src/share/vm/opto/callnode.hpp

Fri, 31 Jul 2009 17:12:33 -0700

author
cfang
date
Fri, 31 Jul 2009 17:12:33 -0700
changeset 1335
9987d9d5eb0e
parent 1139
ad8c635e757e
child 1338
15bbd3f505c0
permissions
-rw-r--r--

6833129: specjvm98 fails with NullPointerException in the compiler with -XX:DeoptimizeALot
Summary: developed a reexecute logic for the interpreter to reexecute the bytecode when deopt happens
Reviewed-by: kvn, never, jrose, twisti

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29 class Chaitin;
duke@435 30 class NamedCounter;
duke@435 31 class MultiNode;
duke@435 32 class SafePointNode;
duke@435 33 class CallNode;
duke@435 34 class CallJavaNode;
duke@435 35 class CallStaticJavaNode;
duke@435 36 class CallDynamicJavaNode;
duke@435 37 class CallRuntimeNode;
duke@435 38 class CallLeafNode;
duke@435 39 class CallLeafNoFPNode;
duke@435 40 class AllocateNode;
kvn@468 41 class AllocateArrayNode;
duke@435 42 class LockNode;
duke@435 43 class UnlockNode;
duke@435 44 class JVMState;
duke@435 45 class OopMap;
duke@435 46 class State;
duke@435 47 class StartNode;
duke@435 48 class MachCallNode;
duke@435 49 class FastLockNode;
duke@435 50
duke@435 51 //------------------------------StartNode--------------------------------------
duke@435 52 // The method start node
duke@435 53 class StartNode : public MultiNode {
duke@435 54 virtual uint cmp( const Node &n ) const;
duke@435 55 virtual uint size_of() const; // Size is bigger
duke@435 56 public:
duke@435 57 const TypeTuple *_domain;
duke@435 58 StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
duke@435 59 init_class_id(Class_Start);
duke@435 60 init_flags(Flag_is_block_start);
duke@435 61 init_req(0,this);
duke@435 62 init_req(1,root);
duke@435 63 }
duke@435 64 virtual int Opcode() const;
duke@435 65 virtual bool pinned() const { return true; };
duke@435 66 virtual const Type *bottom_type() const;
duke@435 67 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
duke@435 68 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 69 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 70 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
duke@435 71 virtual const RegMask &in_RegMask(uint) const;
duke@435 72 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 73 virtual uint ideal_reg() const { return 0; }
duke@435 74 #ifndef PRODUCT
duke@435 75 virtual void dump_spec(outputStream *st) const;
duke@435 76 #endif
duke@435 77 };
duke@435 78
duke@435 79 //------------------------------StartOSRNode-----------------------------------
duke@435 80 // The method start node for on stack replacement code
duke@435 81 class StartOSRNode : public StartNode {
duke@435 82 public:
duke@435 83 StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
duke@435 84 virtual int Opcode() const;
duke@435 85 static const TypeTuple *osr_domain();
duke@435 86 };
duke@435 87
duke@435 88
duke@435 89 //------------------------------ParmNode---------------------------------------
duke@435 90 // Incoming parameters
duke@435 91 class ParmNode : public ProjNode {
duke@435 92 static const char * const names[TypeFunc::Parms+1];
duke@435 93 public:
kvn@468 94 ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
kvn@468 95 init_class_id(Class_Parm);
kvn@468 96 }
duke@435 97 virtual int Opcode() const;
duke@435 98 virtual bool is_CFG() const { return (_con == TypeFunc::Control); }
duke@435 99 virtual uint ideal_reg() const;
duke@435 100 #ifndef PRODUCT
duke@435 101 virtual void dump_spec(outputStream *st) const;
duke@435 102 #endif
duke@435 103 };
duke@435 104
duke@435 105
duke@435 106 //------------------------------ReturnNode-------------------------------------
duke@435 107 // Return from subroutine node
duke@435 108 class ReturnNode : public Node {
duke@435 109 public:
duke@435 110 ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
duke@435 111 virtual int Opcode() const;
duke@435 112 virtual bool is_CFG() const { return true; }
duke@435 113 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
duke@435 114 virtual bool depends_only_on_test() const { return false; }
duke@435 115 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 116 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 117 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 118 virtual uint match_edge(uint idx) const;
duke@435 119 #ifndef PRODUCT
duke@435 120 virtual void dump_req() const;
duke@435 121 #endif
duke@435 122 };
duke@435 123
duke@435 124
duke@435 125 //------------------------------RethrowNode------------------------------------
duke@435 126 // Rethrow of exception at call site. Ends a procedure before rethrowing;
duke@435 127 // ends the current basic block like a ReturnNode. Restores registers and
duke@435 128 // unwinds stack. Rethrow happens in the caller's method.
duke@435 129 class RethrowNode : public Node {
duke@435 130 public:
duke@435 131 RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
duke@435 132 virtual int Opcode() const;
duke@435 133 virtual bool is_CFG() const { return true; }
duke@435 134 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
duke@435 135 virtual bool depends_only_on_test() const { return false; }
duke@435 136 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 137 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 138 virtual uint match_edge(uint idx) const;
duke@435 139 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 140 #ifndef PRODUCT
duke@435 141 virtual void dump_req() const;
duke@435 142 #endif
duke@435 143 };
duke@435 144
duke@435 145
duke@435 146 //------------------------------TailCallNode-----------------------------------
duke@435 147 // Pop stack frame and jump indirect
duke@435 148 class TailCallNode : public ReturnNode {
duke@435 149 public:
duke@435 150 TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
duke@435 151 : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
duke@435 152 init_req(TypeFunc::Parms, target);
duke@435 153 init_req(TypeFunc::Parms+1, moop);
duke@435 154 }
duke@435 155
duke@435 156 virtual int Opcode() const;
duke@435 157 virtual uint match_edge(uint idx) const;
duke@435 158 };
duke@435 159
duke@435 160 //------------------------------TailJumpNode-----------------------------------
duke@435 161 // Pop stack frame and jump indirect
duke@435 162 class TailJumpNode : public ReturnNode {
duke@435 163 public:
duke@435 164 TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
duke@435 165 : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
duke@435 166 init_req(TypeFunc::Parms, target);
duke@435 167 init_req(TypeFunc::Parms+1, ex_oop);
duke@435 168 }
duke@435 169
duke@435 170 virtual int Opcode() const;
duke@435 171 virtual uint match_edge(uint idx) const;
duke@435 172 };
duke@435 173
duke@435 174 //-------------------------------JVMState-------------------------------------
duke@435 175 // A linked list of JVMState nodes captures the whole interpreter state,
duke@435 176 // plus GC roots, for all active calls at some call site in this compilation
duke@435 177 // unit. (If there is no inlining, then the list has exactly one link.)
duke@435 178 // This provides a way to map the optimized program back into the interpreter,
duke@435 179 // or to let the GC mark the stack.
duke@435 180 class JVMState : public ResourceObj {
cfang@1335 181 public:
cfang@1335 182 typedef enum {
cfang@1335 183 Reexecute_Undefined = -1, // not defined -- will be translated into false later
cfang@1335 184 Reexecute_False = 0, // false -- do not reexecute
cfang@1335 185 Reexecute_True = 1 // true -- reexecute the bytecode
cfang@1335 186 } ReexecuteState; //Reexecute State
cfang@1335 187
duke@435 188 private:
duke@435 189 JVMState* _caller; // List pointer for forming scope chains
duke@435 190 uint _depth; // One mroe than caller depth, or one.
duke@435 191 uint _locoff; // Offset to locals in input edge mapping
duke@435 192 uint _stkoff; // Offset to stack in input edge mapping
duke@435 193 uint _monoff; // Offset to monitors in input edge mapping
kvn@498 194 uint _scloff; // Offset to fields of scalar objs in input edge mapping
duke@435 195 uint _endoff; // Offset to end of input edge mapping
duke@435 196 uint _sp; // Jave Expression Stack Pointer for this state
duke@435 197 int _bci; // Byte Code Index of this JVM point
cfang@1335 198 ReexecuteState _reexecute; // Whether this bytecode need to be re-executed
duke@435 199 ciMethod* _method; // Method Pointer
duke@435 200 SafePointNode* _map; // Map node associated with this scope
duke@435 201 public:
duke@435 202 friend class Compile;
cfang@1335 203 friend class PreserveReexecuteState;
duke@435 204
duke@435 205 // Because JVMState objects live over the entire lifetime of the
duke@435 206 // Compile object, they are allocated into the comp_arena, which
duke@435 207 // does not get resource marked or reset during the compile process
duke@435 208 void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
duke@435 209 void operator delete( void * ) { } // fast deallocation
duke@435 210
duke@435 211 // Create a new JVMState, ready for abstract interpretation.
duke@435 212 JVMState(ciMethod* method, JVMState* caller);
duke@435 213 JVMState(int stack_size); // root state; has a null method
duke@435 214
duke@435 215 // Access functions for the JVM
duke@435 216 uint locoff() const { return _locoff; }
duke@435 217 uint stkoff() const { return _stkoff; }
duke@435 218 uint argoff() const { return _stkoff + _sp; }
duke@435 219 uint monoff() const { return _monoff; }
kvn@498 220 uint scloff() const { return _scloff; }
duke@435 221 uint endoff() const { return _endoff; }
duke@435 222 uint oopoff() const { return debug_end(); }
duke@435 223
duke@435 224 int loc_size() const { return _stkoff - _locoff; }
duke@435 225 int stk_size() const { return _monoff - _stkoff; }
kvn@498 226 int mon_size() const { return _scloff - _monoff; }
kvn@498 227 int scl_size() const { return _endoff - _scloff; }
duke@435 228
duke@435 229 bool is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
duke@435 230 bool is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
kvn@498 231 bool is_mon(uint i) const { return i >= _monoff && i < _scloff; }
kvn@498 232 bool is_scl(uint i) const { return i >= _scloff && i < _endoff; }
duke@435 233
cfang@1335 234 uint sp() const { return _sp; }
cfang@1335 235 int bci() const { return _bci; }
cfang@1335 236 bool should_reexecute() const { return _reexecute==Reexecute_True; }
cfang@1335 237 bool is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
cfang@1335 238 bool has_method() const { return _method != NULL; }
cfang@1335 239 ciMethod* method() const { assert(has_method(), ""); return _method; }
cfang@1335 240 JVMState* caller() const { return _caller; }
cfang@1335 241 SafePointNode* map() const { return _map; }
cfang@1335 242 uint depth() const { return _depth; }
cfang@1335 243 uint debug_start() const; // returns locoff of root caller
cfang@1335 244 uint debug_end() const; // returns endoff of self
cfang@1335 245 uint debug_size() const {
kvn@498 246 return loc_size() + sp() + mon_size() + scl_size();
kvn@498 247 }
duke@435 248 uint debug_depth() const; // returns sum of debug_size values at all depths
duke@435 249
duke@435 250 // Returns the JVM state at the desired depth (1 == root).
duke@435 251 JVMState* of_depth(int d) const;
duke@435 252
duke@435 253 // Tells if two JVM states have the same call chain (depth, methods, & bcis).
duke@435 254 bool same_calls_as(const JVMState* that) const;
duke@435 255
duke@435 256 // Monitors (monitors are stored as (boxNode, objNode) pairs
duke@435 257 enum { logMonitorEdges = 1 };
duke@435 258 int nof_monitors() const { return mon_size() >> logMonitorEdges; }
duke@435 259 int monitor_depth() const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
duke@435 260 int monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
duke@435 261 int monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
duke@435 262 bool is_monitor_box(uint off) const {
duke@435 263 assert(is_mon(off), "should be called only for monitor edge");
duke@435 264 return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
duke@435 265 }
duke@435 266 bool is_monitor_use(uint off) const { return (is_mon(off)
duke@435 267 && is_monitor_box(off))
duke@435 268 || (caller() && caller()->is_monitor_use(off)); }
duke@435 269
duke@435 270 // Initialization functions for the JVM
duke@435 271 void set_locoff(uint off) { _locoff = off; }
duke@435 272 void set_stkoff(uint off) { _stkoff = off; }
duke@435 273 void set_monoff(uint off) { _monoff = off; }
kvn@498 274 void set_scloff(uint off) { _scloff = off; }
duke@435 275 void set_endoff(uint off) { _endoff = off; }
kvn@498 276 void set_offsets(uint off) {
kvn@498 277 _locoff = _stkoff = _monoff = _scloff = _endoff = off;
kvn@498 278 }
duke@435 279 void set_map(SafePointNode *map) { _map = map; }
duke@435 280 void set_sp(uint sp) { _sp = sp; }
cfang@1335 281 // _reexecute is initialized to "undefined" for a new bci
cfang@1335 282 void set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
cfang@1335 283 void set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
duke@435 284
duke@435 285 // Miscellaneous utility functions
duke@435 286 JVMState* clone_deep(Compile* C) const; // recursively clones caller chain
duke@435 287 JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
duke@435 288
duke@435 289 #ifndef PRODUCT
duke@435 290 void format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
duke@435 291 void dump_spec(outputStream *st) const;
duke@435 292 void dump_on(outputStream* st) const;
duke@435 293 void dump() const {
duke@435 294 dump_on(tty);
duke@435 295 }
duke@435 296 #endif
duke@435 297 };
duke@435 298
duke@435 299 //------------------------------SafePointNode----------------------------------
duke@435 300 // A SafePointNode is a subclass of a MultiNode for convenience (and
duke@435 301 // potential code sharing) only - conceptually it is independent of
duke@435 302 // the Node semantics.
duke@435 303 class SafePointNode : public MultiNode {
duke@435 304 virtual uint cmp( const Node &n ) const;
duke@435 305 virtual uint size_of() const; // Size is bigger
duke@435 306
duke@435 307 public:
duke@435 308 SafePointNode(uint edges, JVMState* jvms,
duke@435 309 // A plain safepoint advertises no memory effects (NULL):
duke@435 310 const TypePtr* adr_type = NULL)
duke@435 311 : MultiNode( edges ),
duke@435 312 _jvms(jvms),
duke@435 313 _oop_map(NULL),
duke@435 314 _adr_type(adr_type)
duke@435 315 {
duke@435 316 init_class_id(Class_SafePoint);
duke@435 317 }
duke@435 318
duke@435 319 OopMap* _oop_map; // Array of OopMap info (8-bit char) for GC
duke@435 320 JVMState* const _jvms; // Pointer to list of JVM State objects
duke@435 321 const TypePtr* _adr_type; // What type of memory does this node produce?
duke@435 322
duke@435 323 // Many calls take *all* of memory as input,
duke@435 324 // but some produce a limited subset of that memory as output.
duke@435 325 // The adr_type reports the call's behavior as a store, not a load.
duke@435 326
duke@435 327 virtual JVMState* jvms() const { return _jvms; }
duke@435 328 void set_jvms(JVMState* s) {
duke@435 329 *(JVMState**)&_jvms = s; // override const attribute in the accessor
duke@435 330 }
duke@435 331 OopMap *oop_map() const { return _oop_map; }
duke@435 332 void set_oop_map(OopMap *om) { _oop_map = om; }
duke@435 333
duke@435 334 // Functionality from old debug nodes which has changed
duke@435 335 Node *local(JVMState* jvms, uint idx) const {
duke@435 336 assert(verify_jvms(jvms), "jvms must match");
duke@435 337 return in(jvms->locoff() + idx);
duke@435 338 }
duke@435 339 Node *stack(JVMState* jvms, uint idx) const {
duke@435 340 assert(verify_jvms(jvms), "jvms must match");
duke@435 341 return in(jvms->stkoff() + idx);
duke@435 342 }
duke@435 343 Node *argument(JVMState* jvms, uint idx) const {
duke@435 344 assert(verify_jvms(jvms), "jvms must match");
duke@435 345 return in(jvms->argoff() + idx);
duke@435 346 }
duke@435 347 Node *monitor_box(JVMState* jvms, uint idx) const {
duke@435 348 assert(verify_jvms(jvms), "jvms must match");
duke@435 349 return in(jvms->monitor_box_offset(idx));
duke@435 350 }
duke@435 351 Node *monitor_obj(JVMState* jvms, uint idx) const {
duke@435 352 assert(verify_jvms(jvms), "jvms must match");
duke@435 353 return in(jvms->monitor_obj_offset(idx));
duke@435 354 }
duke@435 355
duke@435 356 void set_local(JVMState* jvms, uint idx, Node *c);
duke@435 357
duke@435 358 void set_stack(JVMState* jvms, uint idx, Node *c) {
duke@435 359 assert(verify_jvms(jvms), "jvms must match");
duke@435 360 set_req(jvms->stkoff() + idx, c);
duke@435 361 }
duke@435 362 void set_argument(JVMState* jvms, uint idx, Node *c) {
duke@435 363 assert(verify_jvms(jvms), "jvms must match");
duke@435 364 set_req(jvms->argoff() + idx, c);
duke@435 365 }
duke@435 366 void ensure_stack(JVMState* jvms, uint stk_size) {
duke@435 367 assert(verify_jvms(jvms), "jvms must match");
duke@435 368 int grow_by = (int)stk_size - (int)jvms->stk_size();
duke@435 369 if (grow_by > 0) grow_stack(jvms, grow_by);
duke@435 370 }
duke@435 371 void grow_stack(JVMState* jvms, uint grow_by);
duke@435 372 // Handle monitor stack
duke@435 373 void push_monitor( const FastLockNode *lock );
duke@435 374 void pop_monitor ();
duke@435 375 Node *peek_monitor_box() const;
duke@435 376 Node *peek_monitor_obj() const;
duke@435 377
duke@435 378 // Access functions for the JVM
duke@435 379 Node *control () const { return in(TypeFunc::Control ); }
duke@435 380 Node *i_o () const { return in(TypeFunc::I_O ); }
duke@435 381 Node *memory () const { return in(TypeFunc::Memory ); }
duke@435 382 Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
duke@435 383 Node *frameptr () const { return in(TypeFunc::FramePtr ); }
duke@435 384
duke@435 385 void set_control ( Node *c ) { set_req(TypeFunc::Control,c); }
duke@435 386 void set_i_o ( Node *c ) { set_req(TypeFunc::I_O ,c); }
duke@435 387 void set_memory ( Node *c ) { set_req(TypeFunc::Memory ,c); }
duke@435 388
duke@435 389 MergeMemNode* merged_memory() const {
duke@435 390 return in(TypeFunc::Memory)->as_MergeMem();
duke@435 391 }
duke@435 392
duke@435 393 // The parser marks useless maps as dead when it's done with them:
duke@435 394 bool is_killed() { return in(TypeFunc::Control) == NULL; }
duke@435 395
duke@435 396 // Exception states bubbling out of subgraphs such as inlined calls
duke@435 397 // are recorded here. (There might be more than one, hence the "next".)
duke@435 398 // This feature is used only for safepoints which serve as "maps"
duke@435 399 // for JVM states during parsing, intrinsic expansion, etc.
duke@435 400 SafePointNode* next_exception() const;
duke@435 401 void set_next_exception(SafePointNode* n);
duke@435 402 bool has_exceptions() const { return next_exception() != NULL; }
duke@435 403
duke@435 404 // Standard Node stuff
duke@435 405 virtual int Opcode() const;
duke@435 406 virtual bool pinned() const { return true; }
duke@435 407 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 408 virtual const Type *bottom_type() const { return Type::CONTROL; }
duke@435 409 virtual const TypePtr *adr_type() const { return _adr_type; }
duke@435 410 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 411 virtual Node *Identity( PhaseTransform *phase );
duke@435 412 virtual uint ideal_reg() const { return 0; }
duke@435 413 virtual const RegMask &in_RegMask(uint) const;
duke@435 414 virtual const RegMask &out_RegMask() const;
duke@435 415 virtual uint match_edge(uint idx) const;
duke@435 416
duke@435 417 static bool needs_polling_address_input();
duke@435 418
duke@435 419 #ifndef PRODUCT
duke@435 420 virtual void dump_spec(outputStream *st) const;
duke@435 421 #endif
duke@435 422 };
duke@435 423
kvn@498 424 //------------------------------SafePointScalarObjectNode----------------------
kvn@498 425 // A SafePointScalarObjectNode represents the state of a scalarized object
kvn@498 426 // at a safepoint.
kvn@498 427
kvn@498 428 class SafePointScalarObjectNode: public TypeNode {
kvn@498 429 uint _first_index; // First input edge index of a SafePoint node where
kvn@498 430 // states of the scalarized object fields are collected.
kvn@498 431 uint _n_fields; // Number of non-static fields of the scalarized object.
kvn@509 432 DEBUG_ONLY(AllocateNode* _alloc;)
kvn@498 433 public:
kvn@498 434 SafePointScalarObjectNode(const TypeOopPtr* tp,
kvn@498 435 #ifdef ASSERT
kvn@498 436 AllocateNode* alloc,
kvn@498 437 #endif
kvn@498 438 uint first_index, uint n_fields);
kvn@498 439 virtual int Opcode() const;
kvn@498 440 virtual uint ideal_reg() const;
kvn@498 441 virtual const RegMask &in_RegMask(uint) const;
kvn@498 442 virtual const RegMask &out_RegMask() const;
kvn@498 443 virtual uint match_edge(uint idx) const;
kvn@498 444
kvn@498 445 uint first_index() const { return _first_index; }
kvn@498 446 uint n_fields() const { return _n_fields; }
kvn@498 447 DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })
kvn@498 448
kvn@855 449 // SafePointScalarObject should be always pinned to the control edge
kvn@855 450 // of the SafePoint node for which it was generated.
kvn@855 451 virtual bool pinned() const; // { return true; }
kvn@855 452
kvn@1036 453 // SafePointScalarObject depends on the SafePoint node
kvn@1036 454 // for which it was generated.
kvn@1036 455 virtual bool depends_only_on_test() const; // { return false; }
kvn@1036 456
kvn@498 457 virtual uint size_of() const { return sizeof(*this); }
kvn@498 458
kvn@498 459 // Assumes that "this" is an argument to a safepoint node "s", and that
kvn@498 460 // "new_call" is being created to correspond to "s". But the difference
kvn@498 461 // between the start index of the jvmstates of "new_call" and "s" is
kvn@498 462 // "jvms_adj". Produce and return a SafePointScalarObjectNode that
kvn@498 463 // corresponds appropriately to "this" in "new_call". Assumes that
kvn@498 464 // "sosn_map" is a map, specific to the translation of "s" to "new_call",
kvn@498 465 // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
kvn@498 466 SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
kvn@498 467
kvn@498 468 #ifndef PRODUCT
kvn@498 469 virtual void dump_spec(outputStream *st) const;
kvn@498 470 #endif
kvn@498 471 };
kvn@498 472
duke@435 473 //------------------------------CallNode---------------------------------------
duke@435 474 // Call nodes now subsume the function of debug nodes at callsites, so they
duke@435 475 // contain the functionality of a full scope chain of debug nodes.
duke@435 476 class CallNode : public SafePointNode {
duke@435 477 public:
duke@435 478 const TypeFunc *_tf; // Function type
duke@435 479 address _entry_point; // Address of method being called
duke@435 480 float _cnt; // Estimate of number of times called
duke@435 481
duke@435 482 CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
duke@435 483 : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
duke@435 484 _tf(tf),
duke@435 485 _entry_point(addr),
duke@435 486 _cnt(COUNT_UNKNOWN)
duke@435 487 {
duke@435 488 init_class_id(Class_Call);
duke@435 489 init_flags(Flag_is_Call);
duke@435 490 }
duke@435 491
duke@435 492 const TypeFunc* tf() const { return _tf; }
duke@435 493 const address entry_point() const { return _entry_point; }
duke@435 494 const float cnt() const { return _cnt; }
duke@435 495
duke@435 496 void set_tf(const TypeFunc* tf) { _tf = tf; }
duke@435 497 void set_entry_point(address p) { _entry_point = p; }
duke@435 498 void set_cnt(float c) { _cnt = c; }
duke@435 499
duke@435 500 virtual const Type *bottom_type() const;
duke@435 501 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 502 virtual Node *Identity( PhaseTransform *phase ) { return this; }
duke@435 503 virtual uint cmp( const Node &n ) const;
duke@435 504 virtual uint size_of() const = 0;
duke@435 505 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
duke@435 506 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 507 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 508 // Are we guaranteed that this node is a safepoint? Not true for leaf calls and
duke@435 509 // for some macro nodes whose expansion does not have a safepoint on the fast path.
duke@435 510 virtual bool guaranteed_safepoint() { return true; }
duke@435 511 // For macro nodes, the JVMState gets modified during expansion, so when cloning
duke@435 512 // the node the JVMState must be cloned.
duke@435 513 virtual void clone_jvms() { } // default is not to clone
duke@435 514
kvn@500 515 // Returns true if the call may modify n
kvn@500 516 virtual bool may_modify(const TypePtr *addr_t, PhaseTransform *phase);
kvn@500 517 // Does this node have a use of n other than in debug information?
kvn@603 518 bool has_non_debug_use(Node *n);
kvn@500 519 // Returns the unique CheckCastPP of a call
kvn@500 520 // or result projection is there are several CheckCastPP
kvn@500 521 // or returns NULL if there is no one.
kvn@500 522 Node *result_cast();
kvn@500 523
duke@435 524 virtual uint match_edge(uint idx) const;
duke@435 525
duke@435 526 #ifndef PRODUCT
duke@435 527 virtual void dump_req() const;
duke@435 528 virtual void dump_spec(outputStream *st) const;
duke@435 529 #endif
duke@435 530 };
duke@435 531
duke@435 532 //------------------------------CallJavaNode-----------------------------------
duke@435 533 // Make a static or dynamic subroutine call node using Java calling
duke@435 534 // convention. (The "Java" calling convention is the compiler's calling
duke@435 535 // convention, as opposed to the interpreter's or that of native C.)
duke@435 536 class CallJavaNode : public CallNode {
duke@435 537 protected:
duke@435 538 virtual uint cmp( const Node &n ) const;
duke@435 539 virtual uint size_of() const; // Size is bigger
duke@435 540
duke@435 541 bool _optimized_virtual;
duke@435 542 ciMethod* _method; // Method being direct called
duke@435 543 public:
duke@435 544 const int _bci; // Byte Code Index of call byte code
duke@435 545 CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
duke@435 546 : CallNode(tf, addr, TypePtr::BOTTOM),
duke@435 547 _method(method), _bci(bci), _optimized_virtual(false)
duke@435 548 {
duke@435 549 init_class_id(Class_CallJava);
duke@435 550 }
duke@435 551
duke@435 552 virtual int Opcode() const;
duke@435 553 ciMethod* method() const { return _method; }
duke@435 554 void set_method(ciMethod *m) { _method = m; }
duke@435 555 void set_optimized_virtual(bool f) { _optimized_virtual = f; }
duke@435 556 bool is_optimized_virtual() const { return _optimized_virtual; }
duke@435 557
duke@435 558 #ifndef PRODUCT
duke@435 559 virtual void dump_spec(outputStream *st) const;
duke@435 560 #endif
duke@435 561 };
duke@435 562
duke@435 563 //------------------------------CallStaticJavaNode-----------------------------
duke@435 564 // Make a direct subroutine call using Java calling convention (for static
duke@435 565 // calls and optimized virtual calls, plus calls to wrappers for run-time
duke@435 566 // routines); generates static stub.
duke@435 567 class CallStaticJavaNode : public CallJavaNode {
duke@435 568 virtual uint cmp( const Node &n ) const;
duke@435 569 virtual uint size_of() const; // Size is bigger
duke@435 570 public:
duke@435 571 CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
duke@435 572 : CallJavaNode(tf, addr, method, bci), _name(NULL) {
duke@435 573 init_class_id(Class_CallStaticJava);
duke@435 574 }
duke@435 575 CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
duke@435 576 const TypePtr* adr_type)
duke@435 577 : CallJavaNode(tf, addr, NULL, bci), _name(name) {
duke@435 578 init_class_id(Class_CallStaticJava);
duke@435 579 // This node calls a runtime stub, which often has narrow memory effects.
duke@435 580 _adr_type = adr_type;
duke@435 581 }
duke@435 582 const char *_name; // Runtime wrapper name
duke@435 583
duke@435 584 // If this is an uncommon trap, return the request code, else zero.
duke@435 585 int uncommon_trap_request() const;
duke@435 586 static int extract_uncommon_trap_request(const Node* call);
duke@435 587
duke@435 588 virtual int Opcode() const;
duke@435 589 #ifndef PRODUCT
duke@435 590 virtual void dump_spec(outputStream *st) const;
duke@435 591 #endif
duke@435 592 };
duke@435 593
duke@435 594 //------------------------------CallDynamicJavaNode----------------------------
duke@435 595 // Make a dispatched call using Java calling convention.
duke@435 596 class CallDynamicJavaNode : public CallJavaNode {
duke@435 597 virtual uint cmp( const Node &n ) const;
duke@435 598 virtual uint size_of() const; // Size is bigger
duke@435 599 public:
duke@435 600 CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
duke@435 601 init_class_id(Class_CallDynamicJava);
duke@435 602 }
duke@435 603
duke@435 604 int _vtable_index;
duke@435 605 virtual int Opcode() const;
duke@435 606 #ifndef PRODUCT
duke@435 607 virtual void dump_spec(outputStream *st) const;
duke@435 608 #endif
duke@435 609 };
duke@435 610
duke@435 611 //------------------------------CallRuntimeNode--------------------------------
duke@435 612 // Make a direct subroutine call node into compiled C++ code.
duke@435 613 class CallRuntimeNode : public CallNode {
duke@435 614 virtual uint cmp( const Node &n ) const;
duke@435 615 virtual uint size_of() const; // Size is bigger
duke@435 616 public:
duke@435 617 CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
duke@435 618 const TypePtr* adr_type)
duke@435 619 : CallNode(tf, addr, adr_type),
duke@435 620 _name(name)
duke@435 621 {
duke@435 622 init_class_id(Class_CallRuntime);
duke@435 623 }
duke@435 624
duke@435 625 const char *_name; // Printable name, if _method is NULL
duke@435 626 virtual int Opcode() const;
duke@435 627 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
duke@435 628
duke@435 629 #ifndef PRODUCT
duke@435 630 virtual void dump_spec(outputStream *st) const;
duke@435 631 #endif
duke@435 632 };
duke@435 633
duke@435 634 //------------------------------CallLeafNode-----------------------------------
duke@435 635 // Make a direct subroutine call node into compiled C++ code, without
duke@435 636 // safepoints
duke@435 637 class CallLeafNode : public CallRuntimeNode {
duke@435 638 public:
duke@435 639 CallLeafNode(const TypeFunc* tf, address addr, const char* name,
duke@435 640 const TypePtr* adr_type)
duke@435 641 : CallRuntimeNode(tf, addr, name, adr_type)
duke@435 642 {
duke@435 643 init_class_id(Class_CallLeaf);
duke@435 644 }
duke@435 645 virtual int Opcode() const;
duke@435 646 virtual bool guaranteed_safepoint() { return false; }
duke@435 647 #ifndef PRODUCT
duke@435 648 virtual void dump_spec(outputStream *st) const;
duke@435 649 #endif
duke@435 650 };
duke@435 651
duke@435 652 //------------------------------CallLeafNoFPNode-------------------------------
duke@435 653 // CallLeafNode, not using floating point or using it in the same manner as
duke@435 654 // the generated code
duke@435 655 class CallLeafNoFPNode : public CallLeafNode {
duke@435 656 public:
duke@435 657 CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
duke@435 658 const TypePtr* adr_type)
duke@435 659 : CallLeafNode(tf, addr, name, adr_type)
duke@435 660 {
duke@435 661 }
duke@435 662 virtual int Opcode() const;
duke@435 663 };
duke@435 664
duke@435 665
duke@435 666 //------------------------------Allocate---------------------------------------
duke@435 667 // High-level memory allocation
duke@435 668 //
duke@435 669 // AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
duke@435 670 // get expanded into a code sequence containing a call. Unlike other CallNodes,
duke@435 671 // they have 2 memory projections and 2 i_o projections (which are distinguished by
duke@435 672 // the _is_io_use flag in the projection.) This is needed when expanding the node in
duke@435 673 // order to differentiate the uses of the projection on the normal control path from
duke@435 674 // those on the exception return path.
duke@435 675 //
duke@435 676 class AllocateNode : public CallNode {
duke@435 677 public:
duke@435 678 enum {
duke@435 679 // Output:
duke@435 680 RawAddress = TypeFunc::Parms, // the newly-allocated raw address
duke@435 681 // Inputs:
duke@435 682 AllocSize = TypeFunc::Parms, // size (in bytes) of the new object
duke@435 683 KlassNode, // type (maybe dynamic) of the obj.
duke@435 684 InitialTest, // slow-path test (may be constant)
duke@435 685 ALength, // array length (or TOP if none)
duke@435 686 ParmLimit
duke@435 687 };
duke@435 688
duke@435 689 static const TypeFunc* alloc_type() {
duke@435 690 const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
duke@435 691 fields[AllocSize] = TypeInt::POS;
duke@435 692 fields[KlassNode] = TypeInstPtr::NOTNULL;
duke@435 693 fields[InitialTest] = TypeInt::BOOL;
duke@435 694 fields[ALength] = TypeInt::INT; // length (can be a bad length)
duke@435 695
duke@435 696 const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
duke@435 697
duke@435 698 // create result type (range)
duke@435 699 fields = TypeTuple::fields(1);
duke@435 700 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 701
duke@435 702 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 703
duke@435 704 return TypeFunc::make(domain, range);
duke@435 705 }
duke@435 706
kvn@474 707 bool _is_scalar_replaceable; // Result of Escape Analysis
kvn@474 708
duke@435 709 virtual uint size_of() const; // Size is bigger
duke@435 710 AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
duke@435 711 Node *size, Node *klass_node, Node *initial_test);
duke@435 712 // Expansion modifies the JVMState, so we need to clone it
duke@435 713 virtual void clone_jvms() {
duke@435 714 set_jvms(jvms()->clone_deep(Compile::current()));
duke@435 715 }
duke@435 716 virtual int Opcode() const;
duke@435 717 virtual uint ideal_reg() const { return Op_RegP; }
duke@435 718 virtual bool guaranteed_safepoint() { return false; }
duke@435 719
kvn@500 720 // allocations do not modify their arguments
kvn@500 721 virtual bool may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
kvn@500 722
duke@435 723 // Pattern-match a possible usage of AllocateNode.
duke@435 724 // Return null if no allocation is recognized.
duke@435 725 // The operand is the pointer produced by the (possible) allocation.
duke@435 726 // It must be a projection of the Allocate or its subsequent CastPP.
duke@435 727 // (Note: This function is defined in file graphKit.cpp, near
duke@435 728 // GraphKit::new_instance/new_array, whose output it recognizes.)
duke@435 729 // The 'ptr' may not have an offset unless the 'offset' argument is given.
duke@435 730 static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
duke@435 731
duke@435 732 // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
duke@435 733 // an offset, which is reported back to the caller.
duke@435 734 // (Note: AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
duke@435 735 static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
duke@435 736 intptr_t& offset);
duke@435 737
duke@435 738 // Dig the klass operand out of a (possible) allocation site.
duke@435 739 static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
duke@435 740 AllocateNode* allo = Ideal_allocation(ptr, phase);
duke@435 741 return (allo == NULL) ? NULL : allo->in(KlassNode);
duke@435 742 }
duke@435 743
duke@435 744 // Conservatively small estimate of offset of first non-header byte.
duke@435 745 int minimum_header_size() {
coleenp@548 746 return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
coleenp@548 747 instanceOopDesc::base_offset_in_bytes();
duke@435 748 }
duke@435 749
duke@435 750 // Return the corresponding initialization barrier (or null if none).
duke@435 751 // Walks out edges to find it...
duke@435 752 // (Note: Both InitializeNode::allocation and AllocateNode::initialization
duke@435 753 // are defined in graphKit.cpp, which sets up the bidirectional relation.)
duke@435 754 InitializeNode* initialization();
duke@435 755
duke@435 756 // Convenience for initialization->maybe_set_complete(phase)
duke@435 757 bool maybe_set_complete(PhaseGVN* phase);
duke@435 758 };
duke@435 759
duke@435 760 //------------------------------AllocateArray---------------------------------
duke@435 761 //
duke@435 762 // High-level array allocation
duke@435 763 //
duke@435 764 class AllocateArrayNode : public AllocateNode {
duke@435 765 public:
duke@435 766 AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
duke@435 767 Node* size, Node* klass_node, Node* initial_test,
duke@435 768 Node* count_val
duke@435 769 )
duke@435 770 : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
duke@435 771 initial_test)
duke@435 772 {
duke@435 773 init_class_id(Class_AllocateArray);
duke@435 774 set_req(AllocateNode::ALength, count_val);
duke@435 775 }
duke@435 776 virtual int Opcode() const;
duke@435 777 virtual uint size_of() const; // Size is bigger
kvn@1139 778 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 779
rasbold@801 780 // Dig the length operand out of a array allocation site.
rasbold@801 781 Node* Ideal_length() {
rasbold@801 782 return in(AllocateNode::ALength);
rasbold@801 783 }
rasbold@801 784
rasbold@801 785 // Dig the length operand out of a array allocation site and narrow the
rasbold@801 786 // type with a CastII, if necesssary
rasbold@801 787 Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
rasbold@801 788
duke@435 789 // Pattern-match a possible usage of AllocateArrayNode.
duke@435 790 // Return null if no allocation is recognized.
duke@435 791 static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
duke@435 792 AllocateNode* allo = Ideal_allocation(ptr, phase);
duke@435 793 return (allo == NULL || !allo->is_AllocateArray())
duke@435 794 ? NULL : allo->as_AllocateArray();
duke@435 795 }
duke@435 796 };
duke@435 797
duke@435 798 //------------------------------AbstractLockNode-----------------------------------
duke@435 799 class AbstractLockNode: public CallNode {
duke@435 800 private:
kvn@895 801 bool _eliminate; // indicates this lock can be safely eliminated
kvn@895 802 bool _coarsened; // indicates this lock was coarsened
duke@435 803 #ifndef PRODUCT
duke@435 804 NamedCounter* _counter;
duke@435 805 #endif
duke@435 806
duke@435 807 protected:
duke@435 808 // helper functions for lock elimination
duke@435 809 //
duke@435 810
duke@435 811 bool find_matching_unlock(const Node* ctrl, LockNode* lock,
duke@435 812 GrowableArray<AbstractLockNode*> &lock_ops);
duke@435 813 bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
duke@435 814 GrowableArray<AbstractLockNode*> &lock_ops);
duke@435 815 bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
duke@435 816 GrowableArray<AbstractLockNode*> &lock_ops);
duke@435 817 LockNode *find_matching_lock(UnlockNode* unlock);
duke@435 818
duke@435 819
duke@435 820 public:
duke@435 821 AbstractLockNode(const TypeFunc *tf)
duke@435 822 : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
kvn@895 823 _coarsened(false),
duke@435 824 _eliminate(false)
duke@435 825 {
duke@435 826 #ifndef PRODUCT
duke@435 827 _counter = NULL;
duke@435 828 #endif
duke@435 829 }
duke@435 830 virtual int Opcode() const = 0;
duke@435 831 Node * obj_node() const {return in(TypeFunc::Parms + 0); }
duke@435 832 Node * box_node() const {return in(TypeFunc::Parms + 1); }
duke@435 833 Node * fastlock_node() const {return in(TypeFunc::Parms + 2); }
duke@435 834 const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
duke@435 835
duke@435 836 virtual uint size_of() const { return sizeof(*this); }
duke@435 837
duke@435 838 bool is_eliminated() {return _eliminate; }
duke@435 839 // mark node as eliminated and update the counter if there is one
duke@435 840 void set_eliminated();
duke@435 841
kvn@895 842 bool is_coarsened() { return _coarsened; }
kvn@895 843 void set_coarsened() { _coarsened = true; }
kvn@895 844
kvn@500 845 // locking does not modify its arguments
kvn@500 846 virtual bool may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
kvn@500 847
duke@435 848 #ifndef PRODUCT
duke@435 849 void create_lock_counter(JVMState* s);
duke@435 850 NamedCounter* counter() const { return _counter; }
duke@435 851 #endif
duke@435 852 };
duke@435 853
duke@435 854 //------------------------------Lock---------------------------------------
duke@435 855 // High-level lock operation
duke@435 856 //
duke@435 857 // This is a subclass of CallNode because it is a macro node which gets expanded
duke@435 858 // into a code sequence containing a call. This node takes 3 "parameters":
duke@435 859 // 0 - object to lock
duke@435 860 // 1 - a BoxLockNode
duke@435 861 // 2 - a FastLockNode
duke@435 862 //
duke@435 863 class LockNode : public AbstractLockNode {
duke@435 864 public:
duke@435 865
duke@435 866 static const TypeFunc *lock_type() {
duke@435 867 // create input type (domain)
duke@435 868 const Type **fields = TypeTuple::fields(3);
duke@435 869 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
duke@435 870 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
duke@435 871 fields[TypeFunc::Parms+2] = TypeInt::BOOL; // FastLock
duke@435 872 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
duke@435 873
duke@435 874 // create result type (range)
duke@435 875 fields = TypeTuple::fields(0);
duke@435 876
duke@435 877 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 878
duke@435 879 return TypeFunc::make(domain,range);
duke@435 880 }
duke@435 881
duke@435 882 virtual int Opcode() const;
duke@435 883 virtual uint size_of() const; // Size is bigger
duke@435 884 LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
duke@435 885 init_class_id(Class_Lock);
duke@435 886 init_flags(Flag_is_macro);
duke@435 887 C->add_macro_node(this);
duke@435 888 }
duke@435 889 virtual bool guaranteed_safepoint() { return false; }
duke@435 890
duke@435 891 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 892 // Expansion modifies the JVMState, so we need to clone it
duke@435 893 virtual void clone_jvms() {
duke@435 894 set_jvms(jvms()->clone_deep(Compile::current()));
duke@435 895 }
duke@435 896 };
duke@435 897
duke@435 898 //------------------------------Unlock---------------------------------------
duke@435 899 // High-level unlock operation
duke@435 900 class UnlockNode : public AbstractLockNode {
duke@435 901 public:
duke@435 902 virtual int Opcode() const;
duke@435 903 virtual uint size_of() const; // Size is bigger
duke@435 904 UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
duke@435 905 init_class_id(Class_Unlock);
duke@435 906 init_flags(Flag_is_macro);
duke@435 907 C->add_macro_node(this);
duke@435 908 }
duke@435 909 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 910 // unlock is never a safepoint
duke@435 911 virtual bool guaranteed_safepoint() { return false; }
duke@435 912 };

mercurial