src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Fri, 16 Aug 2019 16:50:17 +0200

author
eosterlund
date
Fri, 16 Aug 2019 16:50:17 +0200
changeset 9834
bb1da64b0492
parent 9669
32bc598624bd
child 9703
2fdf635bcf28
permissions
-rw-r--r--

8229345: Memory leak due to vtable stubs not being shared on SPARC
Reviewed-by: mdoerr, dholmes, kvn

duke@435 1 /*
dbuck@8997 2 * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4318 26 #include "asm/macroAssembler.hpp"
twisti@4318 27 #include "asm/macroAssembler.inline.hpp"
stefank@2314 28 #include "code/debugInfoRec.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "interpreter/interpreter.hpp"
coleenp@4037 32 #include "oops/compiledICHolder.hpp"
stefank@2314 33 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 34 #include "runtime/sharedRuntime.hpp"
stefank@2314 35 #include "runtime/vframeArray.hpp"
stefank@2314 36 #include "vmreg_x86.inline.hpp"
stefank@2314 37 #ifdef COMPILER1
stefank@2314 38 #include "c1/c1_Runtime1.hpp"
stefank@2314 39 #endif
stefank@2314 40 #ifdef COMPILER2
stefank@2314 41 #include "opto/runtime.hpp"
stefank@2314 42 #endif
duke@435 43
duke@435 44 #define __ masm->
duke@435 45
xlu@959 46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
xlu@959 47
duke@435 48 class RegisterSaver {
duke@435 49 // Capture info about frame layout
kvn@4103 50 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
duke@435 51 enum layout {
duke@435 52 fpu_state_off = 0,
kvn@4103 53 fpu_state_end = fpu_state_off+FPUStateSizeInWords,
duke@435 54 st0_off, st0H_off,
duke@435 55 st1_off, st1H_off,
duke@435 56 st2_off, st2H_off,
duke@435 57 st3_off, st3H_off,
duke@435 58 st4_off, st4H_off,
duke@435 59 st5_off, st5H_off,
duke@435 60 st6_off, st6H_off,
duke@435 61 st7_off, st7H_off,
kvn@4103 62 xmm_off,
kvn@4103 63 DEF_XMM_OFFS(0),
kvn@4103 64 DEF_XMM_OFFS(1),
kvn@4103 65 DEF_XMM_OFFS(2),
kvn@4103 66 DEF_XMM_OFFS(3),
kvn@4103 67 DEF_XMM_OFFS(4),
kvn@4103 68 DEF_XMM_OFFS(5),
kvn@4103 69 DEF_XMM_OFFS(6),
kvn@4103 70 DEF_XMM_OFFS(7),
kvn@4103 71 flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word
duke@435 72 rdi_off,
duke@435 73 rsi_off,
duke@435 74 ignore_off, // extra copy of rbp,
duke@435 75 rsp_off,
duke@435 76 rbx_off,
duke@435 77 rdx_off,
duke@435 78 rcx_off,
duke@435 79 rax_off,
duke@435 80 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 81 // will override any oopMap setting for it. We must therefore force the layout
duke@435 82 // so that it agrees with the frame sender code.
duke@435 83 rbp_off,
duke@435 84 return_off, // slot for return address
duke@435 85 reg_save_size };
kvn@4103 86 enum { FPU_regs_live = flags_off - fpu_state_end };
duke@435 87
duke@435 88 public:
duke@435 89
duke@435 90 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
kvn@4103 91 int* total_frame_words, bool verify_fpu = true, bool save_vectors = false);
kvn@4103 92 static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
duke@435 93
duke@435 94 static int rax_offset() { return rax_off; }
duke@435 95 static int rbx_offset() { return rbx_off; }
duke@435 96
duke@435 97 // Offsets into the register save area
duke@435 98 // Used by deoptimization when it is managing result register
duke@435 99 // values on its own
duke@435 100
duke@435 101 static int raxOffset(void) { return rax_off; }
duke@435 102 static int rdxOffset(void) { return rdx_off; }
duke@435 103 static int rbxOffset(void) { return rbx_off; }
duke@435 104 static int xmm0Offset(void) { return xmm0_off; }
duke@435 105 // This really returns a slot in the fp save area, which one is not important
duke@435 106 static int fpResultOffset(void) { return st0_off; }
duke@435 107
duke@435 108 // During deoptimization only the result register need to be restored
duke@435 109 // all the other values have already been extracted.
duke@435 110
duke@435 111 static void restore_result_registers(MacroAssembler* masm);
duke@435 112
duke@435 113 };
duke@435 114
duke@435 115 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
kvn@4103 116 int* total_frame_words, bool verify_fpu, bool save_vectors) {
kvn@4103 117 int vect_words = 0;
kvn@4103 118 #ifdef COMPILER2
kvn@4103 119 if (save_vectors) {
kvn@4103 120 assert(UseAVX > 0, "256bit vectors are supported only with AVX");
kvn@4103 121 assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
kvn@4103 122 // Save upper half of YMM registes
kvn@4103 123 vect_words = 8 * 16 / wordSize;
kvn@4103 124 additional_frame_words += vect_words;
kvn@4103 125 }
kvn@4103 126 #else
kvn@4103 127 assert(!save_vectors, "vectors are generated only by C2");
kvn@4103 128 #endif
kvn@4103 129 int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
duke@435 130 int frame_words = frame_size_in_bytes / wordSize;
duke@435 131 *total_frame_words = frame_words;
duke@435 132
duke@435 133 assert(FPUStateSizeInWords == 27, "update stack layout");
duke@435 134
duke@435 135 // save registers, fpu state, and flags
duke@435 136 // We assume caller has already has return address slot on the stack
duke@435 137 // We push epb twice in this sequence because we want the real rbp,
never@739 138 // to be under the return like a normal enter and we want to use pusha
duke@435 139 // We push by hand instead of pusing push
duke@435 140 __ enter();
never@739 141 __ pusha();
never@739 142 __ pushf();
kvn@4103 143 __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space
duke@435 144 __ push_FPU_state(); // Save FPU state & init
duke@435 145
duke@435 146 if (verify_fpu) {
duke@435 147 // Some stubs may have non standard FPU control word settings so
duke@435 148 // only check and reset the value when it required to be the
duke@435 149 // standard value. The safepoint blob in particular can be used
duke@435 150 // in methods which are using the 24 bit control word for
duke@435 151 // optimized float math.
duke@435 152
duke@435 153 #ifdef ASSERT
duke@435 154 // Make sure the control word has the expected value
duke@435 155 Label ok;
duke@435 156 __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 157 __ jccb(Assembler::equal, ok);
duke@435 158 __ stop("corrupted control word detected");
duke@435 159 __ bind(ok);
duke@435 160 #endif
duke@435 161
duke@435 162 // Reset the control word to guard against exceptions being unmasked
duke@435 163 // since fstp_d can cause FPU stack underflow exceptions. Write it
duke@435 164 // into the on stack copy and then reload that to make sure that the
duke@435 165 // current and future values are correct.
duke@435 166 __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 167 }
duke@435 168
duke@435 169 __ frstor(Address(rsp, 0));
duke@435 170 if (!verify_fpu) {
duke@435 171 // Set the control word so that exceptions are masked for the
duke@435 172 // following code.
duke@435 173 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 174 }
duke@435 175
duke@435 176 // Save the FPU registers in de-opt-able form
duke@435 177
duke@435 178 __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
duke@435 179 __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
duke@435 180 __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
duke@435 181 __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
duke@435 182 __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
duke@435 183 __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
duke@435 184 __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
duke@435 185 __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
duke@435 186
duke@435 187 if( UseSSE == 1 ) { // Save the XMM state
duke@435 188 __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
duke@435 189 __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
duke@435 190 __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
duke@435 191 __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
duke@435 192 __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
duke@435 193 __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
duke@435 194 __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
duke@435 195 __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
duke@435 196 } else if( UseSSE >= 2 ) {
kvn@4103 197 // Save whole 128bit (16 bytes) XMM regiters
kvn@4103 198 __ movdqu(Address(rsp,xmm0_off*wordSize),xmm0);
kvn@4103 199 __ movdqu(Address(rsp,xmm1_off*wordSize),xmm1);
kvn@4103 200 __ movdqu(Address(rsp,xmm2_off*wordSize),xmm2);
kvn@4103 201 __ movdqu(Address(rsp,xmm3_off*wordSize),xmm3);
kvn@4103 202 __ movdqu(Address(rsp,xmm4_off*wordSize),xmm4);
kvn@4103 203 __ movdqu(Address(rsp,xmm5_off*wordSize),xmm5);
kvn@4103 204 __ movdqu(Address(rsp,xmm6_off*wordSize),xmm6);
kvn@4103 205 __ movdqu(Address(rsp,xmm7_off*wordSize),xmm7);
kvn@4103 206 }
kvn@4103 207
kvn@4103 208 if (vect_words > 0) {
kvn@4103 209 assert(vect_words*wordSize == 128, "");
kvn@4103 210 __ subptr(rsp, 128); // Save upper half of YMM registes
kvn@4103 211 __ vextractf128h(Address(rsp, 0),xmm0);
kvn@4103 212 __ vextractf128h(Address(rsp, 16),xmm1);
kvn@4103 213 __ vextractf128h(Address(rsp, 32),xmm2);
kvn@4103 214 __ vextractf128h(Address(rsp, 48),xmm3);
kvn@4103 215 __ vextractf128h(Address(rsp, 64),xmm4);
kvn@4103 216 __ vextractf128h(Address(rsp, 80),xmm5);
kvn@4103 217 __ vextractf128h(Address(rsp, 96),xmm6);
kvn@4103 218 __ vextractf128h(Address(rsp,112),xmm7);
duke@435 219 }
duke@435 220
duke@435 221 // Set an oopmap for the call site. This oopmap will map all
duke@435 222 // oop-registers and debug-info registers as callee-saved. This
duke@435 223 // will allow deoptimization at this safepoint to find all possible
duke@435 224 // debug-info recordings, as well as let GC find all oops.
duke@435 225
duke@435 226 OopMapSet *oop_maps = new OopMapSet();
duke@435 227 OopMap* map = new OopMap( frame_words, 0 );
duke@435 228
duke@435 229 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
duke@435 230
duke@435 231 map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
duke@435 232 map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
duke@435 233 map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
duke@435 234 map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
duke@435 235 // rbp, location is known implicitly, no oopMap
duke@435 236 map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
duke@435 237 map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
duke@435 238 map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
duke@435 239 map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
duke@435 240 map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
duke@435 241 map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
duke@435 242 map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
duke@435 243 map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
duke@435 244 map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
duke@435 245 map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
duke@435 246 map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
duke@435 247 map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
duke@435 248 map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
duke@435 249 map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
duke@435 250 map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
duke@435 251 map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
duke@435 252 map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
duke@435 253 map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
duke@435 254 // %%% This is really a waste but we'll keep things as they were for now
duke@435 255 if (true) {
duke@435 256 #define NEXTREG(x) (x)->as_VMReg()->next()
duke@435 257 map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
duke@435 258 map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
duke@435 259 map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
duke@435 260 map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
duke@435 261 map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
duke@435 262 map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
duke@435 263 map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
duke@435 264 map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
duke@435 265 map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
duke@435 266 map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
duke@435 267 map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
duke@435 268 map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
duke@435 269 map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
duke@435 270 map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
duke@435 271 map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
duke@435 272 map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
duke@435 273 #undef NEXTREG
duke@435 274 #undef STACK_OFFSET
duke@435 275 }
duke@435 276
duke@435 277 return map;
duke@435 278
duke@435 279 }
duke@435 280
kvn@4103 281 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
duke@435 282 // Recover XMM & FPU state
kvn@4103 283 int additional_frame_bytes = 0;
kvn@4103 284 #ifdef COMPILER2
kvn@4103 285 if (restore_vectors) {
kvn@4103 286 assert(UseAVX > 0, "256bit vectors are supported only with AVX");
kvn@4103 287 assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
kvn@4103 288 additional_frame_bytes = 128;
kvn@4103 289 }
kvn@4103 290 #else
kvn@4103 291 assert(!restore_vectors, "vectors are generated only by C2");
kvn@4103 292 #endif
kvn@4103 293 if (UseSSE == 1) {
kvn@4103 294 assert(additional_frame_bytes == 0, "");
duke@435 295 __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
duke@435 296 __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
duke@435 297 __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
duke@435 298 __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
duke@435 299 __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
duke@435 300 __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
duke@435 301 __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
duke@435 302 __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
kvn@4103 303 } else if (UseSSE >= 2) {
kvn@4103 304 #define STACK_ADDRESS(x) Address(rsp,(x)*wordSize + additional_frame_bytes)
kvn@4103 305 __ movdqu(xmm0,STACK_ADDRESS(xmm0_off));
kvn@4103 306 __ movdqu(xmm1,STACK_ADDRESS(xmm1_off));
kvn@4103 307 __ movdqu(xmm2,STACK_ADDRESS(xmm2_off));
kvn@4103 308 __ movdqu(xmm3,STACK_ADDRESS(xmm3_off));
kvn@4103 309 __ movdqu(xmm4,STACK_ADDRESS(xmm4_off));
kvn@4103 310 __ movdqu(xmm5,STACK_ADDRESS(xmm5_off));
kvn@4103 311 __ movdqu(xmm6,STACK_ADDRESS(xmm6_off));
kvn@4103 312 __ movdqu(xmm7,STACK_ADDRESS(xmm7_off));
kvn@4103 313 #undef STACK_ADDRESS
kvn@4103 314 }
kvn@4103 315 if (restore_vectors) {
kvn@4103 316 // Restore upper half of YMM registes.
kvn@4103 317 assert(additional_frame_bytes == 128, "");
kvn@4103 318 __ vinsertf128h(xmm0, Address(rsp, 0));
kvn@4103 319 __ vinsertf128h(xmm1, Address(rsp, 16));
kvn@4103 320 __ vinsertf128h(xmm2, Address(rsp, 32));
kvn@4103 321 __ vinsertf128h(xmm3, Address(rsp, 48));
kvn@4103 322 __ vinsertf128h(xmm4, Address(rsp, 64));
kvn@4103 323 __ vinsertf128h(xmm5, Address(rsp, 80));
kvn@4103 324 __ vinsertf128h(xmm6, Address(rsp, 96));
kvn@4103 325 __ vinsertf128h(xmm7, Address(rsp,112));
kvn@4103 326 __ addptr(rsp, additional_frame_bytes);
duke@435 327 }
duke@435 328 __ pop_FPU_state();
kvn@4103 329 __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers
never@739 330
never@739 331 __ popf();
never@739 332 __ popa();
duke@435 333 // Get the rbp, described implicitly by the frame sender code (no oopMap)
never@739 334 __ pop(rbp);
duke@435 335
duke@435 336 }
duke@435 337
duke@435 338 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
duke@435 339
duke@435 340 // Just restore result register. Only used by deoptimization. By
duke@435 341 // now any callee save register that needs to be restore to a c2
duke@435 342 // caller of the deoptee has been extracted into the vframeArray
duke@435 343 // and will be stuffed into the c2i adapter we create for later
duke@435 344 // restoration so only result registers need to be restored here.
duke@435 345 //
duke@435 346
duke@435 347 __ frstor(Address(rsp, 0)); // Restore fpu state
duke@435 348
duke@435 349 // Recover XMM & FPU state
duke@435 350 if( UseSSE == 1 ) {
duke@435 351 __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 352 } else if( UseSSE >= 2 ) {
duke@435 353 __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 354 }
never@739 355 __ movptr(rax, Address(rsp, rax_off*wordSize));
never@739 356 __ movptr(rdx, Address(rsp, rdx_off*wordSize));
duke@435 357 // Pop all of the register save are off the stack except the return address
never@739 358 __ addptr(rsp, return_off * wordSize);
duke@435 359 }
duke@435 360
kvn@4103 361 // Is vector's size (in bytes) bigger than a size saved by default?
kvn@4103 362 // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions.
kvn@4103 363 // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated.
kvn@4103 364 bool SharedRuntime::is_wide_vector(int size) {
kvn@4103 365 return size > 16;
kvn@4103 366 }
kvn@4103 367
duke@435 368 // The java_calling_convention describes stack locations as ideal slots on
duke@435 369 // a frame with no abi restrictions. Since we must observe abi restrictions
duke@435 370 // (like the placement of the register window) the slots must be biased by
duke@435 371 // the following value.
duke@435 372 static int reg2offset_in(VMReg r) {
duke@435 373 // Account for saved rbp, and return address
duke@435 374 // This should really be in_preserve_stack_slots
duke@435 375 return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
duke@435 376 }
duke@435 377
duke@435 378 static int reg2offset_out(VMReg r) {
duke@435 379 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
duke@435 380 }
duke@435 381
duke@435 382 // ---------------------------------------------------------------------------
duke@435 383 // Read the array of BasicTypes from a signature, and compute where the
duke@435 384 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
duke@435 385 // quantities. Values less than SharedInfo::stack0 are registers, those above
duke@435 386 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
duke@435 387 // as framesizes are fixed.
duke@435 388 // VMRegImpl::stack0 refers to the first slot 0(sp).
duke@435 389 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
duke@435 390 // up to RegisterImpl::number_of_registers) are the 32-bit
duke@435 391 // integer registers.
duke@435 392
duke@435 393 // Pass first two oop/int args in registers ECX and EDX.
duke@435 394 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 395 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 396 // the doubles will grab the registers before the floats will.
duke@435 397
duke@435 398 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
duke@435 399 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
duke@435 400 // units regardless of build. Of course for i486 there is no 64 bit build
duke@435 401
duke@435 402
duke@435 403 // ---------------------------------------------------------------------------
duke@435 404 // The compiled Java calling convention.
duke@435 405 // Pass first two oop/int args in registers ECX and EDX.
duke@435 406 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 407 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 408 // the doubles will grab the registers before the floats will.
duke@435 409 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
duke@435 410 VMRegPair *regs,
duke@435 411 int total_args_passed,
duke@435 412 int is_outgoing) {
duke@435 413 uint stack = 0; // Starting stack position for args on stack
duke@435 414
duke@435 415
duke@435 416 // Pass first two oop/int args in registers ECX and EDX.
duke@435 417 uint reg_arg0 = 9999;
duke@435 418 uint reg_arg1 = 9999;
duke@435 419
duke@435 420 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 421 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 422 // the doubles will grab the registers before the floats will.
duke@435 423 // CNC - TURNED OFF FOR non-SSE.
duke@435 424 // On Intel we have to round all doubles (and most floats) at
duke@435 425 // call sites by storing to the stack in any case.
duke@435 426 // UseSSE=0 ==> Don't Use ==> 9999+0
duke@435 427 // UseSSE=1 ==> Floats only ==> 9999+1
duke@435 428 // UseSSE>=2 ==> Floats or doubles ==> 9999+2
duke@435 429 enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
duke@435 430 uint fargs = (UseSSE>=2) ? 2 : UseSSE;
duke@435 431 uint freg_arg0 = 9999+fargs;
duke@435 432 uint freg_arg1 = 9999+fargs;
duke@435 433
duke@435 434 // Pass doubles & longs aligned on the stack. First count stack slots for doubles
duke@435 435 int i;
duke@435 436 for( i = 0; i < total_args_passed; i++) {
duke@435 437 if( sig_bt[i] == T_DOUBLE ) {
duke@435 438 // first 2 doubles go in registers
duke@435 439 if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
duke@435 440 else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
duke@435 441 else // Else double is passed low on the stack to be aligned.
duke@435 442 stack += 2;
duke@435 443 } else if( sig_bt[i] == T_LONG ) {
duke@435 444 stack += 2;
duke@435 445 }
duke@435 446 }
duke@435 447 int dstack = 0; // Separate counter for placing doubles
duke@435 448
duke@435 449 // Now pick where all else goes.
duke@435 450 for( i = 0; i < total_args_passed; i++) {
duke@435 451 // From the type and the argument number (count) compute the location
duke@435 452 switch( sig_bt[i] ) {
duke@435 453 case T_SHORT:
duke@435 454 case T_CHAR:
duke@435 455 case T_BYTE:
duke@435 456 case T_BOOLEAN:
duke@435 457 case T_INT:
duke@435 458 case T_ARRAY:
duke@435 459 case T_OBJECT:
duke@435 460 case T_ADDRESS:
duke@435 461 if( reg_arg0 == 9999 ) {
duke@435 462 reg_arg0 = i;
duke@435 463 regs[i].set1(rcx->as_VMReg());
duke@435 464 } else if( reg_arg1 == 9999 ) {
duke@435 465 reg_arg1 = i;
duke@435 466 regs[i].set1(rdx->as_VMReg());
duke@435 467 } else {
duke@435 468 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 469 }
duke@435 470 break;
duke@435 471 case T_FLOAT:
duke@435 472 if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
duke@435 473 freg_arg0 = i;
duke@435 474 regs[i].set1(xmm0->as_VMReg());
duke@435 475 } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
duke@435 476 freg_arg1 = i;
duke@435 477 regs[i].set1(xmm1->as_VMReg());
duke@435 478 } else {
duke@435 479 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 480 }
duke@435 481 break;
duke@435 482 case T_LONG:
duke@435 483 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 484 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 485 dstack += 2;
duke@435 486 break;
duke@435 487 case T_DOUBLE:
duke@435 488 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 489 if( freg_arg0 == (uint)i ) {
duke@435 490 regs[i].set2(xmm0->as_VMReg());
duke@435 491 } else if( freg_arg1 == (uint)i ) {
duke@435 492 regs[i].set2(xmm1->as_VMReg());
duke@435 493 } else {
duke@435 494 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 495 dstack += 2;
duke@435 496 }
duke@435 497 break;
duke@435 498 case T_VOID: regs[i].set_bad(); break;
duke@435 499 break;
duke@435 500 default:
duke@435 501 ShouldNotReachHere();
duke@435 502 break;
duke@435 503 }
duke@435 504 }
duke@435 505
duke@435 506 // return value can be odd number of VMRegImpl stack slots make multiple of 2
duke@435 507 return round_to(stack, 2);
duke@435 508 }
duke@435 509
duke@435 510 // Patch the callers callsite with entry to compiled code if it exists.
duke@435 511 static void patch_callers_callsite(MacroAssembler *masm) {
duke@435 512 Label L;
coleenp@4037 513 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
duke@435 514 __ jcc(Assembler::equal, L);
duke@435 515 // Schedule the branch target address early.
duke@435 516 // Call into the VM to patch the caller, then jump to compiled callee
duke@435 517 // rax, isn't live so capture return address while we easily can
never@739 518 __ movptr(rax, Address(rsp, 0));
never@739 519 __ pusha();
never@739 520 __ pushf();
duke@435 521
duke@435 522 if (UseSSE == 1) {
never@739 523 __ subptr(rsp, 2*wordSize);
duke@435 524 __ movflt(Address(rsp, 0), xmm0);
duke@435 525 __ movflt(Address(rsp, wordSize), xmm1);
duke@435 526 }
duke@435 527 if (UseSSE >= 2) {
never@739 528 __ subptr(rsp, 4*wordSize);
duke@435 529 __ movdbl(Address(rsp, 0), xmm0);
duke@435 530 __ movdbl(Address(rsp, 2*wordSize), xmm1);
duke@435 531 }
duke@435 532 #ifdef COMPILER2
duke@435 533 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 534 if (UseSSE >= 2) {
duke@435 535 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 536 } else {
duke@435 537 __ empty_FPU_stack();
duke@435 538 }
duke@435 539 #endif /* COMPILER2 */
duke@435 540
duke@435 541 // VM needs caller's callsite
never@739 542 __ push(rax);
duke@435 543 // VM needs target method
never@739 544 __ push(rbx);
duke@435 545 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
never@739 546 __ addptr(rsp, 2*wordSize);
duke@435 547
duke@435 548 if (UseSSE == 1) {
duke@435 549 __ movflt(xmm0, Address(rsp, 0));
duke@435 550 __ movflt(xmm1, Address(rsp, wordSize));
never@739 551 __ addptr(rsp, 2*wordSize);
duke@435 552 }
duke@435 553 if (UseSSE >= 2) {
duke@435 554 __ movdbl(xmm0, Address(rsp, 0));
duke@435 555 __ movdbl(xmm1, Address(rsp, 2*wordSize));
never@739 556 __ addptr(rsp, 4*wordSize);
duke@435 557 }
duke@435 558
never@739 559 __ popf();
never@739 560 __ popa();
duke@435 561 __ bind(L);
duke@435 562 }
duke@435 563
duke@435 564
duke@435 565 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
twisti@1861 566 int next_off = st_off - Interpreter::stackElementSize;
twisti@1861 567 __ movdbl(Address(rsp, next_off), r);
duke@435 568 }
duke@435 569
duke@435 570 static void gen_c2i_adapter(MacroAssembler *masm,
duke@435 571 int total_args_passed,
duke@435 572 int comp_args_on_stack,
duke@435 573 const BasicType *sig_bt,
duke@435 574 const VMRegPair *regs,
duke@435 575 Label& skip_fixup) {
duke@435 576 // Before we get into the guts of the C2I adapter, see if we should be here
duke@435 577 // at all. We've come from compiled code and are attempting to jump to the
duke@435 578 // interpreter, which means the caller made a static call to get here
duke@435 579 // (vcalls always get a compiled target if there is one). Check for a
duke@435 580 // compiled target. If there is one, we need to patch the caller's call.
duke@435 581 patch_callers_callsite(masm);
duke@435 582
duke@435 583 __ bind(skip_fixup);
duke@435 584
duke@435 585 #ifdef COMPILER2
duke@435 586 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 587 if (UseSSE >= 2) {
duke@435 588 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 589 } else {
duke@435 590 __ empty_FPU_stack();
duke@435 591 }
duke@435 592 #endif /* COMPILER2 */
duke@435 593
duke@435 594 // Since all args are passed on the stack, total_args_passed * interpreter_
duke@435 595 // stack_element_size is the
duke@435 596 // space we need.
twisti@1861 597 int extraspace = total_args_passed * Interpreter::stackElementSize;
duke@435 598
duke@435 599 // Get return address
never@739 600 __ pop(rax);
duke@435 601
duke@435 602 // set senderSP value
never@739 603 __ movptr(rsi, rsp);
never@739 604
never@739 605 __ subptr(rsp, extraspace);
duke@435 606
duke@435 607 // Now write the args into the outgoing interpreter space
duke@435 608 for (int i = 0; i < total_args_passed; i++) {
duke@435 609 if (sig_bt[i] == T_VOID) {
duke@435 610 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 611 continue;
duke@435 612 }
duke@435 613
duke@435 614 // st_off points to lowest address on stack.
twisti@1861 615 int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
twisti@1861 616 int next_off = st_off - Interpreter::stackElementSize;
never@739 617
duke@435 618 // Say 4 args:
duke@435 619 // i st_off
duke@435 620 // 0 12 T_LONG
duke@435 621 // 1 8 T_VOID
duke@435 622 // 2 4 T_OBJECT
duke@435 623 // 3 0 T_BOOL
duke@435 624 VMReg r_1 = regs[i].first();
duke@435 625 VMReg r_2 = regs[i].second();
duke@435 626 if (!r_1->is_valid()) {
duke@435 627 assert(!r_2->is_valid(), "");
duke@435 628 continue;
duke@435 629 }
duke@435 630
duke@435 631 if (r_1->is_stack()) {
duke@435 632 // memory to memory use fpu stack top
duke@435 633 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
duke@435 634
duke@435 635 if (!r_2->is_valid()) {
duke@435 636 __ movl(rdi, Address(rsp, ld_off));
never@739 637 __ movptr(Address(rsp, st_off), rdi);
duke@435 638 } else {
duke@435 639
duke@435 640 // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
duke@435 641 // st_off == MSW, st_off-wordSize == LSW
duke@435 642
never@739 643 __ movptr(rdi, Address(rsp, ld_off));
never@739 644 __ movptr(Address(rsp, next_off), rdi);
never@739 645 #ifndef _LP64
never@739 646 __ movptr(rdi, Address(rsp, ld_off + wordSize));
never@739 647 __ movptr(Address(rsp, st_off), rdi);
never@739 648 #else
never@739 649 #ifdef ASSERT
never@739 650 // Overwrite the unused slot with known junk
never@739 651 __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
never@739 652 __ movptr(Address(rsp, st_off), rax);
never@739 653 #endif /* ASSERT */
never@739 654 #endif // _LP64
duke@435 655 }
duke@435 656 } else if (r_1->is_Register()) {
duke@435 657 Register r = r_1->as_Register();
duke@435 658 if (!r_2->is_valid()) {
duke@435 659 __ movl(Address(rsp, st_off), r);
duke@435 660 } else {
duke@435 661 // long/double in gpr
never@739 662 NOT_LP64(ShouldNotReachHere());
never@739 663 // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
never@739 664 // T_DOUBLE and T_LONG use two slots in the interpreter
never@739 665 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
never@739 666 // long/double in gpr
never@739 667 #ifdef ASSERT
never@739 668 // Overwrite the unused slot with known junk
never@739 669 LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
never@739 670 __ movptr(Address(rsp, st_off), rax);
never@739 671 #endif /* ASSERT */
never@739 672 __ movptr(Address(rsp, next_off), r);
never@739 673 } else {
never@739 674 __ movptr(Address(rsp, st_off), r);
never@739 675 }
duke@435 676 }
duke@435 677 } else {
duke@435 678 assert(r_1->is_XMMRegister(), "");
duke@435 679 if (!r_2->is_valid()) {
duke@435 680 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
duke@435 681 } else {
duke@435 682 assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
duke@435 683 move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
duke@435 684 }
duke@435 685 }
duke@435 686 }
duke@435 687
duke@435 688 // Schedule the branch target address early.
coleenp@4037 689 __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
duke@435 690 // And repush original return address
never@739 691 __ push(rax);
duke@435 692 __ jmp(rcx);
duke@435 693 }
duke@435 694
duke@435 695
duke@435 696 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
twisti@1861 697 int next_val_off = ld_off - Interpreter::stackElementSize;
twisti@1861 698 __ movdbl(r, Address(saved_sp, next_val_off));
duke@435 699 }
duke@435 700
twisti@3969 701 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
twisti@3969 702 address code_start, address code_end,
twisti@3969 703 Label& L_ok) {
twisti@3969 704 Label L_fail;
twisti@3969 705 __ lea(temp_reg, ExternalAddress(code_start));
twisti@3969 706 __ cmpptr(pc_reg, temp_reg);
twisti@3969 707 __ jcc(Assembler::belowEqual, L_fail);
twisti@3969 708 __ lea(temp_reg, ExternalAddress(code_end));
twisti@3969 709 __ cmpptr(pc_reg, temp_reg);
twisti@3969 710 __ jcc(Assembler::below, L_ok);
twisti@3969 711 __ bind(L_fail);
twisti@3969 712 }
twisti@3969 713
duke@435 714 static void gen_i2c_adapter(MacroAssembler *masm,
duke@435 715 int total_args_passed,
duke@435 716 int comp_args_on_stack,
duke@435 717 const BasicType *sig_bt,
duke@435 718 const VMRegPair *regs) {
duke@435 719
duke@435 720 // Note: rsi contains the senderSP on entry. We must preserve it since
duke@435 721 // we may do a i2c -> c2i transition if we lose a race where compiled
duke@435 722 // code goes non-entrant while we get args ready.
duke@435 723
twisti@3969 724 // Adapters can be frameless because they do not require the caller
twisti@3969 725 // to perform additional cleanup work, such as correcting the stack pointer.
twisti@3969 726 // An i2c adapter is frameless because the *caller* frame, which is interpreted,
twisti@3969 727 // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
twisti@3969 728 // even if a callee has modified the stack pointer.
twisti@3969 729 // A c2i adapter is frameless because the *callee* frame, which is interpreted,
twisti@3969 730 // routinely repairs its caller's stack pointer (from sender_sp, which is set
twisti@3969 731 // up via the senderSP register).
twisti@3969 732 // In other words, if *either* the caller or callee is interpreted, we can
twisti@3969 733 // get the stack pointer repaired after a call.
twisti@3969 734 // This is why c2i and i2c adapters cannot be indefinitely composed.
twisti@3969 735 // In particular, if a c2i adapter were to somehow call an i2c adapter,
twisti@3969 736 // both caller and callee would be compiled methods, and neither would
twisti@3969 737 // clean up the stack pointer changes performed by the two adapters.
twisti@3969 738 // If this happens, control eventually transfers back to the compiled
twisti@3969 739 // caller, but with an uncorrected stack, causing delayed havoc.
twisti@3969 740
duke@435 741 // Pick up the return address
never@739 742 __ movptr(rax, Address(rsp, 0));
duke@435 743
twisti@3969 744 if (VerifyAdapterCalls &&
twisti@3969 745 (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
twisti@3969 746 // So, let's test for cascading c2i/i2c adapters right now.
twisti@3969 747 // assert(Interpreter::contains($return_addr) ||
twisti@3969 748 // StubRoutines::contains($return_addr),
twisti@3969 749 // "i2c adapter must return to an interpreter frame");
twisti@3969 750 __ block_comment("verify_i2c { ");
twisti@3969 751 Label L_ok;
twisti@3969 752 if (Interpreter::code() != NULL)
twisti@3969 753 range_check(masm, rax, rdi,
twisti@3969 754 Interpreter::code()->code_start(), Interpreter::code()->code_end(),
twisti@3969 755 L_ok);
twisti@3969 756 if (StubRoutines::code1() != NULL)
twisti@3969 757 range_check(masm, rax, rdi,
twisti@3969 758 StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
twisti@3969 759 L_ok);
twisti@3969 760 if (StubRoutines::code2() != NULL)
twisti@3969 761 range_check(masm, rax, rdi,
twisti@3969 762 StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
twisti@3969 763 L_ok);
twisti@3969 764 const char* msg = "i2c adapter must return to an interpreter frame";
twisti@3969 765 __ block_comment(msg);
twisti@3969 766 __ stop(msg);
twisti@3969 767 __ bind(L_ok);
twisti@3969 768 __ block_comment("} verify_i2ce ");
twisti@3969 769 }
twisti@3969 770
duke@435 771 // Must preserve original SP for loading incoming arguments because
duke@435 772 // we need to align the outgoing SP for compiled code.
never@739 773 __ movptr(rdi, rsp);
duke@435 774
duke@435 775 // Cut-out for having no stack args. Since up to 2 int/oop args are passed
duke@435 776 // in registers, we will occasionally have no stack args.
duke@435 777 int comp_words_on_stack = 0;
duke@435 778 if (comp_args_on_stack) {
duke@435 779 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
duke@435 780 // registers are below. By subtracting stack0, we either get a negative
duke@435 781 // number (all values in registers) or the maximum stack slot accessed.
duke@435 782 // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
duke@435 783 // Convert 4-byte stack slots to words.
duke@435 784 comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
duke@435 785 // Round up to miminum stack alignment, in wordSize
duke@435 786 comp_words_on_stack = round_to(comp_words_on_stack, 2);
never@739 787 __ subptr(rsp, comp_words_on_stack * wordSize);
duke@435 788 }
duke@435 789
duke@435 790 // Align the outgoing SP
never@739 791 __ andptr(rsp, -(StackAlignmentInBytes));
duke@435 792
duke@435 793 // push the return address on the stack (note that pushing, rather
duke@435 794 // than storing it, yields the correct frame alignment for the callee)
never@739 795 __ push(rax);
duke@435 796
duke@435 797 // Put saved SP in another register
duke@435 798 const Register saved_sp = rax;
never@739 799 __ movptr(saved_sp, rdi);
duke@435 800
duke@435 801
duke@435 802 // Will jump to the compiled code just as if compiled code was doing it.
duke@435 803 // Pre-load the register-jump target early, to schedule it better.
coleenp@4037 804 __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset())));
duke@435 805
duke@435 806 // Now generate the shuffle code. Pick up all register args and move the
duke@435 807 // rest through the floating point stack top.
duke@435 808 for (int i = 0; i < total_args_passed; i++) {
duke@435 809 if (sig_bt[i] == T_VOID) {
duke@435 810 // Longs and doubles are passed in native word order, but misaligned
duke@435 811 // in the 32-bit build.
duke@435 812 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 813 continue;
duke@435 814 }
duke@435 815
duke@435 816 // Pick up 0, 1 or 2 words from SP+offset.
duke@435 817
duke@435 818 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
duke@435 819 "scrambled load targets?");
duke@435 820 // Load in argument order going down.
twisti@1861 821 int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
duke@435 822 // Point to interpreter value (vs. tag)
twisti@1861 823 int next_off = ld_off - Interpreter::stackElementSize;
duke@435 824 //
duke@435 825 //
duke@435 826 //
duke@435 827 VMReg r_1 = regs[i].first();
duke@435 828 VMReg r_2 = regs[i].second();
duke@435 829 if (!r_1->is_valid()) {
duke@435 830 assert(!r_2->is_valid(), "");
duke@435 831 continue;
duke@435 832 }
duke@435 833 if (r_1->is_stack()) {
duke@435 834 // Convert stack slot to an SP offset (+ wordSize to account for return address )
duke@435 835 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
duke@435 836
duke@435 837 // We can use rsi as a temp here because compiled code doesn't need rsi as an input
duke@435 838 // and if we end up going thru a c2i because of a miss a reasonable value of rsi
duke@435 839 // we be generated.
duke@435 840 if (!r_2->is_valid()) {
duke@435 841 // __ fld_s(Address(saved_sp, ld_off));
duke@435 842 // __ fstp_s(Address(rsp, st_off));
duke@435 843 __ movl(rsi, Address(saved_sp, ld_off));
never@739 844 __ movptr(Address(rsp, st_off), rsi);
duke@435 845 } else {
duke@435 846 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
duke@435 847 // are accessed as negative so LSW is at LOW address
duke@435 848
duke@435 849 // ld_off is MSW so get LSW
duke@435 850 // st_off is LSW (i.e. reg.first())
duke@435 851 // __ fld_d(Address(saved_sp, next_off));
duke@435 852 // __ fstp_d(Address(rsp, st_off));
never@739 853 //
never@739 854 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
never@739 855 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
never@739 856 // So we must adjust where to pick up the data to match the interpreter.
never@739 857 //
never@739 858 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
never@739 859 // are accessed as negative so LSW is at LOW address
never@739 860
never@739 861 // ld_off is MSW so get LSW
never@739 862 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
never@739 863 next_off : ld_off;
never@739 864 __ movptr(rsi, Address(saved_sp, offset));
never@739 865 __ movptr(Address(rsp, st_off), rsi);
never@739 866 #ifndef _LP64
never@739 867 __ movptr(rsi, Address(saved_sp, ld_off));
never@739 868 __ movptr(Address(rsp, st_off + wordSize), rsi);
never@739 869 #endif // _LP64
duke@435 870 }
duke@435 871 } else if (r_1->is_Register()) { // Register argument
duke@435 872 Register r = r_1->as_Register();
duke@435 873 assert(r != rax, "must be different");
duke@435 874 if (r_2->is_valid()) {
never@739 875 //
never@739 876 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
never@739 877 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
never@739 878 // So we must adjust where to pick up the data to match the interpreter.
never@739 879
never@739 880 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
never@739 881 next_off : ld_off;
never@739 882
never@739 883 // this can be a misaligned move
never@739 884 __ movptr(r, Address(saved_sp, offset));
never@739 885 #ifndef _LP64
duke@435 886 assert(r_2->as_Register() != rax, "need another temporary register");
duke@435 887 // Remember r_1 is low address (and LSB on x86)
duke@435 888 // So r_2 gets loaded from high address regardless of the platform
never@739 889 __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
never@739 890 #endif // _LP64
duke@435 891 } else {
duke@435 892 __ movl(r, Address(saved_sp, ld_off));
duke@435 893 }
duke@435 894 } else {
duke@435 895 assert(r_1->is_XMMRegister(), "");
duke@435 896 if (!r_2->is_valid()) {
duke@435 897 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
duke@435 898 } else {
duke@435 899 move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
duke@435 900 }
duke@435 901 }
duke@435 902 }
duke@435 903
duke@435 904 // 6243940 We might end up in handle_wrong_method if
duke@435 905 // the callee is deoptimized as we race thru here. If that
duke@435 906 // happens we don't want to take a safepoint because the
duke@435 907 // caller frame will look interpreted and arguments are now
duke@435 908 // "compiled" so it is much better to make this transition
duke@435 909 // invisible to the stack walking code. Unfortunately if
duke@435 910 // we try and find the callee by normal means a safepoint
duke@435 911 // is possible. So we stash the desired callee in the thread
duke@435 912 // and the vm will find there should this case occur.
duke@435 913
duke@435 914 __ get_thread(rax);
never@739 915 __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
duke@435 916
coleenp@4037 917 // move Method* to rax, in case we end up in an c2i adapter.
coleenp@4037 918 // the c2i adapters expect Method* in rax, (c2) because c2's
duke@435 919 // resolve stubs return the result (the method) in rax,.
duke@435 920 // I'd love to fix this.
never@739 921 __ mov(rax, rbx);
duke@435 922
duke@435 923 __ jmp(rdi);
duke@435 924 }
duke@435 925
duke@435 926 // ---------------------------------------------------------------
duke@435 927 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
duke@435 928 int total_args_passed,
duke@435 929 int comp_args_on_stack,
duke@435 930 const BasicType *sig_bt,
never@1622 931 const VMRegPair *regs,
never@1622 932 AdapterFingerPrint* fingerprint) {
duke@435 933 address i2c_entry = __ pc();
duke@435 934
duke@435 935 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
duke@435 936
duke@435 937 // -------------------------------------------------------------------------
coleenp@4037 938 // Generate a C2I adapter. On entry we know rbx, holds the Method* during calls
duke@435 939 // to the interpreter. The args start out packed in the compiled layout. They
duke@435 940 // need to be unpacked into the interpreter layout. This will almost always
duke@435 941 // require some stack space. We grow the current (compiled) stack, then repack
duke@435 942 // the args. We finally end in a jump to the generic interpreter entry point.
duke@435 943 // On exit from the interpreter, the interpreter will restore our SP (lest the
duke@435 944 // compiled code, which relys solely on SP and not EBP, get sick).
duke@435 945
duke@435 946 address c2i_unverified_entry = __ pc();
duke@435 947 Label skip_fixup;
duke@435 948
duke@435 949 Register holder = rax;
duke@435 950 Register receiver = rcx;
duke@435 951 Register temp = rbx;
duke@435 952
duke@435 953 {
duke@435 954
duke@435 955 Label missed;
never@739 956 __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
coleenp@4037 957 __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
dbuck@8997 958 __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
duke@435 959 __ jcc(Assembler::notEqual, missed);
duke@435 960 // Method might have been compiled since the call site was patched to
duke@435 961 // interpreted if that is the case treat it as a miss so we can get
duke@435 962 // the call site corrected.
coleenp@4037 963 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
duke@435 964 __ jcc(Assembler::equal, skip_fixup);
duke@435 965
duke@435 966 __ bind(missed);
duke@435 967 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 968 }
duke@435 969
duke@435 970 address c2i_entry = __ pc();
duke@435 971
duke@435 972 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
duke@435 973
duke@435 974 __ flush();
never@1622 975 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
duke@435 976 }
duke@435 977
duke@435 978 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
duke@435 979 VMRegPair *regs,
goetz@6466 980 VMRegPair *regs2,
duke@435 981 int total_args_passed) {
goetz@6466 982 assert(regs2 == NULL, "not needed on x86");
duke@435 983 // We return the amount of VMRegImpl stack slots we need to reserve for all
duke@435 984 // the arguments NOT counting out_preserve_stack_slots.
duke@435 985
duke@435 986 uint stack = 0; // All arguments on stack
duke@435 987
duke@435 988 for( int i = 0; i < total_args_passed; i++) {
duke@435 989 // From the type and the argument number (count) compute the location
duke@435 990 switch( sig_bt[i] ) {
duke@435 991 case T_BOOLEAN:
duke@435 992 case T_CHAR:
duke@435 993 case T_FLOAT:
duke@435 994 case T_BYTE:
duke@435 995 case T_SHORT:
duke@435 996 case T_INT:
duke@435 997 case T_OBJECT:
duke@435 998 case T_ARRAY:
duke@435 999 case T_ADDRESS:
roland@4051 1000 case T_METADATA:
duke@435 1001 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 1002 break;
duke@435 1003 case T_LONG:
duke@435 1004 case T_DOUBLE: // The stack numbering is reversed from Java
duke@435 1005 // Since C arguments do not get reversed, the ordering for
duke@435 1006 // doubles on the stack must be opposite the Java convention
duke@435 1007 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 1008 regs[i].set2(VMRegImpl::stack2reg(stack));
duke@435 1009 stack += 2;
duke@435 1010 break;
duke@435 1011 case T_VOID: regs[i].set_bad(); break;
duke@435 1012 default:
duke@435 1013 ShouldNotReachHere();
duke@435 1014 break;
duke@435 1015 }
duke@435 1016 }
duke@435 1017 return stack;
duke@435 1018 }
duke@435 1019
duke@435 1020 // A simple move of integer like type
duke@435 1021 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1022 if (src.first()->is_stack()) {
duke@435 1023 if (dst.first()->is_stack()) {
duke@435 1024 // stack to stack
duke@435 1025 // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
duke@435 1026 // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
never@739 1027 __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1028 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1029 } else {
duke@435 1030 // stack to reg
never@739 1031 __ movl2ptr(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
duke@435 1032 }
duke@435 1033 } else if (dst.first()->is_stack()) {
duke@435 1034 // reg to stack
never@739 1035 // no need to sign extend on 64bit
never@739 1036 __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
duke@435 1037 } else {
never@739 1038 if (dst.first() != src.first()) {
never@739 1039 __ mov(dst.first()->as_Register(), src.first()->as_Register());
never@739 1040 }
duke@435 1041 }
duke@435 1042 }
duke@435 1043
duke@435 1044 // An oop arg. Must pass a handle not the oop itself
duke@435 1045 static void object_move(MacroAssembler* masm,
duke@435 1046 OopMap* map,
duke@435 1047 int oop_handle_offset,
duke@435 1048 int framesize_in_slots,
duke@435 1049 VMRegPair src,
duke@435 1050 VMRegPair dst,
duke@435 1051 bool is_receiver,
duke@435 1052 int* receiver_offset) {
duke@435 1053
duke@435 1054 // Because of the calling conventions we know that src can be a
duke@435 1055 // register or a stack location. dst can only be a stack location.
duke@435 1056
duke@435 1057 assert(dst.first()->is_stack(), "must be stack");
duke@435 1058 // must pass a handle. First figure out the location we use as a handle
duke@435 1059
duke@435 1060 if (src.first()->is_stack()) {
duke@435 1061 // Oop is already on the stack as an argument
duke@435 1062 Register rHandle = rax;
duke@435 1063 Label nil;
never@739 1064 __ xorptr(rHandle, rHandle);
never@739 1065 __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
duke@435 1066 __ jcc(Assembler::equal, nil);
never@739 1067 __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
duke@435 1068 __ bind(nil);
never@739 1069 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 1070
duke@435 1071 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
duke@435 1072 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
duke@435 1073 if (is_receiver) {
duke@435 1074 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
duke@435 1075 }
duke@435 1076 } else {
duke@435 1077 // Oop is in an a register we must store it to the space we reserve
duke@435 1078 // on the stack for oop_handles
duke@435 1079 const Register rOop = src.first()->as_Register();
duke@435 1080 const Register rHandle = rax;
duke@435 1081 int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
duke@435 1082 int offset = oop_slot*VMRegImpl::stack_slot_size;
duke@435 1083 Label skip;
never@739 1084 __ movptr(Address(rsp, offset), rOop);
duke@435 1085 map->set_oop(VMRegImpl::stack2reg(oop_slot));
never@739 1086 __ xorptr(rHandle, rHandle);
never@739 1087 __ cmpptr(rOop, (int32_t)NULL_WORD);
duke@435 1088 __ jcc(Assembler::equal, skip);
never@739 1089 __ lea(rHandle, Address(rsp, offset));
duke@435 1090 __ bind(skip);
duke@435 1091 // Store the handle parameter
never@739 1092 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 1093 if (is_receiver) {
duke@435 1094 *receiver_offset = offset;
duke@435 1095 }
duke@435 1096 }
duke@435 1097 }
duke@435 1098
duke@435 1099 // A float arg may have to do float reg int reg conversion
duke@435 1100 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1101 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
duke@435 1102
duke@435 1103 // Because of the calling convention we know that src is either a stack location
duke@435 1104 // or an xmm register. dst can only be a stack location.
duke@435 1105
duke@435 1106 assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
duke@435 1107
duke@435 1108 if (src.first()->is_stack()) {
duke@435 1109 __ movl(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1110 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1111 } else {
duke@435 1112 // reg to stack
duke@435 1113 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1114 }
duke@435 1115 }
duke@435 1116
duke@435 1117 // A long move
duke@435 1118 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1119
duke@435 1120 // The only legal possibility for a long_move VMRegPair is:
duke@435 1121 // 1: two stack slots (possibly unaligned)
duke@435 1122 // as neither the java or C calling convention will use registers
duke@435 1123 // for longs.
duke@435 1124
duke@435 1125 if (src.first()->is_stack() && dst.first()->is_stack()) {
duke@435 1126 assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
never@739 1127 __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1128 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
never@739 1129 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
never@739 1130 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
duke@435 1131 } else {
duke@435 1132 ShouldNotReachHere();
duke@435 1133 }
duke@435 1134 }
duke@435 1135
duke@435 1136 // A double move
duke@435 1137 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1138
duke@435 1139 // The only legal possibilities for a double_move VMRegPair are:
duke@435 1140 // The painful thing here is that like long_move a VMRegPair might be
duke@435 1141
duke@435 1142 // Because of the calling convention we know that src is either
duke@435 1143 // 1: a single physical register (xmm registers only)
duke@435 1144 // 2: two stack slots (possibly unaligned)
duke@435 1145 // dst can only be a pair of stack slots.
duke@435 1146
duke@435 1147 assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
duke@435 1148
duke@435 1149 if (src.first()->is_stack()) {
duke@435 1150 // source is all stack
never@739 1151 __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1152 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
never@739 1153 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
never@739 1154 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
duke@435 1155 } else {
duke@435 1156 // reg to stack
duke@435 1157 // No worries about stack alignment
duke@435 1158 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1159 }
duke@435 1160 }
duke@435 1161
duke@435 1162
duke@435 1163 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1164 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1165 // which by this time is free to use
duke@435 1166 switch (ret_type) {
duke@435 1167 case T_FLOAT:
duke@435 1168 __ fstp_s(Address(rbp, -wordSize));
duke@435 1169 break;
duke@435 1170 case T_DOUBLE:
duke@435 1171 __ fstp_d(Address(rbp, -2*wordSize));
duke@435 1172 break;
duke@435 1173 case T_VOID: break;
duke@435 1174 case T_LONG:
never@739 1175 __ movptr(Address(rbp, -wordSize), rax);
never@739 1176 NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
duke@435 1177 break;
duke@435 1178 default: {
never@739 1179 __ movptr(Address(rbp, -wordSize), rax);
duke@435 1180 }
duke@435 1181 }
duke@435 1182 }
duke@435 1183
duke@435 1184 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1185 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1186 // which by this time is free to use
duke@435 1187 switch (ret_type) {
duke@435 1188 case T_FLOAT:
duke@435 1189 __ fld_s(Address(rbp, -wordSize));
duke@435 1190 break;
duke@435 1191 case T_DOUBLE:
duke@435 1192 __ fld_d(Address(rbp, -2*wordSize));
duke@435 1193 break;
duke@435 1194 case T_LONG:
never@739 1195 __ movptr(rax, Address(rbp, -wordSize));
never@739 1196 NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
duke@435 1197 break;
duke@435 1198 case T_VOID: break;
duke@435 1199 default: {
never@739 1200 __ movptr(rax, Address(rbp, -wordSize));
duke@435 1201 }
duke@435 1202 }
duke@435 1203 }
duke@435 1204
never@3500 1205
never@3500 1206 static void save_or_restore_arguments(MacroAssembler* masm,
never@3500 1207 const int stack_slots,
never@3500 1208 const int total_in_args,
never@3500 1209 const int arg_save_area,
never@3500 1210 OopMap* map,
never@3500 1211 VMRegPair* in_regs,
never@3500 1212 BasicType* in_sig_bt) {
never@3500 1213 // if map is non-NULL then the code should store the values,
never@3500 1214 // otherwise it should load them.
never@3500 1215 int handle_index = 0;
never@3500 1216 // Save down double word first
never@3500 1217 for ( int i = 0; i < total_in_args; i++) {
never@3500 1218 if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
never@3500 1219 int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
never@3500 1220 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1221 handle_index += 2;
never@3500 1222 assert(handle_index <= stack_slots, "overflow");
never@3500 1223 if (map != NULL) {
never@3500 1224 __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
never@3500 1225 } else {
never@3500 1226 __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
never@3500 1227 }
never@3500 1228 }
never@3500 1229 if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) {
never@3500 1230 int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area;
never@3500 1231 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1232 handle_index += 2;
never@3500 1233 assert(handle_index <= stack_slots, "overflow");
never@3500 1234 if (map != NULL) {
never@3500 1235 __ movl(Address(rsp, offset), in_regs[i].first()->as_Register());
never@3500 1236 if (in_regs[i].second()->is_Register()) {
never@3500 1237 __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register());
never@3500 1238 }
never@3500 1239 } else {
never@3500 1240 __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset));
never@3500 1241 if (in_regs[i].second()->is_Register()) {
never@3500 1242 __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4));
never@3500 1243 }
never@3500 1244 }
never@3500 1245 }
never@3500 1246 }
never@3500 1247 // Save or restore single word registers
never@3500 1248 for ( int i = 0; i < total_in_args; i++) {
never@3500 1249 if (in_regs[i].first()->is_Register()) {
never@3500 1250 int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
never@3500 1251 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1252 assert(handle_index <= stack_slots, "overflow");
never@3500 1253 if (in_sig_bt[i] == T_ARRAY && map != NULL) {
never@3500 1254 map->set_oop(VMRegImpl::stack2reg(slot));;
never@3500 1255 }
never@3500 1256
never@3500 1257 // Value is in an input register pass we must flush it to the stack
never@3500 1258 const Register reg = in_regs[i].first()->as_Register();
never@3500 1259 switch (in_sig_bt[i]) {
never@3500 1260 case T_ARRAY:
never@3500 1261 if (map != NULL) {
never@3500 1262 __ movptr(Address(rsp, offset), reg);
never@3500 1263 } else {
never@3500 1264 __ movptr(reg, Address(rsp, offset));
never@3500 1265 }
never@3500 1266 break;
never@3500 1267 case T_BOOLEAN:
never@3500 1268 case T_CHAR:
never@3500 1269 case T_BYTE:
never@3500 1270 case T_SHORT:
never@3500 1271 case T_INT:
never@3500 1272 if (map != NULL) {
never@3500 1273 __ movl(Address(rsp, offset), reg);
never@3500 1274 } else {
never@3500 1275 __ movl(reg, Address(rsp, offset));
never@3500 1276 }
never@3500 1277 break;
never@3500 1278 case T_OBJECT:
never@3500 1279 default: ShouldNotReachHere();
never@3500 1280 }
never@3500 1281 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1282 if (in_sig_bt[i] == T_FLOAT) {
never@3500 1283 int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area;
never@3500 1284 int offset = slot * VMRegImpl::stack_slot_size;
never@3500 1285 assert(handle_index <= stack_slots, "overflow");
never@3500 1286 if (map != NULL) {
never@3500 1287 __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
never@3500 1288 } else {
never@3500 1289 __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
never@3500 1290 }
never@3500 1291 }
never@3500 1292 } else if (in_regs[i].first()->is_stack()) {
never@3500 1293 if (in_sig_bt[i] == T_ARRAY && map != NULL) {
never@3500 1294 int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
never@3500 1295 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
never@3500 1296 }
never@3500 1297 }
never@3500 1298 }
never@3500 1299 }
never@3500 1300
never@3500 1301 // Check GC_locker::needs_gc and enter the runtime if it's true. This
never@3500 1302 // keeps a new JNI critical region from starting until a GC has been
never@3500 1303 // forced. Save down any oops in registers and describe them in an
never@3500 1304 // OopMap.
never@3500 1305 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
never@3500 1306 Register thread,
never@3500 1307 int stack_slots,
never@3500 1308 int total_c_args,
never@3500 1309 int total_in_args,
never@3500 1310 int arg_save_area,
never@3500 1311 OopMapSet* oop_maps,
never@3500 1312 VMRegPair* in_regs,
never@3500 1313 BasicType* in_sig_bt) {
never@3500 1314 __ block_comment("check GC_locker::needs_gc");
never@3500 1315 Label cont;
never@3500 1316 __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
never@3500 1317 __ jcc(Assembler::equal, cont);
never@3500 1318
never@3500 1319 // Save down any incoming oops and call into the runtime to halt for a GC
never@3500 1320
never@3500 1321 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
never@3500 1322
never@3500 1323 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1324 arg_save_area, map, in_regs, in_sig_bt);
never@3500 1325
never@3500 1326 address the_pc = __ pc();
never@3500 1327 oop_maps->add_gc_map( __ offset(), map);
never@3500 1328 __ set_last_Java_frame(thread, rsp, noreg, the_pc);
never@3500 1329
never@3500 1330 __ block_comment("block_for_jni_critical");
never@3500 1331 __ push(thread);
never@3500 1332 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
never@3500 1333 __ increment(rsp, wordSize);
never@3500 1334
never@3500 1335 __ get_thread(thread);
kevinw@8877 1336 __ reset_last_Java_frame(thread, false);
never@3500 1337
never@3500 1338 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1339 arg_save_area, NULL, in_regs, in_sig_bt);
never@3500 1340
never@3500 1341 __ bind(cont);
never@3500 1342 #ifdef ASSERT
never@3500 1343 if (StressCriticalJNINatives) {
never@3500 1344 // Stress register saving
never@3500 1345 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
never@3500 1346 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1347 arg_save_area, map, in_regs, in_sig_bt);
never@3500 1348 // Destroy argument registers
never@3500 1349 for (int i = 0; i < total_in_args - 1; i++) {
never@3500 1350 if (in_regs[i].first()->is_Register()) {
never@3500 1351 const Register reg = in_regs[i].first()->as_Register();
never@3500 1352 __ xorptr(reg, reg);
never@3500 1353 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1354 __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
never@3500 1355 } else if (in_regs[i].first()->is_FloatRegister()) {
never@3500 1356 ShouldNotReachHere();
never@3500 1357 } else if (in_regs[i].first()->is_stack()) {
never@3500 1358 // Nothing to do
never@3500 1359 } else {
never@3500 1360 ShouldNotReachHere();
never@3500 1361 }
never@3500 1362 if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
never@3500 1363 i++;
never@3500 1364 }
never@3500 1365 }
never@3500 1366
never@3500 1367 save_or_restore_arguments(masm, stack_slots, total_in_args,
never@3500 1368 arg_save_area, NULL, in_regs, in_sig_bt);
never@3500 1369 }
never@3500 1370 #endif
never@3500 1371 }
never@3500 1372
never@3500 1373 // Unpack an array argument into a pointer to the body and the length
never@3500 1374 // if the array is non-null, otherwise pass 0 for both.
never@3500 1375 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
never@3500 1376 Register tmp_reg = rax;
never@3500 1377 assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
never@3500 1378 "possible collision");
never@3500 1379 assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
never@3500 1380 "possible collision");
never@3500 1381
never@3500 1382 // Pass the length, ptr pair
never@3500 1383 Label is_null, done;
never@3500 1384 VMRegPair tmp(tmp_reg->as_VMReg());
never@3500 1385 if (reg.first()->is_stack()) {
never@3500 1386 // Load the arg up from the stack
never@3500 1387 simple_move32(masm, reg, tmp);
never@3500 1388 reg = tmp;
never@3500 1389 }
never@3500 1390 __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
never@3500 1391 __ jccb(Assembler::equal, is_null);
never@3500 1392 __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
never@3500 1393 simple_move32(masm, tmp, body_arg);
never@3500 1394 // load the length relative to the body.
never@3500 1395 __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
never@3500 1396 arrayOopDesc::base_offset_in_bytes(in_elem_type)));
never@3500 1397 simple_move32(masm, tmp, length_arg);
never@3500 1398 __ jmpb(done);
never@3500 1399 __ bind(is_null);
never@3500 1400 // Pass zeros
never@3500 1401 __ xorptr(tmp_reg, tmp_reg);
never@3500 1402 simple_move32(masm, tmp, body_arg);
never@3500 1403 simple_move32(masm, tmp, length_arg);
never@3500 1404 __ bind(done);
never@3500 1405 }
never@3500 1406
twisti@3969 1407 static void verify_oop_args(MacroAssembler* masm,
twisti@4101 1408 methodHandle method,
twisti@3969 1409 const BasicType* sig_bt,
twisti@3969 1410 const VMRegPair* regs) {
twisti@3969 1411 Register temp_reg = rbx; // not part of any compiled calling seq
twisti@3969 1412 if (VerifyOops) {
twisti@4101 1413 for (int i = 0; i < method->size_of_parameters(); i++) {
twisti@3969 1414 if (sig_bt[i] == T_OBJECT ||
twisti@3969 1415 sig_bt[i] == T_ARRAY) {
twisti@3969 1416 VMReg r = regs[i].first();
twisti@3969 1417 assert(r->is_valid(), "bad oop arg");
twisti@3969 1418 if (r->is_stack()) {
twisti@3969 1419 __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1420 __ verify_oop(temp_reg);
twisti@3969 1421 } else {
twisti@3969 1422 __ verify_oop(r->as_Register());
twisti@3969 1423 }
twisti@3969 1424 }
twisti@3969 1425 }
twisti@3969 1426 }
twisti@3969 1427 }
twisti@3969 1428
twisti@3969 1429 static void gen_special_dispatch(MacroAssembler* masm,
twisti@4101 1430 methodHandle method,
twisti@3969 1431 const BasicType* sig_bt,
twisti@3969 1432 const VMRegPair* regs) {
twisti@4101 1433 verify_oop_args(masm, method, sig_bt, regs);
twisti@4101 1434 vmIntrinsics::ID iid = method->intrinsic_id();
twisti@3969 1435
twisti@3969 1436 // Now write the args into the outgoing interpreter space
twisti@3969 1437 bool has_receiver = false;
twisti@3969 1438 Register receiver_reg = noreg;
twisti@3969 1439 int member_arg_pos = -1;
twisti@3969 1440 Register member_reg = noreg;
twisti@4101 1441 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
twisti@3969 1442 if (ref_kind != 0) {
twisti@4101 1443 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument
twisti@3969 1444 member_reg = rbx; // known to be free at this point
twisti@3969 1445 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
twisti@4101 1446 } else if (iid == vmIntrinsics::_invokeBasic) {
twisti@3969 1447 has_receiver = true;
twisti@3969 1448 } else {
twisti@4101 1449 fatal(err_msg_res("unexpected intrinsic id %d", iid));
twisti@3969 1450 }
twisti@3969 1451
twisti@3969 1452 if (member_reg != noreg) {
twisti@3969 1453 // Load the member_arg into register, if necessary.
twisti@4101 1454 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
twisti@3969 1455 VMReg r = regs[member_arg_pos].first();
twisti@3969 1456 if (r->is_stack()) {
twisti@3969 1457 __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1458 } else {
twisti@3969 1459 // no data motion is needed
twisti@3969 1460 member_reg = r->as_Register();
twisti@3969 1461 }
twisti@3969 1462 }
twisti@3969 1463
twisti@3969 1464 if (has_receiver) {
twisti@3969 1465 // Make sure the receiver is loaded into a register.
twisti@4101 1466 assert(method->size_of_parameters() > 0, "oob");
twisti@3969 1467 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
twisti@3969 1468 VMReg r = regs[0].first();
twisti@3969 1469 assert(r->is_valid(), "bad receiver arg");
twisti@3969 1470 if (r->is_stack()) {
twisti@3969 1471 // Porting note: This assumes that compiled calling conventions always
twisti@3969 1472 // pass the receiver oop in a register. If this is not true on some
twisti@3969 1473 // platform, pick a temp and load the receiver from stack.
twisti@4101 1474 fatal("receiver always in a register");
twisti@3969 1475 receiver_reg = rcx; // known to be free at this point
twisti@3969 1476 __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
twisti@3969 1477 } else {
twisti@3969 1478 // no data motion is needed
twisti@3969 1479 receiver_reg = r->as_Register();
twisti@3969 1480 }
twisti@3969 1481 }
twisti@3969 1482
twisti@3969 1483 // Figure out which address we are really jumping to:
twisti@4101 1484 MethodHandles::generate_method_handle_dispatch(masm, iid,
twisti@3969 1485 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
twisti@3969 1486 }
never@3500 1487
duke@435 1488 // ---------------------------------------------------------------------------
duke@435 1489 // Generate a native wrapper for a given method. The method takes arguments
duke@435 1490 // in the Java compiled code convention, marshals them to the native
duke@435 1491 // convention (handlizes oops, etc), transitions to native, makes the call,
duke@435 1492 // returns to java state (possibly blocking), unhandlizes any result and
duke@435 1493 // returns.
never@3500 1494 //
never@3500 1495 // Critical native functions are a shorthand for the use of
never@3500 1496 // GetPrimtiveArrayCritical and disallow the use of any other JNI
never@3500 1497 // functions. The wrapper is expected to unpack the arguments before
never@3500 1498 // passing them to the callee and perform checks before and after the
never@3500 1499 // native call to ensure that they GC_locker
never@3500 1500 // lock_critical/unlock_critical semantics are followed. Some other
never@3500 1501 // parts of JNI setup are skipped like the tear down of the JNI handle
never@3500 1502 // block and the check for pending exceptions it's impossible for them
never@3500 1503 // to be thrown.
never@3500 1504 //
never@3500 1505 // They are roughly structured like this:
never@3500 1506 // if (GC_locker::needs_gc())
never@3500 1507 // SharedRuntime::block_for_jni_critical();
never@3500 1508 // tranistion to thread_in_native
never@3500 1509 // unpack arrray arguments and call native entry point
never@3500 1510 // check for safepoint in progress
never@3500 1511 // check if any thread suspend flags are set
never@3500 1512 // call into JVM and possible unlock the JNI critical
never@3500 1513 // if a GC was suppressed while in the critical native.
never@3500 1514 // transition back to thread_in_Java
never@3500 1515 // return to caller
never@3500 1516 //
twisti@3969 1517 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
duke@435 1518 methodHandle method,
twisti@2687 1519 int compile_id,
twisti@3969 1520 BasicType* in_sig_bt,
twisti@3969 1521 VMRegPair* in_regs,
duke@435 1522 BasicType ret_type) {
twisti@3969 1523 if (method->is_method_handle_intrinsic()) {
twisti@3969 1524 vmIntrinsics::ID iid = method->intrinsic_id();
twisti@3969 1525 intptr_t start = (intptr_t)__ pc();
twisti@3969 1526 int vep_offset = ((intptr_t)__ pc()) - start;
twisti@3969 1527 gen_special_dispatch(masm,
twisti@4101 1528 method,
twisti@3969 1529 in_sig_bt,
twisti@3969 1530 in_regs);
twisti@3969 1531 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
twisti@3969 1532 __ flush();
twisti@3969 1533 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
twisti@3969 1534 return nmethod::new_native_nmethod(method,
twisti@3969 1535 compile_id,
twisti@3969 1536 masm->code(),
twisti@3969 1537 vep_offset,
twisti@3969 1538 frame_complete,
twisti@3969 1539 stack_slots / VMRegImpl::slots_per_word,
twisti@3969 1540 in_ByteSize(-1),
twisti@3969 1541 in_ByteSize(-1),
twisti@3969 1542 (OopMapSet*)NULL);
twisti@3969 1543 }
never@3500 1544 bool is_critical_native = true;
never@3500 1545 address native_func = method->critical_native_function();
never@3500 1546 if (native_func == NULL) {
never@3500 1547 native_func = method->native_function();
never@3500 1548 is_critical_native = false;
never@3500 1549 }
never@3500 1550 assert(native_func != NULL, "must have function");
duke@435 1551
duke@435 1552 // An OopMap for lock (and class if static)
duke@435 1553 OopMapSet *oop_maps = new OopMapSet();
duke@435 1554
duke@435 1555 // We have received a description of where all the java arg are located
duke@435 1556 // on entry to the wrapper. We need to convert these args to where
duke@435 1557 // the jni function will expect them. To figure out where they go
duke@435 1558 // we convert the java signature to a C signature by inserting
duke@435 1559 // the hidden arguments as arg[0] and possibly arg[1] (static method)
duke@435 1560
twisti@4101 1561 const int total_in_args = method->size_of_parameters();
never@3500 1562 int total_c_args = total_in_args;
never@3500 1563 if (!is_critical_native) {
never@3500 1564 total_c_args += 1;
never@3500 1565 if (method->is_static()) {
never@3500 1566 total_c_args++;
never@3500 1567 }
never@3500 1568 } else {
never@3500 1569 for (int i = 0; i < total_in_args; i++) {
never@3500 1570 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1571 total_c_args++;
never@3500 1572 }
never@3500 1573 }
duke@435 1574 }
duke@435 1575
duke@435 1576 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
never@3500 1577 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
never@3500 1578 BasicType* in_elem_bt = NULL;
duke@435 1579
duke@435 1580 int argc = 0;
never@3500 1581 if (!is_critical_native) {
never@3500 1582 out_sig_bt[argc++] = T_ADDRESS;
never@3500 1583 if (method->is_static()) {
never@3500 1584 out_sig_bt[argc++] = T_OBJECT;
never@3500 1585 }
never@3500 1586
never@3500 1587 for (int i = 0; i < total_in_args ; i++ ) {
never@3500 1588 out_sig_bt[argc++] = in_sig_bt[i];
never@3500 1589 }
never@3500 1590 } else {
never@3500 1591 Thread* THREAD = Thread::current();
never@3500 1592 in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
never@3500 1593 SignatureStream ss(method->signature());
never@3500 1594 for (int i = 0; i < total_in_args ; i++ ) {
never@3500 1595 if (in_sig_bt[i] == T_ARRAY) {
never@3500 1596 // Arrays are passed as int, elem* pair
never@3500 1597 out_sig_bt[argc++] = T_INT;
never@3500 1598 out_sig_bt[argc++] = T_ADDRESS;
never@3500 1599 Symbol* atype = ss.as_symbol(CHECK_NULL);
never@3500 1600 const char* at = atype->as_C_string();
never@3500 1601 if (strlen(at) == 2) {
never@3500 1602 assert(at[0] == '[', "must be");
never@3500 1603 switch (at[1]) {
never@3500 1604 case 'B': in_elem_bt[i] = T_BYTE; break;
never@3500 1605 case 'C': in_elem_bt[i] = T_CHAR; break;
never@3500 1606 case 'D': in_elem_bt[i] = T_DOUBLE; break;
never@3500 1607 case 'F': in_elem_bt[i] = T_FLOAT; break;
never@3500 1608 case 'I': in_elem_bt[i] = T_INT; break;
never@3500 1609 case 'J': in_elem_bt[i] = T_LONG; break;
never@3500 1610 case 'S': in_elem_bt[i] = T_SHORT; break;
never@3500 1611 case 'Z': in_elem_bt[i] = T_BOOLEAN; break;
never@3500 1612 default: ShouldNotReachHere();
never@3500 1613 }
never@3500 1614 }
never@3500 1615 } else {
never@3500 1616 out_sig_bt[argc++] = in_sig_bt[i];
never@3500 1617 in_elem_bt[i] = T_VOID;
never@3500 1618 }
never@3500 1619 if (in_sig_bt[i] != T_VOID) {
never@3500 1620 assert(in_sig_bt[i] == ss.type(), "must match");
never@3500 1621 ss.next();
never@3500 1622 }
never@3500 1623 }
duke@435 1624 }
duke@435 1625
duke@435 1626 // Now figure out where the args must be stored and how much stack space
never@3500 1627 // they require.
duke@435 1628 int out_arg_slots;
goetz@6466 1629 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
duke@435 1630
duke@435 1631 // Compute framesize for the wrapper. We need to handlize all oops in
duke@435 1632 // registers a max of 2 on x86.
duke@435 1633
duke@435 1634 // Calculate the total number of stack slots we will need.
duke@435 1635
duke@435 1636 // First count the abi requirement plus all of the outgoing args
duke@435 1637 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
duke@435 1638
duke@435 1639 // Now the space for the inbound oop handle area
never@3500 1640 int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers
never@3500 1641 if (is_critical_native) {
never@3500 1642 // Critical natives may have to call out so they need a save area
never@3500 1643 // for register arguments.
never@3500 1644 int double_slots = 0;
never@3500 1645 int single_slots = 0;
never@3500 1646 for ( int i = 0; i < total_in_args; i++) {
never@3500 1647 if (in_regs[i].first()->is_Register()) {
never@3500 1648 const Register reg = in_regs[i].first()->as_Register();
never@3500 1649 switch (in_sig_bt[i]) {
twisti@3969 1650 case T_ARRAY: // critical array (uses 2 slots on LP64)
never@3500 1651 case T_BOOLEAN:
never@3500 1652 case T_BYTE:
never@3500 1653 case T_SHORT:
never@3500 1654 case T_CHAR:
never@3500 1655 case T_INT: single_slots++; break;
never@3500 1656 case T_LONG: double_slots++; break;
never@3500 1657 default: ShouldNotReachHere();
never@3500 1658 }
never@3500 1659 } else if (in_regs[i].first()->is_XMMRegister()) {
never@3500 1660 switch (in_sig_bt[i]) {
never@3500 1661 case T_FLOAT: single_slots++; break;
never@3500 1662 case T_DOUBLE: double_slots++; break;
never@3500 1663 default: ShouldNotReachHere();
never@3500 1664 }
never@3500 1665 } else if (in_regs[i].first()->is_FloatRegister()) {
never@3500 1666 ShouldNotReachHere();
never@3500 1667 }
never@3500 1668 }
never@3500 1669 total_save_slots = double_slots * 2 + single_slots;
never@3500 1670 // align the save area
never@3500 1671 if (double_slots != 0) {
never@3500 1672 stack_slots = round_to(stack_slots, 2);
never@3500 1673 }
never@3500 1674 }
duke@435 1675
duke@435 1676 int oop_handle_offset = stack_slots;
never@3500 1677 stack_slots += total_save_slots;
duke@435 1678
duke@435 1679 // Now any space we need for handlizing a klass if static method
duke@435 1680
duke@435 1681 int klass_slot_offset = 0;
duke@435 1682 int klass_offset = -1;
duke@435 1683 int lock_slot_offset = 0;
duke@435 1684 bool is_static = false;
duke@435 1685
duke@435 1686 if (method->is_static()) {
duke@435 1687 klass_slot_offset = stack_slots;
duke@435 1688 stack_slots += VMRegImpl::slots_per_word;
duke@435 1689 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
duke@435 1690 is_static = true;
duke@435 1691 }
duke@435 1692
duke@435 1693 // Plus a lock if needed
duke@435 1694
duke@435 1695 if (method->is_synchronized()) {
duke@435 1696 lock_slot_offset = stack_slots;
duke@435 1697 stack_slots += VMRegImpl::slots_per_word;
duke@435 1698 }
duke@435 1699
duke@435 1700 // Now a place (+2) to save return values or temp during shuffling
duke@435 1701 // + 2 for return address (which we own) and saved rbp,
duke@435 1702 stack_slots += 4;
duke@435 1703
duke@435 1704 // Ok The space we have allocated will look like:
duke@435 1705 //
duke@435 1706 //
duke@435 1707 // FP-> | |
duke@435 1708 // |---------------------|
duke@435 1709 // | 2 slots for moves |
duke@435 1710 // |---------------------|
duke@435 1711 // | lock box (if sync) |
duke@435 1712 // |---------------------| <- lock_slot_offset (-lock_slot_rbp_offset)
duke@435 1713 // | klass (if static) |
duke@435 1714 // |---------------------| <- klass_slot_offset
duke@435 1715 // | oopHandle area |
duke@435 1716 // |---------------------| <- oop_handle_offset (a max of 2 registers)
duke@435 1717 // | outbound memory |
duke@435 1718 // | based arguments |
duke@435 1719 // | |
duke@435 1720 // |---------------------|
duke@435 1721 // | |
duke@435 1722 // SP-> | out_preserved_slots |
duke@435 1723 //
duke@435 1724 //
duke@435 1725 // ****************************************************************************
duke@435 1726 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 1727 // arguments off of the stack after the jni call. Before the call we can use
duke@435 1728 // instructions that are SP relative. After the jni call we switch to FP
duke@435 1729 // relative instructions instead of re-adjusting the stack on windows.
duke@435 1730 // ****************************************************************************
duke@435 1731
duke@435 1732
duke@435 1733 // Now compute actual number of stack words we need rounding to make
duke@435 1734 // stack properly aligned.
xlu@959 1735 stack_slots = round_to(stack_slots, StackAlignmentInSlots);
duke@435 1736
duke@435 1737 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
duke@435 1738
duke@435 1739 intptr_t start = (intptr_t)__ pc();
duke@435 1740
duke@435 1741 // First thing make an ic check to see if we should even be here
duke@435 1742
duke@435 1743 // We are free to use all registers as temps without saving them and
never@3500 1744 // restoring them except rbp. rbp is the only callee save register
duke@435 1745 // as far as the interpreter and the compiler(s) are concerned.
duke@435 1746
duke@435 1747
duke@435 1748 const Register ic_reg = rax;
duke@435 1749 const Register receiver = rcx;
duke@435 1750 Label hit;
duke@435 1751 Label exception_pending;
duke@435 1752
duke@435 1753 __ verify_oop(receiver);
never@739 1754 __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
duke@435 1755 __ jcc(Assembler::equal, hit);
duke@435 1756
duke@435 1757 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 1758
duke@435 1759 // verified entry must be aligned for code patching.
duke@435 1760 // and the first 5 bytes must be in the same cache line
duke@435 1761 // if we align at 8 then we will be sure 5 bytes are in the same line
duke@435 1762 __ align(8);
duke@435 1763
duke@435 1764 __ bind(hit);
duke@435 1765
duke@435 1766 int vep_offset = ((intptr_t)__ pc()) - start;
duke@435 1767
duke@435 1768 #ifdef COMPILER1
duke@435 1769 if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
duke@435 1770 // Object.hashCode can pull the hashCode from the header word
duke@435 1771 // instead of doing a full VM transition once it's been computed.
duke@435 1772 // Since hashCode is usually polymorphic at call sites we can't do
duke@435 1773 // this optimization at the call site without a lot of work.
duke@435 1774 Label slowCase;
duke@435 1775 Register receiver = rcx;
duke@435 1776 Register result = rax;
never@739 1777 __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
duke@435 1778
duke@435 1779 // check if locked
never@739 1780 __ testptr(result, markOopDesc::unlocked_value);
duke@435 1781 __ jcc (Assembler::zero, slowCase);
duke@435 1782
duke@435 1783 if (UseBiasedLocking) {
duke@435 1784 // Check if biased and fall through to runtime if so
never@739 1785 __ testptr(result, markOopDesc::biased_lock_bit_in_place);
duke@435 1786 __ jcc (Assembler::notZero, slowCase);
duke@435 1787 }
duke@435 1788
duke@435 1789 // get hash
never@739 1790 __ andptr(result, markOopDesc::hash_mask_in_place);
duke@435 1791 // test if hashCode exists
duke@435 1792 __ jcc (Assembler::zero, slowCase);
never@739 1793 __ shrptr(result, markOopDesc::hash_shift);
duke@435 1794 __ ret(0);
duke@435 1795 __ bind (slowCase);
duke@435 1796 }
duke@435 1797 #endif // COMPILER1
duke@435 1798
duke@435 1799 // The instruction at the verified entry point must be 5 bytes or longer
duke@435 1800 // because it can be patched on the fly by make_non_entrant. The stack bang
duke@435 1801 // instruction fits that requirement.
duke@435 1802
duke@435 1803 // Generate stack overflow check
duke@435 1804
duke@435 1805 if (UseStackBanging) {
duke@435 1806 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
duke@435 1807 } else {
duke@435 1808 // need a 5 byte instruction to allow MT safe patching to non-entrant
duke@435 1809 __ fat_nop();
duke@435 1810 }
duke@435 1811
duke@435 1812 // Generate a new frame for the wrapper.
duke@435 1813 __ enter();
never@3500 1814 // -2 because return address is already present and so is saved rbp
never@739 1815 __ subptr(rsp, stack_size - 2*wordSize);
duke@435 1816
never@3500 1817 // Frame is now completed as far as size and linkage.
duke@435 1818 int frame_complete = ((intptr_t)__ pc()) - start;
duke@435 1819
kvn@6429 1820 if (UseRTMLocking) {
kvn@6429 1821 // Abort RTM transaction before calling JNI
kvn@6429 1822 // because critical section will be large and will be
kvn@6429 1823 // aborted anyway. Also nmethod could be deoptimized.
kvn@6429 1824 __ xabort(0);
kvn@6429 1825 }
kvn@6429 1826
duke@435 1827 // Calculate the difference between rsp and rbp,. We need to know it
duke@435 1828 // after the native call because on windows Java Natives will pop
duke@435 1829 // the arguments and it is painful to do rsp relative addressing
duke@435 1830 // in a platform independent way. So after the call we switch to
duke@435 1831 // rbp, relative addressing.
duke@435 1832
duke@435 1833 int fp_adjustment = stack_size - 2*wordSize;
duke@435 1834
duke@435 1835 #ifdef COMPILER2
duke@435 1836 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 1837 if (UseSSE >= 2) {
duke@435 1838 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 1839 } else {
duke@435 1840 __ empty_FPU_stack();
duke@435 1841 }
duke@435 1842 #endif /* COMPILER2 */
duke@435 1843
duke@435 1844 // Compute the rbp, offset for any slots used after the jni call
duke@435 1845
duke@435 1846 int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
duke@435 1847
duke@435 1848 // We use rdi as a thread pointer because it is callee save and
duke@435 1849 // if we load it once it is usable thru the entire wrapper
duke@435 1850 const Register thread = rdi;
duke@435 1851
duke@435 1852 // We use rsi as the oop handle for the receiver/klass
duke@435 1853 // It is callee save so it survives the call to native
duke@435 1854
duke@435 1855 const Register oop_handle_reg = rsi;
duke@435 1856
duke@435 1857 __ get_thread(thread);
duke@435 1858
never@3500 1859 if (is_critical_native) {
never@3500 1860 check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args,
never@3500 1861 oop_handle_offset, oop_maps, in_regs, in_sig_bt);
never@3500 1862 }
duke@435 1863
duke@435 1864 //
duke@435 1865 // We immediately shuffle the arguments so that any vm call we have to
duke@435 1866 // make from here on out (sync slow path, jvmti, etc.) we will have
duke@435 1867 // captured the oops from our caller and have a valid oopMap for
duke@435 1868 // them.
duke@435 1869
duke@435 1870 // -----------------
duke@435 1871 // The Grand Shuffle
duke@435 1872 //
duke@435 1873 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
duke@435 1874 // and, if static, the class mirror instead of a receiver. This pretty much
duke@435 1875 // guarantees that register layout will not match (and x86 doesn't use reg
duke@435 1876 // parms though amd does). Since the native abi doesn't use register args
duke@435 1877 // and the java conventions does we don't have to worry about collisions.
duke@435 1878 // All of our moved are reg->stack or stack->stack.
duke@435 1879 // We ignore the extra arguments during the shuffle and handle them at the
duke@435 1880 // last moment. The shuffle is described by the two calling convention
duke@435 1881 // vectors we have in our possession. We simply walk the java vector to
duke@435 1882 // get the source locations and the c vector to get the destinations.
duke@435 1883
never@3500 1884 int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 );
duke@435 1885
duke@435 1886 // Record rsp-based slot for receiver on stack for non-static methods
duke@435 1887 int receiver_offset = -1;
duke@435 1888
duke@435 1889 // This is a trick. We double the stack slots so we can claim
duke@435 1890 // the oops in the caller's frame. Since we are sure to have
duke@435 1891 // more args than the caller doubling is enough to make
duke@435 1892 // sure we can capture all the incoming oop args from the
duke@435 1893 // caller.
duke@435 1894 //
duke@435 1895 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
duke@435 1896
duke@435 1897 // Mark location of rbp,
duke@435 1898 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
duke@435 1899
duke@435 1900 // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
duke@435 1901 // Are free to temporaries if we have to do stack to steck moves.
duke@435 1902 // All inbound args are referenced based on rbp, and all outbound args via rsp.
duke@435 1903
never@3500 1904 for (int i = 0; i < total_in_args ; i++, c_arg++ ) {
duke@435 1905 switch (in_sig_bt[i]) {
duke@435 1906 case T_ARRAY:
never@3500 1907 if (is_critical_native) {
never@3500 1908 unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
never@3500 1909 c_arg++;
never@3500 1910 break;
never@3500 1911 }
duke@435 1912 case T_OBJECT:
never@3500 1913 assert(!is_critical_native, "no oop arguments");
duke@435 1914 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
duke@435 1915 ((i == 0) && (!is_static)),
duke@435 1916 &receiver_offset);
duke@435 1917 break;
duke@435 1918 case T_VOID:
duke@435 1919 break;
duke@435 1920
duke@435 1921 case T_FLOAT:
duke@435 1922 float_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1923 break;
duke@435 1924
duke@435 1925 case T_DOUBLE:
duke@435 1926 assert( i + 1 < total_in_args &&
duke@435 1927 in_sig_bt[i + 1] == T_VOID &&
duke@435 1928 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
duke@435 1929 double_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1930 break;
duke@435 1931
duke@435 1932 case T_LONG :
duke@435 1933 long_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1934 break;
duke@435 1935
duke@435 1936 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
duke@435 1937
duke@435 1938 default:
duke@435 1939 simple_move32(masm, in_regs[i], out_regs[c_arg]);
duke@435 1940 }
duke@435 1941 }
duke@435 1942
duke@435 1943 // Pre-load a static method's oop into rsi. Used both by locking code and
duke@435 1944 // the normal JNI call code.
never@3500 1945 if (method->is_static() && !is_critical_native) {
duke@435 1946
duke@435 1947 // load opp into a register
coleenp@4251 1948 __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
duke@435 1949
duke@435 1950 // Now handlize the static class mirror it's known not-null.
never@739 1951 __ movptr(Address(rsp, klass_offset), oop_handle_reg);
duke@435 1952 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
duke@435 1953
duke@435 1954 // Now get the handle
never@739 1955 __ lea(oop_handle_reg, Address(rsp, klass_offset));
duke@435 1956 // store the klass handle as second argument
never@739 1957 __ movptr(Address(rsp, wordSize), oop_handle_reg);
duke@435 1958 }
duke@435 1959
duke@435 1960 // Change state to native (we save the return address in the thread, since it might not
duke@435 1961 // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
duke@435 1962 // points into the right code segment. It does not have to be the correct return pc.
duke@435 1963 // We use the same pc/oopMap repeatedly when we call out
duke@435 1964
duke@435 1965 intptr_t the_pc = (intptr_t) __ pc();
duke@435 1966 oop_maps->add_gc_map(the_pc - start, map);
duke@435 1967
duke@435 1968 __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
duke@435 1969
duke@435 1970
duke@435 1971 // We have all of the arguments setup at this point. We must not touch any register
duke@435 1972 // argument registers at this point (what if we save/restore them there are no oop?
duke@435 1973
duke@435 1974 {
duke@435 1975 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
coleenp@4037 1976 __ mov_metadata(rax, method());
duke@435 1977 __ call_VM_leaf(
duke@435 1978 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 1979 thread, rax);
duke@435 1980 }
duke@435 1981
dcubed@1045 1982 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 1983 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
coleenp@4037 1984 __ mov_metadata(rax, method());
dcubed@1045 1985 __ call_VM_leaf(
dcubed@1045 1986 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 1987 thread, rax);
dcubed@1045 1988 }
dcubed@1045 1989
duke@435 1990 // These are register definitions we need for locking/unlocking
duke@435 1991 const Register swap_reg = rax; // Must use rax, for cmpxchg instruction
duke@435 1992 const Register obj_reg = rcx; // Will contain the oop
duke@435 1993 const Register lock_reg = rdx; // Address of compiler lock object (BasicLock)
duke@435 1994
duke@435 1995 Label slow_path_lock;
duke@435 1996 Label lock_done;
duke@435 1997
duke@435 1998 // Lock a synchronized method
duke@435 1999 if (method->is_synchronized()) {
never@3500 2000 assert(!is_critical_native, "unhandled");
duke@435 2001
duke@435 2002
duke@435 2003 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
duke@435 2004
duke@435 2005 // Get the handle (the 2nd argument)
never@739 2006 __ movptr(oop_handle_reg, Address(rsp, wordSize));
duke@435 2007
duke@435 2008 // Get address of the box
duke@435 2009
never@739 2010 __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
duke@435 2011
duke@435 2012 // Load the oop from the handle
never@739 2013 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 2014
duke@435 2015 if (UseBiasedLocking) {
duke@435 2016 // Note that oop_handle_reg is trashed during this call
duke@435 2017 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
duke@435 2018 }
duke@435 2019
duke@435 2020 // Load immediate 1 into swap_reg %rax,
never@739 2021 __ movptr(swap_reg, 1);
duke@435 2022
duke@435 2023 // Load (object->mark() | 1) into swap_reg %rax,
never@739 2024 __ orptr(swap_reg, Address(obj_reg, 0));
duke@435 2025
duke@435 2026 // Save (object->mark() | 1) into BasicLock's displaced header
never@739 2027 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 2028
duke@435 2029 if (os::is_MP()) {
duke@435 2030 __ lock();
duke@435 2031 }
duke@435 2032
duke@435 2033 // src -> dest iff dest == rax, else rax, <- dest
duke@435 2034 // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
never@739 2035 __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
duke@435 2036 __ jcc(Assembler::equal, lock_done);
duke@435 2037
duke@435 2038 // Test if the oopMark is an obvious stack pointer, i.e.,
duke@435 2039 // 1) (mark & 3) == 0, and
duke@435 2040 // 2) rsp <= mark < mark + os::pagesize()
duke@435 2041 // These 3 tests can be done by evaluating the following
duke@435 2042 // expression: ((mark - rsp) & (3 - os::vm_page_size())),
duke@435 2043 // assuming both stack pointer and pagesize have their
duke@435 2044 // least significant 2 bits clear.
duke@435 2045 // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
duke@435 2046
never@739 2047 __ subptr(swap_reg, rsp);
never@739 2048 __ andptr(swap_reg, 3 - os::vm_page_size());
duke@435 2049
duke@435 2050 // Save the test result, for recursive case, the result is zero
never@739 2051 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 2052 __ jcc(Assembler::notEqual, slow_path_lock);
duke@435 2053 // Slow path will re-enter here
duke@435 2054 __ bind(lock_done);
duke@435 2055
duke@435 2056 if (UseBiasedLocking) {
duke@435 2057 // Re-fetch oop_handle_reg as we trashed it above
never@739 2058 __ movptr(oop_handle_reg, Address(rsp, wordSize));
duke@435 2059 }
duke@435 2060 }
duke@435 2061
duke@435 2062
duke@435 2063 // Finally just about ready to make the JNI call
duke@435 2064
duke@435 2065
duke@435 2066 // get JNIEnv* which is first argument to native
never@3500 2067 if (!is_critical_native) {
never@3500 2068 __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
never@3500 2069 __ movptr(Address(rsp, 0), rdx);
never@3500 2070 }
duke@435 2071
duke@435 2072 // Now set thread in native
duke@435 2073 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
duke@435 2074
never@3500 2075 __ call(RuntimeAddress(native_func));
duke@435 2076
kvn@4873 2077 // Verify or restore cpu control state after JNI call
kvn@4873 2078 __ restore_cpu_control_state_after_jni();
kvn@4873 2079
duke@435 2080 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 2081 // arguments off of the stack. We could just re-adjust the stack pointer here
duke@435 2082 // and continue to do SP relative addressing but we instead switch to FP
duke@435 2083 // relative addressing.
duke@435 2084
duke@435 2085 // Unpack native results.
duke@435 2086 switch (ret_type) {
duke@435 2087 case T_BOOLEAN: __ c2bool(rax); break;
never@739 2088 case T_CHAR : __ andptr(rax, 0xFFFF); break;
duke@435 2089 case T_BYTE : __ sign_extend_byte (rax); break;
duke@435 2090 case T_SHORT : __ sign_extend_short(rax); break;
duke@435 2091 case T_INT : /* nothing to do */ break;
duke@435 2092 case T_DOUBLE :
duke@435 2093 case T_FLOAT :
duke@435 2094 // Result is in st0 we'll save as needed
duke@435 2095 break;
duke@435 2096 case T_ARRAY: // Really a handle
duke@435 2097 case T_OBJECT: // Really a handle
duke@435 2098 break; // can't de-handlize until after safepoint check
duke@435 2099 case T_VOID: break;
duke@435 2100 case T_LONG: break;
duke@435 2101 default : ShouldNotReachHere();
duke@435 2102 }
duke@435 2103
duke@435 2104 // Switch thread to "native transition" state before reading the synchronization state.
duke@435 2105 // This additional state is necessary because reading and testing the synchronization
duke@435 2106 // state is not atomic w.r.t. GC, as this scenario demonstrates:
duke@435 2107 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
duke@435 2108 // VM thread changes sync state to synchronizing and suspends threads for GC.
duke@435 2109 // Thread A is resumed to finish this native method, but doesn't block here since it
duke@435 2110 // didn't see any synchronization is progress, and escapes.
duke@435 2111 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
duke@435 2112
duke@435 2113 if(os::is_MP()) {
duke@435 2114 if (UseMembar) {
never@739 2115 // Force this write out before the read below
never@739 2116 __ membar(Assembler::Membar_mask_bits(
never@739 2117 Assembler::LoadLoad | Assembler::LoadStore |
never@739 2118 Assembler::StoreLoad | Assembler::StoreStore));
duke@435 2119 } else {
duke@435 2120 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 2121 // We use the current thread pointer to calculate a thread specific
duke@435 2122 // offset to write to within the page. This minimizes bus traffic
duke@435 2123 // due to cache line collision.
duke@435 2124 __ serialize_memory(thread, rcx);
duke@435 2125 }
duke@435 2126 }
duke@435 2127
duke@435 2128 if (AlwaysRestoreFPU) {
duke@435 2129 // Make sure the control word is correct.
duke@435 2130 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 2131 }
duke@435 2132
never@3500 2133 Label after_transition;
never@3500 2134
duke@435 2135 // check for safepoint operation in progress and/or pending suspend requests
duke@435 2136 { Label Continue;
duke@435 2137
duke@435 2138 __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
duke@435 2139 SafepointSynchronize::_not_synchronized);
duke@435 2140
duke@435 2141 Label L;
duke@435 2142 __ jcc(Assembler::notEqual, L);
duke@435 2143 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
duke@435 2144 __ jcc(Assembler::equal, Continue);
duke@435 2145 __ bind(L);
duke@435 2146
duke@435 2147 // Don't use call_VM as it will see a possible pending exception and forward it
duke@435 2148 // and never return here preventing us from clearing _last_native_pc down below.
duke@435 2149 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
duke@435 2150 // preserved and correspond to the bcp/locals pointers. So we do a runtime call
duke@435 2151 // by hand.
duke@435 2152 //
duke@435 2153 save_native_result(masm, ret_type, stack_slots);
never@739 2154 __ push(thread);
never@3500 2155 if (!is_critical_native) {
never@3500 2156 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
never@3500 2157 JavaThread::check_special_condition_for_native_trans)));
never@3500 2158 } else {
never@3500 2159 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
never@3500 2160 JavaThread::check_special_condition_for_native_trans_and_transition)));
never@3500 2161 }
duke@435 2162 __ increment(rsp, wordSize);
duke@435 2163 // Restore any method result value
duke@435 2164 restore_native_result(masm, ret_type, stack_slots);
duke@435 2165
never@3500 2166 if (is_critical_native) {
never@3500 2167 // The call above performed the transition to thread_in_Java so
never@3500 2168 // skip the transition logic below.
never@3500 2169 __ jmpb(after_transition);
never@3500 2170 }
never@3500 2171
duke@435 2172 __ bind(Continue);
duke@435 2173 }
duke@435 2174
duke@435 2175 // change thread state
duke@435 2176 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
never@3500 2177 __ bind(after_transition);
duke@435 2178
duke@435 2179 Label reguard;
duke@435 2180 Label reguard_done;
duke@435 2181 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
duke@435 2182 __ jcc(Assembler::equal, reguard);
duke@435 2183
duke@435 2184 // slow path reguard re-enters here
duke@435 2185 __ bind(reguard_done);
duke@435 2186
duke@435 2187 // Handle possible exception (will unlock if necessary)
duke@435 2188
duke@435 2189 // native result if any is live
duke@435 2190
duke@435 2191 // Unlock
duke@435 2192 Label slow_path_unlock;
duke@435 2193 Label unlock_done;
duke@435 2194 if (method->is_synchronized()) {
duke@435 2195
duke@435 2196 Label done;
duke@435 2197
duke@435 2198 // Get locked oop from the handle we passed to jni
never@739 2199 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 2200
duke@435 2201 if (UseBiasedLocking) {
duke@435 2202 __ biased_locking_exit(obj_reg, rbx, done);
duke@435 2203 }
duke@435 2204
duke@435 2205 // Simple recursive lock?
duke@435 2206
never@739 2207 __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
duke@435 2208 __ jcc(Assembler::equal, done);
duke@435 2209
duke@435 2210 // Must save rax, if if it is live now because cmpxchg must use it
duke@435 2211 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 2212 save_native_result(masm, ret_type, stack_slots);
duke@435 2213 }
duke@435 2214
duke@435 2215 // get old displaced header
never@739 2216 __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
duke@435 2217
duke@435 2218 // get address of the stack lock
never@739 2219 __ lea(rax, Address(rbp, lock_slot_rbp_offset));
duke@435 2220
duke@435 2221 // Atomic swap old header if oop still contains the stack lock
duke@435 2222 if (os::is_MP()) {
duke@435 2223 __ lock();
duke@435 2224 }
duke@435 2225
duke@435 2226 // src -> dest iff dest == rax, else rax, <- dest
duke@435 2227 // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
never@739 2228 __ cmpxchgptr(rbx, Address(obj_reg, 0));
duke@435 2229 __ jcc(Assembler::notEqual, slow_path_unlock);
duke@435 2230
duke@435 2231 // slow path re-enters here
duke@435 2232 __ bind(unlock_done);
duke@435 2233 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 2234 restore_native_result(masm, ret_type, stack_slots);
duke@435 2235 }
duke@435 2236
duke@435 2237 __ bind(done);
duke@435 2238
duke@435 2239 }
duke@435 2240
duke@435 2241 {
duke@435 2242 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
duke@435 2243 // Tell dtrace about this method exit
duke@435 2244 save_native_result(masm, ret_type, stack_slots);
coleenp@4037 2245 __ mov_metadata(rax, method());
duke@435 2246 __ call_VM_leaf(
duke@435 2247 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2248 thread, rax);
duke@435 2249 restore_native_result(masm, ret_type, stack_slots);
duke@435 2250 }
duke@435 2251
duke@435 2252 // We can finally stop using that last_Java_frame we setup ages ago
duke@435 2253
kevinw@8877 2254 __ reset_last_Java_frame(thread, false);
duke@435 2255
phh@9669 2256 // Unbox oop result, e.g. JNIHandles::resolve value.
duke@435 2257 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
phh@9669 2258 __ resolve_jobject(rax /* value */,
phh@9669 2259 thread /* thread */,
phh@9669 2260 rcx /* tmp */);
duke@435 2261 }
duke@435 2262
never@3500 2263 if (!is_critical_native) {
never@3500 2264 // reset handle block
never@3500 2265 __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
goetz@6558 2266 __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
never@3500 2267
never@3500 2268 // Any exception pending?
never@3500 2269 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
never@3500 2270 __ jcc(Assembler::notEqual, exception_pending);
never@3500 2271 }
duke@435 2272
duke@435 2273 // no exception, we're almost done
duke@435 2274
duke@435 2275 // check that only result value is on FPU stack
duke@435 2276 __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
duke@435 2277
duke@435 2278 // Fixup floating pointer results so that result looks like a return from a compiled method
duke@435 2279 if (ret_type == T_FLOAT) {
duke@435 2280 if (UseSSE >= 1) {
duke@435 2281 // Pop st0 and store as float and reload into xmm register
duke@435 2282 __ fstp_s(Address(rbp, -4));
duke@435 2283 __ movflt(xmm0, Address(rbp, -4));
duke@435 2284 }
duke@435 2285 } else if (ret_type == T_DOUBLE) {
duke@435 2286 if (UseSSE >= 2) {
duke@435 2287 // Pop st0 and store as double and reload into xmm register
duke@435 2288 __ fstp_d(Address(rbp, -8));
duke@435 2289 __ movdbl(xmm0, Address(rbp, -8));
duke@435 2290 }
duke@435 2291 }
duke@435 2292
duke@435 2293 // Return
duke@435 2294
duke@435 2295 __ leave();
duke@435 2296 __ ret(0);
duke@435 2297
duke@435 2298 // Unexpected paths are out of line and go here
duke@435 2299
duke@435 2300 // Slow path locking & unlocking
duke@435 2301 if (method->is_synchronized()) {
duke@435 2302
duke@435 2303 // BEGIN Slow path lock
duke@435 2304
duke@435 2305 __ bind(slow_path_lock);
duke@435 2306
duke@435 2307 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
duke@435 2308 // args are (oop obj, BasicLock* lock, JavaThread* thread)
never@739 2309 __ push(thread);
never@739 2310 __ push(lock_reg);
never@739 2311 __ push(obj_reg);
duke@435 2312 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
never@739 2313 __ addptr(rsp, 3*wordSize);
duke@435 2314
duke@435 2315 #ifdef ASSERT
duke@435 2316 { Label L;
never@739 2317 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
duke@435 2318 __ jcc(Assembler::equal, L);
duke@435 2319 __ stop("no pending exception allowed on exit from monitorenter");
duke@435 2320 __ bind(L);
duke@435 2321 }
duke@435 2322 #endif
duke@435 2323 __ jmp(lock_done);
duke@435 2324
duke@435 2325 // END Slow path lock
duke@435 2326
duke@435 2327 // BEGIN Slow path unlock
duke@435 2328 __ bind(slow_path_unlock);
duke@435 2329
duke@435 2330 // Slow path unlock
duke@435 2331
duke@435 2332 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 2333 save_native_result(masm, ret_type, stack_slots);
duke@435 2334 }
duke@435 2335 // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
duke@435 2336
never@739 2337 __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
xlu@947 2338 __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
duke@435 2339
duke@435 2340
duke@435 2341 // should be a peal
duke@435 2342 // +wordSize because of the push above
never@739 2343 __ lea(rax, Address(rbp, lock_slot_rbp_offset));
never@739 2344 __ push(rax);
never@739 2345
never@739 2346 __ push(obj_reg);
duke@435 2347 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
never@739 2348 __ addptr(rsp, 2*wordSize);
duke@435 2349 #ifdef ASSERT
duke@435 2350 {
duke@435 2351 Label L;
never@739 2352 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 2353 __ jcc(Assembler::equal, L);
duke@435 2354 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
duke@435 2355 __ bind(L);
duke@435 2356 }
duke@435 2357 #endif /* ASSERT */
duke@435 2358
never@739 2359 __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
duke@435 2360
duke@435 2361 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 2362 restore_native_result(masm, ret_type, stack_slots);
duke@435 2363 }
duke@435 2364 __ jmp(unlock_done);
duke@435 2365 // END Slow path unlock
duke@435 2366
duke@435 2367 }
duke@435 2368
duke@435 2369 // SLOW PATH Reguard the stack if needed
duke@435 2370
duke@435 2371 __ bind(reguard);
duke@435 2372 save_native_result(masm, ret_type, stack_slots);
duke@435 2373 {
duke@435 2374 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
duke@435 2375 }
duke@435 2376 restore_native_result(masm, ret_type, stack_slots);
duke@435 2377 __ jmp(reguard_done);
duke@435 2378
duke@435 2379
duke@435 2380 // BEGIN EXCEPTION PROCESSING
duke@435 2381
never@3500 2382 if (!is_critical_native) {
never@3500 2383 // Forward the exception
never@3500 2384 __ bind(exception_pending);
never@3500 2385
never@3500 2386 // remove possible return value from FPU register stack
never@3500 2387 __ empty_FPU_stack();
never@3500 2388
never@3500 2389 // pop our frame
never@3500 2390 __ leave();
never@3500 2391 // and forward the exception
never@3500 2392 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
never@3500 2393 }
duke@435 2394
duke@435 2395 __ flush();
duke@435 2396
duke@435 2397 nmethod *nm = nmethod::new_native_nmethod(method,
twisti@2687 2398 compile_id,
duke@435 2399 masm->code(),
duke@435 2400 vep_offset,
duke@435 2401 frame_complete,
duke@435 2402 stack_slots / VMRegImpl::slots_per_word,
duke@435 2403 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
duke@435 2404 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
duke@435 2405 oop_maps);
never@3500 2406
never@3500 2407 if (is_critical_native) {
never@3500 2408 nm->set_lazy_critical_native(true);
never@3500 2409 }
never@3500 2410
duke@435 2411 return nm;
duke@435 2412
duke@435 2413 }
duke@435 2414
kamg@551 2415 #ifdef HAVE_DTRACE_H
kamg@551 2416 // ---------------------------------------------------------------------------
kamg@551 2417 // Generate a dtrace nmethod for a given signature. The method takes arguments
kamg@551 2418 // in the Java compiled code convention, marshals them to the native
kamg@551 2419 // abi and then leaves nops at the position you would expect to call a native
kamg@551 2420 // function. When the probe is enabled the nops are replaced with a trap
kamg@551 2421 // instruction that dtrace inserts and the trace will cause a notification
kamg@551 2422 // to dtrace.
kamg@551 2423 //
kamg@551 2424 // The probes are only able to take primitive types and java/lang/String as
kamg@551 2425 // arguments. No other java types are allowed. Strings are converted to utf8
kamg@551 2426 // strings so that from dtrace point of view java strings are converted to C
kamg@551 2427 // strings. There is an arbitrary fixed limit on the total space that a method
kamg@551 2428 // can use for converting the strings. (256 chars per string in the signature).
kamg@551 2429 // So any java string larger then this is truncated.
kamg@551 2430
kamg@551 2431 nmethod *SharedRuntime::generate_dtrace_nmethod(
kamg@551 2432 MacroAssembler *masm, methodHandle method) {
kamg@551 2433
kamg@551 2434 // generate_dtrace_nmethod is guarded by a mutex so we are sure to
kamg@551 2435 // be single threaded in this method.
kamg@551 2436 assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
kamg@551 2437
kamg@551 2438 // Fill in the signature array, for the calling-convention call.
kamg@551 2439 int total_args_passed = method->size_of_parameters();
kamg@551 2440
kamg@551 2441 BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
kamg@551 2442 VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kamg@551 2443
kamg@551 2444 // The signature we are going to use for the trap that dtrace will see
kamg@551 2445 // java/lang/String is converted. We drop "this" and any other object
kamg@551 2446 // is converted to NULL. (A one-slot java/lang/Long object reference
kamg@551 2447 // is converted to a two-slot long, which is why we double the allocation).
kamg@551 2448 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
kamg@551 2449 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
kamg@551 2450
kamg@551 2451 int i=0;
kamg@551 2452 int total_strings = 0;
kamg@551 2453 int first_arg_to_pass = 0;
kamg@551 2454 int total_c_args = 0;
kamg@551 2455
kamg@551 2456 if( !method->is_static() ) { // Pass in receiver first
kamg@551 2457 in_sig_bt[i++] = T_OBJECT;
kamg@551 2458 first_arg_to_pass = 1;
kamg@551 2459 }
kamg@551 2460
kamg@551 2461 // We need to convert the java args to where a native (non-jni) function
kamg@551 2462 // would expect them. To figure out where they go we convert the java
kamg@551 2463 // signature to a C signature.
kamg@551 2464
kamg@551 2465 SignatureStream ss(method->signature());
kamg@551 2466 for ( ; !ss.at_return_type(); ss.next()) {
kamg@551 2467 BasicType bt = ss.type();
kamg@551 2468 in_sig_bt[i++] = bt; // Collect remaining bits of signature
kamg@551 2469 out_sig_bt[total_c_args++] = bt;
kamg@551 2470 if( bt == T_OBJECT) {
coleenp@2497 2471 Symbol* s = ss.as_symbol_or_null(); // symbol is created
kamg@551 2472 if (s == vmSymbols::java_lang_String()) {
kamg@551 2473 total_strings++;
kamg@551 2474 out_sig_bt[total_c_args-1] = T_ADDRESS;
kamg@551 2475 } else if (s == vmSymbols::java_lang_Boolean() ||
kamg@551 2476 s == vmSymbols::java_lang_Character() ||
kamg@551 2477 s == vmSymbols::java_lang_Byte() ||
kamg@551 2478 s == vmSymbols::java_lang_Short() ||
kamg@551 2479 s == vmSymbols::java_lang_Integer() ||
kamg@551 2480 s == vmSymbols::java_lang_Float()) {
kamg@551 2481 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 2482 } else if (s == vmSymbols::java_lang_Long() ||
kamg@551 2483 s == vmSymbols::java_lang_Double()) {
kamg@551 2484 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 2485 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2486 }
kamg@551 2487 } else if ( bt == T_LONG || bt == T_DOUBLE ) {
kamg@551 2488 in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kamg@551 2489 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 2490 }
kamg@551 2491 }
kamg@551 2492
kamg@551 2493 assert(i==total_args_passed, "validly parsed signature");
kamg@551 2494
kamg@551 2495 // Now get the compiled-Java layout as input arguments
kamg@551 2496 int comp_args_on_stack;
kamg@551 2497 comp_args_on_stack = SharedRuntime::java_calling_convention(
kamg@551 2498 in_sig_bt, in_regs, total_args_passed, false);
kamg@551 2499
kamg@551 2500 // Now figure out where the args must be stored and how much stack space
kamg@551 2501 // they require (neglecting out_preserve_stack_slots).
kamg@551 2502
kamg@551 2503 int out_arg_slots;
goetz@6466 2504 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
kamg@551 2505
kamg@551 2506 // Calculate the total number of stack slots we will need.
kamg@551 2507
kamg@551 2508 // First count the abi requirement plus all of the outgoing args
kamg@551 2509 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
kamg@551 2510
kamg@551 2511 // Now space for the string(s) we must convert
kamg@551 2512
kamg@551 2513 int* string_locs = NEW_RESOURCE_ARRAY(int, total_strings + 1);
kamg@551 2514 for (i = 0; i < total_strings ; i++) {
kamg@551 2515 string_locs[i] = stack_slots;
kamg@551 2516 stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
kamg@551 2517 }
kamg@551 2518
kamg@551 2519 // + 2 for return address (which we own) and saved rbp,
kamg@551 2520
kamg@551 2521 stack_slots += 2;
kamg@551 2522
kamg@551 2523 // Ok The space we have allocated will look like:
kamg@551 2524 //
kamg@551 2525 //
kamg@551 2526 // FP-> | |
kamg@551 2527 // |---------------------|
kamg@551 2528 // | string[n] |
kamg@551 2529 // |---------------------| <- string_locs[n]
kamg@551 2530 // | string[n-1] |
kamg@551 2531 // |---------------------| <- string_locs[n-1]
kamg@551 2532 // | ... |
kamg@551 2533 // | ... |
kamg@551 2534 // |---------------------| <- string_locs[1]
kamg@551 2535 // | string[0] |
kamg@551 2536 // |---------------------| <- string_locs[0]
kamg@551 2537 // | outbound memory |
kamg@551 2538 // | based arguments |
kamg@551 2539 // | |
kamg@551 2540 // |---------------------|
kamg@551 2541 // | |
kamg@551 2542 // SP-> | out_preserved_slots |
kamg@551 2543 //
kamg@551 2544 //
kamg@551 2545
kamg@551 2546 // Now compute actual number of stack words we need rounding to make
kamg@551 2547 // stack properly aligned.
kamg@551 2548 stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
kamg@551 2549
kamg@551 2550 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
kamg@551 2551
kamg@551 2552 intptr_t start = (intptr_t)__ pc();
kamg@551 2553
kamg@551 2554 // First thing make an ic check to see if we should even be here
kamg@551 2555
kamg@551 2556 // We are free to use all registers as temps without saving them and
kamg@551 2557 // restoring them except rbp. rbp, is the only callee save register
kamg@551 2558 // as far as the interpreter and the compiler(s) are concerned.
kamg@551 2559
kamg@551 2560 const Register ic_reg = rax;
kamg@551 2561 const Register receiver = rcx;
kamg@551 2562 Label hit;
kamg@551 2563 Label exception_pending;
kamg@551 2564
kamg@551 2565
kamg@551 2566 __ verify_oop(receiver);
kamg@551 2567 __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
kamg@551 2568 __ jcc(Assembler::equal, hit);
kamg@551 2569
kamg@551 2570 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
kamg@551 2571
kamg@551 2572 // verified entry must be aligned for code patching.
kamg@551 2573 // and the first 5 bytes must be in the same cache line
kamg@551 2574 // if we align at 8 then we will be sure 5 bytes are in the same line
kamg@551 2575 __ align(8);
kamg@551 2576
kamg@551 2577 __ bind(hit);
kamg@551 2578
kamg@551 2579 int vep_offset = ((intptr_t)__ pc()) - start;
kamg@551 2580
kamg@551 2581
kamg@551 2582 // The instruction at the verified entry point must be 5 bytes or longer
kamg@551 2583 // because it can be patched on the fly by make_non_entrant. The stack bang
kamg@551 2584 // instruction fits that requirement.
kamg@551 2585
kamg@551 2586 // Generate stack overflow check
kamg@551 2587
kamg@551 2588
kamg@551 2589 if (UseStackBanging) {
kamg@551 2590 if (stack_size <= StackShadowPages*os::vm_page_size()) {
kamg@551 2591 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
kamg@551 2592 } else {
kamg@551 2593 __ movl(rax, stack_size);
kamg@551 2594 __ bang_stack_size(rax, rbx);
kamg@551 2595 }
kamg@551 2596 } else {
kamg@551 2597 // need a 5 byte instruction to allow MT safe patching to non-entrant
kamg@551 2598 __ fat_nop();
kamg@551 2599 }
kamg@551 2600
kamg@551 2601 assert(((int)__ pc() - start - vep_offset) >= 5,
kamg@551 2602 "valid size for make_non_entrant");
kamg@551 2603
kamg@551 2604 // Generate a new frame for the wrapper.
kamg@551 2605 __ enter();
kamg@551 2606
kamg@551 2607 // -2 because return address is already present and so is saved rbp,
kamg@551 2608 if (stack_size - 2*wordSize != 0) {
kamg@551 2609 __ subl(rsp, stack_size - 2*wordSize);
kamg@551 2610 }
kamg@551 2611
kamg@551 2612 // Frame is now completed as far a size and linkage.
kamg@551 2613
kamg@551 2614 int frame_complete = ((intptr_t)__ pc()) - start;
kamg@551 2615
kamg@551 2616 // First thing we do store all the args as if we are doing the call.
kamg@551 2617 // Since the C calling convention is stack based that ensures that
kamg@551 2618 // all the Java register args are stored before we need to convert any
kamg@551 2619 // string we might have.
kamg@551 2620
kamg@551 2621 int sid = 0;
kamg@551 2622 int c_arg, j_arg;
kamg@551 2623 int string_reg = 0;
kamg@551 2624
kamg@551 2625 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2626 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2627
kamg@551 2628 VMRegPair src = in_regs[j_arg];
kamg@551 2629 VMRegPair dst = out_regs[c_arg];
kamg@551 2630 assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
kamg@551 2631 "stack based abi assumed");
kamg@551 2632
kamg@551 2633 switch (in_sig_bt[j_arg]) {
kamg@551 2634
kamg@551 2635 case T_ARRAY:
kamg@551 2636 case T_OBJECT:
kamg@551 2637 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2638 // Any register based arg for a java string after the first
kamg@551 2639 // will be destroyed by the call to get_utf so we store
kamg@551 2640 // the original value in the location the utf string address
kamg@551 2641 // will eventually be stored.
kamg@551 2642 if (src.first()->is_reg()) {
kamg@551 2643 if (string_reg++ != 0) {
kamg@551 2644 simple_move32(masm, src, dst);
kamg@551 2645 }
kamg@551 2646 }
kamg@551 2647 } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 2648 // need to unbox a one-word value
kamg@551 2649 Register in_reg = rax;
kamg@551 2650 if ( src.first()->is_reg() ) {
kamg@551 2651 in_reg = src.first()->as_Register();
kamg@551 2652 } else {
kamg@551 2653 simple_move32(masm, src, in_reg->as_VMReg());
kamg@551 2654 }
kamg@551 2655 Label skipUnbox;
kamg@551 2656 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
kamg@551 2657 if ( out_sig_bt[c_arg] == T_LONG ) {
kamg@551 2658 __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
kamg@551 2659 }
kamg@551 2660 __ testl(in_reg, in_reg);
kamg@551 2661 __ jcc(Assembler::zero, skipUnbox);
kamg@551 2662 assert(dst.first()->is_stack() &&
kamg@551 2663 (!dst.second()->is_valid() || dst.second()->is_stack()),
kamg@551 2664 "value(s) must go into stack slots");
kvn@600 2665
kvn@600 2666 BasicType bt = out_sig_bt[c_arg];
kvn@600 2667 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kvn@600 2668 if ( bt == T_LONG ) {
kamg@551 2669 __ movl(rbx, Address(in_reg,
kamg@551 2670 box_offset + VMRegImpl::stack_slot_size));
kamg@551 2671 __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
kamg@551 2672 }
kamg@551 2673 __ movl(in_reg, Address(in_reg, box_offset));
kamg@551 2674 __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
kamg@551 2675 __ bind(skipUnbox);
kamg@551 2676 } else {
kamg@551 2677 // Convert the arg to NULL
kamg@551 2678 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
kamg@551 2679 }
kamg@551 2680 if (out_sig_bt[c_arg] == T_LONG) {
kamg@551 2681 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2682 ++c_arg; // Move over the T_VOID To keep the loop indices in sync
kamg@551 2683 }
kamg@551 2684 break;
kamg@551 2685
kamg@551 2686 case T_VOID:
kamg@551 2687 break;
kamg@551 2688
kamg@551 2689 case T_FLOAT:
kamg@551 2690 float_move(masm, src, dst);
kamg@551 2691 break;
kamg@551 2692
kamg@551 2693 case T_DOUBLE:
kamg@551 2694 assert( j_arg + 1 < total_args_passed &&
kamg@551 2695 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
kamg@551 2696 double_move(masm, src, dst);
kamg@551 2697 break;
kamg@551 2698
kamg@551 2699 case T_LONG :
kamg@551 2700 long_move(masm, src, dst);
kamg@551 2701 break;
kamg@551 2702
kamg@551 2703 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
kamg@551 2704
kamg@551 2705 default:
kamg@551 2706 simple_move32(masm, src, dst);
kamg@551 2707 }
kamg@551 2708 }
kamg@551 2709
kamg@551 2710 // Now we must convert any string we have to utf8
kamg@551 2711 //
kamg@551 2712
kamg@551 2713 for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2714 sid < total_strings ; j_arg++, c_arg++ ) {
kamg@551 2715
kamg@551 2716 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2717
kamg@551 2718 Address utf8_addr = Address(
kamg@551 2719 rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
kamg@551 2720 __ leal(rax, utf8_addr);
kamg@551 2721
kamg@551 2722 // The first string we find might still be in the original java arg
kamg@551 2723 // register
kamg@551 2724 VMReg orig_loc = in_regs[j_arg].first();
kamg@551 2725 Register string_oop;
kamg@551 2726
kamg@551 2727 // This is where the argument will eventually reside
kamg@551 2728 Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
kamg@551 2729
kamg@551 2730 if (sid == 1 && orig_loc->is_reg()) {
kamg@551 2731 string_oop = orig_loc->as_Register();
kamg@551 2732 assert(string_oop != rax, "smashed arg");
kamg@551 2733 } else {
kamg@551 2734
kamg@551 2735 if (orig_loc->is_reg()) {
kamg@551 2736 // Get the copy of the jls object
kamg@551 2737 __ movl(rcx, dest);
kamg@551 2738 } else {
kamg@551 2739 // arg is still in the original location
kamg@551 2740 __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
kamg@551 2741 }
kamg@551 2742 string_oop = rcx;
kamg@551 2743
kamg@551 2744 }
kamg@551 2745 Label nullString;
kamg@551 2746 __ movl(dest, NULL_WORD);
kamg@551 2747 __ testl(string_oop, string_oop);
kamg@551 2748 __ jcc(Assembler::zero, nullString);
kamg@551 2749
kamg@551 2750 // Now we can store the address of the utf string as the argument
kamg@551 2751 __ movl(dest, rax);
kamg@551 2752
kamg@551 2753 // And do the conversion
kamg@551 2754 __ call_VM_leaf(CAST_FROM_FN_PTR(
kamg@551 2755 address, SharedRuntime::get_utf), string_oop, rax);
kamg@551 2756 __ bind(nullString);
kamg@551 2757 }
kamg@551 2758
kamg@551 2759 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 2760 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2761 ++c_arg; // Move over the T_VOID To keep the loop indices in sync
kamg@551 2762 }
kamg@551 2763 }
kamg@551 2764
kamg@551 2765
kamg@551 2766 // Ok now we are done. Need to place the nop that dtrace wants in order to
kamg@551 2767 // patch in the trap
kamg@551 2768
kamg@551 2769 int patch_offset = ((intptr_t)__ pc()) - start;
kamg@551 2770
kamg@551 2771 __ nop();
kamg@551 2772
kamg@551 2773
kamg@551 2774 // Return
kamg@551 2775
kamg@551 2776 __ leave();
kamg@551 2777 __ ret(0);
kamg@551 2778
kamg@551 2779 __ flush();
kamg@551 2780
kamg@551 2781 nmethod *nm = nmethod::new_dtrace_nmethod(
kamg@551 2782 method, masm->code(), vep_offset, patch_offset, frame_complete,
kamg@551 2783 stack_slots / VMRegImpl::slots_per_word);
kamg@551 2784 return nm;
kamg@551 2785
kamg@551 2786 }
kamg@551 2787
kamg@551 2788 #endif // HAVE_DTRACE_H
kamg@551 2789
duke@435 2790 // this function returns the adjust size (in number of words) to a c2i adapter
duke@435 2791 // activation for use during deoptimization
duke@435 2792 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
twisti@1861 2793 return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
duke@435 2794 }
duke@435 2795
duke@435 2796
duke@435 2797 uint SharedRuntime::out_preserve_stack_slots() {
duke@435 2798 return 0;
duke@435 2799 }
duke@435 2800
duke@435 2801 //------------------------------generate_deopt_blob----------------------------
duke@435 2802 void SharedRuntime::generate_deopt_blob() {
duke@435 2803 // allocate space for the code
duke@435 2804 ResourceMark rm;
duke@435 2805 // setup code generation tools
duke@435 2806 CodeBuffer buffer("deopt_blob", 1024, 1024);
duke@435 2807 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2808 int frame_size_in_words;
duke@435 2809 OopMap* map = NULL;
duke@435 2810 // Account for the extra args we place on the stack
duke@435 2811 // by the time we call fetch_unroll_info
duke@435 2812 const int additional_words = 2; // deopt kind, thread
duke@435 2813
duke@435 2814 OopMapSet *oop_maps = new OopMapSet();
duke@435 2815
duke@435 2816 // -------------
duke@435 2817 // This code enters when returning to a de-optimized nmethod. A return
duke@435 2818 // address has been pushed on the the stack, and return values are in
duke@435 2819 // registers.
duke@435 2820 // If we are doing a normal deopt then we were called from the patched
duke@435 2821 // nmethod from the point we returned to the nmethod. So the return
duke@435 2822 // address on the stack is wrong by NativeCall::instruction_size
duke@435 2823 // We will adjust the value to it looks like we have the original return
duke@435 2824 // address on the stack (like when we eagerly deoptimized).
duke@435 2825 // In the case of an exception pending with deoptimized then we enter
duke@435 2826 // with a return address on the stack that points after the call we patched
duke@435 2827 // into the exception handler. We have the following register state:
duke@435 2828 // rax,: exception
duke@435 2829 // rbx,: exception handler
duke@435 2830 // rdx: throwing pc
duke@435 2831 // So in this case we simply jam rdx into the useless return address and
duke@435 2832 // the stack looks just like we want.
duke@435 2833 //
duke@435 2834 // At this point we need to de-opt. We save the argument return
duke@435 2835 // registers. We call the first C routine, fetch_unroll_info(). This
duke@435 2836 // routine captures the return values and returns a structure which
duke@435 2837 // describes the current frame size and the sizes of all replacement frames.
duke@435 2838 // The current frame is compiled code and may contain many inlined
duke@435 2839 // functions, each with their own JVM state. We pop the current frame, then
duke@435 2840 // push all the new frames. Then we call the C routine unpack_frames() to
duke@435 2841 // populate these frames. Finally unpack_frames() returns us the new target
duke@435 2842 // address. Notice that callee-save registers are BLOWN here; they have
duke@435 2843 // already been captured in the vframeArray at the time the return PC was
duke@435 2844 // patched.
duke@435 2845 address start = __ pc();
duke@435 2846 Label cont;
duke@435 2847
duke@435 2848 // Prolog for non exception case!
duke@435 2849
duke@435 2850 // Save everything in sight.
duke@435 2851
cfang@1361 2852 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2853 // Normal deoptimization
never@739 2854 __ push(Deoptimization::Unpack_deopt);
duke@435 2855 __ jmp(cont);
duke@435 2856
duke@435 2857 int reexecute_offset = __ pc() - start;
duke@435 2858
duke@435 2859 // Reexecute case
duke@435 2860 // return address is the pc describes what bci to do re-execute at
duke@435 2861
duke@435 2862 // No need to update map as each call to save_live_registers will produce identical oopmap
cfang@1361 2863 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2864
never@739 2865 __ push(Deoptimization::Unpack_reexecute);
duke@435 2866 __ jmp(cont);
duke@435 2867
duke@435 2868 int exception_offset = __ pc() - start;
duke@435 2869
duke@435 2870 // Prolog for exception case
duke@435 2871
duke@435 2872 // all registers are dead at this entry point, except for rax, and
duke@435 2873 // rdx which contain the exception oop and exception pc
duke@435 2874 // respectively. Set them in TLS and fall thru to the
duke@435 2875 // unpack_with_exception_in_tls entry point.
duke@435 2876
duke@435 2877 __ get_thread(rdi);
never@739 2878 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
never@739 2879 __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
duke@435 2880
duke@435 2881 int exception_in_tls_offset = __ pc() - start;
duke@435 2882
duke@435 2883 // new implementation because exception oop is now passed in JavaThread
duke@435 2884
duke@435 2885 // Prolog for exception case
duke@435 2886 // All registers must be preserved because they might be used by LinearScan
duke@435 2887 // Exceptiop oop and throwing PC are passed in JavaThread
duke@435 2888 // tos: stack at point of call to method that threw the exception (i.e. only
duke@435 2889 // args are on the stack, no return address)
duke@435 2890
duke@435 2891 // make room on stack for the return address
duke@435 2892 // It will be patched later with the throwing pc. The correct value is not
duke@435 2893 // available now because loading it from memory would destroy registers.
never@739 2894 __ push(0);
duke@435 2895
duke@435 2896 // Save everything in sight.
duke@435 2897
duke@435 2898 // No need to update map as each call to save_live_registers will produce identical oopmap
cfang@1361 2899 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2900
duke@435 2901 // Now it is safe to overwrite any register
duke@435 2902
duke@435 2903 // store the correct deoptimization type
never@739 2904 __ push(Deoptimization::Unpack_exception);
duke@435 2905
duke@435 2906 // load throwing pc from JavaThread and patch it as the return address
duke@435 2907 // of the current frame. Then clear the field in JavaThread
duke@435 2908 __ get_thread(rdi);
never@739 2909 __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
never@739 2910 __ movptr(Address(rbp, wordSize), rdx);
xlu@947 2911 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
duke@435 2912
duke@435 2913 #ifdef ASSERT
duke@435 2914 // verify that there is really an exception oop in JavaThread
never@739 2915 __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
duke@435 2916 __ verify_oop(rax);
duke@435 2917
duke@435 2918 // verify that there is no pending exception
duke@435 2919 Label no_pending_exception;
never@739 2920 __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
never@739 2921 __ testptr(rax, rax);
duke@435 2922 __ jcc(Assembler::zero, no_pending_exception);
duke@435 2923 __ stop("must not have pending exception here");
duke@435 2924 __ bind(no_pending_exception);
duke@435 2925 #endif
duke@435 2926
duke@435 2927 __ bind(cont);
duke@435 2928
duke@435 2929 // Compiled code leaves the floating point stack dirty, empty it.
duke@435 2930 __ empty_FPU_stack();
duke@435 2931
duke@435 2932
duke@435 2933 // Call C code. Need thread and this frame, but NOT official VM entry
duke@435 2934 // crud. We cannot block on this call, no GC can happen.
duke@435 2935 __ get_thread(rcx);
never@739 2936 __ push(rcx);
duke@435 2937 // fetch_unroll_info needs to call last_java_frame()
duke@435 2938 __ set_last_Java_frame(rcx, noreg, noreg, NULL);
duke@435 2939
duke@435 2940 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
duke@435 2941
duke@435 2942 // Need to have an oopmap that tells fetch_unroll_info where to
duke@435 2943 // find any register it might need.
duke@435 2944
duke@435 2945 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 2946
duke@435 2947 // Discard arg to fetch_unroll_info
never@739 2948 __ pop(rcx);
duke@435 2949
duke@435 2950 __ get_thread(rcx);
kevinw@8877 2951 __ reset_last_Java_frame(rcx, false);
duke@435 2952
duke@435 2953 // Load UnrollBlock into EDI
never@739 2954 __ mov(rdi, rax);
duke@435 2955
duke@435 2956 // Move the unpack kind to a safe place in the UnrollBlock because
duke@435 2957 // we are very short of registers
duke@435 2958
duke@435 2959 Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
duke@435 2960 // retrieve the deopt kind from where we left it.
never@739 2961 __ pop(rax);
duke@435 2962 __ movl(unpack_kind, rax); // save the unpack_kind value
duke@435 2963
duke@435 2964 Label noException;
duke@435 2965 __ cmpl(rax, Deoptimization::Unpack_exception); // Was exception pending?
duke@435 2966 __ jcc(Assembler::notEqual, noException);
never@739 2967 __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
never@739 2968 __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
xlu@947 2969 __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
xlu@947 2970 __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
duke@435 2971
duke@435 2972 __ verify_oop(rax);
duke@435 2973
duke@435 2974 // Overwrite the result registers with the exception results.
never@739 2975 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
never@739 2976 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 2977
duke@435 2978 __ bind(noException);
duke@435 2979
duke@435 2980 // Stack is back to only having register save data on the stack.
duke@435 2981 // Now restore the result registers. Everything else is either dead or captured
duke@435 2982 // in the vframeArray.
duke@435 2983
duke@435 2984 RegisterSaver::restore_result_registers(masm);
duke@435 2985
cfang@1361 2986 // Non standard control word may be leaked out through a safepoint blob, and we can
cfang@1361 2987 // deopt at a poll point with the non standard control word. However, we should make
cfang@1361 2988 // sure the control word is correct after restore_result_registers.
cfang@1361 2989 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
cfang@1361 2990
duke@435 2991 // All of the register save area has been popped of the stack. Only the
duke@435 2992 // return address remains.
duke@435 2993
duke@435 2994 // Pop all the frames we must move/replace.
duke@435 2995 //
duke@435 2996 // Frame picture (youngest to oldest)
duke@435 2997 // 1: self-frame (no frame link)
duke@435 2998 // 2: deopting frame (no frame link)
duke@435 2999 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 3000 //
duke@435 3001 // Note: by leaving the return address of self-frame on the stack
duke@435 3002 // and using the size of frame 2 to adjust the stack
duke@435 3003 // when we are done the return to frame 3 will still be on the stack.
duke@435 3004
duke@435 3005 // Pop deoptimized frame
never@739 3006 __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
duke@435 3007
duke@435 3008 // sp should be pointing at the return address to the caller (3)
duke@435 3009
roland@6115 3010 // Pick up the initial fp we should save
roland@6115 3011 // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
roland@6115 3012 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
roland@6115 3013
roland@6723 3014 #ifdef ASSERT
roland@6723 3015 // Compilers generate code that bang the stack by as much as the
roland@6723 3016 // interpreter would need. So this stack banging should never
roland@6723 3017 // trigger a fault. Verify that it does not on non product builds.
duke@435 3018 if (UseStackBanging) {
duke@435 3019 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 3020 __ bang_stack_size(rbx, rcx);
duke@435 3021 }
roland@6723 3022 #endif
duke@435 3023
duke@435 3024 // Load array of frame pcs into ECX
never@739 3025 __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
never@739 3026
never@739 3027 __ pop(rsi); // trash the old pc
duke@435 3028
duke@435 3029 // Load array of frame sizes into ESI
never@739 3030 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 3031
duke@435 3032 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 3033
duke@435 3034 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 3035 __ movl(counter, rbx);
duke@435 3036
duke@435 3037 // Now adjust the caller's stack to make up for the extra locals
duke@435 3038 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 3039 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 3040 // value and not the "real" sp value.
duke@435 3041
duke@435 3042 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
never@739 3043 __ movptr(sp_temp, rsp);
never@739 3044 __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
never@739 3045 __ subptr(rsp, rbx);
duke@435 3046
duke@435 3047 // Push interpreter frames in a loop
duke@435 3048 Label loop;
duke@435 3049 __ bind(loop);
never@739 3050 __ movptr(rbx, Address(rsi, 0)); // Load frame size
duke@435 3051 #ifdef CC_INTERP
never@739 3052 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 3053 #ifdef ASSERT
never@739 3054 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 3055 __ push(0xDEADDEAD);
duke@435 3056 #else /* ASSERT */
never@739 3057 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 3058 #endif /* ASSERT */
duke@435 3059 #else /* CC_INTERP */
never@739 3060 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 3061 #endif /* CC_INTERP */
never@739 3062 __ pushptr(Address(rcx, 0)); // save return address
duke@435 3063 __ enter(); // save old & set new rbp,
never@739 3064 __ subptr(rsp, rbx); // Prolog!
never@739 3065 __ movptr(rbx, sp_temp); // sender's sp
duke@435 3066 #ifdef CC_INTERP
never@739 3067 __ movptr(Address(rbp,
duke@435 3068 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 3069 rbx); // Make it walkable
duke@435 3070 #else /* CC_INTERP */
duke@435 3071 // This value is corrected by layout_activation_impl
xlu@947 3072 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
never@739 3073 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 3074 #endif /* CC_INTERP */
never@739 3075 __ movptr(sp_temp, rsp); // pass to next frame
never@739 3076 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 3077 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 3078 __ decrementl(counter); // decrement counter
duke@435 3079 __ jcc(Assembler::notZero, loop);
never@739 3080 __ pushptr(Address(rcx, 0)); // save final return address
duke@435 3081
duke@435 3082 // Re-push self-frame
duke@435 3083 __ enter(); // save old & set new rbp,
duke@435 3084
duke@435 3085 // Return address and rbp, are in place
duke@435 3086 // We'll push additional args later. Just allocate a full sized
duke@435 3087 // register save area
never@739 3088 __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
duke@435 3089
duke@435 3090 // Restore frame locals after moving the frame
never@739 3091 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
never@739 3092 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 3093 __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize)); // Pop float stack and store in local
duke@435 3094 if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 3095 if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 3096
duke@435 3097 // Set up the args to unpack_frame
duke@435 3098
duke@435 3099 __ pushl(unpack_kind); // get the unpack_kind value
duke@435 3100 __ get_thread(rcx);
never@739 3101 __ push(rcx);
duke@435 3102
duke@435 3103 // set last_Java_sp, last_Java_fp
duke@435 3104 __ set_last_Java_frame(rcx, noreg, rbp, NULL);
duke@435 3105
duke@435 3106 // Call C code. Need thread but NOT official VM entry
duke@435 3107 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3108 // restore return values to their stack-slots with the new SP.
duke@435 3109 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 3110 // Set an oopmap for the call site
duke@435 3111 oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
duke@435 3112
duke@435 3113 // rax, contains the return result type
never@739 3114 __ push(rax);
duke@435 3115
duke@435 3116 __ get_thread(rcx);
kevinw@8877 3117 __ reset_last_Java_frame(rcx, false);
duke@435 3118
duke@435 3119 // Collect return values
never@739 3120 __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
never@739 3121 __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
duke@435 3122
duke@435 3123 // Clear floating point stack before returning to interpreter
duke@435 3124 __ empty_FPU_stack();
duke@435 3125
duke@435 3126 // Check if we should push the float or double return value.
duke@435 3127 Label results_done, yes_double_value;
duke@435 3128 __ cmpl(Address(rsp, 0), T_DOUBLE);
duke@435 3129 __ jcc (Assembler::zero, yes_double_value);
duke@435 3130 __ cmpl(Address(rsp, 0), T_FLOAT);
duke@435 3131 __ jcc (Assembler::notZero, results_done);
duke@435 3132
duke@435 3133 // return float value as expected by interpreter
duke@435 3134 if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 3135 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 3136 __ jmp(results_done);
duke@435 3137
duke@435 3138 // return double value as expected by interpreter
duke@435 3139 __ bind(yes_double_value);
duke@435 3140 if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 3141 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 3142
duke@435 3143 __ bind(results_done);
duke@435 3144
duke@435 3145 // Pop self-frame.
duke@435 3146 __ leave(); // Epilog!
duke@435 3147
duke@435 3148 // Jump to interpreter
duke@435 3149 __ ret(0);
duke@435 3150
duke@435 3151 // -------------
duke@435 3152 // make sure all code is generated
duke@435 3153 masm->flush();
duke@435 3154
duke@435 3155 _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
duke@435 3156 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
duke@435 3157 }
duke@435 3158
duke@435 3159
duke@435 3160 #ifdef COMPILER2
duke@435 3161 //------------------------------generate_uncommon_trap_blob--------------------
duke@435 3162 void SharedRuntime::generate_uncommon_trap_blob() {
duke@435 3163 // allocate space for the code
duke@435 3164 ResourceMark rm;
duke@435 3165 // setup code generation tools
duke@435 3166 CodeBuffer buffer("uncommon_trap_blob", 512, 512);
duke@435 3167 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3168
duke@435 3169 enum frame_layout {
duke@435 3170 arg0_off, // thread sp + 0 // Arg location for
duke@435 3171 arg1_off, // unloaded_class_index sp + 1 // calling C
duke@435 3172 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 3173 // will override any oopMap setting for it. We must therefore force the layout
duke@435 3174 // so that it agrees with the frame sender code.
duke@435 3175 rbp_off, // callee saved register sp + 2
duke@435 3176 return_off, // slot for return address sp + 3
duke@435 3177 framesize
duke@435 3178 };
duke@435 3179
duke@435 3180 address start = __ pc();
kvn@6429 3181
kvn@6429 3182 if (UseRTMLocking) {
kvn@6429 3183 // Abort RTM transaction before possible nmethod deoptimization.
kvn@6429 3184 __ xabort(0);
kvn@6429 3185 }
kvn@6429 3186
duke@435 3187 // Push self-frame.
never@739 3188 __ subptr(rsp, return_off*wordSize); // Epilog!
duke@435 3189
duke@435 3190 // rbp, is an implicitly saved callee saved register (i.e. the calling
duke@435 3191 // convention will save restore it in prolog/epilog) Other than that
duke@435 3192 // there are no callee save registers no that adapter frames are gone.
never@739 3193 __ movptr(Address(rsp, rbp_off*wordSize), rbp);
duke@435 3194
duke@435 3195 // Clear the floating point exception stack
duke@435 3196 __ empty_FPU_stack();
duke@435 3197
duke@435 3198 // set last_Java_sp
duke@435 3199 __ get_thread(rdx);
duke@435 3200 __ set_last_Java_frame(rdx, noreg, noreg, NULL);
duke@435 3201
duke@435 3202 // Call C code. Need thread but NOT official VM entry
duke@435 3203 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3204 // capture callee-saved registers as well as return values.
never@739 3205 __ movptr(Address(rsp, arg0_off*wordSize), rdx);
duke@435 3206 // argument already in ECX
duke@435 3207 __ movl(Address(rsp, arg1_off*wordSize),rcx);
duke@435 3208 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
duke@435 3209
duke@435 3210 // Set an oopmap for the call site
duke@435 3211 OopMapSet *oop_maps = new OopMapSet();
duke@435 3212 OopMap* map = new OopMap( framesize, 0 );
duke@435 3213 // No oopMap for rbp, it is known implicitly
duke@435 3214
duke@435 3215 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 3216
duke@435 3217 __ get_thread(rcx);
duke@435 3218
kevinw@8877 3219 __ reset_last_Java_frame(rcx, false);
duke@435 3220
duke@435 3221 // Load UnrollBlock into EDI
never@739 3222 __ movptr(rdi, rax);
duke@435 3223
duke@435 3224 // Pop all the frames we must move/replace.
duke@435 3225 //
duke@435 3226 // Frame picture (youngest to oldest)
duke@435 3227 // 1: self-frame (no frame link)
duke@435 3228 // 2: deopting frame (no frame link)
duke@435 3229 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 3230
duke@435 3231 // Pop self-frame. We have no frame, and must rely only on EAX and ESP.
never@739 3232 __ addptr(rsp,(framesize-1)*wordSize); // Epilog!
duke@435 3233
duke@435 3234 // Pop deoptimized frame
never@739 3235 __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
never@739 3236 __ addptr(rsp, rcx);
duke@435 3237
duke@435 3238 // sp should be pointing at the return address to the caller (3)
duke@435 3239
roland@6115 3240 // Pick up the initial fp we should save
roland@6115 3241 // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
roland@6115 3242 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
roland@6115 3243
roland@6723 3244 #ifdef ASSERT
roland@6723 3245 // Compilers generate code that bang the stack by as much as the
roland@6723 3246 // interpreter would need. So this stack banging should never
roland@6723 3247 // trigger a fault. Verify that it does not on non product builds.
duke@435 3248 if (UseStackBanging) {
duke@435 3249 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 3250 __ bang_stack_size(rbx, rcx);
duke@435 3251 }
roland@6723 3252 #endif
duke@435 3253
duke@435 3254 // Load array of frame pcs into ECX
duke@435 3255 __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 3256
never@739 3257 __ pop(rsi); // trash the pc
duke@435 3258
duke@435 3259 // Load array of frame sizes into ESI
never@739 3260 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 3261
duke@435 3262 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 3263
duke@435 3264 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 3265 __ movl(counter, rbx);
duke@435 3266
duke@435 3267 // Now adjust the caller's stack to make up for the extra locals
duke@435 3268 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 3269 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 3270 // value and not the "real" sp value.
duke@435 3271
duke@435 3272 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
never@739 3273 __ movptr(sp_temp, rsp);
never@739 3274 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
never@739 3275 __ subptr(rsp, rbx);
duke@435 3276
duke@435 3277 // Push interpreter frames in a loop
duke@435 3278 Label loop;
duke@435 3279 __ bind(loop);
never@739 3280 __ movptr(rbx, Address(rsi, 0)); // Load frame size
duke@435 3281 #ifdef CC_INTERP
never@739 3282 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 3283 #ifdef ASSERT
never@739 3284 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 3285 __ push(0xDEADDEAD); // (parm to RecursiveInterpreter...)
duke@435 3286 #else /* ASSERT */
never@739 3287 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 3288 #endif /* ASSERT */
duke@435 3289 #else /* CC_INTERP */
never@739 3290 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 3291 #endif /* CC_INTERP */
never@739 3292 __ pushptr(Address(rcx, 0)); // save return address
duke@435 3293 __ enter(); // save old & set new rbp,
never@739 3294 __ subptr(rsp, rbx); // Prolog!
never@739 3295 __ movptr(rbx, sp_temp); // sender's sp
duke@435 3296 #ifdef CC_INTERP
never@739 3297 __ movptr(Address(rbp,
duke@435 3298 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 3299 rbx); // Make it walkable
duke@435 3300 #else /* CC_INTERP */
duke@435 3301 // This value is corrected by layout_activation_impl
xlu@947 3302 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
never@739 3303 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 3304 #endif /* CC_INTERP */
never@739 3305 __ movptr(sp_temp, rsp); // pass to next frame
never@739 3306 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 3307 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 3308 __ decrementl(counter); // decrement counter
duke@435 3309 __ jcc(Assembler::notZero, loop);
never@739 3310 __ pushptr(Address(rcx, 0)); // save final return address
duke@435 3311
duke@435 3312 // Re-push self-frame
duke@435 3313 __ enter(); // save old & set new rbp,
never@739 3314 __ subptr(rsp, (framesize-2) * wordSize); // Prolog!
duke@435 3315
duke@435 3316
duke@435 3317 // set last_Java_sp, last_Java_fp
duke@435 3318 __ get_thread(rdi);
duke@435 3319 __ set_last_Java_frame(rdi, noreg, rbp, NULL);
duke@435 3320
duke@435 3321 // Call C code. Need thread but NOT official VM entry
duke@435 3322 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 3323 // restore return values to their stack-slots with the new SP.
never@739 3324 __ movptr(Address(rsp,arg0_off*wordSize),rdi);
duke@435 3325 __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
duke@435 3326 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 3327 // Set an oopmap for the call site
duke@435 3328 oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
duke@435 3329
duke@435 3330 __ get_thread(rdi);
kevinw@8877 3331 __ reset_last_Java_frame(rdi, true);
duke@435 3332
duke@435 3333 // Pop self-frame.
duke@435 3334 __ leave(); // Epilog!
duke@435 3335
duke@435 3336 // Jump to interpreter
duke@435 3337 __ ret(0);
duke@435 3338
duke@435 3339 // -------------
duke@435 3340 // make sure all code is generated
duke@435 3341 masm->flush();
duke@435 3342
duke@435 3343 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
duke@435 3344 }
duke@435 3345 #endif // COMPILER2
duke@435 3346
duke@435 3347 //------------------------------generate_handler_blob------
duke@435 3348 //
duke@435 3349 // Generate a special Compile2Runtime blob that saves all registers,
duke@435 3350 // setup oopmap, and calls safepoint code to stop the compiled code for
duke@435 3351 // a safepoint.
duke@435 3352 //
kvn@4103 3353 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
duke@435 3354
duke@435 3355 // Account for thread arg in our frame
duke@435 3356 const int additional_words = 1;
duke@435 3357 int frame_size_in_words;
duke@435 3358
duke@435 3359 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 3360
duke@435 3361 ResourceMark rm;
duke@435 3362 OopMapSet *oop_maps = new OopMapSet();
duke@435 3363 OopMap* map;
duke@435 3364
duke@435 3365 // allocate space for the code
duke@435 3366 // setup code generation tools
duke@435 3367 CodeBuffer buffer("handler_blob", 1024, 512);
duke@435 3368 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3369
duke@435 3370 const Register java_thread = rdi; // callee-saved for VC++
duke@435 3371 address start = __ pc();
duke@435 3372 address call_pc = NULL;
kvn@4103 3373 bool cause_return = (poll_type == POLL_AT_RETURN);
kvn@4103 3374 bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
kvn@6429 3375
kvn@6429 3376 if (UseRTMLocking) {
kvn@6429 3377 // Abort RTM transaction before calling runtime
kvn@6429 3378 // because critical section will be large and will be
kvn@6429 3379 // aborted anyway. Also nmethod could be deoptimized.
kvn@6429 3380 __ xabort(0);
kvn@6429 3381 }
kvn@6429 3382
duke@435 3383 // If cause_return is true we are at a poll_return and there is
duke@435 3384 // the return address on the stack to the caller on the nmethod
duke@435 3385 // that is safepoint. We can leave this return on the stack and
duke@435 3386 // effectively complete the return and safepoint in the caller.
duke@435 3387 // Otherwise we push space for a return address that the safepoint
duke@435 3388 // handler will install later to make the stack walking sensible.
kvn@4103 3389 if (!cause_return)
kvn@4103 3390 __ push(rbx); // Make room for return address (or push it again)
kvn@4103 3391
kvn@4103 3392 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors);
duke@435 3393
duke@435 3394 // The following is basically a call_VM. However, we need the precise
duke@435 3395 // address of the call in order to generate an oopmap. Hence, we do all the
duke@435 3396 // work ourselves.
duke@435 3397
duke@435 3398 // Push thread argument and setup last_Java_sp
duke@435 3399 __ get_thread(java_thread);
never@739 3400 __ push(java_thread);
duke@435 3401 __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
duke@435 3402
duke@435 3403 // if this was not a poll_return then we need to correct the return address now.
kvn@4103 3404 if (!cause_return) {
never@739 3405 __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
never@739 3406 __ movptr(Address(rbp, wordSize), rax);
duke@435 3407 }
duke@435 3408
duke@435 3409 // do the call
duke@435 3410 __ call(RuntimeAddress(call_ptr));
duke@435 3411
duke@435 3412 // Set an oopmap for the call site. This oopmap will map all
duke@435 3413 // oop-registers and debug-info registers as callee-saved. This
duke@435 3414 // will allow deoptimization at this safepoint to find all possible
duke@435 3415 // debug-info recordings, as well as let GC find all oops.
duke@435 3416
duke@435 3417 oop_maps->add_gc_map( __ pc() - start, map);
duke@435 3418
duke@435 3419 // Discard arg
never@739 3420 __ pop(rcx);
duke@435 3421
duke@435 3422 Label noException;
duke@435 3423
duke@435 3424 // Clear last_Java_sp again
duke@435 3425 __ get_thread(java_thread);
kevinw@8877 3426 __ reset_last_Java_frame(java_thread, false);
duke@435 3427
never@739 3428 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3429 __ jcc(Assembler::equal, noException);
duke@435 3430
duke@435 3431 // Exception pending
kvn@4103 3432 RegisterSaver::restore_live_registers(masm, save_vectors);
duke@435 3433
duke@435 3434 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3435
duke@435 3436 __ bind(noException);
duke@435 3437
duke@435 3438 // Normal exit, register restoring and exit
kvn@4103 3439 RegisterSaver::restore_live_registers(masm, save_vectors);
duke@435 3440
duke@435 3441 __ ret(0);
duke@435 3442
duke@435 3443 // make sure all code is generated
duke@435 3444 masm->flush();
duke@435 3445
duke@435 3446 // Fill-out other meta info
duke@435 3447 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
duke@435 3448 }
duke@435 3449
duke@435 3450 //
duke@435 3451 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
duke@435 3452 //
duke@435 3453 // Generate a stub that calls into vm to find out the proper destination
duke@435 3454 // of a java call. All the argument registers are live at this point
duke@435 3455 // but since this is generic code we don't know what they are and the caller
duke@435 3456 // must do any gc of the args.
duke@435 3457 //
never@2950 3458 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
duke@435 3459 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 3460
duke@435 3461 // allocate space for the code
duke@435 3462 ResourceMark rm;
duke@435 3463
duke@435 3464 CodeBuffer buffer(name, 1000, 512);
duke@435 3465 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 3466
duke@435 3467 int frame_size_words;
duke@435 3468 enum frame_layout {
duke@435 3469 thread_off,
duke@435 3470 extra_words };
duke@435 3471
duke@435 3472 OopMapSet *oop_maps = new OopMapSet();
duke@435 3473 OopMap* map = NULL;
duke@435 3474
duke@435 3475 int start = __ offset();
duke@435 3476
duke@435 3477 map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
duke@435 3478
duke@435 3479 int frame_complete = __ offset();
duke@435 3480
duke@435 3481 const Register thread = rdi;
duke@435 3482 __ get_thread(rdi);
duke@435 3483
never@739 3484 __ push(thread);
duke@435 3485 __ set_last_Java_frame(thread, noreg, rbp, NULL);
duke@435 3486
duke@435 3487 __ call(RuntimeAddress(destination));
duke@435 3488
duke@435 3489
duke@435 3490 // Set an oopmap for the call site.
duke@435 3491 // We need this not only for callee-saved registers, but also for volatile
duke@435 3492 // registers that the compiler might be keeping live across a safepoint.
duke@435 3493
duke@435 3494 oop_maps->add_gc_map( __ offset() - start, map);
duke@435 3495
duke@435 3496 // rax, contains the address we are going to jump to assuming no exception got installed
duke@435 3497
never@739 3498 __ addptr(rsp, wordSize);
duke@435 3499
duke@435 3500 // clear last_Java_sp
kevinw@8877 3501 __ reset_last_Java_frame(thread, true);
duke@435 3502 // check for pending exceptions
duke@435 3503 Label pending;
never@739 3504 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 3505 __ jcc(Assembler::notEqual, pending);
duke@435 3506
coleenp@4037 3507 // get the returned Method*
coleenp@4037 3508 __ get_vm_result_2(rbx, thread);
never@739 3509 __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
never@739 3510
never@739 3511 __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
duke@435 3512
duke@435 3513 RegisterSaver::restore_live_registers(masm);
duke@435 3514
duke@435 3515 // We are back the the original state on entry and ready to go.
duke@435 3516
duke@435 3517 __ jmp(rax);
duke@435 3518
duke@435 3519 // Pending exception after the safepoint
duke@435 3520
duke@435 3521 __ bind(pending);
duke@435 3522
duke@435 3523 RegisterSaver::restore_live_registers(masm);
duke@435 3524
duke@435 3525 // exception pending => remove activation and forward to exception handler
duke@435 3526
duke@435 3527 __ get_thread(thread);
xlu@947 3528 __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
never@739 3529 __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
duke@435 3530 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 3531
duke@435 3532 // -------------
duke@435 3533 // make sure all code is generated
duke@435 3534 masm->flush();
duke@435 3535
duke@435 3536 // return the blob
duke@435 3537 // frame_size_words or bytes??
duke@435 3538 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
duke@435 3539 }

mercurial