src/share/vm/opto/callnode.hpp

Mon, 26 Nov 2012 17:25:11 -0800

author
twisti
date
Mon, 26 Nov 2012 17:25:11 -0800
changeset 4313
beebba0acc11
parent 3969
1d7922586cf6
child 4409
d092d1b31229
permissions
-rw-r--r--

7172640: C2: instrinsic implementations in LibraryCallKit should use argument() instead of pop()
Reviewed-by: kvn, jrose

duke@435 1 /*
kvn@3651 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
stefank@2314 26 #define SHARE_VM_OPTO_CALLNODE_HPP
stefank@2314 27
stefank@2314 28 #include "opto/connode.hpp"
stefank@2314 29 #include "opto/mulnode.hpp"
stefank@2314 30 #include "opto/multnode.hpp"
stefank@2314 31 #include "opto/opcodes.hpp"
stefank@2314 32 #include "opto/phaseX.hpp"
stefank@2314 33 #include "opto/type.hpp"
stefank@2314 34
duke@435 35 // Portions of code courtesy of Clifford Click
duke@435 36
duke@435 37 // Optimization - Graph Style
duke@435 38
duke@435 39 class Chaitin;
duke@435 40 class NamedCounter;
duke@435 41 class MultiNode;
duke@435 42 class SafePointNode;
duke@435 43 class CallNode;
duke@435 44 class CallJavaNode;
duke@435 45 class CallStaticJavaNode;
duke@435 46 class CallDynamicJavaNode;
duke@435 47 class CallRuntimeNode;
duke@435 48 class CallLeafNode;
duke@435 49 class CallLeafNoFPNode;
duke@435 50 class AllocateNode;
kvn@468 51 class AllocateArrayNode;
duke@435 52 class LockNode;
duke@435 53 class UnlockNode;
duke@435 54 class JVMState;
duke@435 55 class OopMap;
duke@435 56 class State;
duke@435 57 class StartNode;
duke@435 58 class MachCallNode;
duke@435 59 class FastLockNode;
duke@435 60
duke@435 61 //------------------------------StartNode--------------------------------------
duke@435 62 // The method start node
duke@435 63 class StartNode : public MultiNode {
duke@435 64 virtual uint cmp( const Node &n ) const;
duke@435 65 virtual uint size_of() const; // Size is bigger
duke@435 66 public:
duke@435 67 const TypeTuple *_domain;
duke@435 68 StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
duke@435 69 init_class_id(Class_Start);
duke@435 70 init_req(0,this);
duke@435 71 init_req(1,root);
duke@435 72 }
duke@435 73 virtual int Opcode() const;
duke@435 74 virtual bool pinned() const { return true; };
duke@435 75 virtual const Type *bottom_type() const;
duke@435 76 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
duke@435 77 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 78 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 79 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
duke@435 80 virtual const RegMask &in_RegMask(uint) const;
duke@435 81 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 82 virtual uint ideal_reg() const { return 0; }
duke@435 83 #ifndef PRODUCT
duke@435 84 virtual void dump_spec(outputStream *st) const;
duke@435 85 #endif
duke@435 86 };
duke@435 87
duke@435 88 //------------------------------StartOSRNode-----------------------------------
duke@435 89 // The method start node for on stack replacement code
duke@435 90 class StartOSRNode : public StartNode {
duke@435 91 public:
duke@435 92 StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
duke@435 93 virtual int Opcode() const;
duke@435 94 static const TypeTuple *osr_domain();
duke@435 95 };
duke@435 96
duke@435 97
duke@435 98 //------------------------------ParmNode---------------------------------------
duke@435 99 // Incoming parameters
duke@435 100 class ParmNode : public ProjNode {
duke@435 101 static const char * const names[TypeFunc::Parms+1];
duke@435 102 public:
kvn@468 103 ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
kvn@468 104 init_class_id(Class_Parm);
kvn@468 105 }
duke@435 106 virtual int Opcode() const;
duke@435 107 virtual bool is_CFG() const { return (_con == TypeFunc::Control); }
duke@435 108 virtual uint ideal_reg() const;
duke@435 109 #ifndef PRODUCT
duke@435 110 virtual void dump_spec(outputStream *st) const;
duke@435 111 #endif
duke@435 112 };
duke@435 113
duke@435 114
duke@435 115 //------------------------------ReturnNode-------------------------------------
duke@435 116 // Return from subroutine node
duke@435 117 class ReturnNode : public Node {
duke@435 118 public:
duke@435 119 ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
duke@435 120 virtual int Opcode() const;
duke@435 121 virtual bool is_CFG() const { return true; }
duke@435 122 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
duke@435 123 virtual bool depends_only_on_test() const { return false; }
duke@435 124 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 125 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 126 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 127 virtual uint match_edge(uint idx) const;
duke@435 128 #ifndef PRODUCT
duke@435 129 virtual void dump_req() const;
duke@435 130 #endif
duke@435 131 };
duke@435 132
duke@435 133
duke@435 134 //------------------------------RethrowNode------------------------------------
duke@435 135 // Rethrow of exception at call site. Ends a procedure before rethrowing;
duke@435 136 // ends the current basic block like a ReturnNode. Restores registers and
duke@435 137 // unwinds stack. Rethrow happens in the caller's method.
duke@435 138 class RethrowNode : public Node {
duke@435 139 public:
duke@435 140 RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
duke@435 141 virtual int Opcode() const;
duke@435 142 virtual bool is_CFG() const { return true; }
duke@435 143 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
duke@435 144 virtual bool depends_only_on_test() const { return false; }
duke@435 145 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 146 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 147 virtual uint match_edge(uint idx) const;
duke@435 148 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 149 #ifndef PRODUCT
duke@435 150 virtual void dump_req() const;
duke@435 151 #endif
duke@435 152 };
duke@435 153
duke@435 154
duke@435 155 //------------------------------TailCallNode-----------------------------------
duke@435 156 // Pop stack frame and jump indirect
duke@435 157 class TailCallNode : public ReturnNode {
duke@435 158 public:
duke@435 159 TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
duke@435 160 : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
duke@435 161 init_req(TypeFunc::Parms, target);
duke@435 162 init_req(TypeFunc::Parms+1, moop);
duke@435 163 }
duke@435 164
duke@435 165 virtual int Opcode() const;
duke@435 166 virtual uint match_edge(uint idx) const;
duke@435 167 };
duke@435 168
duke@435 169 //------------------------------TailJumpNode-----------------------------------
duke@435 170 // Pop stack frame and jump indirect
duke@435 171 class TailJumpNode : public ReturnNode {
duke@435 172 public:
duke@435 173 TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
duke@435 174 : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
duke@435 175 init_req(TypeFunc::Parms, target);
duke@435 176 init_req(TypeFunc::Parms+1, ex_oop);
duke@435 177 }
duke@435 178
duke@435 179 virtual int Opcode() const;
duke@435 180 virtual uint match_edge(uint idx) const;
duke@435 181 };
duke@435 182
duke@435 183 //-------------------------------JVMState-------------------------------------
duke@435 184 // A linked list of JVMState nodes captures the whole interpreter state,
duke@435 185 // plus GC roots, for all active calls at some call site in this compilation
duke@435 186 // unit. (If there is no inlining, then the list has exactly one link.)
duke@435 187 // This provides a way to map the optimized program back into the interpreter,
duke@435 188 // or to let the GC mark the stack.
duke@435 189 class JVMState : public ResourceObj {
never@3138 190 friend class VMStructs;
cfang@1335 191 public:
cfang@1335 192 typedef enum {
cfang@1335 193 Reexecute_Undefined = -1, // not defined -- will be translated into false later
cfang@1335 194 Reexecute_False = 0, // false -- do not reexecute
cfang@1335 195 Reexecute_True = 1 // true -- reexecute the bytecode
cfang@1335 196 } ReexecuteState; //Reexecute State
cfang@1335 197
duke@435 198 private:
duke@435 199 JVMState* _caller; // List pointer for forming scope chains
twisti@3969 200 uint _depth; // One more than caller depth, or one.
duke@435 201 uint _locoff; // Offset to locals in input edge mapping
duke@435 202 uint _stkoff; // Offset to stack in input edge mapping
duke@435 203 uint _monoff; // Offset to monitors in input edge mapping
kvn@498 204 uint _scloff; // Offset to fields of scalar objs in input edge mapping
duke@435 205 uint _endoff; // Offset to end of input edge mapping
duke@435 206 uint _sp; // Jave Expression Stack Pointer for this state
duke@435 207 int _bci; // Byte Code Index of this JVM point
cfang@1335 208 ReexecuteState _reexecute; // Whether this bytecode need to be re-executed
duke@435 209 ciMethod* _method; // Method Pointer
duke@435 210 SafePointNode* _map; // Map node associated with this scope
duke@435 211 public:
duke@435 212 friend class Compile;
cfang@1335 213 friend class PreserveReexecuteState;
duke@435 214
duke@435 215 // Because JVMState objects live over the entire lifetime of the
duke@435 216 // Compile object, they are allocated into the comp_arena, which
duke@435 217 // does not get resource marked or reset during the compile process
duke@435 218 void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
duke@435 219 void operator delete( void * ) { } // fast deallocation
duke@435 220
duke@435 221 // Create a new JVMState, ready for abstract interpretation.
duke@435 222 JVMState(ciMethod* method, JVMState* caller);
duke@435 223 JVMState(int stack_size); // root state; has a null method
duke@435 224
duke@435 225 // Access functions for the JVM
twisti@3969 226 // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
twisti@3969 227 // \ locoff \ stkoff \ argoff \ monoff \ scloff \ endoff
duke@435 228 uint locoff() const { return _locoff; }
duke@435 229 uint stkoff() const { return _stkoff; }
duke@435 230 uint argoff() const { return _stkoff + _sp; }
duke@435 231 uint monoff() const { return _monoff; }
kvn@498 232 uint scloff() const { return _scloff; }
duke@435 233 uint endoff() const { return _endoff; }
duke@435 234 uint oopoff() const { return debug_end(); }
duke@435 235
twisti@3969 236 int loc_size() const { return stkoff() - locoff(); }
twisti@3969 237 int stk_size() const { return monoff() - stkoff(); }
twisti@3969 238 int arg_size() const { return monoff() - argoff(); }
twisti@3969 239 int mon_size() const { return scloff() - monoff(); }
twisti@3969 240 int scl_size() const { return endoff() - scloff(); }
duke@435 241
twisti@3969 242 bool is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
twisti@3969 243 bool is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
twisti@3969 244 bool is_mon(uint i) const { return monoff() <= i && i < scloff(); }
twisti@3969 245 bool is_scl(uint i) const { return scloff() <= i && i < endoff(); }
duke@435 246
cfang@1335 247 uint sp() const { return _sp; }
cfang@1335 248 int bci() const { return _bci; }
cfang@1335 249 bool should_reexecute() const { return _reexecute==Reexecute_True; }
cfang@1335 250 bool is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
cfang@1335 251 bool has_method() const { return _method != NULL; }
cfang@1335 252 ciMethod* method() const { assert(has_method(), ""); return _method; }
cfang@1335 253 JVMState* caller() const { return _caller; }
cfang@1335 254 SafePointNode* map() const { return _map; }
cfang@1335 255 uint depth() const { return _depth; }
cfang@1335 256 uint debug_start() const; // returns locoff of root caller
cfang@1335 257 uint debug_end() const; // returns endoff of self
cfang@1335 258 uint debug_size() const {
kvn@498 259 return loc_size() + sp() + mon_size() + scl_size();
kvn@498 260 }
duke@435 261 uint debug_depth() const; // returns sum of debug_size values at all depths
duke@435 262
duke@435 263 // Returns the JVM state at the desired depth (1 == root).
duke@435 264 JVMState* of_depth(int d) const;
duke@435 265
duke@435 266 // Tells if two JVM states have the same call chain (depth, methods, & bcis).
duke@435 267 bool same_calls_as(const JVMState* that) const;
duke@435 268
duke@435 269 // Monitors (monitors are stored as (boxNode, objNode) pairs
duke@435 270 enum { logMonitorEdges = 1 };
duke@435 271 int nof_monitors() const { return mon_size() >> logMonitorEdges; }
duke@435 272 int monitor_depth() const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
duke@435 273 int monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
duke@435 274 int monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
duke@435 275 bool is_monitor_box(uint off) const {
duke@435 276 assert(is_mon(off), "should be called only for monitor edge");
duke@435 277 return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
duke@435 278 }
duke@435 279 bool is_monitor_use(uint off) const { return (is_mon(off)
duke@435 280 && is_monitor_box(off))
duke@435 281 || (caller() && caller()->is_monitor_use(off)); }
duke@435 282
duke@435 283 // Initialization functions for the JVM
duke@435 284 void set_locoff(uint off) { _locoff = off; }
duke@435 285 void set_stkoff(uint off) { _stkoff = off; }
duke@435 286 void set_monoff(uint off) { _monoff = off; }
kvn@498 287 void set_scloff(uint off) { _scloff = off; }
duke@435 288 void set_endoff(uint off) { _endoff = off; }
kvn@498 289 void set_offsets(uint off) {
kvn@498 290 _locoff = _stkoff = _monoff = _scloff = _endoff = off;
kvn@498 291 }
duke@435 292 void set_map(SafePointNode *map) { _map = map; }
duke@435 293 void set_sp(uint sp) { _sp = sp; }
cfang@1335 294 // _reexecute is initialized to "undefined" for a new bci
cfang@1335 295 void set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
cfang@1335 296 void set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
duke@435 297
duke@435 298 // Miscellaneous utility functions
duke@435 299 JVMState* clone_deep(Compile* C) const; // recursively clones caller chain
duke@435 300 JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
duke@435 301
duke@435 302 #ifndef PRODUCT
duke@435 303 void format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
duke@435 304 void dump_spec(outputStream *st) const;
duke@435 305 void dump_on(outputStream* st) const;
duke@435 306 void dump() const {
duke@435 307 dump_on(tty);
duke@435 308 }
duke@435 309 #endif
duke@435 310 };
duke@435 311
duke@435 312 //------------------------------SafePointNode----------------------------------
duke@435 313 // A SafePointNode is a subclass of a MultiNode for convenience (and
duke@435 314 // potential code sharing) only - conceptually it is independent of
duke@435 315 // the Node semantics.
duke@435 316 class SafePointNode : public MultiNode {
duke@435 317 virtual uint cmp( const Node &n ) const;
duke@435 318 virtual uint size_of() const; // Size is bigger
duke@435 319
duke@435 320 public:
duke@435 321 SafePointNode(uint edges, JVMState* jvms,
duke@435 322 // A plain safepoint advertises no memory effects (NULL):
duke@435 323 const TypePtr* adr_type = NULL)
duke@435 324 : MultiNode( edges ),
duke@435 325 _jvms(jvms),
duke@435 326 _oop_map(NULL),
duke@435 327 _adr_type(adr_type)
duke@435 328 {
duke@435 329 init_class_id(Class_SafePoint);
duke@435 330 }
duke@435 331
duke@435 332 OopMap* _oop_map; // Array of OopMap info (8-bit char) for GC
duke@435 333 JVMState* const _jvms; // Pointer to list of JVM State objects
duke@435 334 const TypePtr* _adr_type; // What type of memory does this node produce?
duke@435 335
duke@435 336 // Many calls take *all* of memory as input,
duke@435 337 // but some produce a limited subset of that memory as output.
duke@435 338 // The adr_type reports the call's behavior as a store, not a load.
duke@435 339
duke@435 340 virtual JVMState* jvms() const { return _jvms; }
duke@435 341 void set_jvms(JVMState* s) {
duke@435 342 *(JVMState**)&_jvms = s; // override const attribute in the accessor
duke@435 343 }
duke@435 344 OopMap *oop_map() const { return _oop_map; }
duke@435 345 void set_oop_map(OopMap *om) { _oop_map = om; }
duke@435 346
twisti@4313 347 private:
twisti@4313 348 void verify_input(JVMState* jvms, uint idx) const {
twisti@4313 349 assert(verify_jvms(jvms), "jvms must match");
twisti@4313 350 Node* n = in(idx);
twisti@4313 351 assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
twisti@4313 352 in(idx + 1)->is_top(), "2nd half of long/double");
twisti@4313 353 }
twisti@4313 354
twisti@4313 355 public:
duke@435 356 // Functionality from old debug nodes which has changed
duke@435 357 Node *local(JVMState* jvms, uint idx) const {
twisti@4313 358 verify_input(jvms, jvms->locoff() + idx);
duke@435 359 return in(jvms->locoff() + idx);
duke@435 360 }
duke@435 361 Node *stack(JVMState* jvms, uint idx) const {
twisti@4313 362 verify_input(jvms, jvms->stkoff() + idx);
duke@435 363 return in(jvms->stkoff() + idx);
duke@435 364 }
duke@435 365 Node *argument(JVMState* jvms, uint idx) const {
twisti@4313 366 verify_input(jvms, jvms->argoff() + idx);
duke@435 367 return in(jvms->argoff() + idx);
duke@435 368 }
duke@435 369 Node *monitor_box(JVMState* jvms, uint idx) const {
duke@435 370 assert(verify_jvms(jvms), "jvms must match");
duke@435 371 return in(jvms->monitor_box_offset(idx));
duke@435 372 }
duke@435 373 Node *monitor_obj(JVMState* jvms, uint idx) const {
duke@435 374 assert(verify_jvms(jvms), "jvms must match");
duke@435 375 return in(jvms->monitor_obj_offset(idx));
duke@435 376 }
duke@435 377
duke@435 378 void set_local(JVMState* jvms, uint idx, Node *c);
duke@435 379
duke@435 380 void set_stack(JVMState* jvms, uint idx, Node *c) {
duke@435 381 assert(verify_jvms(jvms), "jvms must match");
duke@435 382 set_req(jvms->stkoff() + idx, c);
duke@435 383 }
duke@435 384 void set_argument(JVMState* jvms, uint idx, Node *c) {
duke@435 385 assert(verify_jvms(jvms), "jvms must match");
duke@435 386 set_req(jvms->argoff() + idx, c);
duke@435 387 }
duke@435 388 void ensure_stack(JVMState* jvms, uint stk_size) {
duke@435 389 assert(verify_jvms(jvms), "jvms must match");
duke@435 390 int grow_by = (int)stk_size - (int)jvms->stk_size();
duke@435 391 if (grow_by > 0) grow_stack(jvms, grow_by);
duke@435 392 }
duke@435 393 void grow_stack(JVMState* jvms, uint grow_by);
duke@435 394 // Handle monitor stack
duke@435 395 void push_monitor( const FastLockNode *lock );
duke@435 396 void pop_monitor ();
duke@435 397 Node *peek_monitor_box() const;
duke@435 398 Node *peek_monitor_obj() const;
duke@435 399
duke@435 400 // Access functions for the JVM
duke@435 401 Node *control () const { return in(TypeFunc::Control ); }
duke@435 402 Node *i_o () const { return in(TypeFunc::I_O ); }
duke@435 403 Node *memory () const { return in(TypeFunc::Memory ); }
duke@435 404 Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
duke@435 405 Node *frameptr () const { return in(TypeFunc::FramePtr ); }
duke@435 406
duke@435 407 void set_control ( Node *c ) { set_req(TypeFunc::Control,c); }
duke@435 408 void set_i_o ( Node *c ) { set_req(TypeFunc::I_O ,c); }
duke@435 409 void set_memory ( Node *c ) { set_req(TypeFunc::Memory ,c); }
duke@435 410
duke@435 411 MergeMemNode* merged_memory() const {
duke@435 412 return in(TypeFunc::Memory)->as_MergeMem();
duke@435 413 }
duke@435 414
duke@435 415 // The parser marks useless maps as dead when it's done with them:
duke@435 416 bool is_killed() { return in(TypeFunc::Control) == NULL; }
duke@435 417
duke@435 418 // Exception states bubbling out of subgraphs such as inlined calls
duke@435 419 // are recorded here. (There might be more than one, hence the "next".)
duke@435 420 // This feature is used only for safepoints which serve as "maps"
duke@435 421 // for JVM states during parsing, intrinsic expansion, etc.
duke@435 422 SafePointNode* next_exception() const;
duke@435 423 void set_next_exception(SafePointNode* n);
duke@435 424 bool has_exceptions() const { return next_exception() != NULL; }
duke@435 425
duke@435 426 // Standard Node stuff
duke@435 427 virtual int Opcode() const;
duke@435 428 virtual bool pinned() const { return true; }
duke@435 429 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 430 virtual const Type *bottom_type() const { return Type::CONTROL; }
duke@435 431 virtual const TypePtr *adr_type() const { return _adr_type; }
duke@435 432 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 433 virtual Node *Identity( PhaseTransform *phase );
duke@435 434 virtual uint ideal_reg() const { return 0; }
duke@435 435 virtual const RegMask &in_RegMask(uint) const;
duke@435 436 virtual const RegMask &out_RegMask() const;
duke@435 437 virtual uint match_edge(uint idx) const;
duke@435 438
duke@435 439 static bool needs_polling_address_input();
duke@435 440
duke@435 441 #ifndef PRODUCT
duke@435 442 virtual void dump_spec(outputStream *st) const;
duke@435 443 #endif
duke@435 444 };
duke@435 445
kvn@498 446 //------------------------------SafePointScalarObjectNode----------------------
kvn@498 447 // A SafePointScalarObjectNode represents the state of a scalarized object
kvn@498 448 // at a safepoint.
kvn@498 449
kvn@498 450 class SafePointScalarObjectNode: public TypeNode {
kvn@498 451 uint _first_index; // First input edge index of a SafePoint node where
kvn@498 452 // states of the scalarized object fields are collected.
kvn@498 453 uint _n_fields; // Number of non-static fields of the scalarized object.
kvn@509 454 DEBUG_ONLY(AllocateNode* _alloc;)
kvn@3311 455
kvn@3311 456 virtual uint hash() const ; // { return NO_HASH; }
kvn@3311 457 virtual uint cmp( const Node &n ) const;
kvn@3311 458
kvn@498 459 public:
kvn@498 460 SafePointScalarObjectNode(const TypeOopPtr* tp,
kvn@498 461 #ifdef ASSERT
kvn@498 462 AllocateNode* alloc,
kvn@498 463 #endif
kvn@498 464 uint first_index, uint n_fields);
kvn@498 465 virtual int Opcode() const;
kvn@498 466 virtual uint ideal_reg() const;
kvn@498 467 virtual const RegMask &in_RegMask(uint) const;
kvn@498 468 virtual const RegMask &out_RegMask() const;
kvn@498 469 virtual uint match_edge(uint idx) const;
kvn@498 470
kvn@498 471 uint first_index() const { return _first_index; }
kvn@498 472 uint n_fields() const { return _n_fields; }
kvn@498 473
kvn@3311 474 #ifdef ASSERT
kvn@3311 475 AllocateNode* alloc() const { return _alloc; }
kvn@3311 476 #endif
kvn@1036 477
kvn@498 478 virtual uint size_of() const { return sizeof(*this); }
kvn@498 479
kvn@498 480 // Assumes that "this" is an argument to a safepoint node "s", and that
kvn@498 481 // "new_call" is being created to correspond to "s". But the difference
kvn@498 482 // between the start index of the jvmstates of "new_call" and "s" is
kvn@498 483 // "jvms_adj". Produce and return a SafePointScalarObjectNode that
kvn@498 484 // corresponds appropriately to "this" in "new_call". Assumes that
kvn@498 485 // "sosn_map" is a map, specific to the translation of "s" to "new_call",
kvn@498 486 // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
kvn@498 487 SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
kvn@498 488
kvn@498 489 #ifndef PRODUCT
kvn@498 490 virtual void dump_spec(outputStream *st) const;
kvn@498 491 #endif
kvn@498 492 };
kvn@498 493
never@1515 494
never@1515 495 // Simple container for the outgoing projections of a call. Useful
never@1515 496 // for serious surgery on calls.
never@1515 497 class CallProjections : public StackObj {
never@1515 498 public:
never@1515 499 Node* fallthrough_proj;
never@1515 500 Node* fallthrough_catchproj;
never@1515 501 Node* fallthrough_memproj;
never@1515 502 Node* fallthrough_ioproj;
never@1515 503 Node* catchall_catchproj;
never@1515 504 Node* catchall_memproj;
never@1515 505 Node* catchall_ioproj;
never@1515 506 Node* resproj;
never@1515 507 Node* exobj;
never@1515 508 };
never@1515 509
never@1515 510
duke@435 511 //------------------------------CallNode---------------------------------------
duke@435 512 // Call nodes now subsume the function of debug nodes at callsites, so they
duke@435 513 // contain the functionality of a full scope chain of debug nodes.
duke@435 514 class CallNode : public SafePointNode {
never@3138 515 friend class VMStructs;
duke@435 516 public:
duke@435 517 const TypeFunc *_tf; // Function type
duke@435 518 address _entry_point; // Address of method being called
duke@435 519 float _cnt; // Estimate of number of times called
duke@435 520
duke@435 521 CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
duke@435 522 : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
duke@435 523 _tf(tf),
duke@435 524 _entry_point(addr),
duke@435 525 _cnt(COUNT_UNKNOWN)
duke@435 526 {
duke@435 527 init_class_id(Class_Call);
duke@435 528 }
duke@435 529
duke@435 530 const TypeFunc* tf() const { return _tf; }
duke@435 531 const address entry_point() const { return _entry_point; }
duke@435 532 const float cnt() const { return _cnt; }
duke@435 533
duke@435 534 void set_tf(const TypeFunc* tf) { _tf = tf; }
duke@435 535 void set_entry_point(address p) { _entry_point = p; }
duke@435 536 void set_cnt(float c) { _cnt = c; }
duke@435 537
duke@435 538 virtual const Type *bottom_type() const;
duke@435 539 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 540 virtual Node *Identity( PhaseTransform *phase ) { return this; }
duke@435 541 virtual uint cmp( const Node &n ) const;
duke@435 542 virtual uint size_of() const = 0;
duke@435 543 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
duke@435 544 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 545 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 546 // Are we guaranteed that this node is a safepoint? Not true for leaf calls and
duke@435 547 // for some macro nodes whose expansion does not have a safepoint on the fast path.
duke@435 548 virtual bool guaranteed_safepoint() { return true; }
duke@435 549 // For macro nodes, the JVMState gets modified during expansion, so when cloning
duke@435 550 // the node the JVMState must be cloned.
duke@435 551 virtual void clone_jvms() { } // default is not to clone
duke@435 552
kvn@500 553 // Returns true if the call may modify n
kvn@500 554 virtual bool may_modify(const TypePtr *addr_t, PhaseTransform *phase);
kvn@500 555 // Does this node have a use of n other than in debug information?
kvn@603 556 bool has_non_debug_use(Node *n);
kvn@500 557 // Returns the unique CheckCastPP of a call
kvn@500 558 // or result projection is there are several CheckCastPP
kvn@500 559 // or returns NULL if there is no one.
kvn@500 560 Node *result_cast();
kvn@3651 561 // Does this node returns pointer?
kvn@3651 562 bool returns_pointer() const {
kvn@3651 563 const TypeTuple *r = tf()->range();
kvn@3651 564 return (r->cnt() > TypeFunc::Parms &&
kvn@3651 565 r->field_at(TypeFunc::Parms)->isa_ptr());
kvn@3651 566 }
kvn@500 567
never@1515 568 // Collect all the interesting edges from a call for use in
never@1515 569 // replacing the call by something else. Used by macro expansion
never@1515 570 // and the late inlining support.
never@1515 571 void extract_projections(CallProjections* projs, bool separate_io_proj);
never@1515 572
duke@435 573 virtual uint match_edge(uint idx) const;
duke@435 574
duke@435 575 #ifndef PRODUCT
duke@435 576 virtual void dump_req() const;
duke@435 577 virtual void dump_spec(outputStream *st) const;
duke@435 578 #endif
duke@435 579 };
duke@435 580
never@1515 581
duke@435 582 //------------------------------CallJavaNode-----------------------------------
duke@435 583 // Make a static or dynamic subroutine call node using Java calling
duke@435 584 // convention. (The "Java" calling convention is the compiler's calling
duke@435 585 // convention, as opposed to the interpreter's or that of native C.)
duke@435 586 class CallJavaNode : public CallNode {
never@3138 587 friend class VMStructs;
duke@435 588 protected:
duke@435 589 virtual uint cmp( const Node &n ) const;
duke@435 590 virtual uint size_of() const; // Size is bigger
duke@435 591
duke@435 592 bool _optimized_virtual;
twisti@1572 593 bool _method_handle_invoke;
duke@435 594 ciMethod* _method; // Method being direct called
duke@435 595 public:
duke@435 596 const int _bci; // Byte Code Index of call byte code
duke@435 597 CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
duke@435 598 : CallNode(tf, addr, TypePtr::BOTTOM),
twisti@1572 599 _method(method), _bci(bci),
twisti@1572 600 _optimized_virtual(false),
twisti@1572 601 _method_handle_invoke(false)
duke@435 602 {
duke@435 603 init_class_id(Class_CallJava);
duke@435 604 }
duke@435 605
duke@435 606 virtual int Opcode() const;
duke@435 607 ciMethod* method() const { return _method; }
duke@435 608 void set_method(ciMethod *m) { _method = m; }
duke@435 609 void set_optimized_virtual(bool f) { _optimized_virtual = f; }
duke@435 610 bool is_optimized_virtual() const { return _optimized_virtual; }
twisti@1572 611 void set_method_handle_invoke(bool f) { _method_handle_invoke = f; }
twisti@1572 612 bool is_method_handle_invoke() const { return _method_handle_invoke; }
duke@435 613
duke@435 614 #ifndef PRODUCT
duke@435 615 virtual void dump_spec(outputStream *st) const;
duke@435 616 #endif
duke@435 617 };
duke@435 618
duke@435 619 //------------------------------CallStaticJavaNode-----------------------------
duke@435 620 // Make a direct subroutine call using Java calling convention (for static
duke@435 621 // calls and optimized virtual calls, plus calls to wrappers for run-time
duke@435 622 // routines); generates static stub.
duke@435 623 class CallStaticJavaNode : public CallJavaNode {
duke@435 624 virtual uint cmp( const Node &n ) const;
duke@435 625 virtual uint size_of() const; // Size is bigger
duke@435 626 public:
duke@435 627 CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
duke@435 628 : CallJavaNode(tf, addr, method, bci), _name(NULL) {
duke@435 629 init_class_id(Class_CallStaticJava);
duke@435 630 }
duke@435 631 CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
duke@435 632 const TypePtr* adr_type)
duke@435 633 : CallJavaNode(tf, addr, NULL, bci), _name(name) {
duke@435 634 init_class_id(Class_CallStaticJava);
duke@435 635 // This node calls a runtime stub, which often has narrow memory effects.
duke@435 636 _adr_type = adr_type;
duke@435 637 }
duke@435 638 const char *_name; // Runtime wrapper name
duke@435 639
duke@435 640 // If this is an uncommon trap, return the request code, else zero.
duke@435 641 int uncommon_trap_request() const;
duke@435 642 static int extract_uncommon_trap_request(const Node* call);
duke@435 643
duke@435 644 virtual int Opcode() const;
duke@435 645 #ifndef PRODUCT
duke@435 646 virtual void dump_spec(outputStream *st) const;
duke@435 647 #endif
duke@435 648 };
duke@435 649
duke@435 650 //------------------------------CallDynamicJavaNode----------------------------
duke@435 651 // Make a dispatched call using Java calling convention.
duke@435 652 class CallDynamicJavaNode : public CallJavaNode {
duke@435 653 virtual uint cmp( const Node &n ) const;
duke@435 654 virtual uint size_of() const; // Size is bigger
duke@435 655 public:
duke@435 656 CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
duke@435 657 init_class_id(Class_CallDynamicJava);
duke@435 658 }
duke@435 659
duke@435 660 int _vtable_index;
duke@435 661 virtual int Opcode() const;
duke@435 662 #ifndef PRODUCT
duke@435 663 virtual void dump_spec(outputStream *st) const;
duke@435 664 #endif
duke@435 665 };
duke@435 666
duke@435 667 //------------------------------CallRuntimeNode--------------------------------
duke@435 668 // Make a direct subroutine call node into compiled C++ code.
duke@435 669 class CallRuntimeNode : public CallNode {
duke@435 670 virtual uint cmp( const Node &n ) const;
duke@435 671 virtual uint size_of() const; // Size is bigger
duke@435 672 public:
duke@435 673 CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
duke@435 674 const TypePtr* adr_type)
duke@435 675 : CallNode(tf, addr, adr_type),
duke@435 676 _name(name)
duke@435 677 {
duke@435 678 init_class_id(Class_CallRuntime);
duke@435 679 }
duke@435 680
duke@435 681 const char *_name; // Printable name, if _method is NULL
duke@435 682 virtual int Opcode() const;
duke@435 683 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
duke@435 684
duke@435 685 #ifndef PRODUCT
duke@435 686 virtual void dump_spec(outputStream *st) const;
duke@435 687 #endif
duke@435 688 };
duke@435 689
duke@435 690 //------------------------------CallLeafNode-----------------------------------
duke@435 691 // Make a direct subroutine call node into compiled C++ code, without
duke@435 692 // safepoints
duke@435 693 class CallLeafNode : public CallRuntimeNode {
duke@435 694 public:
duke@435 695 CallLeafNode(const TypeFunc* tf, address addr, const char* name,
duke@435 696 const TypePtr* adr_type)
duke@435 697 : CallRuntimeNode(tf, addr, name, adr_type)
duke@435 698 {
duke@435 699 init_class_id(Class_CallLeaf);
duke@435 700 }
duke@435 701 virtual int Opcode() const;
duke@435 702 virtual bool guaranteed_safepoint() { return false; }
duke@435 703 #ifndef PRODUCT
duke@435 704 virtual void dump_spec(outputStream *st) const;
duke@435 705 #endif
duke@435 706 };
duke@435 707
duke@435 708 //------------------------------CallLeafNoFPNode-------------------------------
duke@435 709 // CallLeafNode, not using floating point or using it in the same manner as
duke@435 710 // the generated code
duke@435 711 class CallLeafNoFPNode : public CallLeafNode {
duke@435 712 public:
duke@435 713 CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
duke@435 714 const TypePtr* adr_type)
duke@435 715 : CallLeafNode(tf, addr, name, adr_type)
duke@435 716 {
duke@435 717 }
duke@435 718 virtual int Opcode() const;
duke@435 719 };
duke@435 720
duke@435 721
duke@435 722 //------------------------------Allocate---------------------------------------
duke@435 723 // High-level memory allocation
duke@435 724 //
duke@435 725 // AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
duke@435 726 // get expanded into a code sequence containing a call. Unlike other CallNodes,
duke@435 727 // they have 2 memory projections and 2 i_o projections (which are distinguished by
duke@435 728 // the _is_io_use flag in the projection.) This is needed when expanding the node in
duke@435 729 // order to differentiate the uses of the projection on the normal control path from
duke@435 730 // those on the exception return path.
duke@435 731 //
duke@435 732 class AllocateNode : public CallNode {
duke@435 733 public:
duke@435 734 enum {
duke@435 735 // Output:
duke@435 736 RawAddress = TypeFunc::Parms, // the newly-allocated raw address
duke@435 737 // Inputs:
duke@435 738 AllocSize = TypeFunc::Parms, // size (in bytes) of the new object
duke@435 739 KlassNode, // type (maybe dynamic) of the obj.
duke@435 740 InitialTest, // slow-path test (may be constant)
duke@435 741 ALength, // array length (or TOP if none)
duke@435 742 ParmLimit
duke@435 743 };
duke@435 744
duke@435 745 static const TypeFunc* alloc_type() {
duke@435 746 const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
duke@435 747 fields[AllocSize] = TypeInt::POS;
duke@435 748 fields[KlassNode] = TypeInstPtr::NOTNULL;
duke@435 749 fields[InitialTest] = TypeInt::BOOL;
duke@435 750 fields[ALength] = TypeInt::INT; // length (can be a bad length)
duke@435 751
duke@435 752 const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
duke@435 753
duke@435 754 // create result type (range)
duke@435 755 fields = TypeTuple::fields(1);
duke@435 756 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 757
duke@435 758 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 759
duke@435 760 return TypeFunc::make(domain, range);
duke@435 761 }
duke@435 762
kvn@474 763 bool _is_scalar_replaceable; // Result of Escape Analysis
kvn@474 764
duke@435 765 virtual uint size_of() const; // Size is bigger
duke@435 766 AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
duke@435 767 Node *size, Node *klass_node, Node *initial_test);
duke@435 768 // Expansion modifies the JVMState, so we need to clone it
duke@435 769 virtual void clone_jvms() {
duke@435 770 set_jvms(jvms()->clone_deep(Compile::current()));
duke@435 771 }
duke@435 772 virtual int Opcode() const;
duke@435 773 virtual uint ideal_reg() const { return Op_RegP; }
duke@435 774 virtual bool guaranteed_safepoint() { return false; }
duke@435 775
kvn@500 776 // allocations do not modify their arguments
kvn@500 777 virtual bool may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
kvn@500 778
duke@435 779 // Pattern-match a possible usage of AllocateNode.
duke@435 780 // Return null if no allocation is recognized.
duke@435 781 // The operand is the pointer produced by the (possible) allocation.
duke@435 782 // It must be a projection of the Allocate or its subsequent CastPP.
duke@435 783 // (Note: This function is defined in file graphKit.cpp, near
duke@435 784 // GraphKit::new_instance/new_array, whose output it recognizes.)
duke@435 785 // The 'ptr' may not have an offset unless the 'offset' argument is given.
duke@435 786 static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
duke@435 787
duke@435 788 // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
duke@435 789 // an offset, which is reported back to the caller.
duke@435 790 // (Note: AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
duke@435 791 static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
duke@435 792 intptr_t& offset);
duke@435 793
duke@435 794 // Dig the klass operand out of a (possible) allocation site.
duke@435 795 static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
duke@435 796 AllocateNode* allo = Ideal_allocation(ptr, phase);
duke@435 797 return (allo == NULL) ? NULL : allo->in(KlassNode);
duke@435 798 }
duke@435 799
duke@435 800 // Conservatively small estimate of offset of first non-header byte.
duke@435 801 int minimum_header_size() {
coleenp@548 802 return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
coleenp@548 803 instanceOopDesc::base_offset_in_bytes();
duke@435 804 }
duke@435 805
duke@435 806 // Return the corresponding initialization barrier (or null if none).
duke@435 807 // Walks out edges to find it...
duke@435 808 // (Note: Both InitializeNode::allocation and AllocateNode::initialization
duke@435 809 // are defined in graphKit.cpp, which sets up the bidirectional relation.)
duke@435 810 InitializeNode* initialization();
duke@435 811
roland@3392 812 // Return the corresponding storestore barrier (or null if none).
roland@3392 813 // Walks out edges to find it...
roland@3392 814 MemBarStoreStoreNode* storestore();
roland@3392 815
duke@435 816 // Convenience for initialization->maybe_set_complete(phase)
duke@435 817 bool maybe_set_complete(PhaseGVN* phase);
duke@435 818 };
duke@435 819
duke@435 820 //------------------------------AllocateArray---------------------------------
duke@435 821 //
duke@435 822 // High-level array allocation
duke@435 823 //
duke@435 824 class AllocateArrayNode : public AllocateNode {
duke@435 825 public:
duke@435 826 AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
duke@435 827 Node* size, Node* klass_node, Node* initial_test,
duke@435 828 Node* count_val
duke@435 829 )
duke@435 830 : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
duke@435 831 initial_test)
duke@435 832 {
duke@435 833 init_class_id(Class_AllocateArray);
duke@435 834 set_req(AllocateNode::ALength, count_val);
duke@435 835 }
duke@435 836 virtual int Opcode() const;
duke@435 837 virtual uint size_of() const; // Size is bigger
kvn@1139 838 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 839
rasbold@801 840 // Dig the length operand out of a array allocation site.
rasbold@801 841 Node* Ideal_length() {
rasbold@801 842 return in(AllocateNode::ALength);
rasbold@801 843 }
rasbold@801 844
rasbold@801 845 // Dig the length operand out of a array allocation site and narrow the
rasbold@801 846 // type with a CastII, if necesssary
rasbold@801 847 Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
rasbold@801 848
duke@435 849 // Pattern-match a possible usage of AllocateArrayNode.
duke@435 850 // Return null if no allocation is recognized.
duke@435 851 static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
duke@435 852 AllocateNode* allo = Ideal_allocation(ptr, phase);
duke@435 853 return (allo == NULL || !allo->is_AllocateArray())
duke@435 854 ? NULL : allo->as_AllocateArray();
duke@435 855 }
duke@435 856 };
duke@435 857
duke@435 858 //------------------------------AbstractLockNode-----------------------------------
duke@435 859 class AbstractLockNode: public CallNode {
duke@435 860 private:
kvn@3406 861 enum {
kvn@3406 862 Regular = 0, // Normal lock
kvn@3406 863 NonEscObj, // Lock is used for non escaping object
kvn@3406 864 Coarsened, // Lock was coarsened
kvn@3406 865 Nested // Nested lock
kvn@3406 866 } _kind;
duke@435 867 #ifndef PRODUCT
duke@435 868 NamedCounter* _counter;
duke@435 869 #endif
duke@435 870
duke@435 871 protected:
duke@435 872 // helper functions for lock elimination
duke@435 873 //
duke@435 874
duke@435 875 bool find_matching_unlock(const Node* ctrl, LockNode* lock,
duke@435 876 GrowableArray<AbstractLockNode*> &lock_ops);
duke@435 877 bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
duke@435 878 GrowableArray<AbstractLockNode*> &lock_ops);
duke@435 879 bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
duke@435 880 GrowableArray<AbstractLockNode*> &lock_ops);
duke@435 881 LockNode *find_matching_lock(UnlockNode* unlock);
duke@435 882
kvn@3406 883 // Update the counter to indicate that this lock was eliminated.
kvn@3406 884 void set_eliminated_lock_counter() PRODUCT_RETURN;
duke@435 885
duke@435 886 public:
duke@435 887 AbstractLockNode(const TypeFunc *tf)
duke@435 888 : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
kvn@3406 889 _kind(Regular)
duke@435 890 {
duke@435 891 #ifndef PRODUCT
duke@435 892 _counter = NULL;
duke@435 893 #endif
duke@435 894 }
duke@435 895 virtual int Opcode() const = 0;
duke@435 896 Node * obj_node() const {return in(TypeFunc::Parms + 0); }
duke@435 897 Node * box_node() const {return in(TypeFunc::Parms + 1); }
duke@435 898 Node * fastlock_node() const {return in(TypeFunc::Parms + 2); }
kvn@3406 899 void set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
kvn@3406 900
duke@435 901 const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
duke@435 902
duke@435 903 virtual uint size_of() const { return sizeof(*this); }
duke@435 904
kvn@3406 905 bool is_eliminated() const { return (_kind != Regular); }
kvn@3406 906 bool is_non_esc_obj() const { return (_kind == NonEscObj); }
kvn@3406 907 bool is_coarsened() const { return (_kind == Coarsened); }
kvn@3406 908 bool is_nested() const { return (_kind == Nested); }
duke@435 909
kvn@3406 910 void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
kvn@3406 911 void set_coarsened() { _kind = Coarsened; set_eliminated_lock_counter(); }
kvn@3406 912 void set_nested() { _kind = Nested; set_eliminated_lock_counter(); }
kvn@895 913
kvn@500 914 // locking does not modify its arguments
kvn@3406 915 virtual bool may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
kvn@500 916
duke@435 917 #ifndef PRODUCT
duke@435 918 void create_lock_counter(JVMState* s);
duke@435 919 NamedCounter* counter() const { return _counter; }
duke@435 920 #endif
duke@435 921 };
duke@435 922
duke@435 923 //------------------------------Lock---------------------------------------
duke@435 924 // High-level lock operation
duke@435 925 //
duke@435 926 // This is a subclass of CallNode because it is a macro node which gets expanded
duke@435 927 // into a code sequence containing a call. This node takes 3 "parameters":
duke@435 928 // 0 - object to lock
duke@435 929 // 1 - a BoxLockNode
duke@435 930 // 2 - a FastLockNode
duke@435 931 //
duke@435 932 class LockNode : public AbstractLockNode {
duke@435 933 public:
duke@435 934
duke@435 935 static const TypeFunc *lock_type() {
duke@435 936 // create input type (domain)
duke@435 937 const Type **fields = TypeTuple::fields(3);
duke@435 938 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
duke@435 939 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
duke@435 940 fields[TypeFunc::Parms+2] = TypeInt::BOOL; // FastLock
duke@435 941 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
duke@435 942
duke@435 943 // create result type (range)
duke@435 944 fields = TypeTuple::fields(0);
duke@435 945
duke@435 946 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 947
duke@435 948 return TypeFunc::make(domain,range);
duke@435 949 }
duke@435 950
duke@435 951 virtual int Opcode() const;
duke@435 952 virtual uint size_of() const; // Size is bigger
duke@435 953 LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
duke@435 954 init_class_id(Class_Lock);
duke@435 955 init_flags(Flag_is_macro);
duke@435 956 C->add_macro_node(this);
duke@435 957 }
duke@435 958 virtual bool guaranteed_safepoint() { return false; }
duke@435 959
duke@435 960 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 961 // Expansion modifies the JVMState, so we need to clone it
duke@435 962 virtual void clone_jvms() {
duke@435 963 set_jvms(jvms()->clone_deep(Compile::current()));
duke@435 964 }
kvn@3406 965
kvn@3406 966 bool is_nested_lock_region(); // Is this Lock nested?
duke@435 967 };
duke@435 968
duke@435 969 //------------------------------Unlock---------------------------------------
duke@435 970 // High-level unlock operation
duke@435 971 class UnlockNode : public AbstractLockNode {
duke@435 972 public:
duke@435 973 virtual int Opcode() const;
duke@435 974 virtual uint size_of() const; // Size is bigger
duke@435 975 UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
duke@435 976 init_class_id(Class_Unlock);
duke@435 977 init_flags(Flag_is_macro);
duke@435 978 C->add_macro_node(this);
duke@435 979 }
duke@435 980 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 981 // unlock is never a safepoint
duke@435 982 virtual bool guaranteed_safepoint() { return false; }
duke@435 983 };
stefank@2314 984
stefank@2314 985 #endif // SHARE_VM_OPTO_CALLNODE_HPP

mercurial