duke@435 3476 assert(dest->fpu_regnrLo() == 0, "must be TOS");
duke@435 3477 if (src->is_double_stack()) {
duke@435 3478 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3479 } else if (src->is_address()) {
duke@435 3480 __ fild_d(as_Address(src->as_address_ptr()));
duke@435 3481 } else {
duke@435 3482 ShouldNotReachHere();
duke@435 3483 }
duke@435 3484 } else {
duke@435 3485 ShouldNotReachHere();
duke@435 3486 }
duke@435 3487 }
duke@435 3488
duke@435 3489
duke@435 3490 void LIR_Assembler::membar() {
never@739 3491 // QQQ sparc TSO uses this,
never@739 3492 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
duke@435 3493 }
duke@435 3494
duke@435 3495 void LIR_Assembler::membar_acquire() {
duke@435 3496 // No x86 machines currently require load fences
duke@435 3497 // __ load_fence();
duke@435 3498 }
duke@435 3499
duke@435 3500 void LIR_Assembler::membar_release() {
duke@435 3501 // No x86 machines currently require store fences
duke@435 3502 // __ store_fence();
duke@435 3503 }
duke@435 3504
duke@435 3505 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3506 assert(result_reg->is_register(), "check");
never@739 3507 #ifdef _LP64
never@739 3508 // __ get_thread(result_reg->as_register_lo());
never@739 3509 __ mov(result_reg->as_register(), r15_thread);
never@739 3510 #else
duke@435 3511 __ get_thread(result_reg->as_register());
never@739 3512 #endif // _LP64
duke@435 3513 }
duke@435 3514
duke@435 3515
duke@435 3516 void LIR_Assembler::peephole(LIR_List*) {
duke@435 3517 // do nothing for now
duke@435 3518 }
duke@435 3519
duke@435 3520
duke@435 3521 #undef __

mercurial