duke@435: /* duke@435: * Copyright 2005-2006 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: * duke@435: */ duke@435: duke@435: #include "incls/_precompiled.incl" duke@435: #include "incls/_escape.cpp.incl" duke@435: duke@435: uint PointsToNode::edge_target(uint e) const { duke@435: assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index"); duke@435: return (_edges->at(e) >> EdgeShift); duke@435: } duke@435: duke@435: PointsToNode::EdgeType PointsToNode::edge_type(uint e) const { duke@435: assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index"); duke@435: return (EdgeType) (_edges->at(e) & EdgeMask); duke@435: } duke@435: duke@435: void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) { duke@435: uint v = (targIdx << EdgeShift) + ((uint) et); duke@435: if (_edges == NULL) { duke@435: Arena *a = Compile::current()->comp_arena(); duke@435: _edges = new(a) GrowableArray(a, INITIAL_EDGE_COUNT, 0, 0); duke@435: } duke@435: _edges->append_if_missing(v); duke@435: } duke@435: duke@435: void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) { duke@435: uint v = (targIdx << EdgeShift) + ((uint) et); duke@435: duke@435: _edges->remove(v); duke@435: } duke@435: duke@435: #ifndef PRODUCT kvn@512: static const char *node_type_names[] = { duke@435: "UnknownType", duke@435: "JavaObject", duke@435: "LocalVar", duke@435: "Field" duke@435: }; duke@435: kvn@512: static const char *esc_names[] = { duke@435: "UnknownEscape", kvn@500: "NoEscape", kvn@500: "ArgEscape", kvn@500: "GlobalEscape" duke@435: }; duke@435: kvn@512: static const char *edge_type_suffix[] = { duke@435: "?", // UnknownEdge duke@435: "P", // PointsToEdge duke@435: "D", // DeferredEdge duke@435: "F" // FieldEdge duke@435: }; duke@435: duke@435: void PointsToNode::dump() const { duke@435: NodeType nt = node_type(); duke@435: EscapeState es = escape_state(); kvn@500: tty->print("%s %s %s [[", node_type_names[(int) nt], esc_names[(int) es], _scalar_replaceable ? "" : "NSR"); duke@435: for (uint i = 0; i < edge_count(); i++) { duke@435: tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]); duke@435: } duke@435: tty->print("]] "); duke@435: if (_node == NULL) duke@435: tty->print_cr(""); duke@435: else duke@435: _node->dump(); duke@435: } duke@435: #endif duke@435: duke@435: ConnectionGraph::ConnectionGraph(Compile * C) : _processed(C->comp_arena()), _node_map(C->comp_arena()) { duke@435: _collecting = true; duke@435: this->_compile = C; duke@435: const PointsToNode &dummy = PointsToNode(); kvn@500: int sz = C->unique(); kvn@500: _nodes = new(C->comp_arena()) GrowableArray(C->comp_arena(), sz, sz, dummy); duke@435: _phantom_object = C->top()->_idx; duke@435: PointsToNode *phn = ptnode_adr(_phantom_object); kvn@500: phn->_node = C->top(); duke@435: phn->set_node_type(PointsToNode::JavaObject); duke@435: phn->set_escape_state(PointsToNode::GlobalEscape); duke@435: } duke@435: duke@435: void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) { duke@435: PointsToNode *f = ptnode_adr(from_i); duke@435: PointsToNode *t = ptnode_adr(to_i); duke@435: duke@435: assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set"); duke@435: assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge"); duke@435: assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge"); duke@435: f->add_edge(to_i, PointsToNode::PointsToEdge); duke@435: } duke@435: duke@435: void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) { duke@435: PointsToNode *f = ptnode_adr(from_i); duke@435: PointsToNode *t = ptnode_adr(to_i); duke@435: duke@435: assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set"); duke@435: assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge"); duke@435: assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge"); duke@435: // don't add a self-referential edge, this can occur during removal of duke@435: // deferred edges duke@435: if (from_i != to_i) duke@435: f->add_edge(to_i, PointsToNode::DeferredEdge); duke@435: } duke@435: kvn@500: int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) { kvn@500: const Type *adr_type = phase->type(adr); kvn@500: if (adr->is_AddP() && adr_type->isa_oopptr() == NULL && kvn@500: adr->in(AddPNode::Address)->is_Proj() && kvn@500: adr->in(AddPNode::Address)->in(0)->is_Allocate()) { kvn@500: // We are computing a raw address for a store captured by an Initialize kvn@500: // compute an appropriate address type. AddP cases #3 and #5 (see below). kvn@500: int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); kvn@500: assert(offs != Type::OffsetBot || kvn@500: adr->in(AddPNode::Address)->in(0)->is_AllocateArray(), kvn@500: "offset must be a constant or it is initialization of array"); kvn@500: return offs; kvn@500: } kvn@500: const TypePtr *t_ptr = adr_type->isa_ptr(); duke@435: assert(t_ptr != NULL, "must be a pointer type"); duke@435: return t_ptr->offset(); duke@435: } duke@435: duke@435: void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) { duke@435: PointsToNode *f = ptnode_adr(from_i); duke@435: PointsToNode *t = ptnode_adr(to_i); duke@435: duke@435: assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set"); duke@435: assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge"); duke@435: assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge"); duke@435: assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets"); duke@435: t->set_offset(offset); duke@435: duke@435: f->add_edge(to_i, PointsToNode::FieldEdge); duke@435: } duke@435: duke@435: void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) { duke@435: PointsToNode *npt = ptnode_adr(ni); duke@435: PointsToNode::EscapeState old_es = npt->escape_state(); duke@435: if (es > old_es) duke@435: npt->set_escape_state(es); duke@435: } duke@435: kvn@500: void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt, kvn@500: PointsToNode::EscapeState es, bool done) { kvn@500: PointsToNode* ptadr = ptnode_adr(n->_idx); kvn@500: ptadr->_node = n; kvn@500: ptadr->set_node_type(nt); kvn@500: kvn@500: // inline set_escape_state(idx, es); kvn@500: PointsToNode::EscapeState old_es = ptadr->escape_state(); kvn@500: if (es > old_es) kvn@500: ptadr->set_escape_state(es); kvn@500: kvn@500: if (done) kvn@500: _processed.set(n->_idx); kvn@500: } kvn@500: duke@435: PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) { duke@435: uint idx = n->_idx; duke@435: PointsToNode::EscapeState es; duke@435: kvn@500: // If we are still collecting or there were no non-escaping allocations kvn@500: // we don't know the answer yet kvn@500: if (_collecting || !_has_allocations) duke@435: return PointsToNode::UnknownEscape; duke@435: duke@435: // if the node was created after the escape computation, return duke@435: // UnknownEscape duke@435: if (idx >= (uint)_nodes->length()) duke@435: return PointsToNode::UnknownEscape; duke@435: duke@435: es = _nodes->at_grow(idx).escape_state(); duke@435: duke@435: // if we have already computed a value, return it duke@435: if (es != PointsToNode::UnknownEscape) duke@435: return es; duke@435: duke@435: // compute max escape state of anything this node could point to duke@435: VectorSet ptset(Thread::current()->resource_area()); duke@435: PointsTo(ptset, n, phase); kvn@500: for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) { duke@435: uint pt = i.elem; kvn@500: PointsToNode::EscapeState pes = _nodes->adr_at(pt)->escape_state(); duke@435: if (pes > es) duke@435: es = pes; duke@435: } duke@435: // cache the computed escape state duke@435: assert(es != PointsToNode::UnknownEscape, "should have computed an escape state"); duke@435: _nodes->adr_at(idx)->set_escape_state(es); duke@435: return es; duke@435: } duke@435: duke@435: void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) { duke@435: VectorSet visited(Thread::current()->resource_area()); duke@435: GrowableArray worklist; duke@435: kvn@500: n = n->uncast(); duke@435: PointsToNode npt = _nodes->at_grow(n->_idx); duke@435: duke@435: // If we have a JavaObject, return just that object duke@435: if (npt.node_type() == PointsToNode::JavaObject) { duke@435: ptset.set(n->_idx); duke@435: return; duke@435: } kvn@500: assert(npt._node != NULL, "unregistered node"); kvn@500: duke@435: worklist.push(n->_idx); duke@435: while(worklist.length() > 0) { duke@435: int ni = worklist.pop(); duke@435: PointsToNode pn = _nodes->at_grow(ni); kvn@500: if (!visited.test_set(ni)) { duke@435: // ensure that all inputs of a Phi have been processed kvn@500: assert(!_collecting || !pn._node->is_Phi() || _processed.test(ni),""); duke@435: duke@435: int edges_processed = 0; duke@435: for (uint e = 0; e < pn.edge_count(); e++) { kvn@500: uint etgt = pn.edge_target(e); duke@435: PointsToNode::EdgeType et = pn.edge_type(e); duke@435: if (et == PointsToNode::PointsToEdge) { kvn@500: ptset.set(etgt); duke@435: edges_processed++; duke@435: } else if (et == PointsToNode::DeferredEdge) { kvn@500: worklist.push(etgt); duke@435: edges_processed++; kvn@500: } else { kvn@500: assert(false,"neither PointsToEdge or DeferredEdge"); duke@435: } duke@435: } duke@435: if (edges_processed == 0) { kvn@500: // no deferred or pointsto edges found. Assume the value was set kvn@500: // outside this method. Add the phantom object to the pointsto set. duke@435: ptset.set(_phantom_object); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: kvn@536: void ConnectionGraph::remove_deferred(uint ni, GrowableArray* deferred_edges, VectorSet* visited) { kvn@536: // This method is most expensive during ConnectionGraph construction. kvn@536: // Reuse vectorSet and an additional growable array for deferred edges. kvn@536: deferred_edges->clear(); kvn@536: visited->Clear(); duke@435: duke@435: uint i = 0; duke@435: PointsToNode *ptn = ptnode_adr(ni); duke@435: kvn@536: // Mark current edges as visited and move deferred edges to separate array. kvn@536: for (; i < ptn->edge_count(); i++) { kvn@500: uint t = ptn->edge_target(i); kvn@536: #ifdef ASSERT kvn@536: assert(!visited->test_set(t), "expecting no duplications"); kvn@536: #else kvn@536: visited->set(t); kvn@536: #endif kvn@536: if (ptn->edge_type(i) == PointsToNode::DeferredEdge) { kvn@536: ptn->remove_edge(t, PointsToNode::DeferredEdge); kvn@536: deferred_edges->append(t); kvn@536: } kvn@536: } kvn@536: for (int next = 0; next < deferred_edges->length(); ++next) { kvn@536: uint t = deferred_edges->at(next); kvn@500: PointsToNode *ptt = ptnode_adr(t); kvn@536: for (uint j = 0; j < ptt->edge_count(); j++) { kvn@536: uint n1 = ptt->edge_target(j); kvn@536: if (visited->test_set(n1)) kvn@536: continue; kvn@536: switch(ptt->edge_type(j)) { kvn@536: case PointsToNode::PointsToEdge: kvn@536: add_pointsto_edge(ni, n1); kvn@536: if(n1 == _phantom_object) { kvn@536: // Special case - field set outside (globally escaping). kvn@536: ptn->set_escape_state(PointsToNode::GlobalEscape); duke@435: } kvn@536: break; kvn@536: case PointsToNode::DeferredEdge: kvn@536: deferred_edges->append(n1); kvn@536: break; kvn@536: case PointsToNode::FieldEdge: kvn@536: assert(false, "invalid connection graph"); kvn@536: break; duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: duke@435: // Add an edge to node given by "to_i" from any field of adr_i whose offset duke@435: // matches "offset" A deferred edge is added if to_i is a LocalVar, and duke@435: // a pointsto edge is added if it is a JavaObject duke@435: duke@435: void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) { duke@435: PointsToNode an = _nodes->at_grow(adr_i); duke@435: PointsToNode to = _nodes->at_grow(to_i); duke@435: bool deferred = (to.node_type() == PointsToNode::LocalVar); duke@435: duke@435: for (uint fe = 0; fe < an.edge_count(); fe++) { duke@435: assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge"); duke@435: int fi = an.edge_target(fe); duke@435: PointsToNode pf = _nodes->at_grow(fi); duke@435: int po = pf.offset(); duke@435: if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) { duke@435: if (deferred) duke@435: add_deferred_edge(fi, to_i); duke@435: else duke@435: add_pointsto_edge(fi, to_i); duke@435: } duke@435: } duke@435: } duke@435: kvn@500: // Add a deferred edge from node given by "from_i" to any field of adr_i kvn@500: // whose offset matches "offset". duke@435: void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) { duke@435: PointsToNode an = _nodes->at_grow(adr_i); duke@435: for (uint fe = 0; fe < an.edge_count(); fe++) { duke@435: assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge"); duke@435: int fi = an.edge_target(fe); duke@435: PointsToNode pf = _nodes->at_grow(fi); duke@435: int po = pf.offset(); duke@435: if (pf.edge_count() == 0) { duke@435: // we have not seen any stores to this field, assume it was set outside this method duke@435: add_pointsto_edge(fi, _phantom_object); duke@435: } duke@435: if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) { duke@435: add_deferred_edge(from_i, fi); duke@435: } duke@435: } duke@435: } duke@435: kvn@500: // Helper functions kvn@500: kvn@500: static Node* get_addp_base(Node *addp) { kvn@500: assert(addp->is_AddP(), "must be AddP"); kvn@500: // kvn@500: // AddP cases for Base and Address inputs: kvn@500: // case #1. Direct object's field reference: kvn@500: // Allocate kvn@500: // | kvn@500: // Proj #5 ( oop result ) kvn@500: // | kvn@500: // CheckCastPP (cast to instance type) kvn@500: // | | kvn@500: // AddP ( base == address ) kvn@500: // kvn@500: // case #2. Indirect object's field reference: kvn@500: // Phi kvn@500: // | kvn@500: // CastPP (cast to instance type) kvn@500: // | | kvn@500: // AddP ( base == address ) kvn@500: // kvn@500: // case #3. Raw object's field reference for Initialize node: kvn@500: // Allocate kvn@500: // | kvn@500: // Proj #5 ( oop result ) kvn@500: // top | kvn@500: // \ | kvn@500: // AddP ( base == top ) kvn@500: // kvn@500: // case #4. Array's element reference: kvn@500: // {CheckCastPP | CastPP} kvn@500: // | | | kvn@500: // | AddP ( array's element offset ) kvn@500: // | | kvn@500: // AddP ( array's offset ) kvn@500: // kvn@500: // case #5. Raw object's field reference for arraycopy stub call: kvn@500: // The inline_native_clone() case when the arraycopy stub is called kvn@500: // after the allocation before Initialize and CheckCastPP nodes. kvn@500: // Allocate kvn@500: // | kvn@500: // Proj #5 ( oop result ) kvn@500: // | | kvn@500: // AddP ( base == address ) kvn@500: // kvn@512: // case #6. Constant Pool, ThreadLocal, CastX2P or kvn@512: // Raw object's field reference: kvn@512: // {ConP, ThreadLocal, CastX2P, raw Load} kvn@500: // top | kvn@500: // \ | kvn@500: // AddP ( base == top ) kvn@500: // kvn@512: // case #7. Klass's field reference. kvn@512: // LoadKlass kvn@512: // | | kvn@512: // AddP ( base == address ) kvn@512: // kvn@500: Node *base = addp->in(AddPNode::Base)->uncast(); kvn@500: if (base->is_top()) { // The AddP case #3 and #6. kvn@500: base = addp->in(AddPNode::Address)->uncast(); kvn@500: assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal || kvn@512: base->Opcode() == Op_CastX2P || kvn@512: (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) || kvn@512: (base->is_Proj() && base->in(0)->is_Allocate()), "sanity"); duke@435: } kvn@500: return base; kvn@500: } kvn@500: kvn@500: static Node* find_second_addp(Node* addp, Node* n) { kvn@500: assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes"); kvn@500: kvn@500: Node* addp2 = addp->raw_out(0); kvn@500: if (addp->outcnt() == 1 && addp2->is_AddP() && kvn@500: addp2->in(AddPNode::Base) == n && kvn@500: addp2->in(AddPNode::Address) == addp) { kvn@500: kvn@500: assert(addp->in(AddPNode::Base) == n, "expecting the same base"); kvn@500: // kvn@500: // Find array's offset to push it on worklist first and kvn@500: // as result process an array's element offset first (pushed second) kvn@500: // to avoid CastPP for the array's offset. kvn@500: // Otherwise the inserted CastPP (LocalVar) will point to what kvn@500: // the AddP (Field) points to. Which would be wrong since kvn@500: // the algorithm expects the CastPP has the same point as kvn@500: // as AddP's base CheckCastPP (LocalVar). kvn@500: // kvn@500: // ArrayAllocation kvn@500: // | kvn@500: // CheckCastPP kvn@500: // | kvn@500: // memProj (from ArrayAllocation CheckCastPP) kvn@500: // | || kvn@500: // | || Int (element index) kvn@500: // | || | ConI (log(element size)) kvn@500: // | || | / kvn@500: // | || LShift kvn@500: // | || / kvn@500: // | AddP (array's element offset) kvn@500: // | | kvn@500: // | | ConI (array's offset: #12(32-bits) or #24(64-bits)) kvn@500: // | / / kvn@500: // AddP (array's offset) kvn@500: // | kvn@500: // Load/Store (memory operation on array's element) kvn@500: // kvn@500: return addp2; kvn@500: } kvn@500: return NULL; duke@435: } duke@435: duke@435: // duke@435: // Adjust the type and inputs of an AddP which computes the duke@435: // address of a field of an instance duke@435: // duke@435: void ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) { kvn@500: const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr(); kvn@500: assert(base_t != NULL && base_t->is_instance(), "expecting instance oopptr"); duke@435: const TypeOopPtr *t = igvn->type(addp)->isa_oopptr(); kvn@500: if (t == NULL) { kvn@500: // We are computing a raw address for a store captured by an Initialize kvn@500: // compute an appropriate address type. kvn@500: assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer"); kvn@500: assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation"); kvn@500: int offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot); kvn@500: assert(offs != Type::OffsetBot, "offset must be a constant"); kvn@500: t = base_t->add_offset(offs)->is_oopptr(); kvn@500: } duke@435: uint inst_id = base_t->instance_id(); duke@435: assert(!t->is_instance() || t->instance_id() == inst_id, duke@435: "old type must be non-instance or match new type"); duke@435: const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr(); kvn@500: // Do NOT remove the next call: ensure an new alias index is allocated kvn@500: // for the instance type duke@435: int alias_idx = _compile->get_alias_index(tinst); duke@435: igvn->set_type(addp, tinst); duke@435: // record the allocation in the node map duke@435: set_map(addp->_idx, get_map(base->_idx)); kvn@500: // if the Address input is not the appropriate instance type kvn@500: // (due to intervening casts,) insert a cast duke@435: Node *adr = addp->in(AddPNode::Address); duke@435: const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr(); kvn@500: if (atype != NULL && atype->instance_id() != inst_id) { duke@435: assert(!atype->is_instance(), "no conflicting instances"); duke@435: const TypeOopPtr *new_atype = base_t->add_offset(atype->offset())->isa_oopptr(); duke@435: Node *acast = new (_compile, 2) CastPPNode(adr, new_atype); duke@435: acast->set_req(0, adr->in(0)); duke@435: igvn->set_type(acast, new_atype); duke@435: record_for_optimizer(acast); duke@435: Node *bcast = acast; duke@435: Node *abase = addp->in(AddPNode::Base); duke@435: if (abase != adr) { duke@435: bcast = new (_compile, 2) CastPPNode(abase, base_t); duke@435: bcast->set_req(0, abase->in(0)); duke@435: igvn->set_type(bcast, base_t); duke@435: record_for_optimizer(bcast); duke@435: } duke@435: igvn->hash_delete(addp); duke@435: addp->set_req(AddPNode::Base, bcast); duke@435: addp->set_req(AddPNode::Address, acast); duke@435: igvn->hash_insert(addp); duke@435: } kvn@500: // Put on IGVN worklist since at least addp's type was changed above. kvn@500: record_for_optimizer(addp); duke@435: } duke@435: duke@435: // duke@435: // Create a new version of orig_phi if necessary. Returns either the newly duke@435: // created phi or an existing phi. Sets create_new to indicate wheter a new duke@435: // phi was created. Cache the last newly created phi in the node map. duke@435: // duke@435: PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) { duke@435: Compile *C = _compile; duke@435: new_created = false; duke@435: int phi_alias_idx = C->get_alias_index(orig_phi->adr_type()); duke@435: // nothing to do if orig_phi is bottom memory or matches alias_idx kvn@500: if (phi_alias_idx == alias_idx) { duke@435: return orig_phi; duke@435: } duke@435: // have we already created a Phi for this alias index? duke@435: PhiNode *result = get_map_phi(orig_phi->_idx); duke@435: if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) { duke@435: return result; duke@435: } kvn@473: if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) { kvn@473: if (C->do_escape_analysis() == true && !C->failing()) { kvn@473: // Retry compilation without escape analysis. kvn@473: // If this is the first failure, the sentinel string will "stick" kvn@473: // to the Compile object, and the C2Compiler will see it and retry. kvn@473: C->record_failure(C2Compiler::retry_no_escape_analysis()); kvn@473: } kvn@473: return NULL; kvn@473: } duke@435: orig_phi_worklist.append_if_missing(orig_phi); kvn@500: const TypePtr *atype = C->get_adr_type(alias_idx); duke@435: result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype); duke@435: set_map_phi(orig_phi->_idx, result); duke@435: igvn->set_type(result, result->bottom_type()); duke@435: record_for_optimizer(result); duke@435: new_created = true; duke@435: return result; duke@435: } duke@435: duke@435: // duke@435: // Return a new version of Memory Phi "orig_phi" with the inputs having the duke@435: // specified alias index. duke@435: // duke@435: PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray &orig_phi_worklist, PhaseGVN *igvn) { duke@435: duke@435: assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory"); duke@435: Compile *C = _compile; duke@435: bool new_phi_created; kvn@500: PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created); duke@435: if (!new_phi_created) { duke@435: return result; duke@435: } duke@435: duke@435: GrowableArray phi_list; duke@435: GrowableArray cur_input; duke@435: duke@435: PhiNode *phi = orig_phi; duke@435: uint idx = 1; duke@435: bool finished = false; duke@435: while(!finished) { duke@435: while (idx < phi->req()) { kvn@500: Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn); duke@435: if (mem != NULL && mem->is_Phi()) { kvn@500: PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created); duke@435: if (new_phi_created) { duke@435: // found an phi for which we created a new split, push current one on worklist and begin duke@435: // processing new one duke@435: phi_list.push(phi); duke@435: cur_input.push(idx); duke@435: phi = mem->as_Phi(); kvn@500: result = newphi; duke@435: idx = 1; duke@435: continue; duke@435: } else { kvn@500: mem = newphi; duke@435: } duke@435: } kvn@473: if (C->failing()) { kvn@473: return NULL; kvn@473: } duke@435: result->set_req(idx++, mem); duke@435: } duke@435: #ifdef ASSERT duke@435: // verify that the new Phi has an input for each input of the original duke@435: assert( phi->req() == result->req(), "must have same number of inputs."); duke@435: assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match"); kvn@500: #endif kvn@500: // Check if all new phi's inputs have specified alias index. kvn@500: // Otherwise use old phi. duke@435: for (uint i = 1; i < phi->req(); i++) { kvn@500: Node* in = result->in(i); kvn@500: assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond."); duke@435: } duke@435: // we have finished processing a Phi, see if there are any more to do duke@435: finished = (phi_list.length() == 0 ); duke@435: if (!finished) { duke@435: phi = phi_list.pop(); duke@435: idx = cur_input.pop(); kvn@500: PhiNode *prev_result = get_map_phi(phi->_idx); kvn@500: prev_result->set_req(idx++, result); kvn@500: result = prev_result; duke@435: } duke@435: } duke@435: return result; duke@435: } duke@435: kvn@500: kvn@500: // kvn@500: // The next methods are derived from methods in MemNode. kvn@500: // kvn@500: static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) { kvn@500: Node *mem = mmem; kvn@500: // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally kvn@500: // means an array I have not precisely typed yet. Do not do any kvn@500: // alias stuff with it any time soon. kvn@500: if( tinst->base() != Type::AnyPtr && kvn@500: !(tinst->klass()->is_java_lang_Object() && kvn@500: tinst->offset() == Type::OffsetBot) ) { kvn@500: mem = mmem->memory_at(alias_idx); kvn@500: // Update input if it is progress over what we have now kvn@500: } kvn@500: return mem; kvn@500: } kvn@500: kvn@500: // kvn@500: // Search memory chain of "mem" to find a MemNode whose address kvn@500: // is the specified alias index. kvn@500: // kvn@500: Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray &orig_phis, PhaseGVN *phase) { kvn@500: if (orig_mem == NULL) kvn@500: return orig_mem; kvn@500: Compile* C = phase->C; kvn@500: const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr(); kvn@500: bool is_instance = (tinst != NULL) && tinst->is_instance(); kvn@500: Node *prev = NULL; kvn@500: Node *result = orig_mem; kvn@500: while (prev != result) { kvn@500: prev = result; kvn@500: if (result->is_Mem()) { kvn@500: MemNode *mem = result->as_Mem(); kvn@500: const Type *at = phase->type(mem->in(MemNode::Address)); kvn@500: if (at != Type::TOP) { kvn@500: assert (at->isa_ptr() != NULL, "pointer type required."); kvn@500: int idx = C->get_alias_index(at->is_ptr()); kvn@500: if (idx == alias_idx) kvn@500: break; kvn@500: } kvn@500: result = mem->in(MemNode::Memory); kvn@500: } kvn@500: if (!is_instance) kvn@500: continue; // don't search further for non-instance types kvn@500: // skip over a call which does not affect this memory slice kvn@500: if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { kvn@500: Node *proj_in = result->in(0); kvn@500: if (proj_in->is_Call()) { kvn@500: CallNode *call = proj_in->as_Call(); kvn@500: if (!call->may_modify(tinst, phase)) { kvn@500: result = call->in(TypeFunc::Memory); kvn@500: } kvn@500: } else if (proj_in->is_Initialize()) { kvn@500: AllocateNode* alloc = proj_in->as_Initialize()->allocation(); kvn@500: // Stop if this is the initialization for the object instance which kvn@500: // which contains this memory slice, otherwise skip over it. kvn@500: if (alloc == NULL || alloc->_idx != tinst->instance_id()) { kvn@500: result = proj_in->in(TypeFunc::Memory); kvn@500: } kvn@500: } else if (proj_in->is_MemBar()) { kvn@500: result = proj_in->in(TypeFunc::Memory); kvn@500: } kvn@500: } else if (result->is_MergeMem()) { kvn@500: MergeMemNode *mmem = result->as_MergeMem(); kvn@500: result = step_through_mergemem(mmem, alias_idx, tinst); kvn@500: if (result == mmem->base_memory()) { kvn@500: // Didn't find instance memory, search through general slice recursively. kvn@500: result = mmem->memory_at(C->get_general_index(alias_idx)); kvn@500: result = find_inst_mem(result, alias_idx, orig_phis, phase); kvn@500: if (C->failing()) { kvn@500: return NULL; kvn@500: } kvn@500: mmem->set_memory_at(alias_idx, result); kvn@500: } kvn@500: } else if (result->is_Phi() && kvn@500: C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) { kvn@500: Node *un = result->as_Phi()->unique_input(phase); kvn@500: if (un != NULL) { kvn@500: result = un; kvn@500: } else { kvn@500: break; kvn@500: } kvn@500: } kvn@500: } kvn@500: if (is_instance && result->is_Phi()) { kvn@500: PhiNode *mphi = result->as_Phi(); kvn@500: assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); kvn@500: const TypePtr *t = mphi->adr_type(); kvn@500: if (C->get_alias_index(t) != alias_idx) { kvn@500: result = split_memory_phi(mphi, alias_idx, orig_phis, phase); kvn@500: } kvn@500: } kvn@500: // the result is either MemNode, PhiNode, InitializeNode. kvn@500: return result; kvn@500: } kvn@500: kvn@500: duke@435: // duke@435: // Convert the types of unescaped object to instance types where possible, duke@435: // propagate the new type information through the graph, and update memory duke@435: // edges and MergeMem inputs to reflect the new type. duke@435: // duke@435: // We start with allocations (and calls which may be allocations) on alloc_worklist. duke@435: // The processing is done in 4 phases: duke@435: // duke@435: // Phase 1: Process possible allocations from alloc_worklist. Create instance duke@435: // types for the CheckCastPP for allocations where possible. duke@435: // Propagate the the new types through users as follows: duke@435: // casts and Phi: push users on alloc_worklist duke@435: // AddP: cast Base and Address inputs to the instance type duke@435: // push any AddP users on alloc_worklist and push any memnode duke@435: // users onto memnode_worklist. duke@435: // Phase 2: Process MemNode's from memnode_worklist. compute new address type and duke@435: // search the Memory chain for a store with the appropriate type duke@435: // address type. If a Phi is found, create a new version with duke@435: // the approriate memory slices from each of the Phi inputs. duke@435: // For stores, process the users as follows: duke@435: // MemNode: push on memnode_worklist duke@435: // MergeMem: push on mergemem_worklist duke@435: // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice duke@435: // moving the first node encountered of each instance type to the duke@435: // the input corresponding to its alias index. duke@435: // appropriate memory slice. duke@435: // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes. duke@435: // duke@435: // In the following example, the CheckCastPP nodes are the cast of allocation duke@435: // results and the allocation of node 29 is unescaped and eligible to be an duke@435: // instance type. duke@435: // duke@435: // We start with: duke@435: // duke@435: // 7 Parm #memory duke@435: // 10 ConI "12" duke@435: // 19 CheckCastPP "Foo" duke@435: // 20 AddP _ 19 19 10 Foo+12 alias_index=4 duke@435: // 29 CheckCastPP "Foo" duke@435: // 30 AddP _ 29 29 10 Foo+12 alias_index=4 duke@435: // duke@435: // 40 StoreP 25 7 20 ... alias_index=4 duke@435: // 50 StoreP 35 40 30 ... alias_index=4 duke@435: // 60 StoreP 45 50 20 ... alias_index=4 duke@435: // 70 LoadP _ 60 30 ... alias_index=4 duke@435: // 80 Phi 75 50 60 Memory alias_index=4 duke@435: // 90 LoadP _ 80 30 ... alias_index=4 duke@435: // 100 LoadP _ 80 20 ... alias_index=4 duke@435: // duke@435: // duke@435: // Phase 1 creates an instance type for node 29 assigning it an instance id of 24 duke@435: // and creating a new alias index for node 30. This gives: duke@435: // duke@435: // 7 Parm #memory duke@435: // 10 ConI "12" duke@435: // 19 CheckCastPP "Foo" duke@435: // 20 AddP _ 19 19 10 Foo+12 alias_index=4 duke@435: // 29 CheckCastPP "Foo" iid=24 duke@435: // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 duke@435: // duke@435: // 40 StoreP 25 7 20 ... alias_index=4 duke@435: // 50 StoreP 35 40 30 ... alias_index=6 duke@435: // 60 StoreP 45 50 20 ... alias_index=4 duke@435: // 70 LoadP _ 60 30 ... alias_index=6 duke@435: // 80 Phi 75 50 60 Memory alias_index=4 duke@435: // 90 LoadP _ 80 30 ... alias_index=6 duke@435: // 100 LoadP _ 80 20 ... alias_index=4 duke@435: // duke@435: // In phase 2, new memory inputs are computed for the loads and stores, duke@435: // And a new version of the phi is created. In phase 4, the inputs to duke@435: // node 80 are updated and then the memory nodes are updated with the duke@435: // values computed in phase 2. This results in: duke@435: // duke@435: // 7 Parm #memory duke@435: // 10 ConI "12" duke@435: // 19 CheckCastPP "Foo" duke@435: // 20 AddP _ 19 19 10 Foo+12 alias_index=4 duke@435: // 29 CheckCastPP "Foo" iid=24 duke@435: // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 duke@435: // duke@435: // 40 StoreP 25 7 20 ... alias_index=4 duke@435: // 50 StoreP 35 7 30 ... alias_index=6 duke@435: // 60 StoreP 45 40 20 ... alias_index=4 duke@435: // 70 LoadP _ 50 30 ... alias_index=6 duke@435: // 80 Phi 75 40 60 Memory alias_index=4 duke@435: // 120 Phi 75 50 50 Memory alias_index=6 duke@435: // 90 LoadP _ 120 30 ... alias_index=6 duke@435: // 100 LoadP _ 80 20 ... alias_index=4 duke@435: // duke@435: void ConnectionGraph::split_unique_types(GrowableArray &alloc_worklist) { duke@435: GrowableArray memnode_worklist; duke@435: GrowableArray mergemem_worklist; duke@435: GrowableArray orig_phis; duke@435: PhaseGVN *igvn = _compile->initial_gvn(); duke@435: uint new_index_start = (uint) _compile->num_alias_types(); duke@435: VectorSet visited(Thread::current()->resource_area()); duke@435: VectorSet ptset(Thread::current()->resource_area()); duke@435: kvn@500: kvn@500: // Phase 1: Process possible allocations from alloc_worklist. kvn@500: // Create instance types for the CheckCastPP for allocations where possible. duke@435: while (alloc_worklist.length() != 0) { duke@435: Node *n = alloc_worklist.pop(); duke@435: uint ni = n->_idx; kvn@500: const TypeOopPtr* tinst = NULL; duke@435: if (n->is_Call()) { duke@435: CallNode *alloc = n->as_Call(); duke@435: // copy escape information to call node kvn@500: PointsToNode* ptn = _nodes->adr_at(alloc->_idx); duke@435: PointsToNode::EscapeState es = escape_state(alloc, igvn); kvn@500: // We have an allocation or call which returns a Java object, kvn@500: // see if it is unescaped. kvn@500: if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable) duke@435: continue; kvn@474: if (alloc->is_Allocate()) { kvn@474: // Set the scalar_replaceable flag before the next check. kvn@474: alloc->as_Allocate()->_is_scalar_replaceable = true; kvn@474: } kvn@500: // find CheckCastPP of call return value kvn@500: n = alloc->result_cast(); kvn@500: if (n == NULL || // No uses accept Initialize or kvn@500: !n->is_CheckCastPP()) // not unique CheckCastPP. kvn@500: continue; kvn@500: // The inline code for Object.clone() casts the allocation result to kvn@500: // java.lang.Object and then to the the actual type of the allocated kvn@500: // object. Detect this case and use the second cast. kvn@500: if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL kvn@500: && igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT) { kvn@500: Node *cast2 = NULL; kvn@500: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { kvn@500: Node *use = n->fast_out(i); kvn@500: if (use->is_CheckCastPP()) { kvn@500: cast2 = use; kvn@500: break; kvn@500: } kvn@500: } kvn@500: if (cast2 != NULL) { kvn@500: n = cast2; kvn@500: } else { kvn@500: continue; kvn@500: } kvn@500: } kvn@500: set_escape_state(n->_idx, es); kvn@500: // in order for an object to be stackallocatable, it must be: kvn@500: // - a direct allocation (not a call returning an object) kvn@500: // - non-escaping kvn@500: // - eligible to be a unique type kvn@500: // - not determined to be ineligible by escape analysis duke@435: set_map(alloc->_idx, n); duke@435: set_map(n->_idx, alloc); kvn@500: const TypeOopPtr *t = igvn->type(n)->isa_oopptr(); kvn@500: if (t == NULL) duke@435: continue; // not a TypeInstPtr kvn@500: tinst = t->cast_to_instance(ni); duke@435: igvn->hash_delete(n); duke@435: igvn->set_type(n, tinst); duke@435: n->raise_bottom_type(tinst); duke@435: igvn->hash_insert(n); kvn@500: record_for_optimizer(n); kvn@500: if (alloc->is_Allocate() && ptn->_scalar_replaceable && kvn@500: (t->isa_instptr() || t->isa_aryptr())) { kvn@500: // An allocation may have an Initialize which has raw stores. Scan kvn@500: // the users of the raw allocation result and push AddP users kvn@500: // on alloc_worklist. kvn@500: Node *raw_result = alloc->proj_out(TypeFunc::Parms); kvn@500: assert (raw_result != NULL, "must have an allocation result"); kvn@500: for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) { kvn@500: Node *use = raw_result->fast_out(i); kvn@500: if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes kvn@500: Node* addp2 = find_second_addp(use, raw_result); kvn@500: if (addp2 != NULL) { kvn@500: assert(alloc->is_AllocateArray(),"array allocation was expected"); kvn@500: alloc_worklist.append_if_missing(addp2); kvn@500: } kvn@500: alloc_worklist.append_if_missing(use); kvn@500: } else if (use->is_Initialize()) { kvn@500: memnode_worklist.append_if_missing(use); kvn@500: } kvn@500: } kvn@500: } duke@435: } else if (n->is_AddP()) { duke@435: ptset.Clear(); kvn@500: PointsTo(ptset, get_addp_base(n), igvn); duke@435: assert(ptset.Size() == 1, "AddP address is unique"); kvn@500: uint elem = ptset.getelem(); // Allocation node's index kvn@500: if (elem == _phantom_object) kvn@500: continue; // Assume the value was set outside this method. kvn@500: Node *base = get_map(elem); // CheckCastPP node duke@435: split_AddP(n, base, igvn); kvn@500: tinst = igvn->type(base)->isa_oopptr(); kvn@500: } else if (n->is_Phi() || kvn@500: n->is_CheckCastPP() || kvn@500: (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) { duke@435: if (visited.test_set(n->_idx)) { duke@435: assert(n->is_Phi(), "loops only through Phi's"); duke@435: continue; // already processed duke@435: } duke@435: ptset.Clear(); duke@435: PointsTo(ptset, n, igvn); duke@435: if (ptset.Size() == 1) { kvn@500: uint elem = ptset.getelem(); // Allocation node's index kvn@500: if (elem == _phantom_object) kvn@500: continue; // Assume the value was set outside this method. kvn@500: Node *val = get_map(elem); // CheckCastPP node duke@435: TypeNode *tn = n->as_Type(); kvn@500: tinst = igvn->type(val)->isa_oopptr(); kvn@500: assert(tinst != NULL && tinst->is_instance() && kvn@500: tinst->instance_id() == elem , "instance type expected."); kvn@500: const TypeOopPtr *tn_t = igvn->type(tn)->isa_oopptr(); duke@435: kvn@500: if (tn_t != NULL && kvn@500: tinst->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE)->higher_equal(tn_t)) { duke@435: igvn->hash_delete(tn); kvn@500: igvn->set_type(tn, tinst); kvn@500: tn->set_type(tinst); duke@435: igvn->hash_insert(tn); kvn@500: record_for_optimizer(n); duke@435: } duke@435: } duke@435: } else { duke@435: continue; duke@435: } duke@435: // push users on appropriate worklist duke@435: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { duke@435: Node *use = n->fast_out(i); duke@435: if(use->is_Mem() && use->in(MemNode::Address) == n) { kvn@500: memnode_worklist.append_if_missing(use); kvn@500: } else if (use->is_Initialize()) { kvn@500: memnode_worklist.append_if_missing(use); kvn@500: } else if (use->is_MergeMem()) { kvn@500: mergemem_worklist.append_if_missing(use); kvn@500: } else if (use->is_Call() && tinst != NULL) { kvn@500: // Look for MergeMem nodes for calls which reference unique allocation kvn@500: // (through CheckCastPP nodes) even for debug info. kvn@500: Node* m = use->in(TypeFunc::Memory); kvn@500: uint iid = tinst->instance_id(); kvn@500: while (m->is_Proj() && m->in(0)->is_Call() && kvn@500: m->in(0) != use && !m->in(0)->_idx != iid) { kvn@500: m = m->in(0)->in(TypeFunc::Memory); kvn@500: } kvn@500: if (m->is_MergeMem()) { kvn@500: mergemem_worklist.append_if_missing(m); kvn@500: } kvn@500: } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes kvn@500: Node* addp2 = find_second_addp(use, n); kvn@500: if (addp2 != NULL) { kvn@500: alloc_worklist.append_if_missing(addp2); kvn@500: } kvn@500: alloc_worklist.append_if_missing(use); kvn@500: } else if (use->is_Phi() || kvn@500: use->is_CheckCastPP() || kvn@500: (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) { kvn@500: alloc_worklist.append_if_missing(use); duke@435: } duke@435: } duke@435: duke@435: } kvn@500: // New alias types were created in split_AddP(). duke@435: uint new_index_end = (uint) _compile->num_alias_types(); duke@435: duke@435: // Phase 2: Process MemNode's from memnode_worklist. compute new address type and duke@435: // compute new values for Memory inputs (the Memory inputs are not duke@435: // actually updated until phase 4.) duke@435: if (memnode_worklist.length() == 0) duke@435: return; // nothing to do duke@435: duke@435: while (memnode_worklist.length() != 0) { duke@435: Node *n = memnode_worklist.pop(); kvn@500: if (visited.test_set(n->_idx)) kvn@500: continue; duke@435: if (n->is_Phi()) { duke@435: assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required"); duke@435: // we don't need to do anything, but the users must be pushed if we haven't processed duke@435: // this Phi before kvn@500: } else if (n->is_Initialize()) { kvn@500: // we don't need to do anything, but the users of the memory projection must be pushed kvn@500: n = n->as_Initialize()->proj_out(TypeFunc::Memory); kvn@500: if (n == NULL) duke@435: continue; duke@435: } else { duke@435: assert(n->is_Mem(), "memory node required."); duke@435: Node *addr = n->in(MemNode::Address); kvn@500: assert(addr->is_AddP(), "AddP required"); duke@435: const Type *addr_t = igvn->type(addr); duke@435: if (addr_t == Type::TOP) duke@435: continue; duke@435: assert (addr_t->isa_ptr() != NULL, "pointer type required."); duke@435: int alias_idx = _compile->get_alias_index(addr_t->is_ptr()); kvn@500: assert ((uint)alias_idx < new_index_end, "wrong alias index"); kvn@500: Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn); kvn@473: if (_compile->failing()) { kvn@473: return; kvn@473: } kvn@500: if (mem != n->in(MemNode::Memory)) { duke@435: set_map(n->_idx, mem); kvn@500: _nodes->adr_at(n->_idx)->_node = n; kvn@500: } duke@435: if (n->is_Load()) { duke@435: continue; // don't push users duke@435: } else if (n->is_LoadStore()) { duke@435: // get the memory projection duke@435: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { duke@435: Node *use = n->fast_out(i); duke@435: if (use->Opcode() == Op_SCMemProj) { duke@435: n = use; duke@435: break; duke@435: } duke@435: } duke@435: assert(n->Opcode() == Op_SCMemProj, "memory projection required"); duke@435: } duke@435: } duke@435: // push user on appropriate worklist duke@435: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { duke@435: Node *use = n->fast_out(i); duke@435: if (use->is_Phi()) { kvn@500: memnode_worklist.append_if_missing(use); duke@435: } else if(use->is_Mem() && use->in(MemNode::Memory) == n) { kvn@500: memnode_worklist.append_if_missing(use); kvn@500: } else if (use->is_Initialize()) { kvn@500: memnode_worklist.append_if_missing(use); duke@435: } else if (use->is_MergeMem()) { kvn@500: mergemem_worklist.append_if_missing(use); duke@435: } duke@435: } duke@435: } duke@435: kvn@500: // Phase 3: Process MergeMem nodes from mergemem_worklist. kvn@500: // Walk each memory moving the first node encountered of each kvn@500: // instance type to the the input corresponding to its alias index. duke@435: while (mergemem_worklist.length() != 0) { duke@435: Node *n = mergemem_worklist.pop(); duke@435: assert(n->is_MergeMem(), "MergeMem node required."); kvn@500: if (visited.test_set(n->_idx)) kvn@500: continue; duke@435: MergeMemNode *nmm = n->as_MergeMem(); duke@435: // Note: we don't want to use MergeMemStream here because we only want to kvn@500: // scan inputs which exist at the start, not ones we add during processing. duke@435: uint nslices = nmm->req(); duke@435: igvn->hash_delete(nmm); duke@435: for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) { kvn@500: Node* mem = nmm->in(i); kvn@500: Node* cur = NULL; duke@435: if (mem == NULL || mem->is_top()) duke@435: continue; duke@435: while (mem->is_Mem()) { duke@435: const Type *at = igvn->type(mem->in(MemNode::Address)); duke@435: if (at != Type::TOP) { duke@435: assert (at->isa_ptr() != NULL, "pointer type required."); duke@435: uint idx = (uint)_compile->get_alias_index(at->is_ptr()); duke@435: if (idx == i) { duke@435: if (cur == NULL) duke@435: cur = mem; duke@435: } else { duke@435: if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) { duke@435: nmm->set_memory_at(idx, mem); duke@435: } duke@435: } duke@435: } duke@435: mem = mem->in(MemNode::Memory); duke@435: } duke@435: nmm->set_memory_at(i, (cur != NULL) ? cur : mem); kvn@500: // Find any instance of the current type if we haven't encountered kvn@500: // a value of the instance along the chain. kvn@500: for (uint ni = new_index_start; ni < new_index_end; ni++) { kvn@500: if((uint)_compile->get_general_index(ni) == i) { kvn@500: Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni); kvn@500: if (nmm->is_empty_memory(m)) { kvn@500: Node* result = find_inst_mem(mem, ni, orig_phis, igvn); kvn@500: if (_compile->failing()) { kvn@500: return; kvn@500: } kvn@500: nmm->set_memory_at(ni, result); kvn@500: } kvn@500: } kvn@500: } kvn@500: } kvn@500: // Find the rest of instances values kvn@500: for (uint ni = new_index_start; ni < new_index_end; ni++) { kvn@500: const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr(); kvn@500: Node* result = step_through_mergemem(nmm, ni, tinst); kvn@500: if (result == nmm->base_memory()) { kvn@500: // Didn't find instance memory, search through general slice recursively. kvn@500: result = nmm->memory_at(igvn->C->get_general_index(ni)); kvn@500: result = find_inst_mem(result, ni, orig_phis, igvn); kvn@500: if (_compile->failing()) { kvn@500: return; kvn@500: } kvn@500: nmm->set_memory_at(ni, result); kvn@500: } kvn@500: } kvn@500: igvn->hash_insert(nmm); kvn@500: record_for_optimizer(nmm); kvn@500: kvn@500: // Propagate new memory slices to following MergeMem nodes. kvn@500: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { kvn@500: Node *use = n->fast_out(i); kvn@500: if (use->is_Call()) { kvn@500: CallNode* in = use->as_Call(); kvn@500: if (in->proj_out(TypeFunc::Memory) != NULL) { kvn@500: Node* m = in->proj_out(TypeFunc::Memory); kvn@500: for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { kvn@500: Node* mm = m->fast_out(j); kvn@500: if (mm->is_MergeMem()) { kvn@500: mergemem_worklist.append_if_missing(mm); kvn@500: } kvn@500: } kvn@500: } kvn@500: if (use->is_Allocate()) { kvn@500: use = use->as_Allocate()->initialization(); kvn@500: if (use == NULL) { kvn@500: continue; kvn@500: } kvn@500: } kvn@500: } kvn@500: if (use->is_Initialize()) { kvn@500: InitializeNode* in = use->as_Initialize(); kvn@500: if (in->proj_out(TypeFunc::Memory) != NULL) { kvn@500: Node* m = in->proj_out(TypeFunc::Memory); kvn@500: for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { kvn@500: Node* mm = m->fast_out(j); kvn@500: if (mm->is_MergeMem()) { kvn@500: mergemem_worklist.append_if_missing(mm); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: } duke@435: } duke@435: kvn@500: // Phase 4: Update the inputs of non-instance memory Phis and kvn@500: // the Memory input of memnodes duke@435: // First update the inputs of any non-instance Phi's from duke@435: // which we split out an instance Phi. Note we don't have duke@435: // to recursively process Phi's encounted on the input memory duke@435: // chains as is done in split_memory_phi() since they will duke@435: // also be processed here. duke@435: while (orig_phis.length() != 0) { duke@435: PhiNode *phi = orig_phis.pop(); duke@435: int alias_idx = _compile->get_alias_index(phi->adr_type()); duke@435: igvn->hash_delete(phi); duke@435: for (uint i = 1; i < phi->req(); i++) { duke@435: Node *mem = phi->in(i); kvn@500: Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn); kvn@500: if (_compile->failing()) { kvn@500: return; kvn@500: } duke@435: if (mem != new_mem) { duke@435: phi->set_req(i, new_mem); duke@435: } duke@435: } duke@435: igvn->hash_insert(phi); duke@435: record_for_optimizer(phi); duke@435: } duke@435: duke@435: // Update the memory inputs of MemNodes with the value we computed duke@435: // in Phase 2. duke@435: for (int i = 0; i < _nodes->length(); i++) { duke@435: Node *nmem = get_map(i); duke@435: if (nmem != NULL) { kvn@500: Node *n = _nodes->adr_at(i)->_node; duke@435: if (n != NULL && n->is_Mem()) { duke@435: igvn->hash_delete(n); duke@435: n->set_req(MemNode::Memory, nmem); duke@435: igvn->hash_insert(n); duke@435: record_for_optimizer(n); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: void ConnectionGraph::compute_escape() { duke@435: kvn@500: // 1. Populate Connection Graph with Ideal nodes. duke@435: kvn@500: Unique_Node_List worklist_init; kvn@500: worklist_init.map(_compile->unique(), NULL); // preallocate space kvn@500: kvn@500: // Initialize worklist kvn@500: if (_compile->root() != NULL) { kvn@500: worklist_init.push(_compile->root()); kvn@500: } kvn@500: kvn@500: GrowableArray cg_worklist; kvn@500: PhaseGVN* igvn = _compile->initial_gvn(); kvn@500: bool has_allocations = false; kvn@500: kvn@500: // Push all useful nodes onto CG list and set their type. kvn@500: for( uint next = 0; next < worklist_init.size(); ++next ) { kvn@500: Node* n = worklist_init.at(next); kvn@500: record_for_escape_analysis(n, igvn); kvn@500: if (n->is_Call() && kvn@500: _nodes->adr_at(n->_idx)->node_type() == PointsToNode::JavaObject) { kvn@500: has_allocations = true; kvn@500: } kvn@500: if(n->is_AddP()) kvn@500: cg_worklist.append(n->_idx); kvn@500: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { kvn@500: Node* m = n->fast_out(i); // Get user kvn@500: worklist_init.push(m); kvn@500: } kvn@500: } kvn@500: kvn@500: if (has_allocations) { kvn@500: _has_allocations = true; kvn@500: } else { kvn@500: _has_allocations = false; kvn@500: _collecting = false; kvn@500: return; // Nothing to do. kvn@500: } kvn@500: kvn@500: // 2. First pass to create simple CG edges (doesn't require to walk CG). kvn@500: for( uint next = 0; next < _delayed_worklist.size(); ++next ) { kvn@500: Node* n = _delayed_worklist.at(next); kvn@500: build_connection_graph(n, igvn); kvn@500: } kvn@500: kvn@500: // 3. Pass to create fields edges (Allocate -F-> AddP). kvn@500: for( int next = 0; next < cg_worklist.length(); ++next ) { kvn@500: int ni = cg_worklist.at(next); kvn@500: build_connection_graph(_nodes->adr_at(ni)->_node, igvn); kvn@500: } kvn@500: kvn@500: cg_worklist.clear(); kvn@500: cg_worklist.append(_phantom_object); kvn@500: kvn@500: // 4. Build Connection Graph which need kvn@500: // to walk the connection graph. kvn@500: for (uint ni = 0; ni < (uint)_nodes->length(); ni++) { kvn@500: PointsToNode* ptn = _nodes->adr_at(ni); kvn@500: Node *n = ptn->_node; kvn@500: if (n != NULL) { // Call, AddP, LoadP, StoreP kvn@500: build_connection_graph(n, igvn); kvn@500: if (ptn->node_type() != PointsToNode::UnknownType) kvn@500: cg_worklist.append(n->_idx); // Collect CG nodes kvn@500: } duke@435: } duke@435: duke@435: VectorSet ptset(Thread::current()->resource_area()); kvn@536: GrowableArray alloc_worklist; kvn@536: GrowableArray worklist; kvn@536: GrowableArray deferred_edges; kvn@536: VectorSet visited(Thread::current()->resource_area()); duke@435: duke@435: // remove deferred edges from the graph and collect duke@435: // information we will need for type splitting kvn@500: for( int next = 0; next < cg_worklist.length(); ++next ) { kvn@500: int ni = cg_worklist.at(next); kvn@500: PointsToNode* ptn = _nodes->adr_at(ni); duke@435: PointsToNode::NodeType nt = ptn->node_type(); duke@435: Node *n = ptn->_node; duke@435: if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) { kvn@536: remove_deferred(ni, &deferred_edges, &visited); duke@435: if (n->is_AddP()) { kvn@500: // If this AddP computes an address which may point to more that one kvn@500: // object, nothing the address points to can be scalar replaceable. kvn@500: Node *base = get_addp_base(n); duke@435: ptset.Clear(); duke@435: PointsTo(ptset, base, igvn); duke@435: if (ptset.Size() > 1) { duke@435: for( VectorSetI j(&ptset); j.test(); ++j ) { kvn@500: uint pt = j.elem; kvn@500: ptnode_adr(pt)->_scalar_replaceable = false; duke@435: } duke@435: } duke@435: } kvn@500: } else if (nt == PointsToNode::JavaObject && n->is_Call()) { kvn@500: // Push call on alloc_worlist (alocations are calls) kvn@500: // for processing by split_unique_types(). kvn@500: alloc_worklist.append(n); duke@435: } duke@435: } kvn@500: duke@435: // push all GlobalEscape nodes on the worklist kvn@500: for( int next = 0; next < cg_worklist.length(); ++next ) { kvn@500: int nk = cg_worklist.at(next); kvn@500: if (_nodes->adr_at(nk)->escape_state() == PointsToNode::GlobalEscape) kvn@500: worklist.append(nk); duke@435: } duke@435: // mark all node reachable from GlobalEscape nodes duke@435: while(worklist.length() > 0) { duke@435: PointsToNode n = _nodes->at(worklist.pop()); duke@435: for (uint ei = 0; ei < n.edge_count(); ei++) { duke@435: uint npi = n.edge_target(ei); duke@435: PointsToNode *np = ptnode_adr(npi); kvn@500: if (np->escape_state() < PointsToNode::GlobalEscape) { duke@435: np->set_escape_state(PointsToNode::GlobalEscape); duke@435: worklist.append_if_missing(npi); duke@435: } duke@435: } duke@435: } duke@435: duke@435: // push all ArgEscape nodes on the worklist kvn@500: for( int next = 0; next < cg_worklist.length(); ++next ) { kvn@500: int nk = cg_worklist.at(next); kvn@500: if (_nodes->adr_at(nk)->escape_state() == PointsToNode::ArgEscape) duke@435: worklist.push(nk); duke@435: } duke@435: // mark all node reachable from ArgEscape nodes duke@435: while(worklist.length() > 0) { duke@435: PointsToNode n = _nodes->at(worklist.pop()); duke@435: for (uint ei = 0; ei < n.edge_count(); ei++) { duke@435: uint npi = n.edge_target(ei); duke@435: PointsToNode *np = ptnode_adr(npi); kvn@500: if (np->escape_state() < PointsToNode::ArgEscape) { duke@435: np->set_escape_state(PointsToNode::ArgEscape); duke@435: worklist.append_if_missing(npi); duke@435: } duke@435: } duke@435: } kvn@500: kvn@500: // push all NoEscape nodes on the worklist kvn@500: for( int next = 0; next < cg_worklist.length(); ++next ) { kvn@500: int nk = cg_worklist.at(next); kvn@500: if (_nodes->adr_at(nk)->escape_state() == PointsToNode::NoEscape) kvn@500: worklist.push(nk); kvn@500: } kvn@500: // mark all node reachable from NoEscape nodes kvn@500: while(worklist.length() > 0) { kvn@500: PointsToNode n = _nodes->at(worklist.pop()); kvn@500: for (uint ei = 0; ei < n.edge_count(); ei++) { kvn@500: uint npi = n.edge_target(ei); kvn@500: PointsToNode *np = ptnode_adr(npi); kvn@500: if (np->escape_state() < PointsToNode::NoEscape) { kvn@500: np->set_escape_state(PointsToNode::NoEscape); kvn@500: worklist.append_if_missing(npi); kvn@500: } kvn@500: } kvn@500: } kvn@500: duke@435: _collecting = false; duke@435: kvn@500: has_allocations = false; // Are there scalar replaceable allocations? kvn@473: kvn@500: for( int next = 0; next < alloc_worklist.length(); ++next ) { kvn@500: Node* n = alloc_worklist.at(next); kvn@500: uint ni = n->_idx; kvn@500: PointsToNode* ptn = _nodes->adr_at(ni); kvn@500: PointsToNode::EscapeState es = ptn->escape_state(); kvn@500: if (ptn->escape_state() == PointsToNode::NoEscape && kvn@500: ptn->_scalar_replaceable) { kvn@500: has_allocations = true; kvn@500: break; kvn@500: } kvn@500: } kvn@500: if (!has_allocations) { kvn@500: return; // Nothing to do. kvn@500: } duke@435: kvn@500: if(_compile->AliasLevel() >= 3 && EliminateAllocations) { kvn@500: // Now use the escape information to create unique types for kvn@500: // unescaped objects kvn@500: split_unique_types(alloc_worklist); kvn@500: if (_compile->failing()) return; duke@435: kvn@500: // Clean up after split unique types. kvn@500: ResourceMark rm; kvn@500: PhaseRemoveUseless pru(_compile->initial_gvn(), _compile->for_igvn()); duke@435: kvn@500: #ifdef ASSERT kvn@500: } else if (PrintEscapeAnalysis || PrintEliminateAllocations) { kvn@500: tty->print("=== No allocations eliminated for "); kvn@500: C()->method()->print_short_name(); kvn@500: if(!EliminateAllocations) { kvn@500: tty->print(" since EliminateAllocations is off ==="); kvn@500: } else if(_compile->AliasLevel() < 3) { kvn@500: tty->print(" since AliasLevel < 3 ==="); duke@435: } kvn@500: tty->cr(); kvn@500: #endif duke@435: } duke@435: } duke@435: duke@435: void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) { duke@435: duke@435: switch (call->Opcode()) { kvn@500: #ifdef ASSERT duke@435: case Op_Allocate: duke@435: case Op_AllocateArray: duke@435: case Op_Lock: duke@435: case Op_Unlock: kvn@500: assert(false, "should be done already"); duke@435: break; kvn@500: #endif kvn@500: case Op_CallLeafNoFP: kvn@500: { kvn@500: // Stub calls, objects do not escape but they are not scale replaceable. kvn@500: // Adjust escape state for outgoing arguments. kvn@500: const TypeTuple * d = call->tf()->domain(); kvn@500: VectorSet ptset(Thread::current()->resource_area()); kvn@500: for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { kvn@500: const Type* at = d->field_at(i); kvn@500: Node *arg = call->in(i)->uncast(); kvn@500: const Type *aat = phase->type(arg); kvn@500: if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) { kvn@500: assert(aat == Type::TOP || aat == TypePtr::NULL_PTR || kvn@500: aat->isa_ptr() != NULL, "expecting an Ptr"); kvn@500: set_escape_state(arg->_idx, PointsToNode::ArgEscape); kvn@500: if (arg->is_AddP()) { kvn@500: // kvn@500: // The inline_native_clone() case when the arraycopy stub is called kvn@500: // after the allocation before Initialize and CheckCastPP nodes. kvn@500: // kvn@500: // Set AddP's base (Allocate) as not scalar replaceable since kvn@500: // pointer to the base (with offset) is passed as argument. kvn@500: // kvn@500: arg = get_addp_base(arg); kvn@500: } kvn@500: ptset.Clear(); kvn@500: PointsTo(ptset, arg, phase); kvn@500: for( VectorSetI j(&ptset); j.test(); ++j ) { kvn@500: uint pt = j.elem; kvn@500: set_escape_state(pt, PointsToNode::ArgEscape); kvn@500: } kvn@500: } kvn@500: } kvn@500: break; kvn@500: } duke@435: duke@435: case Op_CallStaticJava: duke@435: // For a static call, we know exactly what method is being called. duke@435: // Use bytecode estimator to record the call's escape affects duke@435: { duke@435: ciMethod *meth = call->as_CallJava()->method(); kvn@500: BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL; kvn@500: // fall-through if not a Java method or no analyzer information kvn@500: if (call_analyzer != NULL) { duke@435: const TypeTuple * d = call->tf()->domain(); duke@435: VectorSet ptset(Thread::current()->resource_area()); kvn@500: bool copy_dependencies = false; duke@435: for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { duke@435: const Type* at = d->field_at(i); duke@435: int k = i - TypeFunc::Parms; duke@435: duke@435: if (at->isa_oopptr() != NULL) { kvn@500: Node *arg = call->in(i)->uncast(); duke@435: kvn@500: bool global_escapes = false; kvn@500: bool fields_escapes = false; kvn@500: if (!call_analyzer->is_arg_stack(k)) { duke@435: // The argument global escapes, mark everything it could point to kvn@500: set_escape_state(arg->_idx, PointsToNode::GlobalEscape); kvn@500: global_escapes = true; kvn@500: } else { kvn@500: if (!call_analyzer->is_arg_local(k)) { kvn@500: // The argument itself doesn't escape, but any fields might kvn@500: fields_escapes = true; kvn@500: } kvn@500: set_escape_state(arg->_idx, PointsToNode::ArgEscape); kvn@500: copy_dependencies = true; kvn@500: } duke@435: kvn@500: ptset.Clear(); kvn@500: PointsTo(ptset, arg, phase); kvn@500: for( VectorSetI j(&ptset); j.test(); ++j ) { kvn@500: uint pt = j.elem; kvn@500: if (global_escapes) { kvn@500: //The argument global escapes, mark everything it could point to duke@435: set_escape_state(pt, PointsToNode::GlobalEscape); kvn@500: } else { kvn@500: if (fields_escapes) { kvn@500: // The argument itself doesn't escape, but any fields might kvn@500: add_edge_from_fields(pt, _phantom_object, Type::OffsetBot); kvn@500: } kvn@500: set_escape_state(pt, PointsToNode::ArgEscape); duke@435: } duke@435: } duke@435: } duke@435: } kvn@500: if (copy_dependencies) kvn@500: call_analyzer->copy_dependencies(C()->dependencies()); duke@435: break; duke@435: } duke@435: } duke@435: duke@435: default: kvn@500: // Fall-through here if not a Java method or no analyzer information kvn@500: // or some other type of call, assume the worst case: all arguments duke@435: // globally escape. duke@435: { duke@435: // adjust escape state for outgoing arguments duke@435: const TypeTuple * d = call->tf()->domain(); duke@435: VectorSet ptset(Thread::current()->resource_area()); duke@435: for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { duke@435: const Type* at = d->field_at(i); duke@435: if (at->isa_oopptr() != NULL) { kvn@500: Node *arg = call->in(i)->uncast(); kvn@500: set_escape_state(arg->_idx, PointsToNode::GlobalEscape); duke@435: ptset.Clear(); duke@435: PointsTo(ptset, arg, phase); duke@435: for( VectorSetI j(&ptset); j.test(); ++j ) { duke@435: uint pt = j.elem; duke@435: set_escape_state(pt, PointsToNode::GlobalEscape); kvn@500: PointsToNode *ptadr = ptnode_adr(pt); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: } duke@435: } duke@435: void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) { duke@435: PointsToNode *ptadr = ptnode_adr(resproj->_idx); duke@435: kvn@500: CallNode *call = resproj->in(0)->as_Call(); duke@435: switch (call->Opcode()) { duke@435: case Op_Allocate: duke@435: { duke@435: Node *k = call->in(AllocateNode::KlassNode); duke@435: const TypeKlassPtr *kt; duke@435: if (k->Opcode() == Op_LoadKlass) { duke@435: kt = k->as_Load()->type()->isa_klassptr(); duke@435: } else { duke@435: kt = k->as_Type()->type()->isa_klassptr(); duke@435: } duke@435: assert(kt != NULL, "TypeKlassPtr required."); duke@435: ciKlass* cik = kt->klass(); duke@435: ciInstanceKlass* ciik = cik->as_instance_klass(); duke@435: duke@435: PointsToNode *ptadr = ptnode_adr(call->_idx); kvn@500: PointsToNode::EscapeState es; kvn@500: uint edge_to; duke@435: if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) { kvn@500: es = PointsToNode::GlobalEscape; kvn@500: edge_to = _phantom_object; // Could not be worse duke@435: } else { kvn@500: es = PointsToNode::NoEscape; kvn@500: edge_to = call->_idx; duke@435: } kvn@500: set_escape_state(call->_idx, es); kvn@500: add_pointsto_edge(resproj->_idx, edge_to); kvn@500: _processed.set(resproj->_idx); duke@435: break; duke@435: } duke@435: duke@435: case Op_AllocateArray: duke@435: { duke@435: PointsToNode *ptadr = ptnode_adr(call->_idx); kvn@500: int length = call->in(AllocateNode::ALength)->find_int_con(-1); kvn@500: if (length < 0 || length > EliminateAllocationArraySizeLimit) { kvn@500: // Not scalar replaceable if the length is not constant or too big. kvn@500: ptadr->_scalar_replaceable = false; kvn@500: } duke@435: set_escape_state(call->_idx, PointsToNode::NoEscape); duke@435: add_pointsto_edge(resproj->_idx, call->_idx); kvn@500: _processed.set(resproj->_idx); duke@435: break; duke@435: } duke@435: duke@435: case Op_CallStaticJava: duke@435: // For a static call, we know exactly what method is being called. duke@435: // Use bytecode estimator to record whether the call's return value escapes duke@435: { kvn@500: bool done = true; duke@435: const TypeTuple *r = call->tf()->range(); duke@435: const Type* ret_type = NULL; duke@435: duke@435: if (r->cnt() > TypeFunc::Parms) duke@435: ret_type = r->field_at(TypeFunc::Parms); duke@435: duke@435: // Note: we use isa_ptr() instead of isa_oopptr() here because the duke@435: // _multianewarray functions return a TypeRawPtr. kvn@500: if (ret_type == NULL || ret_type->isa_ptr() == NULL) { kvn@500: _processed.set(resproj->_idx); duke@435: break; // doesn't return a pointer type kvn@500: } duke@435: ciMethod *meth = call->as_CallJava()->method(); kvn@500: const TypeTuple * d = call->tf()->domain(); duke@435: if (meth == NULL) { duke@435: // not a Java method, assume global escape duke@435: set_escape_state(call->_idx, PointsToNode::GlobalEscape); duke@435: if (resproj != NULL) duke@435: add_pointsto_edge(resproj->_idx, _phantom_object); duke@435: } else { kvn@500: BCEscapeAnalyzer *call_analyzer = meth->get_bcea(); duke@435: VectorSet ptset(Thread::current()->resource_area()); kvn@500: bool copy_dependencies = false; duke@435: kvn@500: if (call_analyzer->is_return_allocated()) { kvn@500: // Returns a newly allocated unescaped object, simply kvn@500: // update dependency information. kvn@500: // Mark it as NoEscape so that objects referenced by kvn@500: // it's fields will be marked as NoEscape at least. kvn@500: set_escape_state(call->_idx, PointsToNode::NoEscape); kvn@500: if (resproj != NULL) kvn@500: add_pointsto_edge(resproj->_idx, call->_idx); kvn@500: copy_dependencies = true; kvn@500: } else if (call_analyzer->is_return_local() && resproj != NULL) { duke@435: // determine whether any arguments are returned duke@435: set_escape_state(call->_idx, PointsToNode::NoEscape); duke@435: for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { duke@435: const Type* at = d->field_at(i); duke@435: duke@435: if (at->isa_oopptr() != NULL) { kvn@500: Node *arg = call->in(i)->uncast(); duke@435: kvn@500: if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) { duke@435: PointsToNode *arg_esp = _nodes->adr_at(arg->_idx); kvn@500: if (arg_esp->node_type() == PointsToNode::UnknownType) kvn@500: done = false; kvn@500: else if (arg_esp->node_type() == PointsToNode::JavaObject) duke@435: add_pointsto_edge(resproj->_idx, arg->_idx); duke@435: else duke@435: add_deferred_edge(resproj->_idx, arg->_idx); duke@435: arg_esp->_hidden_alias = true; duke@435: } duke@435: } duke@435: } kvn@500: copy_dependencies = true; duke@435: } else { duke@435: set_escape_state(call->_idx, PointsToNode::GlobalEscape); duke@435: if (resproj != NULL) duke@435: add_pointsto_edge(resproj->_idx, _phantom_object); kvn@500: for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { kvn@500: const Type* at = d->field_at(i); kvn@500: if (at->isa_oopptr() != NULL) { kvn@500: Node *arg = call->in(i)->uncast(); kvn@500: PointsToNode *arg_esp = _nodes->adr_at(arg->_idx); kvn@500: arg_esp->_hidden_alias = true; kvn@500: } kvn@500: } duke@435: } kvn@500: if (copy_dependencies) kvn@500: call_analyzer->copy_dependencies(C()->dependencies()); duke@435: } kvn@500: if (done) kvn@500: _processed.set(resproj->_idx); duke@435: break; duke@435: } duke@435: duke@435: default: duke@435: // Some other type of call, assume the worst case that the duke@435: // returned value, if any, globally escapes. duke@435: { duke@435: const TypeTuple *r = call->tf()->range(); duke@435: if (r->cnt() > TypeFunc::Parms) { duke@435: const Type* ret_type = r->field_at(TypeFunc::Parms); duke@435: duke@435: // Note: we use isa_ptr() instead of isa_oopptr() here because the duke@435: // _multianewarray functions return a TypeRawPtr. duke@435: if (ret_type->isa_ptr() != NULL) { duke@435: PointsToNode *ptadr = ptnode_adr(call->_idx); duke@435: set_escape_state(call->_idx, PointsToNode::GlobalEscape); duke@435: if (resproj != NULL) duke@435: add_pointsto_edge(resproj->_idx, _phantom_object); duke@435: } duke@435: } kvn@500: _processed.set(resproj->_idx); duke@435: } duke@435: } duke@435: } duke@435: kvn@500: // Populate Connection Graph with Ideal nodes and create simple kvn@500: // connection graph edges (do not need to check the node_type of inputs kvn@500: // or to call PointsTo() to walk the connection graph). kvn@500: void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) { kvn@500: if (_processed.test(n->_idx)) kvn@500: return; // No need to redefine node's state. kvn@500: kvn@500: if (n->is_Call()) { kvn@500: // Arguments to allocation and locking don't escape. kvn@500: if (n->is_Allocate()) { kvn@500: add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true); kvn@500: record_for_optimizer(n); kvn@500: } else if (n->is_Lock() || n->is_Unlock()) { kvn@500: // Put Lock and Unlock nodes on IGVN worklist to process them during kvn@500: // the first IGVN optimization when escape information is still available. kvn@500: record_for_optimizer(n); kvn@500: _processed.set(n->_idx); kvn@500: } else { kvn@500: // Have to process call's arguments first. kvn@500: PointsToNode::NodeType nt = PointsToNode::UnknownType; kvn@500: kvn@500: // Check if a call returns an object. kvn@500: const TypeTuple *r = n->as_Call()->tf()->range(); kvn@500: if (r->cnt() > TypeFunc::Parms && kvn@500: n->as_Call()->proj_out(TypeFunc::Parms) != NULL) { kvn@500: // Note: use isa_ptr() instead of isa_oopptr() here because kvn@500: // the _multianewarray functions return a TypeRawPtr. kvn@500: if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) { kvn@500: nt = PointsToNode::JavaObject; kvn@500: } duke@435: } kvn@500: add_node(n, nt, PointsToNode::UnknownEscape, false); duke@435: } kvn@500: return; duke@435: } kvn@500: kvn@500: // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because kvn@500: // ThreadLocal has RawPrt type. kvn@500: switch (n->Opcode()) { kvn@500: case Op_AddP: kvn@500: { kvn@500: add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false); kvn@500: break; kvn@500: } kvn@500: case Op_CastX2P: kvn@500: { // "Unsafe" memory access. kvn@500: add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true); kvn@500: break; kvn@500: } kvn@500: case Op_CastPP: kvn@500: case Op_CheckCastPP: kvn@500: { kvn@500: add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false); kvn@500: int ti = n->in(1)->_idx; kvn@500: PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type(); kvn@500: if (nt == PointsToNode::UnknownType) { kvn@500: _delayed_worklist.push(n); // Process it later. kvn@500: break; kvn@500: } else if (nt == PointsToNode::JavaObject) { kvn@500: add_pointsto_edge(n->_idx, ti); kvn@500: } else { kvn@500: add_deferred_edge(n->_idx, ti); kvn@500: } kvn@500: _processed.set(n->_idx); kvn@500: break; kvn@500: } kvn@500: case Op_ConP: kvn@500: { kvn@500: // assume all pointer constants globally escape except for null kvn@500: PointsToNode::EscapeState es; kvn@500: if (phase->type(n) == TypePtr::NULL_PTR) kvn@500: es = PointsToNode::NoEscape; kvn@500: else kvn@500: es = PointsToNode::GlobalEscape; kvn@500: kvn@500: add_node(n, PointsToNode::JavaObject, es, true); kvn@500: break; kvn@500: } kvn@500: case Op_CreateEx: kvn@500: { kvn@500: // assume that all exception objects globally escape kvn@500: add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true); kvn@500: break; kvn@500: } coleenp@548: case Op_ConN: coleenp@548: { coleenp@548: // assume all narrow oop constants globally escape except for null coleenp@548: PointsToNode::EscapeState es; coleenp@548: if (phase->type(n) == TypeNarrowOop::NULL_PTR) coleenp@548: es = PointsToNode::NoEscape; coleenp@548: else coleenp@548: es = PointsToNode::GlobalEscape; coleenp@548: coleenp@548: add_node(n, PointsToNode::JavaObject, es, true); coleenp@548: break; coleenp@548: } kvn@500: case Op_LoadKlass: kvn@500: { kvn@500: add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true); kvn@500: break; kvn@500: } kvn@500: case Op_LoadP: coleenp@548: case Op_LoadN: kvn@500: { kvn@500: const Type *t = phase->type(n); coleenp@548: if (!t->isa_narrowoop() && t->isa_ptr() == NULL) { kvn@500: _processed.set(n->_idx); kvn@500: return; kvn@500: } kvn@500: add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false); kvn@500: break; kvn@500: } kvn@500: case Op_Parm: kvn@500: { kvn@500: _processed.set(n->_idx); // No need to redefine it state. kvn@500: uint con = n->as_Proj()->_con; kvn@500: if (con < TypeFunc::Parms) kvn@500: return; kvn@500: const Type *t = n->in(0)->as_Start()->_domain->field_at(con); kvn@500: if (t->isa_ptr() == NULL) kvn@500: return; kvn@500: // We have to assume all input parameters globally escape kvn@500: // (Note: passing 'false' since _processed is already set). kvn@500: add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false); kvn@500: break; kvn@500: } kvn@500: case Op_Phi: kvn@500: { kvn@500: if (n->as_Phi()->type()->isa_ptr() == NULL) { kvn@500: // nothing to do if not an oop kvn@500: _processed.set(n->_idx); kvn@500: return; kvn@500: } kvn@500: add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false); kvn@500: uint i; kvn@500: for (i = 1; i < n->req() ; i++) { kvn@500: Node* in = n->in(i); kvn@500: if (in == NULL) kvn@500: continue; // ignore NULL kvn@500: in = in->uncast(); kvn@500: if (in->is_top() || in == n) kvn@500: continue; // ignore top or inputs which go back this node kvn@500: int ti = in->_idx; kvn@500: PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type(); kvn@500: if (nt == PointsToNode::UnknownType) { kvn@500: break; kvn@500: } else if (nt == PointsToNode::JavaObject) { kvn@500: add_pointsto_edge(n->_idx, ti); kvn@500: } else { kvn@500: add_deferred_edge(n->_idx, ti); kvn@500: } kvn@500: } kvn@500: if (i >= n->req()) kvn@500: _processed.set(n->_idx); kvn@500: else kvn@500: _delayed_worklist.push(n); kvn@500: break; kvn@500: } kvn@500: case Op_Proj: kvn@500: { kvn@500: // we are only interested in the result projection from a call kvn@500: if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) { kvn@500: add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false); kvn@500: process_call_result(n->as_Proj(), phase); kvn@500: if (!_processed.test(n->_idx)) { kvn@500: // The call's result may need to be processed later if the call kvn@500: // returns it's argument and the argument is not processed yet. kvn@500: _delayed_worklist.push(n); kvn@500: } kvn@500: } else { kvn@500: _processed.set(n->_idx); kvn@500: } kvn@500: break; kvn@500: } kvn@500: case Op_Return: kvn@500: { kvn@500: if( n->req() > TypeFunc::Parms && kvn@500: phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) { kvn@500: // Treat Return value as LocalVar with GlobalEscape escape state. kvn@500: add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false); kvn@500: int ti = n->in(TypeFunc::Parms)->_idx; kvn@500: PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type(); kvn@500: if (nt == PointsToNode::UnknownType) { kvn@500: _delayed_worklist.push(n); // Process it later. kvn@500: break; kvn@500: } else if (nt == PointsToNode::JavaObject) { kvn@500: add_pointsto_edge(n->_idx, ti); kvn@500: } else { kvn@500: add_deferred_edge(n->_idx, ti); kvn@500: } kvn@500: } kvn@500: _processed.set(n->_idx); kvn@500: break; kvn@500: } kvn@500: case Op_StoreP: coleenp@548: case Op_StoreN: kvn@500: { kvn@500: const Type *adr_type = phase->type(n->in(MemNode::Address)); coleenp@548: if (adr_type->isa_narrowoop()) { coleenp@548: adr_type = adr_type->is_narrowoop()->make_oopptr(); coleenp@548: } kvn@500: if (adr_type->isa_oopptr()) { kvn@500: add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false); kvn@500: } else { kvn@500: Node* adr = n->in(MemNode::Address); kvn@500: if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL && kvn@500: adr->in(AddPNode::Address)->is_Proj() && kvn@500: adr->in(AddPNode::Address)->in(0)->is_Allocate()) { kvn@500: add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false); kvn@500: // We are computing a raw address for a store captured kvn@500: // by an Initialize compute an appropriate address type. kvn@500: int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); kvn@500: assert(offs != Type::OffsetBot, "offset must be a constant"); kvn@500: } else { kvn@500: _processed.set(n->_idx); kvn@500: return; kvn@500: } kvn@500: } kvn@500: break; kvn@500: } kvn@500: case Op_StorePConditional: kvn@500: case Op_CompareAndSwapP: coleenp@548: case Op_CompareAndSwapN: kvn@500: { kvn@500: const Type *adr_type = phase->type(n->in(MemNode::Address)); coleenp@548: if (adr_type->isa_narrowoop()) { coleenp@548: adr_type = adr_type->is_narrowoop()->make_oopptr(); coleenp@548: } kvn@500: if (adr_type->isa_oopptr()) { kvn@500: add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false); kvn@500: } else { kvn@500: _processed.set(n->_idx); kvn@500: return; kvn@500: } kvn@500: break; kvn@500: } kvn@500: case Op_ThreadLocal: kvn@500: { kvn@500: add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true); kvn@500: break; kvn@500: } kvn@500: default: kvn@500: ; kvn@500: // nothing to do kvn@500: } kvn@500: return; duke@435: } duke@435: kvn@500: void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) { kvn@500: // Don't set processed bit for AddP, LoadP, StoreP since kvn@500: // they may need more then one pass to process. kvn@500: if (_processed.test(n->_idx)) kvn@500: return; // No need to redefine node's state. duke@435: duke@435: PointsToNode *ptadr = ptnode_adr(n->_idx); duke@435: duke@435: if (n->is_Call()) { duke@435: CallNode *call = n->as_Call(); duke@435: process_call_arguments(call, phase); kvn@500: _processed.set(n->_idx); duke@435: return; duke@435: } duke@435: kvn@500: switch (n->Opcode()) { duke@435: case Op_AddP: duke@435: { kvn@500: Node *base = get_addp_base(n); kvn@500: // Create a field edge to this node from everything base could point to. duke@435: VectorSet ptset(Thread::current()->resource_area()); duke@435: PointsTo(ptset, base, phase); duke@435: for( VectorSetI i(&ptset); i.test(); ++i ) { duke@435: uint pt = i.elem; kvn@500: add_field_edge(pt, n->_idx, address_offset(n, phase)); kvn@500: } kvn@500: break; kvn@500: } kvn@500: case Op_CastX2P: kvn@500: { kvn@500: assert(false, "Op_CastX2P"); kvn@500: break; kvn@500: } kvn@500: case Op_CastPP: kvn@500: case Op_CheckCastPP: coleenp@548: case Op_EncodeP: coleenp@548: case Op_DecodeN: kvn@500: { kvn@500: int ti = n->in(1)->_idx; kvn@500: if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) { kvn@500: add_pointsto_edge(n->_idx, ti); kvn@500: } else { kvn@500: add_deferred_edge(n->_idx, ti); kvn@500: } kvn@500: _processed.set(n->_idx); kvn@500: break; kvn@500: } kvn@500: case Op_ConP: kvn@500: { kvn@500: assert(false, "Op_ConP"); kvn@500: break; kvn@500: } kvn@500: case Op_CreateEx: kvn@500: { kvn@500: assert(false, "Op_CreateEx"); kvn@500: break; kvn@500: } kvn@500: case Op_LoadKlass: kvn@500: { kvn@500: assert(false, "Op_LoadKlass"); kvn@500: break; kvn@500: } kvn@500: case Op_LoadP: kvn@500: { kvn@500: const Type *t = phase->type(n); kvn@500: #ifdef ASSERT kvn@500: if (t->isa_ptr() == NULL) kvn@500: assert(false, "Op_LoadP"); kvn@500: #endif kvn@500: kvn@500: Node* adr = n->in(MemNode::Address)->uncast(); kvn@500: const Type *adr_type = phase->type(adr); kvn@500: Node* adr_base; kvn@500: if (adr->is_AddP()) { kvn@500: adr_base = get_addp_base(adr); kvn@500: } else { kvn@500: adr_base = adr; kvn@500: } kvn@500: kvn@500: // For everything "adr_base" could point to, create a deferred edge from kvn@500: // this node to each field with the same offset. kvn@500: VectorSet ptset(Thread::current()->resource_area()); kvn@500: PointsTo(ptset, adr_base, phase); kvn@500: int offset = address_offset(adr, phase); kvn@500: for( VectorSetI i(&ptset); i.test(); ++i ) { kvn@500: uint pt = i.elem; kvn@500: add_deferred_edge_to_fields(n->_idx, pt, offset); duke@435: } duke@435: break; duke@435: } duke@435: case Op_Parm: duke@435: { kvn@500: assert(false, "Op_Parm"); kvn@500: break; kvn@500: } kvn@500: case Op_Phi: kvn@500: { kvn@500: #ifdef ASSERT kvn@500: if (n->as_Phi()->type()->isa_ptr() == NULL) kvn@500: assert(false, "Op_Phi"); kvn@500: #endif kvn@500: for (uint i = 1; i < n->req() ; i++) { kvn@500: Node* in = n->in(i); kvn@500: if (in == NULL) kvn@500: continue; // ignore NULL kvn@500: in = in->uncast(); kvn@500: if (in->is_top() || in == n) kvn@500: continue; // ignore top or inputs which go back this node kvn@500: int ti = in->_idx; kvn@500: if (_nodes->adr_at(in->_idx)->node_type() == PointsToNode::JavaObject) { kvn@500: add_pointsto_edge(n->_idx, ti); kvn@500: } else { kvn@500: add_deferred_edge(n->_idx, ti); kvn@500: } duke@435: } duke@435: _processed.set(n->_idx); duke@435: break; duke@435: } kvn@500: case Op_Proj: duke@435: { kvn@500: // we are only interested in the result projection from a call kvn@500: if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) { kvn@500: process_call_result(n->as_Proj(), phase); kvn@500: assert(_processed.test(n->_idx), "all call results should be processed"); kvn@500: } else { kvn@500: assert(false, "Op_Proj"); kvn@500: } duke@435: break; duke@435: } kvn@500: case Op_Return: duke@435: { kvn@500: #ifdef ASSERT kvn@500: if( n->req() <= TypeFunc::Parms || kvn@500: !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) { kvn@500: assert(false, "Op_Return"); kvn@500: } kvn@500: #endif kvn@500: int ti = n->in(TypeFunc::Parms)->_idx; kvn@500: if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) { kvn@500: add_pointsto_edge(n->_idx, ti); kvn@500: } else { kvn@500: add_deferred_edge(n->_idx, ti); kvn@500: } duke@435: _processed.set(n->_idx); duke@435: break; duke@435: } duke@435: case Op_StoreP: duke@435: case Op_StorePConditional: duke@435: case Op_CompareAndSwapP: duke@435: { duke@435: Node *adr = n->in(MemNode::Address); duke@435: const Type *adr_type = phase->type(adr); kvn@500: #ifdef ASSERT duke@435: if (!adr_type->isa_oopptr()) kvn@500: assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP"); kvn@500: #endif duke@435: kvn@500: assert(adr->is_AddP(), "expecting an AddP"); kvn@500: Node *adr_base = get_addp_base(adr); kvn@500: Node *val = n->in(MemNode::ValueIn)->uncast(); kvn@500: // For everything "adr_base" could point to, create a deferred edge kvn@500: // to "val" from each field with the same offset. duke@435: VectorSet ptset(Thread::current()->resource_area()); duke@435: PointsTo(ptset, adr_base, phase); duke@435: for( VectorSetI i(&ptset); i.test(); ++i ) { duke@435: uint pt = i.elem; kvn@500: add_edge_from_fields(pt, val->_idx, address_offset(adr, phase)); duke@435: } duke@435: break; duke@435: } kvn@500: case Op_ThreadLocal: duke@435: { kvn@500: assert(false, "Op_ThreadLocal"); duke@435: break; duke@435: } duke@435: default: duke@435: ; duke@435: // nothing to do duke@435: } duke@435: } duke@435: duke@435: #ifndef PRODUCT duke@435: void ConnectionGraph::dump() { duke@435: PhaseGVN *igvn = _compile->initial_gvn(); duke@435: bool first = true; duke@435: kvn@500: uint size = (uint)_nodes->length(); kvn@500: for (uint ni = 0; ni < size; ni++) { kvn@500: PointsToNode *ptn = _nodes->adr_at(ni); kvn@500: PointsToNode::NodeType ptn_type = ptn->node_type(); kvn@500: kvn@500: if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL) duke@435: continue; kvn@500: PointsToNode::EscapeState es = escape_state(ptn->_node, igvn); kvn@500: if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) { kvn@500: if (first) { kvn@500: tty->cr(); kvn@500: tty->print("======== Connection graph for "); kvn@500: C()->method()->print_short_name(); kvn@500: tty->cr(); kvn@500: first = false; kvn@500: } kvn@500: tty->print("%6d ", ni); kvn@500: ptn->dump(); kvn@500: // Print all locals which reference this allocation kvn@500: for (uint li = ni; li < size; li++) { kvn@500: PointsToNode *ptn_loc = _nodes->adr_at(li); kvn@500: PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type(); kvn@500: if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL && kvn@500: ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) { kvn@500: tty->print("%6d LocalVar [[%d]]", li, ni); kvn@500: _nodes->adr_at(li)->_node->dump(); duke@435: } duke@435: } kvn@500: if (Verbose) { kvn@500: // Print all fields which reference this allocation kvn@500: for (uint i = 0; i < ptn->edge_count(); i++) { kvn@500: uint ei = ptn->edge_target(i); kvn@500: tty->print("%6d Field [[%d]]", ei, ni); kvn@500: _nodes->adr_at(ei)->_node->dump(); kvn@500: } kvn@500: } kvn@500: tty->cr(); duke@435: } duke@435: } duke@435: } duke@435: #endif